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Abstract

We investigate stress-energy tensors constructed from the delta function on a worldline.
We concentrate on quadrupoles as they make an excellent model for the dominant source of
gravitational waves and have significant novel features. Unlike the dipole, we show that the
quadrupole has 20 free components which are not determined by the properties of the stress-
energy tensor. These need to be derived from an underlying model and we give an example
motivated from a divergent-free dust. We show that the components corresponding to the
partial derivatives representation of the quadrupole, have a gauge like freedom. We give the
change of coordinate formula which involves second derivatives and two integrals. We also
show how to define the quadrupole without reference to a coordinate systems or a metric. For
the representation using covariant derivatives, we show how to split a quadrupole into a pure
monopole, pure dipole and pure quadrupole in a coordinate free way.
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1 Introduction

Gravitational wave astronomy will give rise to major developments in gravitational physics and
astrophysics. The LIGO and VIRGO detectors [1, 2] have detected relativistic gravitational two-
body systems. The existing network of gravitational wave interferometers is expanding both on
Earth (for instance, via KAGRA and LIGO-India [3, 4]) and in space.

In this article we model the compact source, using a distribution, in which all the mass is con-
centrated in one point in space and hence a worldline in spacetime, but has an extended structure
encoded as a multipole expansion. The zeroth order is the monopole, followed by the dipole and
then the quadrupole. Here we consider the quadrupole in detail. For a Minkowski background, it is
well known [5, 6] that gravitational radiation is dominated by the quadrupole moment.

When considering sources of gravitational waves, there are multiple approaches. For a pair of
simple orbiting masses, where relativistic effects can be ignored, one can find analytic solutions. By
contrast the final stages of coalescing black holes require detailed numerical simulations. Once the
stress-energy tensor is constructed one can evaluate the perturbation to the metric representing the
gravitational waves. Between these two extremes the post Newtonian approximation [7] can be used.

Our approach is different. In this article we examine the dynamics of the moments of the distribu-
tional quadrupole stress-energy tensor. This has a major advantage that the dynamics are encoded
as ODEs for the components, as opposed to the coupled nonlinear PDEs which one is required to
solve to model a general relativistic source. In a Minkowski background, the gravitational waves can
be directly calculated from these moments. The only constraints we put on the source is that it
obeys the rules of a total stress-energy tensor, namely symmetry of its indices and the divergenceless
condition. For the monopole and the dipole it is well known that these conditions constrain the
dynamics so much that they prescribe the ODEs: the geodesic equation for the monopole and the
Mathisson-Papapetrou-Tulczyjew-Dixon equations for the dipole [8, 9]. In the dipole case we assume
that the worldline has been given. One may therefore ask if these two conditions also constrain
the quadrupole sufficiently to prescribe the ODEs for its components. In this article we show that,
whereas 40 of the components are prescribed by ODEs, a further 20 are arbitrary, for example, a
quadrupole can expand and contract as depicted in figure 1. Thus by itself this approach cannot
completely prescribe the dynamics of a quadrupole and one must add additional ODEs, or algebraic
equations, which one can consider to be constitutive relations for the quadrupole. These should
arise from an underlying model of the source, i.e. coalescing black holes will have different consti-
tutive relations to a rotating “rigid” body held together by non gravitational, e.g. electromagnetic
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Figure 1: Schematic showing a blob of matter separating and then recombining. Such internal
dynamics can take place solely within the free components, without affecting the divergencelessness
of the stress-energy tensor (10).

or quantum forces. Once the constitutive relations are decided on, the ODEs can be solved and
compared to numerical simulations or those derived from other models.

Approximating a distribution of matter with an object at a single point is a well established
method in many branches of physics. Such approximations are valid if the size of the system is small
compared to other distances involved. For example when considering coalescing black holes as a
source of gravitational waves, the distance between the black holes is orders of magnitude smaller
than their distance to Earth. Knowing the dynamics of multipoles may also shed light on the problem
of radiation reaction in the context of dipole and quadrupole dynamics.

There are many important articles which consider multipole expansions. These date back to
at least the 1950s where Tulczyjew [9] considered a multipole expansions to derive the Mathisson-
Papapetrou-Tulczyjew-Dixon equations for the dipole. Then in the 1960s and 1970s Dixon [10, 11,
12, 13] and Ellis [14] considered both charge and mass distributions. They used two different general
formalisms which we compare here, denoting them the Dixon and Ellis representations.

Recently Steinhoff and Puetzfeld [15, 16, 17] calculate the dynamic equation for the components
of the quadrupole. In addition they consider the monopole-dipole and monopole-dipole-quadrupole
system. In all cases the worldline of the multipole affects the dynamics of the components. However
in the above the authors consider if and how the dynamics of the worldline is affected by the higher
order moments. They conclude that one needs supplementary conditions in order to determine the
worldline dynamics. We note that these supplementary conditions are distinct from the constitutive
relations described here for the quadrupole. In this article, excluding section 3.1 on the monopole,
the worldline is arbitrary but prescribed. Thus at the dipole order no supplementary conditions are
required. However as stated there are 20 constitutive relations required at the quadrupole order.

LetM be a spacetime with metric gµν and the Levi-Civita1 connection∇µ with Christoffel symbol
Γµνρ. Here Greek indices run µ, ν = 0, 1, 2, 3 and Latin indices a, b = 1, 2, 3. Let C : I → M where

1It turns out that in most of our calculations in this article, the metric plays no role and an arbitrary linear
connection can be used. See section 6.
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I ⊂ R is the worldline of the source2 with components Cµ(σ). At this point we do not assume that σ
is proper time. Here we consider stress-energy tensors T µν which are non zero only on the worldline
Cµ(σ), where it has Dirac–δ like properties. Such stress-energy tensors are called distributional.

Being a non linear theory, one cannot simply apply the theory of distributions to general relativity.
It is not meaningful to write Einstein’s equations

Rµν − 1
2
gµνR = 8π Tµν , (1)

where the right hand side is a distribution. This contrasts with electromagnetism, which is a linear
theory and so one often uses distributional sources. For example an arbitrary moving point charge
gives rise to the Liénard-Wiechard fields.

There is a large quantity of literature discussing the nature of distributional stress-energy tensors.
Often this links T µν to one or a set of regular stress-energy tensors T µν , for which (1) is valid. Dixon
[12] uses an exponential map, which connects points off the worldline to points on the worldline,
to relate regular and distributional stress-energy tensors. Geroch and Weatherall [18] consider an
infinite set of stress-energy tensors satisfying the dominate energy condition and find conditions such
that there exists a sequence which tends to the monopole stress-energy tensor. In section 2.3 we show
how the distributional stress-energy tensor T µν is the weak limit of a set of regular tensors T µνε .

Another approach is to consider Tµν as a source within the context of linearised gravity. Pertur-

batively expanding the gravitational metric, gµν , about a background ḡµν , gµν = ḡµν + κh
(1)
µν + · · ·

where κ � 1 is the perturbation parameter, and plugging the expansion into the Einstein equation
(1) one has

Gµν = Ḡµν + κG(1)
µν + · · · and Tµν = T̄µν + κT (1)

µν + · · · . (2)

Hence the background metric ḡµν satisfies Ḡµν = 8π T̄µν . The linearised equations are then given by

G(1)
µν = 8π T (1)

µν . (3)

In the case when the background metric ḡµµ is the Minkowski metric ηµν then (3) becomes [6]

�H(1)
µν = −16πT (1)

µν , (4)

where H(1)
µν = h

(1)
µν − 1

2
ηµν(h

(1))ρρ, � = ∂µ∂
µ and we have used the Lorenz gauge, also called the de

Donder gauge, (∂µH(1)
µν = 0). We can give H(1)

µν in terms of an integral over the retarded Greens
functions.

H(1)
µν (t, ~x) = 4

∫
T

(1)
µν (t− |~x− ~x′ |, ~x′

)

|~x− ~x′|
d3~x

′
. (5)

One should be careful as there is clearly a contradiction between the statement that the perturbation
to the background stress-energy tensor is small, and the statement that it is distributional, and
therefore infinite. However as long as one is sufficiently far from the source, one can make meaningful
statements. One result is that if T µνε → (T (1))µν weakly then, for a point off the worldline, the
gravitational waves emanating from (T (1))µν are the limit of the gravitational waves emanating from
T µνε , i.e.

lim
ε→0

∫
(Tε)µν(t− |~x− ~x

′|, ~x′
)

|~x− ~x′ |
d3~x

′
=

∫
T

(1)
µν (t− |~x− ~x′|, ~x′

)

|~x− ~x′|
d3~x

′
. (6)

This requires that the intersection of the backward light cone of the point (t, ~x) with the support of
T µνε is compact. This is proved in the appendix, proof number 1.

2Even using proper time in Minkowski space, one cannot assume that I = R since it is possible to accelerate to
lightlike infinity in finite proper time.
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For sources such as coalescing black holes, one cannot use a regular stress-energy tensor. In
this case one can only interpret the perturbation expansion (2) away from the source. It may then
be possible to reinterpret the gravitational waves as though they were arising from a distributional
quadrupole source.

An alternative approach to interpreting (1) with distributional T µν is to extend the theory of
distributions to include products, for example by using Colombeau algebra [19].

In this article we are concerned only with the structure of the distributional stress-energy tensor,
which we write as T µν , and avoid questions of how it should be applied. Since we are dealing with
distributions it is most convenient to consider T µν as a tensor density of weight 1. Thus ω−1T µν is
a tensor, where

ω =
√
− det(gµν) . (7)

The definition of the covariant derivative of a tensor Y µν··· density of weight 1 is given by

∇µY
νρ··· = ω∇µ(ω−1Y νρ···) = −Γκµκ Y

νρ··· + ∂µY
νρ··· + ΓνµκY

κρ··· + ΓρµκY
νκ··· + · · · . (8)

where Γνµρ are the Christoffel symbols. In this article the term stress-energy tensor, always refers to
a stress-energy tensor density of weight 1, even if not explicitly stated. In addition the symbol T µν

always refers to a distributional stress-energy tensor density of weight 1 over the worldline C.
Since T µν is a total stress-energy tensor3, it satisfies

T µν = T νµ (9)

and is divergenceless, also known as covariantly conserved

∇µT
µν = 0 . (10)

which from (8) becomes

0 = ∇µT
µν = ∂µT

µν + ΓνµρT
µρ . (11)

There are several ways of representing a multipole. However we consider multipoles to be distri-
butions which are integrated with a symmetric test tensor φµν = φνµ, so that4∫

M
T µν φµν d

4x is a real number. (12)

Equation (12) can be written as an integral over the worldline with a number of derivatives of the
Dirac δ-function. In other words a multipole of order k is

T µν =
k∑
r=0

∫
I
ζµν...(σ) D(r)

... δ
(4)
(
x− C(σ)

)
dσ , (13)

where there are r additional indices on ζµν... and D(r)
... . The subscript dots on D(r)

... contract with the
superscript dots on ζµν.... Here D(r)

... represents r derivatives of the δ-function. The familiar cases are
the monopole when k = 0, the dipole when k = 1 and the quadrupole when k = 2. As can be
seen from (13) the general dipole contains the monopole term and the general quadrupole contains

3Non-symmetric stress-energy tensors, such as the Minkowski electromagnetic stress-energy tensor, are only part
of the total stress-energy tensor. However we assume that Tµν satisfies (9) and (10) because all of the fields are
dynamical (there are no background fields[20]) and Tµν is the total stress-energy tensor.

4An integral over M must contain the measure ω. There is therefore the following choice: one can choose Tµν or
φµν to be a density of weight 1, or put ω explicitly in the integrand. Here we have chosen to make Tµν a density.
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both the monopole and dipole terms. In general, it is not possible to extract the monopole and
dipole terms from the quadrupole, without additional structure such as a preferred vector field or a
coordinate system. For the monopole (9) and (10) lead to the pre-geodesic equation. By contrast,
for the dipole and quadrupole there is no need to assume the worldline C is a geodesic. Therefore,
unless otherwise stated, we present all the results for an arbitrary but prescribed worldline.

There are two important, equivalent representations of multipoles. One uses the partial deriva-
tives, which we call the Ellis representation. The other uses the covariant derivative and we call the
Dixon representation. Both have their advantages and disadvantages and these are outlined in sec-
tion 2 below. The Ellis formulation is greatly simplified when using a coordinate system (σ, z1, z2, z3)
which is adapted to the worldline, i.e. where

C0(σ) = σ and Ca(σ) = 0 , (14)

for a = 1, 2, 3. In this coordinate system the integral in (13) can be evaluated. Observe that (14)
implies Ċ0 = 1 and Ċa = 0.

The monopole and dipole have been extensively studied in the literature, [21, 22, 23]. In this
article we concentrate mainly on the quadrupole because it has interesting properties that do not
appear to have been emphasised previously. Not only is it the natural source of gravitational waves,
but it has several unusual properties not seen in the case of the monopole or the dipole. These
properties are given below.

• The quadrupole contains free components.

• In the Ellis representation, the components ζµνρκ to not transform as tensors but instead involve
second derivatives and double integrals.

• In the Ellis representation, there is no natural way to endow a quadrupole with mass. Instead
one can only talk about the energy of a quadrupole and only in the case where there is a timelike
Killing symmetry.

The ζµν... = ζµν...(σ) are called the components of T µν and are functions only of the position on
the worldline C. Clearly from (9) they have the symmetry

ζµν... = ζνµ... . (15)

Depending on the representation, we may also choose to impose additional symmetries for uniqueness.
We then apply the divergenceless condition (10) to establish further condition on the ζµν.... We can
place the components ζµν... into three categories.

• Some components are algebraically related to other components and can therefore be removed.

• Some components are determined by a first order ODE. These are the result of the differential
equation (10). In order to specify these components it is only necessary to specify their initial
value at some point along the worldline.

• This leaves the components we call free. These are not constrained by (9) and (10) and are allowed
to take on any value5. These free components can however influence the ODE components.

In order to completely specify the dynamics of a quadrupole, these free components need to be
determined by constitutive equations. The choice of constitutive equations depends on a choice
of a model for the material. In section 5 we consider the dust stress-energy tensor density [26]
and use it to suggest corresponding constitutive equations.

In table 1 the number of ODEs and free components is given, and compared to the electromagnetic
dipoles and quadrupoles.

In addition, some components may have a freedom in that different ζµν... correspond to the
same stress-energy tensor. Equivalently a given stress-energy tensor does not completely specify the
components ζµν.... Examples of this freedom for the dipole and quadrupole are given in equations

5These 20 free components are not the same as the 20 independent components of the (reduced) quadrupole
stress-energy tensor as described by Dixon [13, Equation (1.37)],[24, 25]. See appendix B for a discussion.
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Electromagnetic Gravitational
ODE free ODE free

Monopole 1 0 1 0
Semi-dipole 1 3 7 0
full dipole 1 6 10 0

semi-quadrupole 1 12 22 6
full quadrupole 1 20 40 20

Table 1: List of the number of components which are determined by ODEs and the number which
are free, for monopoles, dipoles and quadrupoles. The electromagnetic sources refer to a current J µ

which is conserved and a source for Maxwell’s equations. The gravitational source refers to a stress-
energy tensor T µν which are sources for (linearised) Einstein’s equations. Each order includes all the
lower orders. The 10 components in the full stress-energy dipole includes 1 monopole component,
while the (40+20) components in the full quadrupole includes both dipole and monopole components.
The definitions of the semi-dipole and semi-quadrupole are given in section 6.6.

Figure 2: An electric dipole appears for a finite period of time and then disappears. This does not
break charge conservation.

(52) and (71) below. In this article we will call this a gauge-like freedom since it is similar to
other gauge freedoms in that it arises from integrating a physically observable tensor. In this case
however, the components ζµν... are not themselves tensors.

For comparison, the electromagnetic dipole has one ODE component, which is simply the total
charge and satisfies dq/dσ = 0, and six free components corresponding to the three electric and three
magnetic components [27]. These can be anything without breaking charge conservation, as seen in
figure 1. For the stress-energy tensor, the free components can correspond to the internal matter
separating and coalescing, as in figure 1. One therefore needs additional constitutive relations which
encode the matter one is modelling. In this article we give an example of constitutive relations which
correspond to non divergent dust.

Given a regular stress-energy tensor T µν and a Killing vector field Kµ we can find a conserved
quantity T µνKν such that ∇µ(T µνKν) = 0. The same is true for the distributional stress-energy
tensor. Here Kµ gives rise to a conserved scalar QK along the worldline C. If Kµ is a timelike
Killing vector field it is natural to associate QK as the conserved energy of the multipole. However,
the relationship between the energy and mass is subtle. In the monopole and dipole case there is a
natural definition of the mass, but the same is not true in the quadrupole case. Even when a mass
can be defined, it is not conserved in general.

Outline of article

As stated above there are two established methods of representing the stress-energy distribution: one
using partial derivatives in (13), which we call the Ellis representation, and the other using covariant
derivatives, which we call the Dixon representation. The pros and cons of these two approaches is
discussed in section 2 and summarised in table 2. We show that the Ellis components with respect
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to adapted coordinates are unique can be extracted by applying them to particular test tensors.
In section 3 we summarise the key results of the monopole and dipole stress-energy tensors. We
highlight the Ellis and Dixon representations of the dipole.

In section 4 we examine the quadrupole in detail. In this section we use the Ellis approach. We give
the gauge-like freedom of the components and the complicated change of coordinates which involve
second derivatives and integrals over the worldline, similar to [27]. We use the adapted coordinates
(14) and give the differential equations arising from the symmetry (9) and divergencelessness (10) of
T µν . We can now identify which components are algebraic, which satisfy ODEs and which are free.
In subsection 4.1 we give an example of the free components in Minkowski spacetime as depicted in
figure 1. As stated above, if there is a Killing vector field, there exists a corresponding conserved
quantity. These are given in section 4.2. This includes a new interpretation of the conserved quantities
corresponding the three Lorentz boosts.

In section 5 we use the limit of the dust stress-energy tensor as it is squeezed onto the worldline
to construct a choice of constitutive relations to replace the free components with ODEs.

It is interesting to observe that, using deRham currents, multipoles can be defined without any
additional structure on a manifold. In other words, it is not necessary to prescribe either a metric or a
connection to define a general multipole. This is particularly useful if we wish to extend the notion of
a general multipole tensor distribution to manifolds such as the tangent bundle which does not possess
either metric or connection. However a connection is of course needed to define the divergencelessness
condition (10). Although standard general relativity only considers four dimensional manifolds with
a Lorentzian metric and the Levi-Civita connection, there is much interest [28, 29, 30] in non-metric
compatible connections. Since the approach in the section does not specify the metric, all the results
apply to a non-metric compatible connection. Other circumstances where it is advantageous not to
prescribe the metric include transformation optics where one has two metrics, the gravitational metric
and the optical metric. Another case is when considering varying the metric to derive Einstein’s
equations where it is necessary to know precisely the dependency of the various object on the metric.

Up to section 5, we have defined everything in terms of a coordinate system. However, it is
useful to define the multipoles in a coordinate free manner. When we refer to “coordinate free”, the
goal is to define all the mathematical objects and give the statement in all the theorems, without
reference to a coordinate system. Coordinates may, however, be used in proofs. Thus although a
vector V µ is invariant under transformations of the coordinates, it is defined by how the components
change under coordinate transformations. By contrast defining a vector by its action on scalar fields
follows this coordinate free goal. There are a number of advantages of this approach. First, compli-
cated coordinate transformations are avoided. Second, when needed, one can derive the coordinate
transformations more easily. Third, it is easier to present metric free calculations. Four and most
importantly, it makes manifest which objects are physical and which are merely “coordinate objects”.
This is especially relevant in the case of moments where expressions such as

∫
M f(x)xµ1 · · · xµk d4x

are so dependent on the coordinates that there is no coordinate transformation expression.
In section 6 we detail this metric and coordinate free approach. By contrast to the Ellis ap-

proach, the Dixon approach contains more information about a multipole, namely how it splits into
a monopole term, a dipole term, a quadrupole term and so on. This split, called here the Dixon
split, is actually metric and coordinate independent and the details are given in section 6.7.

As noted in [27], without a metric, connection or coordinate system, it is still possible to define
a pure electric dipole. In this article we call such a dipole a semi-dipole. We observe that the
semi-dipole stress-energy consists of the displacement vector but not the spin. In section 6.6 we
define the semi-dipole and semi-quadrupole stress-energy tensor.

We conclude, in section 7, and give some of the longer proofs in the appendix.
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Notation regarding derivatives

Given a coordinate system (x0, . . . , x3) then Greek indices range over the values µ, ν = 0, . . . , 3. We
write the partial derivatives

∂µ =
∂

∂xµ
. (16)

In the case of the adapted coordinates (σ, z1, z2, z3) obeying (14) we use both Greek indices µ, ν =
0, . . . , 3 and Latin indices a, b = 1, 2, 3. In this case we have

∂0 =
∂

∂σ
and ∂a =

∂

∂za
. (17)

Thus, even if not stated explicitly, writing ∂a implies we are referring to an adapted coordinates
system.

Note that in both the adapted and non adapted case we use overdot to represent differentiation
with respect to σ. In the non adapted coordinates this is only used for quantities, such as Cµ(σ) and
Ċµ(σ) which are only defined on the worldline of the multipole. In the adapted coordinate cases it
is synonymous with ∂0.

When we have two non adapted coordinate systems (x0, . . . , x3) and (x̂0̂, . . . , x̂3̂) we use the hat
on the index to indicate the hatted coordinate system. Thus

∂µ̂ =
∂

∂x̂µ̂
. (18)

Likewise for the adapted coordinate system (σ̂, ẑ1̂, ẑ2̂, ẑ3̂) we have

∂0̂ =
∂

∂σ̂
and ∂â =

∂

∂ẑâ
. (19)

2 Dixon’s versus Ellis’s approaches to multipoles

As stated in the introduction there are two standard approaches to writing down distributional
multipoles, the Ellis and Dixon representations. These are equivalent as any multipoles of order k
can be represented in both notations. The proof that a Dixon multipole is also an Ellis multipole
is given in section 2.4. The converse is more difficult since it is necessary to extract the Dixon
components. This involves the Dixon split and is given, for quadrupoles, in section 6.7.

Both the Ellis and Dixon approaches have advantages and disadvantages and these are listed in
table 2.

2.1 The Ellis approach

One method [14] uses partial derivatives of the Dirac-δ function. Although Ellis principally defines
it for the electric current J µ it is easy to extend this for the stress-energy tensor. So a multipole of
order k is given by

T µν =
1

k!

∫
I
ζµνρ1...ρk(σ) ∂ρ1 · · · ∂ρkδ(4)

(
x− C(σ)

)
dσ , (20)

where ζµνρ1...ρk(σ) are smooth functions of σ. Thus when acting on the test tensor φµν∫
M
T µν φµν d

4x = (−1)k
1

k!

∫
I
ζµνρ1...ρk(σ)

(
∂ρ1 · · · ∂ρkφµν

)∣∣
C(σ)

dσ . (21)

In this article we will refer to this representation of a multipole as the Ellis representation.
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Ellis Dixon
Can be defined using coordinates. Can be defined using coordinates.
Components are unique for adapted coordi-
nates. In a general coordinate system they
have a gauge-like freedom.

Components are unique.

For general coordinate transformation the
components require higher derivatives and in-
tegrals.

Components transform as a tensor.

Do not require any additional structure.
These can be defined without referring to a
metric or additional vector field.

Requires the connection and the Dixon vector
Nµ(σ) for the definition.

Contains all multipoles up to specific order. Contains all multipoles up to specific order.
It is not possible to extract a multipole of
a specific order without additional structure,
for example an adapted coordinate system.

Easy to extract a multipoles of any order.

Can be easily defined in a coordinate free way
using DeRham push forward.

The Dixon split can be defined in a coordi-
nate free way, but this definition is compli-
cated. It requires the DeRham push forward
plus a non intuitive additional axiom, given
in section 6.7.

The dipole can be written in the El-
lis representation, which is consistent with
the Mathisson-Papapetrou-Tulczyjew-Dixon
equations.

The dipole can be written in the Dixon
representation, which is consistent with
the Mathisson-Papapetrou-Tulczyjew-Dixon
equations.

There is no concept of the mass of the multi-
pole

The monopole term may be used to define the
mass, but in general it is not conserved.

There is no need of a Dixon vector. There is a complicated formula for the com-
ponents with respect to different Nµ(σ). This
will mix in multipoles of different orders.

One can construct a regular tensor field whose
moments, up to k, are the components of
the distribution. The best method is using
squeezed tensors that employ an adapted co-
ordinate system.

In principle it should be possible to re-
construct the original regular tensor using the
Fourier transform but this has not been inves-
tigated.

One can construct a tensor field whose mo-
ments, up to k, are the components of the dis-
tribution. This is by considering the fields on
the transverse hyperspace constructed from
the geodesic map of vectors orthogonal to
Nµ(σ).

If all the moments are known then one
can reconstruct an original distribution. This
also requires certain assumptions about ana-
lyticity of Fourier transform.

There is a formula for extracting the com-
ponents using test tensors in adapted coordi-
nate.

In principle the components can be extracted
using test tensors.

Table 2: Comparison between the Ellis and Dixon representations.
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The symmetry of T µν leads to

ζµνρ1...ρk = ζνµρ1...ρk . (22)

In addition the partial derivatives commute and it is natural to demand that the components ζνµρ1...ρk

are symmetric. Thus we set

ζµνρ1...ρk = ζµν(ρ1...ρk) (23)

where the round brackets mean the symmetrisation of the indices,

ζµν(ρ1...ρk) =
1

k!

∑
All permutations

i1 . . . ik

ζµνρi1 ...ρik . (24)

We observe that every multipole of order k is also a multipole of order k + 1. This follows since∫
I
ζµνρ1...ρk

(
∂ρ1 · · · ∂ρkφµν

)∣∣
C(σ)

dσ =

∫
I
ζµνρ1...ρkk+1 Ċκ

(
∂κ∂ρ1 · · · ∂ρkφµν

)∣∣
C(σ)

dσ (25)

where

ζ̇µνρ1...ρkk+1 = −ζµνρ1...ρk . (26)

One problem with the Ellis representation is that the ζµνρ1...ρk are not unique. Examples of the
gauge-like freedom possessed by ζµνρ1...ρk are given in (52) and (71). This contrasts with the case
when one chooses an adapted coordinate system below.

2.2 Adapted coordinates

In general expressions for multipoles in the Ellis representation are complicated. They greatly simplify
if one chooses an adapted coordinate system as given by (14). In this coordinate system the integral
over I is evaluated and (20) becomes

T µν =
k∑
r=0

1

r!
γµνa1...ar0...0(σ) ∂a1 · · · ∂ar δ(3)(z) , (27)

where z = (z1, z2, z3). The component γµνa1...ar0...0 has (k − r) zero indices, so that γµνa1...ar0...0 has
2 + k indices. The proof of (27) is given below after (30) once we have calculated T µν on a test
function and given the relationship between the γµνa1...ar0...0 and ζµνρ1...ρk . Since we only differentiate
δ(3)(z) in the za direction, when acting on a test tensor∫

M
T µν φµν d

4x =
k∑
r=0

(−1)r

r!

∫
I
dσ γµνa1...ar0...0(σ) (∂a1 · · · ∂ar φµν) . (28)

Proof. ∫
M
T µν φµν d

4x =

∫
I
dσ

∫
space

d3z
( k∑
r=0

1

r!
γµνa1...ar0...0 ∂a1 · · · ∂ar δ(3)(z)

)
φµν

=
k∑
r=0

(−1)r

r!

∫
I
dσ

∫
space

d3z γµνa1...ar0...0 (∂a1 · · · ∂ar φµν) δ(3)(z)

=
k∑
r=0

(−1)r

r!

∫
I
dσ γµνa1...ar0...0 (∂a1 · · · ∂ar φµν) .

11



We still impose the symmetry conditions (22) and (23) on the γ’s so that

γµνρ1...ρk = γνµρ1...ρk = γµν(ρ1...ρk) . (29)

The relationship between the γµνa1...ar0...0 and ζµνρ1...ρk is given by comparing (21) and (28) for an
adapted coordinate system

γµνa1...ar0...0 =
1

(k − r)!
∂k−r0 ζµνa1...ar0...0 . (30)

Proof of (27) and (30).∫
M
T µν φµν d

4x = (−1)k
1

k!

∫
I
ζµνρ1...ρk

(
∂ρ1 · · · ∂ρkφµν

)
=

k∑
r=0

(−1)k
1

k!

k!

r!(k − r)!

∫
I
ζµνa1...ar0...0

(
∂a1 · · · ∂ar∂k−r0 φµν

)
=

k∑
r=0

(−1)r
1

r!(k − r)!

∫
I
(∂k−r0 ζµνa1...ar,0...0)

(
∂a1 · · · ∂arφµν

)
.

Hence comparing with (28) gives (30). From (28) we have (27).

In an adapted coordinate system, the γµνa1...ar0...0 are uniquely determined by the distribution.
This is because we can extract γµνa1...ar0...0 by acting on particular test functions

γµνa1...ar0...0 = (−1)r lim
ε→0

∫
M
T µν za1 · · · zar ψε,σ(σ′, z) dσ′ d3z , (31)

where

ψε,σ(σ′, z) = ε−1 ψ1

(
(σ − σ′)/ε

)
ψ1

(
(z1)2 + (z2)2 + (z3)2

)
(32)

and ψ1 : R→ R is a test function with ψ1(0) = 1, is flat about 0 and
∫
ψ1(σ) dσ = 1.

Proof. From (28) we have

(−1)r lim
ε→0

∫
M
T µν za1 · · · zar ψε,σ(σ′, z) dσ′ d3z

= lim
ε→0

k∑
s=0

(−1)s+r

s!

∫
I
dσ′ γµνb1...bs0...0(σ′) ∂b1 · · · ∂bs

(
za1 · · · zar ψε,σ(σ′, z)

)
= lim

ε→0

k∑
s=0

(−1)s+r

s!

∫
I
dσ′ γµνb1...bs0...0(σ′) (s! δrs)ψε,σ(σ′, z) lim

ε→0

=
1

ε
lim
ε→0

∫
I
dσ′ γµνb1...br0...0(σ′)ψ1((σ − σ′)/ε)ψ1(0) = lim

ε→0

∫
I
dσ′′ γµνb1...br0...0(σ − εσ′′)ψ1(σ

′′)

= γµνb1...br0...0(σ)

∫
I
dσ′′ ψ1(σ

′′) = γµνb1...br0...0(σ) .

The gauge-like freedom of the ζµνa1,...ar0...0 in this case arises from the arbitrary constants when
integrating (30) with respect to σ.

With respect to this coordinate system, one can partition the multipoles into a monopole, a pure
dipole, a pure quadrupole and so on. However this is a coordinate dependent splitting and these
terms will mix when changing the coordinate system. The coordinate transformation for quadrupoles
is given in (83)-(85). Although they involve up to k derivatives of the coordinate transformation,
they do not require any integrals.
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2.3 Squeezed tensors

In an adapted coordinate system, one can construct a one parameter family of regular stress-energy
tensor densities T µνε from a given stress-energy tensor T µν , such that in the weak limit T µνε → T µν

at ε→ 0 to order k. Since we are using adapted coordinates, we write (σ,z) = (σ, z1, z2, z3). We set

T µνε (σ,z) =
1

ε3
T µν

(
σ,

z

ε

)
. (33)

We assume that T µν has compact support in the transverse planes, i.e. for each σ, there is a function
R(σ) such that

T µν(σ,z) = 0 for gab z
a zb > R(σ) . (34)

This guarantees that all the moments, are finite.
This leads to

T µνε (σ, z) = γµν0...0 δ(3)(z) + ε γµνa0...0 ∂aδ
(3)(z) + ε2 γµνab0...0 ∂a∂bδ

(3)(z) + · · · . (35)

where

γµν0...0(σ) =

∫
R3

d3z T µν
(
σ,z
)
, γµνa0...0(σ) = −

∫
R3

d3z za T µν
(
σ,z
)
,

γµνab0...0(σ) =

∫
R3

d3z za zb T µν
(
σ, z
)

etc. .

(36)

Proof. This follows from setting wa = za/ε and Taylor expanding around ε = 0 we have∫
R4

T µνε (σ,z)φµν(σ, z) dσ d3z

=

∫
R
dσ

∫
R3

d3z T µνε (σ,z)φµν(σ,z)

=

∫
R
dσ

∫
R3

d3z
1

ε3
T µν

(
σ,

z

ε

)
φµν(σ, z)

=

∫
R
dσ

∫
R3

d3w T µν
(
σ,w

)
φµν(σ, εw)

=

∫
R
dσ

∫
R3

d3w T µν
(
σ,w

)
φµν(σ,0) + ε

∫
R
dσ

∫
R3

d3w T µν
(
σ,w

)
wa
(
∂aφµν

)
(σ,0)

+ ε2
∫
R
dσ

∫
R3

d3w T µν
(
σ,w

)
wawb

(
∂a ∂bφµν

)
(σ,0) + · · ·

=

∫
R
dσγµν0...0 φµν |C(σ) − ε

∫
R
γµνa0...0dσ

(
∂aφµν

)∣∣
C(σ)

+ ε2
∫
R
γµνab0...0dσ

(
∂aφµν

)∣∣
C(σ)

+ · · · .

Thus there is an intimate relationship between the components of a distribution and the moments
of a regular stress-energy tensor density. Here the zeroth order gives the monopole, the first order
the dipole and so on. Again, the split between the different orders is with respect to the chosen
adapted coordinate system and the different order terms will mix under a coordinate transformation.

2.4 The Dixon approach

The alternative approach, largely developed by Dixon uses the covariant derivative and a choice of
a vector field Nµ(σ) along the worldline C. This we will call the Dixon vector. This vector is
required to be not orthogonal to the worldline C, i.e.

Nµ Ċ
µ 6= 0 . (37)
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speed of light [1]
dxµ [L]
gµν [1]

Ċ [L−1]

Ċµ [1]
∂µ [L−1]

δ(4)
(
x− C(σ)

)
[L−4]

mass m [M ]

T µν [M L−3]
test tensor φµν [L−1]
dipole displacement Xµ [ML]
dipole 3–momentum P µ [M ]
dipole spin Sµν [ML]
ζµνρi1 ...ρik [M Lk]
ξµνρi1 ...ρik [M Lk]
γµνai1 ...aik0...0 [M Lk]

Table 3: List of units for quantities, in terms of mass M and length L. The speed of light is 1.

As long as the worldline C is timelike, a natural choice of the Dixon vector is Ċµ, i.e. Nµ = gµν Ċ
µ

but this is not the only choice. Having chosen Nµ, the Dixon representation of a multipole is given
[11, Equation (1.9)][12, Equation (4.18), (7.4), (7.5)] by

T µν =
k∑
r=0

1

r!
∇ρ1 · · · ∇ρr

∫
I
ξµνρ1...ρr(σ) δ(4)

(
x− C(σ)

)
dσ , (38)

where we demand that the components ξµνρ1...ρk are orthogonal to the vector Nµ,

Nρj ξ
µνρ1...ρk = 0 (39)

for j = 1, . . . , k. The covariant derivatives do not commute. However, they give rise to curvature
terms and lower the number of derivatives. We therefore make the minimal choice and impose
ξµνρ1...ρk are symmetric in the relevant indices.

ξµνρ1...ρk = ξµν(ρ1...ρk) . (40)

Since T µν is a tensor density this enables us to throw the covariant derivative over onto the test
tensor φµν , giving∫

M
T µν φµν d

4x =
k∑
r=0

(−1)r
1

r!

∫
I
ξµνρ1...ρr(σ)

(
∇ρ1 · · · ∇ρrφµν

)∣∣
C(σ)

dσ , (41)

This follow since if vµ is a vector density of weight 1 then from (8) ∇µ v
µ = ∂µ v

µ.
All Dixon multipoles of order k are also Ellis multipoles of order k.

Proof. Expanding out the left hand side of (41) replaces the covariant derivatives with partial deriva-
tives and Christoffel symbols. The resulting expression is the integral of sum of up to k partial
derivatives of φµν . Using (25) and (26) one can express all the terms to have precisely k derivatives,
and hence one has (21) for the appropriate ζµνρ1...ρk .

From (38) we can use the Dixon vector to perform the Dixon split in order to take an arbitrary
kth order multipole and split it into a monopole part, a dipole part and so on. Thus we set

T µν =
k∑
r=0

T µν(r) where T µν(r) =
1

r!
∇ρ1 · · · ∇ρr

∫
I
ξµνρ1...ρr(σ) δ(4)

(
x− C(σ)

)
dσ . (42)

In section 6.7 we present a coordinate free approach to performing this split. This is presented
for quadrupoles, although the procedure can be extended. This is necessary to show that all Ellis
multipole are also Dixon multipoles. It also gives a method to derived the relationship between the
Dixon components with respect to different Dixon vectors.
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3 Summary of the monopole and dipole stress-energy ten-

sors.

3.1 The monopole

From (20) with k = 0 we have the gravitational monopole

T µν =

∫
I
ζµνδ

(
x− C(σ)

)
dσ . (43)

The requirement to be a stress-energy tensor (9),(10) implies that C satisfies the pre-geodesic equation

DĊµ

dσ
= κpre(σ) Ċµ (44)

and

T µν =

∫
I
mpre(σ) Ċµ Ċν δ

(
x− C(σ)

)
dσ (45)

where

ṁpre + κprempre = 0 . (46)

Here D
dσ

represents the covariant derivative along the worldline, i.e.

DXµ

dσ
= Ẋµ + ΓµνρX

ν Ċρ (47)

and the overdot refers to differentiation with respect to differentiation with respect to σ. If σ is
proper times so that

gµν Ċ
µ Ċν = −1 . (48)

then κpre = 0 and (44) gives the geodesic equation

DĊµ

dσ
= 0 . (49)

In this case we replace mpre with m in (45). If m > 0 then we can associate it with the mass of the
source. Thus (45) becomes

T µν = m

∫
I
Ċµ Ċν δ

(
x− C(σ)

)
dσ . (50)

Thus there remains just one ODE for the remaining component, namely ṁ = 0. There are no
additional free components. See table 1. However as stated in the introduction, we do not impose
the geodesic equation for the subsequent analysis of the dipole and quadrupoles stress-energy tensors.

3.2 The dipole

Setting k = 1 in (20) gives the dipole

T µν =

∫
I
ζµνρ ∂ρδ

(
x− C(σ)

)
dσ , (51)

where the symmetry condition (9) implies ζµνρ = ζνµρ. We observe that, whereas the components
ζµνρ uniquely specify T µν , the converse is not true. That is, given T µν the gauge-like freedom in ζµνρ

is given by

ζµνρ → ζµνρ +MµνĊρ , (52)

where Mµν = Mνµ are any set of constants, i.e. independent of σ.
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Proof. Substituting (52) into (51) we have

T µν → T µν +

∫
I
MµνĊρ∂ρδ(x− C(σ)) dσ = T µν +

∫
I
Mµν d

dσ
δ(x− C(σ)) dσ

= T µν +

∫
I

d
dσ

(
Mµνδ(x− C(σ))

)
dσ = T µν .

Thus (52) is a gauge-like freedom. To show it is the maximum freedom, we work in adaptive
coordinates. It is clear that the freedom (52) is precisely equivalent to the freedom to choose ζµν0

given γµν0. For details of why this is the maximum gauge-like freedom see proofs number 2 and 3 in
the appendix about the gauge-like freedom of the quadrupole (71).

In addition the ζµνρ are not tensorial quantities but have a coordinate transformation which
involves derivatives of the Jacobian matrix and an integral. Given two coordinate systems (x0, . . . , x3)
and (x̂0, . . . , x̂3) then

ζ̂ µ̂ν̂ρ̂ = J µ̂µJ
ν̂
ν J

ρ̂
ρ ζ

µνρ − ˆ̇C ρ̂

∫ σ

∂ρ(J
µ̂
µJ

ν̂
ν ) ζµνρ dσ′ , (53)

where

J µ̂µ =
∂x̂µ̂

∂xµ
. (54)

Proof of (53). Observe that∫
I
ζµνρ ∂ρ

(
J µ̂µJ

ν̂
ν

)
φ̂µ̂ν̂ dσ =

∫
I
ζµνρ ∂ρ

(
J µ̂µJ

ν̂
ν

) ( ∫ σ dφ̂µ̂ν̂
dσ′

dσ′
)
dσ

=

∫
I
ζµνρ ∂ρ

(
J µ̂µJ

ν̂
ν

)(∫ σ
ˆ̇C
ρ̂

∂ρ̂φ̂µ̂ν̂dσ
′
)
dσ =

∫
I

(∫ σ

ζµνρ ∂ρ
(
J µ̂µJ

ν̂
ν

)
dσ′
)

ˆ̇C
ρ̂

∂ρ̂φ̂µ̂ν̂ dσ .

Hence using (51) we have∫
I
ζ̂ µ̂ν̂ρ̂

(
∂ρ̂ φ̂µ̂ν̂

)
dσ =

∫
R4

T̂ µ̂ν̂ φ̂µ̂ν̂ d
4x̂ =

∫
R4

T µν φµν d
4x =

∫
I
ζµνρ

(
∂ρ φµν

)
dσ

=

∫
I
ζµνρ ∂ρ

(
J µ̂µJ

ν̂
ν φ̂µ̂ν̂

)
dσ =

∫
I
ζµνρ

(
∂ρ
(
J µ̂µJ

ν̂
ν

)
φ̂µ̂ν̂ + J µ̂µJ

ν̂
ν ∂ρ φ̂µ̂ν̂

)
dσ

=

∫
I

((
ˆ̇C
ρ̂
∫ σ

ζµνρ ∂ρ
(
J µ̂µJ

ν̂
ν

)
dσ′
)

+ J µ̂µJ
ν̂
ν J

ρ̂
ρ ζ

µνρ

)
∂ρ̂ φ̂µ̂ν̂ dσ .

Hence (53).

Here the freedom to choose the arbitrary constant of integration in (53) is equivalent to the
gauge-like freedom (52).

Proof. Consider the cases where the limits of the integral in (53) are
∫ σ
σ0

and
∫ σ
σ1

. Then the difference

between two expressions for ζ̂ µ̂ν̂ρ̂ is

ζ̂ µ̂ν̂ρ̂ → ζ̂ µ̂ν̂ρ̂ +M µ̂ν̂
3

ˆ̇C ρ̂ where M µ̂ν̂
3 =

∫ σ0

σ1

∂ρ(J
µ̂
µJ

ν̂
ν ) ζµνρ dσ′ ,

hence the gauge-like freedom in (52).
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In adapted coordinates (14) then (27) and (28) become

T µν = γµν0δ(3)(z) + γµνa ∂aδ
(3)(z) where γµν0 = ζ̇µν0 and γµνa = ζµνa . (55)

Fortunately for the dipole the requirements (9) and (10) restrict the components ζµνρ so much
that T µν can be written solely in terms of tensor quantities

T µν =

∫
I
P̂ (µ Ċν) δ

(
x− C(σ)

)
dσ +∇ρ

∫
I
Ŝρ(µ Ċν) δ

(
x− C(σ)

)
dσ , (56)

where P̂ µ and Ŝµν + Ŝνµ = 0 satisfy the Mathisson-Papapetrou-Tulczyjew-Dixon equations

DŜµν

dσ
= P̂ νĊµ − P̂ µĊν and

DP̂ µ

dσ
= 1

2
Rµ

νρκ Ċ
ν Ŝκρ . (57)

Given a vector Nρ such that Nρ Ŝ
ρ(µ Ċν) = 0, then from (39) we can interpret (56) as the Dixon

representation of a dipole with Dixon vector Nρ.
Clearly we can replace the covariant derivatives with partial derivatives and Christoffel symbols

to give the representation of the dipole

T µν =

∫
I

(
P̂ (µ Ċν) + Ŝρ(ν Γµ)ρκ Ċ

κ
)
δ
(
x− C(σ)

)
dσ +

∫
I
Ŝρ(µ Ċν) ∂ρ δ

(
x− C(σ)

)
dσ . (58)

However this is not the Ellis representation. To translate (58) into the Ellis representation (51) we
set

ζµνρ = Ŝρ(µ Ċν) + Ċρ

∫ σ (
P̂ (µ Ċν) + Ŝα(ν Γµ)ακ Ċ

κ
)
dσ′ . (59)

In the adapted coordinates (55) we have

γµν0 = P̂ (µ δ
ν)
0 + Ŝρ(ν Γµ)ρ0 + ∂0(Ŝ

0(µ δ
ν)
0 ) and γµνa = Ŝa(µ δ

ν)
0 . (60)

Let Kµ be Killing vector

∇µKν +∇νKµ = 0 (61)

and let

QK = γµ00Kµ − γµ0a ∂aKµ . (62)

We show below that QK is a conserved quantity. From (60) we have

QK = P̂ µKµ + 1
2
Ŝµν ∇νKµ . (63)

Proof that (62) and (63) are equivalent. From (57) we have

∂0Ŝ
µν =

DŜµν

dσ
− Γµ0ρ Ŝ

ρν − Γν0ρ Ŝ
µρ = P̂ νĊµ − P̂ µĊν − Γµ0ρ Ŝ

ρν − Γν0ρ Ŝ
µρ

= P̂ νδµ0 − P̂ µδν0 − Γµ0ρ Ŝ
ρν − Γν0ρ Ŝ

µρ

so

∂0Ŝ
0µ = P̂ µ − P̂ 0δµ0 − Γ0

0ρ Ŝ
ρµ − Γµ0ρ Ŝ

0ρ .
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From (60) we have

γµ00 = P̂ (µ Ċ0) + Ŝρ(0 Γµ)ρκ Ċ
κ + ∂0(Ŝ

0(µ Ċ0))

= 1
2

(
P̂ µ + P̂ 0δµ0 + Ŝρ0 Γµρ0 + Ŝρµ Γ0

ρ0 + ∂0(Ŝ
0µ)
)

= 1
2

(
P̂ µ + P̂ 0δµ0 + Ŝρ0 Γµρ0 + Ŝρµ Γ0

ρ0 + P̂ µ − P̂ 0δµ0 − Γ0
0ρ Ŝ

ρµ − Γµ0ρ Ŝ
0ρ
)

= P̂ µ + Ŝρ0 Γµρ0

and

γµ0a = 1
2
Ŝaµ + 1

2
Ŝa0δµ0 .

From (61) we have

0 = ∇aK0 +∇0Ka = ∂aK0 + ∂0Ka − 2Γµa0Kµ .

Hence from (62) we have

QK = γµ00Kµ − γµ0a ∂aKµ =
(
P̂ µ + Ŝρ0 Γµρ0

)
Kµ − 1

2

(
Ŝaµ + Ŝa0δµ0

)
∂aKµ

= P̂ µKµ + Ŝρ0 Γµρ0Kµ − 1
2
Ŝaµ ∂aKµ − 1

2
Ŝa0 ∂aK0

= P̂ µKµ + Ŝρ0 Γµρ0Kµ − 1
2
Ŝaµ ∂aKµ + 1

2
Ŝa0 ∂0Ka − Ŝa0Γµa0Kµ

= P̂ µKµ + 1
2
Ŝµa ∂aKµ + 1

2
Ŝµ0 ∂0Kµ = P̂ µKµ + 1

2
Ŝµν ∂νKµ = P̂ µKµ + 1

2
Ŝµν ∇νKµ .

Proof that QK in (63) is conserved. Since Kµ is Killing we have

∇µ∇νKρ = Rκ
µνρKκ .

From (63) and (57) we have

Q̇K =
DQK
dσ

=
DP̂ µ

dσ
Kµ + P̂ µ Ċν∇νKµ + 1

2

DŜµν

dσ
∇ν Kµ + 1

2
Ŝµν Ċρ∇ρ∇ν Kµ

= 1
2
Rµ

νρκ Ċ
ν ŜκρKµ + P̂ µ Ċν∇νKµ + 1

2

(
P̂ νĊµ − P̂ µĊν

)
∇νKµ + 1

2
Ŝµν Ċρ∇ρ∇νKµ

= 1
2
Rµ

νρκ Ċ
ν ŜκρKµ + 1

2
Ŝµν ĊρRκ

ρνµKκ = 0 .

The situation is simplified in the case when C is a geodesic. In this case we can use the Dixon
representation with Nµ = Ċµ.

T µν =

∫
I

(
mĊµ Ċν + P (µ Ċν)

)
δ
(
x− C(σ)

)
dσ +∇ρ

∫
I

(
XρĊµ Ċν + Sρ(µ Ċν)

)
δ
(
x− C(σ)

)
dσ ,

(64)
where

Ŝµν = Sµν −XµĊν +XνĊµ and P̂ µ = P µ +mĊµ . (65)

Proof of the relationship between (66) and (57). In this proof we refer to the two equations in (57)
as (57.1) and (57.2) and likewise for (66.1) to (66.4). From (65) and (49) we have

DŜµν

dσ
− P̂ νĊµ + P̂ µĊν

=
DSµν

dσ
− DXµ

dσ
Ċν −XµDĊ

ν

dσ
+
DXν

dσ
Ċµ +XνDĊ

µ

dσ
− (P ν +mĊν)Ċµ + (P µ +mĊµ)Ċν

=
DSµν

dσ
−
(DXµ

dσ
− P µ

)
Ċν +

(DXν

dσ
− P ν

)
Ċµ .
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Hence (66.2) and (66.4) imply (57.1). By contrast from (57.1) we can project out (66.2) and (66.4)
using Ċµ.

Likewise from (65) we have

DP̂ µ

dσ
− 1

2
Rµ

νρκ Ċ
ν Ŝκρ =

DP µ

dσ
+
Dm

dσ
Ċµ +m

DĊµ

dσ
− 1

2
Rµ

νρκ Ċ
ν
(
Sκρ −XκĊρ +XρĊκ

)
=
DP µ

dσ
+ ṁĊµ − 1

2
Rµ

νρκ Ċ
ν Sκρ −Rµ

νρκ Ċ
ν XκĊρ .

Thus (66.1) and (66.3) imply (57.2). By contrast from (57.2) we can project out (66.1) and (66.3)
using Ċµ.

These quantities have intuitive meaning. See Table 3 for the units associated with each compo-
nent.

• The rest mass m.

• A displacement vector Xµ with Xµ Ċ
µ = 0.

• The rate of change of the displacement vector P µ with Pµ Ċ
µ = 0.

• A spin tensor Sµν with Sµν + Sνµ = 0 and Ċµ S
µν = 0.

These satisfy

ṁ = 0 ,
DXµ

dσ
= P µ ,

DP µ

dσ
= 1

2
Rµ

νρκ Ċ
ν Sκρ +Rµ

νρκ Ċ
ν ĊρXκ ,

DSµν

dσ
= 0 . (66)

Counting the number of components we see there are 10 ODEs, which completely determine the
dynamical evolution of the dipole components on the prescribed worldline. There are no additional
free components.

As we see below, the same situation does not occur for the quadrupoles. The conditions (9) and
(10) do not completely determine the dynamics of all the components, it is not possible to write all
the components in terms of tensors, and it is not possible to associate the concept of mass with the
quadrupole.

A particular case of the dipole is when Sµν = 0, which is compatible with its dynamic equation
(66). We call this case a semi-dipole. The notion of semi-dipoles and semi-quadrupoles is purely
geometric and is addressed in section 6.6.

4 The quadrupole stress-energy tensor.

Setting k = 2 in (20) gives the formula for a quadrupole,

T µν =
1

2

∫
I
ζµνρκ(σ) ∂ρ∂κδ

(
x− C(σ)

)
dσ , (67)

so that the action on the test tensor φµν is given by∫
R4

T µν φµν d
4x =

1

2

∫
I
ζµνρκ(σ)

(
∂ρ∂κφµν

)∣∣
C(σ)

dσ . (68)

From (9) we impose

ζµνρκ = ζνµρκ , (69)

and due to the commutation of partial derivatives we also set

ζµνρκ = ζµνκρ . (70)

As in the dipole case, the ζµνρκ are not uniquely specified by the T µν , with the gauge-like freedom

ζµνρκ → ζµνρκ +Mνµ
2 Ċ(ρCκ) +M

µν(ρ
3 Ċκ) (71)

where Mνµ
2 and Mµνρ

3 are arbitrary constants.
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Proof. Similar to the proof of (52), we have∫
I
Mµν

2 Ċ(ρCκ)∂ρ∂κδ
(
x− C(σ)

)
dσ =

∫
I
Mµν

2 CκĊρ ∂ρ∂κδ
(
x− C(σ)

)
dσ

= Mµν
2

∫
I
Cκ d

dσ

(
∂κδ
(
x− C(σ)

))
dσ

= Mµν
2

∫
I

d

dσ

(
Cκ∂κδ

(
x− C(σ)

))
dσ −Mµν

2

∫
I
Ċκ∂κδ

(
x− C(σ)

)
dσ

= −Mµν
2

∫
I

d

dσ
δ
(
x− C(σ)

)
dσ = 0 .

and ∫
I
M

µν(κ
3 Ċρ) ∂ρ∂κδ

(
x− C(σ)

)
dσ =

∫
I
Mµνκ

3 Ċρ ∂ρ∂κδ
(
x− C(σ)

)
dσ

= Mµνκ
3

∫
I

d

dσ

(
∂κδ
(
x− C(σ)

))
dσ = 0 .

To see why this incorporates all the gauge-like freedom we use the adapted coordinates system.
Therefore this proof (proof number 4) is given in the appendix.

As in [27], under change of coordinate (x0, . . . , x3) to (x̂0̂, . . . , x̂3̂) we have have a complicated
transformation involving derivatives and integrals

ζ̂ µ̂ν̂ρ̂κ̂ = ζµνρκ J µ̂ν̂
µν J

ρ̂
ρ J

κ̂
κ − 1

2
ˆ̇C
ρ̂
∫ σ

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J µ̂ν̂

µν ) J κ̂κ

)
dσ′

− 1
2

ˆ̇C
κ̂
∫ σ

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

ρ̂
κ) + 2 ∂ρ (J µ̂ν̂

µν ) J ρ̂κ

)
dσ′

+ 1
2

ˆ̇C
κ̂
∫ σ

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′ + 1

2
ˆ̇C
ρ̂
∫ σ

ˆ̇C
κ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′ ,

(72)
where J µ̂µ is given by

J µ̂µ =
∂x̂µ̂

∂xµ
(73)

and

J µ̂ν̂
µν = J µ̂µ J

ν̂
ν . (74)

This is proved in the appendix, proof number 2. It is not necessary to give the lower limits of the
integrals as these are incorporate in gauge-like freedom (71).

Proof. Similar to the proof following (54), consider
∫ σ
σ0

and
∫ σ
σ1

. Let Âµ̂ν̂(σ) = ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
then

taking the last term∫ σ

σ0

ˆ̇C
κ̂
∫ σ′

σ0

Âµ̂ν̂(σ′′) dσ′′ dσ′ −
∫ σ

σ1

ˆ̇C
κ̂
∫ σ′

σ1

Âµ̂ν̂(σ′′) dσ′′ dσ′

=

∫ σ

σ0

ˆ̇C
κ̂
∫ σ′

σ0

Âµ̂ν̂ dσ′′ dσ′ −
∫ σ

σ1

ˆ̇C
κ̂
∫ σ′

σ0

Âµ̂ν̂ dσ′′ dσ′−
∫ σ

σ0

ˆ̇C
κ̂
∫ σ0

σ1

Âµ̂ν̂ dσ′′ dσ′

=

∫ σ1

σ0

ˆ̇C
κ̂
∫ σ′

σ0

Âµ̂ν̂ dσ′′ dσ′− Ĉ κ̂

∫ σ0

σ1

Âµ̂ν̂ dσ′′+ Ĉ κ̂(σ0)

∫ σ0

σ1

Âµ̂ν̂ dσ′′ .
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Hence the difference between two expressions for ζ̂ µ̂ν̂ρ̂κ̂ is ζ̂ µ̂ν̂ρ̂κ̂ → ζ̂ µ̂ν̂ρ̂κ̂ + M ν̂µ̂
2

ˆ̇C(ρ̂ Ĉ κ̂) + M
µ̂ν̂(ρ̂
3

ˆ̇C κ̂)

where

M ν̂µ̂
2 =

∫ σ1

σ0

Âµ̂ν̂ dσ

and

M µ̂ν̂ρ̂
3 =

∫ σ1

σ0

ˆ̇C
κ̂
∫ σ′

σ0

Âµ̂ν̂ dσ′′ dσ′ + Ĉ κ̂(σ0)

∫ σ0

σ1

Âµ̂ν̂ dσ′′ −
∫ σ1

σ0

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

ρ̂
κ) + 2 ∂ρ (J µ̂ν̂

µν ) J ρ̂κ

)
dσ′ .

It also is necessary to check that (72) is consistent with the gauge-like freedom (71). This is given
in proof number 3 in the appendix.

As stated in the introduction the quadrupole is greatly simplified if we choose adapted coordinates
given in (14), so that Ċµ = δµ0 . Equation (67) can now be written in terms of components γµνρκ

T µν(σ,z) = γµν00(σ) δ(3)(z) + γµν0a(σ) ∂aδ
(3)(z) + 1

2
γµνab(σ) ∂a∂bδ

(3)(z) (75)

so that from (28) becomes∫
M
T µν φµν d

4x =

∫
I

(
γµν00 φµν − γµν0a (∂aφµν) + 1

2
γµνab(∂a∂b φµν)

)
dσ . (76)

Here again we impose

γµνρκ = γνµρκ and γµνρκ = γµνκρ . (77)

In adapted coordinates, the components γµνρκ are uniquely determined from T µν , so there is no
gauge-like freedom, as in (71). In this coordinate system we can still express T µν in terms of (67),
and the relationship between γµνρκ and ζµνρκ is given by

γµν00 = 1
2
ζ̈µν00, γµνa0 = ζ̇µνa0 and γµνab = ζµνab (78)

which is consistent with (71). This follows from (30).
It is now much easier to express the differential and algebraic equations on the components arising

from the divergenceless conditions (10), as proved below.

γ̇µ000 = −Γµνρ γ
ρν00 + (∂aΓ

0
νρ) γ

ρν0a − 1
2

(
∂b∂aΓ

0
νρ

)
γρνab , (79)

γ̇µ00a = −γµa00 − Γµνρ γ
ρν0a + (∂bΓ

µ
νρ) γ

ρνba , (80)

γ̇µ0ab = −2γµ(ba)0 − Γµνρ γ
ρνab (81)

together with the algebraic equation

γµ(abc) = 0 . (82)
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Proof of (79)-(82). From (11) we have for any test vector θν

0 =

∫
M

(∇µT
µν) θν d

4x =

∫
M

(
∂µT

µν + ΓνµρT
µρ
)
θν d

4x =

∫
M
T µν
(
Γρµν θρ − ∂µθν

)
d4x

=

∫
M

(
γµν00 δ(3)(z) + γµν0a ∂aδ

(3)(z) + 1
2
γµνab ∂a∂bδ

(3)(z)
)(

Γρµν θρ − ∂µθν
)
d4x

=

∫
I
dσ
(
γµν00

(
Γρµν θρ − ∂µθν

)
− γµν0a ∂a

(
Γρµν θρ − ∂µθν

)
+ 1

2
γµνab∂a∂b

(
Γρµν θρ − ∂µθν

))
=

∫
I
dσ
(
γµν00 Γρµν θρ − γaν00 ∂aθν + γ̇0ν00 θν

− γµν0a ∂a
(
Γρµν θρ

)
+ γbν0a ∂a∂bθν − γ̇0ν0a ∂aθν

+ 1
2
γµνab∂a∂b

(
Γρµν θρ

)
− 1

2
γcνab∂a∂b∂cθν + 1

2
γ̇0νab∂a∂bθν

)
=

∫
I
dσ
(
γµν00 Γρµν θρ − γaν00 ∂aθν + γ̇0ρ00 θρ

− γµν0a (∂aΓ
ρ
µν) θρ − γµν0a Γρµν ∂aθρ + γbν0a ∂a∂bθν − γ̇0ν0a ∂aθν

+ 1
2
γµνab

(
∂a∂bΓ

ρ
µν

)
θρ + γµνab

(
∂aΓ

ρ
µν

) (
∂bθρ

)
+ 1

2
γµνabΓρµν∂a∂bθρ

− 1
2
γcνab∂a∂b∂cθν + 1

2
γ̇0νab∂a∂bθν

)
=

∫
I
dσ

(
θρ

(
γµν00 Γρµν + γ̇0ρ00 − γµν0a (∂aΓ

ρ
µν) + 1

2
γµνab

(
∂a∂bΓ

ρ
µν

))
− ∂aθρ

(
γaρ00 + γµν0a Γρµν + γ̇0ρ0a − γµνba

(
∂bΓ

ρ
µν

))
+ ∂a∂bθρ

(
γbρ0a + 1

2
γµνabΓρµν + 1

2
γ̇0ρab

)
− 1

2
γcνab∂a∂b∂cθν

)
.

The terms with θρ, ∂aθρ, ∂a∂bθρ and ∂a∂b∂ρθρ are independent. From this we get (79)-(82). Note we
must take the symmetric part with respect to b, a.

We can now count the number of components of the quadrupole. From (79)-(81) we have 40 first
order ODEs. However not all the components are determined by these ODEs. From (77) we start
with 100 components. The algebraic equation (82) gives 40 independent equations so that there
are 60 independent components. Thus 40 are determined by ODEs and the remaining 20 are free
components. As stated in the introduction these free components need to be replaced by constitutive
equations. However the choice of constitutive equations depends on a choice of an underlying model
for the stress-energy tensor. An example of such constitutive equations is given in section 5 below.

Under change of adapted coordinate (σ, z1, z2, z3) to (σ̂, ẑ1, ẑ2, ẑ3) we have

γ̂µ̂ν̂âb̂ = J µ̂ν̂
µν J

â
a J

b̂
b γ

µνab , (83)

γ̂µ̂ν̂â0̂ = J µ̂ν̂
µν J

â
a γ

µνa0 +
(
J µ̂ν̂
µν J

0̂
b J

â
a γ

µνab
)̇
− 1

2

(
∂aJ

â
b J µ̂ν̂

µν + J âa ∂bJ µ̂ν̂
µν + J âb ∂aJ µ̂ν̂

µν

)
γµνab , (84)

γ̂µ̂ν̂0̂0̂ = J µ̂ν̂
µν γ

µν00 + J µ̂ν̂
µν J

0̂
c γ̇

µνa0 +
(
(J µ̂ν̂

µν J 0̂
c )̇− ∂cJ µ̂ν̂

µν

)
γµνc0

+ 1
2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) γµνcd

)̈
−
((

1
2
∂cJ

0̂
d J µ̂ν̂

µν + J 0̂
d ∂cJ µ̂ν̂

µν

)
γµνcd

)̇
+ (1

2
∂c∂dJ µ̂ν̂

µν ) γµνcd (85)

See proof number 5 in the appendix. Although these may be considered more complicated than (72)
they does not involve any integrals. We have assumed that σ and σ̂ parameterise the same points
on the worldline C. Thus on the worldline J µ̂0 = δµ̂0 . However this does not imply ∂νJ

µ̂
0 = 0.

4.1 The static semi-quadrupole and the free components

To get an intuition about the free components, consider the dynamic equations (79)-(82) on a flat
Minkowski background with Cartesian coordinates (t = z0, z1, z2, z3) = (t, z) and with the worldline
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at z = 0. Thus we can set t = σ so that C0(t) = t and Ca(t) = 0. The dynamic equations (79)-(82)
become

γ̇µ000 = 0 , (86)

γ̇µ0a0 = −γµa00 , (87)

γ̇µ0ba = −2γµ(ab)0 , (88)

γµ(abc) = 0 . (89)

As a further simplification, consider only the semi-quadrupole. This is when

γµabc = 0 . (90)

According to table 1, there should be 22 ODE components and 6 free components. This arises since
(90) implies γa0bc = 0 which eliminates all but 6 of the ODEs in (88). See section 6.6 below for full
details.

The general solution is given by

γ0000 = m, γa000 = P a, γ00a0 = Xa − t P a,

γ00ba = κba(t), γb0a0 = Sba − 1
2
κ̇ba(t), γba00 = 1

2
κ̈ba(t), γcba0 = 0

(91)

where the 10 quantities m,P a, Xa, Sab are constants, Sab satisfies Sab + Sba = 0 and the six free
components κba(t) satisfy κba(t) = κab(t). Here we interpretm as the total mass, P a as the momentum
and Sba as the spin. The six free components κab(t) are the moments of inertia. Since there are 22
ODEs there should be 22 constants of integration. As well as the 10 already given, the remaining 12
are the six initial conditions for κab(0) and for κ̇ab(0).

Proof of (91). For the semi-quadrupole (90), then (89) is automatically satisfied. Equations (86)-
(88) become

γ̇0000 = 0, γ̇a000 = 0, γ̇00a0 = −γ0a00, γ̇0ba0 = −γba00, γ̇00ba = −γ0(ab)0, 0 = γ̇0cba = −γc(ab)0 .

It may appear that we have not stated anything about (γcab0− γcba0). However due to the symmetry
of γcab0 we have

γcab0 − γcba0 = γacb0 − γbca0 = −γabc0 + γbac0 = 0 .

Thus from the last equation above we have γcba0 = 0. Setting γ00ba = κab(σ) we have γ0(ba)0 = κ̇ab

and γba00 = κ̈ab. The remaining constants in (91) are then determined.

Consider the components of T µν as arising from squeezing a regular stress-energy tensor density
T µν(t, z) as in section 2.3. Thus

γµν00 =

∫
R3

T µν(t, z)d3z, γµνa0 =

∫
R3

T µν(t, z) za d3z, γµνab =

∫
R3

T µν(t, z) za zb d3z . (92)

Comparing (91) and (92) we see

m =

∫
R3

T 00(t, z)d3z, P a =

∫
R3

T a0(t, z)d3z, Xa = t P a +

∫
R3

T 00(t, z)za d3z,

Sba =

∫
R3

z[a T b]0(t, z)d3z and κab =

∫
R3

za zb T 00(t, z)d3z .

(93)

For example let P a = 0 and Sab = 0 then

m =

∫
R3

T 00(t, z) d3z, κab(t) =

∫
R3

za zb T 00(t, z) d3z . (94)

Since κab(t) are free components we can choose any T µν(t, z) we like so long as its total integral is
m and they are sufficiently symmetric that P a = 0 and Sab = 0 hold. This can be achieved if, for
example T µν(t, z) is symmetric about the three directions za. This explains why we can choose to
have a distribution of matter which separates and then coalesces as in figure 1.
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4.2 Conserved quantities

Recall that a Killing vector (61) leads to a conserved quantity in the dipole case. The same is true
for quadrupole. In an adapted coordinate system (σ, z1, z2, z3) the conserved quantity QK is given
by

QK = γµ000Kµ − γµ0a0∂aKµ + 1
2
γµ0ab∂a∂bKµ . (95)

Proof. Let ϕ be a test function. Thus∫
M
∇µ(T µν Kν)ϕd

4x =

∫
M

(∇µT
µν Kν + T µν ∇µKν ϕ) d4x = 0 .

from (9), (10) and (61). Since T µν is a tensor density then so is T µνKν . Hence

0 =

∫
M
∇µ(T µν Kν)ϕd

4x =

∫
M
T µν Kν ∇µϕd

4x =

∫
M
T µν Kν ∂µϕd

4x

=

∫
I

(
γµν00Kν∂µϕ− γµν0a ∂a(Kν∂µϕ) + 1

2
γµνab∂a∂b (Kν∂µϕ)

)
dσ

=

∫
I

(
∂µϕ

(
γµν00Kν − γµν0a ∂aKν + 1

2
γµνab∂a∂bKν

))
dσ + higher derivatives of ϕ.

=

∫
I

(
∂0ϕ
(
γ0ν00Kν − γ0ν0a ∂aKν + 1

2
γ0νab∂a∂bKν

))
dσ

+

∫
I

(
∂cϕ

(
γcν00Kν − γcν0a ∂aKν + 1

2
γcνab∂a∂bKν

))
dσ + higher derivatives of ϕ.

= −
∫
I

(
ϕ ∂0

(
γ0ν00Kν − γ0ν0a ∂aKν + 1

2
γ0νab∂a∂bKν

))
dσ + higher derivatives of ϕ.

= −
∫
I

(
ϕ Q̇K

)
dσ + higher derivatives of ϕ.

Thus since we can extract the different derivatives of ϕ we have Q̇K = 0.

It is worth exploring the conserved quantities on the static semi-quadrupole given by (91). In
Minkowski spacetime there are 10 Killing vectors.

• Mass or Energy: for K0 = 1, Ka = 0 we have QK = m.

• Momentum: for K0 = 0, K1 = 1, K2 = 0 and K3 = 0 then QK = p1. Likewise for the other two
cases.

• Angular momentum and spin: let K0 = 0, K1 = z2, K2 = −z1 and K3 = 0. We have

QK = γ1000K1 + γ2000K2 + γ2010∂1K2 + γ1020∂2K1

= p1 z2 − p2 z1 +
(
S12 − κ̇12(t)

)
−
(
S21 − κ̇21(t)

)
= S12 .

Likewise for the other two cases.

• Boost: Let K0 = z1, K1 = t+ t0, K2 = 0 and K3 = 0 for some fixed t0. Then

QK = γ0000K0 + γ1000K1 + γ0010∂1K0 = mz1 + P 1 (t+ t0) + (X1 − t P 1) = X1 + t0 P
1 .

Likewise for the other two cases.

Thus the 10 Killing symmetries of Minkowski spacetime correspond directly to the 10 constants of
the solution to static semi-quadrupole. This also gives a new interpretation to the three somewhat
obscure conserved quantities corresponding to the three boosts.
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5 Non-divergent dust model of a quadrupole and the corre-

sponding constitutive relations.

The familiar dust model is given in terms of a scalar % and a vector field Uµ with gµν U
µ Uν = −1.

The stress-energy tensor density is given by

T µν = %Uµ Uν ω , (96)

where ω =
√
− det(gµν). Then the divergenceless condition implies that the Uµ are geodesics

Uµ∇µ U
ν = 0 (97)

and the flow % is conserved

∇µ(%Uµ) = 0 . (98)

Furthermore let us assume that the dust is non divergent, so that it preserves the measure, i.e.

Uµ ∂µω = 0 . (99)

so that ∂µ(%Uµ) = 0.
In order to create a squeezed tensor T µνε from T µν we need to choose a coordinate system. It is

natural to choose the coordinate adapted to Uµ so that Uµ = δµ0 . This gives %̇ = 0 so that we can
write % = %(z). Likewise we have a = a(z). Hence

T µν(σ, z) = %(z) δµ0 δ
ν
0 a(z) . (100)

We require that %(z) = 0 for large z. From (36) we see

γµν00(σ) = δµ0 δ
ν
0

∫
R3

d3z %(z) a(z),

γµνa0(σ) = −δµ0 δν0
∫
R3

d3z za %(z) a(z),

γµνab(σ) = δµ0 δ
ν
0

∫
R3

d3z za zb %(z) a(z) .

(101)

Since both % and a are independent of σ we have the dynamic equations

γ̇µν00 = 0, γ̇µνa0 = 0 and γ̇µνab = 0 . (102)

These are consistent with the dynamic equations (79)-(81) since in the adapted coordinate system
the geodesic equation becomes Γµ00 = 0.

Equation (102) completely defines the dynamics. However, our goal is to use (102) to inspire the
constitutive relations in the case when we are not modelling a non-divergent dust, and (79)-(81) hold.
One option is to require that some of the free components are in fact constants. This is challenging
because we need to be consistent with (79)-(81).

As a simple example, consider the static semi-quadrupole in Minkowski spacetime, given by (91).
The non-divergent dust constitutive relations would make κab(t) a constant. It would also make
P a = 0. This replaces (91) with

γ0000 = m, γa000 = 0, γ00a0 = Xa,

γ00ba = κba, γb0a0 = Sba, γba00 = 0, γcba0 = 0 .
(103)
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6 The coordinate free and metric free approach to quadrupoles.

As stated in the introduction we can construct the distributional stress-energy tensor density with
only a connection. In this section we do not assume the connection is Levi-Civita connection. Indeed
there is no mention of a metric at all. This, as stated, is particularly useful in the case of non-metric
connections, or when there is no metric or multiple metrics. To simplify the mathematics we assume
the metric is torsion free. However this too can be relaxed with the result of additional torsion terms
in many expressions.

In [27] the authors present a coordinate free definition of submanifold distributions, also known
as deRham currents, in terms of the deRham push forward [31] and standard operations.

Since we are using coordinate free notation we write a vector field as V ∈ ΓTM. Here TM is the
tangent bundle of spacetime and ΓTM refers to sections of the tangent bundle. A vector at a point
p ∈ M is written V ∈ TpM. A vector field and vectors at a point are differential operators and we
write the action of a vector on a scalar field using angle brackets as V 〈f〉. The bundle of p–forms is
written ΛpM so a p–form field is written α ∈ ΓΛpM.

Given a coordinate system (x0, . . . , x3) then we write V = V µ∂µ. Here ∂µ are basis vectors and
V µ are indexed scalar fields. Thus

V 〈f〉 = V µ ∂µf where V µ = V 〈xµ〉 . (104)

For 1–forms α ∈ ΓΛ1M we can write α = αµ dx
µ where again αµ are indexed scalar fields.

6.1 The two types of ∇
In the literature on general relativity and differential geometry, there are two conventions used when
referring to the covariant derivative. One is typically used when using index tensor notation, the
other when one is using coordinate free notation. Usually one has simply to choose one convention
and present all the results using that. We have done this up to now using index notation. However
in this section we wish to present a coordinate free definition of all the objects. As a result it is
necessary to use both definitions of the covariant derivatives, sometimes in the same expression. So
to avoid confusion, from now on we introduce two different symbols.

The covariant derivative which we have used up to this point and which “knows” about the index
of an object we write ∇µ. The action on the indexed scalar fields V µ is then

∇µV
ν = ∂µ(V ν) + V ρ Γνµρ . (105)

In other words, the Christoffel symbols are tied to the indices. By contrast the coordinate free
covariant derivative is written ∇V where V ∈ ΓTM. In this case the Christoffel symbol satisfies

Γµνρ ∂µ = ∇∂ν∂ρ . (106)

This covariant derivative knows about the tensor structure, but not the indices. Thus

∇UV
µ = U〈V µ〉 = Uν ∂νV

µ . (107)

The two covariant derivatives are related via the following

∇U(V ) = Uν(∇νV
µ) ∂µ , (108)

since

∇U(V ) = ∇U(V µ ∂µ) = U〈V µ〉∂µ + Uν V µ∇∂ν∂
µ = U〈V µ〉∂µ + Uν V µΓρµν∂ρ

= Uν
(
∂ν〈V µ〉+ V ρΓµνρ

)
∂µ = Uν(∇νV

µ)∂µ .
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Setting k=2 in (38) gives the Dixon quadrupole, and we see that it contains the operator ∇µ∇ν .
Thus (38) is tensorial with respect to the indices µ and ν. To give a coordinate free definition we
define for any tensor S,

∇2
U,V S = ∇U ∇V S −∇∇UV S . (109)

This definition can be extended to arbitrary order. This is clearly tensorial in U , but is also tensorial
(also known as f-linear) with respect to V . Thus

∇2
(fU),V S = ∇2

U,(fV )S = f∇2
U,V S . (110)

Proof.

∇2
U,fV S = ∇U ∇(fV )S −∇∇U (fV )S = ∇U (f∇V S)−∇(f∇UV+U〈f〉V )S

= f∇U ∇V S + U〈f〉∇V S − f∇∇UV S − U〈f〉∇V S = f∇2
U,V S .

The relationship between ∇2
U,V and ∇µ∇ν is given by

∇2
U,VW = Uν V ρ

(
∇ν ∇ρW

µ
)
∂µ . (111)

for any vector W µ.

Proof.

∇2
U,VW = ∇U ∇VW −∇∇UVW = Uν∇ν (∇VW )µ∂µ − (∇UV )ρ(∇ρW

µ)∂µ

= Uν∇ν (V ρ∇ρW
µ)∂µ − Uν(∇νV

ρ)(∇ρW
µ)∂µ

= Uν
(
∇ν (V ρ∇ρW

µ)− (∇νV
ρ)(∇ρW

µ)
)
∂µ

= Uν V ρ
(
∇ν ∇ρW

µ
)
∂µ .

6.2 Defining distributional forms

Following Schwartz, we define a distributional p–form by its action on a test (4−p)–form ϕ ∈ ΓΛ4−pM ,
i.e. a (4− p)–form with compact support [27]. Given α ∈ ΓΛpM is a smooth p−form, we construct
a regular distribution αD via

αD[ϕ] =

∫
M

ϕ ∧ α . (112)

The definition of the wedge product, Lie derivatives, internal contraction and exterior derivatives on
distributions are defined to be consistent with (112). Thus for a distribution Ψ we set

(Ψ1 + Ψ2)[ϕ] = Ψ1[ϕ] + Ψ2[ϕ] , (β ∧Ψ)[ϕ] = Ψ[ϕ ∧ β] , (dΨ)[ϕ] = (−1)(3−p)Ψ[dϕ] ,

(ivΨ)[ϕ] = (−1)(3−p)Ψ[ivϕ] and (LvΨ)[ϕ] = −Ψ[Lvϕ]
(113)

for v ∈ ΓTM. Given that C : I → M, is a closed embedding, the DeRham push forward with
respect to C of a p–form, α ∈ ΓΛpI is given by the distribution(

Cς(α)
)
[ϕ] =

∫
I
C?(ϕ) ∧ α . (114)
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where ϕ is a test form of degree 0 or 1 and C?(ϕ) is the pullback of ϕ ∈ ΓΛqM to ΓΛqI. This
has degree deg

(
Cς(α)

)
= 3 + p. A general form distribution is then given by applying an arbitrary

number of wedges, exterior derivatives, etc, to Cς(α) using the rules given in (113).
The order of a multipole is defined as follows. If

Ψ[λk+1ϕ] = 0 for all λ ∈ ΓΛ0M and ϕ ∈ Γ0Λ
1M such that C?(λ) = 0 , (115)

then we say that the order of Ψ is at most k. Since we impose that λ vanishes on the image of C,
(115) implies that we need to differentiate the argument λk+1ϕ at least k+ 1 times for Ψ[λk+1ϕ] 6= 0.
We say dipoles have order at most one and quadrupoles have order at most two. Therefore the terms
in a dipole have at most one derivative, and those in a quadrupole at most two. This is consistent
with the fact that the set of quadrupoles include all dipoles.

The deRham push forward is compatible with the exterior derivative

dCς(α) = Cς(dα) , (116)

and the internal contraction for fields tangent to C

iw Cς(α) = Cς(iv α) where w ∈ ΓTM, v ∈ ΓTI, C?(v|σ) = w|C(σ) for all σ ∈ I . (117)

6.3 The stress-energy 3–forms

Since we wish to work without a metric it is natural to use a the stress-energy 3–forms [32]. The
relationship to T µν is given in (126) below. We exploit the fact that the stress-energy 3–forms have
a similar structure to the electromagnetic current 3–form. This enables us to use the technology
developed in [27].

We define the stress-energy form τ as a map which takes a 1–form α ∈ ΓΛ1M and gives a deRham
current 3–form τα over the worldline C.

α 7→ τα . (118)

The map (118) is not ‘f’-linear but does satisfy

τ(α+β) = τα + τβ and τ(fα)[θ] = τα[fθ] , (119)

for any test 1–form θ and scalar field f .
Using τα we define a tensor valued distribution τ which takes a tensor of type (0,2) as an argument.

This is defined as

τ [θ ⊗ α] = τα[θ] . (120)

The stress-energy tensor is symmetric (9) and divergenceless (10). We show below that the symmetry
condition is given by

τ [β ⊗ α] = τ [α⊗ β] , (121)

and the divergenceless condition is given by

Dτ = 0 , (122)

where

(Dτ)[θ] = −τ [Dθ] (123)

and

(Dθ)(U, V ) = (∇V θ)(U) . (124)
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Using a coordinate system, we can convert the map (118) into indexed 3–forms via

τµ = τdxµ . (125)

The relationship between the stress-energy forms and the tensor density T µν is given by∫
I
T µν φµν d

4x = τµ[φµν dx
ν ] = τ [φµν dx

ν ⊗ dxµ] . (126)

Using this coordinate system, (121) becomes

dxµ ∧ τ ν = dxν ∧ τµ , (127)

and (122) becomes

dτµ + Γµνρ dx
ρ ∧ τ ν = 0 . (128)

Proof. Let θ be a test 1–form then

(Dθ)(U, V ) = (∇V θ)(U) = Uν(∇V θ)ν = U ν V µ∇µθν = (∇νθµ) (dxν ⊗ dxµ)(U, V ) ,

hence

Dθ = (∇νθµ) (dxν ⊗ dxµ) .

Thus

Dτ [θ] = −τ [Dθ] = −τ [(∇νθµ) (dxν ⊗ dxµ)] = −τµ[(∇νθµ) dxν ] = −τµ[(∂νθµ − Γρνµθρ) dx
ν ]

= −τµ[∂νθµ dx
ν − Γρνµθρ dx

ν ] = −τµ[∂νθµ dx
ν ] + τµ[Γρνµθρ dx

ν ] = −τµ[dθµ] + Γρνµ dx
ν ∧ τµ[θρ]

= dτµ[θµ] + Γρνµ dx
ν ∧ τµ[θρ] =

(
dτ ρ + Γρνµ dx

ν ∧ τµ
)
[θρ] .

6.4 Killing forms and conservation

Killing forms (61) can be written in a coordinate free way. The 1–form α ∈ ΓΛ1M is Killing if

(∇V α)(V ) = 0 , (129)

for all vectors V ∈ ΓTM. If there is a metric g, ∇ is metric compatible and α is the metric dual of
K then (129) is equivalent to K being Killing. This follows since (∇V α)(V ) = g(∇VK,V ). From
(128) and (127) we have

dτα = d(αµ τ
µ) = dαµ ∧ τµ + αµ ∧ dτµ = (∂ραµ) dxρ ∧ τµ − Γµνραµ dx

ρ ∧ dτ ν = ∇ραν dx
ρ ∧ dτ ν

= 1
2
(∇ραν −∇ναρ) dx

ρ ∧ dτ ν .

Hence if α ∈ ΓΛ1M is a Killing 1–form then from (61) dτα = 0. This gives an alternative method of
proving (95).

6.5 The definition of components

Using (67) and (126) we deduce in an arbitrary coordinate system

τµ = 1
2
iν Lρ LκCς(ζ

µνρκdσ) , (130)

where iν = i∂ν and Lρ = L∂ρ .
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Proof. From (126) and (68) we have

τµ[φµν dx
ν ] = 1

2
iα Lρ LκCς(ζ

µαρκdσ)[φµν dx
ν ] = 1

2
Lρ LκCς(ζ

µαρκdσ)[iα φµν dx
ν ]

= 1
2
δναLρ LκCς(ζ

µαρκdσ)[φµν ] = 1
2
Lρ LκCς(ζ

µνρκdσ)[φµν ]

= 1
2
Cς(ζ

µνρκdσ)[∂ρ ∂κφµν ] = 1
2

∫
I
ζµνρκ (∂ρ ∂κφµν) dσ =

∫
I
T µν φµν d

4x .

In an adapted coordinate system (14) equation (75) implies

τµ = iν Cς(γ
µν00 dσ) + iν LaCς(γ

µν0a dσ) + 1
2
iν La LbCς(γ

µνab dσ) . (131)

Proof.

τµ[φµν dx
ν ] = iαCς(γ

µα00 dσ)[φµν dx
ν ] + iα LaCς(γ

µα0a dσ)[φµν dx
ν ]

+ 1
2
iα La LbCς(γ

µαab dσ)[φµν dx
ν ]

= Cς(γ
µν00 dσ)[φµν ] + LaCς(γ

µν0a dσ)[φµν ] + 1
2
La LbCς(γ

µνab dσ)[φµν ]

= Cς(γ
µν00 dσ)[φµν ]− Cς(γµν0a dσ)[∂aφµν ] + 1

2
Cς(γ

µνab dσ)[∂a∂b φµν ]

=

∫
I
γµν00 φµν dσ −

∫
I
γµν0a (∂aφµν)dσ + 1

2

∫
I
γµνab(∂a∂b φµν) dσ

=

∫
I

(
γµν00 φµν − γµν0a (∂aφµν) + 1

2
γµνab(∂a∂b φµν)

)
dσ .

As stated the advantage of using an adapted coordinate system is that the γµνρκ are unique, as
seen from (31), (32).

6.6 Semi-dipoles and semi-quadrupoles

Having defined the quadrupoles in a coordinate free manner, one can identify properties which can
be defined without reference to a coordinate system. In [27] we defined the semi-dipole and semi-
quadrupole electromagnetic 3–form. The semi-dipole corresponded to the purely electric dipole. One
can likewise define the semi-dipole and semi-quadrupole stress-energy distributions. In this case we
say that τα is an semi-multipole of order at most ` if

τα[λ`dµ] = 0 for all λ, µ ∈ ΓΛ0M such that C?(λ) = C?(µ) = 0 . (132)

We observe that the semi-dipole (` = 1) corresponds to the case when the spin tensor is Sba = 0.
The semi-quadrupole (` = 2), does not have a natural interpretation, but is used as a quadrupole
with fewer components.

When we apply this to the quadrupole (131), in an adapted coordinate system (σ, z1, z2, z3), we
see that the semi-quadrupole is given by

τµ = iν Cς(γ
µν00 dσ) + iν LaCς(γ

µν0a dσ) + 1
2
La LbCς(γ

µ0ab) . (133)

This gives 22 ODE components and 6 free components as indicated in table 1. We presented the
general solution for the static semi-quadrupole in section 4.1.

Proof of (133) and Semi-quadrupole counting. A simple application using λ = λ1 + λ2 and λ =
λ1 − λ2 implies we can replace (132) for ` = 2 with (132) with τα[λ1λ2da] = 0 where C?(λ1) =
C?(λ2) = C?(a) = 0. Hence

0 = lim
ε→0

τµ[za zb d(zcψε,σ′)] = γµcab(σ′)
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and hence (30).
We can now count the number and type of components. The dynamic equation (79) and (80)

remain unchanged but (81) becomes

γcb0a = −Γc00 γ
00ab and γ̇00ab = −2γ0(b0)a − Γ0

00 γ
00ab ,

since the symmetry condition (77) implies γc0ab = γ0cab = 0. Thus we have 4+12+6=22 ODEs.
Starting with the 100 components given after applying (77) we have 9×6 = 54 constraints coming

from γµcab = 0 plus 18 constraints coming from the first equation above. This leaves 28 components.
Of these 22 are given by the ODEs and 6 are free.

6.7 The coordinate free definition of the Dixon split only using N and
the connection

We have defined the stress-energy distribution without reference to a coordinate system. When
writing this in terms of coordinates (130) and (36) we see that this corresponds directly to the
Ellis representation of the multipoles. Here we show how to perform the Dixon split (42) which
separates the multipoles into different orders with respect to a 1–form N along the curve. Our
procedure separates the quadrupole into a pure Dixon quadrupole term, a pure Dixon dipole term
and a monopole term. The pattern however is clear. The Dixon split (42) requires defining τ(0), τ(1)
and τ(2) such that an arbitrary quadrupole has the form

τ = τ(0) + τ(1) + τ(2) . (134)

Using (126) to convert these into T µν(r) we find that T µν = T µν(0) + T µν(1) + T µν(2) where

τ(0)[φ] =

∫
M
T µν(0) φµν d

4x =

∫
I
ξµν(σ)φµν(σ) dσ , (135)

τ(1)[φ] =

∫
M
T µν(1) φµν d

4x =

∫
I
ξµνρ(σ) (∇ρφµν)|C(σ) dσ , (136)

τ(2)[φ] =

∫
M
T µν(2) φµν d

4x =

∫
I
ξµνρκ(σ) (∇ρ∇κφµν)|C(σ) dσ . (137)

The Dixon split is with respect to a 1–form, as opposed to a vector along C, in order to avoid using
the metric. The one requirement is that the 1–form N combined with the vector Ċ is nowhere zero,
i.e.

N(Ċ) 6= 0 . (138)

In order to perform the Dixon split, it is necessary to define a radial vector fields. We say that
R ∈ ΓTM is Radial (to second order) with respect to C and N if for all p = C(σ)

R|p = 0, (∇VR)|p = V |p and
(
∇2

U,VR
)∣∣
p

= 0 , (139)

for all vectors U, V ∈ TM such that N(V ) = N(U) = 0. Below in (145) we express the components
of R with respect to a coordinate system, which is adapted both for C and N .

Using this radial vector, the Dixon split (134) is given by

τ(0)[φ] = τ [φ−∇Rφ+ 1
2
∇2
R,Rφ] , (140)

τ(1)[φ] = τ [∇Rφ−∇2
R,Rφ] , (141)

τ(2)[φ] = τ [1
2
∇2
R,Rφ] . (142)

where φ is an type (0,2) test tensor. The proof of (140)-(142) is given below. One advantage of using
(140)-(142) is that one can now show how the Dixon components mix when one changes N , and that
all Ellis multipoles are also Dixon Multipoles.
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Proofs of Dixon split

In this section we work in a coordinate system (σ, z1, z2, z3), which is adapted both for C and N , so
that N = N0dσ with N0 6= 0. We see that if N(V ) = 0 then V 0 = 0. Likewise we can replace ξµνρκ

with ξµνab since ξµν0a = ξµνa0 = 0.
In this coordinate system a radial vector R has the properties

Rµ|p = 0, ∂µR
0|p = 0, ∂µR

a|p = δaµ, ∂0∂µR
ν |p = 0,

∂b∂cR
0|p = −2Γ0

bc and ∂b∂cR
a|p = −Γabc ,

(143)

for any p = C(σ). This can be expressed as

R0 = −zbzc Γ0
bc ∂0 +O(z3) and Ra = za − 1

2
zbzc Γabc +O(z3) , (144)

or alternatively as

R = za ∂a − zbzc Γ0
bc ∂0 − 1

2
zbzc Γabc ∂a +O(z3) . (145)

where O(z3) is any function (or vector) of (σ, z1, z2, z3) which is at least cubic in its za arguments.

Proof of (143). In the adapted coordinate system, assume first that Rµ satisfies (143) and that U, V
satisfy N(U) = N(V ) = 0, so U0 = V 0 = 0.

Clearly from either (139.1) or (143.1) we have R|p = 0. Here (139.1) refers to the first equation
in (139). (

∇VR− V
)µ∣∣

p
=
(
V ν∂ν(R

µ) + V νRρΓµνρ − V µ
)∣∣
p

=
(
V a(∂a(R

µ)− δµa )
)∣∣
p
.

Thus (139.2) is equivalent to (143.2), (143.3). From (143.2) and (143.3) we have (143.4)
From (139.2) we have, (implicitly evaluating at p),

∇b(∇cR
a) = ∂b(∇cR

a) + (∇cR
d)Γabd − (∇dR

a)Γdbc

= ∂b∂cR
a + ∂b(R

e Γace) + (∂cR
d)Γabd +ReΓdceΓ

a
bd − (∂dR

a)Γdbc −ReΓadeΓ
d
bc

= ∂b∂cR
a + δeb Γace + δdcΓ

a
bd − δadΓdbc = ∂b∂cR

a + Γacb + Γabc − Γabc
= ∂b∂cR

a + Γacb

and

∇b(∇cR
0) = ∂b(∇cR

0) + (∇cR
d)Γ0

bd − (∇dR
0)Γdbc = ∂b∂cR

0 + ∂b(R
e Γ0

ce) + Γ0
bc

= ∂b∂cR
0 + ∂b(R

e) Γ0
ce + Γ0

bc = ∂b∂cR
0 + 2Γ0

bc .

Thus

∇2
U,VR = V µUν(∂µ∂νR

a + Γacb)∂a + V µUν(∂µ∂νR
0 + 2Γacb)∂0

= V aU b(∂b∂cR
a + Γacb)∂a + V aU b(∂b∂cR

0 + 2Γacb)∂0 .

Hence (139.3) holds if and only if (143.5) and (143.6) hold.

Proof of (142). In the adapted coordinate system and evaluating at C(σ) we have

ξµν(RαRλ∇α∇λφµν) = 0 .

Thus the monopole term (135) does not contribute to τ(2). Likewise

ξµνρκ∇ρ(R
αRλ∇α∇λφµν) = 0 ,

so the dipole term (136) does not contribute to τ(2). Finally we have

ξµνρκ∇ρ∇κ(R
αRλ∇α∇λφµν) = ξµνab∇a∇b(R

αRλ∇α∇λφµν) = ξµνab(∂a∂b(R
αRλ)∇α∇λφµν)

= ξµνab(δαa δ
λ
b + δλaδ

α
b )(∇α∇λφµν) = 2ξµνab(∇a∇bφµν) = 2ξµνρκ(∇ρ∇κφµν) .

(146)

Thus τ(2) is given by (142).
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Proof of (141). Since

ξµν(Rα∇α φµν −RαRλ∇α∇λφµν) = 0 ,

the monopole term does not contribute to τ(1). Also

∇a∇b (Rα∇α φµν) = ∇a

(
(∇bR

α)∇α φµν
)

+∇a

(
Rα∇b∇α φµν

)
= (∇a∇bR

α)∇α φµν + (∇bR
α)∇a∇α φµν + (∇aR

α)∇b∇α φµν +Rα∇a∇b∇α φµν

= δαb∇a∇α φµν + δαa∇b∇α φµν = ∇a∇b φµν +∇b∇a φµν .

Hence

ξµνρκ∇ρ∇κ (Rα∇α φµν) = ξµνab∇a∇b (Rα∇α φµν) = ξµνab
(
∇a∇b φµν +∇b∇a φµν

)
= 2ξµνab(∇a∇bφµν) = 2ξµνρκ(∇ρ∇κφµν) .

(147)

Thus using (146) we see

ξµνρκ∇ρ∇κ (Rα∇α φµν −RαRλ∇α∇λφµν) = 0 .

Thus the quadrupole term (137) does not contribute to τ(1). Finally

ξµνρ∇ρ(R
α∇α φµν) = ξµνa∇a(R

α∇α φµν) = ξµνa (∇aR
α)∇α φµν = ξµνa δαa ∇α φµν

= ξµνa∇a φµν = ξµνρ∇ρ φµν .
(148)

Thus τ(1) is given by (141).

Proof of (140). From (146) and (147) we have

ξµνρκ∇ρ∇κ (φµν −Rα∇α φµν + 1
2
RαRλ∇α∇λφµν) = 0 .

Thus the quadrupole term (137) does not contribute to τ(0). Using (148) we have

ξµνρ∇ρ(φµν −Rα∇α φµν + 1
2
RαRλ∇α∇λφµν) = 0 ,

so the dipole term (136) does not contribute to τ(0). Finally

ξµν (φµν −Rα∇α φµν + 1
2
RαRλ∇α∇λφµν) = ξµν φµν ,

so τ(0) is given by (140).

7 Discussion and outlook.

We have derived a number of key results about the distributional quadrupole stress-energy tensor,
in particular the existence of the free components, which require additional constitutive relations to
prescribe. An example of these constitutive relations is given. We have also given the coordinate
transformation of the quadrupole components, the conserved quantities in the presence of a Killing
vector and a definition of semi-quadrupoles. We presented a metric and coordinate free definition of
the quadrupole and a way of separating the quadrupole into the monopole, dipole and quadrupole
terms corresponding to the Dixon representation.

The understanding of the quadrupole stress-energy tensor distribution is important for the study
of gravitational wave sources, as well as being interesting in its own right. The existence of free
components imply that it is not possible to know everything about a quadrupole simply from the
initial conditions. There is clearly much research that needs to be done to find appropriate consti-
tutive relations to replace the free components with ODEs or algebraic relations. It may be possible
to calculate these from underlying models, such as two orbiting black holes or neutron stars. In
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section 5 we presented only a very simple constitutive relation corresponding to a dust model. With
increasing sensitivity of gravitational wave astronomy one can hope to test the different constitutive
relations using experimental data.

Although the observation of the need for constitutive relations for the quadrupole on a prescribe
worldline is new, there are other cases where the need for constitutive relations has been observed.
For example [15], they are needed to determine how dipoles or quadrupoles affect the worldline. There
are other situations where one can expect constitutive relations will be needed. In future work we
intend to look at the dynamics of charged multipoles in an electromagnetic field. One would expect
in this case that constitutive relations are also needed, especially since a dipole has nine components,
but the electromagnetic current, which provides the force and torque, has only six components.
These constitutive relations describe the differences between the charge distribution and the mass
distribution in the dipole. The situation has an additional challenge in that the electromagnetic field
diverges on the worldline. This poses another question that has been tackled by many authors: how
does a dipole respond to its own electromagnetic field [33, 34, 35].

We have investigated the representation of the quadrupole using partial derivatives (the Ellis
representation). As well as the differential equations, we have given the gauge-like freedom, the
change of coordinates, the adapted coordinates and the change of coordinates for adapted coordinates.
It is natural to ask what new features will arise for sextupoles. One will expect that the gauge-like
freedom for sextupoles will include a term with ĊµCν

∫ σ
Cρ dσ′.

Having definitions which are coordinate free can be very useful. They make it clear which ob-
jects are coordinate dependent and which are truly geometric. Although the Ellis representation
of multipoles is easy to define in a coordinate free manner, here we have derived a coordinate free
definition of Dixon’s split of the quadrupole into the pure monopole, dipole and quadrupole terms.
In future work, we intend to reproduce these results in coordinates. This will enable us to write
the Dixon components ξµν... in terms of Ellis components ζµν..., and also derive the complicated
relationship between the Dixon components ξµν... for different Nµ. The dynamical equations for
the Ellis quadrupole components were derived (79)-(82). Using this split, one could translate these
into dynamical equations for the Dixon components. This will enable a comparison between the
20 independent components of (reduced) quadrupole stress-energy tensor as described by Dixon, as
discussed in appendix B.

Although spacetime is endowed with both a metric and a connection, there is much research into
which objects can be defined without such structures. In some cases this questions the underlying
physics, asking whether the electromagnetic field is more fundamental than the gravitational field
[36]. In other cases it is useful for examining how an object depends on a metric or a connection.
This is necessary when calculating the result of varying a Lagrangian with respect to the metric. It
is useful therefore, that a general multipole does not require any additional structures beyond those
in a general manifold. This means that one can define multipoles on other manifolds such as tangent
bundles or jet bundles. Such an approach may also give an insight into prescribing constitutive
relations. Of course a connection is required in order to demand the stress-energy distribution be
divergenceless, but there is no requirement that such a connection be Levi-Civita. All the coordinate
free presentation from section 6 does not require a metric, so one can choose a metric compatible
or a non metric compatible connection. We have demanded that the connection is torsion free.
On the whole this is to simplify the equations so that we do not have to write down all the torsion
components and their derivatives. One can reproduce the results with these extra terms and it would
be interesting to see how the results depend on the torsion.
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Appendix

A Details of the proofs

A.1 Proof from introductory sections

Proof number 1: Proof of (6): gravitational waves from a distribution. Fix components µν with re-
spect to the global Cartesian coordinate system and set fε and f to be the components T µνε and
(T (1))µν . Then fε is a family of regular scalars with support in a region U about the worldline C and
f is a distribution on the worldline and fε → f weakly. Given a point (t, ~x) not on the worldline and
outside U , let V be the intersection of the backward light cone of (t, ~x) and U . The assumption after
(6) implies V is compact.

Introduce an adapted coordinate system (27) which is adapted for both the worldline and the
backward light cone of the point (t, ~x) and such that za = xa − x′a.

Let χ(z) be a test function which coincides with |z|−1 on V and let ψ(σ) another test function
such that the support of ψ(σ)χ(z) does not include (t, ~x). Then since ψ(σ)χ(z) is a test function

lim
ε→0

∫
I
dσ ψ(σ)

∫
χ(z) fε(σ, z) d3z = lim

ε→0

∫
I

∫
χ(z)ψ(σ) fε(σ, z) d3z dσ =

∫
I

∫
χ(z)ψ(σ) f(σ,z) d3z dσ

=

∫
I
ψ(σ) dσ

∫
χ(z)f(σ,z) d3z .

Since this is true for all appropriate ψ(σ) we have

lim
ε→0

∫
fε(σ, z)

|z|
d3z = lim

ε→0

∫
χ(z)fε(σ,z)d3z =

∫
χ(z)f(σ, z)d3z =

∫
f(σ,z)

|z|
d3z .

Hence (6).

A.2 Proofs about the quadrupole

Proof number 2: Proof of (72): change of coordinates for quadrupole. This is similar to the proof of
(53). Using (68) we have∫

I
ζ̂ µ̂ν̂ρ̂κ̂

(
∂ρ̂ ∂κ̂ φ̂µ̂ν̂

)∣∣
C(σ)

dσ =

∫
R4

T̂ µ̂ν̂ φ̂µ̂ν̂ d
4x̂ =

∫
R4

T µν φµν d
4x =

∫
I
ζµνρκ

(
∂ρ ∂κ φµν

)
dσ

=

∫
I
ζµνρκ ∂ρ ∂κ

(
J µ̂ν̂
µν φ̂µ̂ν̂

)
dσ

=

∫
I
ζµνρκ

(
∂ρ ∂κ

(
J µ̂ν̂
µν

)
φ̂µ̂ν̂ + 2 ∂ρ

(
J µ̂ν̂
µν

)
∂κ φ̂µ̂ν̂ + J µ̂ν̂

µν ∂ρ ∂κ φ̂µ̂ν̂

)
dσ .

Take each of the terms in turn. For the third term we have∫
I
ζµνρκ J µ̂ν̂

µν ∂ρ ∂κ φ̂µ̂ν̂ dσ =

∫
I
ζµνρκ J µ̂ν̂

µν ∂ρ (J κ̂κ ∂κ̂ φ̂µ̂ν̂) dσ

=

∫
I
ζµνρκ J µ̂ν̂

µν

(
(∂ρ J

κ̂
κ ) ∂κ̂ φ̂µ̂ν̂ + J κ̂κ ∂ρ ∂κ̂ φ̂µ̂ν̂

)
dσ

=

∫
I
ζµνρκ J µ̂ν̂

µν (∂ρ J
κ̂
κ ) ∂κ̂ φ̂µ̂ν̂ dσ +

∫
I
ζµνρκ J µ̂ν̂

µν J ρ̂ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫
I
ζµνρκ J µ̂ν̂

µν (∂ρ J
κ̂
κ )

(∫ σ
ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ
′
)
dσ +

∫
I
ζµνρκ J µ̂ν̂

µν J ρ̂ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

= −
∫
I

(∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ′

)
ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ +

∫
I
ζµνρκ J µ̂ν̂

µν J ρ̂ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ .
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For the second term we have∫
I
ζµνρκ ∂ρ

(
J µ̂ν̂
µν

)
∂κ φ̂µ̂ν̂ dσ =

∫
I
ζµνρκ ∂ρ

(
J µ̂ν̂
µν

)
J κ̂κ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫
I
ζµνρκ ∂ρ

(
J µ̂ν̂
µν

)
J κ̂κ

(∫ σ
ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ
′
)
dσ

= −
∫
I

(∫ σ

ζµνρκ ∂ρ
(
J µ̂ν̂
µν

)
J κ̂κ dσ

′
)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ .

For the first term we have∫
I
ζµνρκ ∂ρ ∂κ

(
J µ̂ν̂
µν

)
φ̂µ̂ν̂ dσ =

∫
I
ζµνρκ ∂ρ ∂κ

(
J µ̂ν̂
µν

)(∫ σ
ˆ̇C
ρ̂

∂ρ̂ φ̂µ̂ν̂ dσ
′
)
dσ

= −
∫
I

(∫ σ

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′
)

ˆ̇C
ρ̂

∂ρ̂ φ̂µ̂ν̂ dσ

= −
∫
I

(∫ σ

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′
)

ˆ̇C
ρ̂ (∫ σ

∂ρ̂
ˆ̇C
κ̂

∂κ̂ φ̂µ̂ν̂ dσ
′
)
dσ

=

∫
I

(∫ σ (∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′
)

ˆ̇C
ρ̂

dσ′
)

ˆ̇C
κ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫
I

(
ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′
)
dσ′
)
∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ .

Thus adding these terms together we have∫
I
ζ̂ µ̂ν̂ρ̂κ̂

(
∂ρ̂ ∂κ̂ φ̂µ̂ν̂

)
dσ =

∫
I
ζµνρκ

(
∂ρ ∂κ

(
J µ̂ν̂
µν

)
φ̂µ̂ν̂ + 2 ∂ρ

(
J µ̂ν̂
µν

)
∂κ φ̂µ̂ν̂ + J µ̂ν̂

µν ∂ρ ∂κ φ̂µ̂ν̂

)
dσ

= −
∫
I

(∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ′

)
ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ +

∫
I
ζµνρκ J µ̂ν̂

µν J ρ̂ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

− 2

∫
I

(∫ σ

ζµνρκ ∂ρ
(
J µ̂ν̂
µν

)
J κ̂κ dσ

′
)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

+

∫
I

(
ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′
)
dσ′
)
∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫
I

(
ζµνρκ J µ̂ν̂

µν J ρ̂ρ J
κ̂
κ −

ˆ̇C
ρ̂
∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ′ − 2 ˆ̇C

ρ̂
∫ σ

ζµνρκ ∂ρ
(
J µ̂ν̂
µν

)
J κ̂κ dσ

′

+ ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′
)
dσ′
)
∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ .

Hence (72) follows by symmetrising ρ̂ and κ̂.

Proof number 3: Proof that the change of coordinates (72) is consistent with the gauge-like freedom (71).
First observe that the lower limits in (72) correspond to the gauge-like freedom (71) for ζ̂ µ̂ν̂ρ̂κ̂.

It is necessary to establish that the gauge-like freedom (71) for ζµνρκ when substituted into (72)

does not affect the value of ζ̂ µ̂ν̂ρ̂κ̂. This is achieved by setting ζµνρκ = Mνµ
2 Ċ(ρCκ) + M

µν(ρ
3 Ċκ), i.e.

ζµνρκ is equivalent to zero, and checking that ζ̂ µ̂ν̂ρ̂κ̂ = 0. As they are independent, we can consider
the two terms Mνµ

2 Ċ(ρCκ) and M
µν(ρ
3 Ċκ) separately.
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For the case ζµνρκ = Mνµ
2 Ċ(ρCκ) we have for the fifth term on the right hand side of (72)∫ σ

ˆ̇C
κ̂
∫ σ′

Ċ(ρCκ) ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′ =

∫ σ
ˆ̇C
κ̂
∫ σ′

ĊρCκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′

=

∫ σ
ˆ̇C
κ̂
∫ σ′

Cκ d

dσ′′

(
∂κ J µ̂ν̂

µν

)
dσ′′ dσ′

=

∫ σ
ˆ̇C
κ̂
∫ σ′

d

dσ′′

(
Cκ∂κ J µ̂ν̂

µν

)
dσ′′ dσ′ −

∫ σ
ˆ̇C
κ̂
∫ σ′

Ċκ∂κ J µ̂ν̂
µν dσ

′′ dσ′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J µ̂ν̂
µν dσ′ −

∫ σ
ˆ̇C
κ̂
∫ σ′

d

dσ′′
J µ̂ν̂
µν dσ

′′ dσ′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J µ̂ν̂
µν dσ′ −

∫ σ
ˆ̇C
κ̂

J µ̂ν̂
µν dσ

′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J µ̂ν̂
µν dσ′ −

∫ σ

ĊκJ κ̂κ J µ̂ν̂
µν dσ

′

=

∫ σ

ĊκJ κ̂κC
ρ∂ρ J µ̂ν̂

µν dσ′ − CκJ κ̂κ J µ̂ν̂
µν +

∫ σ

Cκ d

dσ′
(J κ̂κ J µ̂ν̂

µν ) dσ′ .

Since ∫ σ

ĊκCρ J µ̂ν̂
µν ∂ρ J

κ̂
κ dσ

′ =

∫ σ

ĊκCρ J µ̂ν̂
µν ∂κ J

κ̂
ρ dσ

′ =

∫ σ

ĊρCκ J µ̂ν̂
µν ∂ρ J

κ̂
κ dσ

′ ,

while for the second term in (72)∫
I

(
M

µν(ρ
3 Ċκ)

) (
J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J µ̂ν̂

µν ) J κ̂κ

)
dσ′

= 1
2
Mµνρ

3

∫
I
Ċκ
(
J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J µ̂ν̂

µν ) J κ̂κ

)
dσ′ + 1

2
Mµνκ

3

∫
I
Ċρ
(
J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J µ̂ν̂

µν ) J κ̂κ

)
dσ′

= Mµνρ
3

∫
I
Ċκ J κ̂κ (∂ρ J µ̂ν̂

µν ) dσ′ +Mµνκ
3

∫
I
Ċρ
(
J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + ∂ρ (J µ̂ν̂

µν ) J κ̂κ

)
dσ′

= Mµνρ
3

∫
I

ˆ̇C
κ̂

(∂ρ J µ̂ν̂
µν ) dσ′ +Mµνκ

3

∫
I

d

dσ′

(
J µ̂ν̂
µν J

κ̂
κ

)
dσ′

= Mµνρ
3

∫
I

ˆ̇C
κ̂

(∂ρ J µ̂ν̂
µν ) dσ′ +Mµνκ

3 J µ̂ν̂
µν J

κ̂
κ .

Hence when ζµνρκ = M
µν(ρ
3 Ċκ) then ζ̂ µ̂ν̂ρ̂κ̂ = 0.

Proof number 4: Proof that (71) incorporates all the gauge-like freedom. Assume T µν is given. From
(31) we know that the components γµνρκ are unique, i.e. have no gauge-like freedom. Integrating
(78) we have

ζµνρκ → ζµνρκ + σMνµ
2 δρ0 δ

κ
0 +M

µν(κ
3 δ

ρ)
0 ,

which is (71) in adapted coordinates. Hence (71) is incorporates all gauge-like freedom, in adapted
coordinates. Now for a general coordinate system we use (72). We see in the proof 3 in the appendix,
that (72) is consistent with the gauge-like freedom. Thus there is no additional gauge-like freedom
in a general coordinate system.

Proof number 5: Proof of (83)-(85) The coordinate transformation for adapted coordinates. This fol-
lows from substituting (78) into (72).

We set (x0, . . . , x3) = (σ, z1, z2, z3) and (x̂0̂ . . . x̂3̂) = (σ̂, ẑ1̂, ẑ2̂, ẑ2̂) into (72) and use the fact that
ˆ̇C
µ̂

= δµ̂0 . Hence (83) follows directly.
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For (84) we have from (72)

ζ̂ µ̂ν̂ĉ0̂ = ζµνρκ J µ̂ν̂
µν J

ĉ
ρ J

0̂
κ − 1

2
ˆ̇C
ĉ
∫ σ

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

0̂
κ) + 2 ∂ρ (J µ̂ν̂

µν ) J 0̂
κ

)
dσ′

− 1
2

ˆ̇C
0̂
∫ σ

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

ĉ
κ) + 2 ∂ρ (J µ̂ν̂

µν ) J ĉκ

)
dσ′

+ 1
2

ˆ̇C
0̂
∫ σ

ˆ̇C
ĉ
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′ + 1

2
ˆ̇C
ĉ
∫ σ

ˆ̇C
0̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(
J µ̂ν̂
µν

)
dσ′′ dσ′

= ζµνρκ J µ̂ν̂
µν J

ĉ
ρ J

0̂
κ − 1

2

∫ σ

ζµνρκ
(
J µ̂ν̂
µν (∂ρ J

ĉ
κ) + 2 ∂ρ (J µ̂ν̂

µν ) J ĉκ

)
dσ′ .

Thus from (78)

γ̂µ̂ν̂ĉ0̂ =
˙̂
ζ µ̂ν̂ĉ0̂ = (ζµνρκ J µ̂ν̂

µν J
ĉ
ρ J

0̂
κ )̇− 1

2
ζµνρκ

(
J µ̂ν̂
µν J

ĉ
ρκ + 2 ∂ρ (J µ̂ν̂

µν ) J ĉκ
)

= (ζµν00 J µ̂ν̂
µν J

ĉ
0 J

0̂
0 )̇ + (ζµνc0 J µ̂ν̂

µν J
ĉ
c J

0̂
0 )̇ + (ζµν0c J µ̂ν̂

µν J
ĉ
0 J

0̂
c )̇ + (ζµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇

− 1
2
ζµν00

(
J µ̂ν̂
µν J

ĉ
00 + 2 ∂0 (J µ̂ν̂

µν ) J ĉ0
)
− 1

2
ζµνc0

(
J µ̂ν̂
µν J

ĉ
c0 + 2 ∂c (J µ̂ν̂

µν ) J ĉ0
)

− 1
2
ζµνc0

(
J µ̂ν̂
µν J

ĉ
c0 + 2 ∂0 (J µ̂ν̂

µν ) J ĉc
)
− 1

2
ζµνcd

(
J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J µ̂ν̂

µν ) J ĉd
)

= (ζµνc0 J µ̂ν̂
µν J

ĉ
c )̇ + (ζµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇

− ζµνc0
(
J µ̂ν̂
µν J

ĉ
c0 + J̇ µ̂ν̂

µν J
ĉ
c

)
− 1

2
ζµνcd

(
J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J µ̂ν̂

µν ) J ĉd
)

= ζ̇µνc0 J µ̂ν̂
µν J

ĉ
c + (ζµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇− 1

2
ζµνcd

(
J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J µ̂ν̂

µν ) J ĉd
)

= γµνc0 J µ̂ν̂
µν J

ĉ
c + (γµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇− 1

2
γµνcd

(
J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J µ̂ν̂

µν ) J ĉd
)
,

where J µ̂νρ = ∂νJ
µ̂
ρ .

In order to show (85) we have from (72)

ζ̂µν0̂0̂ = (J µ̂ν̂
µν J

0̂
ρ J

0̂
κ) ζµνρκ −

∫ σ (
(∂κJ

0̂
ρ ) J µ̂ν̂µν + J 0̂

ρ ∂κJ
µ̂ν̂
µν + J 0̂

κ ∂ρJ
µ̂ν̂
µν

)
ζµνρκ dσ′

+

∫ σ

dσ′
∫ σ′

∂ρκJ µ̂ν̂
µν ζ

µνρκ dσ′′ ,

where ∂ρκ = ∂ρ∂κ. Hence

γ̂µ̂ν̂0̂0̂ = 1
2

ˆ̈ζ µ̂ν̂0̂0̂

= 1
2

((
(J µ̂ν̂

µν J 0̂
κ J

0̂
ρ ) ζµνρκ

)̈
−
(
((∂κJ

0̂
ρ )J µ̂ν̂

µν + J 0̂
ρ ∂κJ µ̂ν̂

µν + J 0̂
κ ∂ρJ µ̂ν̂

µν )ζµνρκ
)̇

+ ∂ρκJ µ̂ν̂
µν ζ

µνρκ
)
.

(149)
It is important to establish that all the ζµνρκ on the right hand side of (149) can be replaced
by the corresponding γµνρκ without using integrals. However since from (78) γµν00 = 1

2
ζ̈µν00 and

γµνa0 = ζ̇µνa0 we need to expand (149) to confirm that no terms ζµν00, ζ̇µν00 or ζµνa0 exist on the
right hand side.
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γ̂µ̂ν̂0̂0̂ = 1
2

(
(J µ̂ν̂

µν J 0̂
κ J

0̂
ρ ) ζµνρκ

)̈
−
((

1
2
J 0̂
ρκ J µ̂ν̂

µν + J 0̂
κ ∂ρJ µ̂ν̂

µν

)
ζµνρκ

)̇
+ (1

2
∂ρκJ µ̂ν̂

µν )ζµνρκ

= 1
2

(
(J µ̂ν̂

µν J 0̂
0 J

0̂
0 ) ζµν00

)̈
+
(

(J µ̂ν̂
µν J 0̂

c J
0̂
0 ) ζµνc0

)̈
+ 1

2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) ζµνcd

)̈
−
((

1
2
J 0̂
00 J µ̂ν̂

µν + J 0̂
0 ∂0J µ̂ν̂

µν

)
ζµν00

)̇
−
((
J 0̂
0c J µ̂ν̂

µν + J 0̂
c ∂0J µ̂ν̂

µν + J 0̂
0 ∂cJ µ̂ν̂

µν

)
ζµνc0

)̇
−
((

1
2
J 0̂
cd J µ̂ν̂

µν + J 0̂
c ∂dJ µ̂ν̂

µν

)
ζµνcd

)̇
+ (1

2
∂00J µ̂ν̂

µν ) ζµν00 + (∂0cJ µ̂ν̂
µν ) ζµνc0 + (1

2
∂cdJ µ̂ν̂

µν ) ζµνcd

= 1
2
(J µ̂ν̂

µν ζ
µν00)̈ +

(
(J µ̂ν̂

µν J 0̂
c ζ

µνc0
)̈

+ 1
2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) ζµνcd

)̈
−
(
J̇ µ̂ν̂
µν ζ

µν00
)̇

−
((
J 0̂
0c J µ̂ν̂

µν + J 0̂
c J̇ µ̂ν̂

µν + ∂cJ µ̂ν̂
µν

)
ζµνc0

)̇
−
((

1
2
J 0̂
cd J µ̂ν̂

µν + J 0̂
d ∂cJ µ̂ν̂

µν

)
ζµνcd

)̇
+ 1

2
J̈ µ̂ν̂
µν ζ

µν00 + (∂cJ̇ µ̂ν̂
µν ) ζµνc0 + (1

2
∂cdJ µ̂ν̂

µν ) ζµνcd

= 1
2
J̈ µ̂ν̂
µν ζ

µν00 + J̇ µ̂ν̂
µν ζ̇

µν00 + 1
2
J µ̂ν̂
µν ζ̈

µν00

+ J̈ µ̂ν̂
µν J 0̂

c ζ
µνc0 + J µ̂ν̂

µν J 0̂
c00 ζ

µνc0 + J µ̂ν̂
µν J 0̂

c ζ̈
µνc0 + 2J̇ µ̂ν̂

µν J 0̂
c0 ζ

µνc0 + 2J̇ µ̂ν̂
µν J 0̂

c ζ̇
µνc0 + 2J µ̂ν̂

µν J 0̂
c0 ζ̇

µνc0

+ 1
2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) ζµνcd

)̈
− J̈ µ̂ν̂

µν ζ
µν00 − J̇ µ̂ν̂

µν ζ̇
µν00

−
(
J 0̂
00c J µ̂ν̂

µν + 2J 0̂
0c J̇ µ̂ν̂

µν + J 0̂
c J̈ µ̂ν̂

µν + ∂0cJ µ̂ν̂
µν

)
ζµνc0 −

(
J 0̂
0c J µ̂ν̂

µν + J 0̂
c J̇ µ̂ν̂

µν + ∂cJ µ̂ν̂
µν

)
ζ̇µνc0

−
((

1
2
J 0̂
cd J µ̂ν̂

µν + J 0̂
d ∂cJ µ̂ν̂

µν

)
ζµνcd

)̇
+ 1

2
J̈ µ̂ν̂
µν ζ

µν00 + (∂cJ̇ µ̂ν̂
µν ) ζµνc0 + (1

2
∂cdJ µ̂ν̂

µν ) ζµνcd

= 1
2
J µ̂ν̂
µν ζ̈

µν00 + J µ̂ν̂
µν J 0̂

c ζ̈
µνc0 + 2J̇ µ̂ν̂

µν J 0̂
c ζ̇

µνc0 + 2J µ̂ν̂
µν J 0̂

c0 ζ̇
µνc0 + 1

2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) ζµνcd

)̈
−
(
J 0̂
0c J µ̂ν̂

µν + J 0̂
c J̇ µ̂ν̂

µν + ∂cJ µ̂ν̂
µν

)
ζ̇µνc0 −

((
1
2
J 0̂
cd J µ̂ν̂

µν + J 0̂
d ∂cJ µ̂ν̂

µν

)
ζµνcd

)̇
+ (1

2
∂cdJ µ̂ν̂

µν ) ζµνcd

= J µ̂ν̂
µν γ

µν00 + J µ̂ν̂
µν J

0̂
c γ̇

µνa0 +
(
(J µ̂ν̂

µν J 0̂
c )̇− ∂cJ µ̂ν̂

µν

)
γµνc0

+ 1
2

(
(J µ̂ν̂

µν J 0̂
d J

0̂
c ) γµνcd

)̈
−
((

1
2
J 0̂
cd J µ̂ν̂

µν + J 0̂
d ∂cJ µ̂ν̂

µν

)
γµνcd

)̇
+ (1

2
∂cdJ µ̂ν̂

µν ) γµνcd .

B Dixon’s independent components

In the following we refer to [12] as [II] and [13] as [III].
It may appear that the 20 free components in this article directly correspond to the 20 independent

components of Jµνρκ given in [III(1.37)]. This follows because as well as both having 20 quadrupole
components, they both arise from the divergenceless condition (10).

We can relate the Dixon moments to our moments as follows. In [III(10.17)] we see the term
I[Φλµ] when we expand out the right hand side. To unpick this we use in turn [III(10.9)], [III(10.6)],
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[II(4.5)], [II(7.4)] to give

I[Φλµ] = (2π)−4
∫
I
dσ

∫
TC(σ)

Dk Ĩλµ(σ, k) Φ̃λµ(C(σ), k)

= (2π)−4
∫
I
dσ

∫
TC(σ)

Dk

∞∑
n=0

(−i)n

n!
kκ1 · · · kκnIκ1···κnλµ(σ) Φ̃λµ(C(σ), k)

= (2π)−4
N∑
n=0

1

n!

∫
I
dσIκ1···κnλµ(σ)∇(κ1...κn) φαβ

+ (2π)−4
∫
I
dσ

∫
TC(σ)

Dk
∞∑

n=N+1

(−i)n

n!
kκ1 · · · kκnIκ1···κnλµ(σ) Φ̃λµ(C(σ), k) ,

since from [III(10.17)] Φλµ = ExpAφαβ. Here the moments Iκ1···κnλµ satisfy the symmetry conditions
[III(10.3)], and orthogonality condition [III(10.4)]. Thus the first term in the last expression corre-
sponds to the right hand side of (41) if we set ξλµκ1···κn = (−1)nIκ1···κnλµ. Although the orthogonality
condition does not completely correspond.

For the quadrupole Dixon [III(1.37)] constructs Jρµνκ = 1
4

(
Iρµνκ−Iµρνκ−Iρµκν+Iµρκν

)
. Since this

automatically has the symmetries of the Riemann curvature tensor it has 20 independent components.
Most of these symmetries are imposed because it is contracted with the Riemann curvature tensor
[III(1.28), (1.29)].

The key difference is the imposition of the divergenceless condition. In [III] this is achieved
by putting the divergence operator into the argument of I as seen in the term I[1

2
Λk∇∗{λGκµ}] in

[III(10.16)]. As stated as comment (vii) in [III page 109], this does not lead to any additional
algebraic or differential equations for the Iκ1···κnλµ. It then only affects the dynamics of the dipole
[III(1.28),(1.29)]. By contrast in our treatment we apply the divergence operator directly to the
distribution, and derive the ODEs and free components of the γµνρκ. In addition our free components
do not have these symmetries.

Future work will be to convert the ODEs for γµνρκ into ODEs for the Dixon components ξµνρκ.
The moments tκ1···κnλµ in [III(1.16)] can then be related to ξµνρκ via the squeeze tensors, but with
the coordinates adapted to the hypersurfaces Σ(s) [III Just after (10.20)]. This will enable a direct
comparison between [III] and the results in this article.
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