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Abstract

We consider union-closed set systems with infinite breadth, focusing on three par-
ticular configurations Tmax(E), Tmin(E) and Tort(E). We show that these three con-
figurations are not isolated examples; in any given union-closed set system of infinite
breadth, at least one of these three configurations will occur as a subprojection. This
characterizes those union-closed set systems which have infinite breadth, and is the
first general structural result for such set systems.
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1 Introduction

1.1 Initial definitions

For a given set Ω, a set system on Ω is a subset of the powerset P(Ω). Usually we study
set systems with extra structure; this paper concerns those set systems which satisfy the
following additional property.

Definition 1.1. Let S be a set system on Ω. We say that S is union-closed if a, b ∈
S =⇒ a ∪ b ∈ S.

For such an S, the binary operation (a, b) 7→ a ∪ b makes S into a commutative
semigroup in which every element is idempotent, a so-called (join) semilattice. Hence,
in studying union-closed set systems, we may import concepts from lattice theory.1 One
such lattice-theoretic concept is the notion of breadth.

Definition 1.2. Let S ⊆ P(Ω) be a union-closed set system. The breadth of S, denoted
by br(S), is the smallest n ∈ N with the following property: whenever x1, . . . , xn+1 ∈ S,
there exists j ∈ {1, . . . , n+ 1} such that

n+1⋃
i=1

xi =
⋃
i 6=j

xi

If no such n exists, we say that S has infinite breadth and we put br(S) =∞.

It is easily checked from this definition that if Ω is a non-empty finite set, then
br(P(Ω)) = |Ω|; the lower bound on breadth is demonstrated by considering singleton
subsets of Ω, and the upper bound follows from the pigeonhole principle. The same rea-
soning shows that if Ω is infinite then P(Ω) has infinite breadth.

To date, there has been no attempt to develop any kind of structure theory for union-
closed set systems with infinite breadth. Informally, if S is a union-closed set system with
infinite breadth, then for each n ∈ N there exists a finite subset Fn ⊂ S which is at
least as complex as the powerset of {1, . . . , n}. However, the condition of infinite breadth
gives us no a priori information or constraint on how such Fn fit together. The starting
point for the present paper is the observation that there are three particular set systems,
union-closed with infinite breadth, where the subsets Fn are positioned relative to each
other in a very structured way.

Definition 1.3 (Three key configurations with infinite breadth). Let Γ be a countably
infinite set, and let E denote a partition of Γ into disjoint subsets (En)n≥1 with |En| = n+1
for all n. Let E<n =

⋃
1≤j≤n−1Ej and E>n =

⋃
j≥n+1Ej , with the convention that

E<1 = ∅.
We define the following union-closed set systems on Γ (see Figure 1 for an illustration):

(i) Tmax(E) := {E<n ∪ x : n ∈ N, x ⊆ En, ∅ 6= x};

(ii) Tmin(E) := {E>n ∪ x : n ∈ N, x ⊆ En, ∅ 6= x};

(iii) Tort(E) := {E<n ∪ E>n ∪ x : n ∈ N, x ⊆ En, ∅ 6= x}.

1For instance, it is well known that Frankl’s conjecture on finite union-closed set systems has a lattice-
theoretic reformulation, which has then been solved for certain natural classes of lattices.
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Figure 1: Typical members of Tmax, Tmin, and Tort at level n.

Note that Tmax(E), Tmin(E) and Tort(E) all have infinite breadth. For, if we let
T∗ denote one of these three set systems, then for each n ∈ N we may enumerate En as
{γ1, . . . , γn+1} and then choose x1, . . . , xn+1 ∈ T∗ such that xj∩En = {γj} for 1 ≤ j ≤ n+1,
which shows that br(T∗) > n.

Informally speaking, the main result of our paper implies that these special configura-
tions Tmax(E), Tmin(E) and Tort(E) are not isolated examples, but are unavoidable when
considering union-closed set systems of infinite breadth.

1.2 Statement of the main result

To state our main result precisely, some further notation and terminology is needed.

Definition 1.4 (Subprojections). Given S ⊆ P(Ω) and a non-empty Γ ⊆ Ω, the projection
of S on Γ is defined to be the set system

S 7 Γ := {x ∩ Γ: x ∈ S} ⊆ P(Γ).

If S ′ ⊆ S, then a set system of the form T = S ′ 7 Γ is called a subprojection of S (on Γ).
We denote this by T ≤p S (with the choice of Γ made clear where necessary).

Proposition 1.5. Let S and T be union-closed set systems on Ω with T ≤p S. Then
br(T ) ≤ br(S).

Proof. If S has infinite breadth there is nothing to prove. Suppose S has finite breadth
and let n = br(S). By assumption, there exist S ′ ⊆ S and Γ ⊆ Ω such that T = S ′ 7 Γ.
Given y1, . . . , yn+1 ∈ T , there exist x1, . . . , xn+1 ∈ S ′ ⊆ S such that yi = xi ∩ Γ for all i.
Since br(S) = n, by re-indexing if necessary we may assume that

⋃n+1
i=1 xi =

⋃n
i=1 xi; then⋃n+1

i=1 yi =
⋃n
i=1 yi. This shows that br(T ) ≤ n.

In particular, let S be a union-closed set system and suppose that T∗≤p S, where T∗
denotes one of the three configurations Tmax(E), Tmin(E) or Tort(E) from Definition 1.3.
Then S has infinite breadth, since T∗ does. Our main result is that the converse holds.

Theorem 1.6 (Main result). Let S ⊆ P(Ω) be a union-closed set system with infinite
breadth. Then S has a subprojection equal to either Tmax(E), Tmin(E), or Tort(E). More
precisely, there exist:

• a sequence (En)n≥1 of pairwise disjoint subsets of Ω, satisfying |En| = n+ 1 for all
n ∈ N, and

• a union-closed set system S ′ ⊆ S,
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such that when we put E = (En)n≥1 and Γ =
⋃
n≥1En, the subprojection S ′ 7 Γ is equal

to either Tmax(E), Tmin(E) or Tort(E).

To our knowledge, Theorem 1.6 is the first general structural result for union-closed
set systems of infinite breadth, and most of the paper is devoted to its proof. Note that
while a given S could have more than one of these three configurations as a subprojection,
a little work shows that each of these three cannot contain (a copy of) the other two; so
the list of unavoidable configurations in our theorem is best possible.

Example 1.7 (Two examples as illustrations of Theorem 1.6). Given an infinite set Ω,
let Pfin(Ω) be the set of all finite subsets of Ω and let Pcofin(Ω) be the set of all cofinite
subsets of Ω. Both Pfin(Ω) and Pcofin(Ω) are union-closed, and both have infinite breadth.

Fix a countably infinite subset Γ ⊆ Ω, and let E be a partition of Γ with the properties
described in Definition 1.3. Then Tmax(E) ⊂ Pfin(Γ) ⊆ Pfin(Ω), and thus Tmax(E) is a
subprojection of Pfin(Ω) on Γ. Moreover, if we define two set systems on Ω by

Smin := {x ∪ (Ω \ Γ): x ∈ Tmin(E)} ⊂ Pcofin(Ω),

Sort := {x ∪ (Ω \ Γ): x ∈ Tort(E)} ⊂ Pcofin(Ω),

then Tmin(E) = Smin 7 Γ and Tort(E) = Sort 7 Γ. Thus both Tmin(E) and Tort(E) are
subprojections of Pcofin(Ω) on Γ.

On the other hand, since Pcofin(Ω) 7 Γ = Pcofin(Γ), every subprojection of Pcofin(Ω)
on Γ is contained in Pcofin(Γ). Since every x ∈ Tmax(E) is finite, this shows that Tmax(E) is
not a subprojection of Pcofin(Ω). By similar reasoning, which we leave to the reader, one
can show that neither Tmin(E) nor Tort(E) arise as subprojections of Pfin(Ω).

1.3 Some context and connections

1.3.1 Relation to existing results

Extending previous results of the authors. Let S ⊆ Pfin(Ω) be union-closed with infinite
breadth. An earlier combinatorial result of the authors (see [CGP20+, Proposition 4.10]),
when translated into the terminology of the present paper, states that S has a subprojec-
tion of the form Tmax(E). This result becomes an easy consequence of Theorem 1.6 and
the fact that, as observed at the end of Example 1.7, neither Tmin(E) nor Tort(E) can arise
as subprojections of S. As we shall see, the proof of Theorem 1.6 requires substantially
more work and several new ideas compared with the earlier special case in [CGP20+].

Analogies with structural results in group theory. One may regard Theorem 1.6 as
similar in spirit to results in group theory, which say that the free group on two generators
is not merely an example of a non-amenable group, but is contained in every non-amenable
group that satisfies some mild additional hypotheses. (For instance, every non-amenable
linear group has a free non-abelian subgroup; this follows from the Tits alternative.)

Moreover, subprojections as defined in Definition 1.4 have an algebraic interpreta-
tion, analogous to the notion of subquotients in group theory or representation theory.
Subquotients are the building blocks for theories of composition series (of groups or repre-
sentations); we shall not attempt to develop a corresponding theory in this paper, although
this could be useful if one seeks to obtain a more detailed structure theory for union-closed
set systems of infinite breadth.
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Unavoidable configurations in finite set systems. It will follow from Lemma 2.1 below
that although we defined subprojections as projections of subsystems, this is equivalent to
taking subsystems of projections.2 Thus Theorem 1.6 is similar in spirit to the main result
of [BB05], which shows that one of three special patterns must occur as a subprojection
in any sufficiently large finite set system.

Ramsey theory. There is a Ramsey-theoretic flavour to the statement of Theorem 1.6,
but it does not seem to follow from the standard Ramsey-type theorems for (hyper)graphs.
Nevertheless, the nested inductive arguments that will be used to prove Theorem 1.6 are
reminiscent of similar arguments in infinitary Ramsey theory, and it might be interesting
to pursue further links in future work.

1.3.2 Breadth in other settings

One measure of complexity for general set systems is Vapnik–Chervonenkis dimension,
which has played a seminal role in various aspects of statistical learning theory. It turns
out that when ∅ ∈ S and S is union-closed, its VC-dimension coincides with its breadth (a
fuller explanation is provided in Remark 2.8). Attention has mostly focused on examples
with finite VC-dimension, since these systems are the ones for which uniform learning guar-
antees can be devised. Nevertheless, the techniques used to prove Theorem 1.6 may lead
to a better understanding of how things go wrong in settings with infinite VC-dimension.

Breadth of set systems also makes an unexpected appearance in some recent work on
model theory [ADH+16, ADH+13]. It turns out that stable theories — such as the theory
of algebraically closed fields, or the theory of a module over a given ring — will naturally
give rise to set systems with infinite breadth. See [ADH+16, Proposition 2.20] and the
surrounding remarks3 for further details.

We already remarked that every union-closed set system can be viewed as a semilattice.
Conversely, every semilattice S can be naturally represented as an intersection-closed set
system (this appears to be folklore, but an explicit construction is sketched in [CGP20+,
Section 2.1]). Hence, by taking complements, S can be modelled by a union-closed set
system S; moreover, S has infinite breadth in the sense of lattice theory if and only if S has
infinite breadth in the sense of Definition 1.2. While there has been work on semilattices
with small breadth, such as [Dit84, Gie94, Law71], to our knowledge there has been no
systematic study of semilattices with infinite breadth. The tools developed in this paper
to prove Theorem 1.6 may be useful in further study of the structure of such semilattices.

1.3.3 Applications to Banach algebras

Given a semilattice S, one can use a representation of S as a union-closed set system to
construct submultiplicative weight functions on S, which give rise to examples of Banach
function algebras. In recent work [CGP20+], we obtained a combinatorial characterization
of those weights for which the corresponding Banach algebras have the so-called AMNM
property of [Joh86]. Using [CGP20+, Theorem 3.7] and Theorem 1.6 of the present paper,
together with further combinatorial arguments, one can construct on every semilattice of

2The authors of [BB05] use the terminology “trace” where we have used the word “projection”; we feel
that our choice is slightly clearer for the purposes of the present paper.

3In the statement of [ADH+16, Proposition 2.20], the assumption “vc(Φ) > 0” refers not to VC-
dimension but to the related notion of VC-density , which we shall not discuss here. The reader should also
beware that in [ADH+16, Section 2.4], breadth is defined using intersections rather than unions, which
yields an equivalent but dual perspective to the one in this paper.
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infinite breadth a weight whose corresponding Banach algebra fails to have the AMNM
property; this resolves a question which was raised implicitly by the first author in [Cho13]
and pursued further in [CGP20+]. Details will appear in the article [CGP21+].

1.4 Overview of the proof of the main result

This subsection is intended to explain the strategy/intuition behind the technical argu-
ments and definitions in the rest of the paper. However, none of the material in this
subsection is logically necessary for the proofs in the following sections. The reader who
prefers to see precise details and proofs immediately, should skip to Section 2.

In Section 3.1, we show how a subprojection of S with the form Tmax(E) can be
recognized inside S. A further reformulation is carried out in Section 3.2, where we
show that if sequences (En)n≥1 in Ω and (Gn)n≥1 in P(Ω) can be constructed to satisfy
certain recursive properties, then one can inductively build a subprojection of S of the
form Tmax(E). Similar results are established for Tmin and Tort; it is notable that for these
two cases, repeated subprojections of S occur naturally. (The relation ≤p is transitive, as
will be shown in Lemma 2.2.)

We can view the task of constructing suitable sequences (yielding either Tmax(E),
Tmin(E) or Tort(E)) as a 1-player game in discrete time, where the “state space” of the
game consists of subprojections of S. We start at time n = 1 with initial state S1 = S;
and at stage n of the game, if we are in state Sn, we pass to a subprojection Sn+1≤p Sn,
subject to certain rules. At stage n, the permissible “moves” have three possible types,
labelled MAXn, MINn and ORTn.

The results of Section 3.2 have the following interpretation: we win the game — in the
sense of being able to construct T∗ of the desired form — if it is possible from some point
onwards to make an infinite sequence of consecutive moves all of the same type, e.g.

MAX1 , MIN2 , ORT3 , ORT4 , MAX5 , MAX6 , MAX7 , . . .

In making such moves, we might run into a dead end and need to backtrack to an earlier
stage of the game. To make progress we need a closer look at how this problem could
arise, and what conditions can be imposed to rule out such problems.

Let S ′≤p S. In Definition 4.5, we introduce the concept of being Tmax-automatic. This
definition is rather technical, but is guided by the results in Section 3.2; the key point is
that if S ′ is Tmax-automatic, then for any n ∈ N and any V ≤p S ′, there is always some
move of type MAXn starting from V (Proposition 4.7). Since such a move takes us from
V to some V ′≤p V ≤p S ′, and since ≤p is transitive, one obtains a winning sequence of
moves without needing to look ahead; at stage n we can always make a move of MAXn,
and whichever one we pick, there will be a move of type MAXn+1 available at the next
stage.

Similarly: there are notions of being Tmin-automatic and Tort-automatic (Definition 4.5
again), and analogous results showing that set systems with these properties allow the
construction of copies of Tmin or Tort by “making moves without needing to look ahead”
(Proposition 4.7 again). Therefore, Theorem 1.6 will follow if we can show that S always
has a subprojection that is either Tmax-automatic, Tmin-automatic or Tort-automatic. This
will be achieved in Proposition 4.6; it is here that the precise technical definitions of T∗-
automaticity (for ∗ ∈ {MAX,MIN,ORT}) becomes important. Section 5 is devoted to
the technical lemmas needed to make this work.

Note that we will end up with a sharper version of Theorem 1.6. It is easy to construct
examples of S which have subprojections of the form Tmax(E) but are not Tmax-automatic;
nevertheless, Proposition 4.6 tells us that some subprojection of S will be Tmax-automatic.
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2 Preliminary results

2.1 Some notation and terminology

In this subsection, we fix the notational conventions that will be used in the rest of the
paper.

Notation. Let S be a set system on a nonempty set Ω. We use the following terminology
and notational conventions to aid clarity of our presentation.

(i) Elements of Ω will usually be denoted by lower-case Greek letters. General subsets
of Ω may be denoted by upper-case Roman letters or upper-case Greek letters; but
see the next item.

(ii) By members of S, we mean subsets of Ω which belong to S. We use letters such as
a, b, p, etc., to denote members of S, and write a ∪ b and a ∩ b for their union and
intersection respectively. The complement of a in Ω is denoted by ac. If it happens
that a and b are disjoint subsets of Ω, we shall sometimes emphasize this by writing
their union as a ∪̇ b.

(iii) We recall (Definition 1.1) that S is said to be union-closed if a, b ∈ S =⇒ a∪b ∈ S.
Note that with this terminology, “union-closed” need not imply being closed under
taking arbitrary unions: the set system Pfin(Ω) in Example 1.7 illustrates this point.

(iv) Let F ⊆ P(Ω). We write join(F) for
⋃

x∈F x and meet(F) for
⋂

x∈F x. Note that if
S is union-closed and F ⊆ S is finite, then join(F) ∈ S.

(v) Let (Si) be a family of subsystems of P(Ω). We denote the union of these subsystems
by
∨
i Si ; this should not be confused with {

⋃
i xi : xi ∈ Si ∀ i}. The intersection of

the Si is denoted similarly by
∧
i Si.

Given S ⊆ P(Ω) and Γ ⊆ Ω, we already defined the projection S 7Γ in Definition 1.4.
We may also define other set systems derived from S using Γ:

S � Γ := {x \ Γ : x ∈ S} ⊆P(Ω \ Γ),

S 6 Γ := {x ∪ Γ : x ∈ S} ⊆P(Ω),

S−Γ := {x ∈ S : x ∩ Γ = ∅} ⊆S,
SΓ := {x ∈ S : x ⊇ Γ} ⊆S.

(1)

Clearly, each of these set systems is union-closed if S is.

2.2 More on subprojections

Lemma 2.1 (Equivalent notions of subprojection). Let S, T ⊆ P(Ω) and let X ⊆ Ω. The
following are equivalent:

(i) (subsystem of a projection) there exists X ⊆ Ω such that T ⊆ S 7X;

(ii) (projection of a subsystem) there exist X ⊆ Ω and S ′ ⊆ S such that T = S ′ 7 X,
i.e. T ≤p S.

(iii) T ⊆ S 7 join(T ).

Moreover, if both S and T are union-closed, in (ii) we may choose S ′ to be union-closed.
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The proof of the lemma is routine; we provide details in order to familiarize the reader
with the notation that has been previously introduced.

Proof. Suppose that (ii) holds. Then

T = S ′ 7X = {a ∩X : a ∈ S ′} ⊆ {a ∩X : a ∈ S} = S 7X ,

and thus (i) holds. Similarly: if (i) holds for some X ⊆ Ω, then since join(T ) ⊆ join(S 7
X) ⊆ X we have

T = T 7 join(T ) ⊆ (S 7X)7 join(T ) = S 7 join(T ) ;

and thus (iii) holds. The converse implication (iii) =⇒ (i) is trivial.
Finally, suppose that (i) holds. Define S ′ := {a ∈ S : a ∩X ∈ T } ⊆ S, noting that if

T and S are union-closed then so is S ′. By construction,

S ′ 7X = {a ∩X : a ∈ S and a ∩X ∈ T } ⊆ T .

But by (i), each b ∈ T is equal to a ∩X for some a ∈ S; this a then belongs to S ′, and so
b ∈ S ′ 7X. Thus T ⊆ S ′ 7X, and so (ii) holds.

The property in Lemma 2.1(i) is often more convenient to work with than the original
definition of a subprojection, as is shown clearly in the short proof of the next important
lemma.

Lemma 2.2 (Transitivity of ≤p). Let T1, T2, T3 be set systems on Ω. If T1≤p T2 and
T2≤p T3, then T1≤p T3.

Proof. By Lemma 2.1 (i), there exist X2 ⊆ Ω such that T1 ⊆ T2 7X2 and X3 ⊆ Ω such
that T2 ⊆ T3 7X3. Thus

T1 ⊆ (T3 7X3)7X2 = T3 7 (X3 ∩X2).

Hence, using the same lemma, T1≤p T3.

We chose Lemma 2.1(ii) as our definition of subprojection because, later in the paper,
several arguments have an inductive step with the following form: starting from some set
system T ⊆ P(Ω), we form T −F 7X for certain choices of F and X. In other words, the
natural order of operations is to pass to a subsystem of T and then apply a projection.

By Lemma 2.1, T −F 7X is a subsystem of a projection of T , but it is important to
note that in general it is not the same as (T 7X)−F . However, in certain cases the two
set systems coincide. The next lemma provides sufficient conditions for this.

Lemma 2.3 (Swapping projection and exclusion/inclusion). Let X,F ⊆ Ω and let T ⊆
P(Ω).

(i) (T 7X)−F ⊇ T −F 7X. If X ⊇ F , then equality holds.

(ii) (T 7X)F ⊆ TF 7X. If X ⊇ F , then equality holds.

Proof. We have

(T 7X)−F = {a ∩X : a ∈ T , a ∩X ∩ F = ∅}
⊇ {a ∩X : a ∈ T , a ∩ F = ∅} = T −F 7X .
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If X ⊇ F then X ∩ F = F and so the inclusion above is an equality. This proves part (i).
Similarly,

(T 7X)F = {a ∩X : a ∈ T , a ∩X ⊇ F}
⊆ {a ∩X : a ∈ T , a ⊇ F} = TF 7X .

If X ⊇ F then any a ∈ T satisfying a ⊇ F also satisfies a ∩X ⊇ F , and so the inclusion
above is an equality. This proves part (ii).

2.3 Incompressible subsets and their witnesses

Definition 2.4 (Incompressible subsets of P(Ω)). Let F be a finite subset of P(Ω).
If there is a proper subset F ′ ⊂ F such that join(F ′) = join(F), we say that F is
compressible; otherwise, we say F is incompressible.

Given S ⊆ P(Ω), we write Inc(S) for the set of all finite incompressible subsets of S.
Given n ∈ N, we write Incn(S) = {F ∈ Inc(S) : |F| = n}.

Thus, if S is a union-closed set system on Ω, Definition 1.2 may be rewritten as
br(S) = sup{n ∈ N : Incn(S) is non-empty}.
Remark 2.5. The example Pfin(Ω) (Example 1.7) has the property that it contains an
increasing sequence F1 ⊂ F2 ⊂ . . . of finite incompressible subsets. This is not typical;
such sequences do not exist for Tmax(E), Tmin(E) or Tort(E).

If S is union-closed, incompressible subsets of S with size m generate subsets of S that
resemble P({1, . . . ,m}) \ {∅}. We now make this more precise. Let F ⊆ P(Ω) \ {∅} with
|F| = m ≥ 2, and enumerate F as {x1, . . . , xm}. It is easily checked that the following
statements are equivalent:

(i) there exists j such that xj ∩
⋂
i 6=j xi

c = ∅;

(ii) there exists j such that xj ⊆
⋃
i 6=j xi;

(iii) {x1, . . . , xm} is compressible.

Thus, such an F is incompressible if and only if there exist γ1, . . . , γm ∈ Ω such that

γi ∈ xi \ xj whenever i 6= j. (2)

In fact, this characterizes incompressible subsets of P(Ω) which have size ≥ 2 (for if
G ∈ Inc(Ω) with |G| ≥ 2, then ∅ /∈ G).

Definition 2.6. Let F = {x1, . . . , xm} ⊂ P(Ω) with m ≥ 2 be incompressible. A subset
F = {γ1, . . . , γm} of Ω is called a witness of incompressibility for F , or just a witness
for F , if it satisfies (2). Equivalently, each γj is contained in a unique member of F .

Remark 2.7. Every 1-element subsystem of P(Ω) is incompressible. However, for the
definition of a witness we restrict our attention to subfamilies of size at least 2. One
reason is that some useful results such as Lemma 2.9(i) become false if we allow witnesses
of size 1. Also, the 1-element subfamily {∅} is incompressible, but does not admit a witness
at all.

The next remark is included for background interest; we will not need it for the proof
of our main result. It provides additional detail connected with the remarks in Section 1.3.
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Remark 2.8 (Breadth and VC-dimension). If S is a set system on Ω (not necessarily
union-closed) and F is a finite non-empty subset of Ω, then S is said to shatter F if
S7F = P(F ). This concept is important for statistical learning theory, so it is interesting
to note its connection with the (lattice-theoretic) notion of breadth.

Let S ⊆ Ω be union-closed. If S shatters some finite set ∅ 6= F ⊆ Ω, then a fortiori
S 7 F ⊇ {{γ} : γ ∈ F}, and hence F is a witness of incompressibility for some F ⊆ S. In
the other direction: let S ⊆ P(Ω) be union-closed and satisfy ∅ ∈ S. Suppose there exists
G ∈ Incn(S) for some n ≥ 2, and let G be a witness of incompressibility for G. It then
follows from the assumptions on S that S shatters G.

The Vapnik–Chervonenkis (VC) dimension of a set system S ⊆ P(Ω) is defined as the
supremum of |F | over all finite subsets F ⊆ Ω that are shattered by S. The calculations
above show that when S is union-closed and ∅ ∈ S, then br(S) = dimVC(S).

2.4 Various lemmas

In this section, we collect some properties of witnesses which will be useful later, and then
apply them to study how breadth behaves when combining or projecting set systems.

Lemma 2.9. Let F ∈ Incn(P(Ω)) for some n ≥ 2.

(i) Any witness for F is contained in join(F) and has empty intersection with meet(F).

(ii) If F is a witness for F , and G ⊆ F with |G| ≥ 2, then G is a witness for a (unique)
incompressible G ⊆ F .

Proof. Let F be a witness for F . Each element of F is an element of some member of F
and hence is an element of the union of all members of F ; that is, F ⊆ join(F). If there
existed some γ ∈ F ∩meet(F) then γ would be an element of two distinct members of F ,
contradicting what it means to be a witness. This proves (i).

Now suppose that G ⊆ F with |G| ≥ 2. For each α ∈ G let xα be the unique member of
F to which α belongs, and let G = {xα : α ∈ G} ⊆ F . It is easily checked thatG is a witness
for G. If H ⊆ F also has the property that G is a witness for H, then H must contain G
(since z ∈ F and α ∈ z implies z = xα) and must also satisfy |H| = |G| = |G| <∞, and so
H = G. This proves (ii).

Whenever T ≤p S, incompressible subsets of T can always be “lifted” to incompressible
subsets of S. To state things precisely, we make the following definition.

Definition 2.10 (Liftings). Let S ⊆ P(Ω) be a non-empty set system, and let Γ ⊆ Ω.
Given J ⊆ S 7 Γ, a lifting of J (relative to S and Γ) is a set system I ⊆ S such that the
truncation map a 7→ a ∩ Γ restricts to a bijection I → J .

Liftings of a given J ⊆ S 7 Γ always exist, since the truncation map S → S 7 Γ is
surjective by definition. (In the desired applications, J will be finite, so we can avoid
invoking the axiom of choice.)

Lemma 2.11 (Lifting incompressible subsets of a subprojection). Let S ⊆ P(Ω), let Γ ⊆ Ω
be non-empty, and let T = S 7 Γ. Suppose J ∈ Inc(T ) with |J | ≥ 2, and let J be a
witness for J . Let I ⊆ S be any lifting of J . Then I is an incompressible subsystem of
S, and J is a witness for I.

Proof. By Lemma 2.9(i), we have J ⊆ join(J ) ⊆ Γ. In particular, J ⊆ join(I). It suffices
to prove that each α ∈ J belongs to a unique member of I. Suppose otherwise: then there
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exists α ∈ J which belongs to two distinct members of I, say x1 and x2. Hence α ∈ x1 ∩Γ
and α ∈ x2 ∩ Γ. This is a contradiction, since x1 ∩ Γ and x2 ∩ Γ are members of J and J
is a witness for J .

Lemma 2.12 (Coarse-graining of an incompressible system). Let G be an incompressible
subsystem of P(Ω), with a witness G. Let G =

∨n
i=1 Gi, with n ≥ 2, be a partition of G

into a disjoint union of non-empty subsystems. For each i = 1, . . . , n, put xi = join(Gi),
and pick exactly one element γi ∈ xi ∩G. Then {xi : i = 1, . . . , n} is incompressible, with
{γi : 1 ≤ i ≤ n} as a witness.

Proof. By definition, for each i ∈ {1, . . . , n}, γi ∈ xi. Suppose that there exist distinct
i and j with γi ∈ xi ∩ xj . Then there exist ai ∈ Gi ⊂ G and aj ∈ Gj ⊂ G such that
γi ∈ ai∩aj , which contradicts the assumption that G is a witness for G. We conclude that
whenever i and j are distinct, γi belongs to xi \ xj ; thus it is a witness of incompressibility
for {x1, . . . , xn}.

In the last lemma of this section, we observe how the breadth of a union-closed set
system interacts with the breadth of its subsystems and projections.

Lemma 2.13. Let S,S1, . . . ,Sm ⊆ P(Ω) be union-closed, and let X1, . . . , Xm be subsets of
Ω such that Ω = X1 ∪ . . . ∪Xm.

(i) Suppose br(Si) <∞ for each i. If S =
∨m
i=1 Si, then br(S) <∞.

(ii) Suppose that br(S 7Xi) <∞ for all 1 ≤ i ≤ m. Then br(S) <∞.

Proof. To prove (i), let ni = br(Si) and let n =
∑m

i=1 ni. For J ⊆ S, we may write
J =

∨m
i=1(J ∧ Si). By the pigeonhole principle, if |J | > n then there is at least one i

such that |J ∧ Si| > ni, and for this i, J ∧ Si is compressible. Hence J is compressible,
as any superset of a compressible set is again compressible. This implies that br(S) ≤ n,
so S has finite breadth.

We now prove (ii). Towards a contradiction, suppose that br(S) =∞. Let ni = br(S7
Xi), and take k >

∑m
i=1 ni. Since S has infinite breadth, it contains an incompressible

subset F with a witness F such that |F| = |F | = k.
By the definition of a witness, for each α ∈ F there exists a unique member of F

containing α, which we denote by xα. For 1 ≤ i ≤ m, define Fi = {xα : α ∈ F ∩Xi} ⊆ F .
Then F = {xα : α ∈ F} =

∨m
i=1Fi, as Ω = X1 ∪ . . . ∪Xm. So by the pigeonhole principle,

there is at least one i such that |Fi| > ni. Hence |F ∩Xi| = |Fi| ≥ ni + 1 ≥ 2. Then since
F ∩Xi is a witness of incompressibility for Fi7Xi, we have ni = br(S7Xi) ≥ |Fi7Xi| ≥
ni + 1; a contradiction.

3 A closer look at our target configurations

3.1 Recognizing the desired configurations

Throughout this subsection, but not the subsequent ones, we fix:

• a union-closed set system S ⊆ P(Ω);

• a sequence (En)n≥1 of finite, non-empty subsets of Ω with |En| = n+1 for all n ∈ N.
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For n ∈ N, we put E<n :=
⋃n−1
j=1 Ej and E>n :=

⋃∞
k=n+1Ek, with the convention that

E<1 = ∅. Let E = {En : n ∈ N}, so that join(E) =
⋃
n≥1En.

Unlike Definition 1.3, we do not assume at the outset that the sets En are pairwise dis-
joint. However, the results of this subsection, Lemmas 3.1, 3.2 and 3.3, provide sufficient4

conditions for the En to be pairwise disjoint and for S to have a subprojection equal to
Tmax(E), Tmin(E) and Tort(E) respectively.

Recognizing Tmax(E)≤p S. Suppose that the sets En are pairwise disjoint, and that
Tmax(E) ⊆ S 7 (join(E)). The nth level in Tmax(E) is generated by taking finite unions of
all sets of the form {γ} ∪̇E<n where γ ∈ En; and such a set must have the form x∩ join(E)
for some x ∈ S. Collecting such x, one for each {γ} ∪̇ E<n, gives rise to a lifting for the
generating set with witness En. Hence, there exists a sequence (Fn)n≥1 of subsets of S
with the following properties:

(WIT) each Fn is incompressible, and has En as a witness;

(MAX) for all n ∈ N, meet(Fn) ⊇ E<n and join(Fn) ∩ E>n = ∅.

Conversely, the next lemma says in effect that these two necessary conditions are also
sufficient. In particular, they automatically imply that Ej ∩ Ek = ∅ for all 1 ≤ j < k.

Lemma 3.1. Suppose there exists a sequence (Fn)n≥1 of subsets of S satisfying (WIT) and
(MAX). Then the sets En are pairwise disjoint; and the union-closed set system generated
by (

∨∞
n=1Fn)7 join(E) is Tmax(E).

Proof. From (MAX) we have E<n ⊆ meet(Fn) for every n ≥ 2. But by (WIT), En is
a witness for Fn, so Lemma 2.9 implies that En ∩ E<n ⊆ En ∩ meet(Fn) = ∅. Hence
Ej ∩ Ek = ∅ whenever 1 ≤ j < k.

To prove the second part, given any x ∈ Fn consider the decomposition

x ∩ join(E) = (x ∩ E<n) ∪̇ (x ∩ En) ∪̇ (x ∩ E>n).

(Recall that we use ∪̇ to signify the fact that the sets forming the union are pairwise
disjoint.) The second term equals {γ} for some γ ∈ En, since x ∈ Fn and En is a witness
for Fn. By the condition (MAX), the first term equals E<n and the third term is empty.
Thus each member of Fn 7 join(E) is one of the generating elements of Tmax(E).

Recognizing Tmin(E)≤p S. Suppose that the sets En are pairwise disjoint, and that
Tmin(E) ⊆ S 7 (join(E)). The nth level in Tmin(E) is generated by taking finite unions
of all sets of the form {γ} ∪̇ E>n where γ ∈ En, and such a set must have the form
x∩ join(E) for some x ∈ S. Collecting such x, one for each {γ} ∪̇E>n, gives rise to a lifting
for the generating set with witness En. Hence, there exists a sequence (Fn)n≥1 of subsets
of S with the following properties:

(WIT) each Fn is incompressible, and has En as a witness;

(MIN) for all n ∈ N, meet(Fn) ⊇ E>n and join(Fn) ∩ E<n = ∅.

There is an analogue of Lemma 3.1. The proof is very similar, so we will give fewer details.

Lemma 3.2. Suppose there exists a sequence (Fn)n≥1 of subsets of S satisfying (WIT) and
(MIN). Then the sets En are pairwise disjoint; and the union-closed set system generated
by (

∨∞
n=1Fn)7 join(E) is Tmin(E).

4It will be shown en route that these conditions are also necessary, although this is not required for the
proof of Theorem 1.6.
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Proof. By (WIT) En is a witness for Fn, so in particular En ⊆ join(Fn). But by the
second part of (MIN), join(Fn) is disjoint from E<n; thus E<n ∩ En = ∅, as in the Tmax

case.
For the second part, note that for each x ∈ Fn we have

x ∩ join(E) = (x ∩ E<n) ∪̇ (x ∩ En) ∪̇ (x ∩ E>n) = {γ} ∪̇ E>n

and these sets generate Tmin(E).

Recognizing Tort(E)≤p S. Suppose that the sets En are pairwise disjoint, and that
Tort(E) ⊆ S 7 (join(E)). The nth level in Tort(E) is generated by taking finite unions
of all sets of the form {γ} ∪̇E<n ∪̇E>n where γ ∈ En, and such a set must have the form
x ∩ join(E) for some x ∈ S. Collecting such x, one for each {γ} ∪̇E<n ∪̇E>n, gives rise to
a lifting for the generating set with witness En. Hence, there exists a sequence (Fn)n≥1 of
subsets of S with the following properties:

(WIT) each Fn is incompressible, and has En as a witness;

(ORT) for all n ∈ N, meet(Fn) ⊇ E>n ∪̇ E<n.

As in the previous two cases, we get a converse statement.

Lemma 3.3. Suppose there exists a sequence (Fn)n≥1 of subsets of S satisfying (WIT) and
(ORT). Then the sets En are pairwise disjoint; and the union-closed set system generated
by (

∨∞
n=1Fn)7 join(E) is Tort(E).

Proof. Similarly to the Tmax case, by combining the condition E>n ∪̇ E<n ⊆ meet(Fn)
with the condition (WIT), it follows that En ∩ (E>n ∪ E<n) = ∅. We also have, for each
n ∈ N and each x ∈ Fn,

x ∩ join(E) = (x ∩ E<n) ∪̇ (x ∩ En) ∪̇ (x ∩ E>n) = E<n ∪̇ {γ} ∪̇ E>n

and sets of these form generate Tort(E).

3.2 Inductive reformulation of our target configurations

We now build on the previous observations to obtain necessary and sufficient conditions
with an inductive flavour. Intuitively, these conditions have the following flavour: in each
of the three cases there is a certain kind of “move” that one is allowed to apply to a given
union-closed set system; and being able to make an infinite sequence of “moves” of that
kind will allow one to construct a subprojection of the form Tmax, Tmin or Tort.

Let Ω be a non-empty set. Recall (Example 1.7) that Pfin(Ω) denotes the set of all
finite subsets of Ω.

Proposition 3.4 (Reformulating Tmax). Let S ⊆ P(Ω) be a union-closed set system, and
let (En)n≥1 be a sequence in Pfin(Ω), with |En| ≥ 2 for all n. The following are equivalent:

(i) there exist incompressible subsets Fn ⊆ S for all n ∈ N, which satisfy the conditions
(WIT) and (MAX) with respect to (En)n≥1;

(ii) there exist incompressible subsets Gn ⊆ P(Ω), for n ≥ 1, with En a witness for Gn,
such that G1 ⊆ S and

Gn+1 ⊆ S �

 n⋃
j=1

join(Gj)

 for all n ∈ N.
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Proof. (i) =⇒ (ii): Put G1 := F1 ⊆ S and Gn := Fn �
⋃n−1
j=1 join(Fj) for all n ≥ 2. Since

En is a witness for Fn and is disjoint from join(Fj) for every j < n by condition (MAX),
we see that En remains a witness for Gn. Moreover, by induction we have

⋃n
j=1 join(Gj) =⋃n

j=1 join(Fj) for all n ≥ 1, and so

Gn+1 = Fn+1 �

n⋃
j=1

join(Gj) ⊆ S �
n⋃
j=1

join(Gj)

as required.
(ii) =⇒ (i) To ease notation, define an increasing sequence bn =

⋃n
j=1 join(Gj) in P(Ω),

with the convention that b0 = ∅. Then our assumptions can be rephrased as: Gn ⊆ S�bn−1

for all n ≥ 1. Also, note that En ⊆ join(Gn) = bn \ bn−1 for all n ∈ N.
We shall prove by induction that Gn 6 bn−1 ⊆ S for all n ∈ N. For n = 1 this holds

since b0 = ∅ and G1 ⊆ S. Suppose for some n ∈ N, we have Gn 6 bn−1 is a subset of S.
Note that Gn 6 bn−1 is finite and S is union-closed, so bn = join(Gn 6 bn−1) ∈ S. Hence

Gn+1 6 bn ⊆ (S � bn)6 bn = S 6 bn ⊆ S,

and this completes the inductive step.
Now put Fn = Gn6bn−1 for each n ∈ N. We have just shown that Fn ⊆ S. Moreover,

since En ⊆ join(Gn) ⊆ Ω \ bn−1, En is still a witness for Fn.
We have E<n ⊆

⋃n−1
j=1 join(Gj) = bn−1 ⊆ meet(Fn). Finally, if k > n, then

Ek ⊆ join(Gk) ⊆ Ω \ bk−1 ⊆ Ω \ bn

so that Ek ∩ join(Fn) = Ek ∩ bn = ∅.

Proposition 3.5 (Reformulating Tmin). Let S ⊆ P(Ω) be a union-closed set system, and
let (En)n≥1 be a sequence in Pfin(Ω), with |En| ≥ 2 for all n. The following are equivalent:

(i) there exist incompressible subsets Fn ⊆ S for all n ∈ N, which satisfy the conditions
(WIT) and (MIN) with respect to (En)n≥1;

(ii) there exist incompressible subsets Hn ⊆ P(Ω), for n ≥ 1, with En a witness for Hn,
such that H1 ⊆ S and

Hn+1 ⊆ S−E<n+1 7meet(Hn) for all n ∈ N.

Proof. (i) =⇒ (ii): First, recall that (WIT) and (MIN) together imply that Ej ∩ Ek = ∅
for all j < k. Put Hn = Fn 7 E>n−1. The conditions on Fn imply that

Hn =


∞⋃
j=n

a ∩ Ej : a ∈ Fn

 =
{
{γ} ∪̇ E>n : γ ∈ En

}
.

Thus En remains a witness for Hn. Moreover, since |En| ≥ 2, we have meet(Hn) = E>n.
Hence

Hn+1 = Fn+1 7 E>n ⊆ S−E<n+1 7 E>n = S−E<n+1 7meet(Hn),

as required.
(ii) =⇒ (i): First note that the conditions on Hn imply that

meet(Hj) ⊆ join(Hj) ⊆ join(S−E<j 7meet(Hj−1)) ⊆ meet(Hj−1) for all j ≥ 2. (†)
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In particular, if n ∈ N and k > n then

Ek ⊆ join(Hk) ⊆ meet(Hk−1) ⊆ · · · ⊆ meet(Hn). (‡)

Take F1 = H1 ⊆ S, noting that E1 is a witness for F1. For each n ≥ 2, since
Hn ⊆ S−E<n 7meet(Hn−1), Lemma 2.11 ensures any lifting of Hn to some Fn ⊆ S−E<n

still has En as a witness. This ensures that E<n ∩ join(Fn) = ∅ for all n ≥ 2; while for
each k > n, the inclusions in (‡) yield Ek ⊆ meet(Hn) ⊆ meet(Fn).

Proposition 3.6 (Reformulating Tort). Let S ⊆ P(Ω) be a union-closed set system, and
let (En)n≥1 be a sequence in Pfin(Ω), with |En| ≥ 2 for all n. The following are equivalent:

(i) there exist incompressible subsets Fn ⊆ S for all n ∈ N, which satisfy the conditions
(WIT) and (ORT) with respect to (En)n≥1;

(ii) there exist incompressible subsets Ln ⊆ P(Ω), for n ≥ 1, with En a witness for Ln,
such that L1 ⊆ S and

Ln+1 ⊆ SE<n+1 7meet(Ln) for all n ∈ N.

Proof. (i) =⇒ (ii): First, recall that (WIT) and (ORT) together imply that Ej ∩ Ek = ∅
for all j < k. Put Ln = Fn 7 E>n−1. The conditions on Fn imply that

Ln =


∞⋃
j=n

a ∩ Ej : a ∈ Fn

 =
{
{γ} ∪̇ E>n : γ ∈ En

}
.

Thus En remains a witness for Ln. Moreover, since |En| ≥ 2, we have meet(Ln) = E>n.
Hence

Ln+1 = Fn+1 7 E>n ⊆ SE<n+1 7 E>n = SE<n+1 7meet(Ln),

as required.
(ii) =⇒ (i): First note that the conditions on Ln imply that

meet(Lj) ⊆ join(Lj) ⊆ join(SE<j 7meet(Lj−1)) ⊆ meet(Lj−1) for all j ≥ 2. (†)

In particular, if n ∈ N and k > n then

Ek ⊆ join(Lk) ⊆ meet(Lk−1) ⊆ · · · ⊆ meet(Ln). (‡)

Take F1 = L1 ⊆ S, noting that E1 is a witness for F1. For each n ≥ 2, Lemma 2.11
ensures that any lifting of Ln ⊆ SE<n 7 meet(Ln−1) to some Fn ⊆ SE<n still has En as
a witness. This ensures that E<n ⊆ meet(Fn) for all n ≥ 2; while for each k > n, the
inclusions in (‡) yield Ek ⊆ meet(Ln) ⊆ meet(Fn).

4 Proof of the main theorem

The following definitions are motivated by the strategy outlined in Section 1.4. From
this point onwards, for a set system S ⊆ P(Ω), we abbreviate “union-closed with infinite
breadth” to u.c.i.b.

Definition 4.1 (Obstacles). Let T be u.c.i.b.

• We say T is J-blocked if ∃ k ≥ 2 so that ∀ F ∈ Inck(T ), we have br(T �join(F)) <∞.
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• We say T is W -blocked if ∃ r ≥ 2 so that ∀ F ∈ Incr(T ) and any witness F for F ,
we have br(T −F ) <∞.

The idea is that if a set system is J-blocked then removing the join of any sufficiently
large incompressible set will lead to a dead-end, while if it is W -blocked then excluding
any sufficiently large witness will also lead to a dead-end.

Lemma 4.2 (Being blocked passes to subprojections). Let T1, T2 be u.c.i.b. set systems on
Ω with T2≤p T1. If T1 is J-blocked, then so is T2. If T1 is W -blocked, then so is T2.

Lemma 4.3 (Step towards the Tmin case). Let T be u.c.i.b. If T is J-blocked but not
W -blocked, then

∀ n ≥ 2 ∃ H ∈ Incn(T ) with a witness H, such that br(T −H 7meet(H)) =∞.

Lemma 4.4 (Step towards the Tort case). Let T be u.c.i.b. If T is J-blocked and W -blocked,
then

∀ n ≥ 2 ∃ L ∈ Incn(T ) with a witness L, such that br(TL 7meet(L)) =∞.

The proofs of these lemmas are deferred to the next section; they are not difficult, but
the details would interrupt the flow of the argument. Taking these lemmas on trust for
now, we use the concepts of J-blocked and W -blocked to define three natural conditions,
each of which will ensure that a subprojection of the form Tmax, Tmin or Tort may be
constructed by “following one’s nose”.

Definition 4.5 (Conditions ensuring generation of Tmax, Tmin or Tort). Let S be u.c.i.b.

(i) We say S is Tmax-automatic if every u.c.i.b. T ≤p S is not J-blocked.

(ii) We say S is Tmin-automatic if every u.c.i.b. T ≤p S is J-blocked but not W -blocked.

(iii) We say S is Tort-automatic if it is J-blocked and W -blocked. (By Lemma 4.2, this
is equivalent to requiring that every u.c.i.b. T ≤p S is J-blocked and W -blocked.)

Proposition 4.6 (Ensuring a subprojection which is T∗-automatic). Let S be u.c.i.b.
Suppose S is not Tmax-automatic. Then S has a u.c.i.b. subprojection which is Tmin-
automatic or one which is Tort-automatic.

Proof. Since S is not Tmax-automatic, there exists some u.c.i.b. S0≤p S which is J-blocked.
Note that by Lemma 4.2 every subprojection of S0 is also J-blocked. Now, there are two
cases to consider.

• Case 1: every u.c.i.b. T ≤p S0 is not W -blocked. By the remark above, every such
T is also J-blocked, and so in this case S0 is Tmin-automatic with S0≤p S.

• Case 2: there is some u.c.i.b. S1≤p S0 which is W -blocked. By the remark above, S1

is also J-blocked. So in this case, S1 is Tort-automatic with S1≤p S (by transitivity).

This completes the proof.

Proposition 4.7 (Justifying Definition 4.5). Let S be u.c.i.b., and let T∗ denote either
Tmax, Tmin or Tort. If S is T∗-automatic, then there exists E as in Definition 1.3 such that
T∗(E)≤p S.

Proof. For this proof, we combine Lemma 4.3 and 4.4 with the “inductive reformulations”
of Tmax, Tmin and Tort. We go through each case in turn.
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The Tmax case. Suppose S is Tmax-automatic. Put T0 = S; then we may inductively
construct sequences (En)n≥1 and (Gn)n≥1, such that the following properties hold.

• En ⊆ Ω and |En| = n+ 1;

• En is a witness for some incompressible Gn ⊆ Tn−1;

• Tn := Tn−1 � join(Gn) has infinite breadth.

At each stage, Tn≤p Tn−1≤p . . .≤p T0 = S; so the existence of suitable Gn and En is
guaranteed by the definition of Tmax-automaticity.

The recursive construction of Tn yields Tn = S �
(⋃n−1

j=1 join(Gj)
)

. Hence, by the

direction (ii) =⇒ (i) in Proposition 3.4, together with Lemma 3.1, S7
(⋃

n≥1En

)
contains

the configuration Tmax(E).

The Tmin case. Suppose S is Tmin-automatic. Put T0 = S; then we may inductively
construct sequences (En)n≥1 and (Hn)n≥1, such that the following properties hold.

• En ⊆ Ω and |En| = n+ 1;

• En is a witness for some incompressible Hn ⊆ Tn−1;

• Tn := (Tn−1)−En 7meet(Hn) has infinite breadth.

At each stage, Tn≤p Tn−1≤p . . .≤p T0 = S; so the existence of such Hn and En is guaran-
teed by Lemma 4.3.

To prove that S 7
(⋃

n≥1En

)
contains Tmin(E), it suffices to show that (Hn) and

(En) satisfy the conditions in Proposition 3.5(ii), for then we can apply that proposition
together with Lemma 3.2. This will follow from the properties above and the following
claim.

Claim: Tj = S−E<j+1 7meet(Hj) for all j ∈ N.
The claim holds when j = 1, since

T1 = (T0)−E1 7meet(H1) = S−E<2 7meet(H1).

Assume it holds for some j ∈ N; then

Tj+1 = (Tj)−Ej+1 7meet(Hj+1) by definition

=
(
S−E<j+1 7meet(Hj)

)−Ej+1
7meet(Hj+1) by the inductive hypothesis

= S−(E<j+1∪Ej+1)
7 (meet(Hj) ∩meet(Hj+1)) by Lemma 2.3(i)

= S−E<j+2 7meet(Hj+1),

as required. (The third and fourth steps are justified by the inclusions in (†). Specif-
ically, we can apply Lemma 2.3 because the inductive hypothesis ensures that Ej+1 ⊆
join(Hj+1) ⊆ meet(Hj); and we also have meet(Hj+1) ⊆ join(Hj+1) ⊆ meet(Hj).) By
induction, the claim holds for all j ∈ N.
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The Tort case. Suppose S is Tort-automatic. Put T0 = S; then we may inductively
construct sequences (En)n≥1 and (Ln)n≥1, such that the following properties hold.

• En ⊆ Ω and |En| = n+ 1;

• En is a witness for some incompressible Ln ⊆ Tn−1;

• Tn := (Tn−1)En 7meet(Ln) has infinite breadth.

At each stage, Tn≤p Tn−1≤p . . .≤p T0 = S; so the existence of suitable Ln and En is
guaranteed by Lemma 4.4.

To prove that S 7
(⋃

n≥1En

)
contains Tort(E), it suffices to show that (Ln) and (En)

satisfy the conditions in Proposition 3.6(ii); for then we can apply that proposition together
with Lemma 3.3. This will follow from the properties above and the following claim.

Claim: Tj = SE<j+1 7meet(Lj) for all j ∈ N.
The claim holds when j = 1, since

T1 = (T0)E1 7meet(L1) = SE<2 7meet(L1).

Assume it holds for some j ∈ N; then

Tj+1 = (Tj)Ej+1 7meet(Lj+1) by definition

=
(
SE<j+1 7meet(Lj)

)
Ej+1

7meet(Lj+1) by the inductive hypothesis

= S(E<j+1∪Ej+1) 7 (meet(Lj) ∩meet(Lj+1)) by Lemma 2.3(ii)

= SE<j+2 7meet(Lj+1),

as required. (The third and fourth steps are justified by the inclusions in (†). Specif-
ically, we can apply Lemma 2.3 because the inductive hypothesis ensures that Ej+1 ⊆
join(Lj+1) ⊆ meet(Lj); and we also have meet(Lj+1) ⊆ join(Lj+1) ⊆ meet(Lj).) By
induction, the claim holds for all j ∈ N.

This completes the proof of the proposition.

Putting everything together. Combining Proposition 4.7 and Proposition 4.6, and using
transitivity of ≤p again, we deduce that a u.c.i.b. set system S ⊆ P(Ω) always has a
subprojection of the form Tmax(E), Tmin(E) or Tort(E).

Therefore, to complete the proof of Theorem 1.6, it remains only to prove Lemmas
4.2, 4.3 and 4.4. This will be dealt with in the next section.

5 Proofs of the technical lemmas

Proof of Lemma 4.2 (being blocked passes to subprojections).
First, let U ⊆ T1 and X ⊆ Ω be such that T2 = U 7X. Suppose T1 is J-blocked, and let
k ≥ 2 be as in Definition 4.1. Let F ∈ Inck(T2). By Lemma 2.11, any lifting G ⊆ U of F
satisfies G ∈ Inck(U). Also, since G 7X = F , we have join(G) ∩X = join(F). It follows
that

T2 � join(F) = (U 7X)� join(F)

= (U 7X)� join(G)

= (U � join(G))7X ≤p T1 � join(G).
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Since taking subprojections cannot increase breadth (Proposition 1.5), and since T1 is
J-blocked “at depth k”, it follows that br(T2 � join(F)) < ∞. Since this holds for all
F ∈ Inck(T2), T2 is J-blocked.

Similarly, assume T1 is W -blocked, and let r ≥ 2 be as in Definition 4.1. Let F ∈
Incr(T2) and let F be any witness for F . By Lemma 2.11 any lifting of F to some G ⊆ U
admits F as a witness as well, and G ∈ Incr(U). Observe that

T −F2 = (U 7X)−F = U−F 7X ⊆ T −F1 7X,

where the second equality follows from Lemma 2.3(i) and the fact that F ⊆ join(T2) ⊆ X.
In particular, T −F2 ≤p T −F1 . Since taking subprojections cannot increase breadth, and
since T1 is W -blocked “at depth r”, we have br(T −F2 ) < ∞. Since this holds for any
witness of any F ∈ Incr(T2), T2 is W -blocked.

Proof of Lemma 4.3 (step towards the Tmin case).
We start by fixing some k ≥ 2 such that br(T � join(F)) <∞ for all F ∈ Inck(T ). (Such
a k exists since T is J-blocked.)

Now, let n ≥ 2. Since T is not W -blocked, there exists G ∈ Inckn(T ) with a witness
G such that br(T −G) =∞. Enumerate G as {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} and enumerate G
as {γij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}, in such a way that γij ∈ xij for all i,j.

For each j, let Fj = {xij : 1 ≤ i ≤ k} and let yj = join(Fj) ∈ T . Then put
H = {γ1,j : 1 ≤ j ≤ n} and let H = {y1, . . . , yn} ⊆ T . By the coarse-graining lemma
(Lemma 2.12), H ∈ Incn(T ) with H as a witness.

Since H ⊆ G, we have T −H ⊇ T −G, and so br(T −H) ≥ br(T −G) = ∞. On the
other hand, since Fj ∈ Inck(T ) and join(Fj) = yj , we have br(T � yj) < ∞, and so
br(T −H � yj) <∞ for j = 1, . . . , n. Applying Lemma 2.13(ii) to T −H and

Ω = meet(H) ∪
n⋃
j=1

(Ω \ yj)

we conclude that br(T −H 7meet(H)) =∞.

Proof of Lemma 4.4 (step towards the Tort-case).
Fix k, r ≥ 2 such that:

∀ F ∈ Inck(T ) br(T � join(F)) <∞; (∗)

∀ F ∈ Incr(T ) and any witness F for F , br(T −F ) <∞ . (∗∗)

(Such k and r exist by the assumption that T is J-blocked and W -blocked.)
Now, let n ≥ 2, and pick any G ∈ Inck(n+r−1)(T ). Enumerate G as {zij : 1 ≤ i ≤ k, 1 ≤

j ≤ n+ r − 1} and pick a corresponding witness G = {γij : 1 ≤ i ≤ k, 1 ≤ j ≤ n+ r − 1}
with the property that γij ∈ zij for all i, j.

Let V := {γ1,j : 1 ≤ j ≤ r + n − 1}. For any w ⊆ Ω note that either |w ∩ V | ≥ n or
|V \ w| ≥ r (pigeon-hole principle); hence, either w contains some n-element subset of V ,
or it is disjoint from some r-element subset of V . Hence, for any set system J ⊆ P(Ω),

J =

 ∨
L⊆V : |L|=n

JL

 ∨
 ∨
F⊆V : |F |=r

J −F
 (∗ ∗ ∗)

We apply this to T . By the condition (∗∗), we have br(T −F ) < ∞ for all r-element
subsets F ⊆ V . (See Lemma 2.9(ii).) On the other hand, br(T ) = ∞ by assumption.
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Therefore, by Lemma 2.13(i) and the identity (∗ ∗ ∗), we must have br(TL) =∞ for some
n-element subset L ⊆ V . Pick such an L; by relabelling if necessary, we may assume that

L = {γ1,j : 1 ≤ j ≤ n}.

Now let xj =
⋃k
i=1 zij , for 1 ≤ j ≤ n. Since G is incompressible so are all its subsets

(this follows from Lemma 2.9(ii)). Hence for each j, {zij : 1 ≤ i ≤ k} ∈ Inck(T ); and so,
by the condition (∗), br(T � xj) <∞. Moreover, if we put

L := {xj : 1 ≤ j ≤ n}

then L is a witness for L, by the coarse-graining lemma (Lemma 2.12).
Finally, br(TL) = ∞ while br(TL � x) < ∞ for each x ∈ L. Applying Lemma 2.13(ii)

to TL and

Ω = meet(L) ∪
n⋃
j=1

(Ω \ xj)

we conclude that br(TL 7meet(L)) =∞.

Acknowledgements

This work grew out of conversations between the authors while attending the conference
“Banach Algebras and Applications”, held in Gothenburg, Sweden, July–August 2013, and
was further developed while the authors were attending the thematic program “Abstract
Harmonic Analysis, Banach and Operator Algebras” at the Fields Institute, Canada, dur-
ing March–April 2014. The authors thank the organizers of these meetings for invitations
to attend and for pleasant environments to discuss research.

The first author acknowledges the financial support of the Faculty of Science and Tech-
nology at Lancaster University, in the form of a travel grant to attend the latter meeting.
The second author acknowledges financial support from the University of Delaware Re-
search Foundation. The third author acknowledges the financial supports of a Fast Start
Marsden Grant and of Victoria University of Wellington to attend these meetings.

The final write-up of this paper was completed during a visit of the first author in
March 2020 to the University of Delaware. He thanks the Department of Mathematics
and Statistics at Lancaster University for financial support through their Visitor Fund.
He also thanks the Department of Mathematical Sciences at the University of Delaware
for their hospitality. The second author also acknowledges support from National Science
Foundation grant DMS-1902301 during the preparation of this article.

The authors thank two anonymous referees for their useful advice and corrections,
which have led to significant improvements of the presentation of this paper.

References

[ADH+13] M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, and S. Starchenko,
Vapnik-Chervonenkis density in some theories without the independence prop-
erty, II, Notre Dame J. Form. Log., 54 (2013), pp. 311–363.

[ADH+16] M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, and S. Starchenko,
Vapnik-Chervonenkis density in some theories without the independence prop-
erty, I, Trans. Amer. Math. Soc., 368 (2016), pp. 5889–5949.

20



[BB05] J. Balogh and B. Bollobás, Unavoidable traces of set systems, Combinatorica,
25 (2005), No. 6, pp. 633–643.

[Cho13] Y. Choi, Approximately multiplicative maps from weighted semilattice algebras,
J. Aust. Math. Soc., 95 (2013), pp. 36–67.

[CGP20+] Y. Choi, M. Ghandehari, and H. L. Pham, Stability of characters and filters for
weighted semilattices. To appear in Semigroup Forum. C.f. arXiv 1901.00082.

[CGP21+] Y. Choi, M. Ghandehari, and H. L. Pham, A construction of non-AMNM
weights for every semilattice of infinite breadth, in preparation.

[Dit84] S. Z. Ditor, Cardinality questions concerning semilattices of finite breadth, Dis-
crete Math., 48 (1984), pp. 47–59.

[Gie94] G. Gierz, Level sets in finite distributive lattices of breadth 3, Discrete Math.,
132 (1994), pp. 51–63.

[Joh86] B. E. Johnson, Approximately multiplicative functionals, J. London Math. Soc.
(2), 34 (1986), pp. 489–510.

[Law71] J. D. Lawson, The relation of breadth and codimension in topological semilat-
tices. II, Duke Math. J., 38 (1971), pp. 555–559.

Yemon Choi, Department of Mathematics and Statistics, Lancaster University,

Lancaster LA1 4YF, United Kingdom.

y.choi1@lancaster.ac.uk

Mahya Ghandehari, Department of Mathematical Sciences, University of Delaware,

Newark, Delaware 19716, United States of America.

mahya@udel.edu

Hung Le Pham, School of Mathematics and Statistics, Victoria University of Well-

ington, Wellington 6140, New Zealand.

hung.pham@vuw.ac.nz

21

https://arxiv.org/abs/1901.00082

	Introduction
	Initial definitions
	Statement of the main result
	Some context and connections
	Relation to existing results
	Breadth in other settings
	Applications to Banach algebras

	Overview of the proof of the main result

	Preliminary results
	Some notation and terminology
	More on subprojections
	Incompressible subsets and their witnesses
	Various lemmas

	A closer look at our target configurations
	Recognizing the desired configurations
	Inductive reformulation of our target configurations

	Proof of the main theorem
	Proofs of the technical lemmas

