
 Charles Weir - October 2020 i

Using Workshops to Improve Security
in Software Development Teams

Charles Weir
 Security Lancaster

School of Computing and Communications

This dissertation is submitted for the degree of
Doctor of Philosophy

October 2020

With thanks once again to my wife Julia

 Charles Weir - October 2020 iii

“You were saved not by work, but for work. Do it till all is done. By your Inventions,
Innovations, Initiatives, Improvements, Involvements, Imaginations, Information,
Interventions and Inspirations... Go the extra mile and dare to do it.” (Israelmore Ayivor)

Declaration
This thesis has not been submitted in support of an application for another degree at this
or any other university. It is the result of my own work and includes nothing that is the
outcome of work done in collaboration except where specifically indicated.

Some of the ideas in this thesis were the product of discussion with my supervisors Lynne
Blair, James Noble of the Victoria University of Wellington, and Awais Rashid of the
University of Bristol; and with collaborators Ingolf Becker and Angela Sasse of
University College London, Sascha Fahl of the Ruhr University Bochum and later
Leibniz University Hannover, Christian Stransky and Dominik Wermke of Leibniz
University Hannover, and Ben Hermann of Paderborn University.

In terms of others’ contributions, the dual coding for the Magid and Magid2 projects was
by Ingolf Becker; he also wrote a first version of the Blockers and Motivators discussion
in Section 2.2.7.

For the Developer Survey chapter, Sascha Fahl instigated and mentored the survey
project, suggested Figure 20 and wrote the initial version of Section 5.1.2; Ben Hermann
created and ran the application analysis software package and wrote the initial version of
Section 5.2.1; Christian Stransky generated the lists of invitation email addresses,
obtained the corresponding application binaries and wrote the initial version of Section
5.1.5; Dominik Wermke created the initial Python Jupyter Notebook analysis plus Figure
25, Figure 27, Figure 29, Figure 31, and Figure 35 in Sections 5.3.2 to 5.3.4.

Section 3.3 is based closely on a similar description in an earlier thesis by the author
[183].

Excerpts of this thesis have been published in the following peer reviewed conference
proceedings, datasets and journals:

1. Weir, C., Hermann, B., and Fahl, S. From Needs to Actions to Secure Apps? The
Effect of Requirements and Developer Practices on App Security. 29th USENIX
Security Symposium (USENIX Security 2020).

2. Weir, C., Noble, J., and Rashid, A. Challenging Software Developers: Dialectic
as a Foundation for Security Assurance Techniques. Journal of Cybersecurity,
(2020), 30.

3. Weir, C., Becker, I., Noble, J., et al. Interventions for Long-Term Software
Security: Creating a Lightweight Program of Assurance Techniques for
Developers. Software - Practice and Experience, October 2019, 275–298.

4. Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M.A., and Rashid, A.
Interventions for Software Security: Creating a Lightweight Program of
Assurance Techniques for Developers. Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice, IEEE
(2019).

5. Weir, C., Blair, L., Becker, I., Sasse, M.A., and Noble, J. Light-touch
Interventions to Improve Software Development Security. IEEE Cybersecurity
Development Conference, IEEE Computer Society (2018), 12.

6. Weir, C., Hermann, B., Stransky, C., Wermke, D., and Fahl, S. Public Dataset
from Online Android App Developer Survey. 2019.
https://dx.doi.org/10.17635/lancaster/researchdata/319.

 Charles Weir - October 2020 v

This thesis may contain some overlap with text in the following publications by the
author:

1. Weir, C. Secure Development, https://www.securedevelopment.org/

2. Weir, C., Blair, L., Noble, J., Becker, I., and Sasse, M.A. Developer Cyber
Essentials: Trialling Interventions to Improve Development Security. Lancaster,
2018.

3. Weir, C. and Ford, N. The Secure Development Handbook: Step by Step to
Software Security. Amazon, London, 2018.

4. Weir, C., Rashid, A., and Noble, J. Developer Essentials: Top Five Interventions
to Support Secure Software Development. Lancaster University, Lancaster,
2017.

Further papers will be published containing additional material from the chapters in this
thesis.

Copyright © 2020, Charles Weir. All Rights Reserved.

Abstract
Though some software development teams are highly effective at delivering security,
others either do not care or do not have access to security experts to teach them how.
Unfortunately, these latter teams are still responsible for the security of the systems they
build: systems that are ever more important to ever more people. Yet many, perhaps most,
security problems can be prevented with careful design, construction and configuration
of the software and systems involved, so software developers have a major contribution
to make.

This research investigates how to help teams of software developers achieve better
security. An initial qualitative survey of 15 secure software development professionals
highlighted a range of security assurance and motivation techniques suitable for teams of
developers, and emphasised the human interaction aspects. A further quantitative survey
of 330 successful Android developers then identified a baseline of current security
practices in software development.

Based on these surveys, the author created an intervention package to help software
developers. Action Research techniques were used to trial and improve it in two one-year
cycles with a total of 19 development teams in 11 different organisations. The later
development of the package concentrated on empowering the developers involved, and
reducing the involvement required from the researchers.

By proving that a set of structured workshops can have an impact on the security
performance of a team for a reasonable cost and without the support of security
professionals, this research offers a powerful means to enhance development security in
the UK, creating more secure software and systems for all users.

 Charles Weir - October 2020 vii

Acknowledgements
Thank you to my supervisors Lynne Blair of Lancaster University, James Noble of
Victoria University at Wellington, and Awais Rashid of Bristol University.

Thank you also to my PhD appraisers Dan Prince and Kim Kaivanto of Lancaster
University.

Thank you to Ingolf Becker of UCL, who worked with me on the two Majid projects as
the second coder for the data, and as a contributor of ideas and some text.

Thank you to Katherine Whitehead of Lancaster University who did all the manual
transcription required for the work described in this thesis.

Thank you to Sascha Fahl, Christian Stransky and Dominik Wermke of Leibnitz
Universität Hannover, who worked with me on the Android Developer Survey. And to
Yasemin Acar also of LU Hannover, who provided valuable advice on the survey
implementation.

Thank you to M. Angela Sasse, of Ruhr Universität Bochum, who provided expert
advice on the Action Research method.

Thank you to Tamara Lopez of Open University, who reviewed and provided expert
feedback on the Online Survey questions.

Thank you to Ian White, of UCL, who advised on the statistics used to analyse the online
survey.

Thank you to Thomas Gross of Newcastle University, whose Workshop on Refining
Evidence-Based Methods strongly influenced the online survey method.

Thank you to the over a dozen anonymous reviewers of the papers, who have all
contributed significantly; and particularly to USENIX shepherd Daniel Zappala of
Brigham Young University.

Thank you to Steve Wright of Lancaster University, who taught the NVivo techniques
used to analyse the two Magid projects, and also found Sonix.

Thank you to Kayla Friedman of Cambridge University and Malcolm Morgan of Leeds
University for producing the Microsoft Word thesis template on which the Lancaster
template is based [187].

Thank you to all the interviewees in the Expert Survey, whose names must be
confidential, who gave their time to provide the information in the Interventions survey.

And lastly, thank you to all the many teams of developers and security experts, whose
names must also be confidential, who trialled the interventions, and contributed ideas
and feedback.

Contents
1 INTRODUCTION ... 15	

1.1 State of the Art and Its Limitations .. 16	
1.2 Conventions in this Thesis ... 17	
1.3 Research Objective ... 17	
1.4 Research Summary ... 18	
1.5 Novel Contributions ... 21	
1.6 Thesis Overview ... 22	

2 LITERATURE REVIEW ... 23	

2.1 Developer Centred Security Literature ... 23	
2.2 Security Interventions Literature .. 29	
2.3 Summary and Limitations of Existing Literature ... 35	

3 METHODS USED ... 37	

3.1 Philosophical Approach ... 37	
3.2 Choice of Research Methods .. 38	
3.3 Grounded Theory ... 39	
3.4 Online Survey ... 44	
3.5 Canonical Action Research .. 50	
3.6 Design-Based Research .. 53	
3.7 Visualisation of Results .. 58	

4 EXPERT SURVEY ... 60	

4.1 Introduction .. 60	
4.2 Approach .. 61	
4.3 Results: Active Developer Model .. 65	
4.4 Results: Techniques Used .. 68	
4.5 Technique: Threat Assessment ... 70	
4.6 Technique: Stakeholder Negotiation .. 72	
4.7 Technique: Configuration Review ... 73	
4.8 Technique: Source Code Review ... 75	
4.9 Technique: Automated Static Analysis .. 76	
4.10 Technique: Penetration Testing .. 77	
4.11 Technique: Incentivisation Session .. 79	
4.12 Technique: On-the-Job Training .. 81	
4.13 Discussion .. 82	
4.14 Conclusions .. 86	

5 DEVELOPER SURVEY ... 88	

5.1 Survey Methodology .. 89	
5.2 Application Analysis Methodology .. 94	
5.3 Results .. 97	
5.4 Discussion .. 107	
5.5 Summary and Conclusions ... 108	

6 INTERVENTION PACKAGE CREATION .. 110	

6.1 Requirements for the Intervention .. 110	

 Charles Weir - October 2020 ix

6.2 Constructing the Intervention ... 111	
6.3 Facilitation Approach ... 115	

7 PACKAGE TRIALS (MAGID) ... 116	

7.1 Research Method .. 116	
7.2 Participating Companies .. 119	
7.3 How the Sessions Went .. 121	
7.4 Outcomes ... 125	
7.5 Outcomes after One Year ... 129	
7.6 Blockers and Motivators .. 131	
7.7 Discussion and Next Steps ... 135	

8 FURTHER TRIALS (MAGID 2) .. 140	

8.1 Choice of Methodology ... 140	
8.2 Participating Developer Groups ... 142	
8.3 Research Sub-Questions .. 145	
8.4 Method Implementation ... 146	
8.5 Research Numbers ... 148	
8.6 Practical Results ... 148	
8.7 Theory Results ... 163	
8.8 Discussion .. 166	
8.9 Conclusions .. 170	

9 DISCUSSION AND CONCLUSION .. 171	

9.1 Research Summary .. 171	
9.2 Research Questions Revisited .. 172	
9.3 Main Contributions .. 174	
9.4 Uniqueness of this Research .. 176	
9.5 Future Research Agenda .. 176	
9.6 Conclusion ... 177	

10 REFERENCES .. 178	

	 Most Cited DCS Publications .. 191	
	 Expert Survey Interview Questions ... 193	
	 Assurance Technique Names Used .. 194	
	 Agile App Security Game Facilitator Instructions 195	
	 Threat Assessment and Sales Instructions 197	
	 Magid Trials Entry Interview Questions .. 200	
	 Magid Trials Exit Interview Questions 201	
	 Online Survey Invitation Email ... 202	
	 Online Survey Questions ... 203	
	 Survey Score Calculations ... 205	
	 Workshop Styles and Assessments .. 206	

List of Tables
Table 1: Overview of Research Questions ... 21	
Table 2: Steps in Grounded Theory ... 41	
Table 3: Principles of Appreciative Inquiry ... 44	
Table 4: Example NVivo Report Showing Aspects and Levels 56	
Table 5: Interpretation of Cohen’s Kappa (Viera and Garett [179]) 57	
Table 6: Experts Interviewed ... 62	
Table 7: Interviewee Discussion of Assurance Techniques 71	
Table 8: Security Assurance Techniques and Participants ... 83	
Table 9: App Binary Analysis Tool Versions .. 95	
Table 10: Pearson R Results for Developer Survey Security Scores 104	
Table 11: Pearson R Results for App Security vs. Developer Security 106	
Table 12: Interviewees from Each Company Team ... 121	
Table 13: Actual Participant Time Cost ... 121	
Table 14: Evidence of Learning by Interviewees ... 128	
Table 15: Summary of Techniques Adopted after One Year 130	
Table 16: Blockers and Motivators .. 131	
Table 17: Advice for Software Development Teams ... 137	
Table 18: Organisation Cultures (after Provenmodels [116]) 143	
Table 19: Participating Developer Groups ... 143	
Table 20: Inter-Rater Reliability Results .. 148	
Table 21: Assurance Techniques .. 149	
Table 22: Engagement Levels .. 158	
Table 23: Impact Averaged over Group Descriptions .. 161	
Table 24: Impact Averaged by Organisation Size and Team Culture 161	
Table 25: Impact of Different Categories of Intervention .. 162	
Table 26: When to Give Out the Cards .. 196	
Table 27: Suggested Timetable .. 196	

 Charles Weir - October 2020 xi

List of Figures
Figure 1: Overview of the Five Research Projects .. 18	
Figure 2: Annual Citations of a Range of Papers (Bai et al. [17]) 24	
Figure 3: Frequently Cited Developer Centred Security Literature, by Date 25	
Figure 4: Android Static Analysis Papers (Sadeghi et al. [145]) 26	
Figure 5: Using the Techniques of Grounded Theory ... 41	
Figure 6: The Processes of Appreciative Inquiry ... 43	
Figure 7: Canonical Action Research Activities (Davison et al. 2014 [43]) 51	
Figure 8: Design-Based Research Activities (Ejersbo et al. 2008 [53]) 54	
Figure 9: Activities in Practical Design-Based Research .. 55	
Figure 10: Example Excel Visualisation .. 59	
Figure 11: Organisation Size and Security Capability ... 63	
Figure 12: Recruitment Methods for Expert Survey .. 63	
Figure 13: Expert Survey Questions .. 64	
Figure 14: Traditional Model from Security Literature ... 66	
Figure 15: Active Developer Model .. 66	
Figure 16: Interventions in Terms of Cost and Specialist Requirements 84	
Figure 17: Assurance Techniques in the Software Development Cycle 84	
Figure 18: Sensitisation, Support and Affordability .. 85	
Figure 19: A Practical Approach for Interveners ... 87	
Figure 20: Developer Survey Study Procedure .. 90	
Figure 21: Developer Survey Security Scores ... 93	
Figure 22: App Analysis Security Scores .. 95	
Figure 23: Comparing Participants’ App Success with Invitees’ 97	
Figure 24: Participants’ Experience Compared with Developer Population 97	
Figure 25: Geographical Location of Participants ... 98	
Figure 26: Countries of Participants .. 99	
Figure 27: Importance of Different Requirements ... 99	
Figure 28: Distribution of Participants’ Team Sizes .. 100	
Figure 29: Other Roles in Participants’ Teams .. 100	
Figure 30: How Knowledgeable about Security .. 101	
Figure 31: Use of Assurance Techniques .. 101	
Figure 32: Percentage Using Each Number of Assurance Techniques 102	
Figure 33: Cumulative Security Update Frequency ... 102	
Figure 34: Top Five Reasons for Security Changes .. 103	
Figure 35: Changes Made Due to GDPR ... 103	
Figure 36: Use of Assurance Techniques by Developers in Teams 104	
Figure 37: Cross-plots of the Scores with Significant Correlations 105	
Figure 38: Worse Cryptosecurity with Expert Involvement? 106	
Figure 39: Typical Schedule for the Interventions ... 115	
Figure 40: Styles of Participant Interaction ... 125	
Figure 41: Mentions of Blockers and Motivators, by Company 133	
Figure 42: Composition of the Participating Groups ... 144	
Figure 43: Intervention Timeline ... 147	
Figure 44: Group D Intervention Results ... 151	
Figure 45: Group E Intervention Results ... 152	
Figure 46: Group F Intervention Results ... 153	
Figure 47: Group G Intervention Results ... 154	

Figure 48: Group H Intervention Results ... 155	
Figure 49: Group I Intervention Results ... 156	
Figure 50: Group J Intervention Results .. 157	
Figure 51: Whiteboard with Dots by Post-it Notes .. 158	
Figure 52: Whiteboard Showing Risk and Impact ... 158	
Figure 53: Group K Intervention Results ... 159	
Figure 54: Changes in Assurance Technique Usage for All Groups 160	
Figure 55: Impact vs. Energy, Categorised by Facilitation Style 163	
Figure 56: Playing the Agile App Security Game .. 195	

 Charles Weir - October 2020 xiii

List of Abbreviations and Acronyms
ACM Association for Computing Machinery
AES Advanced Encryption Standard
et al. And further authors.
API Application Programming Interface
CAR Canonical Action Research
CEO Chief Executive Officer
CISO Chief Information Security Officer
CLASP Comprehensive, Lightweight Application Security Process
CMM Capability Maturity Model
CONSORT Consolidated Standards for Reporting Trials
CTO Chief Technical Officer
DBR Design-Based Research
DCS Developer Centred Security
ECB Electronic CodeBook, an encryption mode.
ESE Empirical Software Engineering
ESEC European Software Engineering Conference
FST Faculty of Science and Technology, at Lancaster University
FTSE 100 Financial Times Stock Exchange 100 Index, a list of some of the

largest companies.
GCHQ General Communications Headquarters, the main United Kingdom

government security body.
GDPR General Data Protection Regulation, a European Union statute.
GIS Geographical Information System
GT Grounded Theory
HTTPS Hypertext Transfer Protocol over SSL, an encryption-based Internet

security protocol.
IBM International Business Machines, a company.
IDE Interactive Development Environment
IEC International Electrotechnical Commission, an international

standards body.
IEEE Institute of Electrical and Electronics Engineers
IRR Inter-Rater Reliability
ISO International Standardization Organization
IT Information Technology
LLC Limited Liability Company
NCSC UK National Cyber Security Centre, a group within GCHQ
NOSQL Non-SQL (a non-relational database).
OPAL OPen Analysis Library for Java Bytecode
OWASP Open Web Application Security Project, a non-profit organisation.
Pen Test Penetration Test, a simulated cyberattack on a computer system.
QA Quality Assurance (software testing)
SDL Secure Development Lifecycle
SIGCAS ACM Special Interest Group on Computers and Society
SIGPLAN ACM Special Interest Group on Programming Languages
SIGSAC ACM Special Interest Group on Security, Audit & Control
SIGSOFT ACM Special Interest Group on Software
SME Small to Medium Enterprise

SPI Software Process Improvement
SQL Structured Query Language, for databases
SSL Secure Sockets Layer, an encryption-based Internet security

protocol.
TLS Transport Layer Security, an encryption-based Internet security

protocol.
UCL University College London, a university.
UNIX A family of operating systems
URL Uniform Resource Locator (a web address)
USB Universal Serial Bus, a standard for connecting computers and

peripherals.
USENIX An association that supports operating system research (from Unix)
USP Unique Selling Proposition
VBA Visual Basic for Applications, a programming language.
VPN Virtual Private Network, a secure Internet connection between two

devices or sub-networks.

Chapter 1: Introduction

 Charles Weir - October 2020 15

1 Introduction

Software increasingly affects everyone and everything we do. It contributes enormously
to our quality of life and to our ability to communicate, learn, control and build. Software
underpins virtually every form of business, much of our social interaction, and
increasingly the behaviour of our homes and machines. Indeed, software is probably the
most significant contributor to societal change and improvement in the past fifty years
[1].

Yet with the vast benefits of software come problems: the problem of software not
behaving in the way desired (‘faults’); the risk of people finding ways to misuse software
in ways detrimental to its intended users (‘security’), and the risk of revealing information
in damaging ways (‘privacy’).

Faults have been a familiar issue in software development from the beginning, and
researchers have devoted much effort to finding effective ways to address them. Even
security and privacy are hardly a new problem; banks have been using software since
1950 [21]. But security and privacy have only began to become issues in mainstream
software development in the last twenty years, and only in the last five years has there
become to be public awareness of the problem.

And they are now becoming major issues: almost every day we hear that several more
organisations’ software systems have been compromised [142]. While there are many
aspects to an organisation’s security and privacy, the design and implementation of the
software used clearly has a significant impact on whether such breaches happen.

Two industry trends contribute to this. First, changes in web architecture such as
microservices and the increasing integration of Software as a Service (SaaS) components
into systems mean that perimeter security is increasingly irrelevant, making security more
a feature of the developed code and therefore the responsibility of the developers. Second,
the DevOps (Development Operations) movement means that security issues that used to
be the province of a separate operations team, such as the management of encryption keys
and deployment passwords, increasingly is becoming the responsibility of software
developers. Therefore, the effectiveness of developers at creating secure software is vital.

Chapter 1: Introduction

16 Charles Weir - October 2020

Unfortunately, there is evidence that developers are not delivering this security. A recent
report from Veracode [177] concluded that “more than 85 percent of all applications
have at least one vulnerability in them; more than 13 percent of applications have at least
one very high severity flaw”. A report from Microsoft [115] analysed storage and
collaboration Software as a Service applications, and found a wide range of issues,
including 28% of storage apps not supporting data encryption.

All these surveys suggest that many errors were avoidable; developers could have made
choices that would have prevented the issues. Yet the developers were just doing their
job, subject to their constraints, and there is little evidence of deliberate or even careless
connivance at security errors. Indeed, the Ponemon Institute carried out a IBM-funded
survey in 2015 of 640 individuals from organisations developing mobile apps in the US
[135], and found that 77% believed that “securing mobile apps is very hard”, and that
73% percent believed that developer lack of understanding of security issues was a major
contributor to the problem.

This demonstrates that existing industry practices are insufficient to provide the
application security and privacy we need. So, how can one support developers to deliver
better security?

1.1 State of the Art and Its Limitations
In industry, the international not-for-profit Open Web Application Security Project
(OWASP) organisation runs regular events and provides web-based resources [206]. It
delivers excellent, data-driven advice and materials, but is dominated by security
professionals, and gets only limited engagement with software developers1. The SANS
institute is a commercial organisation with a similar function in the USA and similar
limitations. SANS is noted for its commercial training, and also for a comprehensive
online library of security resources created by security professionals [146].

There is increasing academic research happening in this area. Several research groups are
looking at technical aspects of secure programming (APIs, user interactions) For
example, teams in the universities of Bonn and Hannover have been investigating
Android app developer behaviour; a team in the University of New South Wales is
exploring the ‘process usability’ issues faced by developers. Former leading players like
McGraw [112] are now working at CEO level; most security specialists work within
practicing teams. In the UK, the Johnny project [139] is exploring security for solo
developers; and the Jenny project [108] has looked at security for unsupported
development teams.

Survey evidence (see Chapter 5) suggests that few developers have any formal security
training or experience. Even if some know how to achieve security, how are they to get a
whole team to follow?

1 Personal communication, Martin Knobloch, OWASP Chairman, OWASP AppSec Europe Conference
2018

Chapter 1: Introduction

 Charles Weir - October 2020 17

1.2 Conventions in this Thesis
Many research questions distinguish ‘privacy’ (protection against unwanted disclosure of
information to other users of a system2) from ‘security’ (protection against malicious
theft, corruption, faking of information, or denial of service). This thesis uses the word
‘security’ to include both.

A software development team usually includes a range of roles: programmers, testers,
project managers and product managers. Here, we use the word ‘developer’ to refer to all
these roles, using the more specific terms where appropriate. Similarly, the responsibility
of deciding development priorities and the allocation of financial and other resource
might be have the title of product manager, line manager, technical lead—or indeed might
be the responsibility of committee. Here we use the term ‘product manager’ to refer to
any holder of this role.

1.3 Research Objective
Summarising the previous discussions, there is a need for better software security;
developers are the main cause or otherwise of that software security; and few developers
have any security training or formal security experience.

The background of the of the author was mentoring and managing software development
teams in both small and large organisations. In that role he found that there was little
support available to help product managers and development teams with security, whether
in the form of books or professional advice. He entered research to find a way to address
that problem.

Indeed, the scope of the problem is huge. There are some 200,000 software developers in
the UK [159], and perhaps many more times that number worldwide.

So, this research project has the aim of finding some way to support a worthwhile
proportion of those developers in delivering better software security. In the terms of the
UK National Cyber Security Centre (NCSC), what is needed is an ‘intervention’ to
provide that support3. Since a large majority of developers work in teams [157], it is
reasonable to limit the intervention to team-based developers. Given the huge population
of developers in the UK it is unnecessary to look further afield, which avoids the
complexities of different cultures and languages. And finally, if many development teams
are to adopt such an intervention, it must be cost-effective and usable in a wide range of
organisations and situations.

The research question for this thesis, therefore is:

RQ 1. What is needed to make a cost-effective and widely applicable intervention to
help UK software development teams achieve better software security?

The remainder of this introduction explains how this question was addressed, defining
further research questions as required.

2 Other aspects of privacy are outside the scope of this thesis.
3 Helen Lovekin, NCSC, personal communication 2017.

Chapter 1: Introduction

18 Charles Weir - October 2020

1.4 Research Summary
This question makes this a topic in the field of Empirical Software Engineering [49]. The
research started without preconceptions of the forms that interventions might take.
Possibilities envisaged included a tool, a mentoring program, an online course, a book, a
website, or even contributions to an audio or video program [190].

The wide scope of the question required a variety of different research techniques, and
therefore the research involved five different ‘projects’. Figure 1 shows the interrelation
of the different projects, which are described in the following sections.

1.4.1 Expert Survey
First, to generate theory and establish best practice, an ‘Expert Survey’ of face-to-face
interviews with sixteen experts at improving software in development teams, asked open-
ended questions about what interventions they considered most successful. The research
question for the Expert Survey was developed in conjunction with Helen Lovekin from
GCHQ; it expands on RQ 1; and emphasises the identification of interventions:

RQ 2. What interventions can change the environment for members of the development
team to achieve good security, considering cost-efficiency, motivational factors,
choice of tools, supporting processes, culture, awareness, training and skills?

The analysis approach was Grounded Theory, and the main theoretical conclusion was
that effective developer-centred security requires ‘active developers’, who themselves
drive the security improvement rather than having it imposed on them. A further outcome
was the identification of eight techniques the experts stated they found most effective for
security improvement.

Figure 1: Overview of the Five Research Projects

Online Developer Survey
Establishes baseline

current practice

Package Trials (Magid)
Trialing first version of

interventions

Expert Survey
Investigates industry best

practice

Intervention Package
Creation

Definition and
background materials

Further Trials (Magid 2)
Trialing refined version of

the package

Provides basis for

Provides package to

Leads to

Provides context for

Scopes questions for
Pr

ov
id

es
 k

no
w

le
dg

e
us

ed
 in

Chapter 1: Introduction

 Charles Weir - October 2020 19

1.4.2 Online Developer Survey
To provide proof of the need for an intervention, and also a baseline of existing security
practice in commercial development teams, an online Developer Survey was undertaken
in collaboration with groups in the universities of Hannover and Paderborn.
Pragmatically, the chosen participants were Android app developers worldwide, since
both the developer contact details and their delivered software are publicly available. The
research question for the survey was the following:

RQ 3. To what extent, and how, does a perceived need for security and privacy lead to
security-enhancing activities and interactions in an Android development team
and result in better software security?

The results showed that around half of Android developers worked in teams, most self-
identified as valuing security, they used a wide variety of development stacks; but that
few had access to security professionals nor used the assurance techniques identified in
the Expert Survey. They also suggested that security improvements were driven more by
developers than forces external to the team.

The Developer Survey also found correlation between the need for security and both the
assurance techniques used and the security update frequency. However, there was little
correlation between these factors and the measured security attributes of the software
produced.

1.4.3 Intervention Package Creation
Returning to the primary research question, the Expert Survey and the Developer Survey
provided a context for designing interventions. Specifically, the Expert Survey suggests
that to be effective an intervention must:

• Motivate ‘active developers’ to drive their own security improvements, and
• Convey a knowledge of most cost-effective security assurance techniques to use.

And the Developer Survey suggests that to have a wide appeal an intervention must:

• Work with development teams, but not require security specialists, and
• Be independent of specific development environments or domains.

The next step, therefore, was to construct such an intervention. The author had expected
it to take the form or a code analysis tool, a website, a book or a training course; in practice
excellent versions of all of these exist already to support developers creating secure
code—yet the need for an intervention still remains.

Instead, the author created a package of workshops, ‘Developer Security Essentials’,
requiring less than a day’s effort for a team. This involved two team workshops: a game
using a case study to teach that security is a commercial decision; and a Threat
Assessment to identify security requirements for the participants’ own projects. An online
book, video, and materials [182] supported the package.

Chapter 1: Introduction

20 Charles Weir - October 2020

1.4.4 Package Trials (Magid)
To test the proposition that the Developer Security Essentials intervention does indeed
satisfy the criteria of RQ 1 by being cost-effective and widely applicable and by helping
UK software development teams achieve better software security, the ‘Magid’ project
explored the results of using it with professional developers in UK companies. The project
used an ‘Canonical Action Research’ method [24], addressing the research question:

RQ 4. What security outcomes did the ‘Developer Security Essentials’ package have,
and what aspects contributed most to those outcomes?

Development teams were recruited in three different UK companies, and the Developer
Security Essentials workshops were led by the author. Recordings were made of
interviews of a range of participants before and after the intervention, along with the
discussion in the workshops themselves. These were then double coded for indications of
improvements in security practice or knowledge, for candidate improvements for the
package itself, and for indications of the issues and solutions involved in improving
security. The coded dataset was then analysed both qualitatively, for examples and
indications of what had happened; and quantitively to provide an indication of the
frequency of different effects.

The results suggested that the package was effective in improving development security
in the two less experienced development teams, and in improving communication in the
other. They also suggested two new and important requirements:

• For others to deliver the intervention instead of the researcher, and
• For developers effectively to present possible security improvements to product

management, to allow informed decision making on where to spend effort and
money on security.

1.4.5 Further Trials (Magid 2)
The author therefore modified Developer Security Essentials to satisfy these new
requirements, by providing sufficient materials and instructions for others to deliver the
intervention, and by adding a further experimental ‘Threat Sales’ workshop to support
developers ‘selling’ security mitigations to product management.

The effects of this change were tested in a second cycle of trials: the ‘Magid 2’ project.
Canonical Action Research was rejected as methodology since it requires the same
participants for each cycle; instead the project used Design-Based Research, which
supports different participants in each cycle of trials, focusses on designing an artifact,
and still can use Action Research techniques.

The research question reflects an emphasis on making the intervention potentially
scalable to use by large numbers of organisations:

RQ 5. Which aspects of the ‘Developer Security Essentials’ intervention are effective
at improving security when used independently by teams from a variety of
cultures and different types of organisation, and why?

Teams from a total of eight further organisations used the new version of the package;
and this time the author’s involvement was limited to a training session for one or two
facilitators taken from the development team, a brief overview presentation, and
contributions to the discussions as a participant.

Chapter 1: Introduction

 Charles Weir - October 2020 21

A further change was in the evaluation of the intervention’s impact. The analysis looked
for and quantified improvements in ‘assurance techniques’: process improvements,
understanding and skills that would generate better security in the longer term.

The results showed improvements in understanding or adoption of security assurance
techniques in all but one of the teams. Two organisations chose to carry out further
workshops independently from the researchers, and the teams in five organisations
showed major improvements in their security decision making.

In particular, the results highlighted a value to presenting security enhancements in terms
of their business benefits, and proved the ability of developers to do so with minimal
guidance.

1.5 Novel Contributions
Table 1 summarises the research questions introduced over this section. Since research
questions RQ 2 through RQ 5 were still relatively broad, each was broken down into sub-
questions; these sub-questions are introduced and answered in the chapters discussing the
corresponding projects.

The research makes the following contributions:

• Identification of the importance that developers drive security improvements
themselves (the Active Developer Model).

• Evidence of very limited use of security assurance techniques by developers in a
particular domain (Android Apps).

• An existence proof that a simple ‘intervention package’ structured as a facilited
series of workshops can improve the security of software developed by a team.

• A new use of Design-Based Research, in the field of Developer-Centred Security
• Identification of the importance of representing security enhancements in terms

of their business benefit, and the ability of developers to do so.

Table 1: Overview of Research Questions
RQ 1 What is needed to make a cost-effective and widely applicable intervention

to help UK software development teams achieve better software security?
RQ 2 What interventions can change the environment for members of the

development team to achieve good security, considering cost-efficiency,
motivational factors, choice of tools, supporting processes, culture,
awareness, training and skills?

RQ 3 To what extent, and how, does a perceived need for security and privacy
lead to security-enhancing activities and interactions in an Android
development team and result in better software security?

RQ 4 What security outcomes did the ‘Developer Security Essentials’ package
have, and what aspects contributed most to those outcomes?

RQ 5 Which aspects of the ‘Developer Security Essentials’ intervention are
effective at improving security when used independently by teams from a
variety of cultures and different types of organisation, and why?

Chapter 1: Introduction

22 Charles Weir - October 2020

1.6 Thesis Overview
The following chapters in this work describe this research in detail. Specifically, the
chapters are as follows:

Chapter 2 explores existing peer-reviewed and ‘grey’ literature. It explores the state
of knowledge and previous research on security as applied to software
development teams; plus some key work in related areas such as
programmer motivation and the involvement of security professionals.

Chapter 3 provides an overview and justification for each of the methodologies used
in the research.

Chapter 4 describes the ‘Expert Survey’ of security practitioners working with
software developers. It provides detail of the approach used, summarises
the interviews; and describes the main result of ‘active developer security’
and eight specific techniques used by the practitioners.

Chapter 5 describes the online ‘Developer Survey’ of successful (Android) software
developers, establishing a baseline for developer knowledge of security.

Chapter 6 describes the ‘Intervention Package Creation’ of a suite of facilitated
workshops for a development team and the materials created to support
those workshops.

Chapter 7 describes the ‘Package Trials (Magid)’ project, trialling this package with
development teams in three different organisations. It introduces the
participants in detail and describes the results and analysis of those trials.

Chapter 8 describes the ‘Further Trials (Magid 2)’ project, with improvements to the
package trialled in eight further organisations. It describes the changes to
methodology based on learning in the first cycle, and describes the results,
analysis and conclusions reached.

Chapter 9 discusses conclusions, both in terms of practical results and improvements
to the package and in terms of wider theory gained. It contrasts work by
previous researchers, and outlines a range of further work to take the
research forward.

Chapter 2: Literature Review

Charles Weir - October 2020 23

2 Literature Review

This chapter provides an overview of the academic and related literature associated with
this thesis topic.

As a researcher in the field of Developer Centred Security (DCS), the author wanted an
overview of the whole field with an indication of the relative importance of different
topics. No current publications provide this, and so the first section of this chapter uses a
rigorous method to address this lack.

The second section of this chapter reviews research related to the specific topic of this
thesis: interventions for software developers.

2.1 Developer Centred Security Literature
This section provides an overview to introduce the reader to the discipline of DCS, with
a rigorous analysis of the most important papers and books.

2.1.1 DCS Review Method
The scope of this review was peer-reviewed or professionally edited publications related
to software developers’ implementation of security or privacy in their code: Developer
Centred Security. This included developer behaviour related to security, developers’ use
of static analysis and testing tools, and developer use of cryptography. Related topics
were excluded, such as the design of static analysis and testing tools, non-security-related
developer behaviour, the implementation of cryptography, and the work (including
vulnerability analysis) of software security professionals. Identifying the works likely to
be ‘important’ to a researcher in the field suggested the use of citation counts.

The review started with an extensive list generated in the course of the research project.
While no systematic search was carried out, the list includes the papers from a previous
systematic search [165] plus all DCS papers identified by an AI-based recommendation
service, so it is unlikely any highly-cited papers have been omitted. For each paper, the
author then assigned the citation count taken from Google Scholar.

Using citation counts alone strongly favours older publications that have had more time
to accumulate citations. Instead, observe from Bai et al.’s chart of annual citation rates

Using Workshops to Improve Security in Software Development Teams

24 Charles Weir - October 2020

for randomly selected papers in Figure 2 that the distribution of citation rates
approximates to constant for a given paper after a certain time [17], and therefore the
annual citation rate is a meaningful figure. Given the relative youth of the discipline of
Developer-Centred Security, it is important to give weight to recent papers, so in this
review, the ‘important’ selection criterion was interpreted as ‘having a high annual
citation rate’.

A total of 173 peer-reviewed or professionally edited publications were found in the field
of Developer Centred Security. These had between zero and 298 average citations per
annum, with a median count of 6. From this set, 37 publications were chosen as
‘important’: having more than 10 citations per year.

To provide context to discuss the papers, they were categorised into topics as follows:

Static Analysis Research on developers’ use of tools for the security analysis of
both source code and binaries, including the adoption of such tools.

Literature Information on secure development for use by developers, and
analysis of how such information is used.

Requirements Research into ways to identify security requirements, including
Threat Modelling.

Developer
Behaviour

Research into developer behaviour related to creating secure
software.

Roadmaps Suggestions for future Developer Centred Security research.

To check the sensitivity of this selection criterion of 10 citations per year, the range of
papers with 9 and 8 citations were also reviewed to see if they added further topics; they
did not. The author also checked whether there were any unexpected omissions from the
list; there were none.

2.1.2 The Key DCS Publications
Figure 3 shows the literature selected. It shows the publications organised by date and
topic. Red text indicates particularly highly referenced publications—with more than 40
citations per year)—and italics indicate published books. ‘Et al’ is abbreviated to ‘+’
throughout. A surprising proportion of the research dealt with mobile app development
and these publications are indicated in navy blue. Each paper is described in Sections
2.1.3 to 2.1.7, and the alphabetical list can be found in Appendix A.

Figure 2: Annual Citations of a Range of Papers (Bai et al. [17])

X. Bai, F. Zhang and I. Lee / Journal of Informetrics 13 (2019) 407–418 409

Fig. 1. Citation pattern of individual scholarly papers over time.

between papers) to predict the probability of a paper being cited. To characterize the citation dynamics of scientific papers, a
nonlinear stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism was reported
by Golosovsky and Solomon (2017).

3. Modeling citing behavior as a point process

3.1. Dataset

The American Physical Society (APS) dataset includes all papers published in 9 journals, including Physical Review A,
Physical Review B, Physical Review C, Physical Review D, Physical Review E, Physical Review I, Physical Review L, Physical
Review ST and Review of Modern Physics, from 1970 to 2013 (http://publish.aps.org/datasets). Each record in the APS dataset
includes paper title, author names, author affiliations, date of publication, and a list of cited papers. Because the APS dataset
does not provide unique author identifiers, we first do name disambiguation based on the method proposed by Sinatra,
Wang, Deville, Song, and Barabási (2016) in our experiments. Two authors are considered to be the same individual if all
of the following three conditions are fulfilled: (1) Last names of two authors are identical; (2) First names are identical or
with the matched initial; (3) One of the following is true: the two authors cited each other at least once; the two authors
share at least one co-author; The two authors share at least one similar affiliation. We select 183,336 papers as experimental
data in the APS dataset from 1978 to 1998. Scholarly papers with greater or equal to 5 citations within the first 5 years of
publication are used as the training data, and their citations in the subsequent 10 years are used as the testing data.

3.2. Prediction model

Intrinsic potential. Citations reflect the impact of a research paper, which correspond to the authors’ impact which can
be quantified as Qi for an author i (Sinatra et al., 2016). A scholar with high Qi is expected to publish high-impact publications.
In this paper, we use the parameter Qi to indicate the intrinsic potential of a paper’s impact.

Paper impact decaying over time. As new ideas presented of each paper further grow in follow-up studies, the novelty
fades away eventually and the impact of papers decays over time (Wang et al., 2013). Fig. 1 shows the citation pattern of
individual scholarly papers over time. The vertical axis is the yearly citations of 100 randomly selected scholarly papers
published between 1978 and 1997 in the APS dataset. The color represents to the publication year of each scholarly paper.
According to Fig. 1, each paper has its own inherent citation trend and the pattern may not correlate to one another.

Early citers’ impact. Some prior studies have ignored the citers’ impact to the citation dynamics (Wang et al., 2013).
According to the study in Singh et al. (2017), influential early citers might negatively affect long-term scientific impact of
papers due to attention stealing, whereas non-influential early citers could positively affect the long-term scientific impact
of papers. Inspired by this idea, the early citers’ impact is used in PPI to model the citation pattern of a scholarly paper.

Early citation. Based on the behavior that high early citations lead to more citations in the future, we model the Paper
Potential Index !d(t) of a scholarly paper d by extending a self-exciting Hawkes process:

!d(t) = ˇdQdMaxe−w1dt + ˛d

∑

j,tj<t

Dje
−w2d(t−tj) (1)

where parameter ˇd is the coefficient of paper d impact decaying over time. QdMax indicates the maximum value of authors’
impact of paper d, and e−w1dt indicates the decay of a paper impact over time. Parameter ˛d is the coefficient that triggers

Chapter 2: Literature Review

Charles Weir - October 2020 25

Note that the vertical axis is not linear; earlier dates are spaced more closely than later
ones to better represent the increasing amount of research taking place recently.

The following sections explore each topic in turn: Static Analysis, Literature,
Requirements, Developer Behaviour and Roadmaps.

2.1.3 Research into Static Analysis for Security
One approach to improving software security is to use a ‘Static Analysis’ tool to identify
possible security vulnerabilities.

Though a 2008 journal article mentions finding security bugs amongst other problems,
using a static source code analysis tool at Google [15], in practice as Figure 4 shows that
was only the start of a huge amount of research into static analysis tools [145]. Indeed,

Figure 3: Frequently Cited Developer Centred Security Literature, by Date

Pre-2005

2005

2008

2011

2013

2014

2015

2016

2017

2018

2019

Sindre&Opdahl05Schumacher+05

Johnson+13

Anderson08

Shostack14

Ayewah+08

Acar+16

Fischer+17

Devanbu&Stubbl
ebine00

Steel+06

Hilton+17

Fahl+13

Green&Smith16

Yoder&Barcalow98

Nadi+15

Yoshioka+08

Derr+17

Balebako+14

Acar+17

Assal&Chiasson18

Naiakshina+17
Nguyen+17

Perera+16 Acar+16a

Acar+17a

Balebako&Cranor14

Faily&Flechais11

Tuma+18

Xiong&Lagerström19

Votipka+18

Yang+16
Christakis&Bird16

Howard+09

Roadmaps

Xiao+14

RequirementsLiteratureStatic Analysis Developer
Behaviour

Using Workshops to Improve Security in Software Development Teams

26 Charles Weir - October 2020

the 3624 citations for Enck et al.’s 2010 paper on TaintDroid [54], and 1444 citations4
for Arzt et al.’s 2014 paper on FlowDroid [11] suggest that this research has continued
with similar intensity until now.

However, the vast majority of this research considers only the effectiveness of tools
created by researchers at detecting issues in source and binary code. Developer Centred
Security is concerned with how developers interact with these tools.

A survey by Johnson et al. analysed ‘Why don’t software developers use static analysis
tools to find bugs’ and produced a set of recommendations for tool functionality; in
particular the ability to avoid repeated false positives and support for ‘quick fixes’ [92].
Christakis and Bird [34] surveyed Microsoft developers’ opinions about such tools,
finding that they consider security defects the most important for a code analysis tool to
find, and that the key features they need are relevant results, speed, and the ability to
suppress earlier warnings in incremental changes.

Xiao et al. [199] interviewed around 50 developers to quantify the factors that caused
them to adopt automated security tools, finding that recommendation by trusted peers,
even those only known through social media such as Stack Overflow, was the main
reason. Nguyen et al. [123] explored the impact on Android developers of integrating a
source code analysis tool into their editing environment, concluding a high value for
‘quick fixes’: changes requiring little effort on the part of the programmer. And Derr et
al. [45] surveyed around 200 Android developers to find the extent to they keep library
versions up to date, finding huge scope for solving vulnerabilities by library updating
without changes in code, but that frequent backward incompatible changes and incorrect
Semantic Versioning in libraries currently make such updates problematic.

2.1.4 Research into Literature for Developers
Some 20 years ago the Software Patterns movement provided a mechanism and
community to include developing knowledge in academically acceptable formats. A few
of the pattern authors considered aspects of software security. An early patterns paper by
Yoder&Barcalow describes a range of software architecture techniques to achieve

4 Google Scholar figures for 15 March 2020. Google appears to have conflated the figures for the initial
2010 USENIX TaintDroid paper with a later extended journal version, but the number still suggests a huge
research population.

Figure 4: Android Static Analysis Papers (Sadeghi et al. [145])

As shown in Fig. 2, this study covers multidisciplinary
research conducted in various domains, such as software
engineering (including programming languages), security,
and mobility. Consequently, as depicted in Fig. 5, selected
papers are also published in different venues related to
such domains.

4.4 Threats to Validity
By carefully following the SLR process in conducting this
study, we have tried to minimize the threats to the validity
of the results and conclusions made in this article. Never-
theless, there are three possible threats that deserve addi-
tional discussion.

One important threat is the completeness of this study,
that is, whether all of the appropriate papers in the litera-
ture were identified and included. This threat could be due
to two reasons: (1) some relevant papers were not picked up
by the search engines or did not match our keyword search,
(2) some relevant papers that were mistakenly omitted, and
vice-versa, some irrelevant papers that were mistakenly
included. To address these threats, we used multiple search
engines, including both scientific and general-purpose
search engines. We also adopted an iterative approach for
our keyword-list construction. Since different research com-
munities (particularly, software engineering and security)
refer to the same concepts using different words, the itera-
tive process allowed us to ensure that a proper list of key-
words were used in our search process.

Another threat is the validity of the proposed taxonomy,
that is, whether the taxonomy is sufficiently rich to enable
proper classification and analysis of the literature in this
area. To mitigate this threat, we adopted an iterative content
analysis method, whereby the taxonomy was continuously
evolved to account for every new concept encountered in
the papers. This gives us confidence that the taxonomy pro-
vides a good coverage for the variations and concepts that
are encountered in this area of research.

Another threat is the objectiveness of the study, which
may lead to biased or flawed results. Tomitigate this risk, we
have tackled the individual reviewer’s bias by crosschecking
the papers, such that no paper received a single reviewer.
We have also tried to base the conclusions on the collective
numbers obtained from the classification of papers, rather
than individual reviewer’s interpretation or general observa-
tions, thusminimizing the individual reviewer’s bias.

5 TAXONOMY

To define an Android security analysis taxonomy for RQ1,
we started with selecting suitable dimensions and proper-
ties found in existing surveys. The aforementioned studies
described in Section 3, though relevant and useful, are not
sufficiently specific and systematic enough for classifying
the Android security analysis approaches in that they either
focus on mobile malware in general, or focus on certain
sub-areas, such as Android inter-application vulnerabilities
or families of Android malware software, but not on the
Android security analysis as a whole.

We thus have defined our own taxonomy to help clas-
sify existing work in this area. Nonetheless, the proposed
taxonomy is inspired by existing work described in
Section 3. The highest level of the taxonomy hierarchy
classifies the surveyed research based on the following
three questions:

1) What are the problems in the Android security being
addressed?

2) How and with which techniques the problems are
solved?

3) How is the validity of the proposed solutions
evaluated?

For each question, we derive the sub-dimensions of the
taxonomy related to the question, and enumerate the possi-
ble values that characterize the studied approaches. The
resulting taxonomy hierarchy consists of 21 dimensions and
sub-dimensions, which are depicted in Figs. 6, 7, and 8, and
explained in the following.

5.1 Approach Positioning (Problem)
The first part of the taxonomy, approach positioning, helps
characterize the “WHAT” aspects, that is, the objectives and
intent of Android security analysis research. It includes five
dimensions, as depicted in Fig. 6.

5.1.1 Analysis Objectives (T1.1)

This dimension classifies the approaches with respect to the
goal of their analysis. Thwarting malware apps that com-
promise the security of Android devices is a thriving

Fig. 4. Distribution of surveyed papers by publication year.

Fig. 5. Distribution of surveyed papers by publication venue.

SADEGHI ET AL.: A TAXONOMY AND QUALITATIVE COMPARISON OF PROGRAM ANALYSIS TECHNIQUES FOR SECURITY ASSESSMENT OF... 497

Chapter 2: Literature Review

Charles Weir - October 2020 27

security functionality [203]5. Schumacher at al. later composed several such papers to
create the book ‘Security Patterns’ [148]. And Yoskioka et al. later produced a survey of
the security patterns literature, positioning it in the context of wider security and software
methodology work [204].

Several foundational DCS books date from 2006-2009. Steel et al., though not
participants in the software patterns community, produced a book with ‘Patterns’ in the
title describing techniques for Java security architecture [160]. Howard et al. published
the book ‘Deadly Sins in Software Security’ (the number of sins varied with the edition),
containing practical support for developers to avoid coding security issues [88]. And
Anderson published ‘Security Engineering’, which provides guidance at a higher level
than code, covering economics, usability, architecture and development process [9].

More recently, a group in L.U. Hannover studied how developers learn from such
information. Acar et al.’s ‘You get where you’re looking for’ [3] uses several surveys and
experiments to explore the effectiveness of different information resources at helping
solve security issues. From a survey of nearly 300 successful app developers worldwide
they concluded that developers learned security using web search and from peers. From
a practical experiment with over 50 Android developers to evaluate the effectiveness of
several different ways of learning app security they found that copying from Stack
Overflow led to a variety of security problems, and also the surprising result that
programmers using only digital books achieved better security than those using web
search.

Fischer et al. explored copying from Stack Overflow in more depth, concluding that about
15% of apps contain insecure code introduced in this way [60]. Acar et al.’s ‘Developers
need support, too’ explores the online guidance available to developers6, identifying a
need for resources written for other people than specialist software security experts [6].

2.1.5 Research into Security Requirements
Four well-cited publications suggest ways to elicit security requirements. Sindre &
Opdahl propose ‘misuse cases’, as a way of drawing on the popular ‘use case’
methodology to address security [155]. Similarly, Faily & Flechais took the ‘Persona’
concept from user-centred design to provide a method to analyse the motives and
approach of attackers [58]. Shostack’s book ‘Threat Modeling’, though following
Microsoft’s tradition of ‘Threat Modeling’ meaning finding vulnerabilities rather than
assessing threats, also offers developers valuable advice on techniques for security
requirements [154]. And Perera et al. took earlier work identifying generic privacy
requirements to create and demonstrate a method to identify privacy issues within IoT
infrastructure [131].

In the last couple of years, two parallel7 systematic literature reviews have explored threat
assessment. Tuma et al. categorised the papers they found, finding a majority of the work
to be about applying threat modelling, with a minority describing specific threat
modelling methods [170]. Xiong & Lagerström analysed the specifics of individual
papers finding most threat modelling techniques to be manual and graphically based

5 Barcalow, the industry author, worked at that time at the same group in Reuters in Chicago as Charles,
one not noted for security requirements!
6 Charles is a co-author on this paper.
7 Neither paper cites the other.

Using Workshops to Improve Security in Software Development Teams

28 Charles Weir - October 2020

[201]. Both observed a lack of automation in the process and a lack of means to quality
assure the outcomes.

2.1.6 Research into Developer Security Behaviour
This topic has only received research effort relatively recently: focusing on aspects of the
software developer’s job and investigating how improvements and changes might help
support more secure code.

Fahl et al. used several forms of research with developers to evaluate how SSL problems
could be reduced in mobile apps, proposing changes to the Android SSL framework [57]8.
Balebako et al. surveyed and interviewed developers about implementing privacy needs,
finding widespread ignorance of the privacy implications of third party libraries,
especially in small companies [20]; Balebako & Cranor suggested several possible
ecosystem improvements to encourage the implementation of effective app privacy [19].

Nadi et al. investigated developers’ experiences with cryptographic APIs, concluding that
most APIs were too low level for practical use [117]. Green & Smith explored the
implications of this, advocating ‘developer-friendly security’ as a target [76].

Other researchers have explored different aspects of software development. Hilton et al.
explored Continuous Integration, highlighting the security threat of attackers changing
delivered code [85]. Votipka et al. investigated the extent to which software testers, rather
than specialist penetration testers, might find vulnerabilities; they found that, instead,
security training and experience was key to finding such defects [180].

There has been some research into how developers handle security aspects of
programming. Yang et al. explored the security questions developers ask on Stack
Overflow, finding more than half related to Web Security, and particular interest in
passwords, hashing, signing and SQL injection [202]. Naiakshina et al. used a small-scale
study with students to investigate the causes of developer errors in password storage,
recommending nudges: asking for security, and secure-by-default frameworks [118]. And
Assal & Chiasson surveyed developers in industry to explore their security practices,
finding that corporate pressures meant that few kept to the best practices defined in the
Secure Development Lifecycle literature [13].

Finally, there is the possibility of paving the way for future research. Acar et al.
investigated the validity of experiments on student participants rather than professionals,
using a programming study with Python open source developers, and finding the
determinant to be participants’ experience using the language, and not their status as a
student or professional, nor their security experience [5].

2.1.7 Roadmaps
Lastly, two frequently cited papers propose roadmaps: justified lists of topics for future
DCS research. Devanbu & Stubblebine’s 2000 paper explores topics of relevance to
software engineering, exploring a range of different issues and possible approaches to
their solution, and highlighting five areas for research: cost-benefit analysis of security
requirements; architectures to support changing security policies; models of adversary
behaviour; verification tools; and infrastructures for the security administration of
deployed systems [46]. Acar et al. in 2016 explored existing research and suggested a

8 Google subsequently implemented these changes.

Chapter 2: Literature Review

Charles Weir - October 2020 29

three-part research agenda: how to do experiments on developers; influences on
developer behaviour; and improvements in APIs, documentation and tools [4].

2.1.8 Limitations of this Review
To conclude, though this review approach provides a good overview to the discipline,
there are limitations in the selection criteria.

The number of citations is an inaccurate way to estimate the importance of a paper to
Developer Centred Security: citations may be for a variety of reasons and do not indicate
that the citing papers were in the same field; and citations do not necessarily prove quality.

Another limitation is that using citations excludes very recent papers that have had
insufficient time to be cited.

2.2 Security Interventions Literature
The reader will observe that the ‘mainstream’ Developer Centred Security research
identified by the review in the previous section included little work on interventions to
improve developer security behaviour. One paper did suggest API changes to better
support SSL development that have since been adopted [57]; another suggested a set of
guidelines for cryptographic APIs [76]; a third provided advice to include security in
requirements and to make security APIs opt-out only [118]; but none have provided
validation of the effectiveness of carrying out their suggestions.

This section, therefore, reviews literature applicable to the research topic of this thesis:
interventions. That is both narrower than the selection criteria for the review in the
previous section, in that few widely cited DCS papers deal specifically with interventions;
and wider, to include interventions and related developer behaviour research not related
to security. Accordingly, this section defines a range of topics, and reviews publications
related to each topic.

Research related to interventions for secure software has taken a variety of approaches.
In this section, we explore several areas in turn: research into security requirements; ways
to get developers to adopt process improvements; ways to get developers to adopt analysis
tools; consultancy and training interventions; using interactions with security specialists;
motivating developers to improve their processes; and motivating employees more
generally to adopt secure practices. Each section also outlines omissions and
opportunities arising from that area of research so far.

2.2.1 Security Requirements
There has been further research into security requirements, especially related to privacy.
A literature survey by Türpe [171] found a range of research related to security
requirements, mainly exploring Threat Modelling techniques, but no agreement on
terminology or approach. Senarath and Arachchilage [150] used a programming task
given to 35 developers to explore issues related to user privacy, finding it to be difficult
to understand such requirements and translate them into engineering techniques, and
recommending solutions in the specification of privacy requirements. Similar research by
the same authors [151] found that developers use their own privacy expectations to guide
software privacy decisions; these differ from the expectations of non-developer users,
though the authors point out there is no easy solution for this problem.

Using Workshops to Improve Security in Software Development Teams

30 Charles Weir - October 2020

Other researchers have explored requirements for security updates and fixes. Nayak et
al. [122] found that less than 15% of known vulnerabilities were actually used in attacks,
suggesting an opportunity for a more nuanced approach than just fixing everything.
Vaniea and Rashidi [176] used a survey to analyse user thinking around the update
procedure, deriving advice for developers planning such mechanisms including a
recommendation for a ‘recovery path’.

A few researchers have developed means to gamify the finding of security requirements.
Shostack’s Elevation of Privilege [154] concentrates on technical issues and
vulnerabilities; Denning’s Security and Privacy Threat Discovery Cards [149]
concentrate more on high-level security assessment; and Merrill [113] successfully used
a role-playing game with professional developers; none have been evaluated in any detail.

One may conclude from this and the analyses in Sections 2.1.3 and 2.1.5 that there is a
need for ways to support developers in determining wider security needs, finding effective
ways to identify both a Threat Assessment, and wider security-related requirements.

2.2.2 Adoption of Security-Enhancing Activities
To achieve such motivation and culture changes, one possibility to change development
processes and there has been significant research into applying such changes to software
security improvement. Indeed, prior to about 2010 the accepted way of improving
software security was a ‘Secure Development Lifecycle’ (SDL), a prescriptive set of
instructions to managers, developers and stakeholders on how to add security activities
to the development process. A paper by De Win et al. compares the three major SDLs of
that time, OWASP’s CLASP, Microsoft’s SDL and McGraw’s Touchpoints, contrasting
their features in the context of a simple project [197]. However, other research from that
time suggests resistance from development teams to adopting a prescriptive methodology.
For example Conradi and Dybå found in a survey that developers are sceptical about
adopting the formal routines found in traditional quality systems [37]; others came to the
same conclusion [83,103,141]. Indeed Geer’s online survey of 46 developers recruited
from those already specialising in secure software development found only 30% of them
using SDLs [70]; Xiao et al.’s later survey of 40 developers [199], found only 2 using
them. While these sample sizes were fairly small, the findings provide a plausible
explanation for the abandonment of SDLs. Since 2010, SDLs have been replaced in the
research literature by ‘Security Capability Maturity Models’, such as BSIMM [207],
which measure the effectiveness of corporate security enhancements rather than
mandating how they are achieved9.

Caputo et al. [32] used three case studies to explore several theories about what changes
in software development might lead to more usable security, concluding a need for the
alignment of security goals with business goals. Recently Assal and Chiasson [13]
interviewed developers from 13 different teams and organisations about their security
practices, concluding ‘a need for new, lightweight best practices that take into account
the realities and pressures of development’. Van der Linden et al. found from a task-based
study and survey [107] that developers tend to see only the activity of writing code to be
security-relevant, suggesting a need for a stronger focus on the tasks and activities
surrounding coding.

Taking a different approach, Such et al. investigated the economics of software security,
surveying 150 security specialists to analyse the economics of different assurance

9 The author is aware, however, of several multinational companies still successfully using SDLs.

Chapter 2: Literature Review

Charles Weir - October 2020 31

techniques [164]. The survey defined a taxonomy of twenty assurance techniques and
found wide variations in the perceived cost-effectiveness of each. It found Public Review
and (tool-based) Static Analysis to be the most cost-effective, and Formal Verification
and Cryptographic Validation to be the least. Interestingly the researchers also identified
frequently used combinations of techniques, finding that the combination of Architectural
Review, Configuration Review, (manual) Penetration Testing and (automated, web-
based) Vulnerability Scan was seen as most cost-effective.

These results suggest a need for more work exploring lightweight, cost-effective,
enhancements to development practices to improve security.

2.2.3 Encouraging the Adoption of Tools
In addition to the work described in Section 2.1.3, there has been other research on how
to support developers in adopting static and dynamic security analysis tools. Though
insufficiently well-cited to qualify in the earlier survey of key DCS papers, these are
particularly relevant to the topic of this thesis.

Witschey et al. [198] suggested that adoption of tools could be modelled by Rogers’
Diffusion of Innovations theory [143], and used a survey of 40 developers recruited
opportunistically to explore the model. They concluded that more experienced, and more
inquisitive, developers are more likely to adopt tools, and that key deterrents were the
difficulty of trialling new tools, and their invisibility – that developers are unlikely to
notice a colleague using one.

Xiao et al. [199] reported a similar Diffusion of Innovations study, interviewing 40
professional developers to explore the social factors that led to security tool adoption.
They found the main reason for adoption was recommendation by trusted peers, including
high-rated experts in discussion forums. Interestingly company policies mandating the
use of such tools were highly effective; all 13 who had security tools mandated did use
them.

An article by Bessey et al. [29] describes the experience of Coverity in building and
marketing a source code checking tool. In particular they describe the motivation and
issues with creating code checkers for large codebases. Their main interest is in the
politics of tool purchasing; for example, the tool needs to deliver a true defect in its first
three error messages to generate a sale.

There is a discrepancy between the large amount of work on analysis tools (Section 2.1.3)
and the relatively small amount of research on getting those tools adopted; given the
availability of such tools, this suggests that techniques to help developer adopt such tools
will have large impact.

2.2.4 Consultancy and Training Interventions
Turning to the question of how to promote security enhancements, several research teams
have explored the impact of training and external involvement on teams’ delivery of
secure software. Türpe et al. [172] explored the effect of a single penetration testing
session and workshop on 37 members of a large geographically-dispersed project. The
results were not encouraging; the main reason was that the workshop consultant
highlighted problems without offering much in the way of solutions.

Poller et al.’s later study [134] followed an unsuccessful attempt to improve long term
security practices in an agile development team of about 15 people. The study

Using Workshops to Improve Security in Software Development Teams

32 Charles Weir - October 2020

investigated the effect of security consultants whose task ‘was not to advise the product
group on how to change their organisational routines, but to challenge and teach them
about security issues of their product’. This proved insufficient, for two reasons. First,
pressure to add functionality meant that attention was not given to security issues. Second,
developers had trouble ‘improving security’ because their normal work procedures and
ways of structuring their work did not support that kind of quality goal. The authors
concluded that successful interventions would need “to investigate the potential business
value of security, thus making it a more tangible development goal;” and that security is
best promoted as a team, not individual, effort.

Others have investigated the effect of programmer learning on security improvement.
Yskout et al. [205] tested if ‘security patterns’ (such as those described in Schumacher et
al.’s book [148]) might be an effective intervention to improve secure development in
teams of student software developers; the results suggested a benefit but were statistically
inconclusive.

In terms of practical support for developers, a recent book ‘Agile Application Security’
by Bell et al. [28] provides guidance, a discussion of tools and detail on a range of
assurance techniques; regrettably it is not selling widely10.

The research findings do leave, as an alternative to traditional training, books or
interventions based on penetration tests, the possibility of a team-based intervention.

2.2.5 Improving Security Experts’ Interactions with Developers
Other work has investigated the impact of stakeholder relationships on software security:
Werlinger et al.’s ethnographic study and survey [194] explored the relationships of
security practitioners (mainly operations staff) on the effectiveness of security, and
proposed several tool enhancements to improve this, particularly in the control of
information being communicated to other stakeholders. Haney and Lutters found from a
survey of security practitioners [81] that the role is service-oriented and requires both
customer service and advocacy skills.

Ur Rahman and Williams [175] surveyed web-based information and nine teams of
developers to investigate how DevOps—the integration of operations procedures into
code—incorporates security into projects, finding increased collaboration between
developers and security specialists, and security benefits in the automation of testing,
configuration and deployment. Lopez et al. [109] identified from interviews with one
professional team that security was introduced through a complex combination of
processes, standards, practices and training.

Ashenden and Lawrence [12] took a proactive approach, using an Action Research
method to investigate and improve the relationships between security professionals and
business people in a single company, and found the approach effective in improving
communication, though no evidence is yet available of longer-term impact. Their Action
Research approach offers a suitable methodology for trialling other forms of intervention.

Werlinger et al [194] explored the relationships of security practitioners (mainly
operations staff) on the effectiveness of security, and proposed several tool enhancements
to improve this, particularly in the control of information being communicated to other

10 Amazon rank 202,000, March 2020. #361 in Computer Security.

Chapter 2: Literature Review

Charles Weir - October 2020 33

stakeholders. Weir et al. [183] used interviews with a dozen security specialists to elicit
ways of improving developers’ implementation of mobile app security, and concluded
that the major opportunities were in encouraging ‘dialectic’: specific kinds of challenging
communication with both the specialists themselves and a range of other stakeholders.

Another technique used to improve software security is code review by peers or
specialists. OWASP have published a Secure Code Review Guide Book [129]. However,
research on the effectiveness of code review has been limited to more general software
improvement: Baum et al. reviewed a variety of earlier work and interviewed 24
professionals in 19 German companies. They conclude that cultural issues, rather than
practical ones, determined whether code reviews were used, and that reviews were best
embedded in the development process from the beginning of a project [25].

All this research concluded—or assumed and did not conclude otherwise—that the
security impact of interactions between security specialists and developers is positive.
There is a relative scarcity of security specialists, with a 2016 UK total of 58,000 [167]
compared with 308,000 programmers (not to mention testers and managers) [159], so
there is a definite need for cost-effective ways to leverage those interactions more
effectively to empower developers to write secure code.

2.2.6 Motivating Change in Development Teams
To move from delivering insecure code to delivering secure code requires a change in
thinking in the development teams. A variety of research has explored how to engender
similar changes in software development teams.

Dybå [48] performed a wide-ranging quantitative survey of Software Process
Improvement (SPI) in 120 organisations, and concluded that organisational factors were
as least as important as technical ones. In particular, he identifies business orientation, the
extent to which SPI goals and actions are aligned with explicit and implicit business goals
and strategies, as one of the factors with the strongest influence on SPI success; together
with employee participation, the extent to which employees use their knowledge and
experience to decide, act, and take responsibility for SPI. Surprisingly, management
commitment was not required. The paper also strongly recommends that, for SPI,
measurement systems be designed by the software developers themselves.

Beecham et al. [27] conducted a literature review of 92 papers on programmer motivation
in 2008. Though virtually all of the research cited is about motivation to do the job of
programming rather than motivation to change behaviour, the survey identifies that
professional programmers tend to be motivated most by problem solving, by working to
benefit others and by technical challenges. Hall et al. [79] framed these as ‘intrinsic
motivators’ (things done for their own sake), relating them to Self-Determination Theory,
a theoretical framework that argues that a person’s perceptions of their own autonomy,
competence and relatedness (close personal relationships) provide the strongest
motivation [67].

Fear of failure was not among Beecham et al.’s list of motivators, which suggests that
merely frightening developers into security (“a terrible thing might happen”) is unlikely
to be an effective strategy to promote secure software. This is consistent with Xie et al.’s
interviews of 15 professional programmers [200] to investigate why they believed they
made security errors; they found a consistent tendency to treat security as ‘someone else’s
problem’.

Using Workshops to Improve Security in Software Development Teams

34 Charles Weir - October 2020

Umarji and Seaman [173] adapted two social psychology models to help analyse when
developers might accept Process Improvement techniques. However, Riemenschneider et
al. [141] used a ethnographic field study of 128 developers to compare five social
psychology models of how developers adopt new ‘methodologies’, and concluded that
none of the models matched actual practice, pointing instead to the need for an
‘organisational mandate’, compatibility with the developers’ working practices, and
acceptance by colleagues.

Singer [156] proposes 25 interventions to improve software development, suitable for a
project manager or coach (such as ‘Recommend similar and more proficient peers to less
proficient developers’), citing real-life examples for each; the approach was trialled
successfully in a student experiment to encourage adoption of version control systems.

In terms of indirect influencing, an ideas paper by Lewis [105] suggests a score of
‘gamification’ approaches to encourage users to engage with software. Underlying such
work is Fogg’s book ‘Persuasive Technology’ [62], a seminal work on persuading people
using computers. Fogg specifies three ways we see computers: as tools, as media
(simulation), and as social actors (individuals in their own right); he describes some 40
‘principles’, aspects of software behaviour that can be persuasive.

Lopez et al., in the research project, ‘Motivating Jenny’ at the Open University [108],
have investigated means to encourage developer teams in doing security. Based on
ethnographic research, they concluded a need to raise developers’ security awareness
[109]. They explored formats for workshops to engage professional developers in
discussions about security [110], ultimately releasing them as a series of workshop
instructions and information sheets for developers to use themselves [111]11.

The work described in this section offers a range of possible approaches to influence
developers to adopt secure practices.

2.2.7 Motivating Security Changes in Employees
The study of behaviour changes in people belongs to Social Psychology and Management
Theory12. Fogg explored motivation for human behaviour, finding that individuals need
to be motivated to perform the required behaviour; to have the ability to do it; and to be
triggered to perform it [63]. Myers and Titgjen explored motivation in the form of job
satisfaction, finding that positive motivations do not cancel out negative ones [169].

Research into corporate security behaviour has built on Fogg’s theory; in this thesis we
shall call motivating factors and triggers, ‘Motivators’; and lack of ability, ‘Blockers’.
Thus, Motivators are events and factors that encourage a new behaviour, and Blockers
are events and factors that discourage it.

Exploring how to promote effective security practices, Kirlappos et al. found from a large
survey of employees in two organisations that a strong Blocker to the introduction of
effective security lies in many organisations’ attitude to security: information security
was seen as a ‘bolt on’ compliance exercise at odds with the employees’ main productive
work [94]. Kirlappos et al. found in a later survey that this frequently results in ‘shadow
security’, where the employees find their own ways to achieve security, different from

11 Most of that content was written by the author of this thesis, based on work done by Lopez et al.
12 The references in this section come from an introduction to Blockers and Motivators by the author and
Ingolf Becker [185].

Chapter 2: Literature Review

Charles Weir - October 2020 35

the organisation-enforced approach, with varying effectiveness [95]. Both surveys
proposed a solution of empowering employees to create effective security rather than
enforcing particular company-wide security strategies. Blythe et al. used two different
behaviour change theories to explore employees’ security practices, interviewing 20
employees in two organisations, explicitly identifying blockers; they conclude that
feedback on the effectiveness of employees’ security measures are likely to be more
effective as Motivators than compliance approaches.

Pfleeger et al. analysed a range of social psychology literature to find its applicability to
security behaviour, identifying Motivators such as a ‘keystone habit’ (a comprehensible
goal and steps to achieve it), and ‘moral foundations’ (appealing to people’s sense of
rightness); and mentioning a few Blockers, such as the way existing security systems have
conditioned people to ignore security warnings [132].

Moving to Developer-Centred Security, Assal and Chiasson explored security Blockers
and Motivators in development teams [14], finding a frequent Blocker to be ‘lack of
management and process support for security’, and an effective Motivator to be
‘identifying the importance of security.’

The Blockers and Motivators concept offers a simple but powerful means to analyse the
working of practical interventions.

2.3 Summary and Limitations of Existing Literature
In summary, the field of Developer Centred Security has followed four main topics of
research:

• Adoption of static analysis tools (especially for Android);
• Literature providing guidance to developers;
• Means, such as Threat Analysis, to establish security requirements; and
• Research into developer security-related behaviour.

Little of this, even the last, relates to means to influence or change developer security
behaviour. So, for interventions research we looked further afield, considering a range of
topics and identifying outcomes from each as shown below:

Process
improvements

A need for cost-effective ways to support developers in
determining wider security needs

Analysis tools Techniques to help developer effectively to adopt analysis
tools will have large impact.

Consultancy and
training interventions

The possibility of a discussion-based intervention
emphasising the positive business value of security
enhancements

Interactions with
security specialists

A need for ways to improve communication between
developer and security specialists

Motivating process
improvement

A range of possible approaches to influence developers to
adopt secure practices

Motivating general
secure practices

Blockers and Motivators provide a powerful means to
analyse the working of practical interventions

The review found relatively little research discussing successful security interventions to
support development teams, even though the security track records of many large
companies suggest that such interventions must exist. In the research discussed above,
even code analysis tools required other interventions to get them adopted; and other

Using Workshops to Improve Security in Software Development Teams

36 Charles Weir - October 2020

approaches required both security professionals and interventions that were costly in
terms of effort involved.

The research project, ‘Motivating Jenny’ at the Open University (Section 2.2.6) has
created lightweight interventions, but there is no evidence as yet into their effectiveness.

We are aware of no other academic literature investigating lightweight approaches to
encourage teams of developers to adopt successful security practices. Based on the
previous discussions such an approach would need to:

• Be cost-effective, and not require security professionals;
• Support developers in determining wider security needs;
• Encourage developers to investigate security code analysis tools, especially just-

in-time solutions; and
• Analyse and address the resulting Blockers and Motivators impacting on the

teams.

This thesis offers one such approach.

Chapter 3: Methods Used

Charles Weir - October 2020 37

3 Methods Used

This chapter explores the methodology of the research projects. It introduces the
philosophical stance of the author, and introduces the methods for each separate project,
specifically:

• Grounded Theory,
• Online Survey,
• Canonical Action Research and
• Design-Based Research

This chapter discusses only the methodological aspects of each project—aspects that
would be relevant to other implementations; details specific to the specific
implementation, such as numbers and details of recruits, are covered in the specific
chapters describing each project.

3.1 Philosophical Approach
An important starting point is to define the philosophical approach we have as
researchers. Goldkuhl [75] identifies three common philosophical stances depending on
the aims and requirements of an Information Systems research project, as follows:

Positivist research looks for a single objective truth;

Relativist (or interpretivist) research rejects the idea that a single objective truth exists,
and looks instead for a more local truth; and

Pragmatic research seeks specific social or business benefits as a result.

In this research, ultimately, we are looking to find ways to make a large number of teams
more effective at software security. Our overall philosophical viewpoint, therefore, is
Pragmatic.

Chapter 3: Methods Used

38 Charles Weir - October 2020

3.2 Choice of Research Methods
The research question:

RQ 1 What is needed to make a cost-effective and widely applicable intervention to
help UK software development teams achieve better software security?

identifies the research topic as one in Empirical Software Engineering (ESE). Empirical
Software Engineering is the research area concerned with the study of how software
creation happens in practice. The terms ‘cost-effective’, ‘widely-applicable’,
‘intervention’ and ‘achieve’ all mean that the question is about what happens in
practice, and the emphasis on software development makes it an ESE question. We can
identify five generally used research methods for this field [49]:

1. Controlled Experiments (including Quasi-Experiments);
2. Case Studies (both exploratory and confirmatory);
3. Survey Research;
4. Ethnographies;
5. Action Research.

Most have been used in Developer Centred Security research. For example, Acar et al.
[3] used Controlled Experiments with individual software developers to evaluate learning
about security, and Yskout et al. used A-B Controlled Experiments with students to
evaluate the use of security patterns [205]; Ge et al. [69] wrote up a secure web project
as a Case Study; Balebako & Cranor [19] used a Survey to evaluate app developers’
attitudes to privacy; and Poller et al. [134] used an Ethnographic study to study the effect
of an intervention by security professionals. Variants of Action Research have been
widely used in Empirical Software Engineering [147], though as far as we know, it was
not used not prior to this project in Developer Centred Security research.

Since we want a wide impact for the intervention, we need it to work with teams of
professional software engineers. Though Controlled Experiments are possible on
individual software professionals [3], we knew of no professional development teams
who might cooperate with such experiments, and we rejected this approach.

Further, since the aim was to study new means to change the behaviour of software
engineers, we rejected Case Studies as an approach.

Instead, therefore, we used Survey Research for the initial steps to provide knowledge
and theory to support the creation of an intervention. This took two forms: a qualitative
interview survey of professional security experts, and a quantitative online survey of
software engineers.

For the qualitative survey, the choice of methodology was important, since taking
recordings of unstructured responses to qualitative interviews and deriving academically
sound knowledge from them is a difficult challenge. Two competing methodologies both
address that problem:

• Grounded Theory [74] concentrates on deriving a single overarching ‘theory’.
• Thematic Analysis [35] concentrates on deriving multiple themes.

Both use similar techniques in practice, though Grounded Theory’s ‘Everything is Data’
principle tends to apply it to a wider range of data. The main distinction is in the aim of
each methodology. Grounded Theory (GT) looks for a single ‘theory’, an overarching
conceptual framework that can help a researcher or practitioner understand and perhaps
change a complex situation [74]. Thematic Analysis looks for multiple ‘themes’, usually

Chapter 3: Methods Used

Charles Weir - October 2020 39

within the context of an existing ‘theory’ or conceptual framework [35]. Grounded
Theory doesn’t ‘prove’ the theory it generates, nor even claim that two different sets of
researchers given the same data will generate the same theory, but its methods allow GT
practitioners convincingly to claim a measure of dependability in the process: that the
correct use of GT is likely to generate a theory consistent with the data [33]. This research
takes a pragmatic approach (Section 3.1): the resulting theory can later be accepted if it
helps understand a complex situation, if deductions made using it are all confirmed, and
if using it to plan research or interventions leads to desired outcomes; it can be rejected if
not.

In the qualitative survey, the author was faced with large amounts of transcribed text
representing a wide variety of ‘expert opinion’. To take action based on this expert
opinion, a simplifying ‘theory’ was needed; none existed beforehand. This pointed to a
need for Grounded Theory rather than Thematic Analysis. GT is widely accepted by the
software research academic community [162], and was adopted on this basis. Section 3.3
describes the use of GT in detail.

For the online survey, by contrast, the choice of analysis method was straightforward; it
used statistical methods, as described in Section 3.4.

The next research stage required the creation of an intervention as a proof of concept and
exemplar to support learning more about the subject. The findings of the surveys provided
outline requirements for the intervention, and ruled out, surprisingly, the conventional
approaches to improving software security discussed in Sections 1.4 and 2.2.4. The
experience of the author as a software consultant and team leader provided a range of
facilitation and game techniques to use. The author therefore combined a game idea from
the work of colleagues with ideation techniques to create the format of workshops for
teams of developers: the Developer Security Essentials intervention. Chapter 6 provides
more detail.

Trialling this intervention with professional developers required the direct involvement
of the researchers as facilitators. This ruled out an Ethnographic approach, since
Ethnography requires the researchers to remain relatively uninvolved. Instead we used
Action Research [196], an accepted methodology used in many forms of academic social
research including software engineering [47,147,153]. Specifically, we used the methods
and approach prescribed for Canonical Action Research, using the entire project as a
single ‘action research cycle’. Section 3.5 describes Canonical Action Research in detail.

Based on the findings from the first trials, the author modified the Developer Security
Essentials package and embarked on a further set of trials with professional teams of
developers. Constraints in the pure Canonical Action Research methodology led to the
adoption of a different overall methodology, Design-Based Research (DBR). Section 3.6
describes Design-Based Research.

All four research projects were approved in advance by the Lancaster University Faculty
of Science and Technology Research Ethics committee.

3.3 Grounded Theory
This section explores our use of Grounded Theory. Our Grounded Theory methods were
identical to those used in the author’s previous project, and much of the content of this
section is based on the author’s earlier Masters by Research thesis [183].

Chapter 3: Methods Used

40 Charles Weir - October 2020

3.3.1 Introduction to Grounded Theory
Grounded Theory (GT) is a systematic methodology to construct theory through the
analysis of data. It originally developed in the US medical field, where the direct value of
discoveries about human social behaviour is high. Glaser’s early works, ‘The Discovery
of Grounded Theory’ and ‘Theoretical Sensitivity’ [73,74] contain a good deal of
discussion of the social benefits of the process, and a polemical style against alternatives.

Within 10 years Glaser and Strauss/Corbin [163] were competing for ‘ownership’ of the
technique and the two resulting ‘flavours’ of GT still remain distinct. Both approaches
are positivist in essence, though Glaser’s aim is to `discover' a single overarching theory,
while Strauss is more interested in causes and effects [120].

Later still, as the technique was adopted by European researchers, Charmaz [33] tailored
it to support the relativist philosophy [125]. The resulting variant is now known as
Constructivist GT, an approach that emphasises the researcher’s impact and the restricted
applicability of any results. The approach used in this research is Constructivist GT.

Glaser and Strauss/Corbin’s works are strong on justifications and in some cases team
approaches, but less so on practical instructions how to go about making detailed choices
in following the method [66]. However, software engineering researchers now have
access to a range of work filling this gap. A good starting point is Hoda et al.’s set of
patterns instructing a novice how to set about a GT research project [87]. Other work in
this area extends basic GT with detailed advice, such as Adolph's ‘Lessons Learned’ [7]
and Allan's ‘Critique of Using Grounded Theory’ [8]. Finally Stol et al.’s ‘Grounded
Theory in Software Engineering Research’ [162] provides a detailed and very explicit set
of instructions on how to achieve academic rigour.

3.3.2 A Brief Overview of Grounded Theory
Traditional science assumes that theories are generated as hypotheses by the researcher,
which are then repeatedly tested against reality [133]. The concept is that random theories
are winnowed by the scientific process to leave only those which match observable and
testable fact. Grounded Theory attempts to make theory generation into a more
dependable process, based on textual analysis. Rigorous testing of the theories generated
is expected to happen via other approaches.

The textual analysis is of everything relevant that is available to the researcher. Thus, it
might include interview transcripts, survey comments, relevant research literature, field
notes from observation and anything else that can be reduced to text form. This is summed
up in the GT principle all is data.

The process is iterative, with analysis of initial findings from interviews or similar
typically leading to changes in the research thrust and direction, and with every code
written being matched against all the others, a technique called the constant comparative
method.

Chapter 3: Methods Used

Charles Weir - October 2020 41

3.3.3 Grounded Theory Step-by-Step
Figure 5 shows the techniques used in the Grounded Theory process. As can be seen, the
process is highly iterative, with the practitioners moving from technique to technique in
response to discoveries, new data, and observations concerning the data.

Table 2 describes each technique in more detail.

Table 2: Steps in Grounded Theory

Technique	 Description	

Open	coding	 We	 scan	 each	 text	 line-by-line,	 highlighting	 points	 of	
interest.	We	then	‘code’	each	to	represent	specific	concepts,	
creating	new	codes	as	required.		

Memoing	 As	we	do	that,	naturally,	ideas	will	occur	to	us	and	thoughts	
about	how	the	terms	may	be	interrelated.	We	write	these	in	
separate	texts	called	memos.	

In	doing	this,	we	are	open	to	novel	ideas	and	concepts	that	
may	 change	 and	 affect	 our	 future	 gathering	 of	 data.	 For	
example,	if	we	see	concepts	emerging,	we	may	explore	these	
in	more	detail	in	future	interviews.	

Figure 5: Using the Techniques of Grounded Theory

Write-up

Sorting

Generate
and locate

data

Categoriz-
ation

Open
coding

Codes,

Memos
New
directions

New questions

Text

Memoing

Identifying
core

category

Gaining
theoretical
saturation

Theory
generation

Categories

Data collection

Coding process

Categorisation

Ideas,

Thoughts
Text

Codes

Core

Category
Categories

Context

Context

Quotes Validity

Chapter 3: Methods Used

42 Charles Weir - October 2020

Categorisation	 Gradually,	as	we	assign	codes,	we	will	naturally	see	 them	
appear	in	groups	of	related	concepts.	We	name	these	groups	
‘categories’.	

Identifying	core	
categories	

	In	traditional	Glassarian	research,	the	aim	is	to	find	a	single	
overarching	Core	Category:	the	one	which	covers	the	most	
interesting	 features	 in	 the	 data.	 Researchers	 are	
encouraged	to	look	for	categories	that	cover	as	much	of	the	
variation	in	the	data	as	possible.	

Gaining	
theoretical	
saturation	

The	 data	 gathering	 is	 considered	 complete	 when	 further	
data	 received	 does	 not	 lead	 to	 significant	 new	 concepts.	
This	is	termed	‘theoretical	saturation’.	

Theory	
generation	

In	building	a	theory,	we	are	looking	for	relations	between	
concepts	and	categories	that	explain	the	relations	between	
concepts	and	categories.	

	Sorting	 To	provide	a	coherent	output,	we	need	a	narrative.	Strauss	
in	particular	talks	a	good	deal	about	the	literary	aspects	of	
the	 narrative,	 in	 particular	 ‘grab’,	 the	 relevance	 to	 the	
reader	 [4].	 The	 sorting	 process	 is	 arranging	 the	 codes,	
memos	 and	 categories	 in	 such	 a	 way	 as	 to	 produce	 a	
convincing	narrative.		

Write-up	 Here	we	write	up	the	narrative	as	a	coherent	report.	We	use	
extensive	anonymised	quotations	from	the	data	sources	to	
provide	rigour,	and	use	illustrations	and	where	appropriate	
to	convey	the	information	clearly.	

3.3.4 The Use of Literature Surveys
Hoda et al. [87] recommend using existing literature in a different way from other forms
of research. Since the aim of Grounded Theory is to generate new theory, there is a natural
concern not to be biased by existing thinking. So GT’s original recommendation was to
leave any literature survey until after the main bulk of coding and ideas generation [7].
Hoda et al. disagree with this, pointing out that literature surveys are often needed due to
academic pressures and the need for the researcher to be up to speed with the subject
terminology. They therefore recommend a short literature survey to begin with, and a
longer one once the majority of data has been coded. The longer survey may itself
contribute to the coding and memo generation. However, we have not seen a suggestion
that academic papers should be coded with the same level of detail that is given to other
research data.

Others suggest a similar approach: Allan [8] used a literature survey in advance of GT
work to identify if there were compelling theories already in existence.

We have therefore taken the approach of an initial literature survey to learn nomenclature
and avoid ‘reinventing the wheel’. A final, post-research survey (Section 2.2) added
further detail in the context of the discoveries from our interviews.

Chapter 3: Methods Used

Charles Weir - October 2020 43

3.3.5 Incorporating Appreciative Inquiry
A further important question is how to structure the interviews to get the most helpful
results. Our major concern in discussing security with experts was the danger of a litany
of complaints and major problems they had seen. Much of the security literature
concentrates on vulnerabilities, and we perceived a tendency among security experts to
concentrate on the negative. We wanted instead to avoid the details of problems, and to
focus on what had actually worked well for our interviewees.

This led us to look at Appreciative Inquiry. This method is primarily used as an Action
Learning method, with its purpose to change the participants’ behaviour for the better as
they reflect on their answers to questions. In this research we did not need to change the
participants (the security experts). Instead we want to find the means to help achieve the
results being achieved by the interviewees, but in other contexts, and so the Appreciative
Inquiry method offers a valuable contribution.

The full Appreciative Inquiry method [41] involves a cycle of four processes as shown in
Figure 6. The Discovery Phase typically concentrates on the positive aspects of the
current situation, encouraging participants to visualise what has worked, and what is now
working – hence the name ‘Appreciative’. The Dream Phase also stresses the positive,
with participants working to establish a shared vision of the future. The Design and
Destiny phases then continue to produce a plan for future change that has buy-in from the
participants.

Figure 6: The Processes of Appreciative Inquiry

Discovery
Identification

“The best of what
is”

Design
Planning

“What should be”

Destiny
Innovating

“What will be”

Dream
Envisioning

“What could be”

Chapter 3: Methods Used

44 Charles Weir - October 2020

Underpinning this cyclical process is a set of five principles, which we may summarise
simply as shown in Table 3.

So, when using Appreciative Inquiry, a community will work together
(Constructionalist), starting with the Discovery of the current situation (Simultaneity),
then generating a (Poetic) Dream of how they would like things to be. They then Design
(Anticipatory) steps to take them there, creating a Destiny, which then becomes the
baseline for the next cycle. To generate and sustain the energy required for such change,
Appreciative Inquiry replaces the conventional trouble-shooter focus on problems,
complaints and issues with a Positive focus, especially in the Dream activity.

Appreciative Inquiry has been effective in creating organisational change in a large
variety of different organisations [40]. To use it as a research tool requires some changes
that are explored in detail by Reed [140]. In our interviews of security specialists,
however, we were neither working with a community nor did we have the opportunity to
work with the specialists over the timescale involved in a cycle; so we used only the two
elements that could work effectively in a single interview: each interview concentrated
on AI’s Discovery: “What do you do and have you done in the past that was successful”
and Dream: “What would you like to see in an ideal world?” In terms of principles, the
interviews strongly adopted Appreciative Inquiry’s Positive principle; and gathered
Poetic stories to characterise the effective techniques discussed by the participants.

3.4 Online Survey
This section discusses the methodology behind the creation of an online survey. Such
surveys are valuable to find objective, quantitative, data about the current situation, and
indeed in this research we used a survey to find background information about the secure
development habits of a community of professional developers.

Chapter 5 covers the practical elements of the specific survey we did, such as choice of
participants, scope of questions, and the additional artefact analysis carried out.

The important methodological aspects can be summarised as:

• Ethical issues
• Questionnaire design
• Questionnaire implementation
• Analysis design
• Review and piloting
• Sample sizing and marketing
• Survey follow-up

Table 3: Principles of Appreciative Inquiry

Principle	 Summary	
Constructionist	 Our	beliefs	determine	what	we	do;	thought	and	action	emerge	

from	relationships.	
Simultaneity	 Enquiry	changes	systems	
Poetic	 Organisational	life	is	made	up	from	stories	co-generated	by	the	

participants	
Anticipatory	 What	we	do	today	is	guided	by	our	image	of	the	future.	
Positive	 Positive	emotions	are	needed	to	generate	sustainable	change.	

Chapter 3: Methods Used

Charles Weir - October 2020 45

The following sections discuss each in turn, describing each in terms of the activities we
carried out and the reasons involved.

3.4.1 Ethical Issues
Probably the biggest ethical issue is the privacy of the participants, since the responses
contain personally identifiable information. Addressing this requires:

• Keeping all responses secure. Universities provide guidelines for securing
personally-identifiable data [101].

• Ensuring that publications do not permit the identification of any individuals. This
applies particularly to the publication of the research data set, and includes
ensuring that no combination of data in a response might permit the identification
of a particular respondent.

A second ethical issue is when it is appropriate to ‘spam’ the members of a mailing list.
This is a complex issue, governed partly by legal constraints such as GDPR.

Another concern concerns the use of rewards to the participants. Some surveys offer a
lottery, offering benefits such as cash payments. There are practical issues with
implementing this, and possible selection biases it might instigate, such as encouraging
less well-off participants. Where, as in this survey, the rewards are altruistic benefits from
the research and a report sent to participants who request it, the ethical requirement is to
ensure that the analysis is properly carried out and that the report is indeed sent. In
particular, we interpret the commitment to provide research benefits as a requirement to
make the data set available for future researchers.

A particular concern is the effective use of participants’ time. By sending out large
numbers of survey requests we have an ethical responsibility to ensure that the time that
participants spend is not wasted, by ensuring that the questionnaire is as effective as
possible. This requires effective review and piloting (see section 3.4.5).

Finally, there is the issue of the accountability of the researchers involved, providing
publicly available details of the study purpose and contact details for the researchers and
their superiors with the survey invitations.

3.4.2 Questionnaire Design
The first decisions were whom to survey, and what to learn about them. Whom to survey
is partly a pragmatic decision, depending on what datasets of contacts are available; an
online survey requires a large list of the email addresses of potential contacts. The
questions to ask derive from the research questions.

Before trialling questions on target participants or offering it for external review, it is
important to challenge it based on several criteria:

Survey completion time: Longer surveys tend to get a high dropout rate. Naturally the
acceptable time depends on the nature of the participants, but expert sources cite
maximum recommended times between eight minutes (SurveyMonkey) and 10 minutes
(Qualtrics). A practical rule of thumb allows us to calculate objectively how long
participants will take for a given set of questions: allow a point for each simple question,
a point for each row in a grid question, a point for each two responses in a multiple select
question, and two points for each mental calculation required; then multiply by 7.5
seconds per point [178].

Chapter 3: Methods Used

46 Charles Weir - October 2020

Practical implementation: The practical limitations of creating questions on a web-
based survey platform may require changing the phrasing or the nature of questions.

Statistical relevance: it is important to take account of the analysis planned on the Survey
results, to phrase and to target the questions in such a way as to get an effective result (see
section 3.4.4).

3.4.3 Questionnaire Implementation
It is essential to use an online platform, and the better platforms improve both
implementation and results. In practice we used Qualtrics, one of the market leading
platforms. Several points are important in implementing the survey on such a platform:

Linking results with invitations: where there is metadata about the invitees: for
example, their location and product name, this much be matched to the corresponding
survey results.

Ease of statistical analysis: the survey platform codes most multiple-choice answers as
integer numbers. For analysis it is helpful if these numbers correspond to useful values
for statistical input. For example, Likert-type scales such as ‘Not knowledgeable at all ….
Very knowledgeable’ might use increasing integer values, such as 1 to 5.

Multiple platforms: participants are likely to be responding on anything from a PC to a
mobile phone. Grid-style questions, where a set of questions each has the same range of
answers, are more difficult to answer on a mobile device, and are worth avoiding.

Encouragement: We want each participant to finish the survey if possible. So, it is
important to keep encouraging them to carry on. A good solution we used in this project
is to add a progress bar to show users how close they were to completion.

Irrelevant questions: some questions are only meaningful in certain circumstances. For
example, if the participant answered “No” to the question “Are you in a team?” then it
would be meaningless to ask the team size. The survey software handles these using
constructs called ‘conditions’ and ‘blocks’; it is important to implement these carefully
and test them in the initial face-to-face trials.

Randomisation: the order of the questions and of the answers within questions is
important. To prevent this having a statistical effect, it is worth using randomisation
where possible. Randomising the order of all of the questions would create problems
around the ‘irrelevant questions’ discussed above. Instead one can randomise the order of
questions within grids, and the ordering of answers where these have no logical built-in
ordering.

Standard answers: Where possible, one can build on the experience of other researchers
by reusing tried-and-tested answer sets provided by the platform. For example, for
knowledgeability Qualtrics provides a Likert-type scale from ‘Very knowledgeable’ to
‘Not knowledgeable at all’.

Optional answering: some questionnaire systems force the participant to answer every
question, by not allowing progress until an answer is present. This can be irritating and
deter participants from completing the rest of the survey. However, it is important to avoid
participants accidentally missing out questions; a compromise is to use a dialogue “…
Are you sure?”.

Coding answers: in some cases, we did not know what set of answers to expect. For
example, the question “What development environment do you use?” might have some

Chapter 3: Methods Used

Charles Weir - October 2020 47

obvious answers but might also have a range of possible answers we were not expecting.
So, we created the survey with an initial fixed set of multiple-choice options, and an
additional “Other” option with a corresponding free text field. Following the pilot study,
we manually ‘coded’ the answers for that text field, then incorporated the most common
‘codes’ as further multiple-choice options. We retained the ‘Other’ option in these cases,
but in practice none of the text answers proved of value in reporting the survey results.

Low-value responses: Questionnaires, especially in psychology, sometimes include
‘attention questions’, where the same question is asked in two different ways: typically
negated the second time. Researchers can then either reject responses with inconsistent
answers, or do statistical analysis [166] determine whether responses are sufficiently
internally consistent. However, in questionnaires about facts rather than opinions this
approach can appear contrived and irritating to the participants. An alternative to reject
low-value responses is to analyse the time taken to complete the survey, rejecting those
completed so fast that it was unlikely that the respondents were responding accurately.

3.4.4 Analysis Design
In parallel with the survey there needs to be an analysis plan. This fed back to the question
design and implementation.

Our initial inclination was to gather the survey results first and then decide on statistical
analysis according to what we found. This approach works fine for purely descriptive
statistical analysis, such as graphical representations of the results of questions and simple
calculations from those numbers. However, for statistical hypothesis testing—
specifically any statistical analysis that returns a p-value—this approach is unsatisfactory.

The reason lies in the problem of ‘data dredging’. When we run a test of statistical
significance we are always implicitly or explicitly comparing two hypotheses; one that
the data tested shows a particular feature, and the other, ‘null hypothesis’, that it doesn’t.
A ‘p-value’ is the probability that the data analysed could have shown that feature even
if the null hypothesis was true, just by random chance. The arbitrarily accepted p-value
threshold for statistical significance, 0.05, is likely to be achieved by random chance
every now and again, even if the feature is not present. In fact, if we do as few as 14
analyses on different samples of data that doesn’t have some feature, we still have a more
than 50% chance that one will show that feature with a ‘significant’ p-value of less than
0.0513.

This means that if we take a dataset and run enough statistical tests on it, we will find
‘statistically significant’ results purely by chance. Doing this is called ‘data dredging’ and
is poor research practice; in particular it leads to conclusions that are unlikely to be
replicable [89].

The main ways to avoid this are twofold:

First, we define, before data collection, what statistics analysis we are going to do, what
the tests will be, and what are the hypotheses and null hypotheses. Indeed, many journals
now accept papers that define the research process and analysis prior to the data
collection, with a guarantee of publication regardless of the subsequent results, because
this leads to more replicable, and therefore higher value, research results. Research best
practice guides also require this approach [38,39].

13Pr(𝑛𝑜	𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡	𝑟𝑒𝑠𝑢𝑙𝑡𝑠	𝑖𝑛	14	𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑠) = (1 − 0.05)!" 	= 0.49

Chapter 3: Methods Used

48 Charles Weir - October 2020

Second, when the planned and statistics do require several tests on the same data, we use
corrections and techniques to ensure that the criteria for statistical significance are
modified accordingly. For example, the Bonferroni correction divides the threshold for
statistical significance by the number of tests made [144].

In deciding statistical techniques, we need to both identify the techniques required, and
find ways to ensure that correct preconditions hold for each. For example, many statistical
calculations assume some form of Normal distribution in the data; to use one, for those
we would need to ensure that the dataset satisfies this precondition.

In the statistical analysis for this project we had two forms of question:

1. In the survey results, a proportion satisfied some criteria (e.g., ‘works with
security professionals’); what can we deduce about the wider population?

2. We have two sets of ‘factors’, measured numeric values (e.g. rating of importance
of security, frequency of use of security techniques); do they show a mathematical
relationship?

For 1, ignoring concerns about sample validity, we can express the answer in terms of the
95% confidence limits on the proportion in the wider population. This is a simple formula,
calculated from the sample proportion and the sample size [99], and requires only that the
sample has the same variance as the wider population—i.e. that the sample is
representative.

For 2, the usual relationship to look for is a linear one. If there is no need to use the result
to make predictions, linear regression is unnecessary; instead we used the Pearson
Correlation Coefficient (‘Pearson R’) calculation [44] to establish whether pairs of values
had a linear relationship. Note that in representing the relationship graphically it helps to
show a line on the graph; to calculate this line the graph plotting software used Simple
Linear Regression [44].

The preconditions for the Pearson Correlation Coefficient test are that the data tested are
continuous (i.e. numeric, with equal intervals between adjacent units); come in matched
pairs (x,y values); have no outliers (values far from the majority); and have linearity and
homoscedasticity (criteria that amount to ‘look vaguely linear on a scatterplot’). We tested
these by plotting a scatterplot or similar to show the data.

Following normal statistical practice, we coded Likert-style responses [106] on a range
of 1 through 5 to create effectively continuous data [91]. It is accepted practice to use
Pearson R tests on such coded scores [96,124].

Some of the data (such as the number of errors found by analysis in an application) forms
a Poisson distribution14. To permit linear analysis on this data we use a transformation,
log(𝑥! + 	k) , where k is chosen to minimise skewness [30]; in practice we trialled
different values of k, finding no difference to the results, so used the conventional
research practice of k=1.

One form of analysis is to look for correlation between a matrix of ‘factors’, where each
factor is represented as a numeric score. For example, we might have had A, B, and C as
input (‘independent’) factors—things that we might think of as causes—and X, Y, Z as
output (‘dependent’) factors—things we might think of as effects. In that case we would

14 The Poisson distribution may be thought of as the ‘bus waiting times’ distribution; if buses arrive
randomly, then the distribution of waiting times obeys the Poisson distribution: Pr	(𝑤𝑎𝑖𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒	 > 𝑡) ∝
𝑒#$%

Chapter 3: Methods Used

Charles Weir - October 2020 49

have tested X’s correlation with each of A, B, and C; Y’s correlation with each of A, B
and C; and Z’s correlation with each of A, B, C. Since this constituted several tests on the
same data, we applied the Bonferroni correction [144], reducing the threshold for
‘significance’ accordingly.

To investigate the sample validity, we used one further statistical technique. We
investigated whether results from a subset of the data (e.g. developers of apps with less
than 1000 downloads) differ materially from the remainder. Since the two samples—
subset and remainder—are independent and we have no knowledge of the distribution of
the values, we used the Mann Whitney rank sum test [144] to compare the sample
medians. The other preconditions for this test—that the two populations have the same
distribution and variance—are reasonable for this situation. We used the same test to
compare the survey results with those from the corresponding larger populations.

3.4.5 Review and Piloting
There are a variety of approaches to help ensure the survey is effective [64].

Expert Reviewing: This is a method that supports identifying questions that require
clarification and uncovering problems with question ordering or potential biases [136]. It
involves asking an experienced usable security and privacy researcher with survey
expertise, who is not part of the research team, to review our survey questionnaire and
evaluate question wording, ordering, and bias.

Face-to-face Testing: Next, is face-to-face pilot surveys with a few candidate
participants who were not previously involved in the research project. This supports
revising the survey questions based on realistic feedback.

Pilot Survey: Before conducting the full survey, one can send invitations piecemeal until
a few dozen replies are received: enough for simple analysis and feedback but minimising
the effort ‘wasted’ by participants whose responses would not appear in the final survey.
The goal is to test the survey questionnaire under realistic conditions and with participants
drawn from the same pool as we used for the full survey. The pilot results are not
incorporated into the main survey.

The pilot gives an indication how many responses to expect from a given number of
invitations. It can also check that the number of dropouts during the survey was
acceptable. A further benefit is the opportunity to manually code the responses of some
of the text-based questions, taking the most frequent codes to create new coding answers
(see section 3.4.3).

3.4.6 Sample Size and Marketing
There are several ways of identifying a sample size [64]. Some researchers use analysis
of the data collected to decide on a cut-off point (such as when the Cronbach Alpha
between a pair of attention questions is sufficiently high). This is justifiable but has a
tension with the principle of defining the statistical analysis in advance.

This project used Fowler’s guidance [64], We identified the smallest subgroups for which
we wanted data, and used the pilot data to estimate the proportion of these in the
population. We then calculated a sample size large enough to get significant data from
these groups, based on the calculation for the Confidence Interval for a Population
Proportion [44].

Chapter 3: Methods Used

50 Charles Weir - October 2020

To maximise the effectiveness of the survey, and to avoid wasting the limited resource of
invitee details, we wanted a good response rate. In particular we wanted to encourage
participation by making it completely clear that this was a bone fide university research
project. There were several aspects to achieving this, as follows.

Email distribution: Mass distribution of emails is fraught with problems. Most email
services have complex arrangements to detect incoming spam and prevent it from
reaching their uses. And universities discourage individual users from sending mass
emails. To address this Qualtrics provides a mass mailer system that can be set up to send
emails legitimately associated with a university address; other systems may have other
solutions.

Invitation wording: The invitation must make it clear that the senders are legitimate
researchers, acting with the approval of, and subject to the constraints of, their
universities. It is also useful to personalise the emails as much as possible.

Project description: ethics standards require a full explanation, with contact details and
constraints on the researchers, to every participant in advance. Best, to make it look as
legitimate as possible, is to host it as a webpage on the university domain.

3.4.7 Survey Follow-up
To publish the data for future researchers requires a version of the results that preserves
the privacy of the responders. This requires deleting any personally identifiable data
including:

• Names, emails and application names and identifiers, and
• Locations (Qualtrics provides precise locations).

3.5 Canonical Action Research
This section introduces Action Research generally, and the Canonical Action Research
method in particular.

3.5.1 Action Research Methods
Action Research is an approach to research in communities that emphasises participation
and action; Action Research aims at understanding a situation in a practical context and
aims at improving it by changing the situation. It has its roots in research in the 1940s by
Kurt Lewin, a relativist sociologist, whose work on community social issues led him to
conclude that “mere diagnosis… does not suffice,” and therefore that the role of the
researcher was to add “experimental comparative studies of the effectiveness of various
techniques of change”. This ‘action-research’, or “research to help the practitioner”,
needs therefore to involve the practitioners, and to occur in cycles of planning, execution
and evaluation [104].

This approach has clear advantages in software engineering, where development team
leaders tend to see ‘time not spent on development’ as an expensive luxury, and therefore
many will not engage with researchers unless there are probable benefits from doing so.
Action Research offers such benefits and is now widely used in mainstream research. One

Chapter 3: Methods Used

Charles Weir - October 2020 51

taxonomy identifies four main approaches [102], all used in Empirical Software
Engineering research [147], and each with many variants:

Action
Learning

Uses group reflection techniques (Action Learning Sets), which may be
facilitated, to help teams address and learn from complex problems.

Action
Science

Addresses organisational change; and particularly concentrates on
participants’ own thinking and habitual behaviour as the source of the
most intractable and challenging problems.

(Canonical)
Action
Research

Addresses a specific problem with researchers working with teams in an
iterative fashion: the researcher is responsible for theory; the participants
for action.

Participatory
Action
Research

Has its basis in working in communities; it extends Canonical Action
Research by emphasising the equal involvement of participants,
including in the generation of theory.

Other taxonomies identify many more variants [23]. Note that the name ‘Action
Research’ refers both to the generic form of research and to a specific variant; in this
thesis we use the term ‘Canonical Action Research’ for the variant to avoid confusion.

3.5.2 Canonical Action Research
Canonical Action Research follows a cyclical model, as shown in Figure 7. It is
characterised by five principles: researcher-client agreement, cyclical process model,
theory use, change through action and learning through reflection [43]. These are
summarised below.

Researcher-client agreement: The researcher and client must agree that CAR suits the
situation and that the research goals are appropriate.

Cyclical process model: The work follows one or more cycles of diagnosis, planning,
intervention, evaluation and reflection, as shown in Figure 7. Each cycle builds on the
previous. The remaining principles refer to the stages in this cycle.

Theory use: The work may start based on a specific theory; if not, the researchers will
derive one through the reflection process, typically using an approach akin to Grounded
Theory (Section 3.3). Focussing on a theory ensures that the research remains relevant to
the research community and supports sense-making from the large amount of data
collected.

Figure 7: Canonical Action Research Activities (Davison et al. 2014 [43])

R M Davison

et al.

© 2004 Blackwell Publishing Ltd,

Information Systems Journal

14

, 65–86

72

The Principle of the Cyclical Process Model (CPM)

When an initial RCA has been established, it is appropriate for the action researcher to com-
mence work on the project. His or her activities will typically be informed by and designed to
follow a CPM. Susman & Evered (1978) originally proposed a model with the following five
stages: diagnosis, planning, intervention, evaluation and reflection. Subsequently, Kemmis &
McTaggart (1988) suggested that the model should take the form of a spiral, not a cycle, with
the intervention moving ever closer to the core of the organizational problem with each itera-
tion. More recently, McKay & Marshall (2001) outline a model that includes two cycles running
in tandem: one addresses the client’s problem solving interest while the other addresses the
researcher’s scholarly interest. The CPM presented in Figure 1 builds upon these various per-
spectives. The extent to which the Principle of the CPM is reflected in a project can be
described by the adherence to seven criteria (see Table 2).

Progressing through the CPM in a sequential fashion will help to ensure that a CAR project
is conducted with systematic rigor, a defining characteristic of CAR. Sometimes it is possible
to complete a project satisfactorily in a single cycle, but very often additional cycling through
the stages is appropriate. The cyclical nature of the CPM suggests a unidirectional flow, with
diagnosis followed by planning, intervention, and so forth. While this is desirable, our experi-
ence suggests that some iteration between stages may be needed. For example, supplemen-
tary planning may be necessary if an intervention cannot be completed as intended. Therefore,
the first criterion (2a) suggests that variations from a unidirectional flow through each of the five
stages should be justified and mentioned explicitly in the project report.

Figure 1.

CAR process model.

Diagnosis

Action
Planning

Intervention
(Action taking)

Evaluation
(Assessment)

Reflection
(Learning) Researcher–Client

Agreement

Exit Entrance

Table 2.

Criteria for the CPM

2a Did the project follow the CPM or justify any deviation from it?

2b Did the researcher conduct an independent diagnosis of the organizational situation?

2c Were the planned actions based explicitly on the results of the diagnosis?

2d Were the planned actions implemented and evaluated?

2e Did the researcher reflect on the outcomes of the intervention?

2f Was this reflection followed by an explicit decision on whether or not to proceed through an additional process cycle?
2g Were both the exit of the researcher and the conclusion of the project due to either the project objectives being met

or some other clearly articulated justification?

Chapter 3: Methods Used

52 Charles Weir - October 2020

Change through action: “The essence of CAR is to take actions in order to change the
current situation and its unsatisfactory conditions”. Both researcher and ‘client’ are
motivated to improve the situation, with an intervention appropriate to the diagnosed
problem, based on a clear understanding of the problem and its context and causes. A
thorough analysis of the outcomes then informs both general knowledge and future
interventions.

Learning through reflection: The researcher reports back to both clients and to the
research community. This involves both keeping the client informed of progress; and
reporting via publications to the research community, concentrating on what has been
learned, especially where related to the theory.

3.5.3 Practical Canonical Action Research
The practical aspects of carrying out CAR are less well documented than the theory. The
following is the approach we adopted.

First, we interviewed a selection of the future participants to establish a baseline in terms
of their current understanding, practice and plans. Each interviewee completed and signed
a consent form, and a representative of each team signed a different one for the
organisation, before either interviews or workshops.

We then carried out a series of workshops with members of the development teams, led
by the intervener. Then, a suitable time after the final workshop, we carried out ‘Exit
Interviews’ with the same participants as before. Both Entry and Exit Interviews were
semi-structured using open questions. Later, we attempted ‘One Year Interviews’ with
the leaders of each team, to find out to what extent the security effects of the package
were long-lasting, using the same questions as the earlier exit interviews.

We recorded the audio of all the interviews and all the workshops. Given the importance
of the recorded interviews, we used two recorders of different makes for all recordings,
to reduce the risks from error, battery failure or recorder failure. Ethical considerations
and university guidelines [101] required us to keep all such data only on encrypted
storage; since encrypting recorders are both expensive and cumbersome to use we used
standard recorders, moving the recordings onto an encrypted laptop and erasing the
recorders’ memory immediately after each session.

The recordings of the interviews and workshops were transcribed and qualitatively
analysed. In an iterative process, the author and a colleague coded all transcripts. Initially
both coders used open coding [74] on the first two hours of material, then agreed on a
coding scheme based on that and the research question. Then both coders independently
coded all the remaining material to this coding scheme and compared the results.
Differences in coding were discussed and resolved between us, which often led to the
creation of new codes or redefinition of existing ones. Following the one-year interviews,
we both again independently coded the transcribed interviews and compared the results.

We used the industry-leading tool NVivo [137] for coding. The teamwork and merging
facilities of the Windows version 15 make remote working straightforward, and its
analytical functions [71] allow sophisticated analysis of both text and coding.

15 The Mac version of NVivo lacks many of the features and uses a different file format; the author ran the
Windows version on a Mac using the Parallels VM software.

Chapter 3: Methods Used

Charles Weir - October 2020 53

To analyse change caused by the process improvement, we coded the initial interviews to
provide evidence of a baseline before the start of the process.

Using a dedicated text analysis tool such as NVivo permits sophisticated analysis in terms
of ‘queries’ on the coding [71]. To support this, we used automated features of the
software to ‘auto-code’ each interview transcript to distinguish speakers: using
anonymous codes to identify the interviewer, and each interviewee, and to assign
interviewees to company codes; and we categorised all transcripts as ‘before’, ‘during’ or
‘after’ the workshops. This allows queries such as “Mentions of Feature X identified
before the intervention, categorised by company.” Using such queries in conjunction with
spreadsheets to analyse numeric data further allowed us to create several forms of visual
representation of the data (see).

3.6 Design-Based Research
The projects were focussed on the intervention more than on the specific improvements
achieved in each of the organisations involved. A methodology designed for this situation
is Design-Based Research. The motivation for using it in the Magid 2 project is discussed
in Section 8.1. This section explores its salient features.

3.6.1 Introduction to Design-Based Research
Design-Based Research (DBR) has its roots, and is used most, in education research. Its
foundation lies in the ‘Design Experiments’ of Brown [31], and Collins [36] prior to 1992:
a specific method that worked with teachers as co-experimenters and emphasised the
development of design theory in parallel with the creation of teaching innovations.
Though it does not derive directly from Action Research, DBR shares the principle that
the researcher may themself be part of the research project [22].

By 2003 the approach was widely adopted in education research, and researchers from
ten different institutions agreed to term the approach ‘Design-Based Research’, to avoid
confusion with other forms of research [86]. Initially used predominantly to support the
design of ‘Technology Enhanced Learning Environments’, DBR is now an accepted
research paradigm, used to develop improvements ranging from tools to curricula [86].
with online tutorials [174] and a recent comprehensive guide book for practitioners [18].

The characteristics of Design-Based Research are that it is pragmatic, grounded,
interactive, iterative and flexible, integrative and contextual [181]. The next sections
explore these attributes in turn.

Pragmatic: DBR aims to solve current real-world problems, by creating and trialling
interventions in parallel with the creation of theory and design principles. Promoters
contrasted it to the ‘Controlled Experiments’ used previously in education research, in
that the purpose was not primarily to test theory, but to create interventions or
improvements in (educational) practice.

Grounded: The research is grounded in both in the creation and development of theory;
and in the practicalities of real-world trials in the ‘buzzing, blooming confusion of real-
life settings’ [22]

Interactive, iterative and flexible: To create real-world changes requires interaction
between researchers and practitioners, since typically it is only through practitioners that
change can take place. It also requires an iterative process, usually over a long time, with

Chapter 3: Methods Used

54 Charles Weir - October 2020

multiple trials and experiments taking place as the theory develops. This iteration permits
flexibility, allowing changes in process as well as theory between iterations.

Integrative: DBR practitioners may integrate multiple methods, and vary these over
time, to support the credibility of findings [181].

Contextual: The results depend both on the design process and intervention created, and
on the context of the real-world trials.

There are several types of theory that DBR research may generate [50]:

Domain Theories: General theories about the situation and interactions between
participants.

Design Frameworks: Prescriptive guidelines to design a particular type of
intervention or product.

Design Methodologies: Prescriptive guidelines for an approach to design a range of
interventions or products.

The classic illustration of the processes that make up DBR is shown in Ejersbo et al.’s
Figure 8 [53]. It shows the two cycles of research: creating theory and creating the
artefact. The researchers are involved in both, generating academic output from the theory
cycle and practical impact from the artefact cycle. The creators of that illustration,
however, are careful to stress that this virtually never happens, and that in practice
particular projects use variations, swapping emphasis across parts of each cycle.

3.6.2 Practical Design-Based Research
Elegant though that illustration is, it does not capture the interaction between the two
cycles, which seems to be limited to a shared Problem; nor is it clear how a Hypothesis
might generate Data. We offer instead Figure 9, which shows the source of the Data, and
also re-labels the Intervention-Artifact sequence as the creation of an Artefact followed
by a Trial. In this model the Hypothesis also feeds into the Design process, and the Trial
generates the Data that supports or denies the Hypothesis (shown with a dotted arrow),
generating Theory. The result is that the ‘Design Theory’ cycle does not exist as a separate
entity, but instead depends crucially on the practical Trial. Although this representation
is less elegant, we suggest that this offers a more practical view of Design-Based
Research, at least in the context of this research.

Figure 8: Design-Based Research Activities (Ejersbo et al. 2008 [53])

 5

Problem

Design

Artifact

Markets

Intervention

Hypothesis

Data

Theory

Peers

Empirical level

Validation level

Heuristic level

Production level

Figure 1’Osmotic Mode’: Our current understanding of how to balance artifact and theory generation
within a design research paradigm. The left circle mimics the traditional way of doing educational
research, where the main “customers” are the peers. The right circle mimics a normal production cycle,
but with a much stronger involvement of user feedback. Ideally, a design research project moves in
synchronous circular movements, starting from the center and going in both directions. However this
synchronicity rarely happens in practice.

In order to explain this very idealized and macroscopic model for conducting research, we break

the model down into four steps or phases: a) from problem to design and from problem to

hypothesis; b) from design to intervention and from hypothesis to data; c) from intervention to

artifact and from data to theories; and d) from artifact to markets and from theories to peers.

a) from problem to design and from problem to hypothesis

Going from a problem at hand to a hypothesis/design entails making a move from the empirical

level into the heuristic level - probably the most exciting but also most difficult part of doing

research. A pre-requisite is that the researcher has a fairly good knowledge of existing theories

about the theme. It also helps to have a sound scientific intuition when making a new hypothesis

(a proto-theory) about how the particular problem could be confronted and possibly solved. In

order to make this move, a researcher should be able to induce a solution, for example a change

of practice. This requires a working knowledge of existing theories, existing artifacts, and design

intuition.

Chapter 3: Methods Used

Charles Weir - October 2020 55

Curiously, there is little discussion in the literature about the practical aspects of carrying
out Design-Based Research. Even Bakker’s ‘Practical Guide’ book [18] describes how to
frame a question, keep the project manageable, write up DBR papers, and the philosophy
of DBR; but does not describe how to carry out the major part of the work: creating and
assessing a product or intervention.

We conclude that the reason for this is captured in the ‘Integrative’ nature of DBR: both
design and assessment techniques must come from other research methodologies. Such
research methodologies may be based on Action Research, Ethnography, and even on
occasion Surveys, Case Studies and Controlled Experiments [49]. Thus, the techniques
of the Canonical Action Research method—though not that method’s overriding
paradigm—provide an acceptable basis for data gathering.

3.6.3 Practical Implementation
Since DBR concentrates on the intervention, it works well with a large number of trials
in different situations. To have many trials is highly desirable but requires a change to the
CAR techniques described in the previous section; this section describes how we made
that change.

The problem is that manual transcription of all the sessions becomes prohibitively
expensive. As a solution, only the entry and exit interviews—the most valuable and data-
rich content—were transcribed manually; we coded all the workshops and training
sessions from audio.

Coding from audio alone is difficult; and also makes it hard to make sense of summaries,
such as a summary of all the statements assigned to a particular code. However, shortly
before the start of the project Google had made their speech-to-text services available as
paid APIs. Several online services have appeared using these services to provide
automated transcription at small cost; after some experimentation, we concluded that,
while far from perfect, the transcription quality was sufficient to support coding in NVivo:
it makes it clear at a glance what the speakers are discussing, even though the actual
transcriptions can be nonsensical or hilarious. Even automated transcription of group
discussions, though not recommended by the service suppliers, was helpful. The
automated transcriptions made the audio faster to code, and easier to analyse, than using
NVivo’s ‘audio-only’ coding feature.

We used the Sonix automated transcription service and created a simple script to change
the format of the transcripts to that supported by NVivo. In view of the privacy concerns

Figure 9: Activities in Practical Design-Based Research

Hypo-
thesis

Design

Data

Theory

Problem

Trial

Artefact
Design
Practice

Design
Theory

Chapter 3: Methods Used

56 Charles Weir - October 2020

of using such a service, we discussed it in advance with the leaders of each of the teams
(all agreed to its use) and amended the participant and organisation consent forms
accordingly.

3.6.4 DBR Data Analysis for an Intervention
Design-Based Research includes the evaluation of an artefact. When the artefact is
influencing behaviour, we need a way to establish what changes have occurred. Here is
the approach we used.

The author and fellow coder agreed a coding scheme in advance. Specifically, we decided
to code the extent to which several different aspects of the participants’ behaviour had
changed. We therefore identified a list of aspects, and a grading scheme to identify what
level the participants had achieved for that aspect.

We wanted to compare levels for each aspect ‘Before’ and ‘After’ the use of the artefact.
Rather than have many separate codes (such as ‘Level 2 for Aspect A’, ‘Level 4 for
Aspect C’, etc.), we used ‘code pairs’: coding each mention twice, once for the aspect and
once for level. We used ‘auto-coding’ to assign codes Before and After to the different
participants and companies. That allowed us to use NVivo queries similar to the
following:

“Text coded to ‘Before’ and ‘Company E’, cross-tabulated by Aspect and
Level”

Which produces a ‘cross-tabulated’ matrix16. Table 4 shows an example for a specific
company, from the interviews Before the intervention. It shows the Aspects in rows, and
the Levels as columns; the value in each cell is the number of code pairs that showed that
Level of for that Aspect.

From that table, it is then simple to calculate the highest Level coded for each Aspect,
representing it as an integer from 0 (not coded) through to 4 (Established). So, for
example, in Table 4 for that particular company and time, we see that Aspect A scored 0;
Aspect B scored 1; and Aspect C scored 4.

We repeated this for every company for both Before and After the intervention, and
copied the resulting tables into an Excel spreadsheet.

On occasion a statement made by an interviewee in an exit interview or a workshop might
provide information about plans or engagement prior to the interventions. We handled
this by adding the code Before to the corresponding statements (thus the statements are
coded both Before and After). So, the NVivo queries above will include the appropriate

16 In practice, NVivo queries are less sophisticated. We achieve the search above by starting with a query
like ‘Coded to Before and Company E’, saving the result as a ‘result set’, then using that ‘result set’ as the
scope for the cross-tabulated query. NVivo also lacks any automation, so repeating this for different
parameters is a long manual process.

Table 4: Example NVivo Report Showing Aspects and Levels

 Level 1 Level 2 Level 3 Level 4
1 : Aspect A 0 0 0 0
2 : Aspect B 3 3 3 3
3 : Aspect C 3 3 10 5
4 : … etc. 0 0 0 0

Chapter 3: Methods Used

Charles Weir - October 2020 57

text about engagement before the interventions, even when the corresponding statements
were made afterwards.

As is normal practice, both coders coded independently, then met up to discuss, and each
then independently modified their coding according to the discussion.

3.6.5 Validation of Analysis
For this project, we wanted to be able to cite a statistical rating of the accuracy of our
coding analysis.

The accepted approach to this is to use ‘Inter-Rater Reliability’ (IRR) [78]. This calculates
a number between 0 and 1 that can be interpreted as shown in Table 5 by Viera and Garett
[179]

The main decision in using IRR is the selection of what ratings to compare: possible
ratings include the extent to which each rater assigned the same codes to each character
in the text (as NVivo does in its default IRR analysis); or the extent to which each rater
assigned the same codes to each paragraph in the text; or the extent to which the final
results derived from each rater’s codings agree with each other.

Since we were using coding to establish the extent to which the participants had changed
in each aspect as discussed in the previous section, the relevant ratings to compare with
IRR analysis were these final results figures as calculated for each coder.

Another consideration is how to handle aspects that are ‘No mention’ for both raters,
representing aspects that had not been discussed in the interviews, such as Aspect A in
Table 4. Whilst this was certainly ‘agreement’ between the raters, arguably it was not
agreement that was interesting in the context of Inter-Rater Reliability. Accordingly, we
calculated a version of the IRR calculations based only on cases where at least one rater
had assigned a value (‘Active rating subset’ [78]).

There are several possible calculations: Cohen’s Kappa, Krippendorff’s Alpha and others
for different numbers of coders and situations [78]. We did the calculations for both
Cohen’s Kappa and Krippendorff’s Alpha, finding the results reassuringly identical to
two significant figures, so in this report we quote the numbers as Krippendorff’s Alpha.

NVivo supports queries specific to each separate coder, and so we could create queries
similar to:

“Text coded to ‘Before’ and ‘Company E’,
cross-tabulated by Aspect as coded by Coder 1,
and Level as coded by Coder 1”

Table 5: Interpretation of Cohen’s Kappa (Viera and Garett [179])

362 May 2005 Family Medicine

tion of the variance of kappa and deriving a z statistic,
which are beyond the scope of this article. A confidence
interval for kappa, which may be even more informa-
tive, can also be calculated. Fortunately, computer pro-
grams are able to calculate kappa as well as the P value
or confidence interval of kappa at the stroke of a few
keys. Remember, though, the P value in this case tests
whether the estimated kappa is not due to chance. It
does not test the strength of agreement. Also, P values
and confidence intervals are sensitive to sample size,
and with a large enough sample size, any kappa above
0 will become statistically significant.

Weighted Kappa
Sometimes, we are more interested in the agreement

across major categories in which there is meaningful
difference. For example, let’s suppose we had five cat-

egories of “helpfulness of noon lectures:” “very help-
ful,” “somewhat helpful,” “neutral,” “somewhat a
waste,” and “complete waste.” In this case, we may
not care whether one resident categorizes as “very help-
ful” while another categorizes as “somewhat helpful,”
but we might care if one resident categorizes as “very
helpful” while another categorizes as “complete waste.”
Using a clinical example, we may not care whether one
radiologist categorizes a mammogram finding as nor-
mal and another categorizes it as benign, but we do
care if one categorizes it as normal and the other as
cancer.

A weighted kappa, which assigns less weight to
agreement as categories are further apart, would be re-
ported in such instances.4 In our previous example, a
disagreement of normal versus benign would still be
credited with partial agreement, but a disagreement of
normal versus cancer would be counted as no agree-
ment. The determination of weights for a weighted
kappa is a subjective issue on which even experts might
disagree in a particular setting.

A Paradox
Returning to our original example on chest findings

in pneumonia, the agreement on the presence of tactile
fremitus was high (85%), but the kappa of 0.01 would
seem to indicate that this agreement is really very poor.
The reason for the discrepancy between the unadjusted
level of agreement and kappa is that tactile fremitus is
such a rare finding, illustrating that kappa may not be
reliable for rare observations. Kappa is affected by
prevalence of the finding under consideration much like
predictive values are affected by the prevalence of the
disease under consideration.5 For rare findings, very
low values of kappa may not necessarily reflect low
rates of overall agreement.

Returning for a moment to our hypothetical study of
the usefulness of noon lectures, let us imagine that the
prevalence of a truly helpful noon lecture is very low,
but the residents know it when they experience it. Like-
wise, they know (and will say) that most others are not
helpful. The data layout might look like Table 3. The
observed agreement is high at 85%. However, the kappa
(calculation shown in Table 3) is low at .04, suggesting
only poor to slight agreement when accounting for
chance. One method to account for this paradox, put
simply, is to distinguish between agreement on the two
levels of the finding (eg, agreement on positive ratings
compared to agreement on negative ratings). Feinstein
and Cicchetti have published detailed papers on this
paradox and methods to resolve it.5,6 For now, under-
standing of kappa and recognizing this important limi-
tation will allow the reader to better analyze articles
reporting interobserver agreement.

Table 2

Interpretation of Kappa

 Poor Slight Fair Moderate Substantial Almost perfect

Kappa 0.0 .20 .40 .60 .80 1.0

Kappa Agreement
< 0 Less than chance agreement
0.01–0.20 Slight agreement
0.21– 0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement

Table 3

Usefulness of Noon Lectures, With Low
Prevalence of Helpful Lectures

 Resident 1—
 Lectures Helpful?

Yes No Total
 Resident 2— Yes 1 6 7
 Lectures No 9 84 93
 Helpful? Total 10 90 100

Calculations:
Observed agreement, po = 1+84 = 0.85

 100

Expected agreement, pe =[(7/100) * (10/100)] + [(93/100) * (90/100)] =
0.007 + .837 = 0.844

Calculating kappa:
K = (po - pe) = 0.85–0.844 = 0.04
 (1–pe) 1–0.844

Chapter 3: Methods Used

58 Charles Weir - October 2020

As before, we exported the resulting tables into an Excel spreadsheet: we calculated the
maximum Level for each Aspect, for Before and After, for each company, repeated for
each coder. We then compared those figures for each coder using the IRR calculations17.

To give a meaningful indication of the IRR values, we did calculations of Krippendorff’s
Alpha for both the full set of ratings, and the ‘Active rating subset’; and both after the
first, independent, coding activity, then after the discussion and modification.

3.7 Visualisation of Results
Finally, an important aspect of the research method is the presentation of the findings.
Though calculated figures are sufficient as a basis for evidence claims, visualisations can
be much more effective at conveying the meaning of figures. Both Excel, and Python in
Jupyter Notebooks, are widely used to create visualisations, and both are used to create
figures in this thesis.

Excel proved the most flexible tool, since it supports ‘manual’ changes in the manner of
a drawing package. There are a variety of possible Excel techniques, as follows:

Standard Excel Charts: For these one creates cell ranges containing the data to plot in
the number or text format required and uses the ‘create chart’ functionality; then uses
mouse and menu commands to edit the colours, sizes, axes, legends and other features.

Advanced Excel Charts: Excel supports more sophisticated charts, allowing one to have
multiple series types (bars and lines, for example) and to manipulate these; or to change
the representation of individual points in a series.

Compositions of Charts Figures and Shapes: By removing the axis, title and key
displays from, for example, a ring pie chart or single stacked bar chart, one achieves a
structured shape that one can then position on a two-dimensional ‘composite diagram’ to
convey several dimensions of information. Excel also supports the drawing shapes, text,
lines and arrows familiar to users of PowerPoint, and one can position those as axes and
other shapes on the composite diagram. One can also use, for example, white shapes on
a white background to blank out unwanted aspects of any of the charts. Figure 10 shows
a detail from a visualisation created in this way.

Excel Visual Basic for Applications: Excel has VBA scripting, and supports functions
that can take data from ranges of spreadsheet cells. Each shape and chart on an Excel
diagram has a text name. These names have defaults (such as ‘Chart 2’) but can be edited
to be meaningful (‘Company I’), and the corresponding ‘objects’ can be manipulated from
VBA. One can therefore program a VBA function to set the sizes, positions, colours or
other attributes of shapes on a diagram according to spreadsheet data; then use additional
mouse and menu manipulation to achieve the correct data representation.

So, for example, Figure 10 shows a visualisation created using these techniques. It is a
simplification of Figure 42 in Section 8.2.1. Each of the shapes in the diagram is an Excel
chart (hollow pie charts and stacked bar charts), based on spreadsheet data and with
colours assigned consistently from a standard palette. These had all text removed, and
VBA scripting was used to set their sizes based on further spreadsheet data. They were
then positioned manually and annotated manually with identification letters.

17 We used a Python implementation [121], using a Jupyter Notebook [97] to read data directly from that
Excel spreadsheet.

Chapter 3: Methods Used

Charles Weir - October 2020 59

Figure 10: Example Excel Visualisation Manager Developer

Product QA
Security

D

E

F

G
J

H I K

LargeSmall Company size

Hi
gh

Lo
w

Se
cu

rit
y

m
at

ur
ity

Chapter 4: Expert Survey

60 Charles Weir - October 2020

4 Expert Survey

4.1 Introduction
As a first step, the author wanted to understand industry best practice with regard to
interventions.

In prior work [183], the author had carried out a Constructivist Grounded Theory [33]
study, involving face-to-face interviews with a dozen experts in security related to mobile
app development, whose cumulative experience totalled well over 100 years of security
work. The early analysis of the interviews [191] found a wide range of difference between
interviewees, and concluded that there was little consensus in the industry. Deeper
analysis of the same interviews [192] then identified that the most important and
successful secure development techniques share a quality called ‘dialectic,’ meaning
learning by friendly challenging. Based on this observation, the analysis then highlighted
a range of ‘assurance techniques’ used within industry to find security issues using
dialectic.

The next step was to find ways to introduce such techniques to development teams who
were not yet using them. None of the techniques, nor the dialectic concept, appeared
specific to mobile app development. Indeed, though the previous study’s interviewees
had been chosen for their experience with app security, in discussing the questions most
had cited experience with a far wider range of software domains. The author therefore
conducted a second interview survey to find ways to induce teams to adopt assurance
techniques, extending the scope to cover professional software development in general.

The research question for this next step, therefore, was:

RQ 2 What interventions can change the environment for members of the development
team to achieve good security, considering cost-efficiency, motivational factors,
choice of tools, supporting processes, culture, awareness, training and skills?

The author accordingly interviewed sixteen experts in secure software development,
asking them about these topics. These specialists ranged from senior experts in the major
multinational online service providers to solo consultants.

The analysis of those interviews identified a consistent perception of the developer as an
active agent in their own right, whose decisions could be influenced by security experts
but not controlled by them. More specifically, it identified six assurance techniques
recommended by the experts, and a further two techniques used by the experts to help
introduce them to development teams.

This chapter describes the survey and analysis in detail.

Chapter 4: Expert Survey

Charles Weir - October 2020 61

4.2 Approach
Section 3.2 explains the choice of analysis method: Grounded Theory. The method is
described in detail in Section 3.3.

4.2.1 Research Sub-questions
The wide scope of the question

RQ 2 What interventions can change the environment for members of the development
team to achieve good security, considering cost-efficiency, motivational factors,
choice of tools, supporting processes, culture, awareness, training and skills?

led to a need for a more specific focus. Accordingly, in the analysis the author focussed
on two further questions, one addressing the approach to creating and introducing
interventions:

RQ 2.1 What approach to interaction with software development teams leads to the best
results in encouraging secure development?

And one addressing the practical aspects:

RQ 2.2 What specific intervention techniques do specialists consider most cost-effective
in helping developers improve security and privacy in their code?

4.2.2 Research Participants
Interviewees were chosen opportunistically; the author’s personal connections in industry
provided introductions to a number of successful, and mostly senior, practitioners with
considerable experience of helping teams achieve software security. Table 6 shows the
interviewees, with an indication of organisation size: Solo for consultants working with
a variety of organisations, Medium for organisations between 10 and 1000 people, and
Large for larger and government ones; also, a description of the interviewee’s main day-
to-day role. Each interview was with a different organisation, other than P14/P15; and
P12/P16 who were interviewed together. Most are based in the UK other than P10, P13
based in Germany, and P5 in the USA.

Each expert worked with a different set of software development teams. The table also
gives a subjective indication of the ‘secure software capability maturity’ [90] of those
teams, based on the author’s observations during the workshops: an indication of how
expert we might regard the teams involved at delivering secure software, and therefore at
what level the expert was normally working:

Low Teams had little or no awareness or activity related to software security

Medium Teams were aware of and addressing security issues, typically including
some developers with good security knowledge.

High Teams are expert at software security, within an organisational culture that
assigns it a high priority.

Chapter 4: Expert Survey

62 Charles Weir - October 2020

Figure 11 visualises the same data, illustrating the range of participants. The horizontal
axis indicates their organisation size; the vertical axis the ‘secure software capability
maturity’.

To show further the range of participants involved, Figure 12 summarises the recruitment
process. Various people were approached; the horizontal axis indicates how long the
author had known the people approached. Some were interviewed directly, and these are
shown closest to the axis. Professional and personal contacts are shown above the axis,
and contacts encountered via academia—mostly encountered at industry-academic
workshops—below. In other cases, the contacts approached referred others, and the
resulting interviewees are shown further from the axis.

Table 6: Experts Interviewed

ID	 Org.	size	 Organisation	type	 Est	SCMM	 Main	Role	

P1	 Medium	 Outsourced	software	
developer	and	consultant	 High	 CEO	

P2	 Solo	 Security	consultant	 Low–Med		 Consultant	
P3	 Large	 Security	and	military	supplier	 High	 Team	leader	

P4	 Large	 Research	organisation	 Medium	 Research	and	
support	

P5	 Large	 Operating	system	supplier	 High	 Security	team	
leader	

P6	 Large	 Security	and	military	supplier	 High	 Security	expert	

P7	 Medium	 Software	security	tool	
supplier	 Medium	 CEO	

P8	 Large	 Telecommunications	provider	 Medium	 Security	expert	
P9	 Solo	 Security	consultant	 High	 Consultant	
P10	 Large	 Software	package	supplier	 High	 Security	expert	

P11	 Medium	 Software	security	service	
supplier	 Low-Med	 Training	and	

consultancy	
P12,	
P16		 Medium	 Telecoms	service	provider	 High	 Security	expert,	

Team	lead	

P13	 Large	 Research	organisation	 Low-High	 Research	and	consultant	

P14	 Medium	 Outsourced	software	
developer	 High	 Principal	

engineer	

P15	 Medium	 Outsourced	software	
developer	 High	 Security	expert	

Chapter 4: Expert Survey

Charles Weir - October 2020 63

Those chosen were experts in secure software development; many were therefore
predominantly developers first and security experts second. As Table 6 shows, only ten
of the fifteen had roles or company missions specifically related to security. Their
qualification as experts was based on their reputations, either directly from the
researchers’ knowledge; or as validated by the people who referred them.

4.2.3 Interview Questions
We consulted the interviewees as experts, rather than analysed them as subjects. Our
questions aimed to draw out what they themselves had found most effective, and what
they had seen to be most effective in other teams. Figure 13 shows the main questions we
used. These were generated with an initial ideation session, adding further open questions
based on the Appreciative Inquiry (Section 3.3.5), and detailed sub-questions based on
findings in the author’s earlier interviews of App Security Software Specialists [183].

In the following sections, quotations from the interviewees are in italics. Quotations are
edited to protect confidentiality and indicate context: square brackets show additions and
replacements; ellipses show removals.

Figure 11: Organisation Size and Security Capability

Small

High

P2

Medium

Low
Large GovernmentMedium

P1 P5

P4

P10

P11

P12

P9

P7

P6
P3

P8

P15
P14

P16

P13

Se
cu

rit
y

 M
at

ur
ity

Figure 12: Recruitment Methods for Expert Survey

Profess-
ional P2

Academic
P1

P5P4
P10

P11

P12

P9

P7

P6
P3

P8

P15
P14

P16

P13

1990 2000 2010 Now

Referral
by
professional

Referral
by
academic

Chapter 4: Expert Survey

64 Charles Weir - October 2020

Introduction	–	establish	context	

• What	is	your	current	role,	and	what	do	you	find	yourself	doing	day-to-day?	
Tell	me	about	a	typical	day	at	work?	

• Briefly,	how	did	you	first	get	involved	with	secure	software	development?	

Exploration	

• What’s	your	interest	in	security?	What	do	you	do	about	it,	and	how	do	you	
deal	with	it	day-to-day?	

• What	do	you	want	to	achieve	when	you’re	helping	a	team	improve	software	
security?	How	do	you	define	and	measure	success?	

• What	is	the	most	successful	intervention	technique	you’ve	found?	Where	do	
you	concentrate	your	efforts?	

• Can	you	think	of	a	particular	triumph	in	your	work	–	where	you’ve	worked	
with	a	team	that	has	improved	their	security?	How	did	you	achieve	that?	

• Have	any	of	your	teams	used	code	checking	tools?	How	happy	were	you	with	
their	effectiveness	at	finding	problems;	and	their	ease	of	use?	

• What	do	you	find	effective	as	motivation	for	secure	development?		
• How	 do	 you	 frighten	 developers	 into	 security,	 or	 emphasise	 the	 positive	

aspects?	
• To	what	extent	are	laws	and	standards	helpful	in	getting	teams	to	be	effective	

at	software	security?	How	do	you	find	out	about	them	and	keep	up	to	date?		

• When	new	people	join	an	existing	team,	how	do	you	motivate	them	and	how	
do	 they	 learn	 what’s	 required?	 Do	 you	 encourage	 double	 checking	 of	
contributions	from	new	people	or	treat	them	'as	usual'?	

• What	are	the	best	ways	you’ve	found	to	get	teams	to	tackle	specific	things:		
• Security	coordination	with	other	teams;		
• Reviews	and	penetration	testing;		
• Designing	to	get	feedback	from	the	users?	
• What	else?	

• Have	 you	 had	 a	 nightmare	 scenario?	 Or	 consider	 this	 nightmare	 scenario.	
You’re	working	with	a	team	that’s	just	learned	they	have	a	security	flaw	in	a	
website	that’s	very	heavily	used.	Have	you	even	had	a	situation	like	that	(no	
details	required)?	What	did	or	would	you	do	to	help	the	team	tackle	it?	

Vision	

Let’s	imaging	we’re	a	few	years	in	the	future,	and	the	problem	of	getting	teams	up	to	
speed	 with	 app	 security	 has	 been	 licked;	 it’s	 now	 a	 part	 of	 everyday	 software	
development	life.	How	was	it	done?	What	were	the	first	small	steps?	

Clarification	(as	appropriate)	

• And	how	did	you	achieve	that?		
• Oh	I	see.	Could	you	give	an	example?	

	

Figure 13: Expert Survey Questions

Chapter 4: Expert Survey

Charles Weir - October 2020 65

4.3 Results: Active Developer Model
Section 3.3 describes the analysis approach. The audio of all the interviews was recorded
transcribed, and coded by the author using the NVivo tool [137].

The 12 interviews generated 15 hours of audio. The final code book had 14 top-level
categories and a total of 409 codes and categories, applied to 2977 references in total.

In line with the tenets of Grounded Theory, the researchers’ primary aim was to find a
‘Core Category’, a concept that covered the widest possible scope of the points raised by
the interviewees. This Core Category then formed a basis from which to construct theory
and to view the practical findings from the research.

In the analysis, the common Core Category found was what we termed the ‘Active
Developer’ model, where developers themselves are the agents driving security adoption.
Figure 14 and Figure 15 illustrate the difference between the Active Developer model and
the model implied by traditional security literature. In traditional literature, the role of the
intervener is to tell the developers what to do, and to provide the techniques and tools that
the developers are required to use. In the Active Developer model, the role of the
intervener is to sensitise the developers to the implications of their security needs; they
then choose for themselves which tools and techniques best work for their situation.

4.3.1 Description of the Active Developer Model
One interviewee described the difference between the Active Developer Model and the
model implied in previous security literature as follows:

It’s not just about educating the developers, well, I guess it was, but we had
to get the developers on side, the developers had to understand why we were
doing this, as well as what it was that we needed them to do, so it was a kind
of two pronged thing. (P2)

Others simply talked in terms of security motivation as a fundamental requirement.

People need to be motivated. As a unit you are motivated; as an individual
you are motivated. (P4)

They were clear that even those with significant power in the organisation still have to
work by persuasion, not coercion. For example, even though P8 is a Head of Security for
a large multinational company, he said:

So, working with Dev Teams, I think the important thing, is to get them to
buy into the approach and to understand the value of what you are asking
them to deliver. ... You can’t go in and say, ‘you must do it this way’, it
would never work, they would just say p*** off, who’s this idiot, to come in
and tell us how to do our work. What you have got to do is go in there, and
you have to convince them that it is to their advantage to do it that way. So,
you have got to sell the benefits of any particular approach and persuade
the lot of them to follow the same common approach. (P8)

Some organisations have incorporated this change in thinking into the way they approach
software development altogether, giving their developers the power to arrange their own
processes to incorporate security in the ways they think best:

We have really changed in the last couple of years, in redesigning our
[Software Development Lifecycle] processes, based on how product groups

Chapter 4: Expert Survey

66 Charles Weir - October 2020

work. Rather than in the year 2000 when we launched the SDL: “this is the
process – everyone’s ‘thou shalt do’ irrelevant of how you work”, now we
say “here are the characteristics we want you to employ; how you build that
into your process is up to you”. (P5)

Figure	14:	Traditional	Model	from	Security	Literature	

Figure	15:	Active	Developer	Model	

Intervener

Tools and Techniques

Developers

Instructs

Chooses

Fo
rce

d to
 use

Intervener

Tools and Techniques

Developers

Sensitises
Provides

Chapter 4: Expert Survey

Charles Weir - October 2020 67

However, not all of the interviewees felt that motivation was the primary problem; one
felt that skills were more important.

I don’t think the main problem is lack of motivation, I think it is lack of
skills. And I think most people want to do a good job, and want to write
secure code. (P1)

But all agreed that motivation to do security was essential.

It is part of the motivation to be aware that real actual harms can follow,
when people don’t get this stuff right. (P1)

All of the interviewees, in one way or another, phrased their discussion and interventions
in terms of the developer as the agent making decisions, and the intervener as persuader.

You need to have the good arguments to convince people to work on
[security] ... – the motivation aspect. (P10)

They therefore evaluate their interventions’ success in the extent to which the developers
themselves changed.

The rest they did all themselves, I would call that a triumph. (P10)

4.3.2 Active Developer Model and Interventions
The Active Developer model helps to explain which interventions will be most effective.
The most helpful interventions are not those that identify the most security defects, but
rather, those that have most impact in persuading developers of the need to deal with
security issues and the possibility of their doing so.

For example, in talking about automated code review tools, their primary importance is
their effect in motivating developers.

Because, in the end, this code scanning tool is not fixing any bugs on its
own. It is, hopefully, motivating the developer to fix them. But if that
motivation is not working, then the tool is also not effective. (P13)

Moreover, usually the intervener gets only one initial shot at this persuasion, and therefore
the choice of interventions is vital; most valuable are interventions like Threat Modelling
that establish a positive relationship for future work.

Yes, I mentioned beforehand, if you want to motivate people in a cross-
development team environment, you cannot come by two or three times for
the same topic to try to elaborate on that, to describe it to them. ... We were
talking about threat modelling as one concept, the Microsoft conception, of
which I am a big fan of, which not only this kind of check mark, or checklist
that you have to go through, but it allows you a more interactive base, and
by that, having a better relationship with the development team. (P10)

It follows that an important attribute for successful interventions is:

Sensitisation: Helps sensitise developers to security concerns

A second implication of the Active Developer model is that developers have the choice
to accept or reject interventions individually or as a team, and the default will be to reject:

The technical inertia is such that doing anything new or radical is seen as
risky... And therefore the default choice in those organisations is do the

Chapter 4: Expert Survey

68 Charles Weir - October 2020

same as last time, because that won’t get me fired, if I’m the project
manager or technical authority. (P15)

Therefore, the developers must see the interventions as worthwhile in themselves to
achieve the goal of security: the interventions must be sufficiently easy to introduce, yet
deliver significant impact in terms or teaching or helping with security.

Unless you have a way of getting people to use the Thing, and make it the
easiest thing for them to use, and then wherever they are going to deploy is
already pretty set up, you need to have all of those steps, you can’t say ‘ this
one thing, solves that one problem’. (P9)

This can by represented as:

Support: Helps a developer efficiently to achieve the goal of security.

Finally, each intervention needs to be acceptable to the organisation. While there may be
other considerations, the primary consideration will be cost: financial cost and time cost
in development and management time.

There is always pressure on delivery, delivery, delivery, get that product
shipped on time, to a price. So, quite often, security will impact that delivery
timeline, and impact that delivery cost. (P8)

For every team, there is always a trade-off between cost and benefit for each intervention.

This is a strange tension here for our team, because we work for ... a FTSE
100 company, and vendors of static analysis tools might reasonably expect
that we have an infinite budget, but we are broken down into teams and
teams, and they are not selling us a site wide corporate enterprise license,
so when they come to me with a quote for 10 users for £30,000 a year – that
sounds quite a lot... because it is always a business case. (P3)

Thus, a third important consideration for the adoption of an intervention is:

Affordability: Has an acceptable cost in terms of effort and financial
impact.

4.4 Results: Techniques Used
Next, the Grounded Theory analysis of the interviews identified six software assurance
techniques as the most effective. These are as follows:

Threat Assessment Identifying and ranking the threats to computer software, a
component, or an IT system.

Stakeholder
Negotiation

Discussion and negotiation with stakeholders, such as product
managers, on security choices

Configuration Review A review of the way a system or its software has been
configured to see if this leads to known vulnerabilities, using
manual checking software versions or automated build review
scanners.

Automated Static
Analysis

The process of using an automated scanner on a web
application or network to identify vulnerabilities.

Chapter 4: Expert Survey

Charles Weir - October 2020 69

Source Code Review The manual examination of source code to discover faults that
were introduced during the software development process.

Penetration Testing A simulated attack on a component or system, carried out by
a security expert using similar techniques to that of a real-
world malicious attacker.

For consistency with other literature, the definitions above are taken from Such et al.
[164], except for Stakeholder Negotiation, which was not discussed in that paper; and
Automatic Static Analysis, since Such’s name for the technique, ‘Vulnerability Scan’,
proved confusing. Note that the author was not aware of that paper at the time of coding,
and the assurance technique names derived from the Grounded Theory analysis were
different. This set of effective interventions is considerably smaller than the full range of
industry assurance techniques, which include also Self-Assessment Forms, Architectural
Review, Automated Static Analysis, Formal Verification and seven others [164].

The contribution of the Grounded Theory analysis was not the identification of the
assurance techniques—they were already well known—but the identification of a
practical subset of the techniques suitable for cost-effective use in development teams,
and the justification of that subset in terms of the Active Developer model.

The Grounded Theory analysis also identified a further two techniques that the experts
used when intervening with development teams. These are to support the developers
themselves, and are as follows:

Incentivisation
Session

A presentation, discussion or workshop to help motivate
those involved for the need for security.

On-the-job Training Mentoring or informal workshops, used regularly with the
development team.

4.4.1 Technique Names Used in this Thesis
A complication in discussing Developer Centred Security is that there is no standard
taxonomy of Assurance Techniques. As far as possible this thesis uses the names defined
from Such et al. [164], but those were taken from the Security Expert domain. They are
not consistently used there, nor are they necessarily the ones that software development
teams would use; indeed, the author found the need to use different names in talking to
different groups.

Appendix C shows a table of all 14 different Assurance Techniques mentioned in this
thesis, along with the names for and references to each in the different phases of the
research. So, for example, from the Grounded Theory Analysis of the expert surveys
discussed in the previous section, we identified a technique the experts called ‘Plugin
reviews’; we identified that it was the same as Such et al.’s ‘Configuration Review’, and
used that name in this chapter. The table also shows the names used in the research in
later chapters.

In some cases (Red Teaming for example) we identified that a technique was
insufficiently important to the developer community to justify being separate and we
described it along with another technique (Penetration Testing, in this case).

Chapter 4: Expert Survey

70 Charles Weir - October 2020

4.4.2 Expert Discussion of the Techniques
Table 7 shows the participants’ discussion of these techniques. The numbers indicate the
percentage of the words by each participant that were coded to each assurance technique:
the share of the discussion devoted to that technique within that interview. Cells are
highlighted based on their values. The most discussed techniques are on the left; less
discussed ones towards the right.

Sections 4.5 to 4.10 explore each assurance technique in detail, discussing the
implications for each. Each section discusses the context of the problem, and outlines
how the technique solves it, exploring how the interviewees use the technique, evidencing
the discussion with quotations from interview participants

4.5 Technique: Threat Assessment
Threat Assessment is the activity of identifying and ranking the threats to computer
software, a software component, or an IT system as a whole [164].

4.5.1 Context
Any system can be broken with sufficient determination, ingenuity, and resources.

You can’t defend against an attacker who has unlimited resources, you
can’t do it. Not for long. (P8)

As a result, secure development is not a matter of making a completely secure system.
Instead, it becomes a question of which defences to implement: where one should spend
the time and effort defending the system to deter the largest and most damaging potential
exploits. Making those choices requires an understanding of the potential attackers:

But, from the vulnerability side, it is all about assessing how we are. (P16)

You need developers to … understand how the attackers brain works, what
is the methodology, the way I know how to do that is to make them do the
steps, make them ask the questions (P11).

4.5.2 Solution
To address this, security experts use ‘Threat Modelling’ techniques: identifying the
causes or motives and possible scenarios for a full range of threats to the systems in
question.

Your answer to any kind of security question anywhere should almost
always start with a threat model. (P9)

Several interviewees indicated that developers must drive the threat modelling process:

You need developers to do threat models, but you need developers to
understand how the attackers brain works, what is the methodology, the way
I know how to do that is to make them do the steps, make them ask the
questions. (P11)

Chapter 4: Expert Survey

Charles Weir - October 2020 71

4.5.3 Execution and Counterparties
The counterparties discussed for Threat Assessment included other developers:

Threat modelling: what I see as the big benefit here is, is that it is not that
you are coming up with a list of issues that product of the team has, it is

Table 7: Interviewee Discussion of Assurance Techniques

ID

Ro
le

O
rg

an
is

at
io

n

A
ut

om
at

ed

St
at

ic
 A

na
ly

si
s

Pe
ne

tra
tio

n
Te

st
in

g
C

od
e

R
ev

ie
w

O
n-

th
e-

j o
b

Tr
ai

ni
ng

In

ce
nt

iv
is

at
io

n
Se

ss
io

n
Pr

od
uc

t
N

eg
ot

ia
tio

n
Th

re
at

A

ss
es

sm
en

t
C

on
fig

ur
at

io
n

R
ev

ie
w

P1 CEO Outsourced
software
developers

4 23 7 2 3

6

P2 Consultant Security
consultancy

7

2 2 7

2

P3 Team
leader

Security and
military
supplier

14 2 13 10

1

P4 Researcher Research
organisation

4 4

4

2

P5 Security
team leader

Operating
System
Supplier

7 5 3 7 8 5

2

P6 Security
expert

Security and
military
supplier

2 4 4 1 1

P7 CEO Software
security tool
supplier

33

2

4

2

P8 Security
expert

Telecoms
provider

12 1 1

3

2

P9 Consultant Security
consultancy

5 6 1 1 3 3 2 3

P10 Security
expert

Software
package
supplier

7

1 8 4

4 1

P11 Trainer
and
consultant

Software
security
service
supplier

17 8 5 8 8 2 2

P12 Security
team lead

Telecoms
service
provider

4 3 5 4 4 8 1

P13 Researcher Research
organisation

12

6

6 2 6

P14 Principal
engineer

Outsourced
software
developers

8 2 2

P15 Security
team
manager

Outsourced
software
developers

25

20 2

2

Chapter 4: Expert Survey

72 Charles Weir - October 2020

more putting the team into the perspective, to think about the functionality
from a different aspect, from a different point of view, that that brings up a
list of issues, no doubt about that, but it also fosters the understanding to
see the coding from a different side, to also to think about it when you
create code: what else can there be? (P10)

Some experts emphasised the importance of including more senior stakeholders:

If [the developers] don’t know what a threat model is, then tell them what a
threat model is, and the simplest explanation in the world is ‘who is going to
attack you, and where is the gold?’ ‘Where’s the gold’ answers need to
come from managers, and company owners. Not from developers because
their answers will be totally wrong. And actually that is a big learning that
you can give to any company when you go in. Whatever the CEO’s threat
model is, explain it to all of the devs and go ‘if you don’t know what the
worst nightmare is for your CEO, then how can you be expected not to make
that cock up’ (P9)

For developers more experienced in secure development, threat modelling can become
part of normal requirements gathering, and no longer be considered an explicit separate
process.

We did requirements engineering based upon the work of Michael Jackson's
Problem Frames model, and as part of that you sit there and you do your
security engineering, you look at assets and threats and risks, and all of
that. And you decide what you are trying to protect, and how much we need
to spend to protect it (P15)

4.6 Technique: Stakeholder Negotiation
Stakeholder Negotiation is the activity of discussion and negotiation with stakeholders,
such as product managers, on security choices.

4.6.1 Context
Merely identifying the possible attackers and exploits does not itself deliver software
security. The need is to prevent them from causing damage to users, stakeholders or
others.

Given the Threat Assessment, a development team can take the list of possible attacks
and work out possible mitigations for each. These mitigations will each have costs in
development time, commitment, finance, and sometimes usability. The team can estimate
financial and other costs for each. How, though, do they make the decision which to
implement?

The decision of what aspects of security to implement is a commercial one. Implied in
every decision about software security is a trade-off of the cost of the security against the
benefit received. Every security enhancement needs to be weighed against other uses of
the investment—financial, time, usability—required.

4.6.2 Solution
The solution is for development teams and security experts to express risk and costs to
stakeholders (project managers, senior management, customers) in terms they can

Chapter 4: Expert Survey

Charles Weir - October 2020 73

understand and use to question about security concerns against other organisation and
project needs.

[If] it looked like there were some problems …, then they would mark it like
an orange, and say to the customer :'what is your risk appetite?(P9)

4.6.3 Execution
The primary stakeholders are those who prioritise development tasks, such as product
managers. Evaluating and expressing the threat in business terms requires discussion and
experience, so other Team Members and Security Experts are also important:

The teams take a risk management approach, full stop. For every risk, we
try and weight it on two axis – one is the severity, if it happens. So, ignore
the likelihood, how bad is it if it happens? And the other is the likelihood,
how likely is it to happen… so the project teams will plan their work, and
come up with an end date, and the project manager will make sure that they
add enough capacity to the project for the weighted risks to happen. (P14)

Many of our interviewees made the point that ‘security is not an absolute,’ but that
security is what the users and stakeholders need for a particular situation at a particular
time. There are techniques available to give objective assessment of security risks, such
as work by ben Othmane et al. [127].

The stakeholders will be making cost benefit trade-offs comparing various business risks.
Given that each mitigation now has a cost and benefit, the decision on whether to do it
becomes part of standard project management process. It is outside the scope of this
technique – and indeed of the topic of software security – to explore how to make these
decisions in general; the balancing of risk cost and reward is a well-understood aspect of
business life.

And that's what managers do all the time, they make common sense
decisions – they refer to it as common sense, but they make risk decisions:
that is the way security look at it. The way managers look at it, they make
common sense decisions all the time … and that is their job, and they
manage time, and they manage resources, and they know there is a trade off
with all of these things. (P9)

4.7 Technique: Configuration Review
Configuration Review is a review of the way a system or its software has been configured
to see if this leads to known vulnerabilities, using manual checking software versions or
automated build review scanners [164].

4.7.1 Context
Most software development reuses code developed by others, whether purchased or
obtained ‘open source’. In this section, such reused code is called ‘components’, and
includes frameworks and toolchains.

Chapter 4: Expert Survey

74 Charles Weir - October 2020

Using an insecure component automatically makes a developed system insecure,
regardless of the quality of the code developed by the team:

WordPress plug-ins are an enormous liability. Anyone can write one, most
of them are rubbish. Anyone can get them put up on the plug-in directly,
which gives them this air of authenticity, and quality that they don’t deserve,
frankly. (P1)

So, a ‘low hanging fruit’ for development is to use only components that are well written
and securely implemented. This is non-trivial, given the wide range of components
available.

4.7.2 Solution
Configuration Review is the activity of reviewing the codebase to evaluate the
components used for security: using public repositories of security vulnerabilities to
assess well-known components; avoiding little-known components where possible; and
using Source Code Review and Penetration Testing to evaluate such components if they
must be used.

4.7.3 Execution and Counterparties
For some development systems there are corresponding web sites with security reviews
of plug-ins; cross referencing with these sites is a powerful security technique. This may
use automated analysis tools:

[Our tool chain] also queries Wpvulndb for the plug-in that you are
expecting and tells you if there have been any published vulnerabilities in it.
(P1)

Where such sites are unavailable, or for new plug-ins, there is value to Source Code
Review (Section 4.8) to establish the likely security attributes of a given plug-in. This
does however have a significant cost to development teams since it takes effort, however
much automation may be involved, and restricts the plug-ins that developers can use.

And so that is one of the things you end up sitting down with developers
going “I’m sorry, but I know this is actually going to slow you down”. And
we are desperately normally trying to avoid that, I’m trying to make your
lives as easy as possible. … But you have to say “well, no, you can’t just
add [components] – you have to review them. You don’t have to do the most
detailed review in the world, but if you think it looks worrying, then … don’t
put it in your code”. (P9)

A second issue is that, since plug-ins are widely shared, any weakness in a plug-in
becomes known to attackers, and therefore it is important to keep plug-ins upgraded to
the latest versions in which defects have been corrected.

We keep track of all the patches and everything for all our systems. (P7)

Since Penetration Testing tests a whole system, it will also find vulnerabilities in
components, so testing is another way to assess components:

[When Penetration Testing] you’ll find the OWASP Top 10 in one
[component] alone! (P9)

Chapter 4: Expert Survey

Charles Weir - October 2020 75

4.8 Technique: Source Code Review
Source Code Review is the manual examination of source code to discover faults that
may have been introduced during the software development process [164]. Note that
throughout this Thesis we use the term ‘Source Code Review’ to refer to review for
security and privacy issues, rather than more general code review.

4.8.1 Context
It is notoriously difficult to spot one’s own errors. This is especially true when the errors
are faults in complex reasoning or are due to misunderstandings. Thus, a programmer
working solo is likely to create avoidable security problems, just because they can
naturally have only one point of view.

So, it is very easy when you are trying to deliver something yourself, as a
developer, to pass over the bit that you are not doing [188]

This problem extends to programming teams. A team will always suffer to some extent
from ‘groupthink;’ the need to generate a shared understanding brings with it the danger
that that understanding may include misunderstandings and blind spots. This is
particularly important with software security, since such blind spots often lead to
vulnerabilities in the developed software.

4.8.2 Solution
In Source Code Review, development teams provide a counterpart who reviews the
security and privacy aspect of assumptions, decisions, and code. Several interviewees
stressed the importance of this questioning process for security reviews:

What is our most successful technique for secure software? In terms of what
I have seen, certainly talking amongst the developers, the code reviews have
been very useful. (P16)

I would say, without a doubt, [our most effective technique for getting teams
more secure] is code review. This affects everything we do, and our newest
grads understand this from the very first day they join our team. (P3)

4.8.3 Execution and Counterparties
The reviewer is typically another developer from the same team.

And that is something that is a process within the team, and the way that we
encourage that – first of all, all the teams I have worked with, do some sort
of at least cursory code reviews. So somebody will look at the code. (P11)

If a Security Expert is available, however, they can often provide more security-relevant
questioning than development team members:

[We have] ‘software pen testing,’ where you have some Subject Matter
Experts who take a piece of code and review that in detail, and work with
the developers in tandem, looking at the code and saying, “we think this is
really high risk, we really want to look at this.” And then somebody goes
through that code with the mindset of “how do I exploit the code” (P5)

Chapter 4: Expert Survey

76 Charles Weir - October 2020

Other approaches to Source Code Review include providing dialectic questioning to a
developer via pair programming, where the code is written by two developers sharing one
computer:

We have [security reviewed] a couple of companies that already use
concepts like pair programming and so on. (P13)

And enforcing an informal check of code before it is released:

Code review can [just] mean that every bit of code that is committed is
looked at by somebody else (P11).

The heavyweight approach is a formal review process, with separate review meetings
delivering lists of defects for a developer to fix.

It is in the culture. We do reviews; we always have to do reviews. We set
things up – and it is not regarded as a second class. (P6)

4.9 Technique: Automated Static Analysis
Automated Static Analysis is the process of using an automated scanner on an application
or network to identify vulnerabilities [164].

4.9.1 Context
It is a poor use of expensive resources to find problems that are cheap to find in other
ways. Source Code Review, Configuration Review and Penetration Testing are all
expensive in financial or human effort:

[A pen test] is quite expensive. We don't do cheap ones. [My company’s]
pen test will be upwards of £8 grand or so. (P1)

In particular in small teams, … you can’t spend the additional effort in
doing reviews. (P13)

Indeed Such et al.’s survey of Assurance Technique costs—cheap, moderate or
expensive—for these three techniques, taking the modal choice, are that Source Code
Review and Penetration Testing are expensive; Configuration Review is moderate [164].

4.9.2 Solution
Automated Static Analysis uses automated tools to look for possible security flaws in the
written code. Tools to do this are sometimes called ‘lint’ checkers, after a UNIX tool that
does extra checking for C code:

There are many tools that are for looking at things that could be helpful in
[checking code]. There are Linters, there are all sorts of things (P1)

Such et al.’s results suggest that Automated Static Analysis is cheap [164]. Indeed,
automated tools can be used as an extension to the compilation process of the code, and
many interviewees saw them as valuable in automating the removal of certain classes of
security bugs:

We use excellent tooling from the Alassian stack, the Crucible Tool … We
do a lot of static analysis. We review for security, we certainly do, but the

Chapter 4: Expert Survey

Charles Weir - October 2020 77

point is, is that we will try to automate the removal of whole classes of
problem from that. (P3)

4.9.3 Execution
There are now many such tools, some produced by commercial companies, supporting
different languages and purposes. They work similarly to compilers, and generally use
analysis techniques developed for compilers. Since codebases vary enormously in their
style, requirements, and ways of using code, such tools often require significant work to
configure or rebuild:

Certain tools are very good with custom rules, they are very easy to tweak
to try the custom rules. If someone is doing something different from a web
application, I contend that they need to find a static analysis tool where they
can write the rules easily, because they are not going to have cross site
scripting, they are not going to have the standard thing that the tool looks
for. (P11)

Such tools typically generate large numbers of ‘false positive’ warnings. So, developers
need to use them as questions (‘is this piece of code OK’) rather than as notifications of
changes to be made. This is particularly relevant when examining components (see
Section 4.7):

We have a tool that we wrote … for checking … plug-ins, which is intended
to make code reviews of plug-ins more focused. It looks for things that are
indications of badness and you go and review that list of things, rather than
sitting down and reviewing the entire plug-in.(P1)

The benefit of using such tools is that they can reduce the time to find vulnerabilities:

I like them because I think there is no value – this is almost a philosophical
thing – there is no value in a human being finding a vulnerability, if that
vulnerability can be found automatically in a second by a vulnerability tool.
(P11)

Some interviewees, however, had found the time cost of analysing the responses to be too
great:

If you mean static analysis type tools, the answer is no [we do not use
them]. Two teams I have worked with have used them. One gave up entirely,
because they looked at the amount of time that they were spending on it,
versus the reward that they were getting, and then looked at what happened
in the first pen test that they had, where they just got completely pwned.
(P9)

4.10 Technique: Penetration Testing
A Penetration Test is a simulated attack on a component or system, carried out by a
security expert using similar techniques to that of a real-world malicious attacker [164].

Chapter 4: Expert Survey

78 Charles Weir - October 2020

4.10.1 Context
All the assurance techniques discussed so far (Sections 4.5 to 4.9) need access to the
development team or source code. Yet the delivered system is what the attackers see and
where the privacy issues occur:

I like to do [external reviews to authorise projects to go live] on a White
Box basis (P8)

So, there are situations where none of the other assurance techniques will help.

4.10.2 Solution
In Penetration Testing an external ‘white hat’ security team simulates what an attacker
would do to attempt to gain access or disable the service. The team then feeds back any
‘successful’ exploits they have found to the development and operations teams:

[The most successful intervention technique we have found] comes down to
using security experts. We … have Penetration tests. (P5)

If the team have developed something new… and it is a significant change,
we might get it externally pen tested, if we think that we can’t test it
ourselves. (P12)

Many security specialists offer external Penetration Testing as an explicit service:

You sit down and ask what their worst nightmare is, their second worst
nightmare, and you deliver that in as many ways as possible, and anything
else you think is interesting, that you can do in the time period, and then the
really important bit is the non-sexy end of that, which is a big long detailed
report… The two sections that people care about is the executive summary
which is one page and a non -technical person can read the entire executive
summary, it does not contain anything technical, ‘I can do the following
things’ It doesn't say how I’ve done it. (P9)

4.10.3 Execution
Essential for this assurance technique is a Penetration Test Expert. Few developers have
more than basic skills at Penetration Testing, so it would be unusual for a development
team member to take the role. Instead, the role of developers is to take the results of the
Penetration Test and use them to plan future security enhancements:

Normally the way the report would be dealt with, we would sit down in a
sprint planning meeting and we would go through the report: us, the client,
sometimes the tester, … and we would discuss the findings and produce
work that would be added to the next sprint to address what had been found.
(P1)

Some interviewees have success extending the Penetration Testing to involve direct
discussion with the developers:

So, the idea is the penetration tester is testing the web application, and the
developer is sitting with the penetration tester. That is very effective. … I do
not claim to be able to find all the vulnerabilities in an application … but if
you are sitting with a developer they are part of the process and they tell
you ‘ah, you know that request you have just intercepted in Burp: I’ll

Chapter 4: Expert Survey

Charles Weir - October 2020 79

change it to that!’ And you find out that you have completely broken the
authentication and you wouldn’t have found that on your own, because you
really need to have the knowledge that the developer has about the
application. … I would say it is also much quicker to do a pen test with a
developer who spends the whole time with you. (P11)

4.11 Technique: Incentivisation Session
Lastly, we turn to the two further techniques used by the experts interviewed in their
intervention work. First, an Incentivisation Session, which is a presentation, discussion
or workshop to help motivate those involved for the need for security.

4.11.1 Context
Given that a large number of developers have no current interest in security [200], it is
vital that at least one intervention generates such interest. The Active Developer Model
makes it clear that without such interest, developers will avoid security-improving
activities.

4.11.2 Solution
Thus, most of the interviewees discussed a form of presentation or workshop to help
motivate those involved for the need for security:

Everyone who joins [this company] gets a security talk, when they are a
developer that security talk is longer. And it includes examples of things that
have gone wrong and why, and how badly these things can go wrong, and
how easy it is to screw it up, and some pointers on things to read about, to
learn about. (P1)

Some provide it as a scheduled training course for new employees:

I get an email every week, and it tells me how many new starters there are,
so I know, okay, yeah, there is about 4 or 5, I’ll do an induction. (P12)

Others make it a one-to-one between the intervener and each developer:

The conversation can take anywhere between 40 mins to several hours
depending on who the person is, and you won’t know until you’ve had the
conversation. And the conversation is: you explain how to break into, how
an attacker would attack the systems, and what the various things you need
to be aware of, are. (P9)

Bigger companies may offer a security sensitisation course over several days for every
programmer:

So we run a very large scale education program … where we … tell
developers exactly what happens in the real world, how TalkTalk was
hacked, how Sony was hacked. And then we go in detail how we have been
attacked, and whether they were successful and how they were detected.
Then we also show them all the stuff that our red teams do – our internal
hackers – which really scares them! (P5)

Sometime the Incentivisation Session is based on a penetration test of the live systems;
the intervener carries out the penetration test, identifies a list of vulnerabilities in the

Chapter 4: Expert Survey

80 Charles Weir - October 2020

software, and uses those to convince the developers of the importance of improving their
security. From the point of view of an external security specialist this may also be an
opportunity to establish their credibility:

What is often a door-opener for us is, with these companies, we would do an
initial project where, for example, we pen test one of their existing products,
and show them “this is how you designed this product, and this is how you
went through this process, and this is what we found”. And ideally, we try to
then point out to them “this is where you might have detected it earlier, but
this is why it failed, why you failed to detect it”. And this is often an eye
opener for them, because then they see that a better process might be more
worthwhile. (P13)

4.11.3 Execution
However it may be carried out, the aim of the Incentivisation session is to motivate the
developers themselves to understand and prevent security problems. So many such
sessions include stories and warnings about the consequences of security failures:

I talk to my engineers about this, about look at what is happening in the
courts – look at the class actions, look at these things. It is a hard thing to
say, but you guys do not get away with saying “it’s nothing to do with me”
(P6)

Many covered a variety of different kinds of security problem, not limited to purely
technical ones. So, for example, some include discussions about how aspects of team
working may cause security problems:

So we give them that kind of perspective, it really brings it home: if you do
X, this is the result. If don’t work together as a team – if you don’t work with
your dependencies, this is what happens to you. (P5)

Conventional software security wisdom used to be to ‘scare developers into security’. We
wondered if this was actually the best approach, and asked our interviewees directly if
they did this. The consensus from our interviews was definitely not to leave them scared:

I must admit, we had [high-profile expert] to visit and he goes off on one of
his rants and scares the shit out of people, and they think “oh there is no
point then!” (P5)

Instead it is essential to leave developers knowing that the problem is solvable, and so
each session needs to show that solutions do exist for the problems they are introducing.
The Incentivisation Session works by highlighting problems and leaving possible
actionable solutions:

It needs to be positive. That is why the day is balanced. For every one of
these problems we show you in the commercial world and internally, we
absolutely have a way of mitigating it. And even if we know we can’t stop it,
we can certainly detect it, contain it and then exfiltrate those people. (P5)

Overall, the interviewees designed their sessions to convey a positive aspect to software
security: that it is an interesting and exciting topic, a valuable skill to learn, and that secure
implementations give value to their organisation and end users:

I try to emphasise the positive aspects: “This is exciting, this is interesting.”
Fear is probably the wrong word, but awareness is the right word. … The

Chapter 4: Expert Survey

Charles Weir - October 2020 81

awareness that someone can attack your application is definitely scary –
especially from the perspective of someone who owns the business – there is
nothing wrong with that, you shouldn’t try to scare them; you try to share
solutions to empower them. (P11)

All of the experts who discussed an Incentivisation Session emphasised this in one way
or another.

4.12 Technique: On-the-Job Training
Finally, the experts interviewed also made considerable use of different forms of On-the-
Job Training: mentoring or informal workshops, used regularly with the development
team.

4.12.1 Context
We had expected a good deal of formal training in the techniques required to provide
secure code; however only one interviewee (P11) provided this. More than formal
knowledge, developer need practical, contextual, reminders of the importance of security
issues and the ways of addressing them in their own work.

4.12.2 Solution
The experts used two approaches to On-the-Job Training: informal workshops and
mentoring.

The informal workshops are usually based on security learning from recent project work
or from external research, and take the form of presentations by one of the team or an
external expert:

[Our security specialist] will take the most interesting or most relevant
findings for the team out, and those go into a slide deck that we keep, and
that deck is used as part of a show and tell. That happens… a few times a
year. (P1)

A different and widely used form of intervention is mentoring of various kinds. This is
particularly valuable in that it supports a security-aware team culture:

I think it is an issue of team culture, where teams are usually led or
mentored by our more senior people who try and set the standard. And
teams will say ‘we are just not going to have any [security] bugs in this
system’. A team culture emerges. And that is always the right way to do it.
(P15)

4.12.3 Execution
Some organisations teach penetration and attacking techniques to developers: sometimes
as formal taught courses; sometimes through online resources. The emphasis is to show
the developers what kinds of weakness might be present, and also how to prevent such
weaknesses:

And, today, I was teaching software developers how to basically pen test an
application and exploit an authorisation issue. ... They know the technology

Chapter 4: Expert Survey

82 Charles Weir - October 2020

and they now understand it. They went back to their application and they
started to apply it: “maybe I can do this here”. (P11)

A few had used formal training in the past, and now use online resources instead, thereby
reducing cost and making the training easier to arrange:

I think training is obviously very effective, and we sometimes do specialised
training. ... So we had pen testers coming in, and I have got it so that we can
now do it ourselves, where we have got a VMWare image with all the
hacking tools on it, and vulnerable webpages, so they can play and see how
easy it is – and what issues they need to look for. (P12)

The Grounded Theory analysis identified three approaches to this. First is mentoring by
security experts, who are not themselves developers, but who work with the developers
to sensitise them to security issues and address those issues in practice:

So there is that side, and then there is a SME, Subject Matter Experts, side,
which we call our advisors. And these are people we actually plug into
different parts of the service teams, the engineering teams, and they work as
a security SME. And they are highly skilled security people. They are people
who couldn’t write a product, but they certainly know everything about
[specific security features], and how would you do that at scale, how would
you do the threat modelling. And they work as a team. (P5)

A second approach is to send a developer experienced in security to work with a less
experienced team. The experienced developer acts as a consultant to the team, and as a
team member helps to create ways of working that promote security:

We send people on site, and we embed them into other teams. The normal
outcome, and I can’t think of a situation where this hasn’t happened, is for
them to export our processes like it was the obvious thing to do – and I think
it is! And for that then to be taken up by customer [developer] teams. (P3)

Finally, where neither of the first two approaches is appropriate—or in addition to them—
there is the option of encouraging a ‘security champion’ from amongst the developers within
a team. This developer learns as much as possible about the subject, and then provides support
to others in the team on security matters:

One thing that we find works with software development teams is … Security
Champions – the idea is that one person in the team is more interested in
security – not responsible – but who is the ‘go to’ person in the team if there is
an issue in the team before they go to an external consultant. ... You need that
person in a team, you actually do. (P11)

4.13 Discussion
In response to:

RQ 2.1 What approach to interaction with software development teams leads to the best
results in encouraging secure development?

the Expert Survey established the ‘Active Developer Model’ theory, that developers must
drive the introduction of security improvements.

Chapter 4: Expert Survey

Charles Weir - October 2020 83

Encouragingly, we note that the ‘Motivating Jenny’ project (Section 2.2.6) came to a
similar conclusion of the need to raise developers’ security awareness, from their later
ethnographic work.

In response to:

RQ 2.2 What specific intervention techniques do specialists consider most cost-effective
in helping developers improve security and privacy in their code?

the Expert Survey established six key Assurance Techniques as the most recommended
by the experts for adoption by developers: Threat Assessment, Stakeholder Negotiation,
Configuration Review, Source Code Review, Automated Static Analysis, and Penetration
Testing. Plus, it established two further techniques used by the experts to encourage
developers to drive security: Incentivisation Session and On-the-Job Training.

4.13.1 Choosing Assurance Techniques
Table 8 summarises the Assurance Techniques discussed in Sections 4.5 to 4.10. It
highlights the ‘dialectic’ nature of each of the techniques (see Section 4.1), by showing
‘friendly counterparties’ involved with each one; such a counterparty may be a tool.
Interestingly, end users and operations staff were not mentioned in the context of any of
the Assurance Techniques.

We observe that this list of key Assurance Techniques is nevertheless a small subset of
the 20 techniques identified by Such et al. [164]: the explicit focus that the surveyed
experts placed on them is therefore important.

Based on Table 8 and the expert cost estimates from Such et al., we can further
characterise the assurance techniques in terms of two important practical considerations:
their cost and their need for security expertise. Figure 16 shows this characterisation,
using Such et al.’s modal estimate of cost for each technique, and assigning ‘cheap’ to
Product Negotiation, since it is incorporated into activities already carried out by a
development team. In this and the following figures, the Assurance Techniques are
coloured according to their type: blue for process techniques; orange for vulnerability
finding techniques.

Table 8: Security Assurance Techniques and Participants

M
em

be
rs

 o
f

D
ev

el
op

m
en

t
Te

am

St
ak

eh
ol

de
rs

, e
.g

.
Pr

od
uc

t M
an

ag
er

s

A
ut

om
at

ed
 C

od
e

A
na

ly
si

s T
oo

ls

Se
cu

rit
y

Ex
pe

rts

Pe
ne

tra
tio

n
Te

st

Ex
pe

rts

O
th

er

D
ev

el
op

m
en

t
Te

am
s

En
d

U
se

rs
 a

nd

O
pe

ra
tio

ns

Threat Assessment

Stakeholder
Negotiation*

Configuration Review

Source Code Review

Automated Static
Analysis

Penetration Test

Chapter 4: Expert Survey

84 Charles Weir - October 2020

Based on this, we deduce that the most promising Assurance Techniques are Threat
Assessment, Product Negotiation, Configuration Review and Automated Static Analysis;
and that teams with greater resources will benefit from adding Source Code Review and
Penetration Testing.

Interestingly, the choice of which tools to use for Configuration Review and Automatic
Static Analysis, and indeed for the other techniques, was rarely discussed by the experts.
We conclude that developers are already highly skilled at choosing between competing
tools and methods, and do not need explicit support for choosing security assurance tools.

4.13.2 Incorporating the Assurance Techniques into the Development
Cycle
The ordering of the assurance techniques in Section 4.4 is roughly chronological within
a development cycle. Figure 17 illustrates how they might be incorporated into an
iterative cycle. Threat Assessment and Product Negotiation affect what functionality is

Figure 17: Assurance Techniques in the Software Development

Cycle

Threat
Assessment

Configuration
Review

Automated
Static Analysis

Source Code
Review

Penetration
Testing

Product
Negotiation

Plan

Te
st

Code

Release

Figure 16: Interventions in Terms of Cost and Specialist Requirements

Threat
Assessment

Configuration
Review

Automated
Static Analysis

Source Code
Review

Penetration
Testing

Product
Negotiation

Cheap

Requires Security ExpertsTeam Only

Expensive

Chapter 4: Expert Survey

Charles Weir - October 2020 85

produced, so apply to the planning element; Configuration Review and Automated Static
Analysis can be automated into a product build; Source Code Review needs a candidate
complete implementation, so is typically done at the release stage; and Penetration
Testing applies to an installed system, so comes in the test phase.

4.13.3 Sensitisation, Support and Affordability
The Active Developer model implies that for an intervention to be effective the
development team must actively accept it, and therefore it must qualify in terms of
Sensitisation, Support and Affordability (Section 4.3.2). Figure 18 shows how each of the
identified Assurance Techniques qualifies, showing their effectiveness in providing
Sensitisation or Support on the horizontal axis, and their Affordability on the vertical one.

4.13.4 Research Validity
What measure of certainty can we offer for the theory, the Active Developer Model, and
for the assertion that the six Assurance Techniques and two further techniques highlighted
in the research do represent best practice in Developer Centred Security interventions?

Considering first Conclusion Validity, do the research data justify the conclusions?
Grounded Theory’s rigorous process of line-by-line coding, categorisation, and sorting
generates a theory that does reflect the interview data. The use of extensive quotations
ensures that this can be at least partially checked.

In terms of Construct Validity, does the Active Developer theory represent real-world
practice? Grounded Theory handles this primarily in terms of ‘theoretical saturation’,
reached when new interviews do not add substantially to the theory (Section 3.3.3). A
dozen interviews are often sufficient [77]. We believe we have reached saturation as
regards the Active Developer concept and the list of Assurance Techniques, in that further
interviews would be unlikely to modify the concept, or the list; obviously they would
produce more detail for the descriptions. There is also a risk of bias in the choice of
interviewees, and of questions. Examples might include selecting participants using only
one form or intervention or one interaction approach; or asking only about certain aspects
of their interventions. We addressed this bias with interviewees from a wide range of
industry roles, and completely open questions.

Figure 18: Sensitisation, Support and Affordability

Threat
Assessment

Configuration
Review

Automated
Static Analysis

Source Code
Review

Penetration
Testing

Product
Negotiation

Cheap

SupportSensitization

Expensive

Chapter 4: Expert Survey

86 Charles Weir - October 2020

In terms of External Validity, can the results be generalised to a wider scope? Grounded
Theory’s conclusions are always limited to the scope studied [33]. Specifically, the scope
in this case covered commercial companies, predominantly in the UK (Section 4.2), and
was limited to the views of security experts rather than software developers.

4.14 Conclusions
Combining the answers to the two research sub-questions discussed in section 4.13, leads
to an answer to the original research question:

RQ 2 What interventions can change the environment for members of the development
team to achieve good security, considering cost-efficiency, motivational factors,
choice of tools, supporting processes, culture, awareness, training and skills?

The Grounded Theory analysis in this chapter selected eight such interventions to achieve
good security. The primary motivating factor identified was the Active Developer Model:
that developers must drive the security improvements themselves (Section 4.3). The
training role of an intervener, therefore, must be to generate awareness with the
Incentivisation Session (Section 4.11), and to promote it within the team culture using
On-the-Job Training (Section 4.12).

Figure 17 shows how a supporting process fits Assurance Techniques into the
development cycle. The six Assurance Techniques were chosen for their cost-efficiency;
as Figure 16 shows the most cost efficient were Threat Assessment, Configuration Review
and Automatic Static Analysis, plus a new ‘Assurance Technique’, Stakeholder
Negotiation; with Code Review and Penetration Testing were more expensive (Section
4.13.1). The choice of tools is of relatively little importance compared with the decision
to use them. Similarly, the skills required are accessible if required, and achievable if the
motivation and culture are right (also Section 4.13.1).

4.14.1 Improvements on Existing Practice
Current practice in interventions is often based on challenges by the intervener based on
Penetration Testing (Section 2.2.4). Aside from the high cost [164], this approach proves
ineffective in the longer term (also Section 2.2.4). The findings of this chapter suggest a
quite different approach: sensitising developers to the importance of security so that they
drive the security improvements, then providing cost-effective tools to support them.

The specific techniques suggest a practical model for future interveners. An intervener
might carry out an Incentivisation Session to motivate security improvement, then carry
out a Threat Modelling session. This identifies the risks and benefits to the organisation
from security issues. This then justifies Product Negotiation, plus use of Configuration
Review and Automated Static Analysis, and in some cases the more expensive Code
Review and Penetration Testing. Meanwhile, the intervener uses On-the-Job Training to
keep the team actively considering software security. Figure 19 on page 87 illustrates this
model: the training items (in grey) are provided by the interveners; the process items (in
blue) and vulnerability finding items (in amber) are typically driven by the developers.

Chapter 4: Expert Survey

Charles Weir - October 2020 87

4.14.2 Next Steps
The findings in this chapter provide a basis for the creation of an intervention package to
help developers improve security. Specifically, we deduce that an intervention must:

• Motivate Active Developers to drive their own security improvements;
• Provide an Incentivisation Session to help do so;
• Encourage developers to adopt Threat Assessment, Stakeholder Negotiation,

Configuration Review, Source Code Review, Automated Static Analysis and
Penetration Testing; and

• Deliver continued On-the-Job Training.

Chapter 6 describes the creation of such a package.

Figure 19: A Practical Approach for Interveners

Threat
Modelling

Configuration
Review

Automated
Static

Analysis

Code Review

Penetration
Testing

Product
Negotiation

Justifies

M
ay justify

Pr
ov

id
es

 b
as

is
fo

r

Incentivis–
ation Session

Motivates

On-the-Job
Training

Leads to

Using Workshops to Improve Security in Software Development Teams

88 Charles Weir - October 2020

5 Developer Survey

To provide proof of need and a baseline of existing security practice in commercial
development teams required an online survey. To do this, the author collaborated with
researchers in the Ruhr University of Bochum, Leibnitz University of Hannover and
Paderborn University18.

We chose a specific set of software developers to investigate: Android application
developers. Our reasons for choosing these were twofold:

1. The research team has considerable experience in Android development security
research [3,126]

2. The Android ecosystem provides access to both developers and the software
developed, along with an indication of application usage.

The research question for the survey was the following19:

RQ 3 To what extent, and how, does a perceived need for security and privacy lead to
security-enhancing activities and interactions in an Android development team
and result in better software security?

Accordingly, we carried out an online survey of professional Android developers, asking
for details of their security practices and interactions. From statistical analysis of the 330
completed and accepted surveys we deduced, with 95% confidence20, that:

• No more than 22% of the developers of successful, maintained, Android apps have
regular access to security professionals;

• Although more than 71% have used at least one of the basic assurance techniques;
less than 49% use any regularly; and security updates for apps generally happen less

18 Specifically, as stated in the Declaration at the start of this thesis, Sascha Fahl instigated and mentored
the survey project, suggested Figure 20 and wrote the initial version of Section 5.1.2; Ben Hermann created
and ran the application analysis software package and wrote the initial version of Section 5.2.1; Christian
Stransky generated the lists of invitation email addresses, obtained the corresponding application binaries
and wrote the initial version of Section 5.1.5; Dominik Wermke created the initial Python Jupyter Notebook
analysis plus Figure 25, Figure 27, Figure 29, Figure 31, and Figure 35 in Sections 5.3.2 to 5.3.4..
19 RQ 3 was modified to include ‘how’ and ‘perceived’ following feedback on a submitted paper.
20Assuming the sample is representative of the wider population. See Section 5.3.1.

Chapter 5: Developer Survey

Charles Weir - October 2020 89

than once a year. Among the roughly 40% who work in teams, up to 64% may use at
least one assurance technique regularly.

• Less than 15% of them have made more than cosmetic changes as a result of the new
GDPR legislation.

We also found that:

• Android app developers’ use of assurance techniques is positively correlated with the
perceived need for security, the involvement of security experts or champions, and
the security expertise of the developers;

• The reported frequency of app security updates is positively correlated with the
perceived need for security, the security expertise of the developers, and the
developers’ use of assurance techniques.

A second phase investigated how these aspects of the development process were reflected
in objective app security outcomes. The research question for this phase was:

RQ 3.1: To what extent do the perceived need for security, the involvement of specialist
roles, and the use of assurance techniques in a development team lead to fewer security
defects?

We analysed the Android applications created by each developer and matched the
findings to the questionnaire results, concluding that:

• There was no correlation found between the perceived need for app security, nor the
use of assurance techniques, and the defect count of the resulting app; and

• Surprisingly, the involvement of security professionals and ‘security champions’ is
correlated with higher cryptographic API defect counts.

This chapter is structured as follows. Section 5.1 describes the survey design, participant
recruitment approach, analysis plan, survey trials and limitations; Section 5.2 describes
the same for the app binary analysis; Section 5.3 explores both the survey and app analysis
results; Section 5.4 explores the implications of these results; and Section 5.5 summarises
the main learning points and conclusions.

5.1 Survey Methodology
We conducted an online survey of Google Play Android developers in May 2019,
receiving 345 complete responses. Section 3.4 provides a detailed overview of the
methodology used. Figure 20 summarises the study procedure, the stages of which will
be unpacked in the following sections.

5.1.1 Ethics
We addressed the ethical issues discussed in Section 3.4.1 as follows. All the institutions’
Institutional Review Boards approved this study, including the use of publicly available
contact details for the survey invitations. With the invitation, we provided all participants
with a link to a web page that informed them about the study purpose, the data we
collected and stored, and an email address and phone number to contact the principal
investigators in case they had questions or concerns.

The use of data from non-participants (the Android applications created by the
developers) can also raise ethical issues; the approach in this survey was also approved
by the Institutional Review Boards.

Using Workshops to Improve Security in Software Development Teams

90 Charles Weir - October 2020

5.1.2 Survey Questionnaire Structure
We asked our respondents to answer questions about their Android application
development behaviour and context relevant for application security and privacy, and a
set of demographic questions. Although this might have led to self-reporting bias and
social desirability bias, we considered this approach the best practical approach to address
the research. We implemented the questionnaire in Qualtrics [138], and developed it using
an iterative process.

Appendix I contains the full list of questions. In summary, we asked respondents:

• Whether they worked in a team, and if so their role and the team size;
• The Android development environments they used;
• The number of recent releases for their most frequently updated app, and the

proportions of updates addressing new features, addressing library updates, and
addressing security or privacy issues;

• Their attitude to security and of privacy, both implicitly and for sales;
• Whether they receive support from security professionals or internal security

champions, and if so, the nature of that support;
• What events had led to recent changes in security;
• Which secure development practices they used, and to what extent;
• How long they had been programming, both generally and with Android;
• How many apps they had developed, and whether it was their primary job; and
• Demographic information about gender, language, and country of residence.

Definitions: In the questions, ‘recent’ was defined as the previous two years, and
‘security champion’ to be a non-expert who takes a particular interest in security [26].
We asked developers with more than one app to provide answers for the most frequently
updated one.

Figure 20: Developer Survey Study Procedure

Pretesting

Expert reviews=1
Face-to-face pilots=4
Google Play pilots=30

Full Survey

Invited=55000
Started=605
Dropped out=260
Completed=342
Valid=330

APK Downloads

Apps to download=605
Download failed=151
Download succeeded=454

APK Analysis

Started=454
Cognicrypt failed=0
FlowDroid failed=18
MalloDroid failed=82
Full results=358

Developer Questionnaire App Analysis

Chapter 5: Developer Survey

Charles Weir - October 2020 91

Secure Development Practices: The questions about secure development practices
asked specifically about five of the most frequently-used assurance techniques identified
in the Expert Survey (Section 4.4) as follows:

Threat
Assessment

Working as a team to identify actors and potential threats; following
this up with risk assessment and mitigation decisions.

Configuration
Review

Keeping components up to date using component security analysis
tools to the toolchain.

Automated Static
Analysis

Using code analysis tools to identify certain categories of security
vulnerability.

Code
Review

Having other programmers or security experts review code for
security problems.

Penetration
Testing

Having external specialist security testers identify flaws.

Question Wording: All the questions about security processes were worded as questions
of fact, rather than of future intentions as in some security surveys [51], to reduce the
impact of desirability biases.

Omissions: We considered asking about code analysis tools, since these are of particular
interest to researchers. However, static analysis is only one of the five assurance
techniques considered, so to be consistent we would need to investigate tools for the other
four techniques as well, which would have made the questionnaire unacceptably long
without contributing to answers for the research questions.

5.1.3 Survey Pretesting
Section 3.4.5 describes the pretesting done. The specific results from the two pre-tests
were as follows.

Face-to-face Testing: From the face-to-face testing, we modified the wording of two
questions and added one, to improve clarity. We also noted that responses from those who
had produced little-used apps were not interesting from a security viewpoint.
Accordingly, we modified our criteria for invitations to only invite developers of
‘successful’ and ‘maintained’ apps: ones that had received more than 100 downloads and
at least one update.

Pilot Survey: In the pilot surveys, 5000 were invited using the email in Appendix H,
producing 30 completed entries. The number of dropouts found in the pilot responses was
acceptable; since of those who completed the first page of questions, only 21% dropped
out later in the survey. We manually coded the changes respondents had made as a result
of GDPR, and provided the most frequent answers as ‘tick boxes’ in the final survey.

In addition, the pilot survey identified the following additional research questions to help
scope the problem of supporting developers:

RQ 3.2 What proportion of Android developers have access to security experts, and

RQ 3.3 To what extent do Android developers use assurance techniques?

Given that RQ 1 relates specifically to UK development teams, we specifically want also
to investigate the figures for developers in teams and for UK developers.

Using Workshops to Improve Security in Software Development Teams

92 Charles Weir - October 2020

5.1.4 Required Sample Size
Using Fowler’s method described in Section 3.4.6, we chose the sample size to get
between 50 and 100 in each group, which would give typical sampling errors on data
based on each subgroup between 4% and 15%: a sample size of 310. From the pilot survey
response rate, we calculated that this required us to send 55,000 invitations.

5.1.5 Recruitment
Only registered Google Play developers were invited. From January to February 2019 the
team crawled the details’ pages of 3,608,673 (2,087,829 free and 1,520,844 paid) Android
applications from those published in Google Play. For all apps, we stored their last update
time, name, developer data and download counts.

Overall, we identified 312,369 developer accounts that match the 100+ downloads and
update requirements in Google Play. The number of apps published by a single developer
account in that sample ranged from 1 to 3,302 with a median of 2. From these 312,369
developer accounts, we selected a random sample of 55,000, and the author used Qualtrics
to send a single invitation email to each to ask each to kindly to support the research
(Appendix H). Of the invited 55,000 participants, 605 started and 345 completed the
survey. Ten of the invited developers reached out via email. None complained about being
contacted; three asked to be removed from the mailing list; the remainder provided
various reasons for not completing the survey, including two who noted the security
questions and stated that their apps had no security aspects. 240 took the opportunity to
leave their email address in the survey questionnaire for us to send them the results of this
work.

5.1.6 Filtering Invalid Results
In psychological surveys, a common stratagem is to ask a question twice, once negated.
One can then filter out meaningless responses (or use them to calculate a “self-
consistency” score for the survey). Since the survey was asking facts rather than attitudes,
we concluded that this would be contrived and irritating to the respondents. Instead the
author looked at response times, experimented to find a minimum time that a participant
might be expected to take to complete the survey: 3 minutes. We then filtered out the few
(10) surveys that had taken less than that minimum time to complete.

5.1.7 Survey Statistical Analysis Plan
Four forms of statistical analysis were used:

1. Population analysis, to explore how well our sample corresponds to the larger
population;

2. Graphical analysis, to show the nature of the data;
3. Confidence limits for proportions in the wider population based on proportions in the

sample; and
4. Correlation analysis, to identify relationships between different data items.

The statistics scores and outline analysis methods were defined before the main survey
data collection, as required for research best practice (see Section 3.4.4). The analysis
used Python statistical packages, including Pandas, Statsmodels, and Seaborn, in Jupyter
Notebooks [97].

Chapter 5: Developer Survey

Charles Weir - October 2020 93

Linear Analysis for RQ 3: Addressing RQ 3 required scores based on each respondent’s
survey answers: some scores captured the “need for security and privacy” (the

independent, input, variables); others the “security-enhancing activities and interactions
in the development team” (the dependent, output, variables).

Figure 21 shows the processing to create these scores. The aim in each case was to create
an ordinal score that approximated to linear across the range of raw data, so a higher score
corresponds to more security (or more drivers towards security) and each increment
represents a similar semantic increase. As shown, the Requirements Score reflects the
security need as the arithmetic sum of the three Likert-style responses encoded as
integers; similarly, to explore the why, there are Developer Knowledge and Expertise
Support scores. The Security Update Frequency estimate was the product of the answers
to two questions; this had an exponential (Poisson) distribution, so to make it linear [10]
we used a transformation: log(𝑥! + 1) to create the Security Update Frequency Score.
See Appendix J for details.

The calculation of the Expertise Support Score is based on an assumption that direct
expert involvement is more effective than ‘security champions’; the Requirements Score
assumes that, for example, occasionally using two techniques is as effective as regularly
using one; and the Assurance Technique Score assumes that, say, considering four
techniques is as effective as consistently using one. Though reasonable as an approach,
none of these scores are linear or even provably ordinal [161]; we anticipated that
inconsistencies in the scoring would add to the statistical variance but not obscure overall
trends. See Section 5.3.6 for a post-hoc justification.

In statistics, the usual relationship to look for is a linear one. In line with previous research
in the field [51] we used the Pearson Correlation Coefficient (‘Pearson R’) calculation
[44] to establish whether pairs of values had a significant linear relationship; this test is
acceptable for Likert-style data [96,124].

Figure 21: Developer Survey Security Scores

0 no, 1 champion, 2
expert, 3 both

0

+

Coded: 0 not at all,
to 4 extremely

Requirements Score

Developer
Knowledge Score

0 none, 1 champion,
2 expert, 3 both

Expertise Support
Score

Developer
Security
Knowledgeability

Expert, Champion
in Team?

Reported App
Update Frequency

Reported %age
Security Updates

Log (updateFreq *
proportionSecurity)

Security Update
Frequency Score

+ Assurance Technique
Score

Coded: 0 none …
to 4 every build

Each Assurance
Technique use

Importance of
Security & Privacy

Coded: 0 not at all,
to 4 extremely

Using Workshops to Improve Security in Software Development Teams

94 Charles Weir - October 2020

In this analysis we treated the Security Update Frequency score as a dependent variable
(output); and the Requirements, Expertise Support, and Developer Knowledge scores as
independent variables (inputs)21. The use of Assurance Techniques is likely to be affected
by the latter three variables but may itself in turn affect the Security Update Frequency
and other security outcomes; in the analysis, therefore, we treated the Assurance
Technique score as an independent and as a dependent variable in different tests.

As discussed in Section 3.4.4, since the analysis constituted multiple tests on the same
data, we applied the Bonferroni correction [144], reducing the threshold for ‘significance’
accordingly to (5%)/5 = 1%. To validate the preconditions for the Pearson Correlation
Coefficient test [44], we then constructed x-y plots of all the pairs of variables that showed
significant correlation.

5.2 Application Analysis Methodology
In the second phase of the project, we downloaded and analysed the apps corresponding
to the survey responses. For analysis, we used a selection of state-of-the-art vulnerability
scanners. Each one focuses on a different problem category and produces a relatively low
number of false positives. We chose mature tools that are openly accessible to Android
developers.

5.2.1 Description of Analysis Tools
The tools covered three key areas: SSL Security, Cryptographic API Misuse, and Privacy
Leaks. We selected these areas because these cover a representative range from the
possible security and privacy vulnerabilities faced by application developers [128].

SSL Security: A key concern in the secure treatment of information is the correct use of
secure transport mechanisms (SSL, TLS) when connecting to remote systems. To capture
this aspect, we used two techniques. First, we used MalloDroid [56] to inspect the correct
use of certificate validation in the apps code. Second, we extracted any HTTPS URLs
from the constant pools of the classes contained in the app using the OPAL
framework [52] and checked the corresponding server configurations and certificates
using the command-line tools curl and openssl.

Cryptographic API Misuse: Many apps use cryptographic measures to improve data
security and privacy, and a key concern in the secure treatment of information is the
handling of cryptographic primitives (e.g., for persistence). We run CogniCrypt [100] to
capture this aspect. CogniCrypt uses static inter-procedural static program analysis to
detect misuses of the Java Cryptography API. The detected problems range from
improper configuration of algorithms (e.g., use of AES with ECB) to incorrect order of
calls to the API. As it is formulated as a static program analysis, CogniCrypt makes
conservative assumptions (over-approximations) on the control flow of the program,
which may produce false positive reports.

Privacy Leaks: To find possibly harmful data flow that can lead to privacy leaks, we
used FlowDroid [11]. This tool is designed to find information flow in Android apps
between defined information sources and information sinks. For example, the location
APIs are considered as sources of private information, and the text message sending APIs
as sinks. FlowDroid uses static inter-procedural data flow analysis to find evidence of

21Pearson’s R does not distinguish dependent and independent variables, so this affects only our choice of
scores to correlate with each other.

Chapter 5: Developer Survey

Charles Weir - October 2020 95

directed information flow between these methods. We configured the tool with the default
sources and sink for Android provided by the tool authors, which had been constructed
by manual inspection of common vulnerabilities in Android apps. FlowDroid is not able
to determine if the found information flow is to be considered an actual leak as it might
also be intended to use the information in the particular context (e.g. for location-based
services).

Practical Approach: We downloaded the application binaries for at least one application
by each of the survey respondents, wherever possible; we ran the full set of scanning tools
on each and counted the issues (reports of possible vulnerabilities) generated. Table 9
lists the versions of the tools we used. In some cases, the tools failed (see Figure 20);
where this happened the corresponding app and developer data were omitted from the
analysis.

5.2.2 Application Statistical Analysis
As in the survey statistical analysis (Section 5.1.7), we used graphical tools to explore the
data, and linear analysis to explore relationships between the data.

To investigate RQ 3.1, we defined further scores to represent the outcome “fewer security
defects” in each app analysed. Figure 22 shows the processing involved. We anticipated
that the issue counts would have a Poisson distribution; to permit linear analysis we used
a log transformation22. As with the scores for developer behaviour, we wanted scores that
increase with increasing app security and privacy, and we therefore negated the log value.

22 Specifically, log(𝑥& + 	k), where k is chosen to minimize skewness [10]; in practice we trialled different
values of k, finding no difference to the results, so used the conventional research practice of k=1.

Table 9: App Binary Analysis Tool Versions
MalloDroid Version Dec 30, 2013
OPAL framework Version 1.0.0
curl Version 7.64.0
openssl Version 1.1.1b
FlowDroid Version 2.7.1
LibScout Version 2.3.2
CogniCrypt Version 1.0.0

Figure 22: App Analysis Security Scores

- Log (count + 1)
CogniCrypt Issue
Count

MalloDroid Issue
Count

Cryptographic API
Misuse Score

+

- Log (count + 1)FlowDroid Issue
Count Privacy Leak Score

Server SSL Issue
Count - Log (total + 1) SSL Security Score

Using Workshops to Improve Security in Software Development Teams

96 Charles Weir - October 2020

We used the same method as previously (Section 5.1.7) to look for relationship between
these scores and the scores from Figure 21 covering the “need for security, involvement
of specialist roles, and use of assurance techniques in a development team” in RQ 3.1.

5.2.3 Survey Limitations
As with most studies of this type, our work has limitations.

The response rate for our online developer survey was low, as might be expected from
sending unsolicited emails to prospective participants. However, our recruitment
approach was also used by relevant previous work [2,3,195]. The low response rate may
show some self-selection bias, but since the invitations made no mention of security, we
have no reason to believe a priori that those who responded differ meaningfully in terms
of security or privacy behaviour from those who did not.

All the survey data—except download count and last app update date—is self-reported.
Though we addressed this by keeping questions as fact oriented as possible, this is an
important limitation.

In terms of the population, the survey reached app owners rather than all app developers;
so, data about the respondents’ own experience is not representative of all Android
developers, nor of software developers in general.

5.2.4 App Analysis Limitations
The static analysis tools we chose each consider specific categories of vulnerabilities.
This may disregard other categories of issues which may also be security critical. Indeed,
many vulnerabilities—especially privacy ones—will tend to be in the intended app
functionality rather than in the detailed implementation, and we have no way to estimate
these. However, we used detectors for a range of implementation issues which may be
found through other methods, and which developers who consider security or privacy
important would be expected to address.

Static program analysis tools often report false positives, and the tools we used are no
exception. Our approach for this survey, however, was to assume that the reported issue
counts will correlate with the numbers of true vulnerabilities, and therefore that such
counts can be used as a proxy for aspects of app security in statistical analysis.

We were able only to analyse ‘free’ and ‘freemium’ apps, not ones where Google Play
Store charges for download; this may introduce a bias. In cases where respondents have
more than one app, the app we downloaded may not be one requiring the security
practices and priorities described in the survey.

We considered improving the app analysis by ranking vulnerabilities based on severity.
However, the analysis did not identify vulnerabilities; it reported counts of ‘issues’
detected, where an ‘issue’ is a potential vulnerability. To determine whether an issue
represents a vulnerability would require detailed analysis of the source code; this source
code was not available to the researchers, and decompilation was infeasible due to the
widespread use of obfuscation tools.

We also considered distinguishing issues in the source code from issues in libraries, or
using vulnerability ratings for libraries. However, although there have been several
worthwhile tools developed to analyse the libraries used by Android apps, including
LibScout [16] and LibDetect [72], with the current state of the art they are not
sophisticated enough to detect library versions reliably, nor are they integrated with other

Chapter 5: Developer Survey

Charles Weir - October 2020 97

binary analysis tools to allow differentiation of issues in libraries from issues in the main
code.

5.3 Results
This section describes our results, both from the survey and from the app analysis.

5.3.1 Sample Validity
Comparing the box plots for invitees with those for participants in Figure 23, we see that
the average user rating and number of downloads for apps produced by the 345 developers
who completed surveys are very similar to those for the 55,000 invited.

One survey question asked the respondent’s years of experience in software development.
Figure 24 compares the results with answers to a similar question addressed to the 21,000
Android developers out of the 89,000 developers who answered the 2019 Stack Overflow
developer survey [158]. As will be seen, our respondents are generally more experienced
than the corresponding general population (our median 12 years; Stack Overflow
population median of 8 years; Mann Whitney 𝑝 = 10"#$).

One concern was whether our app selection criterion (over 100 downloads and one
update) was too lenient, since little-used apps may well have poor security. To test this,

Invitees are light blue; respondents dark blue

Figure 23: Comparing Participants’ App Success with Invitees’

Figure 24: Participants’ Experience Compared with Developer Population

Using Workshops to Improve Security in Software Development Teams

98 Charles Weir - October 2020

we used the Mann Whitney test comparing developers of apps with less than 1000
downloads against the rest23 (see Section 3.4.4). We did this for all of the scores (Sections
5.1.7 and 5.2.2) and for all the numerically analysable survey questions to see if the
distribution was different for low-download apps. In the survey results and scores we
found small p-values (𝑝 < 0.003) only for questions whose answers we expected to
correlate with download counts: ‘How many apps have you developed’, ‘How many
Android apps have your developed’ and ‘Is developing apps your primary job’, and we
concluded that the populations were essentially the same. Doing the same Mann Whitney
test on the App Analysis scores, we found low p-values only for the Cryptographic API
Misuse and Privacy Leak scores (𝑝	~	0.016 for each). Though suggestive, these values
are not significant after statistical correction. We concluded that there was no justification
for changing our app selection criteria.

Finally, to check the accuracy of respondents’ replies, we compared the respondent-stated
app update interval with objective evidence. App update histories are not generally
available from Google Play, but we did collect the last update date for each app we
considered. We correlated the time since that last update with the participant-stated update
interval using log scales: Pearson R=0.38, P=1e-9 (n=242). The tiny P value corroborates
the assumption that the stated update frequencies reflect reality; the moderate R value
reflects that respondents were asked the about updates to ‘their most frequently updated
app’ and not the app we considered, plus the randomness of where each app was in the
release cycle.

5.3.2 Geographical Location of Participants
Figure 25 provides an overview of the physical location of the participants. As
highlighted, they are predominantly European.

Figure 26 shows the main countries involved. As will be seen, this top eight countries
accounts for less than half the total participants; a total of 65 countries were represented.

23 We specified this analysis after data gathering; accordingly, significance in any of the correlations should
be considered suspect. However, a lack of significance in a wide range of correlation calculations is a valid
finding.

Figure 25: Geographical Location of Participants

Chapter 5: Developer Survey

Charles Weir - October 2020 99

5.3.3 Findings on Self-Reported Developer Behaviour
The next sections describe the survey results for individual survey questions, without
considering associations between answers24.

Importance of Security and Privacy: Figure 27 shows respondents’ ratings of the
importance of security and privacy in their apps. For comparison, we also asked and show
the importance of other functional and non-functional requirements. We were surprised
how many developers considered security and privacy important. Over 40% of
respondents considered each of security and privacy to be ‘extremely important’: ratings
comparable with multi-platform support and higher than support for many features.

Team Structure: Only 42% of respondents were working in teams (95% confidence
interval 36% − 46%), the remainder being solo developers. Of those working in teams,
Figure 28 shows the distribution of team sizes; more than half had 4 or fewer members.

Figure 29 shows how many teams included particular roles (other than the respondent).
Notably only half had tester roles, and only a third project managers.

24 The number of answers varies to each question or set of questions, giving different values for ‘n’ in each
chart.

Figure 26: Countries of Participants

Figure 27: Importance of Different Requirements

Using Workshops to Improve Security in Software Development Teams

100 Charles Weir - October 2020

Security Expert Support: Only 17% of respondents reported receiving support from
professional security experts. So, for RQ 3.2 we calculate the ninety-five percent
confidence interval for the proportion working with security experts in the Android app
developer population as a whole as:

Lower bound = 14%, Upper bound = 22%

Of these few professional security experts discussed by respondents, 33% were part of
the development team and the remainder external. Their most common function was
Penetration Testing (44%), but they also provided Design Reviews (39%), Audits (33%)
and Training (27%).

Some teams (18%) had a ‘security champion’, a non-expert providing security input to
the rest of the team. Only 7% had both professional experts and champions.

Developer Security Knowledge: Figure 30 shows how survey participants rated their
security expertise. Interestingly, very few considered themselves to have no knowledge;
this is as we would expect given the level of development experience of participants
(Section 5.3.1).

Use of Assurance Techniques: Figure 31 shows the reported use of assurance
techniques. Unsurprisingly, Threat Assessment for every build is rare; possibly those
respondents consider the list of threats every day. Penetration Testing for each build is

Figure 28: Distribution of Participants’ Team Sizes

Figure 29: Other Roles in Participants’ Teams

Chapter 5: Developer Survey

Charles Weir - October 2020 101

also rare; possibly they meant automated penetration testing. But otherwise the
proportions using each are fairly consistent across all the techniques, with just under half
not having considered each technique, and only a small percentage using it for every
build.

Combinations of Assurance Techniques: We investigated the extent to which teams
used combinations of assurance techniques. Figure 32 summarises how many and how
often the techniques are used. It shows the cumulative proportion of respondents using
each number of techniques, separated out to show how often they used them. Thus for
example, the middle bottom dark blue rectangle shows that 4% used all five techniques
every release or more often; the middle column shows that nearly 45% used at least one
technique every release or more often; the left hand column shows that 76% had trialled
at least one technique but only 17% had used all five.

So, for RQ 3.3, the 95% confidence intervals for the proportion regularly using one or
more of the given assurance techniques in the wider Android developer population [99]
are:

Lower bound = 38%, Upper bound = 49%

The figure for those who have at least tried one assurance technique is much higher:

Lower bound = 71%, Upper bound = 80%

We analysed which combinations of techniques were popular amongst the 15% (50) of
respondents who only used two or three regularly.

Figure 30: How Knowledgeable about Security

Figure 31: Use of Assurance Techniques

Using Workshops to Improve Security in Software Development Teams

102 Charles Weir - October 2020

The most popular were as follows:
Combination: Proportion
Automatic Static Analysis Configuration Review 38%
Automatic Static Analysis Code Review 32%
Code Review Configuration Review 22%
Threat Assessment Code Review 16%

Security Updates: Figure 33 shows the frequency of security updates, calculated as the
product of the reported update frequency, and the reported proportion of security updates.
The 95% confidence interval for the proportion with less than one update a year is
59%	 − 	70%.

5.3.4 Recent Changes in Team or Development Security
Given how fast moving the field of software security has become, it is also important to
know what might have caused changes in the developers’ perceptions or actions around
security. Two questions in the survey addressed this: one listing possible reasons for
security and privacy improvements and asking the user to select all that had affected app
security; and for those who mentioned an impact from the recent European GDPR
legislation [55], a further question asking what changes they had made as a result. Since
the GDPR legislation affects any apps collecting data in Europe, it impacts developers
worldwide.

Figure 32: Percentage Using Each Number of Assurance Techniques

Figure 33: Cumulative Security Update Frequency

Chapter 5: Developer Survey

Charles Weir - October 2020 103

Figure 34 shows the answers. Interestingly, the developers’ perception is that, even more
than GDPR, the main security driver has been the developers themselves. Encouragingly
very few (3%) reported security improvements as a consequence of actual security issues
affecting themselves, suggesting that this is still rare; a few more (7%) reported ‘horror
stories’—something bad happening to a competitor.

Of the 45% of participants (n=133) who reported changes as a result of GDPR, Figure 35
summarises the changes they made as a result. We observe that the majority of these
changes were cosmetic as far as solving or mitigating security problems was concerned:
changing privacy policies or adding pop-up dialogs. Only 33 made substantive changes
to improve user security or privacy (giving 95% confidence limits of 8% to 15% for the
wider Android developer population [99]).

5.3.5 Team-Based and UK-Based Assurance Technique Use
Since this thesis is primarily concerned with development teams, it is of value to see what
we can deduce for this group of developers.

Figure 36 shows the use of assurance techniques by 139 respondents who described
themselves as working in teams. Unsurprisingly, comparing this with Figure 31 we see
that in teams a decidedly larger proportion are doing Code Review.

Specifically, answering RQ 3.3 for team-based Android developers, 56% reported using
one or more assurance techniques regularly, making the 95% confidence intervals for the
proportion in the wider population:

Lower bound = 48%, Upper bound = 64%

Figure 34: Top Five Reasons for Security Changes

Figure 35: Changes Made Due to GDPR

Using Workshops to Improve Security in Software Development Teams

104 Charles Weir - October 2020

Turning to the figures for the United Kingdom, Figure 26 on page 99 showed the countries
of the respondents. Unfortunately, the sample size from the United Kingdom is too small
(n=22) for meaningful statistical analysis25.

Instead, we observed that there was no a priori reason to believe United Kingdom
developers are different from those in the rest of the world in development behaviour. We
validated this using the Mann Whitney test to compare the UK sample with the full sample
population (as Section 5.3.1). We found significant differences only in Q25, “For how
many years have you been programming in general (not just for Android)”, which we
ascribe to the difference in developer populations.

Accordingly, we have no reason to believe that the results relating to developer behaviour
would have been materially different in a UK-only survey.

5.3.6 Linear Analysis of Developer Survey Scores
Table 10 shows the results of the analysis described in Section 5.1.7. It correlates each of
the two dependent scores representing “security-enhancing activities and interactions in
the development team” against four independent “need and mechanisms for security and
privacy” scores. Each cell in the table shows, for the corresponding test:

The R-Value, between -1 and 1, indicating how much of the variation in one
measurement corresponds to the variation in the other.

The P-Value, indicating the likelihood that the result could have been observed by
chance.

25 It would have been possible to select just ‘.uk’ email addresses for the invitations; however, this would
both have introduced bias (since many UK email addresses do not conform to this pattern), and lacked
interest to the non-UK co-researchers.

Figure 36: Use of Assurance Techniques by Developers in Teams

Table 10: Pearson R Results for Developer Survey Security Scores
 Independent:

Dependent:

Expertise
Support

Require-
ments

Developer
Knowledge

Assurance
Technique
Use

Assurance
Technique Use

0.56, 3.9e-25 0.37, 1.5e-11 0.27, 8.6e-07

Security Update
Frequency

0.16, 0.0085 0.25, 2e-05 0.03, 0.61 0.41, 5.7e-13

Chapter 5: Developer Survey

Charles Weir - October 2020 105

Non-italic figures highlighted in yellow indicate a statistically significant result (𝑝 <
0.01): results where we can be reasonably sure that higher values in one score are
associated with higher values in the other.

Figure 37 shows x-y plots of these significant results. Dots and vertical bars show the
mean and its 95% confidence interval for the y-readings corresponding to each x-value.
The plots also show a simple linear regression line and its confidence limits. The graphs
validate the preconditions for the use of Pearson R [130]: particularly homoscedascity
and lack of outliers.

	 	

	 	

	 	

Figure 37: Cross-plots of the Scores with Significant Correlations

Using Workshops to Improve Security in Software Development Teams

106 Charles Weir - October 2020

We observe that the first two plots also justify our choice of the calculation for the
Requirements Score and Expertise Support Score since the use of assurance techniques
shows a strong linear relationship to both scores.

5.3.7 Findings on Application Security
In the Application Security analysis (see Section 5.2.2), of the tools used, CogniCrypt
reported no issues for 32% of apps; FlowDroid for 35% and the Bad SSL/MalloDroid
combination for 70%. Only 20% of apps analysed showed no issues from any of the tools.

Table 11 shows the results of the analysis described in Section 5.2.2. It correlates each of
three dependent scores representing “fewer security defects” against the four independent
“need and mechanisms for security and privacy” scores. Non-italic figures highlighted in
yellow indicate a statistically significant result (𝑝 < 0.01).

Only one result achieves significance and bizarrely that result suggests a negative
correlation: the involvement of security professionals and champions is associated with
worse Cryptographic API misuse outcomes.

Figure 38 explores this odd finding. It shows that the effect is not large, and that both
experts and champions seem to be associated with the negative correlation, though experts
more so. We note, as well, that the p-value is only just significant given the Bonferroni
correction (Threshold for significance 0.05/3	 = 	0.017).

Disappointingly, in response to RQ 3.1, use of assurance techniques was not associated
with better security outcomes, nor was developer security knowledge, nor was a user
requirement for good security.

Table 11: Pearson R Results for App Security vs. Developer Security
 Independent:

Dependent:

Expertise
Support

Require-
ments

Developer
Knowledge

Assurance
Technique
Use

Cryptographic
API Misuse

-0.17, 0.016 -0.06, 0.37 -0.09, 0.17 -0.13, 0.047

Privacy Leak -0.09, 0.20 -0.01, 0.85 0.02, 0.81 0.02, 0.81
SSL Security -0.14, 0.049 0.01, 0.93 -0.02, 0.76 -0.08, 0.20

Figure 38: Worse Cryptosecurity with Expert Involvement?

Chapter 5: Developer Survey

Charles Weir - October 2020 107

5.4 Discussion
At first sight, the findings in Sections 5.3.3 and 5.3.7 give a depressing view of app
security. From Section 5.3.7 we see that over 80% of apps had reported defects from our
analysis tools. From Figure 33 we see that the majority of apps get security updates less
than once a year. From the analysis of the app security measurements, Table 11 shows
that security outcomes seem to have little correlation with an app’s perceived need for
security and privacy.

And Figure 35 shows that GDPR’s new compliance rules for apps have had little positive
impact. Certainly, in many cases cosmetic changes may have been all that was needed;
but the finding suggests that GDPR has not been a strong force to improve app security
and privacy.

5.4.1 Adoption of Security Techniques by Developers
However, there are positive aspects too. Considering the findings in Section 5.3.2, Figure
30 shows us that the vast majority of the respondents consider themselves to have at least
some security knowledge, and thus are likely to be aware of security as a possible issue
in their software development. Indeed, Figure 27 shows that more than 60% of the
respondents consider security to be very or extremely important to their users, and even
more put the same value on privacy.

Section 5.3.2’s combinations of assurance techniques used are particularly interesting in
suggesting how security improvement is happening. Though the analysis only covers a
small fraction of the survey participants, those respondents it considers are the ones using
only a proportion of the Assurance Techniques and it therefore offers an insight into
which techniques are adopted first. One would expect teams whose security is driven by
external experts to adopt the Threat Assessment/Penetration Testing combination, since
both of these activities can be carried out by the experts themselves; actually, rather more
teams adopt tool-only techniques (Automated Static Analysis and Configuration Review),
or code-review based techniques (Automated Static Analysis and Code Review), perhaps
because few have access to security experts (Section 5.3.2).

This suggests that the adoption of assurance techniques is being driven by the developers
themselves, rather than by external security experts, and so what we are seeing is
developer-led security. This tallies with the reasons given for app security changes in
Figure 34, where the most common reason for changes was developer initiative. It also
corresponds to the views of security experts, who emphasise the importance of developer
initiative in improving software security [193].

5.4.2 Appropriate Use of Security Techniques
Using security assurance techniques usually has a cost, both in time and in financial terms
[164], and therefore it is poor economics to adopt them in cases where they are not
required. From Section 5.3.6 we see that this is correctly reflected in the Android
ecosystem: the use of Assurance Techniques increases in line with the importance of
security for the app. We suggest that the correlation with the involvement of security
professionals/champions and with developer knowledge of security may be an effect
(expert developers and security professionals will tend to work on products that need
security) as much as a cause (their involvement causes increased assurance technique
use).

Using Workshops to Improve Security in Software Development Teams

108 Charles Weir - October 2020

Updating apps also has a considerable cost, and again we would anticipate having more
security updates in cases where security is important for the app. Again Table 10 confirms
this behaviour, and shows that, justifiably, there is no correlation between the security
update frequency and the security experience of the developer.

5.4.3 Impact on App Security
It was disappointing that the use of assurance techniques did not appear to be a major
factor leading to better security outcomes when we analysed the apps themselves. Even
though the analysis tools can only detect a limited range of code level security issues, we
expected more security-experienced developers and those using assurance techniques—
especially Static Code Analysis—to generate fewer such issues.

We conclude that other factors must drown out this effect. We observe, for example, that
most app binary code will consist of libraries, and even up-to-date libraries will differ
enormously in the number of such issues they may have. We hypothesise that the scores
generated by the tools we used depend more on the nature of the libraries needed to
implement the app functionality than on any attributes of the non-library code created by
the developers; current tools cannot verify this effect (Section 5.2.4).

More surprising is the finding that the involvement of professionals and champions seems
to be associated with increased numbers of Cryptographic API issues. It seems unlikely
that this is because they create the issues. Instead, we observe that our tools will not detect
a failure to use cryptography in apps where it is required, whereas experts or champions
will do so. We suggest that teams involving experts or champions will therefore tend to
use cryptography more frequently, leading to more such issues26.

5.5 Summary and Conclusions
This chapter describes the creation and deployment of a survey to Android app
developers, in which we asked them a range of questions related to their approach to
security and privacy in app development; and a second phase in which we compared the
answers with the outcomes of running security analysis tools on one of their apps. The
research addressed the following question:

RQ 3 To what extent, and how, does a perceived need for security and privacy lead to
security-enhancing activities and interactions in an Android development team
and result in better software security?

From the 335 survey responses analysed, we found a high level of reported security
importance for the app development, but low use of practical security assurance
techniques (Section 5.3.2). Where such techniques were used, this was in proportion to
the perceived importance, as was the involvement of professionals and security
champions. The frequency of app security updates followed a similar pattern (Section
5.3.6).

Considering the “how” of RQ 3: in the perception of respondents to the survey, app
security improvements have been predominantly driven by developers themselves
(Section 5.4.1); this is supported by the observation that the assurance techniques first

26 We might speculate also that security professionals may tend to push teams to use extra cryptography
without providing guidance on how.

Chapter 5: Developer Survey

Charles Weir - October 2020 109

adopted are those most easily available to developers. GDPR has also had an impact,
though the resulting changes for GDPR have been mainly cosmetic (Section 5.3.4).

RQ 3.1: To what extent do the perceived need for security, the involvement of specialist
roles, and the use of assurance techniques in a development team lead to fewer
security defects?

The results of the app analysis showed little relationship with the reported security drivers
and development process from the survey; we believe this reflects the inability of the
current generation of binary analysis tools to analyse libraries effectively and separately
from the main app code. We did however find the involvement of security specialists or
champions to be associated with more Cryptographic API issues, probably since they
correctly enforce much more Cryptography use (Sections 5.3.7, 5.4.3)

RQ 3.2 What proportion of Android developers have access to security experts?

Section 5.3.2 concludes that between 14% and 22% of developers work with security
experts.

RQ 3.3 To what extent do Android developers use assurance techniques?

Only between 38% and 49% regularly use assurance techniques (Section 5.3.3). For the
third to a half of the population who were working in teams, the proportion was higher:
between 71 and 80% (Section 5.3.5).

Contrasting the high need for security with the low use of assurance techniques and low
availability of security professionals, this suggests that there is an urgent need for means
to support app developers in adopting security assurance techniques in the absence of
security professionals. The following chapters explore one such means.

The author has released a privacy-preserving set of the survey raw results, along with the
full questions and data description [186].

Using Workshops to Improve Security in Software Development Teams

110 Charles Weir - October 2020

6 Intervention Package
Creation

The purpose of this PhD project was to answer:

RQ 1 What is needed to make a cost-effective and widely applicable intervention to
help UK software development teams achieve better software security?

Following the literature review in Chapter 2, the Expert Survey in Chapter 4 and the
Developer Survey in Chapter 5, the next step was to investigate creating such an
intervention.

6.1 Requirements for the Intervention
In section 4.14.2, we deduced from the Expert Survey that a cost-effective intervention
would best:

• Motivate Active Developers to drive their own security improvements;
• Provide an Incentivisation Session to help do so;
• Encourage developers to adopt six key intervention techniques; and
• Deliver continued On-the-Job Training.

Stack Overflow’s 2016 Developer Survey [157] suggests that a majority of developers
work in teams, so we conclude an effective intervention should:

• Support developers working in teams

And the Developer Survey suggests that to have a wide appeal an intervention must:

• Not require security specialists, since few teams have access to them (Section 5.5)
• Support developers currently using few or no Assurance Techniques, since few

are doing so (Section 5.5)

The six key intervention techniques were as follows (Section 4.4):

Chapter 6: Intervention Package Creation

Charles Weir - October 2020 111

Threat Assessment Identifying and ranking the threats to computer software, a
component, or an IT system.

Stakeholder
Negotiation

Discussion and negotiation with stakeholders, such as product
managers, on security choices

Configuration Review A review of the way a system or its software
has been configured to see if this leads to
known vulnerabilities, using manual checking
software versions or automated build review
scanners.

Automated Static
Analysis

The process of using an automated scanner on a web
application or network to identify vulnerabilities.

Source Code Review The manual examination of source code to discover faults that
were introduced during the software development process.

Penetration Testing A simulated attack on a component or system, carried out by a
security expert using similar techniques to that of a real- world
malicious attacker.

6.2 Constructing the Intervention
The next step, therefore, was to construct such an intervention. The author had expected
it to take the form of a website, a book or video [190]; or possibly a code analysis tool
(Section 2.1.3), or training-based intervention (Section 2.2.4)

In practice, excellent implementations already exist of such interventions (Section 2.2),
but the need for improved security remains. We observed that there were no interventions
that both provided the incentivisation session required above and encouraged developers
to drive the security improvement process.

6.2.1 The Consultancy Model
As a former consultant and trainer, the author had experience of interventions to support
developer-driven changes: specifically, the adoption of the object-oriented paradigm, and
later of the agile paradigm, for software development. This experience provided a tried-
and-tested model for such interventions. The essence of this ‘consultancy model’ is as
follows:

• A single external consultant facilitator engages on site with the team, leading
training sessions, workshops or individual sessions, as required.

• All the work is focussed around the specific project being undertaken by the
group.

• Involvement is not full-time, but over a period of weeks or months.
• Confidentiality is necessary, usually requiring Non-Disclosure Agreements or

contracts.
• The consultant is paid based on their professional time spent.

Since this consultancy model is familiar to the managers and technical leads of software
development teams who have the power to engage with the research team, it seemed a
good one on which to base a new form of intervention. To ensure academic credibility,
and because of the importance of the trials, no payment was involved. The other four

Using Workshops to Improve Security in Software Development Teams

112 Charles Weir - October 2020

aspects were retained; on-site facilitator, specific project, several-month involvement, and
confidentiality.

Given the need for a practical and lightweight process, the target was for the intervention
itself to require less than a day’s on-site involvement. In practice, that meant the
researcher spending most of a day on-site with the teams involved at the start of the
intervention; then continuing over several months using teleconferencing or
videoconferencing. For research purposes, where possible, the researcher also returned
for the final session.

Returning to the requirements in Section 6.1, given the need to motivate ‘Active
Developers’, we determined that facilitated workshops with the teams would be the best
approach. We observed that two of the Assurance Techniques are suitable for such
workshop sessions:

• Incentivisation Session, and
• Threat Assessment

Indeed, Section 6.1 already identifies the Incentivisation Session as an essential
component of any intervention. The next sections explain their implementation as cost-
effective team workshops not needing security specialists.

6.2.2 Implementing the Incentivisation Session
In the ‘traditional’ security specialist approach to inspiring developers, the Incentivisation
Session involves an expert or trainer explaining all the bad things that may happen, and
using the developers’ fear of those events as a motivator (Section 4.11). Unfortunately,
fear is only effective short-term as a motivator [98]. Frederick Herzberg in the Harvard
Business Review [84] put it like this:

KITA [Kick in the ‘Rear’] ... has been demonstrated to be a total failure….
A negative KITA does not lead to motivation, but to movement

Indeed, researchers who tried this approach found it ineffective in the longer term (see
Section 2.2.4).

Accordingly, as an alternative approach to fear-based motivation, we wanted an
Incentivisation Session that would help developers engage with security better and lose
their fear of it. Devising such an Incentivisation Session was perhaps the biggest
challenge of the project.

Fortuitously, while considering this challenge the author received an enquiry from a
colleague working as a consultant ‘Agile Coach’. He wanted to use a game, the ‘Agile
Security Game’ [184], invented by the author as a fun workshop session for the
AgileNorth 2016 conference.

This game was based on the ‘Mumba’ role-playing game invented by Frey et al. [65], to
help elicit participants’ prior experience of real-life security attacks. The ‘Agile Security
Game’ variant, however, was designed simply to educate developers about security. In it,
participants act as product managers, selecting security-enhancing product improvements
with varying costs and learning whether their choices deter attacks.

The colleague wanted to use the game in Company A (see Section 7.2.1) to help motivate
development teams towards security. The author realised it was being requested as an
Incentivisation Session, and proposed delivering the full planned intervention in that
company—a proposal that was accepted.

Chapter 6: Intervention Package Creation

Charles Weir - October 2020 113

6.2.3 The Agile Security Game
The following inset describes the Agile Security Game.

The	Agile	Security	Game	

The	facilitator	arranges	the	room	with	separate	tables	with	2-6	chairs	around	each	
table,	and	a	display	screen	visible	to	all	the	players.	Each	player	gets	a	sheet	of	
paper	describing	a	product	with	poor	security;	each	table	of	players	becomes	a	
team	 taking	 on	 the	 role	 of	 product	 manager.	 The	 facilitator	 also	 prints	 out	
separately	a	set	of	‘security	story	cards’	to	be	given	out	to	each	table,	each	card	
describing	and	pricing,	in	story	points,	a	possible	security	enhancement.	

After	an	introduction	by	the	facilitator,	play	proceeds	in	four	rounds,	representing	
development	‘sprints’.	At	the	start	of	each	sprint	the	facilitator	hands	out	security	
story	 cards	 to	each	 table.	The	players	 then	select	 the	 stories	 for	 ‘their	product	
developers’	to	implement,	subject	to	a	budget	for	each	sprint	expressed	in	story	
points.	 The	discussion	 around	 security	 story	 selection	 is	 the	main	point	 of	 the	
workshop,	and	should	not	be	hurried.	

Once	all	the	teams	have	chosen	their	stories	in	each	sprint,	the	facilitator	explains	
that	the	product	developers	have	shipped	the	corresponding	enhancements,	and	
that	subsequently	there	have	been	attacks	on	the	software.	The	attacks	for	that	
sprint	are	shown	on	the	screen,	along	with	which	security	stories	mitigate	each.	
Based	on	that,	some	product	owners	will	be	‘damaged’;	others	not.		

Following	 the	 last	 sprint	 there’s	a	 facilitated	discussion,	where	 the	 teams	state	
what	they	learned;	the	facilitator	may	also	explain	some	of	the	game	workings,	
including	some	‘security	stories’	that	are	not	recommended	practice.	

6.2.4 Implementing Threat Assessment
The Threat Assessment workshop was also challenging to implement. Much of the
literature [114,154] describes a heavyweight process taking a while to set up and requiring
considerable knowledge of possible technical threats, preferably with support from a
professional with a detailed understanding of both the industry sector and current cyber
threats to it. But such a process would be expensive in time and commitment, and the
required professional knowledge was not available.

However, in this case the researchers’ own experience was valuable. As technical lead
for a major mobile money project, the author had faced this problem in a commercial
project. With the help of Alec Muffett [208], a consultant security expert, he had
developed a lightweight brainstorming process to identify threats and potential attackers
[189]. While this may have lacked the rigor of the threat modelling approaches used by
some large companies, it had served to deliver a product which the security analyst at
their customer T-Mobile described as ‘the most secure app they had seen that year’.
Accordingly, the author used the same approach here.

6.2.5 Threat Assessment Description
The following inset describes the Threat Assessment workshop as we implemented it in
Developers Security Essentials.

Using Workshops to Improve Security in Software Development Teams

114 Charles Weir - October 2020

Threat	Assessment	Session		

Brainstorm	Threats	

Brainstorming	requires	one	member	of	the	team	to	act	as	facilitator.	The	team	sits	
in	 chairs	 in	 a	 circle	 facing	 each	 other	 and	 a	 flipchart	 (or	 whiteboard).	 The	
facilitator	writes	a	question	to	focus	the	discussion,	along	the	lines	of	‘what	threats	
do	we	face’.	Then	everyone	suggests	possible	threats	–	without	analysing	each	or	
attempting	to	filter	out	any	of	them.	As	they	do,	the	facilitator	writes	down	each	
threat	(whether	sensible	or	not)	on	the	flipchart.		

As	ways	 of	 generating	 ideas,	 participants	 also	 consider	 also	who	might	 be	 the	
attackers	–	what	would	they	want	and	how	would	they	go	about	getting	it.	That	
may	 generate	 a	 different	 set	 of	 possible	 threats.	 Similarly	 looking	 at	 the	
architecture	 of	 the	 system	 in	 detail,	 concentrating	 particularly	 on	 interfaces	
between	systems	and	components	is	a	further	excellent	way	to	find	threats.		

From	the	flipchart,	 the	team	creates	a	document	listing	each	of	the	threats:	the	
attacker,	what	they	might	get	from	it,	how	they	might	get	it.	

Assess	Threats	

The	second	step	is	to	assess	the	threats.	 It	should	be	a	separate	session	after	a	
break,	 since	 the	 analytic	 type	 of	 thinking	 involved	 is	 different	 from	 the	
brainstorming	in	the	previous	section.	

In	this	workshop,	the	threats	are	written	up	on	a	list	–	usually	on	a	display	screen.	
The	participants	address	each	in	turn,	perhaps	by	voting	on	which	ones	look	most	
important	to	address	first.	For	each,	they	estimate:	

1. Likelihood:	Low,	Medium	or	High	
2. Impact:	Low,	Medium	or	High.	

Obviously,	these	will	be	relatively	inaccurate	assessments:	the	aim	will	only	be	for	
finger-in-the-air	accuracy.	If	the	workshop	can	involve	a	Security	Specialist,	they	
may	have	helpful	knowledge	about	likelihoods	of	different	threats,	and	possibly	
even	typical	impacts.		

And	 then,	 taking	the	 threats	 with	 high	 impact	 or	 likelihood	 first,	 the	 team	
identifies	possible	mitigations	–	possible	things	to	do	to	deal	with	the	threat.	Some	
mitigations	may	be	in	code,	or	changes	to	functionality;	others	might	be	processes,	
discussions	 with	 other	 teams,	 or	 even	 preparing	 a	 plan	 for	 dealing	 with	 a	
successful	attack.	They	then	estimate	development	costs	for	each	using	the	same	
process	as	estimates	for	any	other	piece	of	development	(story	points,	perhaps).	

During	this	workshop,	participants	consider	the	other	five	assurance	techniques	
described	at	the	start	of	the	chapter	as	possible	mitigations.		

6.2.6 Implementing On-the-job Training
Finally, Section 6.1 required On-the-Job Training (Section 4.12). Specifically, we wanted
a regular ‘nudge’ [168] to the team as a reminder to take action on what they had
determined in the initial workshops and on what they had discovered since then. For this
we used a monthly follow-up meeting, usually by video conference. The facilitator asked

Chapter 6: Intervention Package Creation

Charles Weir - October 2020 115

open questions with the team about their progress over the previous month, and discussed
issues that came up.

6.2.7 Intervention Schedule
Figure 39 shows a typical schedule for the interventions. The work with each company
spanned 3-4 months, with only two days on site at the start and end. The involvement
time was limited to four months in order to get the feedback from the exit interviews
reasonably quickly.

6.3 Facilitation Approach
Given the Active Developer model, we wanted to use language and approaches consistent
with developers as the instigators of activity rather than the language and approaches of
commands and formal processes (Section 4.3).

Therefore, at no point did the facilitator interact with the development teams using terms
like “you must” or “it’s essential that”. Also, throughout the workshops and game, the
researchers allowed the developers themselves to drive the solutions; as facilitators they
provided only guidance.

Furthermore, the researchers were aware that Source Code Review and Penetration
Testing are relatively expensive for a team to adopt (Section 4.13.1) and therefore seldom
within a team’s power to achieve themselves. So, the decision was taken not to promote
them explicitly. Instead the Intervener concentrated on promoting, when opportunity
arose, the other main techniques identified in Chapter 4: Configuration Review,
Automated Static Analysis and Stakeholder Negotiation.

An online book, video, and materials [182] supported the package.

Figure 39: Typical Schedule for the Interventions

Month 1 Month 2 Month 3 Month 4

10:00

12:00

14:00

16:00

18:00

Entry
interviews

Incentivis-
ation

Threat
Assessment

Discussion Discussion

Exit
interviews

Using Workshops to Improve Security in Software Development Teams

116 Charles Weir - October 2020

7 Package Trials (Magid)

This project investigated having a consultant lead the Developer Security Essentials
intervention in three different organisations.

We called the project ‘Magid’ after some troubled superhuman interveners in a novel by
Diana Winn Jones [93].

Our research question for this project was straightforward:

RQ 4 What security outcomes did the ‘Developer Security Essentials’ package have,
and what aspects contributed most to those outcomes?

This is an ‘overview question’, and difficult to answer with precision. Accordingly, we
unpacked it to create several sub-questions. First, we wanted to know the short-term
outcome from using the intervention:

RQ 4.1 What security improvements and changes were made in the development teams’
ways of working and developed products in the short term due to the
intervention?

Next, given that some previous interventions described in the literature had failed to have
a long-term impact (Section 2.2.4), we wanted to know whether this was true for this
intervention:

RQ 4.2 To what extent did the changes made in the development teams’ ways of working
persist over a one-year timeframe?

And finally, we wanted an insight into what was happening, to support modifying the
intervention in future:

RQ 4.3 What aspects of software development as practiced by the teams supported or
hindered adoption of the various security techniques?

7.1 Research Method
Section 3.2 justifies the choice of Action Research in this project. The choice of variant
of Action Research was dictated by the situation. The interventions took relatively little
time and did not involve discussion of individual problems, nor did they overtly
emphasise organisational learning; that ruled out Action Learning and Action Science.
The subjects did not influence the intervention design, nor participate in theory
generation, making Participatory Action Research unsuitable. So, the method adopted
was Canonical Action Research (CAR, see Section 3.5), with the author working as
‘intervener’, directly with the participants (‘client’).

We addressed the principles of CAR (Section 3.5.2) in the project as follows:

Researcher-client agreement: The lead researcher agreed the form of the intervention,
the nature of the workshops, and the specific approaches and choices of participants with
the team leaders in each case.

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 117

Cyclical process model: This was the hardest principle to address; indeed many Action
Research projects in software engineering have had only a single cycle [147]. In practice
all of our participating development teams were using forms of Agile processes, and in
each case the three-month duration of the intervention covered several agile development
iterations, so the monthly follow-up intervention session allowed retrospection and
improvements. However, the full intervention was used only once, not in each monthly
session, so the monthly sessions could not be considered cycles in the Action Research
sense. In planning the project, we anticipated a later Action Research cycle with the same
teams.

Theory use: The interventions were based on theory derived from the earlier projects;
the research process itself also generated further theory for later use: specifically, in the
Magid 2 project.

Change through action: In each case, the participating developers decided on possible
changes and prioritised them themselves; the normal development prioritisation
techniques (Kanban boards or task lists) ensured that a record was kept and that the
timings of the changes was known.

Learning through reflection: This happened mainly though the final interviews and the
discussions around them. Later reflection by the researchers was captured and fed back
though the research papers and discussion with participants.

7.1.1 Practical Approach
On arrival, the researcher met with the main contact, and arranged the signing of the
organisation consent form. He then, in a meeting room, interviewed in sequence four or
five of the team members, each signing the individual consent form at the start of the
interview. The interview protocol is given in Appendix F. The interviews typically took
20 minutes each.

The researcher then met back with the organiser, and together they set up the room for
the first workshop, the Agile App Security Game, as given in Appendix D. The teams
then arrived and, after a brief introduction by the team lead and the researcher, they played
the game as in Appendix D.

After the game, and following a half hour break, they did the Threat Assessment session
(Section 6.2.5). This used a simple brainstorming approach [61]. The researcher used a
flipchart or whiteboard to capture suggestions from the group, encouraging as wide a
scope as possible and discouraging criticism or selectiveness.

The facilitator and team leaders then selected the five or six of the most likely and
damaging threats identified and discussed them in more detail, identifying possible ways
to mitigate them. The teams also kept the flip chart sheets (or screenshots) and transcribed
the full list of threats for reference afterwards.

During the discussion of the mitigation for each threat the researcher introduced
suggestions of possible approaches where these were not forthcoming from the
participants, mainly from the list of key assurance techniques (Section 6.1). The
suggestions usually took the form of short War Stories (Section 7.3.6).

The monthly follow-up sessions were mostly by videoconference between the researcher
and the team lead and a selection of the rest of the participants. The exit interviews were
mostly in person, of the same people as the entry interviews, and took about 20 minutes
each.

Using Workshops to Improve Security in Software Development Teams

118 Charles Weir - October 2020

One point of importance related to:

RQ 4.2 To what extent did the changes made in the development teams’ ways of working
persist over a one-year timeframe?

was whether participants understood the aim of the intervention, so that they themselves
might use Assurance Techniques later in future projects; accordingly, the exit interviews
included an open question to elicit whether the participants appreciated the need for
Threat Assessment and perhaps other interventions. The exit interview protocol is given
in Appendix G.

7.1.2 Research Analysis
The focus of this research project was the improvements achieved by the subjects through
their own efforts, as focussed by the intervention. Accordingly, in our evaluations of the
results we concentrated on practical, objective, improvements in security as a result of
the interventions; feedback on the interventions themselves and the way they worked was
treated as a secondary outcome27.

A main research sub-question for this project was:

RQ 4.1 What security improvements and changes were made in the development teams’
ways of working and developed products in the short term due to the
intervention?

To measure the intervention’s security effects, we needed a baseline with no intervention.
A-B testing, requiring a different team working in parallel, was not practical. Instead, we
used a longitudinal approach, deducing a baseline (‘no intervention situation’) from the
initial situation plus a knowledge of the original plans by the team leaders to improve
security over the same timescale.

The author28 then carried out the pre- and post- interviews and the Developer Security
Essentials intervention with the development teams and transcribed and analysed the
workshops and interviews as described in Section 3.5.3.

In this coding we looked for aspects of security improvement—including in learning and
attitude—implied by statements from the speakers. To justify improvement, we coded the
initial interviews to provide evidence of a baseline security activities and awareness
before the start of the interventions.

We analysed the kinds of interaction involved in the workshops and looked for
‘Motivators and Blockers’ : aspects that helped and hindered such security improvements
[14]. We coded signs of new knowledge in the team, new activities related to security,
and evidence of improvements in the security of developed software.

Given that the teams were prepared to work with us, we knew that at least some of them
had some prior interest in security. In the interviews and our analysis, therefore, we were
careful to distinguish new security activities and enhancements attributable to the

27 Note that in the later, ‘Magid 2’ project we changed focus, and we altered our research method
accordingly. See Section 3.6.
28 All the work and analysis were done by the author of this thesis; Ingolf Becker acted as second coder for
the dual coding.

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 119

interventions from those that had been planned or contemplated before the trials and those
due to other external factors such as customer demand or other security specialists.

7.1.3 Research Numbers
Three companies participated, generating a total of 19 hours of audio.

The final code book consisted of 5 families of codes, making a total of 41 codes, applied
to 1405 quotations in total.

7.2 Participating Companies
This section introduces the three companies, with the projects and development teams
involved. To preserve confidentiality, we have changed all names and the exact
functionality of the products involved.

7.2.1 Company A
Company A is a small-to-medium company employing around 50 people in the UK. Set
up about 10 years ago, it has a single product which is sold both web-based as ‘software
as a service’, and as an installable system for clients’ own sites. This product manages
sensitive data, and is used by large multinational organisations, including several that are
household names.

The product is a web application and is shipped or installed as a single codebase
implemented mainly in Java. The ‘software as a service’ implementation is hosted on
systems at a leading hosting provider; clients with their own installations manage them
themselves, which means that the developers must provide support for older software
versions. The nature of the app means there are complex rules and permissions as to which
users may see what. These are typically implemented for each new customer installation
by a separate team of configuration specialists.

7.2.1.1 A’s Developers
Participating in Company A’s workshops were developers from two teams. The teams
worked on separate tasks on a shared code base, and each team had a technical lead, the
‘architect’.

The company development teams show some of the enthusiasm and characteristics of a
start-up. We observed a culture of technological improvement, and a willingness to
embrace change. Both teams use an agile approach to development based on Scrum, with
sprints, stories and a prioritisation process.

7.2.2 Company B
Company B is a tiny non-profit start-up, run on a part-time basis by two professionals: an
educationalist and a software project manager. Other staff also assist on a part-time basis.
The company purpose is to provide work experience for promising young people who
would otherwise be unable to get initial jobs in IT. They undertake pro-bono software
development projects for charities. During the interventions we worked on two projects:
first a marketing website for Company B itself, and later a project for an art installation
involving voice recognition and public interaction.

Using Workshops to Improve Security in Software Development Teams

120 Charles Weir - October 2020

7.2.2.1 B’s Developers
The development team constituted the educationalist (B1), a project manager (initially
B2), and two student developers with very limited experience (B3, B4). Typical
interactions were dominated by B1, but with contributions from the others.

7.2.3 Company C
Company C is a well-known and long-established multi-national organisation, providing
information services mainly via the Internet to a range of companies and individuals. The
department we worked with provides membership facilities, managing payments and
controlling access to the company’s services.

7.2.3.1 C’s Developers
We were introduced to the company by C1, an experienced software tester, who had an
interest in encouraging security. The team members involved were testers, managers and
programmers. The membership system is a mature software, but there is a policy of
continuous improvement; currently the system is migrating to a micro-services
architecture. All the team were competent and experienced professionals, but in contrast
to company A we noted more emphasis on inter-departmental politics.

During the interventions, C company changed policy on testing, disbanding the separate
QA team; three of the staff we had been working chose to take redundancy. Two of these
we managed to contact, and they agreed to exit interviews by video and telephone. As
researchers, we found arrangements difficult to make (probably due to the
reorganisations), and managed only one follow-up session after two months, and to ensure
it took place we held that on the customer site rather than by video.

7.2.4 Interview Participants
To help identify the effects of the interventions, we interviewed team members in each
company both before and after the process. We agreed up to six interviewees with each
company, enough to provide a full range of roles, and requested accordingly a cross
section of the roles and experience within each team. Table 12 shows the interviewees,
with the role, gender and an estimate of the professional experience of each.

We have included quotations in the remainder of the paper, in italics. Where the speaker
can be identified, we have cited the appropriate ID. In the recordings of group sessions,
however, it was rarely possible to identify individual speakers, and quotations are cited
with role and context accordingly, e.g. ‘Developer, Threat Assessment.’ We have edited
the quotations to protect confidentiality and indicate context: square brackets show
additions and replacements; ellipses show removals.

Throughout the rest of this chapter we refer to the author, who carried out the
interventions, as the Intervener.

For a variety of reasons (equipment failure, researcher’s omission) three sessions were
not recorded: the first follow-up Discussion for Company A, the first follow-up
Discussion for Company B, and the Threat Assessment for Company C. As mitigations,
the author kept notes and a copy of any outputs from those sessions. Where referenced,
these are indicated in brackets as ‘(not recorded)’.

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 121

7.3 How the Sessions Went
This session analyses the intervention sessions themselves, without considering their
longer-term impact.

7.3.1 Intervention Time Requirements
Referring back to Figure 39 in Section 6.2.7, the timeline needed for the interventions, it
will be seen that, despite the long-elapsed time, the total effort required from the
intervener was relatively short: a total of two days (plus counting travel time). What is
more, at least four hours of that were research interviews and not part of the intervention
itself. So, the total effort spent for the interventions was less than one working day.
Adding another day for preparation – scheduling, preparing materials for the workshops,
etc. – the total time spent by the intervener on the interventions was less than two working
days for each company. In terms of team effort involved, the participant numbers and
times involved were roughly as shown in Table 13.

Table 12: Interviewees from Each Company Team
Organisation Identifier Role Gender Experience
Company A A1 Architect Male 17
 A2 Programmer Male 2
 A3 Programmer Male 14
 A4 Programmer Male 3
Company B B1 Manager Female 25
 B2 Manager Female 13
 B3 Developer Male -
 B4 Developer Male -
Company C C1 QA Female 7
 C2 Manager Male 13
 C3 Programmer Female 3
 C4 QA Female 10
 C5 Developer Male 10

Table 13: Actual Participant Time Cost
	 Time	

involved	(h)	
Company	A	
participants	

Company	B	
participants	

Company	C	
participants	

Incentivisation	
session	

1.5	 15	 4	 16	

Threat	modelling	
workshop	

1.5	 15	 4	 16	

Follow-up	1	 1	 6	 4	 	
Follow-up	2	 1	 6	 4	 8	
Exit	workshop	 1	 10	 4	 	
Total	participant	
hours	

	 67	 24	 56	

Using Workshops to Improve Security in Software Development Teams

122 Charles Weir - October 2020

We can therefore summarise the cost of this set of interventions as shown below:

Participants Total time
Intervention facilitator: 15 person hours
Development team: 20 - 70 person hours

The cost of the interventions, therefore, is relatively small, and is within the scope of a
wide range of organisations.

7.3.2 Effect of the Incentivisation Session
All three groups engaged well with the Agile App Security Game (Section 6.2.3), with
each group discussing the security choices at length. Participants reported different
benefits, though. Some saw it as teaching about security decisions:

The game was fun, I did enjoy the game. And it was proving as per usual,
that you can't... whatever you do, you are going to lose somewhere (A3)

I think what it proved is how challenging it is to get this right. It actually
hammered home that circumstances that we all work through every single
day, which is this balancing act, between how much time you have got, vs
what is being demanded from you, from some customer somewhere. (C2)

Others as encouraging communication and knowledge exchange:

Yes, that was good. It really got everybody talking. And it could be linked
back to things that were happening within [Company C]. 'Yeah, we do
something like that, we do this and this' or 'yeah, no, we don't do anything
about that - and we really should'. (C1)

7.3.3 Effect of Threat Assessment
The Threat Assessment workshop generated some ways of thinking and conclusions that
were unexpected for the participants:

I never really thought about 'who would', so much, until you put up 'why
would somebody and who would they be' (A4)

Company A, in particular, identified two kinds of threat that were totally different from
the ‘anonymous hacker exploiting one of their coding mistakes’ that they had been
envisaging: customers viewing each other’s data; and hackers exploiting out of date
components. They also identified a range of further possible issues:

I find it a little concerning that there are so many attacks that we
traditionally haven't mitigated against. … Stuff like social engineering.
(Participant, Threat Assessment)

At the time of the first workshop, Company B were starting to work on a website for their
company. Like many developers they had not considered it in terms of security, and were
surprised to find when they thought about it that there were issues: the need to store
personal details of applicants, for example. Indeed, the discussion prompted a significant
change in their website software architecture and their rules for team members:

A big take-away for me, is that we started with a much grander idea of we
needed to be doing, and there was all this personal data... and now we have

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 123

said oh no, we just need email! And more important is things like making
sure that people's software on their computers is up to date! (B1)

The teams in Company C had a much greater a priori understanding of the security issues;
indeed, C1 had been handling security alerts and issues as part of her day-to-day role. So,
though the Threat Assessment session did identify some possible issues (such as physical
access to developer workstations), the main impact of the workshop was the sharing of
knowledge between people with different roles:

I don't think we came up with any extra, really. I think we were kind of ...
apart from us talking about it more, we have not really been able to
influence a lot of other change. But it was good to get everyone talking
again, and thinking about it. (C1)

7.3.4 Effect of the Follow-up Discussion Sessions
The discussion sessions varied far more between companies than the other two sessions,
because of the different needs of the projects.

With Company A, in the first Discussion the architects requested a prioritisation session
(not recorded). Using a shared ‘Trello’29 board, the architects and Intervener prioritised a
list of possible security enhancements derived from the Threat Assessment session. While
the intervener contributed information about industry security decisions, the main point
made was that these prioritisation decisions were for product management, with the role
of security and development experts merely being to provide context for the decisions.

The second discussion session with Company A followed more of the pattern the
researchers were expecting: a discussion of the new security activities the team were
implementing, and a discussion of the advisability of disk encryption for the server:

What [are] the advantages of database encryption, and what wouldn't [it]
give us, compared to application level encryption… and [what are the] risks
with encryption itself? (Architect)

With Company B, the first session (not recorded) was a similar discussion, discussing the
security improvements arising from the first Threat Assessment session and comparing
industry practice. By the time of the second session, however, the team had moved on to
starting a new project, so the session became an ad-hoc Threat Assessment session, using
a shared Google Doc30. The following are examples of the threats they identified relating
to public voice input for their product:

Don’t want swearwords to appear in the output.
Microphone (voice recognition) or app overhearing someone else’s talk.
Someone dominating the [microphone]. Could set a time limit….
Commands that might damage the database. NOSQL. (Shared document)

While not all the items identified may need addressing, the concerns show a promising
understanding of the wider nature of security threats.

With Company C the follow-up discussion sessions required considerable persuasion on
the part of the researchers to organise; possibly with the considerable internal experience
within their own teams, and the continuous reminder of regular security incidents to

29 https://trello.com/
30 https://www.google.co.uk/docs/about/

Using Workshops to Improve Security in Software Development Teams

124 Charles Weir - October 2020

manage, they felt little need of further external input. The single session we arranged also
felt less positive than any of the other sessions with any company – we now know this
was probably an effect of the redundancies. The discussion served as a review of the
current security improvements in action, but mostly covered relationships with other
departments: improved security enthusiasm from product management:

[In a recent strategy meeting] those that ultimately decide what we do, and
in what order actually quite happily went: 'well if it is a security issue, we
should fix it', whereas normally it is a case of 'well, we have got these
deadlines to hit, and we have got this stuff to deliver’ (Participant)

And a dysfunctional relationship with the security department:

There is a lot of stuff, security-wise, that doesn't seem to have a home,
doesn't seem to have an owner. The Security Team is happy to shout about it
when it suits them, but I wouldn't necessarily suggest that they own it, or
help you particularly. (Participant)

7.3.5 Additional Sessions
Company A at their request had an extra presentation by the intervener. This followed the
Entry Interviews and described the 8 interventions, the process we were planning to use
and the relationship to the OWASP Top Ten issues. This contributed to the success of the
interventions with Company A – indeed the exit interviews from B and C suggested such
a session:

[I would like to have included] more visual presentations. I mean, we used
the cards, and the discussions were beneficial but maybe a visual element to
that maybe a video or a presentation would help us explore in a different
way. (B3)

Maybe from my perspective it would have great to get a bigger picture of
what the programme was about. “So, this is going to be across three
different stages, and first we will have …” (C3)

Both Company A and Company B had an exit workshop (not formally analysed) when
the lead researcher was on-site for the exit interviews. In the case of Company A, this was
a discussion of how to evaluate risk for different security threats; for company B, a
discussion of the education value of the sessions and possible security-based careers for
the students involved.

7.3.6 Team Interactions
It is instructive to examine how the nature of the discussions in the workshops varied
between companies. Figure 40 contrasts different styles of interaction (by both developers
and Intervener) during the workshops and discussions with each company, showing the
proportion of dialog devoted to some of the most important categories of discussion. The
workshops varied considerably in the proportions of time devoted to the main activities:
knowledge presentation, to finding issues and vulnerabilities, and to addressing the issues
discovered. This reflects differences in culture, structure and projects between the teams.

As Figure 40 shows, Company A saw the largest proportion of time presenting knowledge
– people stating facts and information about security and the products – probably because
of the high level of software expertise and the presence of security knowledge within the
team. Company B, with the least experienced team, had less knowledge to share and

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 125

found it easiest to concentrate on possible attacks. Some of Company C’s team had
extensive knowledge both of their systems and of security aspects, but this knowledge
wasn’t well distributed across the team, so a good deal of the session constituted
Presenting Knowledge by team members. Company C’s group identified no detection
mechanisms, perhaps because detection and handling intruders was the responsibility of
a separate security department.

In all three companies we observed examples of an effective way of presenting
knowledge, Storytelling (shown separately in the diagram), narrating how a participant
addressed or was affected by security issues [82].

A particular revealing measurement in terms of culture is the amount of Banter, friendly
joshing and jokes, involved: Team A’s high performing and relaxed culture had a good
deal; Team C’s more formal culture evinced little, and Team B, with a large disparity in
status between participants, had none.

The differing proportions reflect different emphasis in the workshops. For Team A, the
novelty was discovering the true nature of their security threats, while addressing them
would be business as usual and so required less discussion. For Team B, starting from
virtually no security knowledge and working on less security-critical projects, it was more
important to find ways to deal with the smaller set of risks they did identify. And for
Team C, with good security expertise but poor communication between teams, most of
the benefit was in pooling knowledge fragmented among the participants, and hence
discussion was fairly evenly spread between the three main activities.

7.4 Outcomes
This section explores the objective outcomes in terms of identifiable improvements in the
development process and product security for each team, addressing the first research
sub-question:

RQ 4.1 What security improvements and changes were made in the development teams’
ways of working and developed products in the short term due to the
intervention?

Figure 40: Styles of Participant Interaction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Company A Company B Company C

Presenting Knowledge

Storytelling

Indentifying assets,
detection mechanisms,
threats
Banter

Quantifying risks and
identifying mitigations

Using Workshops to Improve Security in Software Development Teams

126 Charles Weir - October 2020

7.4.1 Outcomes for Team A
There were at least two significant improvements in Team A’s product and process
security as a result of the interventions. Beforehand, the developers had been thinking of
security improvements as line by line improvements in the code they themselves had
written. Afterwards, they understood that their most effective security improvements
were likely to be elsewhere:

I find it a little concerning that there are so many attacks that we
traditionally haven’t mitigated against. (A Workshop)

Specifically, they made three changes. First, in a form of Configuration Review, they
introduced a component security checker to their build cycle and embarked on a program
of updating and replacing components according to their security vulnerabilities.

We [have built] the OWASP dependency checker into our build process, …
and established a process for how we deal with new vulnerabilities in
existing libraries or adding new libraries or upgrading libraries. (A1)

Second, they identified their own existing customers as competitors with each other, and
therefore potential ‘attackers’, and identified that the permissions functionality was
therefore a major privacy issue; making fixes in this area was likely to give security wins:

I have a … task to check user permissions, and check that a user has access
to that specific entity or a set of those entities (A2)

Thirdly, they introduced a monthly focus on the OWASP ‘Top Ten’ vulnerabilities, one
at a time. This approach had been mooted prior to the interventions but was only carried
out after the initial workshops:

[A team architect] puts out a ‘we’re working through this one this week’,
and he puts up a link and it has got everybody’s name next to it, and you
read through it, and then there is more information if you want. You can ask
questions, and we have got a good internal issue tracking board. Any kind
of potential thing, big or small, goes on there, and it can get prioritised into
our work properly. (A4)

And in one of the discussion sessions they established that the prioritisation of security
features required product management, not development, decisions:

That is where the priority call would come from. I think [Product
Management] do understand it, … but there is always going to be that
element of weighing up (Group Session)

An unusual and intriguing approach they also tried was having one of the team be a covert
‘saboteur’, occasionally introducing security defects to see if the review process would
find it; in practice, though, they found it problematic:

One team did the saboteur exercise … It was a bit mixed. The saboteur
didn’t enjoy being a saboteur... (Group Session)

7.4.2 Outcomes for Team B
Team B, with little prior security experience, had more potential improvements in process
and in product security. As a result of the first Threat Assessment process they made

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 127

several changes. They abandoned plans to store personal data in a website server
database:

We said about the form, that it would send an email [instead of saving
personal data on the server]. (B1)

In addition, they introduced improved security and backup for development workstations
and code repositories, against the threat of malicious code modifications or access to
personal data:

[We did] an audit on our computer systems: on our laptops… and the
laptops that the students are bringing. We do scans, and make sure that the
antivirus and anti-malware protection is all up to date. (B1)

I also update my data a lot more, I back it up, not just to a file server but
with a USB. (B2)

Later, as they started further projects, they introduced their own Threat Assessments:

We developed a threat model at the start of our [later] project, and it is
used in the code reviews and testing. (B1)

These seem to have been effective; for example, they identified a need to secure their API
key management, an example of Configuration Review:

We need to make sure that … those [API] keys don’t become public, and
that all students know that we have to do that. (B1)

7.4.3 Outcomes for Team C
There were no identifiable improvements to Team C’s process or product directly
attributable to the interventions. The primary reason for this is that their security
knowledge and practice as a team were already good: better than they may have realised:

I’m not sure too many changes were made. (C1)

While some changes were made as a result on ongoing security improvements:

I’m much happier because we started working with Two Factor
Authentication… for our client… admins… (C5)

the participants did identify improved communication and understanding as resulting
from the interventions:

I think it got everyone talking about security a bit more, especially within
our team... There was a lot of security things going on that I didn’t know
about. (C1)

7.4.4 Security Learning as a Result of the Interventions
As discussed in Section 7.1.1, we looked for participants’ appreciation of the importance
of Assurance Techniques, especially Threat Assessment. Table 14 shows the results of
the corresponding analysis, along with brief descriptions of each participant. The top lines
(A1–C5) consider the exit interviews for each participant and identify how many
statements indicated internalised understanding of each assurance technique. The bottom
three lines consider group discussions towards the end of the process and show the

Using Workshops to Improve Security in Software Development Teams

128 Charles Weir - October 2020

number of participant statements that showed similar understanding. Deeper shades of
blue highlight higher counts.

Since the Intervener was not promoting Penetration Testing and Code Review, there was
no attempt to analyse the discussion for them. Surprisingly, only A1 showed appreciation
of the Incentivisation Session. So, none of these are shown in the table.

As Table 14 shows, though both teams B and C implemented many of the assurance
techniques, many of the individuals we interviewed did not evince a strong understanding
of the reasons and approach to do so for future projects. Note however that since this
understanding was estimated from participants discussion and there were no explicit
interview questions about each technique, the omission may not reflect the true
understanding of the participants involved.

However, members of the Team A gained a good understanding of the techniques; we
can conclude they did not implement Automatic Static Analysis as a positive decision
based on the value of using it—an example of good security process. The leaders of teams
A and B indicated they had learned aspects of future Product Negotiation:

I guess, one challenge, as always, is playing what we, as architects, believe
are the most pressing security concerns, against what customers are asking
for in terms of dealing with security concerns. (A1)

I would …feel confident to be able to talk to people about our security
policies and how we manage security (B1)

And that they appreciated the need for Threat Assessment:

[If I was advising a team on security] I think brainstorming threats and
vulnerabilities and assets is really helpful. (A1)

Table 14: Evidence of Learning by Interviewees

ID Ro
le

Ex
pe

ri
en

ce

(y
ea

rs
)

Au
to

m
at

ed

St
at

ic
 A

na
ly

si
s

Pr
od

uc
t

Ne
go

tia
tio

n

Co
nf

ig
ur

at
io

n
Re

vi
ew

O
n-

th
e-

jo
b

Tr
ai

ni
ng

Th
re

at

As
se

ss
m

en
t

A1 Architect 17 1 4 3 3 3
A2 Programmer 2 2 2
A3 Programmer 14 1 3 2
A4 Programmer 3 2 1
B1 Manager 25 1 2
B2 Manager 13
B3 Programmer <1
B4 Programmer <1
C1 QA 7 1 1 1 1
C2 Manager 13 1
C3 Programmer 3
C5 Programmer 10 1 3
A Team discussion 6 1 11 6 2
B Team discussion 2 3 4
C Team discussion 4 1

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 129

And one of the things that I think we probably are doing, as a result of being
part of this process, is that auditing, that thinking things through first, what
are our security issues, what are our risks, and how we are going to deal
with those, in terms of the design. (B1)

7.5 Outcomes after One Year
The additional interviews after one year for A and B allowed us to address:

RQ 4.2 To what extent did the changes made in the development teams’ ways of working
persist over a one-year timeframe?

7.5.1 Outcomes after One Year for Team A
A year later, secure development had become increasingly important to sales (Product
Negotiation):

With every sale we will get stringent questions around security. … I think,
increasingly, there are more questions around development processes, and
application security. And clearly, without being able to answer those
questions satisfactorily, we wouldn’t be able to sell. (A1)

Configuration Review is now part of their development process:

The OWASP dependency checker is very much embedded in our process.
We have never yet got it to the point where all the dependencies are green!
But we do now appear to be at the point where it is a regular part of our
process to check for new vulnerabilities that have been found, and to add
upgrades for those libraries that contain known vulnerabilities, within,
either, the next release, or the release after that, depending on how much
other pressure there is on our road map. (A1)

Disappointingly, the two innovative forms of On-the-job Training instigated by the teams
independently of the workshops had not continued:

Sprint by sprint [we were] picking up one of the OWASP Top Ten, and
getting all the developers to review it, and identify issues where we weren’t
meeting those things. That, sadly, has fallen by the wayside … [because] we
didn’t have the bandwidth on our road map to deal with the things that
people were highlighting. (A1)

[The secret saboteur] carried on for a few sprints, I think it didn’t work out
quite so well, when somebody got accused of being the saboteur, when
actually it was just a genuine mistake they made! It then became very
embarrassing for that person. I think that fell by the wayside, slightly! (A1)

They were, however, considering using an Automated Static Analysis tool:

One of the things on our backlog is bringing in SonarQube which might
potentially identify security issues in the code. (A1)

Using Workshops to Improve Security in Software Development Teams

130 Charles Weir - October 2020

7.5.2 Outcomes for Team B after One Year
Since the emphasis for Team B is on training, it was encouraging to find after one year
that they had continued finding ways to instigate development security. Specifically, they
now had Incentivisation Sessions, and they were teaching Threat Assessment:

We are just starting a new project, so part of the induction, and part of the
on-boarding for all the students, is that we do a little bit of security training,
and we do a threat modelling exercise. (B1)

They now had security Code Reviews:

And then, as far as our code reviews are concerned, [we are] actually
looking at security aspects, at every stage. So, each time we are doing a
code review, security is one of the things on the form to tick. (B1)

And they had various forms of On-the-job Training:

We had a few other students who come in at a later stage, and [B4] did a
nice ‘Brown Bag’ talk on security. And we are passing that on. (B1)

Particularly gratifying for us was that the intervention helped identify an aptitude in one
participant for security work, and to inspire a choice of career:

And [B4] who was going to be a struggle because of his Maths and English,
his options going forward are quite limited, but he is… about to start a
Level 2 Traineeship in Cybersecurity! Something that came out of your
research was really how interested he is in it. (B1)

7.5.3 Techniques Adopted
Table 15 summarises the above outcomes: shaded cells indicate new assurance techniques
in use as a result of the intervention process. As discussed in Section 7.1.2, throughout
the analysis we were careful to distinguish changes arising from the interventions from
those due to pre-existing plans or other external factors; so, for example, Team A’s trial
of On-the-job Training and plans for Automated Static Analysis are not credited to the
interventions.

Table 15: Summary of Techniques Adopted after One Year
	 Team	A	 Team	B	 Team	C	
Incentivization	Session	 	 In	regular	use	 	
Threat	Assessment	 	 In	regular	use	 	
On-the-Job	Training	 Introduced,	but	

abandoned	
In	regular	use	 Already	in	place		

Product	Negotiation	 In	regular	use	 	 Already	in	place	
Configuration	Review	 In	regular	use	 In	regular	use	 Already	in	place	
Automated	Static	
Analysis	

Planning	
introduction	

	 Already	in	place	

Penetration	Testing	 Already	in	place	 	 Already	in	place	
Code	Review	 Already	in	place		 In	regular	use	 Already	in	place		

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 131

7.6 Blockers and Motivators
The previous two sections show the outcomes from using the interventions, but provide
little indication of what was happening to lead to those outcomes. The large amount of
data available in the form of transcripts of the workshops—including the follow-up
session—allow us to address:

RQ 4.3 What aspects of software development as practiced by the teams supported or
hindered adoption of the various security techniques?

Using the same open coding as before, we analysed the interviews and workshops to
identify ‘blockers’, problems that threatened to prevent adoption of the practices; and
‘motivators’, incentives for practicing secure software development. In total, we
identified 44 mentions of blockers and 27 mentions of motivators.

7.6.1 Problems and How They Were Overcome
Analysing the workshops and interviews in more detail, we identified several problems
encountered in carrying out security enhancements. We have termed these ‘blockers’, and
against them we have identified corresponding ‘motivators’ – benefits or practical
solutions – that helped team members to overcome them. Table 16 shows a selection of
the most important such blockers and their corresponding motivators.

Table 16: Blockers and Motivators

Blocker Motivator
The significant work involved in
upgrading a range of components, and
modifying the code to support revised
APIs where required for the upgraded
versions.

We haven't necessarily got to
as much of it as we would
have liked to. Hopefully, the
architect guys… [will] try
and feed some of those
stories in. (A3)

The satisfaction of seeing ‘red lights’ turn
green as the components were updated:

You've got lights that you can
turn green - it becomes
relatively straight forward to
go through turning them
green, one after another until
they are all green (A1)

Also, the improved support and
documentation in later versions of the
components:

Usually the APIs are clearer.
… The older versions of
documentation are now
extinct (A3)

Using Workshops to Improve Security in Software Development Teams

132 Charles Weir - October 2020

Blocker Motivator
More generally, the additional work
involved in implementing and
prioritising security enhancements:

[Only] a certain amount of our road
map time is given to architecture. And
we have ended up diverting most of
that time to addressing security
vulnerabilities in one way or another,
since you first came. And there is still
more to do. The downside of that is,
obviously, that we don't address other
architectural concerns like
performance, or code quality. (A1)

The benefits of security as a feature,
whether tick box support for the audits of
potential customers, or actual unique
selling propositions when compared with
others.

I think it has come at just the right time
for us, because … the world is moving
forward in terms of expectations
around security… [and] we are getting
more customers for whom security is a
bigger concern (A1)

The difficulty of learning from existing
security sources.

I still find reading the OWASP stuff
difficult. (A3)

Learning as a group.
We’ve adopted this idea of focussing
on a particular one of the OWASP Top
Ten each release. I think that went
pretty well in the first release. (A1)

Certain security services not being
available to a target user base.

We could use … Facebook logins…
but it could be blocked by the firewall
by proxy … and a lot of our target
audience is people in colleges and
schools, who wouldn't necessarily be
able to get to that. (Participants, B
Threat Assessment)

Alternative providers
No college … would block access to
Google… And … you can set up a
Google account with any email
address as well. (Participants, B
Threat Assessment)

Unhelpful company policy on tool
provision.

So AlertLogic is your classic
enterprise solution for something like
this, where … it takes 5% of all the
resources on the machine, and is
really hard to set up, doesn't work
when containers are involved, and
takes six months to roll out a patch'…
So, I was like 'why don't we use
something new' and [management]
were like 'nooo'… 'We have already
paid for this other one'! (Participant,
C Follow-up)

Using additional tools to the company-
specified ones.

We ended up using two: an open
source one, Falco, which sends us
slack alerts if it detects any weirdness
on [our microservices architecture],
and Alert Logic. (Participant, C
Follow-up)

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 133

Blocker Motivator
Friction with other departments over
security issues.

So, people would end up doing the
work, and then having to get sign off
from the Security Team after it, or
having to make changes to it, and
everything else! So, between
Development and Security Team there
is a lot of friction which obviously
doesn't help. (C1)

Proactive interaction over security issues:
[In my new company] a member of the
Security Team is involved, when we
are planning the development work,
and then after we have deployed it, it
goes into our [release testing]
environment, and the Security Team
have a week with it to test it, from their
side, to check there is no
vulnerabilities. (C1)

7.6.2 Categorising Blockers and Motivators
The blockers and motivators fit broadly into the following categories: organisational
aspects, supporting tools and the product/business themselves. Figure 41 shows to what
extent each was referenced by participants from each company: blockers are shown to the
left; motivators to the right. The following Sections 7.6.3 to 7.6.5 explore each category.

7.6.3 Organisational Blockers and Motivators
Under organisational aspects we found blockers in management issues such as no clear
ownership of security in the organisation, and time and workload management. This is
essentially the key scarce resource in organisations, and poor management of employees’
time and workload will override any personal, positive factors [152]. Participants from
Team C described a dysfunctional relationship with a security team that was required to
sign off on products but gave no guidance to developers and was not approachable for

Figure 41: Mentions of Blockers and Motivators, by Company

40 30 20 10 0 10 20

Product and Business

Tools and Games

Organisation

Company A Company B Company C

Organisation

Tools and Games

Product and Business

Blockers Motivators

Using Workshops to Improve Security in Software Development Teams

134 Charles Weir - October 2020

help. Their security team apparently practiced an internal ‘security through obscurity’
approach, which makes learning from security issues difficult for developers:

It was almost as if this information was kept confidential, on a need to know
basis, and unfortunately it means that [development] teams will find it
difficult to learn from the event. (C2)

This is reflected in the substantial number of organisation blockers identified by Team C
in Figure 41. Two participants from Team A also noted that while the security education
received in the organisation was interesting and helpful, it was frustrating that there was
no space for reflecting on it or practicing it when developing.

At the same time, management can also provide a motivator. In Team B security aspects
were integrated into the development processes and acknowledged in planning:

“We needed to put it into our procedures, not just into our thoughts, but into
our ... you know, 'this is the way we work; this is what we do'. This is what I
have got out of it.” (B1).

One participant in Team C reiterated this point by considering holistic thinking about the
product to generate security understanding and motivation. Another participant suggested
that security targets should be part of performance indicators for employees in order to
motivate work on security.

7.6.4 Supporting Tools as Blockers and Motivators
In terms of supporting tools, Teams A and C used a large number of tools, games and
procedures to support their secure software development processes. A few of these
approaches were abandoned due to their poor design: one game in Team A caused
embarrassment to individuals, and made employees feel uncomfortable (see Section
7.5.1). Two participants noted the complexity of their infrastructures and the difficulty of
integrating and configuring off-the-shelf security solutions, especially when legacy
software is involved. In particular, encryption, key management and cloud computing
platforms were mentioned as aspects where achieving security was unreasonably
difficult.

Yet at the same time, outside influences were also perceived as motivators for security.
In Team C, compliance checks, certification and recent relevant legislation have all
caused an increased interest in security in the organisation, and this has driven security
improvements. The participants also mentioned changes in architectures as motivators for
security improvement, as in the participant’s opinion improved features and improved
security often co-occur. The developers are also keen to release their code to the public,
motivating a greater focus on security:

Our problem, I think, here is that we have a tendency to want to make our
code repositories public, as a means of helping the wider world. The
problem with that is that you automatically put yourself in a vulnerable
position. (C2)

7.6.5 Business Function Blockers and Motivators
The third category of issues centre on the team’s business function. Team A noted that
customer’s security policies and requests for customisation of the product are significant
barriers to maintaining secure code and good policies. In Team C security was reported

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 135

to be difficult to sell. Yet in Team A security customers were actively requesting security,
making them a motivator for secure software development. The recent increase in news
coverage on security is also seen as a motivator in both companies:

Some of it could be good old-fashioned scaremongering due to what has
happened in the press, but if that is what works, then fine, we'll take that.
Because the reality is, it was the stuff that needed to be done.” (C2)

7.6.6 Tension Between Blockers and Motivators
All three organisations had motivators in the categories where blockers were present. But
these motivators where not created in response to the blockers, but rather as independent
encouragements for secure software development.

The implication for development teams is the need both to encourage the motivators, and
to resolve the blockers. Since most were outside the immediate control of the developers,
this is an organisational, rather than a developer, opportunity for improvement.

7.7 Discussion and Next Steps
This section returns to the research question:

RQ 4 What security outcomes did the ‘Developer Security Essentials’ package have,
and what aspects contributed most to those outcomes?

It explores how the answers to RQ 4.1, RQ 4.2 and RQ 4.3 in the previous sections
provide a basis for the next stage of the research.

7.7.1 Estimate of Impact
While it is early to know the long-term impact, it is unlikely that that Company A’s teams
will remove their component security evaluation and upgrade process, nor lose the benefit
of the permissions improvements. Whether the remaining security enhancements
discussed in the first follow-up session get incorporated is, correctly, a business rather
than a technical decision; it is promising that the architects are asking the right questions
(about risk evaluation) to support business in making that decision.

Similarly, we know from feedback (Section 7.5.2) that Company B’s project leaders now
include security in their project planning, instructions for students, and general company
management; and their students are more aware of security issues.

Some key learning points, especially that security is more than avoiding the OWASP Top
Ten in your code, will remain with all the participants from Companies A and B.

In the case of Company C, the most we can say is that the interventions contributed to an
existing trend of increased security awareness.

7.7.2 How the Interventions Worked
The impact of the interventions differed between teams: not only in the nature of the
security issues addressed; but also, in the teams’ responses to the interventions and in
how they benefitted. Team A introduced better development processes; Team B gained
an awareness of several specific security improvements and the need for Threat
Assessment; and for Team C the interventions prompted better communication and

Using Workshops to Improve Security in Software Development Teams

136 Charles Weir - October 2020

understanding. Sections 7.4.1 to 7.4.3 explored the differences in the ways the teams
responded to these interventions.

The successes identified came through the developers’ choices. As the Expert Survey
concluded (see Section 4.14), to be effective a program needs to motivate rather than
simply direct the teams involved. And, indeed, the interventions were successful to the
extent that they could change the developers’ thinking, understanding and motivation.
The interventions involved, predominantly, conversations between developers, allowing
them to learn mainly from each other, and to motivate themselves rather than respond to
outside pressures. Table 15 and Table 14 suggest that this was an effective motivation
and learning approach.

Indeed, by contrast to the results of earlier studies based on interventions using
Penetration Testing as a motivator [134,172], in this study Table 15 shows that for both
Teams A and B the long term impact after one year was still important.

7.7.2.1 Interaction with Other Stakeholders
The analysis of blockers and motivators identified during the interventions (section 7.6)
found that a large majority of both involved interactions with either the business function
or other aspects of the organisation. It follows to improve development security it will
help to work explicitly on these interactions.

Of the key assurance techniques identified by the expert survey (Section 4.4), two are
related to such interactions: Product Negotiation, and to a lesser extent, Threat
Assessment. We conclude that exploring ways to enhance these two techniques by
addressing blockers and encouraging motivators has the potential to deliver further
improvements.

7.7.2.2 Learning Points for Developers
Table 17 highlights three learning points for software developers from the above
discussions: the effectiveness of team activities, key assurance techniques, and the
importance of organisational issues.

7.7.3 Impact of the Active Developer Model
Several aspects of the interventions suggested the effectiveness of the Active Developer
Model, as follows.

Company A discovered security and privacy threats and acted as ‘customers’ for security
enhancements independently of their company’s security specialists (Section 7.4.1), only
becoming demotivated when they were disempowered from carrying out the mitigations
they suggested (Section 7.5.1).

Company B lacked security specialists to provide an alternative to the Active Developer
Model; yet participants B1 and B2 adopted security principles enthusiastically (Section
7.4.2), and the discovery of B4’s aptitude for software security thinking even led him to
a career in the area (Section 7.5.2).

Though the impact of Developer Security Essentials in Company C was limited, the fact
that their software security practices were effective was itself a vindication of the Active
Developer Model; since their relationship with the security specialists in the company
were dysfunctional (Section 7.6.1), the success of the software security can only be
attributed to being driven by the developers.

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 137

7.7.4 Future Work on Assurance Techniques
The importance suggested by Section 4.4 of a small number of assurance techniques
provides an incentive for further research on those techniques. While Automated Static
Analysis and Penetration Testing have received a good deal of research attention,
participant comments, especially Blockers and Motivators, suggest areas for inquiry for
others:

Threat Assessment Participants requested example expert assessments for different
domains and types of software, to act as a basis for their own
assessments.

Configuration
Review

Several Blockers suggest a need for improvements to tools and
to vulnerability databases to support more fine-grained
component analysis.

Code Review Traditional line-by-line code review may not be optimal for
security issues: one participant, for example, described instead
asking developers to show in their code how they addressed
specific security issues. There is a need for experimentation
investigating the merits of different approaches.

Table 17: Advice for Software Development Teams
Apply Team
Activities to
Security

All the workshops derive their effectiveness more from
discussions between participants than from any information
provided by the intervener, and as Section shows the nature of
these discussions was different for each team. So, the success of
these interventions can be attributed to the team nature of the
activities, and on the participants bringing their own unique range
of expertise and knowledge to them. Whether or not a given team
uses the specific workshops described here, we conclude that
there is benefit in regarding software security as a team, as much
as an individual developer, process.

Focus on Key
Assurance
Techniques

In an example of the Pareto Principle, that 80% of the benefit
often derives from 20% of the input [42], the results of this
chapter show that introducing three assurance techniques that are
within the scope of most development teams, out of out of twenty
in use by industry, are together capable of delivering a large
impact. We conclude that teams will benefit from concentrating
first on these techniques, namely Threat Assessment,
Automated Static Analysis, and Configuration Review.

Address
Organizational
Issues

As Figure 41 shows, some 40% of mentions of issues by
participants, both of Motivators supporting security improvement,
and Blockers discouraging it, are ascribable to organizational
issues. Whilst this finding will not surprise any security
professional, it emphasizes the need to regard the promotion of
software development security as a systemic, rather than purely a
development team, matter.

Using Workshops to Improve Security in Software Development Teams

138 Charles Weir - October 2020

Product Negotiation Participants requested methods to express specific security
improvements as organisation benefits; and ways to identify the
probability of different security breaches. From Section 7.7.2.1,
we also conclude a need also to find ways to identify and address
blockers and motivators during the process.

Incentivisation
Session

Alternatives to the Agile Security Game include Capture-the-
flag games, Penetration Test-based sessions, and case study-
based training. While this work proves the success of the first,
research would be valuable to compare other approaches in
differing situations.

On-the-job Training The interventions provide only a one-off security improvement.
Games such as the ‘covert saboteur’ in Team A offer
opportunities for developers to develop their skills further.
However, as we saw, the effectiveness of such approaches
depends on personal aspects and team dynamics (Section 6.2.1).
Research is needed to provide low-time-cost ways to continue
the team security improvement process.

7.7.5 Viral Distribution?
For the interventions to have a longer-term impact, we wanted participants with the
intervention work not only to improve their own projects, but also to understand how to
take the interventions and use them themselves in other contexts.

As discussed in Section 7.4.4, the results were generally disappointing, though the leaders
of Teams A and B did show understanding of Threat Assessment and Product
Negotiation.

7.7.6 Next Steps
We identified three key areas for future work on the interventions. First, the participant-
driven nature of the workshops meant that not every technique was covered for every
team: Team B did not discuss Automated Static Analysis, Penetration Testing, nor Code
Review, for example. One participant suggested a checklist or take-away sheet after the
first day’s presentation:

I think maybe some sort of tick sheet in terms of “have you got these things in place?” to
take away, that might be a good addition (A1).

Second, for the program to scale to a wider number of participant teams, we needed
intervention leaders who appreciated the aims of the different sessions, such as the
importance of an Incentivisation Session to achieve team motivation. Yet Table 14
suggests that this knowledge was not successfully conveyed to many of the participants.
Nor did any participants learn how to use the Developer Security Essentials intervention
themselves. We identified a need to motivate and teach some participants to lead the
intervention.

Third, an important area for improvement was in Product Negotiation: both in methods
to express specific security improvements as organisation benefits (Section 7.7.4) and to
gain the time and ‘mind-space’ to use effectively the security learning the team had gained
(Section 7.6.3). We considered that an extended workshop might be a suitable way to
support developers in doing this.

Chapter 7: Package Trials (Magid)

Charles Weir - October 2020 139

In terms of the methodology used for the trials, we identified two improvements to make:

1. There were too few companies involved for us to deduce much about the effects
of different contexts on the effectiveness of the intervention. Involving more
would give more scope for such deductions.

2. The changes resulting from the interventions were discovered at haphazard; the
analysis approach derived example improvements but did not necessarily provide
consistency between companies. For further work, we wanted a more consistent
analysis of the understanding gained and techniques implemented.

These improvements were incorporated into the next project.

Using Workshops to Improve Security in Software Development Teams

140 Charles Weir - October 2020

8 Further Trials (Magid 2)

This chapter describes a further project, Magid 2, involving a second round of trials with
an improved Developer Security Essentials package.

This project reflected an emphasis on making the intervention potentially scalable for use
by large numbers of organisations. Its research question was therefore:

RQ 5 Which aspects of the ‘Developer Security Essentials’ intervention are effective
at improving security when used independently by teams from a variety of
cultures and different types of organisation, and why?

The three most salient changes from the previous project are:

Independent Facilitators: We trained one or two facilitators from each organisation, and
they then managed the intervention. The purpose of this was to transfer the ability and
confidence to run the workshops to the facilitators, potentially allowing them to run
further workshops without the support of the research team.

Variety of Cultures and Types of Organisation: In this project we carried out the
interventions with many more groups: eight as compared with three in the previous
project. In addition to the aspects of organisation, such as size and security capability, we
also identified organisation culture types for each group.

Support for Product Negotiation: A further ‘Threat Sales’ workshop was added after
the ‘Threat Assessment’ workshop, to help developers in representing security and
privacy issues as business factors.

Section 8.4 gives more details.

8.1 Choice of Methodology
Whilst Canonical Action Research (CAR) had worked well as a basis for the previous
cycle of trials, in attempting to use it for a second cycle we came across a ‘showstopper’:
CAR focusses on the changes to the ‘clients’, and does not support changes to the list of
clients. Specifically, in CAR, the invariant across cycles is the client (occasionally, a list

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 141

of clients). Here the invariant was different: we were using the same intervention with a
different set of clients. CAR could not handle the Magid 2 project.

While the techniques of CAR—recording the interactions involved, double coding them
and analysing the results—still remain suitable for evaluating the intervention, the
philosophy and overview guidance do not.

Accordingly, we moved to using Design-Based Research with CAR techniques, as
described in Section 3.6. Sections 3.6.3 to 3.6.5 describe the practical aspects of doing so
to support designing an intervention.

8.1.1 Ethical Issues
We obtained Ethics agreement for this project from the Lancaster University Faculty of
Science and Technology Research Ethics team approval as a continuation project from
the previous one.

Two of the companies involved required the deletion of transcripts and audio at the end
of the research project (for confidentiality reasons). Because the coding record within
NVivo itself has possible future research value, we want to do this without destroying the
codes assigned. We therefore plan to extract and anonymise any quotations, delete the
relevant audio files, and overwrite all non-space characters in the corresponding
transcripts in the NVivo tool with ‘x’s to preserve the coding while satisfying the
companies’ requirements.

8.1.2 Data Analysis in the Magid 2 Project
Section 3.6.4 describes the generic approach we used to evaluate the Developer Security
Essentials intervention; and Section 3.6.5 describes the evaluation of that approach. The
‘Aspects’ were assurance-related techniques, such as ‘Pen testing’. We started with the
list from the Expert Survey (4.4) and added further techniques as they were mentioned in
the interviews.

The ‘Levels’ were the degree of engagement for each technique as follows:

No mention The technique was not mentioned (though it might have been known
or used).

Aware Knowledge and understanding showed of the technique.

Planned Existing plans to incorporate the technique into development.

Using The team have used the technique.

Established The team use (or consider for use) the technique in each new project
they take on.

None of the participants nor teams indicated in any of the discussions that any of the
assurance techniques were dropped or used less as a result of the interventions—even
though if this had happened it could have been a positive result, representing better using
of resources. We therefore concluded that in cases where the After engagement value was
apparently less than the Before one, this only meant that the interviewees had not happen
to discuss that level of engagement as much in the After interviews31; and therefore that

31 In this project, this happened in less than half a dozen cases out of over a hundred, and in each case only
by one level of engagement (3 rather than 4, for example).

Using Workshops to Improve Security in Software Development Teams

142 Charles Weir - October 2020

it would be misleading to show it as a decrease in engagement. We therefore removed
such decreases by increasing those After engagement values to the corresponding Before
values.

As in the previous project (see Section 7.1.2), we were careful in coding to distinguish
new assurance technique engagement attributable to the interventions, from engagement
due to other external factors such as customer demand or other security specialists. We
did not code these latter increases in engagement levels at all.

8.2 Participating Developer Groups
The eight different organisations were selected opportunistically. As in the previous
project, the individual members we interviewed are identified using the team letter and a
number: ‘D1’. However, in this case not all of the organisations involved are companies,
and in many cases the workshop participants came from several different teams. In this
discussion, therefore, we refer to the set of participants in a single Developer Security
Essentials intervention as a ‘group’. We use an identifying letter for each group, and the
sequence of letters continues from the previous project, hence are D – K.

Several recruitment methods were used, as follows:

University: used the support of the Lancaster University ‘Academic Centre of Excellence
in Cyber Security Research’ (ACE-CSR) team with its connections to government, and
the Lancaster School of Computing and Communications Business Engagement Team
and their contacts with companies near Lancaster.

Personal: used business contacts developed by the author in previous work in industry.

Conference: used leads from running the ‘Agile App Security Game’ (section 7.3.2) as
a workshop at several UK developer conferences: AgileNorth, Agile Cambridge and
Agile Manchester.

As in the previous project, a selection of the participants was interviewed, including the
facilitator and usually a team leader, both before and after the interventions.

All of the developers interviewed were male, as were all managers and testers; only the
three product managers were female.

From the previous project with teams A-C, it was known that the culture of the teams
would have a definite impact on the nature of their interaction in workshops. Accordingly,
we have added a categorisation of the organisation culture. This was a subjective estimate
by the author based on the team’s behaviour during the workshops, using a taxonomy
defined by Charles Handy [80] to describe the power of individuals’ roles and functions
within an organisation. Table 18 summarises that taxonomy; it derives from the
Provenmodels website [116].

8.2.1 Summary of Participating Groups
Table 19 summarises the groups, showing the organisation sizes (Small for less than 100,
Large for greater than 5000); the culture of each team as discussed in the previous
sections. It indicates the number of participants, the way in which the team was recruited.
It also shows ‘Security Maturity’, an estimate of their ‘secure software capability

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 143

maturity’ [90] by the author based on public information about the organisations and the
groups’ discussions during the workshops, as follows:

Low: Little or no awareness or activity related to software security

Medium: Aware of and addressing security issues, typically including some
developers with good security knowledge.

High: Experts at software security, within an organisational culture that assigns it
a high priority.

For each intervention, the group designated one or two ‘facilitators’ (D1, E1, etc), and it
was these facilitators who arranged and led the interventions. Since the skills and
aptitudes of these facilitators were likely to be important, the table shows their roles and
indicates, by the use of the plural, how many were involved.

The table shows how the different means of recruitment introduced groups with
corresponding cultures. The author’s prior contacts with companies tended to be with the
CEOs of Small to Medium Companies (SMEs); the workshops would only happen where
such CEOs have influence over technical training for their teams; accordingly, we find
the groups recruited tended to be Zeusian in nature. Similarly, the conferences which led
to recruitment were in the ‘Agile Cambridge’, ‘Agile Manchester’ series: conferences
targeted at senior technical development professionals, particularly ‘scrum masters’: a

Table 18: Organisation Cultures (after Provenmodels [116])
Zeus

Power is concentrated in the hands of one individual, the top boss.
Control radiates from the centre’s use of personal contacts over
procedures. The most powerful person dominates the decision making
process.

Apollo

A strong role culture places a premium on order and efficiency. Power
is hierarchical and clearly defined in the company's job descriptions.
Decision making occurs at the top of the bureaucracy.

Athena

Power is derived from the expertise required to complete a task or
project. The work, itself, is the leading principle of coordination.
Decision making occurs through meritocracies. Employees move
frequently from one project or group to another.

Dionysius

Organisations exist for individuals to achieve their goals. Employees
see themselves as independent professionals who have temporarily lent
their services or skills to the organisation. Management is considered an
unnecessary counterweight and given the lowest status. Decision
making occurs by consent of the professionals.

Table 19: Participating Developer Groups
 Org. size Culture Security

Maturity Si
ze

 Facilitator(s) Recruited

D Large Athena Low 10 Managers University
E Large Apollo High 12 Security specialist University
F Small Zeus Low 3 Manager University
G Medium Zeus Med-High 10 Managers Personal
H Small Zeus Medium 8 Developer Personal
I Medium Athena Medium 14 Manager + Developer Conference
J Large Apollo High 14 Security specialists Conference
K Medium Athena Medium 16 Developers Conference

Using Workshops to Improve Security in Software Development Teams

144 Charles Weir - October 2020

role involving the facilitation of software developers. We speculate that such
professionals tend to favour Athenian cultures, since these give experts the most power
in structured organisations (see Table 18); though Group J turned out to be marginally
Apollonian rather than Athenian.

Figure 42 visualises some of the information from Table 19, adding the roles and numbers
of interviewees for each workshop. Each group is represented by a ring, with an area
proportional to the number of participants. The colours of segments in the ring indicate
interviewee roles. The leaders and their roles are indicated by the squares (for a single
leader) or rectangles (for two leaders) inside each ring; the colours show their normal
roles. The locations of the rings indicate the size of the organisation involved (x axis) and
the Security Maturity of the teams prior to the interventions (y axis).

Recall that we interviewed only a subset of the participants in each group. The colours of
the ring segments represent the interviewee roles, not the overall participant roles. Since,
however, we requested a representative sample of participants for the interviews, it is
probable that the proportions of roles of the participants are similar to those shown here.

The visualisation shows the wide range of group sizes, organisation sizes and security
maturity involved in the project. Unsurprisingly, only groups in large, security-adept
companies had access to security professionals, and thus only groups E and J had these
as facilitators. We had requested that product managers and testers join the groups; as
Figure 42 shows, this happened only in the smaller companies, possibly because in small
companies product managers and testers are closer to the development team, and more
amenable to taking part in group activities. The smaller companies F and H didn’t have a

Figure 42: Composition of the Participating Groups

Manager Developer
Product QA
Security

D

E

F

G
J

H I K

LargeSmall Company size

Hi
gh

Lo
w

Se
cu

rit
y

m
at

ur
ity

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 145

separate QA function; so, as shown, only the medium sized companies G and I had testers
join the workshops32.

8.3 Research Sub-Questions
As discussed in Chapter 3, Section 3.6, the method used for the research was Design-
Based Research. Specifically, we used DBR for the overall philosophy, and used the data
gathering and analysis techniques of Canonical Action Research (Section 3.5).

The two cycles of the DBR method (Figure 9 in Section 3.6.2) require separate research
questions for the Design Practice cycle and the Design Theory cycle, as discussed in the
following sections.

8.3.1 Design Practice Questions
The Design Practice cycle in DBR requires measurement of the effectiveness of the
artefact—in our case, the intervention:

RQ 5.1 To what extent did the groups learn about and adopt different security-
enhancing activities as a result of the Developer Security Essentials
intervention?

We also wanted an indication for which kinds of teams the intervention is likely to be
most useful. Though the small sample size precludes any statistical validity, such an
indication is better than nothing to suggest where to focus effort in encouraging teams to
adopt the intervention:

RQ 5.2 How does the impact of the intervention vary with different company sizes, team
cultures, facilitation styles, security expertise, and kinds of participants?

Specifically, one aspect we can influence, even if not fully control, is the facilitation style
used with the intervention in future:

RQ 5.3 How does the impact of the intervention vary with different facilitation styles?

8.3.2 Design Theory Questions
Second, the DBS Design Theory cycle requires theoretical hypotheses to test. The
previous project had taught us that improving Product Negotiation between developers
and Product Management was important for improving security (Section 7.7.6).
Returning to the positive approach derived from Appreciative Inquiry that had been
successful in the Expert Survey (Section 4.1), we concluded that identifying the benefits
to the organisation of mitigating security and privacy issues might be a good way to do
this.

As researchers, we were not in a position to quantify any actual resulting security
improvements, but we could establish whether process improvements were made or
additional resources allocated. This gives a research question as follows:

RQ 5.4 Can having developers consider the positive benefits of security and privacy
mitigations lead to security improvements in the development process?

32 Company K did not mention a separate QA function. We believe much of their testing was through
automated tests created by developers.

Using Workshops to Improve Security in Software Development Teams

146 Charles Weir - October 2020

In order to identify the positive benefits of security and privacy mitigations, we needed
participants to do two things:

• Estimate the risk and impact associated with each identified threat
• Identify positive benefits to the organisation (or customers) from mitigating the

major threats.

Originally we considered teaching participants how to estimate risk and impact; and
approaches to identifying such benefits, possibly using examples in a ‘patterns’ form [68];
but then we wondered if developers might be able to do both tasks without specific
teaching. The corresponding hypothesis, then, was:

Teams of developers can produce both adequate risk and impact
assessments and benefit analyses with minimal guidance.

The research question, therefore, was simply, whether this is true:

RQ 5.5 Can teams of developers produce both adequate risk and impact assessments
and benefit analyses with minimal guidance?

8.4 Method Implementation

8.4.1 Changes to the Intervention Package
From the previous round of trials, we had identified changes to make (Section 7.7.6):

1. A checklist or take-away sheet after the first day’s presentation;
2. Intervention leaders to appreciate the aims of the different sessions;
3. Participants to learn to facilitate the sessions;
4. Improvement in Product Negotiation to express specific security improvements

as organisation benefits and to gain the time and ‘mind-space’ to use effectively
the security learning the team had gained;

5. Involving more companies; and
6. Improved analysis approach to provide consistency between companies,

analysing the understanding gained and techniques implemented.

To achieve this, the major changes to the Intervention Package, Developer Security
Essentials, were:

1. An initial training session for the facilitators by the researchers.
2. Improvements to the instructions for the Agile Security Game, so it could be set

up and run without researchers present.
3. A checklist of assurance techniques for discussion towards the end of the main

workshops.
4. A further ‘Threat Sales’ workshop after the ‘Threat Assessment’ workshop. In

this the facilitators asked the participants to take the three or four highest priority
issues and justify them in terms of positive impact for the organisation.

8.4.2 Threat Sales Workshop
In this workshop participants split into groups, and each group addressed a different threat
from the most important five or so identified in the previous workshop (Section 7.1.1).

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 147

We made the task approachable for developers by avoiding discussion of ‘sales’ or
‘persuasion’, two activities that developers tend to avoid33. Instead the participants were
split into groups, each looking at one instruction for the participants was:

Choose one of the threats and work out positive ways in which addressing
that threat will benefit the organisation.

The thinking behind this was straightforward. Product Management professionals deal
predominantly with competing enhancements to products; their mental map is less geared
to handling risks to the business (which is a senior management role). So, for security
improvements to be assessed by product managers, they must be expressed in terms of
benefits.

Each group discussed the threat they had chosen and wrote notes on a whiteboard or
flipchart page. A representative from each group then presented their conclusions to the
other participants.

8.4.3 Practical Approach
The sessions were similar in structure to the previous round of interventions (Section
7.1.1). The entry and exit interview protocols were the same (Appendix F, Appendix G)

After the entry interviews, however, we added an extra session of 30 – 60 minutes with
one or two people from the organisations involved who were prepared to learn to be
facilitators. In that, we discussed the motivation for each of the Incentivisation Session,
the Threat Assessment and the Threat Sales workshops, and instructed the facilitators how
to lead each one.

The Threat Sales workshop followed the Threat Assessment workshop after a suitable
(typically half hour) break.

Figure 43 shows a typical timeline for the intervention. The ‘Facilitator Training’ session
also included entry interviews for the facilitators.

33 The author spent 10 years at Penrillian trying to get professional developers to do sales activities; few
were willing despite pay and other incentives.

Figure 43: Intervention Timeline

10:00

12:00

14:00

16:00

18:00

Month 1 Month 2 Month 3 Month 4

Threat
Sales

Threat
assessment Follow-up Follow-up

Incentivisation

Facilitator Training Exit
interviews

Entry interviews

Using Workshops to Improve Security in Software Development Teams

148 Charles Weir - October 2020

8.5 Research Numbers
The eight interventions generated 21 hours of interviews, which were transcribed
manually; and 47 hours of training, workshop and follow-up sessions, which were
transcribed mechanically using Sonix. The final code book contained 2859 references to
51 codes.

The Inter-rater Reliability metrics, calculated as discussed in Section 3.6.5, were as shown
on the first row of Table 20. The initial ‘Active ratings’ metric of 0.18 indicate only slight
agreement. On discussion and investigation, the coders identified several causes for this:

• In the Before interviews, and some of the After ones, there was deliberately no
attempt to ask interviewees about their use of assurance techniques, in order to avoid
bias in the responses. This meant that each coder had to carefully interpret what was
said for evidence of Assurance Techniques, and different interpretations were often
possible.

• The most common cause of discrepancies was one or other coder overlooking a single
indication of Assurance Technique use. For example, an offhand comment by an
interviewee while discussing something else, “…Which goes in the standard tool
chain after Fortify…”, might be picked up by one coder as Incorporation for Static
Analysis Tools, and not by the other coder who would thus produce a rating of Not
Mentioned for Static Analysis Tools

• There was a lack of shared understanding of some Assurance Technique definitions.
For example, should an intention to repeat the workshop with the same team in a year
be coded as ‘Further Workshops’?

The coders addressed the last point above by agreeing more precise definitions for several
Assurance Techniques; and addressed the first two points above by comparing coding on
the cases where there was a substantial disagreement. They then independently amended
their coding based on that discussion, giving the results shown on the second row of Table
20.

In the amended coding, the ‘Active ratings’ cases now show ‘moderate’ agreement. This
is as good as can reasonably be expected, given that the issues identified above. On
investigation, discrepancies appeared mostly to be assignable to one coder missing
something, so the combination of the coding from both is a valid approximation to the
ground truth.

8.6 Practical Results
Recall from Section 3.6.2 that Design-Based Research has two sets of outcomes: first the
practical outcomes in terms of measurements of the effects of the artefact in the trials and
deductions in terms of future improvements for the artefact; and secondly new theory
derived from the trial data.

Table 20: Inter-Rater Reliability Results
Description	 Metric	

(All	cases)	
Metric		
(Active	ratings)	

Initial	Krippendorff’s	Alpha		 0.67	 0.18	
Krippendorff’s	Alpha	after	Discussion	 0.73	 0.46	

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 149

This section explores the first set of outcomes: practical ones, addressing the first research
sub-question:

RQ 5.1 To what extent did the groups learn about and adopt different security-
enhancing activities as a result of the Developer Security Essentials
intervention?

It describes first the resulting list of techniques based on the full analysis; then each of
the groups undertaking the Developer Security Essentials intervention, and the results
from each34. Each section introduces the organisation and teams involved and discusses
the group’s reasons for wanting the intervention. It then describes the intervention as it
happened for that group, then provides the results of the analysis of the transcriptions of
all of the sessions.

8.6.1 Resulting List of Techniques
Table 21 shows the full list of Techniques derived from the coding. It divides them into
categories: Vulnerability Finding, techniques to find specific vulnerabilities in created
software; Process Improvements, to create an environment to better support the creation
of secure code or reduce the impact of security issues; and Education, to teach participants
and stakeholders about the previous techniques. Most of the Techniques were introduced
in Chapter 4, but the coders identified five further techniques for security improvement
from the discussions and interviews, each used by several of the teams; these are
highlighted. They also found that that one previously used Assurance Technique,
Incentivisation Session, did not reflect the way participants discussed their secure
development improvement; instead participants discussed Further Workshops.
Incentivisation Session was therefore omitted.

The resulting full set of assurance techniques is described below:

Automated Penetration
Testing

Using an automated tool to look for common, easily
exploited, vulnerabilities in a website or web service.

Automated Static
Analysis

Using automated tools to look for common vulnerabilities in
source or binary code.

Configuration Review Choosing secure components and frameworks, and keeping
them up to date

Code Review Scheduled meetings or pair programming to analyse code for
security defects

Penetration Testing Having a Security Specialist look for vulnerabilities
accessible via the web.

34 In other chapters the participant descriptions and results were separated. Given the large number of
groups here, it is easier for the reader if they are kept together.

Table 21: Assurance Techniques
Vulnerability	Finding	 Process	

Improvements	
Education		

Automated	Pen.	Testing		
Automated	Static	
Analysis		
Configuration	Review		
Code	Review		
Penetration	Testing		

Threat	Assessment	
Product	Negotiation		
Contingency	Plan		
Security	Champion		
Standardisation	

On-the-job	Training		
Further	Workshops	

Using Workshops to Improve Security in Software Development Teams

150 Charles Weir - October 2020

Threat Assessment Design-level analysis of possible attackers, motives, and
vulnerability locations (a.k.a. Threat Modelling).

Product Negotiation Empowering product management to make security
decisions.

Contingency Plan The advance creation of a plan to handle security incidents.
Security Champion Having a development team member, not usually a security

expert, with a particular interest in security. They act as the
go-to person for security issues within the development
team.

Standardisation The creation of standard security configurations, ways of
working, or ‘Secure Development Lifecycles’, plus auditing
processes to validate these.

On-the-job Training Mentoring or informal workshops, used regularly with the
development team

Further Workshops Using the entire Developer Security Essentials package with
other teams, or for the same team in a new project or with
new members.

8.6.2 Group D Results
Group D are a project team within a university, funded by a government grant to promote
business innovation. Group D’s role is to developing proof of concept products and
support applications, according to the requirements of specific businesses. The group had
been in existence for only a year at the time of the intervention. Although members
worked on several different projects at a time, all worked together as a team.

Unsurprisingly, the culture bears some resemblance to a start-up, but its situation within
a university, the grant-based funding and perhaps the fact that the staff were on fixed-
length contracts gives a more formal and disciplined feel to their ways of working.
Though academic organisations are often Dionysian, within the team the culture appeared
Athenian, with a respect for technical expertise and management experience.

The group were aware of the importance of software security but had little practical
knowledge; hence their request for the workshops. There were two projects considered in
the D Threat Assessment workshop. First was a data collection app to package grassland
information for remote analysis by an agricultural specialist, their client. Second was an
app to support managing personal and medical information for patients of a medical
services company. Unusually, the Threat Assessment ideation session found almost no
concerns with the first project, so in that session the team moved on to discuss the second
project.

Figure 44 shows the levels of adoption of the various kinds of assurance technique (see
Section 3.6.4) before and after the intervention.

Since the group’s role was creating proof of concept applications, they realised that the
actual implementation of security features and of security hardening was not important
for them; what was important was that they supported their clients in implementing secure
solutions when the clients came to implement the deployable applications. Thus the two
techniques most important to team D were Threat Assessment (determining the security
requirements) and Product Negotiation (conveying the analysis and importance of
security to their clients).

Group D’s projects tended to be relatively small, typically a few developer months, and
so the three months of the intervention provided time for several new projects starting;

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 151

the ‘Established’ rating for those two assurance techniques reflects that both were
incorporated into the new projects and into the group’s process for further projects.

8.6.3 Group E Results
Group E work for a government department delivering software for sensitive government
applications. The group was set up in the past couple of years, and many of its developers
are less experienced than the average for the industry. The session leader E1, by contrast,
was a highly experienced security specialist, now working on software development
security. His role was to provide security support to a number of groups like group E, so
his contribution to each project was relatively limited. E1 was keen to find ways to help
the development teams he supported with security, and he requested the Developer
Security Essentials Workshops accordingly.

Confidentiality restrictions limited what could be discussed in the presence of researchers.
E1 chose this particular group because their product was a form of data store, and though
it was designed to handle sensitive data, its functionality and design could be discussed
without compromising confidentiality. Indeed, to avoid the need for security clearance
for the researcher, the workshop took place in an insecure ‘public’ space: a meeting room
in a serviced office building.

The group was divided into two teams, working on distinct aspects of the product; 15
people attended the workshop. The group culture was professional and fairly formal.
Since the group’s raison d’être was their ability to deliver a security product, E1’s role
gave him considerable authority. The group at the time had nobody in the product
management role. The culture appeared Apollonian, with a clear sense of hierarchy.

The workshops showed a particular style of facilitation for the Threat Assessment session
best described as ‘directive’. The conversations were dominated by the facilitator and
other participants tended to listen respectfully. This was a big contrast to the previous
team, D, where everyone participated relatively equally.

Figure 45 shows the impact of the intervention. The largest difference between Before
and After was in Product Negotiation: prior to the interventions, both development teams
had regarded security as an absolute; every security feature and requirement had to be

Figure 44: Group D Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Using Workshops to Improve Security in Software Development Teams

152 Charles Weir - October 2020

implemented without question. That attitude remained after the intervention; what
changed was that the teams realised that some security aspects were needed earlier than
others. The teams were using an agile development process, and now negotiated with
their clients about the order of delivery of security features relative to other features.

E1 was pleased with the results of the intervention, and planned further uses of the
workshop with other teams.

8.6.4 Group F Results
Group F were from a small surveying company that had created a specialist mapping
product used by a large number of clients. The company’s role is to carry out the mapping,
store the maps in a Geographical Information System (GIS) database, and provide the
database entry and reporting facilities for clients to store their data associated with the
maps. They provide this through a web-based front end, and use servers hosted on their
office site.

The company and product are long-established, and the company remains dominated by
the Managing Director, who did not participate in the workshops. Group F have a
manager, F1, with development skills, and a single full-time developer, F2. The product
manager, F3, also took part in the workshops. The culture was fairly relaxed and informal,
though it was clear that the managing director was involved in all significant decisions (a
Zeusian culture). The team have been working together for several years, and seemed
easy with each other.

Several years before, one of the developers involved with creating the web-based version
of their product had had a doctorate in software security, and the underlying design and
implementation reflected an understanding of security issues. However, none of the
current team had any knowledge of software security. At the time of the workshops they
anticipated a future sale to a government organisation, with possible contractual
requirements for security.

Figure 46 shows the impact of the workshops. F1 took trouble to extract benefit from the
discussions, creating a table of the threats identified from the Threat Assessment session

Figure 45: Group E Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 153

and returning to it in follow-up sessions. The Threat Assessment session identified several
issues with the manual creation process of new customer accounts.

The government sale did occur, and the team used that Threat Assessment as a basis for
Product Negotiation concerning which mitigations were now required for the new
government customer and therefore got implemented; this Using of Product Negotiation
is reflected in the figure.

8.6.5 Group G Results
Group G are from a web applications developer employing some 50-100 people, mainly
development and product management staff. They produce a variety of applications for
clients, ranging from stand-alone websites to front-ends supporting complex back end
systems owned by the client. The two leads were G1 the group CTO and G2 the
Development Manager.

The group came from several teams and included two product managers and a couple of
Quality Assurance (QA) staff. Most of the participants were relatively experienced and
correspondingly senior in the organisation. The CEO (not a participant) was still
responsible for strategy and clearly involved in most aspects of the company: a Zeusian
culture.

G1 and G2 had a particular reason for wanting the Developer Security Essentials
Workshops. They were each personally expert in software security, and had a good
knowledge of what was required in the websites their teams developed. However,
increasingly they were finding that the effort their teams needed to ensure security was
not reflected in the financial rewards the company received; neither was normally
involved in pre-sale negotiations, and they had had recurring problems with being
expected to provide costly security enhancements ‘for free’. They wanted to address this
problem.

Figure 46: Group F Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Using Workshops to Improve Security in Software Development Teams

154 Charles Weir - October 2020

Figure 47 shows the impact of G’s workshops. Given the problem being addressed, the
Threat Assessment and Threat Sales workshops did not go into much technical detail.35
Instead, they looked at ways to reflect security requirements through the pre-sales and
contracts processes. They came out with an impressively simple way to discuss security
cost-benefit with a client:

The problem here is that it is a difficult conversation to have once a client’s
signed off on a project… It should it should be done at the business
development stage. People in Biz Dev should be coming to you .. and saying
“Right, I've got this client on board. Here we go. There’s three packages:
our gold level hosting package, our bronze and our silver. Do you think they
fit into any of these categories?” So, then we can go back to them as an
additional add-on as we do with other little bits like maintenance … and just
say “we've got these three packages and we reckon you fall into the bronze
package” or “you fall into the silver package. It will be an extra blah blah
blah, but we also do blah as standard and then these are the additional
extras that you can buy…” [G Product Manager, Threat Sales Workshop]

This idea of Gold, Silver and Bronze packages was taken up enthusiastically. G1 later
expanded it to five options to include other aspects of security; at the time of the exit
interviews he was creating a guidance sheet for the sales and marketing team.

8.6.6 Group H Results
Group H work for a small company selling a range of Internet of Things (IoT) devices
and their associated infrastructure. Though the company has been established providing
research services for some 30 years, it is only recently that they have moved to be a
product-based company, so the company has some of the attributes of a successful start-
up.

35 Nevertheless, Automated Pen Testing and Static Analysis were introduced as a direct result of the
workshops.

Figure 47: Group G Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 155

The group all work as a team; product management is effectively shared between H1 the
CEO, who decides strategy (so another Zeusian culture), and H3 the CTO, who makes
the day-to-day decisions on what functionality to implement. The workshop lead H2 was
a developer with a particular interest in security.

The group justifiably considered themselves good at software security; the service they
provide has a strong security component and security is part of their Unique Selling
Proposition (USP) against Asian competitors capable of providing cheaper hardware.
They viewed the workshops as a team-building style exercise to provide a measure of
reward and entertainment to the participants.

Figure 48 shows the impact of the intervention for group H. They planned further training
and possible workshops.

8.6.7 Group I Results
Group I are a well-established company providing the infrastructure required to allow a
commodity trading market to function. The market uses internationally-agreed standards
for the encryption and signing of trading messages, and this company provides systems
with information on prices, bids and offers, and supports trades between users and with
other participants in the market. It is a mature and respected company in its field, and the
participants showed a relaxed confident attitude to development. Though they have
considerable internal expertise in security, much of their security requirements have been
satisfied in the past through perimeter security; only relatively trusted people have had
access to the software. Now they have the possibility of delivering cloud-based services
as well, where perimeter security will be less relevant.

Of the two workshop leaders, I1 has a largely managerial role; I2 has the most technical
(and security) experience of the development teams in the company. Their purpose in
running the workshops was to help developers and product management engage more
effectively with security. Current versions of the product exist in a firewalled ‘virtual
community’ where all systems owned by the trading companies are connected by VPN
and are inaccessible from the wider Internet; future versions may be cloud-based.

The culture of the teams appeared relaxed and professional; there was no reference at any
time to senior management, suggesting an Athenian culture.

Figure 48: Group H Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Using Workshops to Improve Security in Software Development Teams

156 Charles Weir - October 2020

The group engaged enthusiastically with the workshops. Indeed, the day after the
workshops at which the researchers were present they decided that the outcomes from the
Threat Assessment and Security Sales were insufficient; they re-run both workshops to
gain a more complete idea of the threats and possible impact on customers. They also ran
the full suite of workshops separately with further development teams.

Figure 49 shows the impact of the workshops. As discussed above, they found value in
the Threat Assessment and Product Negotiation, and both were incorporated for the
future, along with further training and workshops.

8.6.8 Group J Results
Group J were from a well-established large company providing web interfaces for
retailers. The particular group involved had the responsibility of creating tools and
services to support deployment, and comprised about a dozen staff. The company has
development sites in Eastern Europe, and a policy of moving capable staff around, so the
group had more staff originating from outside the UK than any of the others involved in
this project. Unlike any of the other organisations except Group E, this company has a
separate security function employing professional security experts; it also has a policy of
assigning the security experts directly to the teams, and of training developers as security
experts. The culture of the group was serious, with little banter among the teams except
in the breaks, and an awareness of hierarchy in terms of both management and technical
experience. That suggests an Athenian or Apollonian culture; there seemed emphasis on
management control, so this text assigns the culture as Apollonian.

The two assigned leaders for the workshops were both security specialists: J1 was the
security specialist assigned to the group; J2 was more recently a developer and is in
training as a security specialist. The group manager, who arranged our involvement, did
not participate in the workshop, though J5, who manages one of the teams, did so. Their
purpose for the workshops was to help the communication between security specialists
and developers. There was a further technical expert, a programmer/system architect not
introduced specifically to the researchers, who joined and contributed largely to the
Threat Assessment and Security Sales Sessions.

Figure 49: Group I Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 157

Figure 50 shows the effects of the intervention. As shown, the teams were expert at
software security; while some of the participants may well have learned from the
workshops there is no measurable improvement in the development process as a result.

Both groups E and J, the ones led by security professionals, showed a particular style of
facilitation for the Threat Assessment session best described as ‘directive’. The
conversations were dominated by the facilitators (and in the case of J, one participant who
had not been interviewed, and who appeared to have a system architect role). With Group
E, the other participants tended to listen respectfully; with Group J, we observed several
of the participants, unable to participate, getting on with their email instead.

8.6.9 Group K Results
Group K were from a well-established company with a few hundred employees providing
tools for developers: some such tools are installed locally on client sites; others are cloud-
hosted. The group had a strong emphasis on agile development processes, team
interaction and structured workshops. The team style was correspondingly Athenian, with
managers providing a coordinating role and professionals given considerable autonomy.
The atmosphere was cheerful with some banter and an enthusiastic approach from the
participants.

All the participants were developers; the two workshop leaders K1, K2 were amongst the
most experienced in the group. Both had considerable experience in facilitating
workshops, and brought their own approaches to brainstorming and analysing the results
of brainstorming sessions. In particular, the techniques they used to engage participants
were considerably more effective at getting participants’ active engagement than those
that had been used by the researchers or facilitators in most of the other groups, as follows.

For the Threat Assessment, they had each participant independently write down threat
ideas on Post-It notes; then discuss them in groups. Participants then brought the notes
they had created over to a whiteboard, where they sorted them together by type of threat
and attacker, using location on the whiteboard to indicate similarity.

For the Risk Assessment, they had each participant annotate the post-it notes with
coloured dots: dots of one colour for the ones they deemed most likely, and of another
colour for the most impactful, as in Figure 51. During the break between workshops their

Figure 50: Group J Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Using Workshops to Improve Security in Software Development Teams

158 Charles Weir - October 2020

facilitators then used this ‘crowd-sourced’
calculation to assign the threat post-its to a 3x3 matrix
on a different whiteboard, as shown in Figure 52.
This had ‘low’, ‘medium’ and ‘high’ impact on the x-
axis; and ‘likely’, ‘fairly unlikely’ and ‘unlikely’ on
the y-axis. Based on that, the facilitators then chose
several threats to consider for the Threat Sales
workshop—in this case the threats in the rightmost
two squares in the top row.

For Security Sales, they took the stickers with the
four most important identified threats, put them at
different corners of the room, and had the participants
group themselves next to their preferred topic; the
participants self-organised to have similar numbers
for each. Each group then worked out their ‘pitch’ for
that threat and presented it to the others.

As shown in Figure 53, the researchers’ analysis shows an increase in awareness in the
teams of some of the assurance techniques.

8.6.10 Summary of Results
To gain an overview of the effectiveness of the
interventions, this section analyses the changes in
engagement levels seen in each group as a result of the
analysis. By assigning ordinal ratings to the
engagement levels as shown in Table 22, one can
calculate an indication of the ‘Impact’ of the
intervention—the extent to which the intervention
affected the group’s use of the technique.

Note that this ‘Impact’ calculation is merely an
indication: a two-unit Impact (change in engagement) might be from No Mention to

Table 22: Engagement Levels

0 No mention
1 Aware
2 Planned
3 Using
4 Established

Figure 52: Whiteboard

Showing Risk and Impact

Figure 51: Whiteboard with Dots by Post-it Notes

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 159

Planned, or from Planned to Established; these changes are not semantically equivalent.
Equally, the number of samples (8) is insufficient for meaningful statistical analysis.
However, we can reasonably assert that a large average Impact value represents more
change than a small one.

Figure 54 summarises the results discussed in Sections 8.6.1 to 8.6.9, providing a
summary answer to:

RQ 5.1 To what extent did the groups learn about and adopt different security-
enhancing activities as a result of the Developer Security Essentials
intervention?

The size of each bubble indicates the engagement level; the colour shows the change
attributed to the intervention: amber for a change of 1 to 2 levels; red for 3 to 4 levels. As
in earlier diagrams, the more concrete Assurance Techniques are nearer the top.

As the figure shows, the use of Threat Assessment and Product Negotiation was
dramatically improved in a majority of groups; use of Penetration Testing and Use of
Checklists were not affected at all. Group J showed little change as a result of the
intervention; all the others did see at least some changes.

The results showed enhancements in the security activities and understanding in all the
teams, albeit only a minor enhancement in the case of highly experienced group J. Groups
I, J chose to carry out further workshops independently from the researchers, and D, E,
F, G and I all showed major improvements in their use of Threat Assurance and Product
Negotiation.

8.6.11 Technique Adoption by Different Categorisations of Group
This section addresses the second research sub-question:

RQ 5.2 How does the impact of the intervention vary with different company sizes, team
cultures, facilitation styles, security expertise, and kinds of participants?

Table 24 calculates average impact values for different categorisations of the groups. The
deeper shadings show the higher values in each categorisation; the red-green colours have
no significance except to distinguish different categorisations. The line separators in the

Figure 53: Group K Intervention Results

Automated Pen
 Testi

ng

Automated Static
Analy

sis

Config
uratio

n Revie
w

Code Revie
w

Penetra
tio

n Te
sti

ng

Threat
Asse

ssm
ent

Product
Negotia

tio
n

Contin
gency Plan

Security
 Champion

Sta
ndardisa

tio
n

On-th
e-jo

b Training

Fu
rth

er W
orks

hops

Before After

Established

Using

Planned

Aware

No mention

Using Workshops to Improve Security in Software Development Teams

160 Charles Weir - October 2020

first column delineate the types of assurance technique (Vulnerability Finding, Process
Improvements, and Training). The figures on the bottom line show the average increment
over all assurance techniques for each category.

As shown, medium-size companies were most likely to plan further workshops; large
companies were more likely to adopt Product Negotiation. Groups with Athena cultures
(Section 8.2.1) were the most effective in adopting Threat Assessment and Product
Negotiation.

Table 23 does the same as Table 24, but for a different set of categorisations: the security
maturity of the group; whether or not product management was present; and the job title
of the lead facilitator. Unsurprisingly, we see the groups with a low and medium initial
security maturity achieved the biggest average impacts. Interestingly, though, we see that
groups with product managers showed notably higher average impacts than those
without; and those facilitated by managers achieved better impacts, especially in the
process-related assurance techniques, than those facilitated by technical staff.

Figure 54: Changes in Assurance Technique Usage for All Groups

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 161

Table 24: Impact Averaged by Organisation Size and Team Culture

 Overall Organisation Size Team Culture

 La
rg

e

M
ed

iu
m

Sm
al

l

Ze
us

Ap
ol

lo

At
he

na

Count in each category 8 3 3 2 3 2 3
Automated Pen Testing 0.5 1.3 1.3

Automated Static Analysis 0.6 0.3 1. 0.5 1.3 0.3
Configuration Review 0.1 0.3 0.5

Code Review 0.4 0.3 1. 0.7 0.3
Penetration Testing

Threat Assessment 1.6 1. 2.3 1.5 2. 2.3
Product Negotiation 2.1 2.7 2. 1.5 1.7 2. 2.7
Contingency Plan 0.4 1.5 1.

Security Champion 0.3 0.7
 0.7

Standardisation 0.1 0.5 0.3

On-the-job Training 1. 1.3 2. 1.3 1.3
Further Workshops 1.3 0.3 2.3 1. 1.3 0.5 1.7

Average 0.7 0.4 0.9 0.8 0.9 0.3 0.8

Table 23: Impact Averaged over Group Descriptions

Security Maturity

Product
Manager
Present? Lead Facilitator

Hi
gh

M
ed

iu
m

Lo
w

Ye
s

N
o

M
an

ag
er

Se
cu

rit
y

De
ve

lo
pe

r

Count in each category 2 4 2 4 4 4 2 2
Automated Pen Testing 1. 1. 1.

Automated Static Analysis 0.8 1. 1. 0.3 1.3

Configuration Review 0.5 0.3 0.5

Code Review 0.3 1. 0.5 0.3 0.5 0.5
Penetration Testing

Threat Assessment 1.8 3. 2.3 1. 3. 0.5
Product Negotiation 2. 1.5 3.5 2. 2.3 3. 2. 0.5
Contingency Plan 1.5 0.8 0.8

Security Champion 0.5 0.5 0.5

Standardisation 0.3 0.3 0.5
On-the-job Training 1.5 1. 2. 1.5 1.
Further Workshops 0.5 2.3 1.8 0.8 1.3 0.5 2.
Average: 0.3 0.8 0.9 1. 0.4 1.1 0.3 0.4

Using Workshops to Improve Security in Software Development Teams

162 Charles Weir - October 2020

Finally, Table 25 shows a similar impact comparison, but this time showing how all of
the categorisations in Table 24 and Table 23 compare when averaged over each of the
three different kinds of technique: Vulnerability Finding, Process Improvement and
Training. It shows that the training ones were adopted to a greater extent than the process
ones, and both much more than the vulnerability collecting ones. We observe those led
by managers were more likely to adopt process-based techniques; and that those with
Athena cultures appear more likely to adopt training-based techniques, and relatively
unlikely to adopt (additional) vulnerability-based ones.

We considered also investigating the different effects of the interventions on different
kinds of participants: developers, testers, managers and product managers. However, the
interviews and workshop transcripts did not distinguish the impact on individuals, but
only on the entire team, which made this investigation impractical.

8.6.12 Which Forms of Facilitation Worked Well
Considering the final Design Practice research sub-question:

RQ 5.3 How does the impact of the intervention vary with different facilitation styles?

It was particularly clear to the researchers was that two of the three workshops, namely
Threat Assessment and Threat Sales, varied very widely in effect, even though the recipe
was fundamentally the same for all the groups.

Appendix K provides brief descriptions of the two workshops for each group, including
assessments by the researcher for the ‘energy level’ in the room for each session, and
brief reasons for why there was that energy level. Figure 55 summarises these
descriptions. It shows the average impact (as in Table 25 in Section 8.6.11) plotted against

Table 25: Impact of Different Categories of Intervention

 All Vulnerability Process Training
All 0.7 0.3 0.9 1.1
Organisation
Size

Large 0.4 0.1 0.7 0.2
Medium 0.9 0.5 1.0 1.8
Small 0.8 0.3 1.0 1.5

Team Culture Zeus 0.9 0.7 1.0 1.3
Apollo 0.3 0.1 0.4 0.3
Athena 0.8 0.1 1.1 1.5

Security
Maturity

High 0.3 0.1 0.4 0.3
Medium 0.8 0.4 0.8 1.9
Low 0.9 0.4 1.6 0.5

Product
Manager

Yes 1.0 0.5 1.2 1.9
No 0.4 0.2 0.7 0.4

Lead facilitator Manager 1.1 0.6 1.5 1.4
Security 0.3 0.1 0.4 0.3

 Developer 0.4 0.1 0.3 1.5

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 163

the average energy in the room for the two workshops, categorised by the approach used
by the facilitators. These approaches were:

Dominating The facilitator(s) wrote up a board of ‘ideas’, but did most of the talking
themselves, with interjections from the most experienced participants.

Leading The facilitator(s) ran a more traditional brainstorming session, writing
ideas up on a board but not contributing much otherwise themselves.

Hands-off The facilitator(s) specified a format for the workshop and enforced
procedure, but otherwise stayed out of the discussion or acted as equal
participants themselves.

As the diagram shows the workshop energy did depend on the facilitation approach.
Interestingly, though, the average impact (in terms of increases in engagement with
assurance techniques) also rises with increasing workshop energy.

Both sessions led by security specialists involved a dominating style, and surprisingly,
both were at the lower end of the impact; this was mainly because both groups had already
adopted most of the techniques (Sections 8.6.3 and 8.6.8), but may also reflect the low
level of energy achieved in the workshops.

8.7 Theory Results
Turning to the theoretical outcomes from Design-Based Research (Section 3.6.2), this
section explores the two Design Theory research questions, RQ 5.4 and RQ 5.5 (Section
8.3.2).

8.7.1 Positive Benefits of Security and Privacy
Consider the first theory-based research question:

RQ 5.4 Can having developers consider the positive benefits of security and privacy
mitigations lead to security improvements in the development process?

Figure 55: Impact vs. Energy, Categorised by Facilitation Style

Using Workshops to Improve Security in Software Development Teams

164 Charles Weir - October 2020

To address this, we looked for cases where the Threat Sales activity (Section 1) did lead
to ‘security improvements in the development process’.

Group D identified in the Threat Sales discussion that the threat and risk assessment itself
was a valuable asset to their clients as part of their Proof of Concept developments. They
now incorporate a security discussion into every project they do in their ‘handover
document’36.

Now, after the workshop I think it was, we redesigned our handover
template, which is where we now have a specific section for security.

Even in the case of the project that I've just finished, … even though it
wasn't live code, we wanted to make the client aware that there was some
security implications just with the data. (D4)

Group F realised that they could ‘line up’ security improvements to be incorporated in
the enhancements when new clients wanted them:

Yes, we are in a promising looking situation at the moment in terms of we
have picked up some new contracts, and these are local authority contracts
as well, so they will require us to implement pretty much everything that we
had listed… I think the good thing is that if everything is detailed in the
specification before we have even started implementation, then at least we
are aware of what we need to do, how much effort it might be, rather than
trying to deliver something for a fixed cost, and realise towards the end that
“oh, we need to do all these things that we didn't cost or anticipate” (F1)

Group G identified the ‘Gold, Silver, Bronze’ approach to selling security enhancement
costs to their clients.

To make that process a lot simpler for our sales team, [G1] did a lot of the
leg work and setting up a Gold, Silver and Bronze package to say “right,
answer these 10 questions”, and then you would get a points score, and 'you
fit in within this bracket, and this is the package that you need'. The work
that Mike has done to start that process going has been brilliant. From then,
[it’s] up to the company (G6)

Group I subsequently included security requirements in discussions with new clients.

I feel a bit more confident, perhaps, if someone asks me a question saying
“why aren't you doing this?” I can go: “I don't think we should because the
threat is this, and there is these things, and these things, so therefore it is
not worth it”. So, we are giving the Product Owners some more insight into
why you would do this stuff, and where the value is. (I1)

While we do not have evidence that the Threat Sales activity generated value in every
case, the experience of Groups D and F, in particular, indicate that the activity of getting
developers to consider the positive benefits of security can help get resources allocated to
security improvements. We conclude, therefore, that the answer to RQ 5.4 is yes, having
developers consider the positive benefits of security and privacy mitigations can lead to
security improvements in the development process.

36 Source: discussion in September 2020 between the author and D3.

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 165

8.7.2 Skills Not Associated with Developers
Consider the second Design Theory research sub-question:

RQ 5.5 Can teams of developers produce both adequate risk and impact assessments
and benefit analyses with minimal guidance?

The Threat Sales workshop (Section 8.4.2) required the participants to establish the three
or four highest priority threats; and for each, to find mitigations and then work out positive
ways in which addressing that threat will benefit the organisation. That required two
forms of analysis not normally associated with developers:

• Risk assessment: to identify the highest priority issues required an assessment
of the probability of each threat identified in the Threat Assessment workshops;
developers are not normally risk assessors.

• Sales promotion: Developers are not normally expected to promote
enhancements; nor indeed to influence product management, other than
through effort estimates.

Like every step in the development of these workshops, therefore, the Threat Sales
workshop was an experiment; while the researchers had hoped that developers in the
workshop would be able to assess risk and find positive ways to represent security to their
stakeholders, they had no a priori reason to believe that they would. Indeed, other security
researchers had assumed that the risk assessment process would require interaction with
professional risk assessors37 ; and we are not aware of other work investigating the
interaction of product management with security requirements.

The next two sections explore what happened related to each skill.

8.7.3 Risk Assessment
For the risk assessment, we suggested to the facilitators that they used a low-granularity
approach, classifying the risk of each threat as low, medium or high.

Surprisingly, none of the teams had any trouble doing this. Even Group D, who are
producing proof of concept apps for companies and are therefore not domain experts for
their products, had little difficulty:

We’ve identified huge risks that they need to consider before they ever get
anywhere near an actual working product. (Participant, Group D)

Team E, whose security considerations prevented them discussing details of their product
during the workshop, learned and took away the prioritisation process:

We had a follow-on session afterwards where we took everything away, …
and sat down and thought “what do we need to do next”. (E3)

For Group F, F1 produced a table of risks and impacts based on their discussion. Group
G had no problem with risk assessments, since G1 and G2 were familiar with the
likelihood of attacks on the websites they managed. Group H simply had their most expert
members (H1, H3) identify the most likely by placing asterisks on the flipchart of
identified threats. Group I did similar. Group J had J1 and J2 (facilitators and also security
experts) do the assessment.

37 Source: discussion with NCSC researchers.

Using Workshops to Improve Security in Software Development Teams

166 Charles Weir - October 2020

Perhaps the most interesting approach was Group K as described in Section 8.6.9. Their
facilitators had the team write the threats on post-it notes and had each participant
annotate them with coloured dots: dots of one colour for the ones they deemed most
likely, and of another colour for the most impactful. The results were notably consistent.

In summary, all the groups found effective ways to allocate a working risk probability to
each of the threats they identified.

8.7.4 Threat Sales
Still more difficult for developers, one might have thought, would be devising ways to
persuade product management professionals to allocate appropriate development
resource to security improvements.

In larger groups, this process happened in several sub-groups, with each sub-group
tackling a different threat.

The outcomes were surprisingly satisfactory:

• Group D identified that the threat and risk assessment itself was a valuable
asset to their clients.

• Group E realised that while every security enhancement was essential, the
ordering of their implementation could be altered to suit the client’s needs.

• Group F ‘lined up’ security improvements to be incorporated in the
enhancements when new clients wanted them.

• Group G identified the ‘Gold, Silver, Bronze’ approach to selling security
enhancement costs to their clients.

• Group H identified that their security story was a major Unique Selling Point
against competitors.

• Group I subsequently included security requirements in discussions with new
clients.

• Group J devised several functionality and process improvements for their
(internal) customers.

• In Group K, each of four subgroups delivered a convincing sales pitch for a
security improvement.

It seems reasonable to conclude that developers generally do have the necessary skills
and insights required to devise ways to persuade product management professionals to
allocate resource to security improvements.

We conclude that the answer to RQ 5.5 is yes, teams of developers can produce both
adequate risk and impact assessments and benefit analyses with minimal guidance.

8.8 Discussion

8.8.1 Security Process Improvements
The workshops concentrated on two aspects of security: using Threat Assessment to help
participants focus their security effort on the appropriate threats; and encouraging
Stakeholder Negotiation by finding ways to present security requirements as positive
opportunities to product management. It was therefore encouraging, if unsurprising, that
the results in Figure 54 (Section 8.6.10) show that all the groups completed the
intervention with an understanding of the two assurance techniques, and, in a large

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 167

majority of cases, the incorporation of those techniques into the groups’ ways of working.
Even more encouraging was that for half the groups involved this represented a large
improvement over their previous practice.

Indeed, the majority of groups ended up incorporating, or at least using, all of the
assurance techniques identified as important from the expert survey in Chapter 4:
Automated Static Analysis, Configuration Review, Code Review, Penetration Testing,
Threat Assessment and Product Negotiation.

Given the purpose of the new intervention package was to encourage others to use the
package and lead sessions, it was encouraging that two companies did so; it was
disappointing that a larger number had not got around to it after several months, even if
they expressed intentions of doing so.

8.8.2 Variation of Results with Different Situations
The categorisations of Impact in Table 24 and Table 23 (Section 8.6.11) show several
points of interest:

Sessions facilitated by managers appear more effective than those facilitated by
developers or security specialists: This may reflect better training in facilitation-related
skills given to managers; it may also reflect greater power amongst managers to introduce
new techniques.

The presence or absence of a product manager in the group had negligible effect on
the use of Stakeholder Negotiation: This was a surprise. The author had expected a
product manager would encourage emphasis and therefore improvements in this, but the
results do not show that effect. Surprisingly, though, looking at the bottom line, we see
that the presence of a product manager did encourage the incorporation of other assurance
techniques. This suggests there is good reason to encourage product managers to attend
such sessions if possible.

Different cultures may favour improvements in different types of assurance
techniques: The Zeusian cultures (Section 8.2.1) showed most improvement in
Automated techniques and Threat Assessment; the Athenian ones in Threat Assessment
and Product Negotiation. One might attribute the latter improvements to ‘agency’:
Athenian cultures give the most ‘agency’ to the developers themselves as individuals, and
thus once they accept the need they are the most able to implement Threat Assessment
and Product Negotiation; assurance techniques like Automated Static Analysis, though
they may well be less effective in practice, will appeal more to Zeusian cultures: as the
‘magic bullets’ supposedly popular with management.

Table 25 shows a point of interest when it comes to approaching other companies to use
the interventions:

Medium sized companies, with moderate security knowledge, showed most tendency
to adopt the interventions: The explanation is probably that such companies cannot
afford a team of security specialists, but also will none the less have demanding customers
who do need security, and also have ‘latent’ security knowledge amongst the team
members that is brought out by the Developer Security Essentials workshops.

8.8.3 Best Facilitation Approaches
From Section 8.6.12, Figure 55, we see that, overall, the less participation by the
facilitator in the workshops the more impact the intervention tended to have. The best

Using Workshops to Improve Security in Software Development Teams

168 Charles Weir - October 2020

facilitators, those who created the most energy in the workshops, were those who used a
hands-off approach.

From observation of the workshops, we believe that the developers are learning and
changing most when they are speaking, and discussing the security issues, not when they
are told answers by a facilitator, nor even merely faced with a leader with a whiteboard
marker. Best therefore is for a facilitator to create a good format and let the workshop
delegates get on with it, only intervening with occasional information or in response to
requests. This may also explain the finding in Section 8.8.2 that groups facilitated by
managers tend to be particularly impactful, if the manager has the skill to use hands-off
styles of facilitation, and is accepted as part of the team.

We conclude that, for maximum effectiveness, future versions of the Developer Security
Essentials workshops should encourage facilitators to avoid taking a dominating role, and
instead to provide a framework for the workshops, and support the developers themselves
in driving the outcomes.

Particularly useful, then, is the approach used by Group K, as described in Section 8.7.3.
Their session involved virtually no input from the facilitators other than coordination of
the workshop process, and indeed, little security knowledge input from the researcher
present. This approach, therefore, offers a possible basis for a prescriptive set of
instructions for future facilitators, avoiding the need for the ‘train the facilitator’ sessions
with the researchers.

8.8.4 Skills Not Associated with Developers
Sections 8.7.3 and 8.7.4 show that, surprisingly, developers found it easy both to assess
the impact and likelihood of successful threat activities; and to think up ways of ‘selling’
security improvements to Product Management.

While we have no way of validating their assessments of either, we observe that there is
good reason to believe that their assessments will be sufficient for the purpose:

• In the case of risk assessment, the consequence of getting one risk assessment
wrong is much less than the consequence of not doing it at all. Since for all the
teams, except perhaps Group E, there were no professional risk assessors
available within the organisations to carry out the risk assessment, there is a
strong argument for using what they produced.

• In the case of sales, in groups (F, G, H and I) where Product Managers were
present, the Product Managers engaged very well with the process and found
it valuable. This suggests that others may also find the results useful.

We conclude that there is no need for future versions of Developer Security Essentials to
provide more sophisticated training in either risk assessment or sales; most teams will be
able to carry out both workshops without it.

8.8.5 Impact of the Active Developer Model
A further implication of Figure 55 (Impact vs. Energy, Categorised by Facilitation Style)
in section 8.6.12 concerns the Active Developer Model.

The diagram shows that the most effective workshops were those where developers acted
virtually independently of the facilitators, generating their own conclusions and actions

Chapter 8: Further Trials (Magid 2)

Charles Weir - October 2020 169

as a result; the least effective were those where the facilitator did most of the talking and
the developers had a passive role.

While the small sample of 8 results does not permit statistical proof, this result is
supportive of the Active Developer Model, which predicts that independent, self-
activated developers will deliver better security than those ‘told what to do’.

8.8.6 Limitations
As with any research based on what are effectively multiple case studies, there are
limitations in what can be deduced from this. Another series of trials might produce
different results, since there are many factors outside the control of the researchers.

The coders did identify two specific limitations in the analysis process: identification of
assurance techniques, and identification of the target group.

It was difficult in the coding process to identify assurance techniques and their level of
adoption. Section 8.5 discusses some of the reasons for this; probably the most important
issue was that the Before interviews did not ask explicitly about techniques, in order to
avoid ‘priming’ the participants. In future research, we would recommend that, given
such priming would be relatively small and short-term, it would be of more value to ask
explicitly about assurance techniques beforehand.

The identification of the target group, developers, was an issue in the situations where
security experts were also involved: groups E and J. Security experts are likely to be
knowledgeable in all the assurance techniques mentioned here; they are also unlikely to
change behaviour or knowledge as a result of the workshops. This research, however, is
interested only in the impact on software developers. In Group E, the security expert E1
was separate from the developers, so it was straightforward to identify the extent to which
the developers and the development team changed. However, in Group J, the security
experts J1 and J2 were themselves experienced software developers, and were themselves
working in the teams, so it was difficult for researchers to distinguish knowledge and
intentions expressed by the experts from knowledge and intentions in the rest of the team;
it may be that the intervention provided more benefit to the other Group J developers than
Figure 54 suggests.

8.8.7 Future Work
The Developer Security Essentials package used in these trials has a practical limitation:
it requires time input from a researcher to train the facilitators. This severely restricts its
scalability to a wider audience of development teams, and hence the academic impact it
can have.

The findings in the previous sections are helpful in addressing this:

1) The workshops are effective even when the contribution of the facilitator is
limited to enforcing the procedures; they may not require them to have security
expertise (Section 8.6.12).

2) One of the groups devised an effective template for the Threat Assessment and
Threat Sales workshops suitable for step-by-step instructions (Sections 8.6.9,
8.8.3).

This opens the possibility of a new version of the package that needs no direct input from
a researcher, and therefore can scale without limit.

Using Workshops to Improve Security in Software Development Teams

170 Charles Weir - October 2020

The next step for the researchers is to create and trial such a package. However, a ‘remote’
trial of this kind offers several challenges to address, as follows:

Self-sufficient Support Materials: Supporting materials, such as instructions and the
cards required for the Agile App Security Game, will need to be understandable and
usable without the support of a researcher.

Participant Recruitment: to reach a larger number of development teams without the
personal involvement of the researchers may require collaboration with marketing
experts.

Data Collection: Without researchers present at the workshop in person the pre- and
post- intervention interviews become problematic. In some cases these interviews might
be carried out by phone or videoconference, but simpler and more scalable would be an
online questionnaire based approach.

8.9 Conclusions
Recall the research question for this work:

RQ 5 Which aspects of the ‘Developer Security Essentials’ intervention are effective
at improving security when used independently by teams from a variety of
cultures and different types of organisation, and why?

The Magid 2 trials showed that Developer Security Essentials intervention led to security
process improvements with all the groups who used it (Section 8.6.10). In particular, there
was a strong improvement in the use of Threat Assessment to help participants focus their
security effort on the appropriate threats; and Stakeholder Negotiation to encourage
Product Management to allocate resource to threat mitigation (Figure 54).

All three workshops of the Developer Security Essentials were effective at helping
improving security; developers proved adept even at risk assessment and creating positive
representations of security improvements (Section 8.8.4).

The intervention had most impact where the workshops were facilitated by managers
(Section 8.8.2) or in a ‘hands-off’ manner (Section 8.8.3). The Active Developer Model
(Section 4.3) explains this: these are the arrangements that give the development team
most ‘volition’—that empower the development team most (Section 8.8.3).

The workshops were adopted most by medium sized companies; those that will have
latent security expertise but no formal security function. They had least impact with very
security-expert companies and when led by security specialists (Section 8.6.11), though
this may reflect the lack of scope for improvement (Section 8.6.12).

The findings from this project promise a new version of the package that can scale without
limit, and pave the way to the creation and trial of such a new package (Section 8.8.7).
The author is currently working on a project to do exactly that.

Chapter 9: Discussion and Conclusion

Charles Weir - October 2020 171

9 Discussion and Conclusion

This chapter discusses conclusions from the research, both in terms of practical results
and improvements to the package and in terms of wider theory gained. It contrasts work
by other researchers, and outlines a range of further work to take the research forward.

9.1 Research Summary
At the start of the work on this thesis, the author expected that the answer to the research
question

RQ 1 What is needed to make a cost-effective and widely applicable intervention to
help UK software development teams achieve better software security?

would be some kind of tool or knowledgebase: a code analysis tool to alert the developers
to possible errors, a website or book to teach them appropriate process tools, or a training
course to transfer security skills.

This proved incorrect. While there is no doubt that all of these approaches are excellent
ways to support software developers in improving their security, they all failed on the
‘widely applicable’ criteria; the industry survey described in Chapter 4 showed there were
barriers stopping them from reaching the developers who needed them. Yet the online
survey described in Chapter 5 showed there is definitely a need to overcome these
barriers; fewer than two thirds of developers in teams were using any assurance
techniques regularly.

Instead, therefore, what proved necessary before any of these tools could be of value to
the developers in a team was something to ‘sensitise’ the developers to the importance of
security and privacy. Chapter 6 describes the original creation of the package to do this
and the thinking that led to it being a series of workshops.

Chapters 7 and 8 establish that the particular package we created, Developer Security
Essentials, is remarkably effective. There is of course no reason to suggest that it is the
only, or the best, such package that can be created. What we can say, is that it has a
definite impact on the teams that use it, and a small cost, which justifies encouraging a
large number of teams to use it.

Chapter 9: Discussion and Conclusion

172 Charles Weir - October 2020

The rest of this chapter summarises the detailed findings from the research, and suggests
ways in which this impact might be realised.

9.2 Research Questions Revisited
Returning to the original research questions introduced in Section 1.6, the main thesis
question RQ 1 led to a range of subsidiary questions RQ 2 to RQ 5. This section explores
the answers to each of these subsidiary questions in turn, leading to an answer to the main
question.

RQ 2 What interventions can change the environment for members of the development
team to achieve good security, considering cost-efficiency, motivational factors,
choice of tools, supporting processes, culture, awareness, training and skills?

Chapter 4 identified that effective interventions are those that conform to Active
Developer Model: that developers must drive the security improvements themselves.
Most of the effective such interventions are known by Security Specialists as ‘Assurance
Techniques’, and of these, five are particularly cost-effective: Threat Assessment,
Configuration Review, Automatic Static Analysis, Code Review and Penetration Testing.
A further change to development process, Stakeholder Negotiation, also contributes
largely to improved security; and two interventions, Incentivisation Session and On-the-
Job Training, are effective in helping change the environment (Section 4.14).

RQ 3 To what extent, and how, does a perceived need for security and privacy lead to
security-enhancing activities and interactions in an Android development team
and result in better software security?

A survey of successful Android developers (Chapter 5) found a high level of reported
security need for the app development, but less use of practical security assurance
techniques such as the five discussed above, with less than 50% regularly using them;
though of the third to a half of such developers working in teams nearly 80% used them
regularly.

The use of such techniques was in proportion to the perceived need, as was the
involvement of security specialists (though less than a quarter had this), and the frequency
of app security updates. We found little relationship, however, between these factors and
the density of security defects in the resulting apps; we believe this reflects the inability
of the current generation of binary analysis tools to analyse libraries effectively and
separately from the main app code. Surprisingly, we did find more Cryptographic API
issues in apps whose development team worked with security specialists or champions,
probably since the specialists and champions correctly enforce much more Cryptography
use.

Reportedly, app security improvements have been largely driven by developers
themselves; GDPR has had a minor impact (Section 5.5).

RQ 4 What security outcomes did the ‘Developer Security Essentials’ package have,
and what aspects contributed most to those outcomes?

In the first year’s trials of the Developer Security Essentials package (Chapter 7), two of
the three organisations’ teams achieved substantial improvements both in the security of
their products and in their development process with respect to security. In particular,
after a year or more, the first had identified that the choice of security improvements to
make was a commercial, not a technical, question and had moved to a risk-based decision
process; the second had incorporated security throughout their development training and

Chapter 9: Discussion and Conclusion

Charles Weir - October 2020 173

process. The third company, a much larger organisation with a dysfunctional relationship
between developers and security specialists, found that the interventions contributed to
security awareness, but made no objectively detectable improvements as a result.

The main aspects that made the package effective were the extent to which it increased
awareness rather than simply directed the teams involved. The effective teams were those
who were able to do the following (Section 7.7.2.2):

Apply Team Activities to Security: The workshop effectiveness came from discussions
between participants rather than information from the intervener.

Focus on Key Assurance Techniques: Specifically, Threat Assessment, Automated
Static Analysis, and Configuration Review provide a large benefit for relatively low cost.

Address Organisational Issues: Nearly half the Motivators supporting security
improvement, and Blockers discouraging it are ascribable to organisational issues, so
addressing these can make a large contribution.

RQ 5 Which aspects of the ‘Developer Security Essentials’ intervention are effective
at improving security when used independently by teams from a variety of
cultures and different types of organisation, and why?

A second round of trials with 8 further organisations showed that the Developer Security
Essentials intervention led to security process improvements with all the groups who used
it (Chapter 8), especially in the use of Threat Assessment to help participants focus their
security effort on the appropriate threats; and Stakeholder Negotiation to encourage
Product Management to allocate resource to threat mitigation. All three workshops were
effective at helping improving security; developers proved surprisingly adept even at risk
assessment and creating positive representations of security improvements.

The intervention had least impact with very security-expert companies and when led by
security specialists, though this may reflect the lack of scope for improvement. They had
most impact where the workshops were facilitated by managers or in a ‘hands-off’
manner, probably because these arrangements empower the development team most.

9.2.1 Main Research Question
The previous questions were all derived from considering the original research question:

RQ 1 What is needed to make a cost-effective and widely applicable intervention to
help UK software development teams achieve better software security?

From the above findings, we conclude that what is needed in any such intervention are
the following properties:

• It sensitises a development team to the importance of security and privacy issues
in developers, and enables them to make their own choices as to the best ways to
address them.

• It helps the developers understand that every project has unique requirements
related to security and privacy; and teaches them Threat Assessment approaches
to establish and assess those requirements.

• It introduces them to the four further assurance techniques that are most effective
in removing security issues during development: Configuration Review,
Automatic Static Analysis, Code Review and Penetration Testing.

• It supports the developers in what we have termed ‘Stakeholder Negotiation’:
finding ways establish the business value, or lack of it, for addressing security

Chapter 9: Discussion and Conclusion

174 Charles Weir - October 2020

requirements; and hence supporting good business decisions about where to spend
effort and money on security and privacy improvements.

From the experimental work described in this thesis, we can add the observation that the
following two techniques provide a good basis for such an intervention:

1. Workshops, in which the developers carry out structured discussions.
2. Regular On-the-job Training sessions afterward to act as a ‘nudging’ reminder.

9.3 Main Contributions
As introduced in section 1.5, the main new contributions of this research are the
following:

1. The Active Developer Model
2. Favourite Intervention Techniques
3. Measurement of Assurance Technique Use
4. Proof of Concept of an Intervention Package
5. Pioneering Use of Design-Based Research
6. Business Benefit of Security

The following sections explore each of these in more detail.

9.3.1 The Active Developer Model
While Chapter 4 could only propose the Active Developer Model as a candidate theory,
as discussed in Section 3.2, given our pragmatic approach such a theory can be accepted
for future use if it helps understand a complex situation, if deductions made using it are
all confirmed, and if using it to plan research or interventions leads to desired outcomes.

Section 4.3.2 shows how the Active Developer Model helps understand the complex
situation of interventions to support security, by helping explain which interventions will
be successful in terms of their Sensitisation, Support and Affordability.

All the deductions of the Active Developer Model explored (post hoc) in Sections 7.7.3
and 8.8.5 were borne out in the Magid 1 and Magid 2 projects, also corroborating the
theory.

Finally, Sections 6.2.1 and 6.3 show how the theory was used to plan the design of the
Developer Security Essentials: in particular, emphasising the need for an Incentivisation
Session. Since the intervention was generally successful (Section 8.6.11), this supports
accepting the theory.

It is reasonable to conclude that the Active Developer Model theory is valuable for
intervention design, and to recommend its use in future.

9.3.2 Favourite Intervention Techniques
Section 4.14.1 identified eight intervention techniques favoured by security experts
working with development teams:

Incentivisation Session to motivate security improvement;
Threat Modelling to identify the risks and benefits to the organisation from

security issues;
Product Negotiation to prioritise and justify effort and expense on mitigations;

Chapter 9: Discussion and Conclusion

Charles Weir - October 2020 175

Component Choice to use tools to identify weak or out-of-date components;
Auto. Static Analysis to facilitate the removal of certain classes of code-level

vulnerabilities;
Code Review to find more sophisticated vulnerabilities, where the culture

permits;
Penetration Testing to view the software from the point of view of an attacker;

and finally,
On-the-Job Training to keep the team actively considering software security

9.3.3 Measurement of Assurance Technique Use
Chapter 5 provided evidence of minimal use of security assurance techniques by
developers in the particular domain of Android App development. Specifically, less than
half of the developers use any assurance techniques regularly; less than two thirds of those
working in teams do so.

The survey also provide evidence of the need for interventions that did not require
security professionals; less than a quarter of those developers had access to such
professionals.

9.3.4 Proof of Concept of an Intervention Package
Chapter 7 provided an ‘existence proof’ that a simple ‘intervention package’ structured
as a facilitated series of workshops can improve the security of software developed by a
team.

Specifically, the first phase of trials of the Developer Security Essentials package led, for
two of the three organisations involved, to improvements in both project security and
understanding among the more experienced team members of the need for assurance
techniques (Section 7.7.1)

9.3.5 Pioneering Use of Design-Based Research
As Section 3.6 explains, Design-Based Research has been used mostly in the field of
education research. While the creation of an intervention in the field of Developer-centred
Security is arguably a form of education, we are not aware of any other researchers using
Design-Based Research in this field.

As Chapter 8 shows, Design-Based Research proved an effective basis for trialling,
evaluating, and deducing theory from the creation of a Developer-centred Security
intervention.

9.3.6 Business Benefit of Security
Perhaps the most exciting outcome for future research was, first, the identification of the
importance of representing security enhancements in terms of their business benefit
(Section 7.7.6); and second, the discovery that teams of software developers were both
capable and happy to identify these business benefits when asked to do so (Section 8.8.4)

While there is considerable current interest in establishing the economics of software
security and privacy enhancements at organisations’ board level38, there has been little

38 The UK NCSC recently awarded a number of small grants for research around this topic.

Chapter 9: Discussion and Conclusion

176 Charles Weir - October 2020

research into economic behaviour at the developer level, and this offers an exciting scope
for further research.

9.4 Uniqueness of this Research
There has been little academic research into interventions to support software developers
in addressing security and privacy issues. Secure Development Lifecycles have had little
attention since 2010; possibly since many developers rejected them (Section 2.2.2). While
there has been some work on how to encourage the adoption of tools, this has not
translated into practical interventions (Section 2.2.3).

Several researchers explored consultancy-based, training-based, and literature-based
interventions, but without finding any formulae for success (Section 2.2.4). Though there
have been some encouraging experiments with ways to improve the interactions between
Security Experts and others (Section 2.2.5), and to improve security behaviour in
company employees (Section 2.2.7), none of these have been presented in a way that
would support anyone else in using the techniques.

The ‘Motivating Jenny’ project has explored motivational means to encourage developer
teams in doing security. Encouragingly, their conclusions based on ethnographic
techniques were similar to the conclusions in this thesis based on industry survey (Section
4.14). Their interventions do promote security (Section 2.2.6); however only the research
described in this thesis puts any objective measurement on the effectiveness of an
intervention.

9.5 Future Research Agenda
The findings in this thesis point to two further areas of future research: the
microeconomics of security and privacy improvements; and the mass deployment of the
Developer Security Essentials package. The next two sections explore these topics.

9.5.1 Microeconomics of Security and Privacy Improvements
An important theme throughout the thesis has been ‘Product Negotiation’. It is the only
‘new’ intervention technique, in that it derived from the analysis of experts’ and
participants’ comments rather than from other research (Sections 7.7.2.1, 8 Introduction,
1, 8.7.1). Section 8.7.4 shows that developers had less trouble than we had expected in
identifying microeconomic benefits to security. However, we have no evidence as to how
effective their use was of the technique: how the subsequent discussions with product
management, customers and other stakeholders went. Nor do we know what might
improve the process of identifying benefits, analysing them and discussing them.

So, a future research project will address these questions, asking research questions such
as:

What makes effective discussions between developers and other
stakeholders about security and privacy issues?

The research project will, naturally, need to define ‘effective’ in appropriate
microeconomic and commercial terms, and will generate suitable interventions to
improve the effectiveness of such discussions.

Chapter 9: Discussion and Conclusion

Charles Weir - October 2020 177

9.5.2 Mass Deployment of Developer Security Essentials
The current Developer Security Essentials package, though effective at improving
development teams’ software security in the short and long term, has a practical
limitation: it requires time from a researcher to train the facilitators. Yet to have an
appreciable impact on the security of UK software, the package needs to be saleable to a
much wider audience of development teams; the findings from the last set of trials show
that this is possible (Section 8.8.7).

A further research project, therefore, will convert Developer Security Essentials to a form
suitable for mass deployment, and measures its success. By adding detailed and
approachable instructions, full materials, and a supporting website, it will be made
suitable for any development team to use at any time, potentially allowing viral and mass-
market spread throughout the UK developer community. By collaborating with marketing
experts, the package will be promoted to a wide range of development teams. And to
measure the intervention’s effectiveness in this form, the project will create online survey
mechanisms and support for surveying participants beforehand and afterwards, to collect
data from as many users of the intervention package as possible.

9.6 Conclusion
The research described in this thesis has established software developers themselves as
the best drivers for software security and privacy improvements; established the need for
improvements in at least one developer population; identified requirements for a
lightweight intervention to improve software security; created such an intervention; and
iteratively trialled and improved it with many software development teams.

Mass deployment of the Developer Security Essentials intervention will improve the
cyber security of software developed throughout the UK and worldwide, reducing harms
to both individuals and organisations. As the trials have proved, the effect of a large
number of software development teams using the Developer Security Essentials
intervention will be improvement in security-related activities in development projects,
with a resulting improvement in the security and privacy of the software on which we all
rely.

Chapter 10: References

178 Charles Weir - October 2020

10 References

[1] Abadi, M. 11 Dramatic Ways the World Has Changed in the Last 20 Years
Alone. Business Insider, 2018. https://www.businessinsider.com/progress-
innovation-since-1998-2018-3.

[2] Acar, Y., Backes, M., Fahl, S., et al. Comparing the Usability of Cryptographic
Apis. Symposium on Security and Privacy - S&P, IEEE (2017), 154–171.

[3] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., and Stransky, C. You
Get Where You’re Looking For: The Impact of Information Sources on Code
Security. Symposium on Security and Privacy - S&P, IEEE (2016), 289–305.

[4] Acar, Y., Fahl, S., and Mazurek, M.L. You Are Not Your Developer, Either: A
Research Agenda for Usable Security and Privacy Research Beyond End Users.
Conference on Cybersecurity Development - SecDev, IEEE (2016), 3–8.

[5] Acar, Y., Stransky, C., Wermke, D., Mazurek, M.L., and Fahl, S. Security
Developer Studies with GitHub Users: Exploring a Convenience Sample.
Symposium on Usable Privacy and Security - SOUPS, USENIX Association
(2017).

[6] Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., and Fahl, S.
Developers Need Support, Too: A Survey of Security Advice for Software
Developers. Secure Development Conference - SecDev, IEEE (2017), 22–26.

[7] Adolph, S., Hall, W., and Kruchten, P. Using Grounded Theory to Study the
Experience of Software Development. Empirical Software Engineering 16, 4
(2011), 487–513.

[8] Allan, G. A Critique of Using Grounded Theory as a Research Method. The
Electronic Journal of Business Research Methods 2, 1 (2003), 1–10.

[9] Anderson, R. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Indianapolis, IN, USA, 2008.

[10] Anscombe, F.J. The Transformation of Poisson, Binomial and Negative-
Binomial Data. Biometrika 35, 3/4 (1948), 246.

Chapter 10: References

Charles Weir - October 2020 179

[11] Arzt, S., Rasthofer, S., Fritz, C., et al. FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps.
Conference on Programming Language Design and Implementation - PLDI,
ACM (2014).

[12] Ashenden, D. and Lawrence, D. Security Dialogues: Building Better
Relationships between Security and Business. IEEE Security & Privacy 14, 3
(2016), 82–87.

[13] Assal, H. and Chiasson, S. Security in the Software Development Lifecycle.
Symposium on Usable Privacy and Security - SOUPS, USENIX Association
(2018), 281–296.

[14] Assal, H. and Chiasson, S. Think Secure From the Beginning: A Survey With
Software Developers. Conference on Human Factors in Computing Systems -
CHI, ACM (2019).

[15] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., and Penix, J. Using
Static Analysis to Find Bugs. IEEE Software 25, 5 (2008), 22–29.

[16] Backes, M., Bugiel, S., and Derr, E. Reliable Third-Party Library Detection in
Android and Its Security Applications. Conference on Computer and
Communications Security - CCS, ACM (2016), 356–367.

[17] Bai, X., Zhang, F., and Lee, I. Predicting the Citations of Scholarly Paper.
Journal of Informetrics 13, 1 (2019), 407–418.

[18] Bakker, A. Design Research in Education: A Practical Guide for Early Career
Researchers. Routledge, Abingdon, 2018.

[19] Balebako, R. and Cranor, L. Improving App Privacy: Nudging App Developers
to Protect User Privacy. IEEE Security and Privacy 12, 4 (2014), 55–58.

[20] Balebako, R., Marsh, A., Lin, J., Hong, J., and Cranor, L. The Privacy and
Security Behaviors of Smartphone App Developers. Internet Society, October
(2014).

[21] Bank of America. Bank of America Revolutionizes Banking Industry.
https://about.bankofamerica.com/en-us/our-story/bank-of-america-
revolutionizes-industry.html.

[22] Barab, S. and Squire, K. Design-Based Research: Putting a Stake in the Ground.
Journal of the Learning Sciences 13, (2004).

[23] Baskerville, R. and Wood-Harper, A.T. Diversity in Information Systems Action
Research Methods. European Journal of Information Systems 7, 2 (1998), 90–
107.

[24] Baskerville, R.L. Investigating Information Systems with Action Research.
Communications of the Association for Information Systems 2, (1999), 4.

[25] Baum, T., Liskin, O., Niklas, K., and Schneider, K. Factors Influencing Code
Review Processes in Industry. Symposium on the Foundations of Software
Engineering - FSE, (2016), 85–96.

[26] Becker, I., Parkin, S., and Sasse, M.A. Finding Security Champions in Blends of
Organisational Culture. European Workshop on Usable Security - EuroUSEC,
(2017).

Chapter 10: References

180 Charles Weir - October 2020

[27] Beecham, S., Baddoo, N., and Hall, T. Motivation in Software Engineering: A
Systematic Literature Review. Information and Software Technology 50, 9
(2008), 860–878.

[28] Bell, L., Brunton-Spall, M., Smith, R., and Bird, J. Agile Application Security:
Enabling Security in a Continuous Delivery Pipeline. O’Reilly, Sebastopol, CA,
2017.

[29] Bessey, A., Engler, D., Block, K., et al. A Few Billion Lines of Code Later.
Communications of the ACM 53, 2 (2010), 66–75.

[30] Box, G.E.P. and Cox, D.R. An Analysis of Transformations. Journal of the
Royal Statistical Society 26, 2 (1964), 211–252.

[31] Brown, A.L. Design Experiments : Theoretical and Methodological Challenges
in Creating Complex Interventions in Classroom Settings. Journal of the
Learning Sciences 2, 2 (1992), 141–178.

[32] Caputo, D.D., Pfleeger, S.L., Sasse, M.A., Ammann, P., Offutt, J., and Deng, L.
Barriers to Usable Security? Three Organizational Case Studies. IEEE Security
and Privacy 14, 5 (2016), 22–32.

[33] Charmaz, K. Constructing Grounded Theory. Sage, London, 2014.

[34] Christakis, M. and Bird, C. What Developers Want and Need From Program
Analysis: An Empirical Study. International Conference on Automated Software
Engineering - ASE, ACM Press (2016), 332–343.

[35] Clarke, V., Braun, V., and Hayfield, N. Thematic Analysis. In J.A. Smith, ed.,
Qualitative Psychology: A Practical Guide to Research Methods. SAGE
Publications, 2015, 222–248.

[36] Collins, A. Toward a Design Science of Education. In New Directions in
Educational Technology. Springer, 1992, 15–22.

[37] Conradi, R. and Dybå, T. An Empirical Study on the Utility of Formal Routines
to Transfer Knowledge and Experience. ACM SIGSOFT Software Engineering
Notes 26, 5 (2001), 268–276.

[38] CONSORT. Checklist of Information to Include When Reporting a Randomized
Trial. 2010, 11–12. http://www.consort-statement.org/consort-2010.

[39] Coopamootoo, K.P.L. and Gross, T. A Codebook for Evidence-Based Research:
The Nifty Nine Completeness Indicators. Newcastle, 2017.

[40] Cooperrider, D.L. and Whitney, D. Appreciative Inquiry: A Positive Revolution
in Change. Berrett-Koehler, San Francisco, CA, USA, 2005.

[41] Cooperrider, D.L., Whitney, D.K., and Stavros, J.M. Appreciative Inquiry
Handbook. Berrett-Koehler Publishers, 2003.

[42] Craft, R.C. and Leake, C. The Pareto Principle in Organizational Decision
Making. Management Decision 40, 8 (2002), 729–733.

[43] Davison, R.M., Martinsons, M.G., and Kock, N. Principles of Canonical Action
Research. Information Systems Journal 14, 1 (2004), 65–86.

[44] Deborah J. Rumsey. Statistics Essentials For Dummies. Wiley, For Dummies,
2019.

Chapter 10: References

Charles Weir - October 2020 181

[45] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M. Keep Me Updated: An
Empirical Study of Third-Party Library Updatability on Android. Conference on
Computer and Communications Security - CCS, ACM Press (2017), 2187–2200.

[46] Devanbu, P. and Stubblebine, S. Software Engineering for Security: A Roadmap.
International Conference on the Future of Software Engineering - ICSE, (2000),
227–239.

[47] Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., and Lindeberg, O.
Cooperative Method Development: Combining Qualitative Empirical Research
With Method, Technique and Process Improvement. Empirical Software
Engineering 13, 3 (2008), 231–260.

[48] Dybå, T. An Empirical Investigation of the Key Factors for Success in Software
Process Improvement. IEEE Transactions on Software Engineering 31, 5 (2005),
410–424.

[49] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. Selecting Empirical
Methods for Software Engineering Research. In Guide to Advanced Empirical
Software Engineering. Springer, London, 2008, 285–311.

[50] Edelson, D.C. Design Research: What We Learn When We Engage in Design.
Journal of the Learning Sciences 11, 1 (2002), 105–121.

[51] Egelman, S. and Peer, E. Scaling the Security Wall : Developing a Security
Behavior Intentions Scale (SeBIS). Conference on Human Factors in Computing
Systems - CHI, ACM (2015).

[52] Eichberg, M. and Hermann, B. A Software Product Line for Static Analyses: The
OPAL Framework. Conference on Programming Language Design and
Implementation - PLDI, ACM (2014).

[53] Ejersbo, L.R., Engelhardt, R., Frølunde, L., Hanghøj, T., Magnussen, R., and
Misfeldt, M. Balancing Product Design and Theoretical Insights. In The
Handbook of Design Research Methods in Education. Routledge, 2008, 149–
164.

[54] Enck, W., Gilbert, P., Chun, B.G., et al. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. USENIX
Symposium on Operating Systems Design and Implementation - OSDI, USENIX
Association (2010).

[55] European Commission. General Data Protection Regulation (GDPR). 2019.
https://ec.europa.eu/info/law/law-topic/data-protection_en.

[56] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., and Freisleben,
B. Why Eve and Mallory Love Android: An Analysis of Android SSL Security
Categories and Subject Descriptors. Conference on Computer and
Communications Security - CCS, ACM Press (2012).

[57] Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith, M. Rethinking SSL
Development in an Appified World. Conference on Computer &
Communications Security - CCS, ACM Press (2013), 49–60.

[58] Faily, S. and Flechais, I. Persona Cases: A Technique for Grounding Personas.
Conference on Human Factors in Computing Systems - CHI, ACM (2011),
2267–2270.

Chapter 10: References

182 Charles Weir - October 2020

[59] Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., and Pretschner,
A. Security Testing: A Survey. Advances in Computers 101, (2016), 1–51.

[60] Fischer, F., Bottinger, K., Xiao, H., et al. Stack Overflow Considered Harmful?
the Impact of Copy&Paste on Android Application Security. Symposium on
Security and Privacy - S&P, IEEE (2017), 121–136.

[61] Fisher, R., Ury, W.L., and Patton, B. Getting to Yes: Negotiating Agreement
Without Giving In. Penguin, 2011.

[62] Fogg, B.J. Persuasive Technology: Using Computers to Change What We Think
and Do. Morgan Kaufmann, 2003.

[63] Fogg, B.J. A Behavior Model for Persuasive Design. International Conference
on Persuasive Technology - PERSUASIVE, ACM (2009), 40:1--40:7.

[64] Fowler, F.J. Survey Research Methods. SAGE, Thousand Oaks, CA, 2009.

[65] Frey, S., Rashid, A., Anthonysamy, P., Pinto-Albuquerque, M., and Naqvi, S.A.
The Good, the Bad and the Ugly: A Study of Security Decisions in a Cyber-
Physical Systems Game. IEEE Transactions on Software Engineering, (2017),
1–16.

[66] Furniss, D., Blandford, A.A., and Curzon, P. Confessions From a Grounded
Theory PhD: Experiences and Lesson Learnt. Conference on Human Factors in
Computing Systems - CHI, ACM (2011), 113.

[67] Gagné, M. and Deci, E.L. Self-Determination Theory and Work Motivation.
Journal of Organizational Behavior 26, 4 (2005), 331–362.

[68] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-oriented Software. Pearson Education, 1994.

[69] Ge, X., Paige, R., Polack, F., Chivers, H., and Brooke, P. Agile Development of
Secure Web-Based Applications. International Conference on Web Engineering
- ICWE, ACM (2006), 1–24.

[70] Geer, D. Are Companies Actually Using Secure Development Life Cycles?
IEEE Computer June, 2010, 12–16.

[71] Gibbs, G. Qualitative Data Analysis: Explorations with NVivo. Cromwell Press,
Trowbridge, Wiltshire, UK, 2002.

[72] Glanz, L., Amann, S., Eichberg, M., et al. CodeMatch: Obfuscation Won’t
Conceal Your Repackaged App. European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE, ACM
(2017), 638–648.

[73] Glaser, B.G. Theoretical Sensitivity. Sociology Press, 1978.

[74] Glaser, B.G. and Strauss, A.L. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Transaction, Chicago, 1973.

[75] Goldkuhl, G. Pragmatism vs Interpretivism in Qualitative Information Systems
Research. European Journal of Information Systems 21, 2 (2012), 135–146.

[76] Green, M. and Smith, M. Developers are Not the Enemy!: The Need for Usable
Security APIs. IEEE Security and Privacy 14, 5 (2016), 40–46.

Chapter 10: References

Charles Weir - October 2020 183

[77] Guest, G., Bunce, A., and Johnson, L. How Many Interviews are Enough? An
Experiment with Data Saturation and Variability. Field Methods 18, 1 (2006),
59–82.

[78] Gwet, K.L. Handbook of Inter-Rater Reliability: The Definitive Guide to
Measuring the Extent of Agreement Among Raters. Advanced Analytics LLC,
2014.

[79] Hall, T., Sharp, H., Beecham, S., Baddoo, N., and Robinson, H. What Do We
Know about Developer Motivation? IEEE Software 25, 4 (2008), 92–94.

[80] Handy, C.B. Understanding Organizations. Penguin Books, 1993.

[81] Haney, J.M. and Lutters, W.G. Skills and Characteristics of Successful
Cybersecurity Advocates. Workshop on Security Information Workers - SIW,
USENIX Association (2017).

[82] Haney, J.M. and Lutters, W.G. It’s Scary… It’s Confusing… It’s Dull: How
Cybersecurity Advocates Overcome Negative Perceptions of Security.
Symposium on Usable Privacy and Security - SOUPS, USENIX Association
(2018), 411–425.

[83] Hardgrave, B., Davis, F., and Riemenschneider, C. Investigating Determinants of
Software Developers’ Intentions to Follow Methodologies. Management
Information Systems 20, 1 (2003), 123–151.

[84] Herzberg, F. One More Time: How Do You Motivate Employees? Harvard
Business Review 46, January/February (1968), 53–62.

[85] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., and Dig, D. Trade-Offs in
Continuous Integration: Assurance, Security, and Flexibility. European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering - ESEC/FSE, ACM (2017), 197–207.

[86] Hoadley, C., Baumgartner, E., Bell, P., et al. Design-Based Research: An
Emerging Paradigm for Educational Inquiry. Educational Researcher 32, 1
(2002), 5–8.

[87] Hoda, R., Noble, J., and Marshall, S. Grounded Theory for Geeks. Conference
on Pattern Languages of Programs - PLoP, ACM (2011), 1–17.

[88] Howard, M., LeBlanc, D., and Viega, J. 24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them. McGraw-Hill, Inc., New York, NY,
2009.

[89] Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLOS
Medicine 2, 8 (2005), 0696–0701.

[90] ISO/IEC. 21827:2008 - Systems Security Engineering - Capability Maturity
Model. 2008, 144.

[91] James Carifio and Rocco J. Perla. Ten Common Misunderstandings,
Misconceptions, Persistent Myths and Urban Legends about Likert Scales and
Likert Response Formats and their Antidotes. Journal of Social Sciences 3, 3
(2007), 106–116.

Chapter 10: References

184 Charles Weir - October 2020

[92] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs? nternational Conference on
Software Engineering - ICSE, IEEE (2013), 672–681.

[93] Jones, D.W. Deep Secret. Harper Collins.

[94] Kirlappos, I., Beautement, A., and Sasse, M.A. “Comply or Die” Is Dead: Long
Live Security-Aware Principal Agents. In Financial Cryptography and Data
Security. Springer Berlin, Heidelberg, 2013, 70–82.

[95] Kirlappos, I., Parkin, S., and Sasse, M.A. Shadow Security as a Tool for the
Learning Organization. Computers and Society 45, 1 (2015), 29–37.

[96] Kline, T. Classical Test Theory: Assumptions, Equations, Limitations, and Item
Analyses. In Psychological Testing: A Practical Approach to Design and
Evaluation. SAGE Publications, Inc., Thousand Oaks, California, 2005.

[97] Kluyver, T., Ragan-kelley, B., Pérez, F., et al. Jupyter Notebooks: A Publishing
Format for Reproducible Computational Workflows. In Positioning and Power
in Academic Publishing: Players, Agents and Agendas. IOS Press, 2016, 87–90.

[98] Kohn, A. Why Incentive Plans Cannot Work. Harvard Business Review, (1993).

[99] Kohn, M. and Senyak, J. Sample Size Calculators. http://www.sample-size.net/.

[100] Kruger, S., Nadi, S., Reif, M., et al. CogniCrypt: Supporting Developers in
Using Cryptography. Conference on Automated Software Engineering - ASE,
IEEE (2017), 931–936.

[101] Lancaster University. Information Security Policy. 2019, 1–15.
https://www.lancaster.ac.uk/iss/security/policy/.

[102] Lau, F. A Review on the Use of Action Research in Information Systems
Studies. Information Systems and Qualitative Research, (1997), 31–68.

[103] Lavallee, M. and Robillard, P.N. The Impacts of Software Process Improvement
on Developers: A Systematic Review. International Conference on Software
Engineering - ICSE, IEEE (2012), 113–122.

[104] Lewin, K. Action Research and Minority Problems. Journal of Social Issues 2, 4
(1946), 34–46.

[105] Lewis, C.F. Motivational Design Patterns. 2013.

[106] Likert, R. A Technique for the Measurement of Attitudes. Archives of
Psychology 140, (1932).

[107] van der Linden, D., Anthonysamy, P., Nuseibeh, B., et al. Schrödinger’s
Security: Opening the Box on App Developers’ Security Rationale. International
Conference on Software Engineering - ICSE, IEEE (2020).

[108] Lopez, T., Nuseibeh, B., Bandara, A.K., et al. Motivating Jenny to Write Secure
Software. 2020. https://motivatingjenny.org.

[109] Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., and Nuseibeh, B.
Hopefully We Are Mostly Secure: Views on Secure Code in Professional
Practice. Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE, IEEE (2019), 61–68.

Chapter 10: References

Charles Weir - October 2020 185

[110] Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., and Nuseibeh, B.
Talking about Security with Professional Developers. Workshop on Conducting
Empirical Studies in Industry - CESSER-IP, IEEE Computer Society (2019).

[111] Lopez, T., Weir, C., Cooper, H., et al. Motivating Jenny Developer Security
Toolkit. 2020. https://doi.org/10.21954/ou.rd.c.4957223.v1.

[112] McGraw, G. Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[113] Merrill, N. Security Fictions : Bridging Speculative Design and Computer
Security. Designing Interactive Systems Conference - DIS, ACM (2020).

[114] Microsoft. Microsoft Secure Development Lifecycle.
https://www.microsoft.com/en-us/sdl/.

[115] Microsoft. Microsoft Security Intelligence Report, Volume 23. 2018.
https://info.microsoft.com/rs/157-gqe-382/images/en-us_cntnt-ebook-sir-
volume-23_march2018.pdf.

[116] Moolenburgh, W. and Provenmodels. Gods of Management. 2019.
https://www.provenmodels.com/8/gods-of-management/charles-b.-handy.

[117] Nadi, S., Krüger, S., Mezini, M., and Bodden, E. Jumping Through Hoops: Why
do Java Developers Struggle With Cryptography APIs? International
Conference on Software Engineering - ICSE, IEEE (2015).

[118] Naiakshina, A., Danilova, A., Tiefenau, C., Herzog, M., Dechand, S., and Smith,
M. Why Do Developers Get Password Storage Wrong? A Qualitative Usability
Study. Conference on Computer and Communications Security - CCS, ACM
Press (2017), 311–328.

[119] Naiakshina, A., Danilova, A., Tiefenau, C., Herzog, M., Dechand, S., and Smith,
M. Why Do Developers Get Password Storage Wrong? Conference on Computer
and Communications Security - CCS, ACM Press (2017), 311–328.

[120] Naqvi, S.A.A. The Grounded Incident Fault Theories (GIFTs) Method. 2014.

[121] Natural Language Processing Group from University of the Republic Uraguay.
Fast Computation of the Krippendorff’s Alpha Agreement Measure in Python.
2020. https://github.com/pln-fing-udelar/fast-krippendorff.

[122] Nayak, K., Marino, D., Efstathopoulos, P., and Dumitraş, T. Some
Vulnerabilities Are Different Than Others: Studying Vulnerabilities and Attack
Surfaces in the Wild. International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), (2014).

[123] Nguyen, D.C., Wermke, D., Backes, M., Weir, C., and Fahl, S. A Stitch in Time:
Supporting Android Developers in Writing Secure Code. Conference on
Computer and Communications Security - CCS, ACM (2017).

[124] O’Brien, R.M. The Use of Pearson’s with Ordinal Data. American Sociological
Review 44, 5 (1979), 851–857.

[125] Oates, B.J. Researching Information Systems and Computing. Sage, 2005.

Chapter 10: References

186 Charles Weir - October 2020

[126] Oltrogge, M., Derr, E., Stransky, C., et al. The Rise of the Citizen Developer:
Assessing the Security Impact of Online App Generators. Symposium on Security
and Privacy - S&P, IEEE (2018), 634–647.

[127] Ben Othmane, L., Ranchal, R., Fernando, R., Bhargava, B., and Bodden, E.
Incorporating Attacker Capabilities in Risk Estimation and Mitigation.
Computers & Security 51, (2015), 41–61.

[128] OWASP. Mobile Security Project - Top Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Top_Ten_Mobile_Risks.

[129] OWASP Foundation. OWASP Code Review Guide Book. OWASP Foundation,
2008.

[130] Pal, S. The Assumptions in Linear Correlations. Helpful Stats, 2017.
https://helpfulstats.com/assumptions-correlation/.

[131] Perera, C., McCormick, C., Bandara, A.K., Price, B.A., and Nuseibeh, B.
Privacy-by-Design Framework for Assessing Internet of Things Applications
and Platforms. Conference on the Internet of Things - IoT, (2016), 83–92.

[132] Pfleeger, S.L., Sasse, M.A., and Furnham, A. From Weakest Link to Security
Hero: Transforming Staff Security Behavior. Journal of Homeland Security and
Emergency Management 11, 4 (2014), 489–510.

[133] Pirsig, R.M. Zen and the Art of Motorcycle Maintenance: An Inquiry into
Values. Random House, 1999.

[134] Poller, A., Kocksch, L., Türpe, S., Epp, F.A., and Kinder-Kurlanda, K. Can
Security Become a Routine? A Study of Organizational Change in an Agile
Software Development Group. Conference on Computer Supported Cooperative
Work - CSCW, ACM (2017), 2489–2503.

[135] Ponemon Institute. The State of Mobile Application Insecurity. 2015.
https://securityintelligence.com/mobile-insecurity/.

[136] Presser, S., Couper, M.P., Lessler, J.T., et al. Methods for Testing and
Evaluating Survey Questions. Public Opinion 68, 1 (2004), 109–130.

[137] QSR International. NVivo. https://www.qsrinternational.com/nvivo/nvivo-
products.

[138] Qualtrics. Qualtrics Survey Service. https://www.qualtrics.com/.

[139] Rashid, A., Levine, M., Nuseibeh, B., Petre, M., Towse, J., and Tun, T. The
Johnny Project. 2017. https://www.writingsecuresoftware.org/.

[140] Reed, J. Appreciative Inquiry: Research for Change. Sage, 2006.

[141] Riemenschneider, C.K., Hardgrave, B.C., and Davis, F.D. Explaining Software
Developer Acceptance of Methodologies: A Comparison of Five Theoretical
Models. IEEE Transactions on Software Engineering 28, 12 (2002), 1135–1145.

[142] RiskBased Security. Mid Year Data Breach Report. 2019, 1–14.
https://pages.riskbasedsecurity.com/hubfs/Reports/2019/2019 MidYear Data
Breach QuickView Report.pdf.

[143] Rogers, E.M. Diffusion of Innovations. Simon and Schuster, 2010.

Chapter 10: References

Charles Weir - October 2020 187

[144] Rumsey, D. Statistics II for Dummies. Wiley, Indianapolis, 2009.

[145] Sadeghi, A., Bagheri, H., Garcia, J., and Malek, S. A Taxonomy and Qualitative
Comparison of Program Analysis Techniques for Security Assessment of
Android Software. IEEE Transactions on Software Engineering 43, 6 (2016).

[146] SANS Institute. SANS Institute Security Resources.
https://www.sans.org/security-resources/.

[147] Santos, P. and Travassos, G. Action Research Use in Software Engineering: An
Initial Survey. Symposium on Empirical Software Engineering and Measurement
- ESEM, IEEE (2009), 414–417.

[148] Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., and
Sommerlad, P. Security Patterns: Integrating Security and Systems Engineering.
John Wiley & Sons, 2005.

[149] Security and Privacy Research Lab University of Washington. The Security
Cards. 2013. https://securitycards.cs.washington.edu/.

[150] Senarath, A. and Arachchilage, N.A.G. Why Developers Cannot Embed Privacy
into Software Systems? Conference on Evaluation and Assessment in Software
Engineering - EASE, ACM (2018), 211–216.

[151] Senarath, A.R. and Arachchilage, N.A.G. Understanding User Privacy
Expectations: A Software Developer’s Perspective. Telematics and Informatics
35, 7 (2018), 1845–1862.

[152] Shah, A.K., Mullainathan, S., and Shafir, E. Some Consequences of Having Too
Little. Science 338, 6107 (2013), 682–685.

[153] Sharp, H., Dittrich, Y., and De Souza, C.R.B. The Role of Ethnographic Studies
in Empirical Software Engineering. IEEE Transactions on Software Engineering
42, 8 (2016), 786–804.

[154] Shostack, A. Threat Modeling: Designing for Security. John Wiley & Sons,
2014.

[155] Sindre, G. and Opdahl, A.L. Eliciting Security Requirements with Misuse Cases.
Requirements Engineering 10, 1 (2005), 34–44.

[156] Singer, L.-G. Improving the Adoption of Software Engineering Practices
Through Persuasive Interventions. Amazon, 2013.

[157] Stack Overflow. Annual Developer Survey 2016.
https://insights.stackoverflow.com/survey/2016.

[158] Stack Overflow. Developer Survey Results 2011-2019. 2019.
https://insights.stackoverflow.com/survey.

[159] Statistica. Total Numbers of Programmers and Software Development
Professionals in the United Kingdom from 2011 to 2018. 2018.
https://www.statista.com/statistics/318818/numbers-of-programmers-and-
software-development-professionals-in-the-uk/.

[160] Steel, C., Nagappan, R., and Lai, R. Core Security Patterns. Prentice Hall, Upper
Saddle River, NJ, 2006.

Chapter 10: References

188 Charles Weir - October 2020

[161] Stevens, S.S. On the Theory of Scales of Measurement. Science 103, 2684
(1946), 677–680.

[162] Stol, K., Ralph, P., and Fitzgerald, B. Grounded Theory in Software Engineering
Research: A Critical Review and Guidelines. International Conference on
Software Engineering - ICSE, ACM (2015), 120–131.

[163] Strauss, A.L. and Corbin, J.M. Basics of Qualitative Research. Sage Newbury
Park, CA, 1990.

[164] Such, J.M., Gouglidis, A., Knowles, W., Misra, G., and Rashid, A. Information
Assurance Techniques: Perceived Cost Effectiveness. Computers and Security
60, (2016), 117–133.

[165] Tahaei, M. and Vaniea, K. A Survey on Developer-Centred Security. European
Workshop on User-Centered Security - EuroUSec, (2019), 14.

[166] Tavakol, M. and Dennick, R. Making Sense of Cronbach’s Alpha. International
Journal of Medical Education 2, (2011), 53–55.

[167] Tech Partnership. Factsheet: Cyber Security Specialists in the UK. 2017.
https://www.tpdegrees.com/globalassets/pdfs/research-
2017/factsheet_cybersecurityspecialists_feb17.pdf.

[168] Thaler, R.H. and Sunstein, C.R. Nudge: Improving Decisions About Health,
Wealth and Happiness. Penguin Books, 2009.

[169] Tietjen, M.A. and Myers, R.M. Motivation and Job Satisfaction. Management
Decision 36, 4 (1998), 226–231.

[170] Tuma, K., Calikli, G., and Scandariato, R. Threat Analysis of Software Systems:
A Systematic Literature Review. Journal of Systems and Software 144, February
(2018), 275–294.

[171] Türpe, S. The Trouble with Security Requirements. International Requirements
Engineering Conference - RE, IEEE (2017), 122–133.

[172] Türpe, S., Kocksch, L., and Poller, A. Penetration Tests a Turning Point in
Security Practices? Organizational Challenges and Implications in a Software
Development Team. Workshop on Security Information Workers - SIW, USENIX
Association (2016).

[173] Umarji, M. and Seaman, C. Predicting Acceptance of Software Process
Improvement. Workshop on Human and Social Factors of Software Engineering
- HSSE, ACM (2005).

[174] University of Georgia. A PEER Tutorial for Design-Based Research. 2006.
http://dbr.coe.uga.edu/enact01.htm.

[175] Ur Rahman, A.A. and Williams, L. Software Security in DevOps: Synthesizing
Practitioners’ Perceptions and Practices. Workshop on Continuous Software
Evolution and Delivery - CSED, ACM Press (2016), 70–76.

[176] Vaniea, K. and Rashidi, Y. Tales of Software Updates: The Process of Updating
Software. Conference on Human Factors in Computing Systems - CHI, ACM
(2016), 3215–3226.

Chapter 10: References

Charles Weir - October 2020 189

[177] Veracode. State of Software Security Report Volume 9. 2018.
https://info.veracode.com/report-state-of-software-security-volume-9.html.

[178] Versta Research. How to Estimate the Length of a Survey.
https://verstaresearch.com/newsletters/how-to-estimate-the-length-of-a-survey/.

[179] Viera, A.J. and Garrett, J.M. Understanding Interobserver Agreement: The
Kappa Statistic. Family Medicine 37, 5 (2005), 360–363.

[180] Votipka, D., Stevens, R., Redmiles, E., Hu, J., and Mazurek, M. Hackers vs.
Testers: A Comparison of Software Vulnerability Discovery Processes.
Symposium on Security and Privacy - S&P, IEEE (2018), 374–391.

[181] Wang, F. and Hannafin, M.J. Design-Based Research and Technology-Enhanced
Learning Environments. Educational Technology Research and Development 53,
4 (2005), 5–23.

[182] Weir, Charles; Knight, Jack; Ford, N. Developer Security Essentials.
https://www.securedevelopment.org.

[183] Weir, C. How to Improve the Security Skills of Mobile App Developers: An
Analysis of Expert Knowledge. 2017. http://eprints.lancs.ac.uk/id/eprint/84664.

[184] Weir, C. The Agile App Security Game: Leader’s Instructions. 2018.
https://www.securedevelopment.org/resources/agile-security-game/.

[185] Weir, C., Becker, I., Noble, J., et al. Interventions for Long-Term Software
Security Creating a Lightweight Program of Assurance Techniques for
Developers. Software - Practice and Experience, October (2019), 275–298.

[186] Weir, C., Hermann, B., Stransky, C., Wermke, D., and Fahl, S. Public Dataset
from Online Android App Developer Survey. 2019.
https://dx.doi.org/10.17635/lancaster/researchdata/319.

[187] Weir, C., Kayla Friedman, and Malcolm Morgan. GitHub: Word Template for a
Lancaster University Thesis. https://github.com/charlesweir/LUThesisTemplate.

[188] Weir, C., Noble, J., and Rashid, A. Challenging Software Developers: Dialectic
as a Foundation for Security Assurance Techniques. Journal of Cybersecurity,
(2020), 30.

[189] Weir, C. and Penrillian. Penrillian’s Secure Development Process. 2014.

[190] Weir, C., Rashid, A., and Noble, J. Reaching the Masses: A New Subdiscipline
of App Programmer Education. Symposium on the Foundations of Software
Engineering Proceedings: Visions and Reflections - FSE, ACM (2016).

[191] Weir, C., Rashid, A., and Noble, J. Early Report: How to Improve Programmers’
Expertise at App Security? Workshop on Innovations in Mobile Privacy and
Security - IMPS, CEUR-WS.org (2016), 49–50.

[192] Weir, C., Rashid, A., and Noble, J. How to Improve the Security Skills of
Mobile App Developers: Comparing and Contrasting Expert Views. Workshop
on Security Information Workers - SIW, USENIX Association (2016).

[193] Weir, C., Rashid, A., and Noble, J. I’d Like to Have an Argument, Please: Using
Dialectic for Effective App Security. European Workshop on Usable Security -
EuroUSEC, Internet Society (2017).

Chapter 10: References

190 Charles Weir - October 2020

[194] Werlinger, R., Hawkey, K., Botta, D., and Beznosov, K. Security Practitioners in
Context: Their Activities and Interactions with Other Stakeholders within
Organizations. International Journal of Human Computer Studies 67, 7 (2009),
584–606.

[195] Wermke, D., Reaves, B., Huaman, N., Traynor, P., Acar, Y., and Fahl, S. A
Large Scale Investigation of Obfuscation Use in Google Play. Annual Computer
Security Applications Conference - ACSAC, ACM (2018), 222–235.

[196] Whyte, W.F. Participatory Action Research. Sage Publications, Inc, 1991.

[197] De Win, B., Scandariato, R., Buyens, K., Grégoire, J., and Joosen, W. On the
Secure Software Development Process: CLASP, SDL and Touchpoints
Compared. Information and Software Technology 51, 7 (2009), 1152–1171.

[198] Witschey, J., Xiao, S., and Murphy-Hill, E. Technical and Personal Factors
Influencing Developers’ Adoption of Security Tools. Workshop on Security
Information Workers - SIW, (2014), 23–26.

[199] Xiao, S., Witschey, J., and Murphy-Hill, E. Social Influences on Secure
Development Tool Adoption: Why Security Tools Spread. Conference on
Computer Supported Cooperative Work - CSCW, ACM (2014), 1095–1106.

[200] Xie, J., Lipford, H.R., and Chu, B. Why Do Programmers Make Security Errors?
IEEE Symposium on Visual Languages and Human Centric Computing, (2011),
161–164.

[201] Xiong, W. and Lagerström, R. Threat Modeling – a Systematic Literature
Review. Computers and Security 84, (2019).

[202] Yang, X.L., Lo, D., Xia, X., Wan, Z.Y., and Sun, J.L. What Security Questions
Do Developers Ask? A Large-Scale Study of Stack Overflow Posts. Computer
Science and Technology 31, 5 (2016).

[203] Yoder, J. and Barcalow, J. Architectural Patterns for Enabling Application
Security. Conference on Pattern Languages of Programs - PLoP, (1997), 31.

[204] Yoshioka, N., Washizaki, H., and Maruyama, K. A Survey on Security Patterns.
Progress in Informatics, 5 (2008), 35–48.

[205] Yskout, K., Scandariato, R., and Joosen, W. Do Security Patterns Really Help
Designers? International Conference on Software Engineering - ICSE, IEEE
(2015), 292–302.

[206] OWASP Foundation. https://www.owasp.org/index.php/Main_Page.

[207] Building Security In Maturity Model | BSIMM. https://www.bsimm.com/.

[208] Wikipedia: Alec Muffet. https://en.wikipedia.org/wiki/Alec_Muffett.

 Appendix A Most Cited DCS Publications

Charles Weir - October 2020 191

 Most	Cited	DCS	Publications		
The following table shows the most frequently cited Developer Centred Security papers.
It gives the identifier used in Figure 3, Section 2.1.2; the paper type (C for conference
paper, J for journal paper, and B for professionally-edited book); the reference, the
Google Scholar citation count at 12 March 2020, and a calculation of the corresponding
annual citation rate.

ID Title

T
yp

e

R
ef

C
ite

s

C
ite

s
p.

a.

Acar+16 You Get Where You’re Looking For: The Impact
of Information Sources on Code Security C [3] 127 32

Acar+16a
You Are Not Your Developer, Either: A
Research Agenda for Usable Security and
Privacy Research Beyond End Users.

C [4] 43 11

Acar+17 Security Developer Studies with GitHub Users:
Exploring a Convenience Sample. C [5] 38 13

Acar+17a Developers Need Support, Too: A Survey of
Security Advice for Software Developers C [6] 32 11

Anderson08 Security Engineering: A Guide to Building
Dependable Distributed Systems B [9] 3574 298

Assal&Chiasson18 Security in the Software Development Lifecycle. C [13] 25 13
Ayewah+08 Using Static Analysis to Find Bugs J [15] 422 35

Balebako&Cranor14 Improving App Privacy: Nudging App
Developers to Protect User Privacy. J [19] 63 11

Balebako+14 The Privacy and Security Behaviors of
Smartphone App Developers. J [20] 82 14

Christakis&Bird16 What Developers Want and Need from Program
Analysis: An Empirical Study C [34] 75 19

Derr+17 Keep Me Updated: An Empirical Study of Third-
Party Library Updatability on Android. C [45] 49 16

Devanbu&Stubble-
bine00 Software Engineering for Security: A Roadmap. C [46] 579 29

Fahl+13 Rethinking SSL Development in an Appified
World C [57] 144 21

Faily&Flechais11 Persona Cases: A Technique for Grounding
Personas. C [58] 97 11

Felderer+16 Security Testing: A Survey. J [59] 69 17

Fischer+17 Stack Overflow Considered Harmful? the Impact
of Copy&Paste on Android Application Security C [60] 95 32

Green&Smith16 Developers are Not the Enemy!: The Need for
Usable Security APIs J [76] 82 21

Hilton+17 Trade-Offs in Continuous Integration:
Assurance, Security, and Flexibility C [85] 70 23

Howard+09 24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them B [88] 200 18

Johnson+13 Why Don’t Software Developers Use Static
Analysis Tools to Find Bugs? C [92] 348 50

Nadi+15 Jumping Through Hoops: Why do Java
Developers Struggle with Cryptography APIs C [117] 99 20

Naiakshina+17 Why Do Developers Get Password Storage
Wrong? C [119] 39 13

Appendix A Most Cited DCS Publications

192 Charles Weir - October 2020

ID Title

T
yp

e

R
ef

C
ite

s

C
ite

s
p.

a.

Nguyen+17 A Stitch in Time: Supporting Android
Developers in Writing Secure Code. C [123] 39 13

Perera+16 Privacy-by-Design Framework for Assessing
Internet of Things Applications and Platforms. C [131] 47 12

Schumacher+05 Security Patterns: Integrating Security and
Systems Engineering B [148] 868 58

Shostack14 Threat Modeling: Designing for Security B [154] 462 77

Sindre&Opdahl05 Eliciting Security Requirements with Misuse
Cases J [155] 1235 82

Steel+06 Core Security Patterns B [160] 328 23

Tuma+18 Threat Analysis of Software Systems: A
Systematic Literature Review J [170] 22 11

Votipka+18 Hackers vs. Testers: A Comparison of Software
Vulnerability Discovery Processes. C [180] 19 10

Xiao+14 Social Influences on Secure Development Tool
Adoption: Why Security Tools Spread. C [199] 62 10

Xiong&Lagerström19 Threat Modeling – a Systematic Literature
Review J [201] 11 11

Yang+16 What Security Questions Do Developers Ask? A
Large-Scale Study of Stack Overflow Posts. J [202] 38 10

Yoder&Barcalow98 Architectural Patterns for Enabling Application
Security C [203] 453 21

Yoshioka+08 A Survey on Security Patterns J [204] 229 19

 Appendix B Expert Survey Interview Questions

Charles Weir - October 2020 193

 Expert	Survey	Interview	Questions	
Introduction – establish context
What is your current role, and what do you find yourself doing day-to-day? Tell me about
a typical day at work?

Briefly, how did you first get involved with secure software development?

Exploration
What’s your interest in security? What do you do about it, and how do you deal with it
day-to-day?

What do you want to achieve when you’re helping a team improve software security?
How do you define and measure success?

What is the most successful intervention technique you’ve found? Where do you
concentrate your efforts?

Can you think of a particular triumph in your work – where you’ve worked with a team
that has improved their security? How did you achieve that?

Have any of your teams used code checking tools? How happy were you with their
effectiveness at finding problems; and their ease of use?

What do you find effective as motivation for secure development?

How do you frighten developers into security, or emphasise the positive aspects?

To what extent are laws and standards helpful in getting teams to be effective at software
security? How do you find out about them and keep up to date?

When new people join an existing team, how do you motivate them and how do they learn
what’s required? Do you encourage double checking of contributions from new people
or treat them ‘as usual’?

What are the best ways you’ve found to get teams to tackle specific things:

• Security coordination with other teams?
• Reviews and penetration testing?
• Designing to get feedback from the users?
• What else?

Have you had a nightmare scenario? Or consider this nightmare scenario. You’re working
with a team that’s just learned they have a security flaw in a website that’s very heavily
used. Have you even had a situation like that (no details required)? What did or would
you do to help the team tackle it?

Vision
Let’s imaging we’re a few years in the future, and the problem of getting teams up to
speed with app security has been licked; it’s now a part of everyday software development
life. How was it done? What were the first small steps?

Clarification (as appropriate)
And how did you achieve that?
Oh, I see. Could you give an example?

Appendix C Assurance Technique Names Used

194 Charles Weir - October 2020

 Assurance	Technique	Names	Used	
Su
ch
	e
t	a
l.	

Ex
pe
rt
	

Su
rv
ey
	

An
al
ys
is
	

Ex
pe
rt
	

Su
rv
ey
	

Ch
ap
te
r	

D
ev
el
op
er
	S
ur
ve
y	

Q
ue
st
io
ns
	

M
ag
id
	1
	

An
al
ys
is
	

M
ag
id
	1
	

Ch
ap
te
r	

M
ag
id
	2
	

An
al
ys
is
	

M
ag
id
	2
	

Ch
ap
te
r	

Co
nf
ig
ur
at
io
n	

Re
vi
ew
	

Pl
ug
in
	re
vi
ew
s	

Co
nf
ig
ur
at
io
n	

Re
vi
ew
	

to
ol
	to
	sc
an
	fo
r	l
ib
…
	

vu
ln
er
ab
ili
tie
s	

Co
m
po
ne
nt
	

ch
oi
ce
		

Co
nf
ig
ur
at
io
n	

Re
vi
ew
	

Co
nf
ig
ur
at
io
n	

Re
vi
ew
	

Co
nf
ig
ur
at
io
n	

Re
vi
ew
	

So
ur
ce
	C
od
e	

Re
vi
ew
	

Co
de
	re
vi
ew
	

So
ur
ce
	C
od
e	

Re
vi
ew
	

Co
de
	re
vi
ew
	b
y	

so
m
eo
ne
	o
th
er
	…
	

	
(e
xp
lic
itl
y	

om
itt
ed
)	

Co
de
	R
ev
ie
w
	

Co
de
	R
ev
ie
w
	

Pe
ne
tr
at
io
n	

Te
st
s	

Pe
ne
tr
at
io
n	

te
st
in
g	

Pe
ne
tr
at
io
n	

Te
st
in
g	

Pe
ne
tr
at
io
n	
te
st
in
g	

	
(e
xp
lic
itl
y	

om
itt
ed
)	

Pe
ne
tr
at
io
n	

Te
st
in
g	

Pe
ne
tr
at
io
n	

Te
st
in
g	

Vu
ln
er
ab
ili
ty
	

Sc
an
	

Co
de
	re
vi
ew
	

to
ol
s	

Au
to
m
at
ed
	

St
at
ic
	

An
al
ys
is
	

Sc
an
ni
ng
	co
de
	w
ith
	

an
	a
ut
om

at
ic
	..	
to
ol
	

Au
to
m
at
ed
	

co
de
	re
vi
ew
	

	

Au
to
m
at
ed
	

St
at
ic
	

An
al
ys
is
	

Au
to
m
at
ed
	

St
at
ic
	A
na
ly
si
s	

Au
to
m
at
ed
	

St
at
ic
	A
na
ly
si
s	

Th
re
at
	

As
se
ss
m
en
t	

Th
re
at
	

m
od
el
lin
g	

Th
re
at
	

As
se
ss
m
en
t	

Pr
od
uc
in
g	
a	
th
re
at
	

as
se
ss
m
en
t…
	

Th
re
at
	

m
od
el
lin
g	

Th
re
at
	

As
se
ss
m
en
t	

Th
re
at
	

As
se
ss
m
en
t	

Th
re
at
	

As
se
ss
m
en
t	

Re
d	
Te
am
in
g	

Re
d	
te
am
in
g	

(w
ith
	P
en
.	

Te
st
in
g)
	

	
	

	
	

	

	
St
ak
eh
ol
de
r	

re
la
tio
ns
	

St
ak
eh
ol
de
r	

N
eg
ot
ia
tio
n	

	
Bu
si
ne
ss
	

in
te
ra
ct
io
n	

St
ak
eh
ol
de
r	

N
eg
ot
ia
tio
n	

Pr
od
uc
t	

N
eg
ot
ia
tio
n	

Pr
od
uc
t	

N
eg
ot
ia
tio
n	

	
In
ce
nt
iv
is
at
io
n	

ta
lk
	

	
	

	
	

In
ce
nt
iv
is
at
io
n	

Se
ss
io
n	

(w
ith
	F
ur
th
er
	

W
or
ks
ho
ps
)	

	
Ch
ec
kl
is
ts
	

	
	

Ch
ec
kl
is
ts
	

	
St
an
da
rd
is
at
io
n	

St
an
da
rd
is
at
io
n	

	
	

	
	

Co
nt
in
uo
us
	

re
m
in
de
r	

	
Fo
llo
w
	u
p	

Se
ss
io
ns
	

	

	
De
ve
lo
pe
r	

tr
ai
ni
ng
	

On
-th
e-
jo
b	

Tr
ai
ni
ng
	

	
On
-th
e-
jo
b	

Tr
ai
ni
ng
	

On
-th
e-
jo
b	

Tr
ai
ni
ng
	

On
-th
e-
jo
b	

Tr
ai
ni
ng
	

On
-th
e-
jo
b	

Tr
ai
ni
ng
	

	
	

	
	

	
	

Au
to
m
at
ed
	P
en
	

Te
st
in
g	

Au
to
m
at
ed
	P
en
.	

Te
st
in
g	

	
Se
cu
ri
ty
	

ch
am
pi
on
	

(w
ith
	O
n-
th
e-

jo
b	
Tr
ai
ni
ng
)	

	
In
ce
nt
iv
is
at
io
n	

Se
ss
io
n	

	
Se
cu
ri
ty
	

Ch
am
pi
on
	

Se
cu
ri
ty
	

Ch
am
pi
on
	

	
	

	
	

	
	

Co
nt
in
ge
nc
y	

Pl
an
	

Co
nt
in
ge
nc
y	

Pl
an
	

	
	

	
	

	
	

Fu
rt
he
r	

W
or
ks
ho
ps
	

Fu
rt
he
r	

W
or
ks
ho
ps
	

 Appendix D Agile App Security Game Facilitator Instructions

Charles Weir - October 2020 195

 Agile	App	Security	Game	Facilitator	
Instructions	

These are an abbreviated version of the full instructions. References to documents and
PDFs refer to the full set of materials [184].

Preparation in Advance

1. Calculate how many players you’ll have, and so how many teams of 3-6 players
you’ll need.

2. Print the two side PlayerInstructions.pdf sheet, one per player, preferably 2-
sided.

3. Print from CardsFourToPage.pdf a set of task cards for each team, on A4 paper,
one sided and ideally on light card (black and white is fine, colour better). Then
cut them out, preferably with a guillotine (or see below).

Setup on the Day

4. Arrange the room with separate tables with 2-6 chairs around each table. Make
there’s a piece of blank paper and pen for each team.

5. Set up a projector/display visible to all the players, showing the presentation.
6. Sort out cards in advance into individual mini-packs of a set of each (A, B, C, or

D), with cover. A packs have 8 cards; B, C, and D have 4 cards.
The workshop has an introduction, up to four
rounds, or ‘sprints’, and a wrap-up session.

Table 27 suggests a timetable for a typical 90
minute session. Adjust timings according to
how the teams are getting on in each step.

Introduction (5 min)
Organise the players into teams of 2-6
people, each team sitting at chairs around a
table, as shown in Figure 51. Give each
player a set of Player Instructions.

Tell the participants that they are taking the
role of agile product managers for the
MoneyZoom product; their role is to decide
on the stories for the development team to tackle each sprint. In the first couple of sprints
each team will be able to complete 11 story points. Stories chosen from previous sprints
will remain part of the product and available to mitigate attacks. Stories not chosen in a
given sprint will remain on the backlog as candidates to be chosen in later sprints.

The workshop then proceeds in ‘sprints’. Each sprint is as follows.

Figure 56: Playing the Agile App

Security Game

Appendix D Agile App Security Game Facilitator Instructions

196 Charles Weir - October 2020

Sprints 1 – 4 (10 – 25 minutes each)

1. Hand out the cards to each team as shown in Table 26. (there may be more one
set of cards to hand out). The players then select their tasks to carry out. Note
that you don’t take cards away at any point – cards that haven’t been used
remain in the ‘backlog’ for future sprints.

2. Allow the players time to discuss and decide. Typical timings are as in Table 27,
but depend on the teams. Remember the point of the game is the discussion, not
to win; if there’s a good deal of discussion taking place and time permits, allow
the teams longer.

3. When they’ve selected the cards, get each team to write down the two letter IDs
for each card they’ve selected on the sheet of paper.

4. Then show the attacks for the corresponding sprint on the presentation (or read
them out from the Attacks and Mitigations document). The teams see which
attacks succeeded on them. Note that card sets C and D do NOT correspond to
sprints 3 and 4, but instead are given out after the team choses particular
activities.

Wrap-up (10 min)
Ask the teams how they did and what they feel they learned from it.

Table 27: Suggested Timetable
Time	
taken	

Activity	

5	m		 Introduction	

5	m		 Familiarisation	with	context	and	rules	

15	min	 Sprint	1	

25	min		 Sprint	2	

15	min	 Sprint	3	

10	min	 Sprint	4	

10	min	 Learning	and	sharing	

Table 26: When to Give Out the Cards
A	 Start	of	sprint	1	
B	 Start	of	sprint	2	

C	 After	the	team	selected	PT	(Penetration	
Testing)	

D	 After	the	team	selected	RA	(Review	of	App	
Code)	

 Appendix E Threat Assessment and Sales Instructions

Charles Weir - October 2020 197

 Threat	Assessment	and	Sales	Instructions	
This appendix gives abbreviated facilitator instructions for the second two workshops,
using some of the techniques identified from the giving for Group K. Section 8.6.9
provides illustrations.

Workshop Setup in Advance

1. Ensure there is a project for each participant to discuss. Each project should have
at least 3 participants who know it well enough to discuss possible security
problems. For participants with no such shared projects (or who have reasons
not to discuss them), use the ‘MoneyZoom’ project from the previous Agile App
Security Game workshop, and ensure each such participant has a printed
description available from the previous workshop.

2. Arrange tables for participants so each table has 3-6 participants, all familiar
with one project.

3. Place a large number of various coloured post-it notes and appropriate (sharpie-
style) pens on each table.

4. Set up whiteboards and flip charts (one for each project to be discussed the
participants and one extra).

5. Have a few (whiteboard/flipchart) marker pens in two contrasting (allowing for
colour blindness) colours. E.g. Black and red, or blue and red.

6. Locate a timing device (e.g. mobile phone, physical timer, or Google Search
“countdown timer”).

Running the Threat Assessment Workshop
Adjust the timings according to how the teams are getting on in each step.

Step 1: Ideation (30 min)
Arrange the participants in groups around tables so that each group can discuss a single
project.

Write up on a board/flipchart/screen:

Who might do what bad thing to whom?
Person – Thing – Reason

Ask the groups to think about their project, and ‘ideate’ answers, writing down the person-
thing-reason combinations on the post-its. Encourage everyone to write (duplicates will
be combined in the next step).

Remind them that not every bad thing is malicious; sometimes security or privacy issues
happen due to accident or misunderstandings. Encourage them to discuss the issues, and
to gather as many completed post-its (‘threats’) as they reasonably can.

Step 2: Organisation (15 min)
Assign a whiteboard/flipchart to each project. Have the table participants all bring the
post-its to their corresponding board; and, working together, cluster them into ‘topics’,
posting related ones close together and duplicates on top of each other.

Appendix E Threat Assessment and Sales Instructions

198 Charles Weir - October 2020

Step 3: Evaluation (15 min)
This step identifies the most important threats.

Ask each participant to pick the threats (post-its) that are (a) most likely, and (b) most
damaging. And to use the marker pen to make a dot of one colour (black, say) next to the
each of the three they consider most likely; and a dot of the other colour (red, say) next
to the three they think most damaging.

When they’re done, take a photo of each of the resulting boards, for reference.

Step 4: Summary (10 min)
This requires only a few people; it might be best done in the interval before the next
workshop.

For each project, create a three by three ‘Risk-Impact’ grid on a board/flipchart page,
labelled with ‘Low/medium/high impact’ along the top and ‘Likely/fairly
unlikely/unlikely’ down the left. If you need to use the same board, move the post-its out
of the way and use the photo as the record of the numbers of dots.

Get the Technical Leads or a responsible couple of people from each project to use the
dots next to each post-it to position a selection of the threats on the grid. A dozen or so is
a good number to aim for.

The threats towards the top right are the most important ones to consider in the
corresponding projects.

Threat Sales Setup in Advance
From the matrix of threats created in the previous workshop, select the most important 3-
5 to discuss. There should be at least three participants to discuss each one; if participant
numbers are limited, use a smaller number and have each participant discuss more than
one (which will take longer).

Put the corresponding post-its widely separated on the walls of the room (perhaps one on
each wall).

Running the Threat Sales Workshop
The timings are approximate. Adjust them according to how the teams are getting on in
each step.

Step 1: Selection (5 min)
Have the participants form groups next to the post-its according to their preferences for
the threats they each would like to discuss, arranging themselves so that appropriate
numbers are next to each one.

Step 2 Finding Mitigations (30 minutes):
Ask the participants to think ways to address the threat (a ‘mitigation’, in security jargon),
ideally with an idea of the effort required, or a means to discover what effort is required.
This only needs to be sketchy.

Display the checklist from https://www.securedevelopment.org/handbook/checklist/, and
invite the participants to consider them as possibilities.

 Appendix E Threat Assessment and Sales Instructions

Charles Weir - October 2020 199

Step 3: Promoting the Solutions (30 minutes)
After a suitable break…

Tell the participants that the mission for each group, then, is to make a case for product
management to address the threat.

Specifically, we want to know the positive benefit to the organisation of addressing the
threat. This often requires some ingenuity.

Ask the participants to appoint a recorder to produce a poster from the conclusions.

Step 4: Presentation (5 minutes per group)
Ask each group to select a presenter, and have each present the selected poster to all the
groups together. Record the poster contents and notes of the presentations for reference
later.

Appendix F Magid Trials Entry Interview Questions

200 Charles Weir - October 2020

 Magid	Trials	Entry	Interview	Questions	
Introduction – establish context

• What is your current role, and what do you find yourself doing day-to-day?
What’s your involvement with this project?

Exploration	

• Have you considered security for this project yourself? What’s been done so far?
• In what ways do you consider security important for this product?

Experience	

• What’s the last time you came across a security issue in a project? Can you
describe the issue?

• How did you deal with that issue?
• How confident are you about that solution?

Vision	

• Let’s imagine the project’s finished, and it’s been an excellent piece of work.
What do you feel you’ll have done related to security and privacy to get it that
way?

Clarification (as appropriate)	

• Oh, I see. Could you give an example?

 Appendix G Magid Trials Exit Interview Questions

Charles Weir - October 2020 201

 Magid	Trials	Exit	Interview	Questions	
Introduction – establish context

• Now that we’ve been working together for a while, this is a discussion to see
how things have progressed in the project.

Exploration

• What do you think has changed?
• What are your feelings about the change in the project?
• What did you make of the three activities we did: game, workshop, follow-ups?
• In what way might you have a better story on security now?	

Experience

• What changes did you make as a result of the workshops and discussion?
• What exactly did you do?
• How did you go about implementing the changes?
• Why you chose to do those things?
• What is it that’s better now as a result?
• Would you do something similar again?
• What would you do differently?
• How does this relate to these specific threats you’ve identified (from the threat

modelling workshop)?

Vision

• Let’s imagine there’s a team starting a similar project now, and you’re advising
the team coming in to help them improve their security. What would you
recommend that’s the same as we did, and how would you recommend
improving it?

Appendix H Online Survey Invitation Email

202 Charles Weir - October 2020

 Online	Survey	Invitation	Email	
The tags ‘${something}’ are Qualtrics macros, and are self-explanatory.

Participate	in	a	Scientific	Survey	-	Android	App	Development	
Greetings,	
	
As	the	publisher	of	the	Android	App,	${e://Field/AppName},	your	experience	is	
valuable	to	help	others.		
	
Please	would	you	consider	completing	a	
${l://SurveyLink?d=survey}	about	how	you	do	your	app	development,	for	a	
research	project	by	the	Universities	of	Lancaster,	Hannover	and	Paderborn?	
Your	responses	will	help	developers	in	future	to	produce	better	apps	–	and	
we’d	love	you	to	complete	the	survey	whatever	your	role.	If	you	are	not	on	the	
app	development	team,	please	would	you	forward	this	email	to	a	lead	
developer?	
	
Your	survey	responses	will	be	held	in	the	strictest	confidence,	and	nothing	that	
can	identify	you	or	your	app	will	be	shared	outside	the	research	team.	There's	
no	payment,	and	if	you	choose	not	to	take	part,	we	shall	not	email	you	again;	
but	the	survey	should	take	no	more	than	ten	minutes	to	complete,	and	if	you	
want	we	shall	be	happy	to	share	the	results	with	you.	To	find	out	more	about	
the	project,	please	take	a	look	at	the	survey information sheet,	or	email	us	at	
developersurvey@lancaster.ac.uk.		
	
Please	click	here	to	start	the	survey:	${l://SurveyLink?d=Take	the	Survey}	
		
Thank	you,		
	
	
	
Charles	Weir	
Secure	Development	Researcher	
Lancaster	University	
http://www.lancaster.ac.uk/security-lancaster/enterprise/projects/secure-
development/	
${l://OptOutLink?d=	}	

 Appendix I Online Survey Questions

Charles Weir - October 2020 203

 Online	Survey	Questions	
The following are the survey questions. Some questions were skipped if appropriate (marked with
*). The answer formats are abbreviated as follows:

YN Yes or No

SS Single Selection.

MS Multiple Selection

LSS Likert-Style Scale: Extremely, though to Not at all.

0-100 Slider selecting an integer

N Integer

In addition, ‘?’ indicates an ‘I don’t know’ option, and ‘O’ an ‘Other’ option, where the
participant could enter open text. In Q10 and Q21, the option descriptions give the
encodings used in Appendix J.

Q1-Q3	were	text-only	statements.	
Q4	Are	you	working	in	a	team	with	others,	such	as	developers,	testers,	project	
managers?	[YN]	
Q5*	What	is	your	role?	[SSO?]	

Programmer,	Tester,	Project	Manager,	Non-Specific	
Q6*	What	other	roles	apart	from	yourself	are	there	in	your	team?	[MS?]	

Programmer,	Tester,	Project	Manager,	Non-Specific	
Q7*	About	how	many	people	(including	developers,	project	managers,	testers)	
are	there	in	your	team?	[N]	
Q8	Please	select	all	the	ways	you	use	to	develop	Android	apps	[MSO]	

Native	Java,	JavaScript,	C#,	Dart,	Python,	Kotlin,	Lua,	Native	C++	
Q10	How	often	did	you	release	a	new	version	of	your	app	over	the	past	two	
years?	Please	give	your	best	estimate;	if	you	have	more	than	one	app,	please	
answer	for	that	app	that	was	most	frequently	updated.	[SS]	

Never	(0),	Annually	(1),	Quarterly	(4),	Monthly	(12),	More	frequently	
(24)	

Q11*	Over	the	last	one	to	two	years,	what	content	has	been	in	your	app	updates	
(%)?		

New	features	[0-100]	
Non-security	bug	fixes	[0-100]	
Security	bug	fixes	[0-100]	
Third	party	library	updates	[0-100]	
Regular	maintenance	and	refactoring	[0-100]	

Q12	How	important	is	each	of	the	following	for	your	app(s)?	
Runs	on	many	different	devices	[LSS]	
Secure	against	malicious	attackers	[LSS]	
Protects	users'	privacy	[LSS]	
Easy	to	use	[LSS]	
Supports	many	features	[LSS]	
Runs	smoothly	[LSS]	

Q13	How	important	is	security	for	sales?	[LSS]	
Q14	How	knowledgeable	do	you	consider	yourself	about	information	security?	
[LSS]	

Appendix I Online Survey Questions

204 Charles Weir - October 2020

Q15	Does	your	app	development	ever	get	support	from	professional	security	
experts?	[YN?]	
Q16*	Who	are	these	professional	security	experts	(on	team/external)?	[SS]	
Q17*	What	support	do	you	get	from	them?	Please	select	all	that	apply	[MSO]	

Penetration	testing	 Security	training	
Audits	 Design	reviews	
Working	on	team	 I	don't	know		

Q18*	About	how	often	do	you	get	support	from	them?	[SS?]	
Continuously,	Weekly,	Monthly,	Quarterly,	Yearly	

Q19	Which	of	the	following	have	led	to	changes	in	the	security	of	your	app(s)	in	
the	past	one	to	two	years?	[MSO]	

Decision	from	management		
Security	crisis	within	your	organisation		
Media	coverage	about	app	security		
Something	bad	happening	to	a	competitor		
Pressure	from	a	partner	company		
Drive	from	product	or	sales	team		
Pressure	from	customers		
Developer	initiative		
GDPR	requirements		
Something	bad	almost	happening	to	your	organisation		

Q20*	What	changes	have	you	made	as	a	result	of	GDPR	requirements?	[MSO]	
Addition	of	popup	dialog(s)		
Removal	of	analytics	or	advertising	based	on	it		
Adding	or	changing	privacy	policy		

Q21	How	much	do	you	use	each	of	the	following	techniques	to	find	security	
problems?	[SS	for	each:	

Every	build	(4),	Every	release	(3),	Once	or	occasionally	(2),	
Decided	not	to	use	(1),	Haven’t	considered	it	(0).]	

Producing	a	threat	assessment	for	the	app	
Scanning	code	with	an	automatic	code	review	tool	
Using	a	tool	to	scan	for	libraries	with	known	vulnerabilities	
Code	review	by	someone	other	than	the	developer	
Penetration	testing	

Q22	What	other	techniques	do	you	use	(if	any)?	[O]	
23	Do	you	have	a	security	champion	within	your	team?	A	security	champion	--	
or	security	hobbyist	--	is	a	non-expert,	who	takes	a	particular	interest	in	
security.	[YN?]	
Q24	For	how	many	years	have	you	been	developing	Android	apps?	[N]	
Q25	For	how	many	years	have	you	been	programming	in	general	(not	just	for	
Android)?	[N]	
Q26	About	how	many	Android	apps	have	you	helped	develop	in	total?	[N]	
Q27	Is	developing	Android	apps	your	primary	job?	[YN]	
Q28	Have	you	contributed	to	an	open	source	project	in	the	past	year?	[YN]	
Q29	To	which	gender	identity	do	you	most	identify?	[SS]:	

Female,	Non-binary,	Male,	Prefer	not	to	say	
Q30	What	is	the	main	spoken	language	you	use	at	work?	[SS]	

English,	Chinese,	Spanish,	Arabic,	German,	French,	Other	
Q31	In	which	country	do	you	currently	reside?	[SS]		

 Appendix J Survey Score Calculations

Charles Weir - October 2020 205

 Survey	Score	Calculations	
This section describes how scores were calculated from the survey answers.

Likert-Style Scales were encoded as:

Extremely … (4), Very … (3), Moderately … (2), Slightly …(1), Not … at all (0)

Assurance Technique Score: sum of all five sub-questions of Q21, each encoded as
shown.

Developer Knowledge Score: LSS encoding of Q14

Expertise Support Score: as the following table:

 Q15:
Q23:

No Yes

No 0 2
Yes 1 3

Requirements Score: sum of LSS encodings for Q12 (Secure against malicious
attackers), Q12 (Protects users' privacy) and Q13

Security Update Frequency Score: This required an Update Frequency Estimate of Q10
encoded as shown multiplied by Q11 (Security bug fixes) and divided by 100. The score
was Log (this value plus 1).

Appendix K Workshop Styles and Assessments

206 Charles Weir - October 2020

 Workshop	Styles	and	Assessments		
	 Threat	Assessment	 Threat	Sales	 Approach	

D	

Energy:	Low,	then	
Moderate	
Failed	to	find	any	
interest	in	first	project;	
second	had	almost	too	
much.		

Energy	Moderate-High.	
Saw	relevance	for	
customer	reports	

Flipchart,	listening	
facilitator	

E	
Energy	Low,	except	
from	‘moderator’,	who	
did	most	of	the	talking.		

Energy	moderate.	Saw	that	
order	of	activities	might	
change,	even	if	every	
security	issue	must	
ultimately	be	resolved.	

Flipchart,	facilitator	
dominates	

F	
Energy	moderate;	
Constructed	a	good	
asset	for	the	future.		

Energy	low-moderate.	
Future	sale	an	incentive,	
but	not	an	immediate	issue	
for	the	team.	

Flipchart,	listening	
facilitator	

G	

Energy	moderate.	The	
issues	discussed	were	
topical	for	several	of	
the	participants.	
Testers	not	very	
engaged.	

Energy	moderate-high:	the	
approach	was	a	good	way	
forward.	

Flipchart,	listening	
facilitator,	group	
discussions.	

H	
Energy	moderate.	
Extensive	discussions,	
but	little	new	findings.		

Energy	low-moderate.	
Dominated	by	H1	who	
wanted	white-paper	
representations	of	the	
USPs.	

Flipchart,	listening	
facilitator	

I	

Energy	high.	
Enthusiasm	for	this	
new	way	of	looking	at	
their	issues.	

Energy	moderate.	Product	
management	interested	in	
addressing	client	security	
demands.		

Peer	discussion	

J	

Energy	very	low.	
Overlong	session,	
dominated	by	
conversation	between	
moderator	and	one	
developer.	

Unmemorable.	No	
particular	new	selling	
points	detected.		

Whiteboard,	
dominant	facilitators.	

K	

Energy	high.	Very	well	
facilitated,	used	post-it	
technique	to	involve	
everyone.		

Energy	high.	Used	‘chose	
corner	of	room’	and	
breakout	sessions,	
presented	to	rest	of	team.	
Some	interesting	new	
ideas.	

Minimal	
intervention,	framed	
by	facilitators.	
Specialists	did	3x3	
for	likelihood	and	
impact.		

