1	Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-
2	modified α-FeOOH
3	
4	Qiao Li ^a , Rui Li ^a , Xinyue Ma ^a , Binoy Sarkar ^{b*} , Xiuyun Sun ^{a¶} , Nanthi Bolan ^c
5	
6	^a Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School
7	of Environmental and Biological Engineering, Nanjing University of Science and
8	Technology, Nanjing 210094, China
9	^b Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United
10	Kingdom
11	^c Global Centre for Environmental Remediation, University of Newcastle, Callaghan
12	Campus, NSW 2308, Australia
13	
14	*Corresponding author: Dr. Binoy Sarkar; Lancaster University; e-mail:
15	b.sarkar@lancaster.ac.uk; and
16	[¶] Co-corresponding author: Prof. Xiuyun Sun; Nanjing University of Science and
17	Technology; e-mail: sunxyun@njust.edu.cn

18 Highlights

Sulfide-modified α-FeOOH was synthesized for As(V) and Sb(V) removal.
As(V)/Sb(V) adsorption capacity and affinity were remarkably improved.
Enhanced removal was maintained at pH range from 2 to 11.
Reduction of As(V) to As(III) followed by adsorption was identified.
Removal was not affected by the presence of coexisting anions.

25 Graphical abstract

27 Abstract

28	Efficient elimination of As(V) and Sb(V) from wastewater streams has long been
29	a major challenge. Herein, sulfide-modified α -FeOOH adsorbent was fabricated via a
30	simple sulfidation reaction for removing As(V) and Sb(V) from aqueous media.
31	Compared with the pristine α -FeOOH, sulfide-modified α -FeOOH increased the
32	adsorption of As(V) from 153.8 to 384.6 mg/g, and Sb(V) adsorption from 277.8 to
33	1111.1 mg/g. The enhanced adsorption of both As(V) and Sb(V) was maintained at
34	the pH range from 2 to 11, and was not interfered by various coexisting anions such as
35	Cl ⁻ , SO ₄ ²⁻ , NO ₃ ⁻ , SiO ₃ ²⁻ and PO ₄ ³⁻ . The adsorption affinity increased from 0.0047 to
36	0.0915 and 0.0053 to 0.4091 for As(V) and Sb(V), respectively. X-ray photoelectron
37	spectroscopic investigation demonstrated a reductive conversion of As(V) to As(III)
38	during the adsorption process with sulfide-modified α -FeOOH, but with no obvious
39	variation of Sb(V) speciation. While the removal mechanism for As(V) was reduction
40	followed by adsorption via hydroxyl groups, mainly surface complexation was
41	involved in the removal of Sb(V). This study presented a simple strategy to enhance
42	the adsorption capacity and adsorption affinity of α -FeOOH toward As(V)/Sb(V) via
43	sulfide-modification.
44	
45	Keywords: Adsorption affinity and capacity; Arsenic and antimony; Iron-based
46	adsorbents; Metalloid speciation; Sulfide-modification; Wastewater treatment.

Capsule: Sulfide-modified α-FeOOH remediates both low and high arsenic/antimony

49 levels under varying pH and competitive anions – conditions common in wastewater.

51 **1. Introduction**

Severe pollution of arsenic (As) and antimony (Sb) in natural water has triggered 52 53 ever-increasing worldwide concerns, owing to the grave threats of these elements to human health (Fendorf et al., 2010; Herath et al., 2017). Anthropogenic factors such as 54 55 mining activities, coal burning, and industrial consumption of As- and Sb-containing materials are primarily responsible for the build-up of these elements in the soil and 56 water systems (Fawcett et al., 2015; Wei et al., 2015). Long term exposure to elevated 57 concentrations of As and Sb could damage tissues and organs in human, and may even 58 59 lead to cancer (Zhang et al., 2020; Smith et al., 2018; Winship, 1987; Herath et al., 2017). In view of the significant menaces of As and Sb on human health, the maximum 60 contamination levels (MCLs) in drinking water for As (10.0 μ g/L) and Sb (5.0 μ g/L) 61 62 were regulated by the US Environmental Protection Agency (USEPA) and World Health Organization (WHO) (Yamamura et al., 2003; Wang et al., 2018b). Furthermore, 63 As and Sb exhibit homologous chemical and toxicological features, and these two 64 65 metals often co-exist in many contaminated sites (Ungureanu et al., 2015). Therefore, 66 effective technologies are needed to eliminate As and Sb from contaminated water and soil. 67

Various methods have been utilized to scavenge As and Sb from wastewater, such as adsorption (Lin et al., 2019; Mukhopadhyay et al., 2019), electrocoagulation (Cao et al., 2017), membrane filtration (Bolisetty et al., 2017), coprecipitation (Yuan et al., 2019), and ion exchange (Lee et al., 2017). Adsorption was considered as the most widely adopted methods by the virtue of its high removal efficiency, easy operation,

73	and low cost. Numerous adsorbents have been employed to purge As and Sb in
74	contaminated water, including biochar (Niazi et al., 2018; Han et al., 2017), metal
75	oxides (Qiu et al., 2019; Wang et al., 2016), metal-organic frameworks (Liu et al.,
76	2018a), graphene oxide (Yang et al., 2015) and clay minerals (Mukhopadhyay et al.,
77	2017; 2019; Sarkar et al., 2013). Among the adsorbents, iron materials were considered
78	to be the most potential ones for As and Sb removal, owing to merits such as abundant
79	source, low cost, excellent reactivity, and environmental friendliness (Wei et al., 2019;
80	Zhang et al., 2017; Wang et al., 2018a). Nevertheless, the adsorption affinity and
81	capacity of iron oxy-hydroxides toward As and Sb could be relatively weak, which
82	might hinder the practical utilization of iron-based adsorbents for wastewater treatment.
83	When seeking or designing materials with high adsorption affinity and capacity
84	toward As and Sb, it is worth to pay attention that the toxicity of As and Sb to human
85	mainly owes to the puissant affinity between As/Sb and sulfhydryl groups in proteins
86	(Lin et al., 1999; Ning and Xiao, 2007). Furthermore, As and Sb are both sulfophilic
87	elements, mainly exist in the form of sulfide deposits in the nature. The dominant As
88	minerals are orpiment (As ₂ S ₃), realgar (As ₄ S ₄) and arsenopyrite (FeAsS) (Bowell et al.,
89	2014). Similarly, antimony trisulfide (Sb ₂ S ₃) is the main sulfide mineral in the case of
90	Sb (Okkenhaug et al., 2011). In marine systems, aquifers, and river and lake sediments,
91	sulfate reducing bacteria mediate sulfate reduction resulting in the formation of soluble
92	sulfide, and it further reacts with As or Sb to form orpiment (As ₂ S ₃), realgar (As ₄ S ₄),
93	arsenopyrite (FeAsS), or stibnite (Sb ₂ S ₃) (Pope et al., 2004; O'Day et al., 2004).
94	Accordingly, sulfur act an vital role on the cycling of As and Sb in the environment,

and from this perspective, designing sulfur-based materials could be a promising
strategy for enhanced removal of As and Sb from aqueous media.

97 Goethite (α -FeOOH) is a ubiquitous iron oxyhydroxide found in sediments, rocks and soils, and thermodynamically highly stable in nature (Oganessian et al., 2017). a-98 FeOOH has previously been utilized for scavenging As and Sb from contaminated 99 water (Zhang et al., 2017; Xi et al., 2013). In anoxic conditions of a subsurface 100 environment, S(-II) originating from microbial sulfate reduction could transform iron 101 oxyhydroxides into iron sulfide or polysulfide. Inspired from the natural iron 102 103 oxyhydroxide transformation process induced by S(-II), we put forward a novel sulfidemodification of α -FeOOH for enhancing the adsorption of As(V) and Sb(V) from 104 wastewater. To the best of our knowledge, only limited number of studies have focused 105 106 on sulfide-modified α -FeOOH as the adsorbent for scavenging As(V), and no study investigated the comparative removal of As(V) and Sb(V) from polluted water (Hao et 107 al., 2018). 108

109 The objectives of this work are to: (1) fabricate a collection of sulfide-modified α -FeOOH materials with various S/Fe ratios, (2) investigate the structural and 110 morphological information of sulfide-modified a-FeOOH via scanning electron 111 microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction 112 (XRD), and X-ray photoelectron spectroscopy (XPS), (3) explore the adsorption 113 features of As(V) and Sb(V) on sulfide-modified α -FeOOH via performing pH, kinetics, 114 isotherm, coexisting anions experiments, and (4) propose the possible mechanisms of 115 As(V)/Sb(V) adsorption on the sulfide-modified α -FeOOH. 116

118 **2. Materials and methods**

119 2.1 Reagents

Sodium hydroxide (NaOH), hydrochloric acid (HCl), iron(III) nitrate nonahydrate 120 (Fe(NO₃)₃·9H₂O), sodium arsenate (Na₃AsO₄·12H₂O), potassium antimonate hydrated 121 (KSb(OH)₆), sodium hyposulfite (Na₂S₂O₄), sodium chloride (NaCl), sodium sulphate 122 (Na₂SO₄), sodium nitrate (NaNO₃), sodium silicate (Na₂SiO₃), and sodium dihydrogen 123 phosphate (NaH₂PO₄) were all of analytical grade, and obtained from Sinopharm 124 125 Chemical Reagent Co. Ltd, China. KSb(OH)6 and Na₃AsO4·12H₂O were dissolved in ultrapure water to prepare the Sb(V) and As(V) stock solutions, respectively. The As(V) 126 and Sb(V) working solutions were obtained through diluting the stock solutions. In all 127 128 the batch experiments, a background electrolyte concentration was maintained by 0.1 M KNO₃. 129

130

131 2.2 Synthesis of α-FeOOH

132 A hydrothermal method was employed to synthesize α -FeOOH (Padhi and Parida, 133 2014). Briefly, certain amount of Fe(NO₃)₃·9H₂O was dissolved in ultrapure water 134 under vigorous stirring, subsequently the solution pH was adjusted to 12 via NaOH 135 addition, and further stirred for 30 min. Then, the reddish-brown mixture was 136 transferred into a 100 mL Teflon-lined autoclave for hydrothermal reaction for 24 h at 137 180°C. After reaction, the autoclave was cooled down, and the obtained yellow product 138 was repeatedly washed with ultrapure water until the supernatant pH was neutral. Then, the product was separated by centrifugation (6000 rpm for 5 min), and dried at 60° C for 48 h.

141

142 2.3 Synthesis of sulfide-modified α-FeOOH

The sulfide-modified α -FeOOH was fabricated by using dithionite as the 143 sulfidation reagent (Kim et al., 2011). Typically, certain amount of α -FeOOH was 144 suspended in de-oxygenated ultrapure water (in 250 mL three-neck flask), and 145 ultrasonicated for 30 min. Then, 1 mol/L Na₂S₂O₄ solution was freshly prepared by 146 147 dissolving Na₂S₂O₄ in de-oxygenated ultrapure water. Under nitrogen atmosphere, certain volume of fresh Na₂S₂O₄ solution with different S/Fe ratios (S/Fe= 0.1, 0.3, 0.5, 148 0.8, 1.0) were drop-wise added to the α -FeOOH suspension, sealed the bottle, and 149 150 agitated for another 48 h. The obtained precipitate was washed by de-oxygenated ultrapure water for several times, and separated by centrifugation. The product was 151 finally dried in a vacuum oven. The step-wise synthesis procedure is shown 152 153 schematically in Supplementary Information (SI; Fig. S1).

154

155 2.4 Adsorbent characterization

The crystal composition of sulfide-modified α -FeOOH was characterized by XRD (D8 Advance, Bruker, Germany) performed with Cu K α radiation ($\lambda = 1.5418$ Å) at the 2 θ range of 10° to 80°. FTIR spectra of the adsorbents were collected by an IR Prestige-21 spectrometer (Shimadzu, Japan) at the wavelength scope of 4000 – 400 cm⁻¹ via KBr pellet method. To investigate the surface chemical composition and elemental valence

states in the adsorbents, XPS investigation was conducted on a PHI Quantera II ESCA 161 system (Ulvac-Phi, Japan) with a monochromatic Al Ka radiation at 1486.8 eV. The 162 binding energy of the data was calibrated to the C1s peak at 284.8 eV. The surface 163 morphology of the adsorbents was observed by SEM associated with energy dispersion 164 spectrometer (EDS) (Quanta 250FEG, FEI, USA). Certain amount of adsorbent was 165 dispersed in water at pH range of 2 to 11, and the solution pH was preserved at the 166 desired value and adjusted every 6 h. Then, the zeta potential values of the adsorbents 167 were measured by a zetasizer (ZetaPALS, Brookhaven, USA). 168

169 2.5 Batch experiments

Batch adsorption experiments were performed to investigate the effect of contact 170 time, initial adsorbate concentration, initial pH and coexisting anions on the adsorption 171 172 behavior of As(V) and Sb(V) by sulfide-modified α -FeOOH. A 100 mL conical bottle containing 50 mL As(V) or Sb(V) solution was adopted for all the batch adsorption 173 experiments implemented in duplicate. The fabricated adsorbents were added at a 174 dosage of 0.5 g/L, and a background ionic strength was maintained by 0.1 M KNO₃. 175 The conical bottles were sealed, and shaken on an oscillator at 200 rpm for 24 h at 25° C. 176 After adsorption, supernatants were filtered through 0.22 µm membrane filter for 177 determining the residual aqueous concentration of As(V) or Sb(V). Furthermore, 178 adsorbents after adsorption were collected by centrifugation, washed and dried at 179 vacuum, and used for the characterization studies. The adsorption capacity (mg/g) of 180 181 As(V) and Sb(V) on the adsorbents was obtained using Eq. 1:

$$q_e = \frac{(C_0 - C_e)V}{m} \tag{1}$$

where, $q_e \text{ (mg/g)}$ represents the equilibrium adsorption capacity; C_0 and $C_e \text{ (mg/L)}$ 183 represent the supernatant concentrations of adsorbate at the initial and equilibrium times, 184 respectively; V (L) is the adsorbate volume; and m (g) is the mass of the adsorbent. 185 To examine the influence of pH on adsorption, the solution pH was varied from 2 186 to 11 adjusted via adding 1 M HNO3 or NaOH solutions. The solution pH was preserved 187 at the desired value and adjusted every 6 h to avoid any change of the solution pH. 188 Apart from the initial pH effect, a constant pH value of 3 was adopted for all other 189 experiments. To explore the time-dependent adsorption behavior, adsorbent (0.5 g/L) 190 was transferred to an initial As(V) or Sb(V) concentration of 300 mg/L or 500 mg/L (50 191 mL), respectively. Aliquots of suspension was sampled at different time intervals to 192 determine the residual As(V) and Sb(V) concentration. Adsorption isotherm 193 194 investigations were performed at the initial concentration varying from 50 to 500 mg/L. Effects of commonly coexisting anions in wastewater on adsorption performance of 195 As(V) and Sb(V) were explored by conducting the adsorption tests with 200 mg As or 196 197 Sb/L in 500 mg/L sodium salt solutions of various anions (NaCl, Na₂SO₄, NaNO₃, 198 Na₂SiO₃, NaH₂PO₄).

199

200 2.6 Analysis of As and Sb

Inductively coupled plasma-optical emission spectrometer (ICP-OES) (7000DV,
Perkin Elmer, USA) was used to measure the concentrations of As and Sb in the aliquots.
Samples were diluted where needed, acidified with 1% HNO₃, and analyzed within 48
h. The displayed data in this study were the average values of duplicate experiments.

206 **3. Results and discussion**

207 3.1 Characterization of sulfide-modified α-FeOOH

The pure α -FeOOH exhibited a uniform acicular morphology (Fig. 1a). The 208 sulfide-modification significantly changed the appearance of α -FeOOH. When the S/Fe 209 mole ratio increased from 0 to 0.3, the sulfide-modification of α-FeOOH caused a 210 variation of particle length (Fig. 1a-c), but the sulfide-modified α -FeOOH still kept the 211 acicular morphology (Fig. 1b and c). When controlling the S/Fe mole ratio from 0.5 to 212 213 1.0, the acicular morphology was significantly destroyed, which was followed by the formation of larger aggregates (Fig. 1d-f). Due to the increase of S/Fe mole ratio, the 214 acicular shape became shorter, and even was damaged to form large sized rough and 215 216 irregular particles.

The functional groups of sulfide-modified α-FeOOH with different S/Fe mole 217 ratios was obtained by FTIR (Fig. 2a). The band at 3111 cm⁻¹ represented the stretching 218 vibration of O-H (Liu et al., 2017), which reflected the non-stoichiometric hydroxyl 219 groups of α -FeOOH. The intensity of O-H band was weakened along with the 220 increasing S/Fe mole ratio, revealing a reduction of hydroxyl groups on sulfide-221 modified α -FeOOH. This might be attributed to the partial transformation of α -FeOOH 222 to sulfur-bearing iron minerals. The bands at 790 and 890 cm⁻¹ were ascribed to the Fe-223 O-H bending vibrations of α-FeOOH (Rahimi et al., 2015; Liu et al., 2018b). The Fe-224 O-H bands also exhibited an attenuating trend with the increase of S/Fe mole ratio. 225 Meanwhile, the band at 609 cm⁻¹ was attributed to the Fe-O stretching of α -FeOOH 226

227	(Wei et al., 2017). After sulfide-modification, a new band located at 1134 cm ⁻¹ was
228	observed, which could relate to the superficial oxidation of FeS_2 (Jiang et al., 2015). No
229	significant stretching frequency concerning FeS was detected (Gong et al., 2014).
230	The crystal phases of the sulfide-modified α -FeOOH were identified by XRD (Fig.
231	2b). The pure α -FeOOH exhibited a space group symmetry of Pbnm (Z = 4) with the
232	lattice parameters of $a = 4.55979$ Å, $b = 9.951$ Å, and $c = 3.0178$ Å (Yang et al., 2006).
233	The diffraction peaks of pure α -FeOOH (JCPDS No. 29-0713) at 2 θ values 17.80°,
234	21.22°, 26.32°, 33.24°, 34.70°, 36.65°, 41.19°, 53.24° and 59.02° were indexed as the
235	Bragg reflections of (020), (110), (120), (130), (021), (111), (140), (221), and (151)
236	crystal planes, respectively. The diffraction peaks of the main crystal planes of α -
237	FeOOH were still detected after sulfidation (Fig. 2b), indicating that the sulfide-
238	modification did not destroy the original crystal structure of α -FeOOH. However, the
239	intensity of the diffraction peaks was abated with the increase of S/Fe mole ratio, which
240	was similar with other modified α -FeOOH (Liu et al., 2018c). When the S/Fe ratio was
241	higher than 0.3, a new reflection located at $2\theta = 32.7^{\circ}$ could be indexed to plane (2.1.1)
242	of FeS (JCPDS No. 76-0964).

243 XPS spectra were collected to further investigate the surface composition of the 244 sulfide-modified α -FeOOH materials. The two main peaks of Fe 2p spectrum at the 245 binding energy (BE) of ~725.1 eV and ~711.1 eV (Fig. 3a-d) represented Fe 2p_{1/2} 246 and Fe 2p_{3/2}, respectively (Zhang et al., 2019). The fitted Fe 2p spectra in Fig. 3a and b 247 showed the features of Fe(III). With further increase of the S/Fe ratio, the binding 248 energies at 710.1 eV, 724.3 eV, and 710.2 eV (Fig. 3c and d) could be assigned to Fe(II)

species existing on the surface (Tang et al., 2017; Wan et al., 2014). The observed 249 signals of Fe(II) species indicated the reduction transformation of Fe(III) to Fe(II) in α-250 FeOOH by sulfide (Wan et al., 2014). Meanwhile, the reduced concentration of O^{2-} in 251 Ols spectra (Fig. 3e-h) could be assigned to the partial replacement of Fe-O groups by 252 Fe(II)-S groups. The abundance of sulfur species was enhanced with the gradual rise of 253 S/Fe molar ratio, which was previously observed for sulfide-modified zero valent iron 254 (S-ZVI) (Xu et al., 2019). Additionally, disulfide (S2²⁻) (BE \sim 66.6 eV), polysulfide 255 (S_n^2-) (BE $\,\sim\,$ 167.7 and 166.6 eV), and sulfite (SO_3^2-) (BE $\,\sim\,$ 169.4 and 168.2 eV) 256 species on the sulfide-modified α -FeOOH surface (Fig. 3i-k) were confirmed 257 (Mangayayam et al., 2019). Therefore, the XPS results suggested that sulfide was 258 biding with Fe(II) which originated from the reduction of Fe(III) in α -FeOOH. The 259 sulfur species of $S_2^{2^-}$, $S_n^{2^-}$ and $SO_3^{2^-}$ were generated from the hydrolysis of Na₂S₂O₄ 260 (Eq. 2-6). 261

262
$$2S_2O_4^{2-} + H_2O \rightarrow S_2O_3^{2-} + 2SO_3^{2-} + 2H^+$$
 (2)

263
$$S_2O_4^{2-} + S_2O_3^{2-} + 2H_2O + H^+ \rightarrow 3HSO_3^{-} + H_2S$$
 (3)

 $H_2S \to S^{2-} + 2H^+ \tag{4}$

$$S_2O_3^{2-} \rightarrow SO_3^{2-} + S \tag{5}$$

266
$$S^{2-} + S + FeOOH \rightarrow FeS_2 + H_2O$$
 (6)

Surface charge of an adsorbent is a key property that influences the adsorption of metal(loid) ions through electrostatic attraction. An adsorbent with low point of zero charge (pH_{pzc}) favors the removal of cationic heavy metals (e.g., Cu, Cd, Pb, Ni). For oxyanions of heavy metal(loid)s such as As, Sb and Se, a high pH_{pzc} would result in

271	greater adsorption via electrostatic attraction. The zeta potential values of α -FeOOH
272	and sulfide-modified α -FeOOH suspensions were determined at the pH range of 2 to 11
273	(Fig. 4). The pristine α -FeOOH exhibited a pH _{pzc} of 6.69. The pH _{pzc} value of sulfide-
274	modified α -FeOOH significantly increased from 6.69 to 7.40, 7.64, 10.29, 10.39 and
275	10.43 when the S/Fe ratio increased to 0.1, 0.3, 0.5, 0.8 and 1.0, respectively. Similar
276	phenomenon was found in other thiol-functionalized or sulfide modified iron materials
277	(Ma et al., 2018; Ji et al., 2019). A positively charged surface of sulfide-modified α -
278	FeOOH was exhibited at $pH = 10$ when the S/Fe ratio was greater than 0.3 (Fig. 4).
279	Therefore, adsorbents with an increased positive surface charge were resulted following
280	the sulfide-modification, which was a merit of the sulfide-modified α -FeOOH favoring
281	the adsorption of metal(loids) like As(V) and Sb(V).

283 3.2 Effect of pH on adsorption

Metal(loid) adsorption by adsorbents might highly rely on the solution pH which 284 could affect the surface charge of the adsorbents, and the existing metal(loid) species 285 (Prabhu et al., 2019; Wang et al., 2016). The influence of pH on the removal of As(V) 286 and Sb(V) was tested in the pH range of 2.0 to 11.0. The adsorption capacities of sulfide-287 modified α -FeOOH were higher than the pristine α -FeOOH in the entire pH range (2.0 288 to 11.0) (Fig. 5). The adsorption of As(V)/Sb(V) was pH dependent, and the adsorption 289 capacities gradually decreased with the increase of pH from 2.0 to 11.0. Similar 290 tendency was observed for oxyanion adsorption on Ce(III)-doped Fe₃O₄ (Qi et al., 291 2017), La-doped magnetic biochar (Wang et al., 2018b), FeOOH nanoparticles (Zhang 292

293	et al., 2017), and Fe-Ti-Mn composite oxide (Zhang et al., 2019d). The gradual drop of
294	adsorption capacity with an increase of solution pH could be ascribed to the conversion
295	of surface charge from positive to negative values (Fig. 4) together with the varied
296	inorganic As(V)/Sb(V) species (Fig. S2). The forms of As(V) likely were $H_2AsO_4^-$,
297	HAsO4 ²⁻ and AsO4 ³⁻ when pH varied from 2.0 to 11.0 (Fig. S2). The hydrolysis of
298	H ₃ AsO ₄ and Sb(OH) ₅ generated anionic species of the elements (H ₂ AsO ₄ ⁻ , HAsO ₄ ²⁻ ,
299	AsO4 ³⁻ and Sb(OH)6 ⁻) with the increase of pH value. These anions might compete with
300	OH- ions for the adsorption sites at high solution pH (Liu et al., 2016a). Furthermore,
301	the Coulombic repulsion between As(V) or Sb(V) oxyanions and the declining surface
302	positive charge of sulfide-modified α -FeOOH could be accountable for the decreased
303	adsorption of As(V)/Sb(V) at high solution pH.

305 3.3 Adsorption kinetics

The influence of reaction time on the adsorption behavior of As(V) and Sb(V) by 306 the sulfide-modified α -FeOOH was illustrated (Fig. S3). Adsorption reactions of 307 As(V) and Sb(V) by the sulfide-modified α -FeOOH was rapid within the first 100 308 min, and more than 80% of the equilibrium adsorption was achieved during this time 309 (Fig. S3a and d). Subsequently, a slower adsorption rate occurred until the equilibrium 310 was reached. This kind of adsorption pattern occurred mainly due to the abundance of 311 adsorption sites at the beginning of the reaction, and as time went on, the active sites 312 were occupied by oxyanions, which then brought about the low adsorption rate 313 toward the end of the reaction. To further investigate the adsorption kinetics process, 314

315	the pseudo-first order and pseudo-second order were adopted to fit the experiment
316	data. A higher coefficient of determination (R^2) (Table 1; Fig. S3b, c, e and f)
317	indicated that the pseudo-second order model adequately described the $As(V)/Sb(V)$
318	adsorption behaviors on the adsorbent. It was inferred that the adsorption of As(V)
319	and Sb(V) on sulfide-modified α -FeOOH was controlled by chemical reactions
320	(Zhang et al., 2013). With an increase of the S/Fe ratio in the adsorbents, the
321	equilibrium adsorption capacity toward As(V) and Sb(V) increased from 70.92 to
322	285.7 mg/g, and 131.6 to 1000 mg/g, respectively (Table 1). To investigate the effect
323	of the materials on solution pH, the adsorbents were dispersed in ultrapure water with
324	a solid/liquid ratio at 0.025 g/50 mL. After shaking for 24 h, the final pH was
325	determined. The pH values were 7.20, 6.91, 6.58, 6.03, 5.87 and 5.72 for materials
326	with S/Fe ratio of 0, 0.1, 0.3, 0.5, 0.8 and 1.0, respectively. The final pH values were
327	further checked at the end of kinetic experiments at initial $pH = 3$ and adsorbent
328	dosage = 0.5 g/L . The solution pH did not change notably (Table S1).
329	
330	3.4 Adsorption isotherm
331	The-As(V) and Sb(V) adsorption amounts of the sulfide-modified α -FeOOH were
332	estimated via isotherm studies (Fig. S4a and d). The Langmuir and Freundlich model
333	(SI Text) fitting results are shown in Table 2, and Fig. S4b, c, e and f. The Langmuir
334	model was more appropriate (with greater R^2 value) than the Freundlich model to
335	explain the As(V) and Sb(V) sorption properties on sulfide-modified α -FeOOH. It

could be inferred that a homogeneous adsorption occurred on the surface of the

337	adsorbents. Based on the model fitting results (Table 2), the calculated maximum
338	adsorption capacities (q_{max}) were 153.8 – 384.6 mg/g, and 277.8 – 1111.1 mg/g for
339	As(V) and Sb(V), respectively. The q_{max} values thus endowed the sulfide-modified α -
340	FeOOH adsorbents with outstanding potentials for practical remediation of As(V) and
341	Sb(V) in contaminated water with notably better performance than previously
342	published adsorbents (Table S2). The significant enhancement of the adsorption
343	capacity on the sulfide-modified α -FeOOH might be owing to the strong affinity
344	between sulfur and $As(V)/Sb(V)$. The enhancement for $Sb(V)$ was more remarkable
345	than As(V), and the adsorption capacity of the sulfide-modified α -FeOOH at S/Fe=1.0
346	was 3.99 and 2.5 times higher for As(V) and Sb(V), respectively, than the pristine α -
347	FeOOH.
348	The q_{max} and Langmuir constant b are two important parameters reflecting the
348 349	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is
348 349 350	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater),
348 349 350 351	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing
348 349 350 351 352	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a
348 349 350 351 352 353	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a small q_{max} value with large b value could gain higher q_e than the situation of large q_{max}
348 349 350 351 352 353 354	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a small q_{max} value with large b value could gain higher q_e than the situation of large q_{max} and small b values (Cao et al., 2012). As presented in Table 2, the q_{max} and b values
 348 349 350 351 352 353 354 355 	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a small q_{max} value with large b value could gain higher q_e than the situation of large q_{max} and small b values (Cao et al., 2012). As presented in Table 2, the q_{max} and b values for As(V)/Sb(V) adsorption were increased with increasing S/Fe ratio in the
 348 349 350 351 352 353 354 355 356 	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a small q_{max} value with large b value could gain higher q_e than the situation of large q_{max} and small b values (Cao et al., 2012). As presented in Table 2, the q_{max} and b values for As(V)/Sb(V) adsorption were increased with increasing S/Fe ratio in the adsorbents. The enhancement of q_{max} and b values for Sb(V) was more remarkable
 348 349 350 351 352 353 354 355 356 357 	The q_{max} and Langmuir constant b are two important parameters reflecting the adsorption capacity and adsorption affinity, respectively. Large q_{max} value is beneficial for remediating high adsorbate concentration (e.g., industrial wastewater), whereas large b value is important for low adsorbate concentration needing remediation (e.g., groundwater and drinking water). At low adsorbate concentration, a small q_{max} value with large b value could gain higher q_e than the situation of large q_{max} and small b values (Cao et al., 2012). As presented in Table 2, the q_{max} and b values for As(V)/Sb(V) adsorption were increased with increasing S/Fe ratio in the adsorbents. The enhancement of q_{max} and b values for Sb(V) was more remarkable than As(V). The overall results thus indicated that sulfide-modification could

359	modified adsorbents, which is beneficial for the practical remediation of As(V) and
360	Sb(V) in polluted water at different contamination levels.

362 3.5 Effect of coexisting anions

363	A great deal of anions can co-occur with As(V) or Sb(V) in wastewater
364	environment, which might interfere with the elimination of As(V) or Sb(V) by
365	adsorbents. The co-existing anions including Cl ⁻ , SO_4^{2-} , NO_3^{-} , and SiO_3^{2-} in this study
366	displayed a marginal influence on As(V)/Sb(V) adsorption by sulfide-modified α -
367	FeOOH (Fig. 6). However, PO_4^{3-} exhibited a significant hindrance on As(V)/Sb(V)
368	removal, indicating that PO4 ³⁻ possessed a strong competition for active adsorption
369	sites on the surface of sulfide-modified α -FeOOH. The elements P, As and Sb belong
370	to the same VA group in the periodic table. The similar atomic structure and
371	hydrolysis behavior of PO4 ³⁻ and As(V) or Sb(V) (Zhang et al., 2019c) could cause the
372	strong competition during the adsorption process, thereby impacting the $As(V)/Sb(V)$
373	adsorption capacity of the adsorbent in the presence of PO4 ³⁻ .

374

375 3.6 Adsorption mechanisms

To reveal the role of sulfide-modification on As(V) or Sb(V) sorption by sulfidemodified α -FeOOH, the surface chemical environments of the sulfide-modified α -FeOOH before and after As(V)/Sb(V) adsorption were further studied by XPS. The high resolution As3d spectra of As(V)-adsorbed α -FeOOH and sulfide-modification α -FeOOH were shown in Fig. 7a. Compared to the As3d spectra of As(V)-adsorbed α -

381	FeOOH (BE \sim 45.9 eV), a combined spectra showing both As(V) 3d and As(III) 3d
382	peaks was observed for As-adsorbed sulfide-modified α -FeOOH. Specifically, the BE
383	of 45.7 eV, 46.2 eV and 45.9 eV could be assigned to As(V), and 45.1 eV, 45.4 eV and
384	45.2 eV could be assigned to As(III) for the S/Fe ratio of 0.3, 0.5, 1.0, respectively (Wu
385	et al., 2018; Penke et al., 2019; Zhou et al., 2020). The sulfide-modified α -FeOOH thus
386	exhibited a reductive transformation of As(V) to As(III) with the raise of S/Fe ratios,
387	where the percentage of As(III) was 40.46, 55.11, and 70.70% of the total As for the
388	S/Fe ratio of 0.3, 0.5 and 1.0, respectively. The reduction of As(V) by sulfide-modified
389	α -FeOOH could be attributed to the introduced sulfur species (S ₂ ²⁻ , S _n ²⁻ and SO ₃ ²⁻).
390	Therefore, As(V) was partially reduced to As(III), which likely contributed to the
391	enhanced removal of As(V) by the sulfide-modified α -FeOOH. This phenomenon was
392	also observed in the case of As(V) removal using FeS adsorbent (Liu et al., 2016b).
393	However, the BE of Sb3d spectra (Fig. 7b) after Sb(V) adsorption on α -FeOOH and
394	sulfide-modified α -FeOOH showed no significant variation. Specifically, the BE of
395	Sb3d were 540.0, 540.2, 540.4, and 540.2 eV for different S/Fe ratios, assigning all the
396	peaks to Sb(V) only (He et al., 2019; Liu et al., 2019). Therefore, no reduction of Sb(V)
397	occurred on the surface of sulfide-modified α -FeOOH. Similar phenomenon was
398	reported during the removal of Sb(V) by FeS_2/α -Fe ₂ O ₃ (He et al., 2019). The sulfide-
399	modified α -FeOOH in this study exhibited chemical constituents of FeS ₂ / α -FeOOH (as
400	depicted by the XPS and FTIR results), which is similar to previously reported FeS ₂ / α -
401	Fe ₂ O ₃ adsorbents (He et al., 2019). It could be speculated that the \equiv Fe-OH and \equiv S-
402	H were both responsible for the removal of Sb(V) by sulfide-modified α -FeOOH.

403	The morphology of sulfide-modified α -FeOOH after As(V) and Sb(V) adsorption
404	are shown in Fig. S5-S8. When the S/Fe ratio was less than 0.3, there was no obvious
405	variation in the needle-like particles after reacting with As(V) (Fig. S5b, e and h) and
406	Sb(V) (Fig. S7b, e and h), as compared with original adsorbents (Fig. 1). However,
407	when the S/Fe ratio was higher than 0.3, the morphology of the adsorbents was
408	dramatically altered after interacting with As(V) (Fig. S6) and Sb(V) (Fig. S8), and
409	irregular small particles were formed. The peaks of As or Sb were observed in
410	corresponding EDS spectra after removed by sulfide-modified α -FeOOH (Fig. S5-S8).
411	Furthermore, the intensity of As and Sb peaks in the respective EDS spectrum became
412	stronger along the raise of S/Fe ratio, indicating that the sulfide-modification improved
413	the adsorption capacity of α -FeOOH toward As(V) and Sb(V).
414	To explain the role of Fe and S on the elimination of As(V)/Sb(V) by sulfide-
415	modified α -FeOOH, variations of Fe and S species after the adsorption process were

also studied by XPS. The Fe2p and S2p spectra of sulfide-modified α -FeOOH (S/Fe=1.0) 416

pre-and post-adsorption of As(V) and Sb(V) are shown in Fig. S9. The peaks at 710.0 417

and 724.2 eV were assigned to Fe^{2+} signals (Wan et al., 2014), and these two peaks

shifted to 711.3 and 725.3 eV, and 710.8 and 724.8 eV after the sorption of As(V) and

418

419

Sb(V), respectively (Fig. S9a), implying that Fe^{2+} was partially oxidized to Fe^{3+} .

420

Therefore, the \equiv Fe-OH functional groups likely contributed to the sorption of As(V) 421

and Sb(V). The S2p spectra also exhibited a significant variation after As(V) and Sb(V) 422

adsorption (Fig. S9b). The S species in the original sulfide-modified a-FeOOH were 423

 $S_2^{2^2}$, $S_n^{2^2}$ and $SO_3^{2^2}$, but the S^{2^2} species disappeared after the adsorption, leaving behind 424

425 only SO_3^{2-} and S_n^{2-} . These results indicated that S species were oxidized, and 426 participated in the reduction of As(V). The =S-H functional groups were likely involved 427 in the removal of Sb(V) (He et al., 2019).

Based on the discussion above, the conceived adsorption mechanisms between sulfide-modified α -FeOOH and As(V)/Sb(V) could be summarized as the following:

430 (1) The adsorption kinetics for sulfide-modified α -FeOOH toward As(V)/Sb(V) 431 were well expressed by the pseudo second order, demonstrating that the adsorption 432 process of As(V) and Sb(V) on sulfide-modified α -FeOOH was controlled by a 433 chemical reaction mechanism.

434 (2) The XPS results suggested that the abundant S species on sulfide-modified α -435 FeOOH converted As(V) to As(III); the \equiv S-H functional groups were involved in the 436 adsorption of Sb(V).

(3) The pH effect on adsorption indicated that electrostatic attraction also contributed to the As(V)/Sb(V) removal process. The sulfide-modified α -FeOOH held more positive surface charges than α -FeOOH, which was in favor of As(V)/Sb(V) removal. The sulfide-modified α -FeOOH exhibited the crystal phase of α -FeOOH, and contained abundant surface hydroxyl groups (as confirmed by XPS and FTIR). Therefore, the As(V/III) and Sb(V) were adsorbed through surface complexation reactions too via the =Fe-OH groups.

444

445 **4. Conclusions**

446

In this work, a novel sulfide-modified α -FeOOH was synthesized, and utilized

447	for $As(V)$ and $Sb(V)$ removal from aqueous solutions. The sulfide-modification
448	exhibited significant effect on the morphology, crystal phases, surface composition,
449	and surface charge of the α -FeOOH, consequently influenced the As(V)/Sb(V)
450	adsorption performance. The sulfide-modified α -FeOOH increased the adsorption
451	capacities of As(V) and Sb(V), but it was more notable for Sb(V). The adsorption
452	affinity of sulfide-modified α -FeOOH toward As(V) and Sb(V) were also increased
453	with increasing S/Fe ratio in the adsorbents. The kinetic and isotherm investigations
454	implied that chemisorption and monolayer adsorption controlled the removal of As(V)
455	and Sb(V) by the sulfide-modified α -FeOOH. The sulfide-modified α -FeOOH
456	possessed a reducibility effect toward As(V), but not toward Sb(V). Overall, this
457	study put forward a strategy to increase the adsorption affinity and capacity of As(V)
458	and Sb(V) on α -FeOOH via sulfide modification. The sulfide-modified α -FeOOH thus
459	exhibited promising implications for the remediation of As(V) and Sb(V) in aqueous
460	media containing both high and low adsorbate concentrations.
461	
462	Acknowledgements
463	This research was financially supported by the Science and Technology
464	Department of Jiangsu Province, China (BK20161497), the Fundamental Research

- Funds for the Central Universities (No.30917011308), and the Environmental
- 466 Protection Department of Jiangsu Province (No. 2017004).
- 467

468 **Declaration of interest**

The authors declare no competing financial interests for this study.

470

471	References
472	Bolisetty, S., Reinhold, N., Zeder, C., Orozco, M.N., Mezzenga, R., 2017. Efficient
473	purification of arsenic-contaminated water using amyloid-carbon hybrid
474	membranes. Chem. Commun. 53, 5714-5717.
475	Bowell, R.J., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K., Majzlan, J., 2014. The
476	environmental geochemistry of arsenic-an overview. Rev. Mineral. Geochem.
477	79, 1-16.
478	Cao, D., Zeng, H., Yang, B., Zhao, X., 2017. Mn assisted electrochemical generation
479	of two-dimensional Fe-Mn layered double hydroxides for efficient Sb(V)
480	removal. J. Hazard. Mater. 336, 33-40.
481	Cao, Q., Huang, F., Zhuang, Z., Lin, Z., 2012. A study of the potential application of
482	nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from
483	water. Nanoscale 4, 2423-2430.
484	Fendorf, S., Michael, H.A., Geen, A., 2010. Spatial and temporal variations of
485	groundwater arsenic in South and Southeast Asia. Science 328, 1123-1127.
486	Fawcett, S.E., Jamieson, H.E., Nordstrom, D.K., McCleskey, R.B., 2015. Arsenic and
487	antimony geochemistry of mine wastes, associated waters and sediments at the
488	Giant Mine, Yellowknife, Northwest Territories, Canada. Appl. Geochem. 62, 3-
489	17.

490 Gong, Y., Liu, Y., Xiong, Z., Zhao, D., 2014. Immobilization of mercury by

491	carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction
492	mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol.
493	48, 3986-3994.
494	Han, L., Sun, H., Ro, K.S., Sun, K., Libra, J.A., Xing, B., 2017. Removal of
495	antimony(III) and cadmium(II) from aqueous solution using animal manure-
496	derived hydrochars and pyrochars. Bioresour. Technol. 234, 77-85.
497	Hao, L., Liu, M., Wang, N., Li, G., 2018. A critical review on arsenic removal from
498	water using iron-based adsorbents. RSC Adv. 8, 39545-39560.
499	He, X., Min, X., Peng, T., Ke, Y., Zhao, F., Wang, Y., Sillanpää, M. (2019). Highly
500	Efficient Antimonate Removal from Water by Pyrite/Hematite Bi-Mineral:
501	Performance and Mechanism Studies. J. Chem. Eng. Data 64(12), 5910-5919.
502	Herath, I., Vithanage, M., Bundschuh, J., 2017. Antimony as a global dilemma:
503	geochemistry, mobility, fate and transport. Environ. Pollut. 223, 545-559.
504	Ji, J., Chen, G., Zhao, J., 2019. Preparation and characterization of amino/thiol
505	bifunctionalized magnetic nanoadsorbent and its application in rapid removal of
506	Pb(II) from aqueous system. J. Hazard. Mater. 368, 255-263.
507	Jiang, F., Peckler, L.T., Muscat, A.J., 2015. Phase pure pyrite FeS ₂ nanocubes
508	synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth
509	Des. 15, 3565-3572.
510	Kim, E.J., Kim, J.H., Azad, A.M., Chang, Y.S., 2011. Facile synthesis and
511	characterization of Fe/FeS nanoparticles for environmental applications. ACS
512	Appl. Mater. Interfaces 3, 1457-1462.

513	Lee, C.G., Alvarez, P.J.J., Nam, A., Park, S.J., Do, T., Choi, U.S., Lee, S.H., 2017.
514	Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: kinetic,
515	equilibrium, and regeneration studies, J. Hazard. Mater. 325, 223-229.
516	Lin, L., Zhang, G., Liu, X., Khan, Z. H., Qiu, W., Song, Z. (2019). Synthesis and
517	adsorption of Fe-Mn-La-impregnated biochar composite as an adsorbent for
518	As(III) removal from aqueous solutions. Environ. Pollut. 247, 128-135.
519	Lin, S., Cullen, W.R., Thomas, D.J., 1999. Methylarsenicals and arsinothiols are
520	potent inhibitors of mouse liver thioredoxin reductase. Chem. Res. Toxicol. 12,
521	924-930.
522	Liu, B., Jian, M., Wang, H., Zhang, G., Liu, R., Zhang, X., Qu, J., 2018a. Comparing
523	adsorption of arsenic and antimony from single-solute and bi-solute aqueous
524	systems onto ZIF-8. Colloids Surf. A Physicochem. Eng. Asp. 538, 164-172.
525	Liu, H., Lu, X., Li, M., Zhang, L., Pan, C., Zhang, R., Li, J., Xiang, W., 2018b.
526	Structural incorporation of manganese into goethite and its enhancement of
527	Pb(II) adsorption. Environ. Sci. Technol. 52, 4719-4727.
528	Liu, R., Liu, J.F., Zhang, L.Q., Sun, J.F., Jiang, G.B., 2016a. Low temperature
529	synthesized ultrathin γ -Fe ₂ O ₃ nanosheets show similar adsorption behaviour for
530	As(III) and As(V). J. Mater. Chem. A 4, 7606-7614.
531	Liu, R., Yang, Z., He, Z., Wu, L., Hu, C., Wu, W., Qu, J., 2016b. Treatment of strongly
532	acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS):
533	Inhibitive effects of S(0)-enriched surfaces. Chem. Eng. J. 304, 986-992.
534	Liu, Y., Liu, X., Zhao, Y., Dionysiou, D.D., 2017. Aligned α-FeOOH nanorods

535	anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective
536	Fenton-like oxidation catalyst. Appl. Catal., B 213, 74-86.
537	Liu, Y., Wu, P., Liu, F., Li, F., An, X., Liu, J., Wang, Z., Shen, C., Sand, W. (2019).
538	Electroactive modified carbon nanotube filter for simultaneous detoxification
539	and sequestration of Sb(III). Environ. Sci. Technol. 53(3), 1527-1535.
540	Ma, R., Yin, L., Li, L., Zhang, S., Wen, T., Zhang, C., Wang, X., Chen, Z., Hayat, T.,
541	Wang, X., 2018. Comparative Investigation of Fe ₂ O ₃ and Fe _{1-x} S Nanostructures
542	for Uranium Decontamination. ACS Appl. Nano Mater. 1, 5543-5552.
543	Mangayayam, M., Dideriksen, K., Ceccato, M., Tobler, D.J., 2019. The Structure of
544	Sulfidized Zero-Valent Iron by One-Pot Synthesis: Impact on Contaminant
545	Selectivity and Long-Term Performance, Environ. Sci. Technol. 53, 4389-4396.
546	Mukhopadhyay, R., Manjaiah, K.M., Datta, S.C., Sarkar, B., 2019. Comparison of
547	properties and aquatic arsenic removal potentials of organically modified
548	smectite adsorbents. J. Hazard. Mater. 377, 124-131.
549	Mukhopadhyay, R., Manjaiah, K.M., Datta, S.C., Yadav, R.K., Sarkar, B., 2017.
550	Inorganically modified clay minerals: Preparation, characterization, and arsenic
551	adsorption in contaminated water and soil. Appl. Clay Sci. 147, 1-10.
552	Niazi, N.K., Bibi, I., Shahid, M., OK, Y.S., Burton, E.D., Wang, H., Shaheen, S.M.,
553	Rinklebe, J., Lüttge, A., 2018. Arsenic removal by perilla leaf biochar in aqueous
554	solutions and groundwater: an integrated spectroscopic and microscopic
555	examination. Environ. Pollut. 232, 31-41.
556	Ning, Z., Xiao, T., 2007. Supergene geochemical behavior and environmental risk of

antimony. Earth Environ. 35, 176-182.

558 O'Day, P.A., Vlassopoulos, D., Root, R., Rivera, N., 2004. The influence of sulfur and

iron on dissolved arsenic concentrations in the shallow subsurface under

- changing redox conditions. Proc. Natl. Acad. Sci. U. S. A. 101, 13703-13708.
- 561 Oganessian, N.V.T., Guda, A.A., Sakhnenko, V.P., 2017. Linear magnetoelectric effect
- 562 in göthite, α-FeOOH. Sci. Rep. 7, 16410.
- 563 Okkenhaug, G., Zhu, Y.G., Luo, L., Lei, M., Li, X., Mulder, J., 2011. Distribution,
- speciation and availability of antimony (Sb) in soils and terrestrial plants from an

active Sb mining area. Environ. Pollut. 159, 2427-2434.

- 566 Padhi, D.K., Parida, K., 2014. Facile fabrication of α-FeOOH nanorod/RGO
- composite: a robust photocatalyst for reduction of Cr(VI) under visible light
 irradiation. J. Mater. Chem. A 2, 10300-10312.
- 569 Penke, Y. K., Anantharaman, G., Ramkumar, J., Kar, K. K. (2019). Redox synergistic
- 570 Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic
- remediation with environmentally stable As(0) formation. J. Hazard. Mater. 364,572 519-530.
- 573 Pope, J.G., McConchie, D.M., Clark, M.D., Brown, K.L., 2004. Diurnal variations in
- the chemistry of geothermal fluids after discharge, Champagne Pool, Waiotapu.
- 575 New Zealand, Chem. Geol. 203, 253-272.
- 576 Prabhu, S.M., Park, C.M., Shahzad, A., Lee, D.S., 2019. Designed synthesis of
- 577 sulfide-rich bimetallic-assembled graphene oxide sheets as flexible materials and
- 578 self-tuning adsorption cum oxidation mechanisms of arsenic from water. J.

Mater. Chem. A 7, 12253-12265.

- 580 Qi, Z., Joshi, T.P., Liu, R., Liu, H., Qu, J., 2017. Synthesis of Ce(III)-doped Fe₃O₄
- 581 magnetic particles for efficient removal of antimony from aqueous solution, J.
- 582 Hazard. Mater. 329, 193-204.
- 583 Qiu, S., Yan, L., Jing, C., 2019. Simultaneous removal of arsenic and antimony from
- mining wastewater using granular TiO₂: Batch and field column studies. J.
 Environ. Sci. 75, 272-279.
- 586 Rahimi, S., Moattari, R.M., Rajabi, L., Derakhshan, A.A., Keyhani, M., 2015. Iron
- 587 oxide/hydroxide (α , γ -FeOOH) nanoparticles as high potential adsorbents for
- lead removal from polluted aquatic media. J. Ind. Eng. Chem. 23, 33-43.
- 589 Sarkar, B., Naidu, R., Megharaj, M., 2013. Simultaneous adsorption of tri- and
- hexavalent chromium by organoclay mixtures. Water Air Soil Pollut. 224, 1-10,
- 591 doi: 10.1007/s11270-11013-11704-11270.
- 592 Smith, R., Knight, R., Fendorf, S., 2018. Overpumping leads to California

groundwater arsenic threat. Nat. Commun. 9, 2089-2095.

- 594 Tang, L., Feng, H., Tang, J., Zeng, G., Deng, Y., Wang, J., Liu, Y., Zhou, Y., 2017.
- 595 Treatment of arsenic in acid wastewater and river sediment by Fe@Fe₂O₃
- 596 nanobunches: The effect of environmental conditions and reaction mechanism.
- 597 Water Res. 117, 175-186.
- 598 Ungureanu, G., Santos, S., Boaventura, R., Botelho, C., 2015. Arsenic and antimony
- in water and wastewater: overview of removal techniques with special reference
- to latest advances in adsorption. J. Environ. Manag. 151, 326-342.

601	Wan, M., Shchukarev, A., Lohmayer, R., Friedrich, B.P., Peiffer, S., 2014. Occurrence
602	of surface polysulfides during the interaction between ferric(hydr) oxides and
603	aqueous sulfide. Environ. Sci. Technol. 48, 5076-5084.
604	Wang, J., Chen, Y., Zhang, Z., Ai, Y., Liu, L., Qi, L., Zhou, J., Hu, Z., Jiang, R., Bao,
605	H., Ren, S., Liang, J., Sun, H., Niu, D., Liang, Q., 2018a. Microwell Confined
606	Iron Oxide Nanoparticles in Honeycomblike Carbon Spheres for the Adsorption
607	of Sb(III) and Sequential Utilization as a Catalyst. ACS Sustainable Chem. Eng.
608	6, 12925-12934.
609	Wang, L., Wang, J., Zhang, R., Liu, X., Song, G., Chen, X., Wang, Y., Kong, J., 2016.
610	Highly efficient As(V)/Sb(V) removal by magnetic sludge composite: synthesis,
611	characterization, equilibrium, and mechanism studies. RSC Adv. 6, 42876-
612	42884.
613	Wang, L., Wang, J., Wang, Z., He, C., Lyu, W., Yan, W., Yang, L., 2018b. Enhanced
614	antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic
615	biochars. Chem. Eng. J. 354, 623-632.
616	Wei, C., Ge, Z., Chu, W., Feng, R., 2015. Speciation of antimony and arsenic in the
617	soils and plants in an old antimony mine. Environ. Exp. Bot. 109, 31-39.
618	Wei, X., Liu, Q., Zhang, H., Lu, Z., Liu, J., Chen, R., Li, R., Li, Z., Liu, P., Wang, J.,
619	2017. Efficient removal of uranium(VI) from simulated seawater using
620	amidoximated polyacrylonitrile/FeOOH composites, Dalton Trans. 46, 15746-
621	15756.

622 Wei, Y., Yu, X., Liu, C., Ma, J., Wei, S., Chen, T., Yin, K., Liu, H., Luo, S., 2019.

623	Enhanced arsenite removal from water by radially porous Fe-chitosan beads:
624	Adsorption and H ₂ O ₂ catalytic oxidation. J. Hazard. Mater. 373, 97-105.
625	Winship, K.A, 1987. Toxicity of antimony and its compounds, Adverse Drug React.
626	Acute Poisoning Rev. 6, 67-90.
627	Wu, D., Peng, S., Yan, K., Shao, B., Feng, Y., Zhang, Y., 2018. Enhanced As(III)
628	sequestration using sulfide-modified nanoscale zerovalent iron with a
629	characteristic core-shell structure: Sulfidation and As distribution. ACS
630	Sustainable Chem. Eng. 6, 3039-3048.
631	Xi, J., He, M., Wang, K., Zhang, G., 2013. Adsorption of antimony(III) on goethite in
632	the presence of competitive anions. J. Geochem. Explor. 132, 201-208.
633	Xu, J., Wang, Y., Weng, C., Bai, W., Jiao, Y., Kaegi, R., Lowry, G.V., 2019. Reactivity,
634	selectivity, and long-term performance of sulfidized nanoscale zerovalent iron
635	with different properties. Environ. Sci. Technol. 53, 5936-5945.
636	Yamamura, S., Bartram, J., Csanady, M., Gorchev, H.G., Redekopp, A., 2003.
637	Drinking water guidelines and standards, Arsenic, Water, and Health: the state of
638	the art. Geneva: World Health Organisation. 18.
639	Yang, H., Lu, R., Downs, R. T., Costin, G. (2006). Goethite, a-FeO (OH), from
640	single-crystal data. Acta Cryst. E 62(12), i250-i252.
641	Yang, X., Shi, Z., Yuan, M., Liu, L., 2015. Adsorption of trivalent antimony from
642	aqueous solution using graphene oxide: Kinetic and thermodynamic studies. J.
643	Chem. Eng. Data 60, 806-813.
644	Yuan, Z., Zhang, G., Lin, J., Zeng, X., Ma, X., Wang, X., Wang, S., Jia, Y., 2019. The

645	stability of Fe(III)-As(V) co-precipitate in the presence of ascorbic acid: Effect
646	of pH and Fe/As molar ratio. Chemosphere 218, 670-679.
647	Zhang, G., Ren, Z., Zhang, X., Chen, J., 2013. Nanostructured iron(III)-copper(II)
648	binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous
649	solutions, Water Res. 47, 4022-4031.
650	Zhang, L., Fu, F., Tang, B., 2019. Adsorption and redox conversion behaviors of
651	Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres
652	composites. Chem. Eng. J. 356, 151-160.
653	Zhang, Q., Hou, Y., Wang, D., Xu, Y., Wang, H., Liu, J., Xia, L., Li, Y., Tang, N.,
654	Zheng, Q., Sun, G. (2020). Interactions of arsenic metabolism with arsenic
655	exposure and individual factors on diabetes occurrence: Baseline findings from
656	Arsenic and Non-Communicable disease cohort (AsNCD) in China. Environ.
657	Pollut. 114968.
658	Zhang, T., Wang, J., Zhang, W., Yang, C., Zhang, L., Zhu, W., Sun, J., Li, G., Li, T.,
659	Wang, J., 2019c. Amorphous Fe/Mn bimetal-organic frameworks: outer and
660	inner structural designs for efficient arsenic(III) removal. J. Mater. Chem. A 7,
661	2845-2854.
662	Zhang, X., Cheng, C., Qian, J., Lu, Z., Pan, S., Pan, B., 2017. Highly efficient water

664 mesoporous polystyrene beads. Environ. Sci. Technol. 51, 9210-9218.

663

- 665 Zhang, W., Liu, C., Wang, L., Zheng, T., Ren, G., Li, J., Ma, J., Zhang, G., Song, H.,
- 666 Zhang, Z., Li, Z., 2019d. A novel nanostructured Fe-Ti-Mn composite oxide for

decontamination by using sub-10 nm FeOOH confined within millimeter-sized

667	highly efficient arsenic removal: Preparation and performance evaluation.
668	Colloids Surf. A Physicochem. Eng. Asp. 561, 364-372.
669	Zhou, J., Zhou, X., Yang, K., Cao, Z., Wang, Z., Zhou, C., Baig, S. A., Xu, X. (2020).
670	Adsorption behavior and mechanism of arsenic on mesoporous silica modified
671	by iron-manganese binary oxide (FeMnOx/SBA-15) from aqueous systems. J.
672	Hazard. Mater. 384, 121229.
673	

674 Figure captions

- Fig. 1. SEM images of (a) α -FeOOH, and sulfide modified α -FeOOH samples at S/Fe
- 676 mole ratios of (b) 0.1, (c) 0.3, (d) 0.5, (e) 0.8, (f) 1.0.
- Fig. 2. FTIR spectra (a), and XRD patterns (b) of α-FeOOH and sulfide-modified α-
- FeOOH materials at S/Fe mole ratios of 0.1, 0.3, 0.5, 0.8 and 1.0.
- Fig. 3. High resolution XPS spectra of iron (Fe 2p) (a-d), oxygen (O 1s) (e-h), and
- sulfur (S 2p) (i-k) for sulfide-modified α -FeOOH materials synthesized at various
- 681 S/Fe ratios.
- Fig. 4. pH versus zeta potential curves of α -FeOOH and sulfide-modified α -FeOOH
- 683 materials synthesized at various S/Fe mole ratios.
- Fig. 5. Effect of pH on (a) As(V) and (b) Sb(V) adsorption by α -FeOOH and sulfide-
- 685 modified α -FeOOH materials synthesized at various S/Fe mole ratios.
- Fig. 6. Effect of co-existing anions on (a) As(V) and (b) Sb(V) adsorption by α -
- FeOOH and sulfide-modified α-FeOOH materials synthesized at various S/Fe mole
- 688 ratios.
- Fig. 7. High-resolution XPS spectra of (a) As 3d, and (b) Sb 3d following adsorption
- 690 of As(V) and Sb(V) on α-FeOOH and sulfide-modified α-FeOOH materials
- 691 synthesized at various S/Fe mole ratios.
- 692

693 **Table titles**

- Table 1. Pseudo-first order and pseudo-second order kinetic model parameters for As(V)
- and Sb(V) adsorption on α -FeOOH and sulfide modified α -FeOOH.
- Table 2. Langmuir and Freundlich isotherm model parameters for the adsorption of
- 697 As(V) and Sb(V) on α-FeOOH and sulfide modified α-FeOOH.

702 Fig. 1.

708 Fig. 3.

716 Fig. 6.

719 Fig. 7.

721 Tables

Table 1. Pseudo-first order and pseudo-second order kinetic model parameters for As(V) and Sb(V) adsorption on α -FeOOH and sulfide modified

723 α-FeOOH.

Adgorbata	A describent		Pseudo-first order model			Pseudo-second order model		
Adsorbate	Adsorbent	<i>q</i> e,exp	$k_1 (\min^{-1})$	$q_{ m e,cal}(m mg/g)$	R^2	k_2 (g/(mg min))	$q_{\rm e,cal}({ m mg/g})$	R^2
As(V)	S/Fe=0	68.4	1.22×10 ⁻²	43.93	0.9903	7.18×10 ⁻⁴	70.92	0.9972
	S/Fe=0.1	112.8	8.29×10 ⁻³	45.70	0.9717	7.88×10 ⁻⁴	112.4	0.9968
	S/Fe=0.3	136.0	1.11×10 ⁻²	49.73	0.9662	8.27×10 ⁻⁴	136.9	0.9980
	S/Fe=0.5	232.8	6.91×10 ⁻³	49.23	0.8702	8.61×10 ⁻⁴	227.3	0.9986
	S/Fe=0.8	271.0	1.11×10 ⁻²	42.94	0.8850	1.29×10 ⁻³	270.3	0.9998
	S/Fe=1.0	293.6	5.76×10 ⁻³	40.81	0.8119	1.01×10 ⁻³	285.7	0.9989
	S/Fe=0	132.4	9.21×10 ⁻³	57.07	0.9265	6.58×10 ⁻⁴	131.6	0.9963
	S/Fe=0.1	237.4	9.67×10 ⁻³	64.15	0.9530	6.44×10 ⁻⁴	238.1	0.9984
Sb(V)	S/Fe=0.3	304.2	1.06×10 ⁻²	53.06	0.9438	9.55×10 ⁻⁴	303.1	0.9996
	S/Fe=0.5	958.9	1.17×10 ⁻²	124.9	0.9118	4.17×10 ⁻⁴	1000	0.9999

S/Fe=0.8	981.2	1.59×10 ⁻²	146.8	0.9606	4.35×10 ⁻⁴	1000	0.9999
S/Fe=1.0	987.2	2.05×10 ⁻²	76.56	0.9171	1.11×10 ⁻³	1000	1.0000

Adsorbate	Adsorbent	Langmuir model			Freundlich model		
Ausorbaic	Ausorbent	$q_{\rm max}({ m mg/g})$	b (L/mg)	R^2	$K_{\mathrm{F}}(\mathrm{mg/g}(1/\mathrm{mg}^{1/\mathrm{n}}))$	п	R^2
As(V)	S/Fe=0	153.8	4.69×10 ⁻³	0.9956	3.339	1.746	0.9904
	S/Fe=0.1	163.9	6.16×10 ⁻³	0.9954	4.877	1.858	0.9763
	S/Fe=0.3	175.4	0.0131	0.9916	18.82	2.883	0.9971
	S/Fe=0.5	256.4	0.0899	0.9970	128.2	8.673	0.9948
	S/Fe=0.8	344.8	0.1014	0.9953	152.6	7.097	0.9528
	S/Fe=1.0	384.6	0.0915	0.9938	161.0	6.873	0.9539
Sb(V)	S/Fe=0	277.8	5.32×10 ⁻³	0.9986	5.548	1.659	0.9855
	S/Fe=0.1	294.1	0.0103	0.9916	15.57	2.128	0.9876
	S/Fe=0.3	333.3	0.1186	0.9991	97.66	4.277	0.9003
	S/Fe=0.5	833.3	0.2069	0.9979	178.69	2.536	0.9618
	S/Fe=0.8	1000	0.2941	0.9895	227.77	2.187	0.9442
	S/Fe=1.0	1111.1	0.4091	0.9932	283.60	1.951	0.9567

Table 2. Langmuir and Freundlich isotherm model parameters for the adsorption of As(V) and Sb(V) on α -FeOOH and sulfide modified α -FeOOH.

728	Supplementary Information for:	

- 729 Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified α -
- 730 **FeOOH**
- 731
- 732 Qiao Li^a, Rui Li^a, Xinyue Ma^a, Binoy Sarkar^{b*}, Xiuyun Sun^a[¶], Nanthi Bolan^c
- 733
- ^a Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of
- 735 Environmental and Biological Engineering, Nanjing University of Science and Technology,
- 736 Nanjing 210094, China
- ^b Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United
- 738 Kingdom
- ^c Global Centre for Environmental Remediation, University of Newcastle, Callaghan
- 740 Campus, NSW 2308, Australia
- 741
- ^{*}Corresponding author: Dr. Binoy Sarkar; Lancaster University; e-mail:
- 743 <u>b.sarkar@lancaster.ac.uk;</u> and
- ⁷⁴⁴ [¶]Co-corresponding author: Prof. Xiuyun Sun; Nanjing University of Science and Technology;
- 745 e-mail: <u>sunxyun@njust.edu.cn</u>

747 **1. SI Texts**

748 Modelling of adsorption data

749 Adsorption kinetics

Kinetic investigation is crucial for understanding the adsorption mechanism as well as the
equilibrium time. The pseudo-first order and pseudo-second order (Ho, 2006; Yue et al.,
2018) models were adopted to probe the kinetic results. The linear equations were expressed
as:

754 Pseudo-first-order:
$$\log(q_e - q_t) = \log q_e - \frac{k_1 t}{2.303}$$
 (SEq.1)
755 Pseudo-second-order: $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ (SEq.2)

Where, $q_e (mg/g)$ and $q_t (mg/g)$ represent the adsorption capacity of As(V) or Sb(V) at equilibrium and time t (min), $k_1 (min^{-1})$ and $k_2 (g/(mg min))$ are the corresponding rate constants.

759 Adsorption isotherms

Adsorption isotherms were used to explore the adsorption characteristics such as the
maximum adsorption as well as the adsorbate distribution between the liquid and solid
phases. The Langmuir and Freundlich isotherm (Lee et al., 2018; Najib and Christodoulatos,
2019) models were utilized for analyzing the adsorption isotherm data. The equations were
expressed as:

765Langmuir isotherms model:
$$\frac{C_e}{q_e} = \frac{C_e}{q_{max}} + \frac{1}{bq_{max}}$$
(SEq.3)766Freundlich isotherms model: $\log q_e = \log K_F + \frac{1}{n} \log C_e$ (SEq.4)767Where, C_e (mg/L) and q_e (mg/g) are the equilibrium concentration and equilibrium

Where, $C_e (\text{mg/L})$ and $q_e (\text{mg/g})$ are the equilibrium concentration and equilibrium adsorption capacity for As(V) or Sb(V), $q_{\text{max}} (\text{mg/g})$ is the predicted maximum adsorption capacity of

2. SI Figures

Fig. S1. Schematic for the synthesis steps of sulfide-modified α -FeOOH.

Fig. S2. As(V) and Sb(V) species distribution at different solution pH values.

Fig. S3. Time dependence of As(V) and Sb(V) adsorption on α -FeOOH and sulfide-modified α -FeOOH materials synthesized at various S/Fe

785 (d-f) effect of contact time, pseudo-first order kinetic plot, and pseudo-second order kinetic plot for Sb(V) adsorption, respectively.

Fig. S4. Concentration dependence of As(V) and Sb(V) adsorption on α -FeOOH and sulfide-modified α -FeOOH materials synthesized at various

- 788 S/Fe mole ratios; (a–c) adsorption isotherm, Langmuir plot, and Freundlich plot for As(V) adsorption, respectively; (d–f) adsorption isotherm,
- 789 Langmuir plot, and Freundlich plot for Sb(V) adsorption, respectively.

Fig. S5. SEM images and EDS spectra of adsorbents after As(V) adsorption; (a-c) S/Fe=0, (d-

792 f) S/Fe=0.1, and (g-i) S/Fe=0.3.

Fig. S6. SEM images and EDS spectra of adsorbents after As(V) adsorption; (a-c) S/Fe=0.5,

^{797 (}d-f) S/Fe=0.8, and (g-i) S1.0.

800 Fig. S7. SEM images and EDS spectra of adsorbents after Sb(V) adsorption; (a-c) S/Fe=0, (d-

⁸⁰¹ f) S/Fe=0.1, and (g-i) S/Fe=0.3.

Fig. S8. SEM images and EDS spectra of adsorbents after Sb(V) adsorption; (a-c) S/Fe=0.5,

^{805 (}d-f) S/Fe=0.8, and (g-i) S1.0.

807

808 Fig. S9. High-resolution XPS spectra of Fe 2p and S 2p of sulfide-modified α -FeOOH

809 (S/Fe=1.0).

811 **3.** SI Table

Table S1. Effect of sulfide modified α -FeOOH (0.5 g/L) on the solution pH during the

Condition	Time (h) –	S/Fe ratio							
		0	0.1	0.3	0.5	0.8	1.0		
	0	3.05	3.04	3.03	3.04	3.02	3.05		
As(V)	4	3.10	3.03	3.07	3.06	3.01	3.08		
	8	3.14	3.07	3.01	3.04	3.00	3.02		
	12	3.10	3.09	3.03	3.05	3.02	3.04		
	24	3.19	3.16	3.08	3.01	3.01	3.04		
	0	3.02	3.01	3.03	3.03	3.02	3.05		
	4	3.10	3.04	3.06	3.02	3.04	3.04		
Sb(V)	8	3.14	3.07	3.01	2.99	3.00	2.98		
	12	3.17	3.10	3.01	3.04	2.99	3.00		
	24	3.17	3.11	3.03	3.00	3.01	2.97		

adsorption of As(V) and Sb(V) (500 mg/L)

814

Table S2. Comparison of maximum adsorption capacities (q_{max}) for As(V) and Sb(V) on

816 various adsorbents

Adsorbates	Solution	Adsorbents	a (mg/g)	Poferences		
Ausorbaies	рН	Ausorbents	q max(mg/g)			
As(V)	3.0	A-60	205.3	Lee et al., 2018		
	2.6	Magnetic bio-sludge	21.3	Wang et al., 2016		
	5.0	Fe@MesoPS	140-190	Zhang et al., 2017		
	7.0	Fe/Mg-MIL-88B(0.5)	303.6	Gu et al., 2019		

	2.0	Cellulose@iron oxide	32.1	Yu et al., 2013		
	4.0	CO-MaEaO	207	Kumar et al.,		
		00 Mill/e204	207	2014		
	6.0	Sulfur-doped Fe ₃ O ₄	58.38	Liu et al., 2018		
	5.0	Biologically FeS	234.5	Zhou et al., 2018		
	3.0	Sulfide-modified α-	294 6	Present study		
		FeOOH(S/Fe=1.0)	384.0			
Sb(V)	3.4	Fe(III) treated granules	22.6	Wang et al., 2014		
	2.6	Magnetic bio-sludge	43.5	Wang et al., 2016		
	7.0	La _{0.3} Fe-BC	18.9	Wang et al., 2018		
	7.0	Mesoporous α-FeOOH	102.7	Xiao et al., 2019		
	7.0	Calcined Mg/Al-LDH	303.3	Lee et al., 2018		
	2.3-9.5	NU-1000(Zr-MOF)	287.9	Li et al., 2017		
	2.2	TiO ₂ NTs	56.30	Zhao et al., 2019		
	6.8	RGO/Mn ₃ O ₄	105.5	Zou et al., 2016		
	3.0	Sulfide-modified α-				
		FeOOH(S/Fe=1.0)	1111.1	Present study		

818 4. SI References

Gu, Y., Xie, D., Wang, Y., Qin, W., Zhang, H., Wang, G., Zhang, Y., Zhao, H. 2019. Facile

820 fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional

arsenate removal. Chem. Eng. J. 357, 579-588.

- Ho, Y.S. 2006. Second-order kinetic model for the sorption of cadmium onto tree fern: a
- comparison of linear and non-linear methods. Water Res. 40(1), 119-125.
- Kumar, S., Nair, R.R., Pillai, P.B., Gupta, S.N., Iyengar, M.A.R., Sood, A.K. 2014. Graphene
- 825 oxide–MnFe₂O₄ magnetic nanohybrids for efficient removal of lead and arsenic from
- water. ACS Appl. Mater. Interfaces 6(20), 17426-17436.
- 827 Lee, C.G., Alvarez, P.J., Nam, A., Park, S.J., Do, T., Choi, U.S., Lee, S.H. 2017. Arsenic(V)
- removal using an amine-doped acrylic ion exchange fiber: kinetic, equilibrium, and
 regeneration studies. J. Hazard. Mater. 325, 223-229.
- 830 Lee, S.H., Tanaka, M., Takahashi, Y., Kim, K.W. 2018. Enhanced adsorption of arsenate and
- antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative
 adsorption mechanism by surface characterization. Chemosphere 211, 903-911.
- Li, J., Li, X., Hayat, T., Alsaedi, A., Chen, C. 2017. Screening of zirconium-based metal-
- organic frameworks for efficient simultaneous removal of antimonite (Sb(III)) and
- antimonate (Sb(V)) from aqueous solution. ACS Sustain. Chem. Eng. 5(12), 11496-
- 836 11503.
- Liu, J., Kong, L., Huang, X., Liu, M., Li, L. 2018. Removal of arsenic(V) from aqueous
- solutions using sulfur-doped Fe₃O₄ nanoparticles. RSC Adv. 8(71), 40804-40812.
- 839 Najib, N., Christodoulatos, C. 2019. Removal of arsenic using functionalized cellulose
- nanofibrils from aqueous solutions. J. Hazard. Mater. 367, 256-266.
- 841 Wang, L., Wan, C., Lee, D. J., Liu, X., Zhang, Y., Chen, X.F., Tay, J.H. 2014. Biosorption of
- antimony (V) onto Fe (III)-treated aerobic granules. Bioresour. Technol. 158, 351-354.
- 843 Wang, L., Wang, J., Wang, Z., He, C., Lyu, W., Yan, W., Yang, L., 2018. Enhanced antimonate

- 844 (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chem. Eng. J.
 845 354, 623-632.
- 846 Wang, L., Wang, J., Zhang, R., Liu, X., Song, G., Chen, X., Wang, Y., Kong, J., 2016. Highly
- efficient As(V)/Sb(V) removal by magnetic sludge composite: synthesis,
- characterization, equilibrium, and mechanism studies. RSC Adv. 6, 42876-42884.
- Xiao, M., Zhao, Y., Li, S. 2019. Facile synthesis of chrysanthemum-like mesoporous α-
- FeOOH and its adsorptive behavior of antimony from aqueous solution. J. DispersionSci. Technol. 1-9.
- Yu, X., Tong, S., Ge, M., Zuo, J., Cao, C., Song, W. 2013. One-step synthesis of magnetic
 composites of cellulose@ iron oxide nanoparticles for arsenic removal. J. Mater. Chem.
 A 1(3), 959-965.
- Yue, R., Chen, Q., Li, S., Zhang, X., Huang, Y., Feng, P. 2018. One-step synthesis of 1,6-
- hexanediamine modified magnetic chitosan microspheres for fast and efficient removal
- of toxic hexavalent chromium. Sci. Rep. 8(1), 1-12.
- Zhang, X., Cheng, C., Qian, J., Lu, Z., Pan, S., Pan, B., 2017. Highly efficient water
- decontamination by using sub-10 nm FeOOH confined within millimeter-sized

mesoporous polystyrene beads. Environ. Sci. Technol. 51, 9210-9218.

- Zhao, T., Tang, Z., Zhao, X., Zhang, H., Wang, J., Wu, F., Giesy, J.P., Shi, J. 2019. Efficient
- removal of both antimonite (Sb(III)) and antimonate (Sb(V)) from environmental water
- using titanate nanotubes and nanoparticles. Environ. Sci. Nano 6(3), 834-850.
- Zhou, J., Chen, S., Liu, J., Frost, R.L. 2018. Adsorption kinetic and species variation of
- arsenic for As(V) removal by biologically mackinawite (FeS). Chem. Eng. J. 354, 237-

866 244.

867	Zou, J.P.,	Liu, H.	L., Luo,	J., Xing,	Q.J.,	Du, H.M.,	Jiang,	Х.Н.,	Luo,	Х.В.,	Luo,	S.L.,	Suib,
-----	------------	---------	----------	-----------	-------	-----------	--------	-------	------	-------	------	-------	-------

- 868 S.L. 2016. Three-dimensional reduced graphene oxide coupled with Mn₃O₄ for highly
- efficient removal of Sb(III) and Sb(V) from water. ACS Appl. Mater. Interfaces 8(28),
- 870 18140-18149.