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Abstract: Coronaviruses (CoVs) are causing a number of human and animal diseases because of 15 
their zoonotic nature such as Middle East respiratory syndrome (MERS), severe acute respiratory 16 
syndrome (SARS) and coronavirus disease 2019 (COVID-19). These viruses can infect 17 
respiratory, gastrointestinal, hepatic and central nervous systems of human, livestock, birds, bat, 18 
mouse, and many wild animals. The severe acute respiratory syndrome coronavirus 2 (SARS-19 
CoV-2) is a newly emerging respiratory virus and is causing CoVID-19 with high morbidity and 20 
considerable mortality. All CoVs belong to the order Nidovirales, family Coronaviridae, are 21 
enveloped positive-sense RNA viruses, characterised by club-like spikes on their surfaces and 22 
large RNA genome with a distinctive replication strategy. Coronavirus have the largest RNA 23 
genomes (~26–32 kilobases) and their expansion was likely enabled by acquiring enzyme 24 
functions that counter the commonly high error frequency of viral RNA polymerases. Non-25 
structural proteins (nsp) 7-16 are cleaved from two large replicase polyproteins and guide the 26 
replication and processing of coronavirus RNA. Coronavirus replicase has more or less universal 27 
activities, such as RNA polymerase (nsp 12) and helicase (nsp 13), as well as a variety of unusual 28 
or even special mRNA capping (nsp 14, nsp 16) and fidelity regulation (nsp 14) domains. Besides 29 
that, several smaller subunits (nsp 7– nsp 10) serve as essential cofactors for these enzymes and 30 
contribute to the emerging “nsp interactome.” In spite of the significant progress in studying 31 
coronaviruses structural and functional properties, there is an urgent need to understand the 32 
coronaviruses evolutionary success that will be helpful to develop enhanced control strategies. 33 
Therefore, it is crucial to understand the structure, function, and interactions of coronaviruses RNA 34 
synthesizing machinery and their replication strategies. 35 
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1. Introduction 37 

Coronaviruses (CoVs) are major threats to humans and vertebrate species. They can infect 38 
human, livestock, birds, bat, mouse and many other wild animals with the respiratory, 39 
gastrointestinal, hepatic and central nervous system infections [1-3]. The current classification of 40 
coronaviruses recognizes 39 species in 27 subgenera, five genera and two subfamilies that belong 41 
to the family Coronaviridae, suborder Cornidovirineae, order Nidovirales and realm Riboviria 42 
[4,5]. Alternatively, coronaviruses are divided into four genera on the basis of genetic and 43 
serologic properties; Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and 44 
Deltacoronavirus in the subfamily Coronavirinae [6-9]. While CoVs can infect many hosts [10], 45 
the coronaviruses infecting humans are all belonging to ether alpha- or beta- CoVs. The outbreaks 46 
of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 47 
coronavirus disease 2019 (COVID-19) have shown the potential for transmission of newly 48 
emerging CoVs from animal to human and human to human [5,11-12]. The SARS-CoV proteins 49 
consist of two large polyproteins: ORF1a and ORF1ab (which cleavage proteolytically to shape 50 
16 non-structural proteins) (Table 1). While accessory proteins have been found to be dispensable 51 
for in vitro viral replication, others have been shown to play a significant role in in vivo virus-host 52 
interactions [13]. Comparatively, the SARS-CoV-2 lacks the hemagglutinin esterase gene found 53 
in other human coronavirus (hCoV) HKU1, a lineage A betacoronavirus [14]. It has been 54 
suggested that spike protein, envelope protein, membrane protein, nucleocapsid protein, 3CL 55 
protease, papain such as protease, RNA polymerase [16], and helicase protein are viable antiviral 56 
drug targets. The CoV outbreaks are highly likely to be unavoidable in the future due to climate 57 
and ecology changes, and increased human-animal interactions. Thus, the development of 58 
effective therapies and vaccines against CoVs is urgently needed.  59 
 60 

2. Virion Properties and Genome organization (with main focus on the nsps) 61 
Coronaviruses are enveloped, 80-220 nm in size, pleomorphic but mostly spherical, and carry 62 

characteristic and large (20 nm long) club-shaped spikes (trimers spike protein). The combination 63 
of nucleocapsid (N) protein with the genomic RNA forms the helical nucleocapsid that is 64 
surrounded by a viral membrane (M) proteins which are composed of icosahedral structures. Some 65 
coronaviruses often have a second peripheral short (5 nm long) spikes (hemagglutinin-esterase 66 
(HE) protein), which is a peculiar feature of certain betacoronaviruses. Coronaviruses genome is 67 
linear positive-sense, infectious, single-stranded RNA 5’ capped and 3’ polyadenylated, the 68 
biggest known non-segmented RNA viral genomes (27.6- 31 kb). However, the overall 69 
organization of the genomes is similar [6]. Maintaining such a large CoV genome may be linked 70 
to the unique features of the CoV replication transcription complex (RTC), which contains many 71 
RNA processing enzymes such as the non-structural protein 14’s (nsp14's) 3′‐5′ exoribonuclease. 72 
The 3′‐5′ exoribonuclease is unique to CoVs in all RNA viruses and is likely to provide an RTC 73 
proofreading function [16-18]. The major virion proteins include a nucleocapsid protein (N, 50-60 74 
kDa) and several envelope proteins; the spike glycoprotein trimer (S, 180- 220 kDa per monomer), 75 
a triple-spanning transmembrane protein (M, 23-35 kDa) and a minor transmembrane protein (E, 76 



9-12 kDa), which together with the M protein is essential for coronavirus virion assembly and 77 
budding. Cellular immune responses are generated primarily against the S and N proteins. The 5′-78 
terminal two thirds of the genome include two open reading frames (ORFs), 1a and 1b, that 79 
together encode all non-structural proteins for the formation of the RTC, whereas the 3′- proximal 80 
third encodes the structural and accessory proteins [19]. ORF1a encodes polyprotein (pp) 1a 81 
containing nsp1-11, while ORF1a and ORF1b together produce pp1ab containing nsp1-16 through 82 
a (-1) ribosomal frameshift overreading the stop codon of ORF1a [20]. In general, SARS-CoV-2 83 
has a total of 11 genes with 11 open reading frames (ORFs); ORF1ab, ORF2 (Spike protein), 84 
ORF3a, ORF4 (Envelope protein), ORF5 (Membrane protein), ORF6, ORF7a, ORF7b, ORF8, 85 
ORF9 (Nucleocapsid protein), and ORF10 [14]. Coronaviruses are unique among Nidoviruses 86 
because their genomes encode variable numbers of accessory proteins (four or five in majority; 87 
eight in the SARS coronaviruses) that are valueless during virus replication in vitro, but they 88 
improve the virus fitness in vivo. 89 
 90 
3. Non-Structural Proteins (nsps) of Coronaviruses 91 
The enzymatic activities and functional domains of CoVs nsps are expected to be conserved 92 
between the various genera of CoVs, suggesting their significance in viral replication [6,21]. Apart 93 
from these nsps with established functions, there are other nsps whose biological functions and 94 
roles remain to be explored throughout the CoV life cycle. This review considers comprehensive 95 
analysis of the nsp of CoVs and to critically assess their functionalities among well-known 96 
coronaviruses.  97 
 98 

3.1. Coronavirus nsp1 99 

CoV nsp1's cumulative knowledge has confirmed the symmetric features and disparate 100 
mechanisms among various CoVs to block expression of the host gene and antagonise innate 101 
immune responses that can provide perspective into the expanding repertoire of new viral immune 102 
evasion strategies. Furthermore, despite the lack of obvious primary sequence homology within 103 
CoVs, there was also a significant correlation between the nsp1 of various CoVs belonging to 104 
different genera, inferring their evolutionary linkage and role in the adaptation of CoVs to different 105 
host species. Previous studies reported that the nsp1 proteins of SARS-CoV can promote host 106 
mRNA degradation, suppress host gene expression [22-24] and block host translational machinery 107 
function by binding to the ribosome small subunit [22]. Likewise, SARS-CoV nsp1 has a novel b-108 
barrel structure mixed with helixes based on Nuclear magnetic resonance (NMR) analysis [25]. 109 
These studies suggest that coronavirus nsp1 is a major virulence and pathogenicity factor 110 
[22,23,26]. Overall, CoV nsp1, with its intriguing properties and characteristics, is an exciting 111 
avenue for future research that could potentially lead to the discovery of novel players and 112 
pathways of host gene regulation. The fact that nsp1 of various CoVs share a similar biological 113 
role to inhibit host gene expression using different modes of action has also posed some important 114 



questions about the effect of these functions and divergent mechanisms on the virulence and 115 
pathogenesis of emerging human CoVs. 116 

 117 
3.2. Coronavirus nsp2 118 

The nsp2 protein is an interesting target for genetic studies, as it has been reported that 119 
engineered mutations that eliminate cleavage at CS1 between nsp1 and nsp2 produce infectious 120 
virus [27], suggesting that nsp2 either maintains role in un-cleaved form or has a viral replication 121 
feature that can be dispensed with. Still, it is not known whether nsp2, as a mature protein or as a 122 
component of the polyprotein coronavirus, is essential for viral replication. Reverse genetic 123 
deletion of the MHV and SARS-CoV polyprotein nsp2 domains enabled the recovery of infectious 124 
mutants with growth deficiencies and RNA synthesis, and demonstrated intact polyprotein 125 
processing, including cleavage at engineered chimeric nsp1/3 cleavage sites. SARS-CoV holds the 126 
most similar general structure and sizes of nsps 1, 2, and 3 to betacoronaviruses [6,21]. However, 127 
there are also major variations between the MHV and SARS-CoV nsps 1, 2, and 3. The 128 
identification or resemblance between MHV and SARS-CoV nsp1 and nsp2 is very minimal 129 
[28,29]. Previous studies showed that nsp2 and nsp3 potentially originate as precursor proteins 130 
until they are transformed into mature nsp2 and nsp3 products. Because of the large size of this 131 
nsp2-3 precursor, previous studies identified it as 290-kDa [30] or 250-kDa [31] based on sodium 132 
dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE). In addition, subsequent 133 
studies showed that the MHV and SARS-CoV replicase polyproteins nsp2 domains are not 134 
required for viral replication [32]. These findings indicate that the coronavirus polyprotein has 135 
significant structural and functional flexibility and that ORF1 encodes at least one and perhaps 136 
number of protein domains, which may be devoted to functions other than those of the product 137 
[32]. Reverse genetics studies were carried out to establish mutant MHV and SARS-CoV nsp2 138 
knockout, the rescue viruses did not replicate, yet processed other replicase proteins correctly [32]. 139 
These findings put the basis for studies of replicase protein involvement in host pathogenesis, 140 
virus-cell interactions, and virus complementation and approaches to the development of stably 141 
attenuated animal and human coronaviruses [32]. 142 

 143 
3.3. Coronavirus nsp3 144 

Nsp3 is the biggest multi-domain protein produced by coronaviruses, with different domain 145 
structure and organization in CoV genera. The individual coronaviruses may have 10 to 16 146 
domains, 8 domains and two conserved transmembrane regions [33]. The nsp3 multidomain plays 147 
various roles in CoV infection; it releases nsp1, nsp2, and itself from the polyproteins and binds 148 
to form the replication / transcription complex with other viral nsps as well as RNA. Nsp3 acts on 149 
host protein post-translation modifications to antagonise the host's innate immune response (by 150 
de-MARylation, de-PARylation (possibly), deubiquitination, or deISGylation). Recent studies 151 
have shown that the biochemical characterization of SARS-CoV-2's deubiquitinating and 152 



deISGylating behaviours are closer to that of its counterpart in MERS-CoV than that of SARS-153 
CoV. SARS-CoV-2 papain-like protease (PLpro) deISGylating activity appeared to be the most 154 
dominant of its diverse proteolytic functions and appeared to be species-specific [34]. 155 
Additionally, in host cells, nsp3 itself is changed, namely by N-glycosylation of the domain 3Ecto. 156 
Nsp3 may also interact with host proteins (such as RCHY1) to promote survival of viruses. Nsp3 157 
was also identified as the largest non-structural protein of CoVs based on a high rate of positively 158 
selected mutation sites as the major selective target for driving evolution in CoVs [35]. The papain-159 
like protease domain(s) releases nsp3 from polyprotein, which is (are) part of nsp3 itself [36]. Nsp3 160 
plays major roles in the CoV life cycle; it can act as a scaffold protein to interact with itself and to 161 
bind to other viral nsps or host proteins [37-40]. Nsp3 is essential for the formation of RTC, which 162 
in association with modified host ER membranes may result in formation of convoluted 163 
membranes (CMs) and double-membrane (DMVs) [41-46]. Speculating why coronaviruses retain 164 
many essential functions in one protein is interesting, while nsp3 protein shows high-rate genetic 165 
diversity during CoV evolution. Ultimately, increased research into the structure and function of 166 
nsp3 is required to get a more complete understanding of this protein. 167 

 168 
3.4. Coronavirus nsp4 169 

Nsp4 is a transmembrane protein, 500 amino acid residues in length, and is the only protein 170 
of the viral polyprotein produced by both PLpro and Mpro after processing. nsp4 has four 171 
transmembrane helices and a conserved cytosolic C-terminal domain throughout the Nidovirales 172 
[47], but only the nsp4 part of the C-terminal appears to be retained in the Nidovirales however, 173 
deletion of the C-terminal domain resulted in slightly reduction in growth [48]. It was also shown 174 
that nsp4 interacts with nsp2 in a two-hybrid yeast system [37] and in cells with other nsp4 175 
molecules [45]. SARS-CoV nsp4 is an important component for viral double-membrane vesicle 176 
formation [43]. Studies on intracellular expression have shown a biological interaction between 177 
the carboxyl-terminal region of MHV (betacoronavirus) nsp3 and nsp4 [45], and full-length co-178 
expression of SARS-CoV nsp3 and nsp4 results in comprehensive membrane pairing, where the 179 
paired membranes are kept at the same distance as the authentic DMVs [43]. 180 

 181 

3.5. Coronavirus nsp5 182 

Coronavirus nsp5 is one of three parts of the coronavirus replicase machinery, together with 183 
the nsp12 polymerase and nsp13 helicase regions, that is preserved all over the Nidovirales [49]. 184 
nsp5 is regarded as the main protease (Mpro), a protease similar to chymotrypsin related to the 185 
enteroviral 3C protease. It belongs to the endopeptidase’s family C30 and is responsible for 186 
cleavage within polyprotein 1a/1ab at 11 sequence specific sites. The resultant "mature" protein 187 
products (nsp4- 16) are assembled into replication complex components [36,50]. Nsp5 can be 188 
divided into three domains based on both structure and sequence characteristics that are conserved 189 
in all coronaviruses, Nidovirales and several other RNA viruses that share a similar processing 190 



scheme for polyproteins; a two-domain active region (I and II) and a third domain (III) play a role 191 
in nsp5 dimerization [36]. Previous study based on interactome analysis revealed that nsp12 and 192 
nsp14 can interact directly with nsp5 [51], and nsp14 and 16 can also interact indirectly with nsp5 193 
as part of nsp10-14-16 complex [38,51-53]. Overall, this indicates that nsp5 plays a critical role in 194 
both RNA replication and in the formation of DMV, possibly by releasing nsp4 and nsp6 195 
proteolytically. To date, nsp3, nsp5, nsp10, nsp12, nsp14 and nsp16 are the only proteins where 196 
temperature sensitive mutations have been discovered [54-56]. Nsp10 can interact directly with 197 
nsp5 [38], and paradoxically, both nsp10 and nsp3 mutations inhibit Mpro activity [56,57].  198 

 199 
3.6. Coronavirus nsp6 200 

While most nsp6 coronavirus proteins are predicted to contain seven transmembrane regions 201 
by TMHMM2.0 [58], only six of these functions as membrane-spanning helices. Nsp6 has six 202 
regions of transmembrane, with both termini on the cytosolic side of the membrane [59]. Nsp6 203 
over-expression disturbs intracellular membrane trafficking [59], resulting in an accumulation of 204 
single membrane vesicles around the complex of microtubules [43]. It has also been demonstrated 205 
that SARS-CoV nsp6 interacts with nsp2, nsp8, nsp9 and accessory protein 9b by two-hybrid yeast 206 
assays [37]. It is interesting that both the 4Endo and 6Endo domains are just as well conserved in 207 
coronaviruses, as is the Mpro catalytic domain. Mapping the structural variations of the SARS-208 
CoV-2 genome and selection trends, there were two mutations affecting Non-Structural Protein 6 209 
(nsp6) and Open Reading Frame10 (ORF 10) and associated with virus-host interaction, mainly 210 
cellular autophagy induced by viruses [61]. 211 

3.7. Coronavirus nsp7  212 

The SARS-CoV (betacoronavirus) nsp7 protein structure (83-amino acid) was determined 213 
using both NMR [62] and X-ray crystallography with a hexadecameric supercomplex consisting 214 
of recombinant nsp7 and nsp8 [63]. Reverse-genetic studies aimed at particular residues within 215 
SARS-CoV nsp7 verified the significance of this protein for the virus replication [64], even though 216 
the effect of single point mutations was less than predicted based on the in vitro biochemical 217 
characterization of the RNA-binding properties of protein complexes containing nsp7. The nsp7-218 
fold includes four helices with quiet different position and spatial orientation, suggesting that the 219 
protein’s configuration is mainly affected by the interaction with nsp8 [65].  220 

3.8. Coronavirus nsp8 and nsp7– nsp8 Complexes   221 

Initially, the 200-amino-acid-long nsp8 subunit took centre stage due to two reports, the first 222 
describing a fascinating hexadecameric structure consisting of eight copies of each of nsp7 and 223 
nsp8 [63], and the second revealing a nsp8-specific "secondary" RNA polymerase activity [66] 224 
involved in the CoV RNA synthesis process. Although the structures of feline coronavirus (FCoV; 225 
alphacoronavirus 1) nsp7 and nsp8 were found to mimic their SARS-CoV (betacoronavirus) 226 
counterparts, two copies of nsp7 and one copy of nsp8 forming a heterotrimer were found to be 227 



assembled into a very different higher-order complex [67]. SARS-CoV nsp8 was found to adopt 228 
two different conformations inside the nsp7– nsp8 hexadecamer. The phylogenetic relationship 229 
and similarity percentage of SARS-CoV-2 in relation with other human coronaviruses is shown in 230 
Fig.  1a and 1b, respectively. These have been named "golf club" and "bent shaft golf club" [63], 231 
with the golf club's globular head considered a new fold. Biochemistry and reverse genetics studies 232 
pointed to an important role in RNA synthesis for SARS-CoV nsp8 residues K58, P183, and R190 233 
(Fig.  1c), replacing which was lethal to SARS-CoV whereas P183 and R190 residues were 234 
presumed to be involved in interactions with nsp12, while K58 may be critical for interactions 235 
with nsp8–RNA [64]. The amino acid sequence alignment for nsp8 of SARS-CoV-2 compared to 236 
other human coronaviruses is shown in Fig.  1d. It has been reported that SARS-CoV nsp8 is an 237 
interaction partner of many other viral proteins (including nsp2, nsp3 and nsp5 to nsp16) based on 238 
yeast two-hybrid and glutathione S-transferase (GST) pull-down assays, although most of these 239 
interactions remain to be verified in the infected cell [68]. 240 

3.9. Coronavirus nsp9  241 

CoV nsp9 subunit is the second replicase cleavage product after nsp5 based on obtaining 242 
crystal structures, is approximately 110 amino acids long [69,70].  The dimerization of the nsp9's 243 
biologically active form may be capable of binding nucleic acids in a non-sequential manner, with 244 
an apparent preference for single-stranded RNA [69- 71]. The nsp9 protein function still so far 245 
unknown however, site directed mutagenesis studies within nsp9 revealed that point mutations 246 
within nsp9 can block CoV replication [72,73] that suppose its role during viral pathogenesis.  247 
Mutations in nsp9 were also found to lead to increase the pathogenesis of SARS-CoV 248 
(betacoronavirus) in mice model infected with a mouse-adapted strain of virus (MA-15) [74]. 249 
Further studies are required to describe how the nsp9 dimerization and mutagenesis may affect 250 
interactions with other replicase subunits, such as nsp8 and nsp12-RdRp. Nsp8 and nsp12 have 251 
been identified as interaction partners for nsp9 [68,70,75] and colocalize on membranous 252 
replication organelles with nsp9 [76]. 253 

3.10. Coronavirus nsp10 254 

The nsp10 subunit protein (139 residues; SARS-CoV) is one of the most conserved CoV 255 
proteins and is believed to serve as an essential multifunctional replication factor. Nsp10 was 256 
shown to be dimerized, as well as interact with nsp1, nsp7, nsp14, and nsp16 using yeast two-257 
hybrid assay. These interactions were confirmed by coimmunoprecipitation and/or GST pull-down 258 
assays [37,38,51,77]. Nsp10 's interactions with nsp14 and nsp16 and possibly other subunits of 259 
the viral replication complex can be a target for the development of antiviral compounds against 260 
pathogenic coronaviruses [78]. The significant role of nsp10 in replication was asserted from the 261 
MHV (betacoronavirus) temperature-sensitive mutant phenotype in which a nsp10 mutation was 262 
responsible for a deficiency in the synthesis of minus-strand RNA [54]. Moreover, the protein was 263 
involved in the regulation of polyprotein processing [57]. Based on biochemical and structural 264 
tests, nsp10 protein has been found to bind two strongly affinated Zn2+ ions, indicating the presence 265 



of two zinc finger motifs [79].  Similarly, nsp10 exhibited a weak affinity for single- and double-266 
stranded RNA and DNA, proposing that protein might act as part of a larger RNA-binding 267 
complex. Nsp10 interacts with nsp14 and nsp16 and controls their respective activities ExoN and 268 
ribose-2 '-O-MTase (2'-O-MTase) based on the recent biochemical studies [52,80]. 269 

3.11. Coronavirus nsp11 270 

Inside the polyprotein, coronavirus nsp10 is accompanied by a short peptide of highly variable 271 
sequence mapping the genomic RNA region where the ribosomal frameshift signal leading to the 272 
replicase enzyme cluster being translated into open reading frame 1b is located. Depending on the 273 
CoV species, nsp11 consists of 13–23 residues. In SARS-CoV (betacoronavirus), nsp11 is a 13-274 
residue peptide which is very small cleavage product processed from the C-terminus of polyprotein 275 
1a (pp1a) at the nsp10/11junction, however processing of nsp11 has not been demonstrated in 276 
infected cells. The structure of the un-cleaved nsp10–11 polypeptide showed some differences in 277 
oligomerization and crystal packing, but little difference in the core nsp10 structure [81]. Thus, 278 
nsp11 more likely forms part of an essential translation reading frame shift mechanism and is 279 
unlikely to significantly influence the function of nsp10. The N-terminal sequence of nsp11 280 
(encoded between the nsp10/11 junction and the ORF1a/1b frameshift site) in the pp1ab frameshift 281 
component is equivalent to the N-terminal portion of nsp12 subunit. 282 

3.12. Coronavirus nsp12 283 

Nsp12 has at least two domains, the recently described, "nidovirus-wide conserved domain 284 
with nucleotidyl transferase activity" (nidovirus RdRp-associated nucleotidyltransferase 285 
(NiRAN)) [82] and the canonical RdRp domain C-terminal [83]. The nsp12-coding sequence 286 
contains the ribosomal frameshift site ORF1a/1b, and a programmed -1 frameshifting event drives 287 
the translation of ORF1b to produce the polyprotein pp1ab that contains nsp12. CoVs' nsp12-RdRp 288 
is a primary drug target, which can be inhibited within the host cell without any toxic side effects. 289 
Nucleoside analogues are an important class of antiviral drug candidates able to target the viral 290 
RdRps but attempts to use them to inhibit CoV replication have so far not been very successful 291 
[1,84]. Ribavirin, a guanosine analogue with a wide range of antiviral activity commonly used 292 
against various RNA viruses due to its mechanism in the induction of lethal mutagenesis by 293 
increasing the RdRp error rate, inhibition of viral mRNA capping and reduction of viral RNA 294 
synthesis by cellular enzyme inhibition (inosine monophosphate dehydrogenase (IMPDH)), which 295 
decreases the availability of intracellular GTP [17,85,86]. In spite of ribavirin was used to treat 296 
small numbers of SARS and MERS infected patients [87], in vitro and vivo studies with different 297 
CoVs and infected cell cultures [84,88-90] established its poor activity and strongly suggested that 298 
ribavirin does not target the CoV RdRp directly or is targeted (itself) by the nsp14-ExoN activity 299 
[17]. It will be important to better understand the structure and function of nsp12-RdRp that will 300 
be helpful to develop new strategies that will reduce the impact of drug resistance-inducing 301 
mutations, which are a common problem when targeting rapidly evolving RNA viruses. 302 

 303 



3.13. Coronavirus nsp13 304 

The CoV genome encodes two replicase polyproteins pp1a and pp1ab to support effective 305 
replication, which is processed proteolytically into 16 non-structural proteins (nsps) [21,91,92] 306 
that assemble into the membrane-associated replication-transcription complexes (RTCs), to drive 307 
viral genome replication and translation. The RNA-dependent RNA polymerase (nsp12) and the 308 
helicase (nsp13) are main components of RTC [28,29,64]. Positive stranded RNA viruses with a 309 
genome greater than 7 kb have been shown to encode helicases [93,94] that are classified into six 310 
super-families (SF1-SF6) and participate in almost every aspect of nucleic acid metabolism [95]. 311 
Whatever their functional diversity, all helicases contain core domains which hydrolyse NTPs and 312 
have accessory domains or inserts of different functions, such as assisting in the catalytic activity 313 
or interacting with other protein partners [93,94]. Bioinformatic analysis revealed that CoV nsp13 314 
belongs to the superfamily SF1, including Rep, UvrD, PcrA, RecD, Pif1, Dda, Upf1-like helicases 315 
and various + RNA virus helicases [83] and exhibits multiple enzymatic activities, which include 316 
hydrolysis of NTPs and dNTPs, unwinding of DNA and RNA duplexes with 5’-3’ directionality 317 
and the RNA 5’-triphosphatase activity [96- 98]. CoV helicase is one of the three most conserved 318 
evolutionary proteins in nidoviruses [99] and is thus an important target for drug development 319 
[100]. Physically, CoV's RNA-dependent RNA polymerase (RdRP, nsp12) might interacts with 320 
nsp13 and improve its relaxing activity [101,102]. In silico prediction for SARS-CoV-2, nsp13 is 321 
about 596 amino acids (located in polyprotein orf1ab). SARS-CoV-2 nsp13's overall structure 322 
adopted a triangular pyramid shape and included five domains similar to SARS and MERS. 323 
Among these, two “RecA-like” domains, 1A (261-441 a.a) and 2A (442-596 a.a), and 1B domain 324 
(150-260 a.a) forming the triangular base, while N-terminal Zinc binding domain (ZBD) (1-99 a.a) 325 
and stalk domain (100-149 a.a), which connects ZBD and 1B domain, are arranged at the apex of 326 
the pyramid [103]. It has shown that small molecules capable of inhibiting the NTPase activity 327 
through interference with ATP binding [103]. The phylogenetic relationship and similarity % of 328 
SARS-CoV-2 nsp13 in relation with other human coronaviruses is shown in Fig.  2a and 2b, 329 
respectively. The SARS-CoV-2 nsp13 identified similar retained active site residues of the NTPase 330 
including Lys288, Ser289, Asp374, Glu375, Gln404 and Arg567 similar to SARS-CoV nsp13 331 
[103] (Fig.  2c). All of these residues were clustered together in the cleft between domain 1A and 332 
2B at the base, while the docking grid was formed by locating bound ADP of crystallised yeast 333 
Upf1 and identifying top hits [103]. 334 

3.14. Coronavirus nsp14 335 

Coronavirus nsp14 plays a crucial role in viral RNA synthesis and has a bifunctional through 336 
its N-terminal exonuclease (ExoN) domain and C-terminal part [6,104]. The N-terminal 337 
exonuclease (ExoN) domain is thought to promote the fidelity of CoV RNA synthesis while the 338 
C-terminal part carries an AdoMet-dependent guanosine N7-MTase activity [6,104]. The 339 
phylogenetic relationship and similarity percentage of SARS-CoV-2 nsp14 compared to other 340 
human coronaviruses is shown in Fig.  3a and 3b, respectively. X-ray structure for nsp14 341 
demonstrated functionally important interactions between the N-terminal (ExoN) and C-terminal 342 



(N7-MTase) domains, with three ExoN α-helices maintaining the core of the N7-MTase substrate-343 
binding pocket [105]. Reverse genetics studies confirmed that the specific role of N7-MTase 344 
activity during virus replication whereas the SARS-CoV N7-MTase has been shown to methylate 345 
5' cap structures sequentially independently using a variety of RNAs and to be active on cap 346 
analogues and GTP [106]. Alanine scanning mutagenesis has identified a number of 10 primary 347 
residues for enzymatic activity within the N7-MTase domain [105]. Similarly, two clusters of 348 
residues essential to MTase activity have been identified; the first cluster (nsp14 residues 331–349 
336) corresponds to the AdoMet-binding site's DXGXPXA motif and correlates to 3H-labeled 350 
AdoMet binding. The second cluster (nsp14 residues 414 and 428) forms a constricted pocket that 351 
holds the cap structure (GpppA) between two β-strands (β1 and β2) and helix 1, placing the 352 
guanine's N7 position close to AdoMet based on the analysis of the X-ray structure of a complex 353 
SARS-CoV nsp10/ nsp14 [107] (Fig.  3c). Drugability of the nsp14 N7-MTase has been explored 354 
using a small set of MTase inhibitors previously documented [52,108,109]. The nsp14 N7-MTase 355 
is an obvious prospect for antiviral strategies, particularly since it demonstrates a variety of 356 
features distinctive from MTases host cell [110].  357 

3.15. Coronavirus non-structural protein 15 (nsp15; endoribonuclease) 358 

Coronavirus non-structural protein 15 (nsp15), a highly conserved portion of nidovirus with 359 
endoribonuclease activity, acts in combination with the viral replication complex to restrict the 360 
access of viral dsRNA to host dsRNA sensors that means nsp15 is not required for viral RNA 361 
synthesis but acts to mediate evasion of host dsRNA sensors [111]. Nsp15 is a key component of 362 
coronavirus pathogenesis that highlighted in nsp15 mutant viruses; CoVs that include a mutation 363 
in nsp15, whether render nsp15 unstable or deactivate endoribonuclease function, enhance the IFN 364 
production dependent on MDA5, and activate host dsRNA sensors. Therefore, mutant nsp15 365 
viruses can elicit cell apoptosis and demonstrate lower macrophage replication [111]. The 366 
phylogenetic relationship and similarity percentage of SARS-CoV-2 nsp15 in relation with other 367 
human coronaviruses is shown in Fig.  4a and 4b, respectively. Functional genomics analysis 368 
showed that nsp15 comprises a cellular endoribonucleases domain with distant similarity. Nsp15, 369 
called NendoU, endoribonuclease is highly preserved among vertebrate nidoviruses 370 
(coronaviruses and arteriviruses) [6]. Structural and functional studies revealed that the SARS-371 
CoV nsp15 create oligomers to cleave RNA molecules with a preference for uridylates at the 3′-372 
end [112-115]. Previous studies reported that coronavirus nsp15 overexpression can antagonise 373 
the innate immune responses, but there was no direct evidence to suggest that in case of viral 374 
infection it can counteracts the innate immunity [116]. 3D crystal structure of the nsp15 of SARS-375 
CoV-2 (PDB ID: 6VWW) and the amino acid sequence alignment for nsp8 of SARS-CoV-2 376 
compared to other human coronaviruses (HCoVs) is shown in Fig.  4d and 4c, respectively. Nsp15 377 
can act as a "gatekeeper" for sequestration of viral dsRNA within complex replication and away 378 
from host dsRNA sensors. Previous reports suggested that nsp15 could be part of a viral RNA 379 
decay pathway due to increased accumulation of viral dsRNA in cells infected with nsp15 mutant 380 
viruses [117]. Further studies are needed to fully elucidate the mechanisms used by nsp15 to 381 



potentially hide or degrade viral RNA and ultimately prevent host dsRNA sensors from activating 382 
and evaluate the nsp15-mediated dsRNA cleavage in the virus infection context. 383 

3.16. Coronavirus nsp16 2′-O-Methyl Transferase 384 

The existence of the 2'-O-methyl transferase (2'-O-MTase) domain in CoV nsp16 was 385 
identified using bioinformatics tools [6,118] that illustrated a model containing a conserved K–D–386 
K–E catalytic tetrad characteristic of AdoMet-dependent 2'-O-MTases and conserved AdoMet-387 
binding site [118]. The FCoV (alphacoronavirus 1) nsp16 protein showed specific interaction with 388 
cap-0-containing RNAs and responsible for the transfer of a methyl group from AdoMet to the 2'-389 
O position of the first N7-methylated substrate nucleotide [119]. The phylogenetic relationship 390 
and similarity % of SARS-CoV2 nsp15 in relation with other human coronaviruses is shown in 391 
Fig.  5a and 5b. The nsp16 amino acid sequence is highly conserved throughout the entire CoV 392 
family and suggests similar structural domains and functional activities that illustrated in the 393 
structural similarities between SARS-CoV and MERS-CoV nsp16/nsp 10 complexes, suggest 394 
mutations that would maintain or modify activity in the viral family, leading to similar phenotypic 395 
mutants [120,121]. Therefore, antiviral therapies that target nsp16/nsp10’s behaviour and function 396 
may also be successful against SARS-CoV and HCoV 229E, as well as emerging viruses such as 397 
MERS-CoV, PEDV [120,121]. RNA-cap methyltransferase (nsp16) may be regarded as key for 398 
antiviral drug development against SARS-CoV-2 [122], while no effective inhibitors or licenced 399 
medicines currently exist that can be used as targets for the production of antivirals. 400 

Surprisingly, the nsp10 residues included in the nsp10/ nsp16 interaction are highly conserved 401 
within the CoV family and it has recently been shown that nsp10 of various CoVs (FCoV, MHV, 402 
SARS-CoV, MERS-CoV) are functionally compatible in stimulating activity of nsp16 2'-O-MTase 403 
[123]. Thereby, compounds or peptides that block such mechanism can have broad-spectrum anti-404 
CoV effects, a hypothesis that has been explored and supported using synthetic peptides that 405 
imitate the nsp10 interface and in vitro suppress nsp16 2'-O-MTase activity [123,124]. Previous 406 
studies stated that deleting the nsp16 coding sequence can ablate RNA synthesis and viral 407 
replication; similar to deleting up stream components (Exonuclease- nsp14 and N-terminal zinc 408 
binding domain endoribonuclease- nsp15) [125]. While the nsp16 exhibited an increased type I 409 
IFN sensitivity as in case of MHV (betacoronavirus) and 229E mutants [126], the SARS-CoV 410 
mutant virus failed to induce further type IFN either in vitro or in vivo [120]. 3D crystal structure 411 
of the nsp16 of SARS-CoV-2 (PDB ID: 6VWW) and the amino acid sequence alignment for nsp8 412 
of SARS-CoV-2 compared to other human coronaviruses (HCoVs) is shown in Fig.  5c and 5d, 413 
respectively. 414 

Similarly, following the nsp16 mutant virus challenge compared to wild type virus; there was no 415 
significant change in the induction magnitude or kinetics of interferon stimulated genes (ISGs) 416 
including IFIT1 and MDA5 [120]. Without functional nsp16, both in vitro and in vivo infections 417 
for SARS-CoV (betacoronavirus), HCoV 229E (alphacoronavirus), and MHV (betacoronavirus)  418 
are significantly attenuated as a result of increasing the viral RNA recognition by host sensor 419 



molecules as well as the effector responses of the IFIT family of ISGs [120]. Identifying these 420 
viral/host interactions allows the development of new therapies against the virus, while also 421 
enhancing the effectiveness of the existing immune response [120]. 422 

4. Conclusions 423 

Accumulated knowledge around CoV nsps' has revealed conserved functions and divergent 424 
mechanisms among various CoVs to block expression of the host gene and antagonise innate 425 
immune responses that provide insight into the expanding repertoire of new immune evasion virus 426 
strategies. Furthermore, given the lack of apparent primary sequence homology between nsps of 427 
CoVs, it is important to highlight the functional similarities between them that will help to 428 
understand their evolutionary association and the adaptation of CoVs to specific host species. 429 
There is no doubt that further characterization of the "nsp interactome" within the CoV-infected 430 
cell will provide more clues about how specific functions are switched on and off or modulated. 431 
Understanding these mechanisms will not only highlight their critical roles in the virus replication 432 
cycle but may also exposed some key druggable targets to propose novel therapeutics.  433 
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Figure legends 887 
 888 
Fig. 1. SARS-CoV-2 nsp8 evolutionary changes in compared to other human coronaviruses. (a) 889 
Phylogenetic tree construction by the neighbour joining method was performed using MEGA X 890 
software, with bootstrap values being calculated from 1000 trees using amino acid sequences of 891 
nsp8 (b) Pairwise identity % plot of nsp8 CoVs amino acid sequences performed using SDT 892 
program, (c) 3D crystal structure of the nsp7- nsp8 complex of SARS-CoV-2 (PDB ID: 6YHU) 893 
and (d) Multiple amino acid sequence alignment for nsp8 of SARS-CoV-2 compared to other 894 
human coronaviruses. 895 
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Fig. 2. SARS-CoV-2 nsp13 evolutionary changes in compared to other human coronaviruses. (a) 904 
Phylogenetic tree construction by the neighbour joining method was performed using MEGA X 905 
software, with bootstrap values being calculated from 1000 trees using amino acid sequences of 906 
nsp13 (b) Pairwise identity % plot of nsp13 CoVs amino acid sequences performed using SDT 907 
program, (c) 3D crystal structure of the nsp13 of SARS-CoV-2 (PDB ID: 6JYT). 908 
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 912 
Fig. 3. SARS-CoV-2 nsp14 evolutionary changes in compared to other human coronaviruses. (a) 913 
Phylogenetic tree construction by the neighbour joining method was performed using MEGA X 914 
software, with bootstrap values being calculated from 1000 trees using amino acid sequences of 915 
nsp14 (b) Pairwise identity % plot of nsp14 CoVs amino acid sequences performed using SDT 916 
program, (c) 3D crystal structure of the nsp14- nsp10 complex of SARS-CoV-2(PDB ID: 5C8U).  917 
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Fig. 4. SARS-CoV-2 nsp15 evolutionary changes in compared to other human coronaviruses. (a) 921 
Phylogenetic tree construction by the neighbour joining method was performed using MEGA X 922 
software, with bootstrap values being calculated from 1000 trees using amino acid sequences of 923 
nsp15, (b) Pairwise identity % plot of nsp15 CoVs amino acid sequences performed using SDT 924 
program, (c) 3D crystal structure and (d) the multiple amino acid sequence alignment for of the 925 
nsp15 of SARS-CoV-2 (PDB ID: 6VWW) compared to other human coronaviruses. 926 
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 Fig. 5. 929 
SARS-CoV-2 nsp16 evolutionary changes in compared to other human coronaviruses. (a) 930 
Phylogenetic tree construction by the neighbour joining method was performed using MEGA X 931 
software, with bootstrap values being calculated from 1000 trees using amino acid sequences of 932 
nsp16, (b) Pairwise identity % plot of nsp16 CoVs amino acid sequences performed using SDT 933 
program and (c) 3D crystal structure of the nsp16 of SARS-CoV-2 (PDB ID: 7BQ7). 934 
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