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Abstract: The MicroBooNE continuous readout stream is a parallel readout of the Mi-

croBooNE liquid argon time projection chamber (LArTPC) which enables detection of

non-beam events such as those from a supernova neutrino burst. The low energies of the

supernova neutrinos and the intense cosmic-ray background flux due to the near-surface

detector location makes triggering on these events very challenging. Instead, MicroBooNE

relies on a delayed trigger generated by SNEWS (the Supernova Early Warning System)

for detecting supernova neutrinos. The continuous readout of the LArTPC generates large

data volumes, and requires the use of real-time compression algorithms (zero suppression

and Huffman compression) implemented in an FPGA (field-programmable gate array) in

the readout electronics. We present the results of the optimization of the data reduction

algorithms, and their operational performance. To demonstrate the capability of the con-

tinuous stream to detect low-energy electrons, a sample of Michel electrons from stopping

cosmic-ray muons is reconstructed and compared to a similar sample from the lossless

triggered readout stream.
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1 Introduction

Liquid argon time projection chamber (LArTPC) detectors capture particle interactions

with exquisite spatial and calorimetric resolution producing large data volumes. For a

typical ADC sampling rate of 2 MHz and an ADC resolution of 12 bits, each channel

generates 3 MB/s, without compression. In order to achieve good spatial resolution, most

detectors use a wire pitch of a few millimeters spanning several meters, leading to several

thousands of readout channels. Consequently, front-end electronics data rates can reach

several GB/s. For the acquisition of events from a neutrino beam, these data rates are

manageable since the readout of the detector is driven by the accelerator beam spills,

which occur with a known maximum frequency of O(10) Hz, determined by the accelerator

repetition rate, and only requires an acquisition window of milliseconds, determined by

the electron drift time across the TPC. For non-beam events such as supernova neutrino

interactions or a search for nucleon decays that cannot be anticipated, it is a formidable

task to process all of the continuous data, either for generating triggers based only on TPC
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information, or for data acquisition. Furthermore, with the upcoming multi-kiloton-scale

detectors like the DUNE far detector modules [1] read out by hundreds of thousands of

electronic channels, the challenge becomes more acute as data rates at the front-end will

be of the order of TB/s. In addition, the capability of processing continuous data would

enable the use of low-energy signals from radiological sources as calibration signals.

Within this scenario, the MicroBooNE detector, as the first LArTPC in operation with

continuous readout, has a great opportunity to spearhead the development of the required

technology and inform future experiments. The implementation of the continuous readout

of the MicroBooNE LArTPC is described in section 2. The data reduction algorithms

required to achieve the continuous readout within the MicroBooNE DAQ constraints are

presented in section 3. The configuration of the main algorithm for zero suppression (ZS)

is discussed in section 4. The data compression results achieved are presented in section 5.

The performance of the MicroBooNE continuous readout stream in detecting and recon-

structing Michel electrons from stopping cosmic-ray muons, which are similar in energy to

the ones expected from electron-neutrino interactions emitted by a core-collapse supernova,

is discussed in section 6. The potential of the MicroBooNE continuous readout stream as a

development platform for other experiments such as DUNE is briefly discussed in section 7.

2 The MicroBooNE Continuous Readout Stream

The primary goal of the continuous readout stream is to enable the detection of signals

from the burst of supernova neutrinos by the MicroBooNE detector, should a nearby core-

collapse supernova happen during the lifetime of the experiment. For this reason, it is

also known as the supernova stream (SN stream, used for the rest of the article). The

SN stream is implemented in parallel to a triggered readout stream used for beam-related

physics. Detection of supernova neutrinos in a LArTPC is especially interesting due to

the higher sensitivity to the electron-neutrino flux through the νe +
40Ar → e− + 40K∗

channel [2]. The expected number of interactions in the MicroBooNE active volume is

O(10) for a supernova burst at 10 kpc (based on the prediction for DUNE [1]), spread over

≈ 10 s and with energies in the range ≈ 5 − 50 MeV. Due to the large cosmic-ray rate

(≈ 5.5 kHz [3]) resulting from the close-to-surface location of the detector, MicroBooNE

cannot rely on self-triggering on these events. Instead, the TPC data is continuously saved

to disk on the DAQ servers and an alert issued by the Supernova Early Network System

(SNEWS) [4] can be used as a delayed trigger. The most recent data is kept for more than

48 hours, allowing the collaboration to react to the alert. We defer the discussion about

the reconstruction and selection of the supernova neutrino interactions in the MicroBooNE

detector to future work.

The MicroBooNE TPC is read out by three consecutive wire planes [5]. The first two

planes crossed by the drifting electrons are configured as induction planes; each having 2400

wires oriented at ±60◦ from the vertical. The last plane is configured as a collection plane,

with 3456 vertical wires. Figure 1 illustrates the dataflow in the MicroBooNE readout,

from a TPC wire to the DAQ server. First, the signal in each TPC wire is preamplified

and shaped by ASICs immersed in the liquid argon, and then extracted from the cryostat

– 2 –



through feedthroughs. The signal is further amplified by warm electronics immediately

upon extraction to condition it for transmission using shielded twisted-pair cables to the

readout digital electronics on a platform above the detector. The readout of the 8256 TPC

channels is distributed among 9 readout crates, each one connected to a dedicated DAQ

server, known as a sub-event buffer (SEB). Seven of these crates (labeled as crates 02 – 08)

are loaded with 15 front-end modules (FEMs), each reading out 64 channels, consisting

of 16 wires from the first induction plane (plane U), 16 from the second induction plane

(plane V) and 32 from the collection plane (plane Y). Crate 01 is loaded with 11 FEMs

(one of them with only 32 channels) reading out exclusively induction channels from the

first plane. Crate 09 is loaded with 14 FEMs (one of them with only 32 channels) and

reads out mostly induction channels (720) from the second induction plane, with some

channels (96) from the collection plane and some channels (48) from the first induction

plane. In each FEM, the TPC data is digitized by 8 octal-channel 12-bit ADCs [6] at

16 MS/s. An FPGA (Altera Stratix III [7]) downsamples the TPC data to 2 MS/s and

writes it in time order to a 1 M×36 bit 128 MHz static RAM (SRAM) configured as a ring

buffer. The TPC data is read back from the SRAM by the same FPGA, but now ordered

by channel and split into two parallel streams. The trigger stream is only read out upon a

trigger, generated by the trigger board and distributed through controllers to the FEMs.

For a detailed description see [5]. The SN stream is continuously read out. The data of

each FEM is sent to a transmitter board (XMIT) through a readout crate backplane with

bandwidth up to 512 MB/s. The backplane dataway is shared between both streams, with

the trigger stream given priority over the SN stream using a token-passing scheme. The

FEM has a dynamic RAM (DRAM) for each stream to buffer the data waiting for its turn

to be transferred. The XMIT has 4 optical transceivers (OTx’s), each rated to 3.125 Gb/s.

Two are used for the trigger stream, and two for the SN stream. Finally, the data from

each stream is read out by custom PCIe 1.0 ×4 cards in each SEB. The triggered data

from each SEB is sent to the event builder (EVB) DAQ server using a network interface

card (NIC), while the continuous stream is written to a 15 TB local hard disk drive (HDD)

in each SEB, awaiting a SNEWS alert to be further transferred to offline storage. If no

SNEWS alert is issued and the disk occupancy reaches 80%, the oldest data is permanently

deleted until the occupancy falls below 70%.

The large data rate read out by the front-end electronics in each readout crate, ≈

4 GB/s, prevents the continuous acquisition of the TPC waveforms by the SEBs without

compression. In particular, the bottleneck of the SN stream is found in the disk-writing

speed of the local hard drive system, which is in the range of 50 − 200 MB/s. In order to

achieve such data rates, the FPGA applies data reduction algorithms described in section 3

to achieve a ≈ 20 − 80 compression factor.

The SN stream data is arranged into frames corresponding to 1.6 ms of detector read-

out. Each FEM creates its own frame record, writing the TPC data in a payload which

is preceded by a header consisting of twelve 16-bit words indicating the FEM address, a

word count of the data in the payload, a sequential identifier, the frame number, and a

simple checksum of the payload data. The TPC data consists of 16-bit words. The data

from each channel is preceded by a channel header and a timestamp.
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Figure 1. Simplified diagram of the MicroBooNE readout dataflow. The trigger stream components

are highlighted in blue text and the SN stream components are highlighted in light green.

A continuous readout of the PMT system, based on the more conventional out-of-

beam-spill discrimination signals described in [5], also exists but is not used for any of the

results of this work.

3 Data reduction algorithms

The SN stream FPGA firmware applies two data reduction algorithms sequentially. The

first one is a ZS scheme applied individually to all the channels. With reference to an

estimated baseline, the ADC samples are discarded if not meeting a configurable thresh-

old. The second data reduction algorithm is a fixed-table Huffman compression, in which

consecutive ADC samples which differ by less than 4 ADC counts are encoded using a

reduced number of bits.

3.1 Zero suppression

The ZS algorithm aims at removing the samples which do not carry any signal. For this,

it checks whether an ADC sample passes an amplitude threshold after subtracting the

channel baseline. The sign of the threshold can be chosen to be positive (passing samples

are greater than the sum of the baseline and threshold), negative (passing samples are

smaller than the baseline minus the threshold), or either. The threshold value and sign

are configurable for each channel. The different methods used to determine the thresholds

are described in section 4 and appendix B. In addition, a number of samples preceding

the first one to pass the threshold (presamples), and following the last sample that passed

the threshold (postsamples) are retained in order to better capture the waveform. The set

of samples that pass the threshold, plus the presamples and postsamples, is considered a

Region-Of-Interest (ROI). The numbers of presamples and postsamples are configurable

for each FEM (64-channel block). They have been set to 7 presamples and 8 postsamples,
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the maximum values allowed by the current FPGA firmware, to perform a local estimation

of the baseline during offline analysis.

Two versions of the ZS firmware have been produced. One version uses a sliding-

window algorithm in the FEM FPGA to estimate the baseline dynamically (see appendix A

for details). Another version uses a static baseline per channel which is configured at the

beginning of the run. In the static baseline version, the baseline value for each channel is

extracted from a previously chosen reference run from the DAQ trigger stream, taking the

mode of the raw ADC distribution.

An illustration of the effect of ZS (with dynamic baseline) on a waveform is shown in

figure 2. The results from each configuration are further discussed in section 5.

Figure 2. Example of data from a test stand at Nevis Laboratories showing the zero-suppressed

waveform in the SN stream (green circles), overlaid on the same waveform from the trigger stream

(red squares). An emulation of the dynamic baseline used by the FPGA is shown as a blue line,

with the threshold shown as a blue cross-hatched band. Only the samples with their ADC values

out of this band are saved, plus a number of samples preceding them (presamples) and following

them (postsamples). The threshold and baseline estimation tolerance values used in this figure are

for illustrative purposes and do not correspond to the ones used in the MicroBooNE detector.

3.2 Huffman encoding

After zero suppression, the digitized waveform is run through a Huffman encoding [8] stage

in which successive ADC samples differing by no more than ±3 ADC counts relative to the

predecessor ADC sample value are encoded as shown in table 1. This stage reduces the

memory footprint of the saved waveform by attempting to store more ADC samples in the

same memory space of a single uncompressed ADC sample.
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Table 1. Huffman encoding table relating the value of the difference between the current ADC

sample and the preceding one, ∆ADC = ADCi −ADCi−1, and the Huffman binary code.

∆ADC Code

0 1

-1 01

+1 001

-2 0001

+2 00001

-3 000001

+3 0000001

The readout electronics data format uses 16-bit words. Non-Huffman-encoded ADC

words use the lowest 12 bits to store the 12-bit ADC value, and use the rest as header

to identify the word as non-Huffman encoded. Huffman-encoded words have the sixteenth

bit (most significant bit) set to 1 to identify the word as Huffman-encoded. The other

15 bits are available to contain ADC information using the codes shown in table 1. Since

Huffman-encoded ADC samples within the same 16-bit word need to be separated, the

chosen Huffman encoding reserves the character 1 for punctuation. If there are no more

samples to be encoded in the Huffman word (because the next ADC difference is larger

than ±3 ADC counts) or the required code does not fit in the available bits, the unused

least significant bits are filled with zeros. In the latter case, a new Huffman-encoded word

will be created to continue storing the ADC differences.

4 Configuration of zero suppression parameters

This section describes the improved method used since August 2018 to determine the

channel-wise thresholds for ZS of TPC waveforms. Our initial approach, now deprecated,

was to use a single physics-motivated threshold for each TPC plane (a plane-wide threshold)

to separate signals from noise and is described in appendix B. As will be discussed in

section 5, the initial thresholds were too high. This allowed the setting of lower thresholds

not driven by the separation of signal from noise, but by exploiting the bandwidth of the

readout electronics, as described next. The motivation is that any signal that is zero-

suppressed online will be lost forever, while we can add additional higher thresholds offline

to reject noise if needed.

In order to set the threshold values per channel, we analyze the trigger stream ADC

distribution for each channel. This distribution consists overwhelmingly of noise. We find

the ADC values defining the shortest symmetrical interval around the mode of the ADC

distribution, containing 98.5% of the ADC distribution, corresponding to a ZS compression

factor greater than 67. An example of the method is shown in figure 3. The mode of the

distribution is also taken as the baseline ADC value for the ZS firmware that uses static

baselines as described in section 3.1. The ADC values of the integration limits found, after

subtracting the ADC baseline value, are taken as the ZS thresholds.
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Figure 3. Examples of raw ADC distributions from run 18468 from the trigger stream (taken during

the 2018 beam shutdown) used to determine the ZS thresholds and static baseline for channel 2000

from the first induction plane. The red area shows the data that is zero-suppressed, found by

integrating 98.5% of the distribution symmetrically around the maximum (taken as the baseline

value). The limits of the red area denote the position of the thresholds.

The channel-wise thresholds and baselines used for the static-baseline firmware are

shown in figure 4. Almost every channel has a threshold lower than the common plane-

wide threshold counterpart. The average threshold is 3.6 times smaller for U plane channels,

2.2 times smaller for V plane channels, and 5.2 times smaller for Y plane channels, allowing

the recording of more data and ensuring a higher charge-collection efficiency for low-energy

signals. Furthermore, noisy channels are effectively masked by setting higher thresholds

for them.

5 Data compression results

The compression factor is computed as the ratio of the expected data rate without com-

pression to the measured compressed data rate. The SN stream data-dominant physics

contribution is cosmic-ray muons crossing the MicroBooNE detector. Figure 5 shows the

compression factors achieved in each SEB for the three ZS configurations tested of the SN

stream, summarized in table 2.

Table 2. Summary of ZS configurations tested in the MicroBooNE detector.

Thresholds

Baseline
Dynamic Static

Physics-driven plane-wide SN Run Period 1 Not used

Bandwidth-driven channel-wise SN Run Period 2 SN Run Period 3

From November 2017 to July 2018 (SN Run Period 1), the ZS configuration described
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Figure 4. Channel-wise baselines (top) and thresholds (applied bipolarly, bottom) used for ZS with

the FPGA firmware with static baselines. The baseline values were set to optimize the dynamic

range of each channel (bipolar signals on the U and V planes and unipolar positive signals on the

Y plane). The overall threshold distribution follows the expected dependence on the wire length.

in appendix B was used. This resulted in data rates well below the 50 MB/s target, except

for SEB06. The cause of the high data rates and variation observed in SEB06 was traced

back to the large number of noisy channels (due to ASIC misconfiguration) read out by

that readout crate, which prevented the dynamic baseline algorithm from establishing an

accurate and stable baseline upon which to execute the ZS. The dispersion in data rates is

also seen in other SEBs (e.g. SEB07 and SEB09, but with a smaller magnitude). Moreover,

the low data rates in the rest of the SEBs suggested it was actually feasible to lower

the thresholds to gain efficiency for low-energy signals, even at the expense of recording

some noise which could be eliminated during the offline reconstruction. This motivated

deprecating the plane-wide thresholds in favor of (mostly lowered) individualized thresholds

adjusted to produce data rates closer to the target goal.

Beginning in August 2018 (SN Run Period 2), the ZS per-channel thresholds described

in section 4 were deployed, keeping the dynamic baseline estimation. Because most of the

thresholds were below the plane-wide values, this resulted in an increase of data rates for
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most of the SEBs, while the raising of thresholds for a few especially noisy channels signif-

icantly decreased the fluctuations in SEB06. The lack of an accurate and precise baseline

during large portions of the run was a major concern. This motivated the replacement

of the baseline estimation algorithm with the static configuration version, beginning in

September 2018 (SN Run Period 3), in order to have a baseline value for ZS from the

beginning of the run, regardless of the noise conditions. As seen in figure 5, this latest ZS

configuration using static baselines and channel-wise thresholds achieved the compression-

factor target range and resulted in better stability for all the SEBs, and has been adopted

as the default running mode.
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Figure 5. Compression factors achieved in the SN stream for the 9 TPC DAQ servers (SEBs) with

the three ZS configurations used so far. Date format is day/month/year. Until end of July 2018

(marked with a heavy dashed line) the configuration used the plane-wide thresholds and dynamic

baselines. During August 2018, the lower channel-wise thresholds were tested, keeping the dynamic

baseline. Beginning in September 2018 (marked with a heavy dashed line), the static baselines were

introduced. Each point shows the mean of the compression factor over 6 hours. Error bars show

the standard error on the mean. The low compression factor for SEB05 during mid-August was

caused by a misconfigured front-end ASIC after emerging from one power outage, and returned to

the proper configuration in the following power outage. The jump in compression factors starting

on September 24th, 2018 corresponds to the filling of the cryostat with a batch of lower-purity

argon, followed by a period of high-voltage instabilities.

6 Analysis of Continuous Readout Stream data

This section describes the offline analysis of the SN stream data using LArSoft [9, 10] and

uboonecode [11], with the final goal of assessing the sensitivity to electrons with energies

in the supernova neutrino range (few to tens of MeV).
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6.1 Event building

The binary data from the SN stream is written to files on each of the nine SEB DAQ

servers, each of which has a 15 TB RAID array, which temporarily stores the data for

hours (typically more than 48 h) before it is permanently deleted. Data are processed for

SN event building only on demand. Parallel processes independent of the primary DAQ

run on each SEB, retrieve the requested frames from a given run number and send them via

TCP (transmission control protocol) connections to a central server. Data from all TPC

SEBs and the PMT SEB are assembled for each frame and written to a MicroBooNE-

format file. Currently, there is no automated trigger to respond to the SNEWS alert given

the large time window to react. Instead, the runs surrounding the alert timestamp would

be marked as such by collaborators to prevent deletion in the hours following the alert,

and subsequently assembled to search for supernova neutrinos.

The encapsulation of the SN stream is slightly more complex than the regular trigger

stream since the data consists of ROIs occurring randomly in time. In the case of a core-

collapse supernova, the neutrino burst is spread out over tens of seconds and there is no

clear start time, so the event concept must be defined. For the Michel electron analysis

described in section 6.3, the events were defined as 6400-samples long, the size used for

the trigger stream. Each event is formed by taking a 1.6 ms-long frame (3200 samples),

and appending the preceding last 0.8 ms (1600 samples) from the previous frame and

the following first 0.8 ms (1600 samples) from the next frame. This ensures that objects

crossing frame boundaries can be well reconstructed by the pattern recognition algorithms.

For all the results from the SN stream shown in section 6.3, only the Michel electrons with

the decay vertex in the central frame of each event are considered to avoid double-counting.

6.2 Signal processing

The ROIs produced by the ZS in the SN stream follow a reconstruction chain similar to the

one in the trigger stream (see figure 6). No noise-filter stage is used as the ZS removes the

baseline regions where this filter is effective. No software ROI finder stage occurs either,

since the ZS in the FPGA already produces ROIs. An additional challenge not present in

the trigger stream is that 4% of the ADC samples of the SN stream exhibit flipped bits

randomly (see figure 7). This results in one or more of the bits encoding the ADC value

to switch from 0 to 1, or vice versa, shifting the original ADC value by a combination of

powers of 2. Since this has not been observed in the trigger stream, it must occur during

digital processing after the SRAM, when the two streams separate (cf. figure 1). While

the investigation of the origin of the flipped bits continues, we have mitigated their effect

offline as described next.

A tailored offline baseline subtraction is implemented for the SN stream using a linear

interpolation between one of the presamples and one of the postsamples which are acquired

during the ZS. Due to the occurrence of the flipped bits, the ADC value of the presamples

and postsamples needs to be checked before using it for interpolation. For this, we compute

the median ADC value for the presamples and the postsamples separately. This provides

a first estimation of the baseline on each side of the pulse, since most of the samples are
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Figure 6. Illustration of the reconstruction chains used for the different data sets: the stages

unique to the SN stream data are shown as black boxes, the stages unique to the trigger stream data

are shown as red boxes. A ZS simulation stage emulates the real-time digital processing of the SN

stream data, performed in the FPGA, and allows the trigger stream to be converted into continuous-

stream-like data for direct comparisons. The light green boxes show common reconstruction stages

for which the processing is identical.
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Figure 7. Example of the flipped-bit filter on a waveform from a collection plane channel. The

baseline-subtracted waveform after the flipped-bit filter is shown in red. The original waveform is

shown in black (ADC counts have been shifted by the average baseline value to fit in the same axis

range). ADC samples affected by flipped bits are seen at ticks 3381 and 3393 of the 2 MHz clock.
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not affected by flipped bits. Then we compare the presamples (postsamples) to the median

and choose the earliest presample (latest postsample) within 15 ADC counts (absolute

difference) of the median as the reference points for interpolation. The 15 ADC counts

cut was chosen to reject samples affected by a flipped bit in the fourth bit or higher, as

that is the minimum deviation which could be identified as flipped bits as opposed to noise

fluctuations or ionization charge signal-related deviation.

Once the baseline has been subtracted, the waveform goes through a filter to correct

for flipped bits. This is done by comparing each ADC value to a linear interpolation built

using the preceding and the following samples. If the difference between them is larger

than 32 ADC counts, the ADC value is replaced with the interpolated value. Flipping bits

with a shift smaller than 32 ADC counts are difficult to distinguish from actual signals

and we do not attempt to correct them. The ADC cuts were chosen by hand-scanning

waveforms and identifying the spikes which could be attributed to flipped bits. Unlike in

the case of the baseline estimation, identifying flipped bits in the rising or falling edge of a

pulse is more challenging, which motivated the choice of more conservative values than for

the baseline selection. An example of this algorithm is shown in figure 7.

Finally, the waveform is processed using the same 1-D deconvolution tool [12, 13] that

is used to deconvolve the trigger stream waveforms.

6.3 Michel electron reconstruction

In order to show the performance of the SN stream, we use Michel electrons from stop-

ping cosmic-ray muons. The Michel electron spectrum spans an energy range very similar

to the electrons resulting from charged-current interactions of electron neutrinos from a

core-collapse supernova. The reconstruction and selection follows the MicroBooNE Michel

electron analysis [14], but extends its application to the induction planes. For each plane,

the Michel reconstruction is processed independently; this allows the study of the effect of

ZS on induction (bipolar) signals compared to collection (unipolar) signals.

The SN stream data set uses 1999022 frames, corresponding to 53.31 minutes of data,

taken on September 21st, 2018. To provide a reference for comparison, we use 1102845

events from off-beam zero-bias triggers from the trigger stream, corresponding to 58.82

minutes of data, taken between December 1st, 2017 and July 7th, 2018, after applying

data quality criteria for the detector operating conditions. This data set is processed

following the standard reconstruction for the trigger stream. In addition, we process the

trigger stream data set through a ZS emulation that reproduces the FPGA algorithm and

reconstruct it with the same tools as the SN stream.

The Michel electron spectra from the three TPC planes are shown in figures 8 and 9.

They show the total energy of the Michel electron candidates, summing over all the hits of

the ionization and radiative clusters as in reference [14] (see an example in figure 10). In

order to avoid ambiguities when reconstructing Michel electrons with overlapping radiative

components, we reject events with more than one Michel electron candidate. The ADC

count-to-MeV calibration constants for the U, V and Y planes are 9.00 × 10−3 MeV/ADC,

8.71× 10−3 MeV/ADC and 9.24× 10−3 MeV/ADC, respectively [15]. In the three figures, a

rate and shape discrepancy between the SN stream and the trigger stream is observed. The
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shape discrepancy is caused by the ZS, as evidenced by a better agreement (i.e. flat ratio)

with the trigger stream when we simulate the ZS (see the shape comparison in figure 11).
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Figure 8. Michel electron candidate energy spectra reconstructed using only the collection plane.

The black points in the upper panels show the same spectra from the SN stream. (a) shows the

trigger stream data processed through the standard reconstruction (red histogram). (b) shows the

trigger stream data processed through the ZS emulation and the continuous stream reconstruction

(green histogram). Both trigger stream spectra are normalized to the exposure of the SN stream.

The bottom panels show the ratio between the SN stream and the trigger stream data points. The

error bars and bands show statistical uncertainties.

Table 3 shows the Michel electron rates, considering only the candidates with energy

below 80 MeV, as in [14]. The rate and shape discrepancy in the second induction plane

(plane V) when compared to the non zero-suppressed trigger stream is especially remark-

able. The second induction plane has signals which are more vulnerable to not passing the

ZS due to their smaller amplitudes and bipolar symmetric shapes, that favors cancellations.

Excluding this plane, table 3 shows that the Michel electron rates of the SN stream and the

trigger stream agree within 10%. It is important to take into account that the SN stream

data set corresponds to 53.31 minutes of actual run time while the trigger stream data set

is spread over 218 days of run time, and hence are subject to different fluctuations. In

particular, for the trigger stream data set, the average ground temperature was 5.6 degrees

Celsius and the average barometric pressure was 1017 mbar, while the average temper-

ature and pressure for the SN stream data set was 26.6 degrees Celsius and 1009 mbar,

respectively. It is known that the seasonal temperature and pressure variations induce a

modulation on the cosmic muon ray flux, as they change the density of the atmosphere in

which the muons are produced. Determining the exact effect on the stopping muons inside

the MicroBooNE detector is out of the scope of this work, but variations up to 20% have

been observed [16]. The slight increase in the trigger stream rates when simulating ZS over

the trigger stream, and the associated decrease in the ratios of the rates (except for the V
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(a) U plane (standard trigger stream).

 Energy (MeV)
0 10 20 30 40 50 60 70 80

 E
nt

rie
s/

2 
M

eV

0.5

1.0

1.5

2.0

2.5

3.0
310× Trigger stream + ZS

SN stream

MicroBooNE

 Energy (MeV)
0 10 20 30 40 50 60 70 80

S
N

/T
rig

ge
r

0.0
0.5
1.0
1.5

(b) U plane (trigger stream with ZS emulation).
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(c) V plane (standard trigger stream).
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(d) V plane (trigger stream with ZS emulation).

Figure 9. Michel electron candidate energy spectra reconstructed using only one of the induction

planes. The top row shows the first induction plane (plane U), the bottom row shows the second

induction plane (plane V). For each row, the markers and colors follow the same convention as

figure 8.

plane discussed above), is understood as events from the overflow bin (above 80 MeV, not

included in the rate measurement) migrating into lower energies when adding the effect of

ZS.

The effect of ZS is further studied by separating the ionization and radiative com-

ponents of the Michel electrons. The ZS is found to cause a shift to lower energies of

the ionization component (see figure 12), and an excess of the radiative contribution at

high energies (see figure 13). We interpret this effect as Michel electron tracks being split
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Figure 10. Michel electron candidate event display on the collection plane. The white background

areas on (a) show the channel readouts which have been zero suppressed. The pink boxes on (b)

illustrate the electron ionization and radiative components.
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Figure 11. Michel electron candidate energy spectra from the SN stream (black points) overlaid

on reference spectra from the trigger stream with simulated ZS (green histogram) normalized to

the same area. Error bars and bands display statistical uncertainty.
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Table 3. Michel electron candidate rates measured in the SN stream (SN), the trigger stream

(Trigger) and the trigger stream with simulated ZS (Trigger + ZS) on the three TPC planes. The

last two rows show the ratio between the continuous stream and the trigger stream (without and

with simulated ZS). Uncertainties are statistical only.

Michel e rate U plane V plane Y plane

SN (s−1) 11.58 ± 0.06 9.49 ± 0.05 7.63 ± 0.05

Trigger (s−1) 12.22 ± 0.06 13.10 ± 0.06 8.20 ± 0.05

Trigger + ZS (s−1) 13.01 ± 0.06 10.11 ± 0.05 8.79 ± 0.05

SN/Trigger 0.948 ± 0.007 0.724 ± 0.005 0.930 ± 0.008

SN/(Trigger + ZS) 0.890 ± 0.006 0.939 ± 0.007 0.868 ± 0.008

into segments by the ZS process. This leads to shorter reconstructed ionization compo-

nents, confirmed explicitly by measuring the length of the ionization component shown in

figure 14, and analyzing the hit multiplicity of the ionization component in figure 15. A con-

sequence is the detached ionization segments being reconstructed as radiative components,

increasing the radiative hit multiplicity as shown in figure 16. These effects compensate

each other when computing the total energy of the Michel electron by summing over all

the ionization and radiative components. Overall, the zero suppression introduces a bias

for the induction planes, ≈ 25% for the U plane and ≈ 10% for the V plane, but the bias for

the collection plane is < 1%. The resolution for the induction planes degrades by ≈ 20%,

but the resolution for the collection plane, the most relevant for energy estimation, is not

significantly affected.
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(a) Y plane (standard trigger stream).
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(b) Y plane (trigger stream with ZS emulation).

Figure 12. Energy spectra of the Michel electron candidate ionization component reconstructed

using only the collection plane. The shift of the SN stream spectrum to lower energies in (a) is also

seen on the induction planes and is well reproduced by the ZS emulation in (b). The markers and

colors follow the same convention as figure 8.
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(a) Y plane (standard trigger stream).
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(b) Y plane (trigger stream with ZS emulation).

Figure 13. Energy spectra of the Michel electron candidate radiative component reconstructed

using only the collection plane. The SN stream spectrum shows an excess at high energy in (a),

which is also present on the induction planes, and is well reproduced by the ZS emulation in (b).

The markers and colors follow the same convention as figure 8.
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Figure 14. Length of the Michel electron candidate ionization component on the collection plane.

The shortened length of the ionization component of the SN stream candidates in (a) is also seen

on the induction planes, an effect which is reproduced by the ZS emulation in (b). The markers

and colors follow the same convention as figure 8.

The impact of ZS is stronger for the induction planes, as they feature smaller signals

and higher thresholds (cf. figure 4), resulting in a relative shift of the distribution peaks to

lower values when compared to the same distribution for the collection plane. Nevertheless,
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Figure 15. Hit multiplicity of the Michel electron candidate ionization component reconstructed

using only the collection plane. The shift to lower multiplicities observed in (a) for the SN stream

is well reproduced by the ZS emulation in (b). The induction planes also show this shift in the SN

stream. The markers and colors follow the same convention as figure 8.
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(a) Y plane (standard trigger stream).
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Figure 16. Hit multiplicity of the Michel electron candidate radiative component reconstructed

using only the collection plane. (a) shows an excess at high multiplicity in the SN stream, which is

also seen on the induction planes, and is well reproduced in (b) by the ZS emulation. The markers

and colors follow the same convention as figure 8.
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a similar shift is also seen in the trigger stream spectra (e.g. see figures 9(a) and 9(c) with

respect to figure 8(a)). This points to a higher inefficiency in collecting the charge on the

induction planes which will also contribute to this shift.

Among the induction planes, the U plane shows more extreme shifts to lower values

due to ZS. This is expected since the U plane thresholds are higher than the V plane

thresholds, but also because the charge from the slow-rising induction component of the

U plane signals is not fully captured by the limited number of presamples allocated in the

ZS. In particular, the energy spectrum of the individual ionization hits, obtained from the

ionization component of the Michel electron (see figure 10(b)), for the U plane (figure 18(a))

shows an increase of the “Compton-like” tail with respect to the spectrum on the V plane

(figure 18(c)).

The good agreement shown by the trigger stream and simulated ZS with the SN stream

hit-energy spectra allow us to anticipate that the impact of flipped bits on calorimetry after

signal processing is very small. Figures 17, 18, and 19 show the effect of flipped bits as

a small peak at 0.1 − 0.2 MeV, which is more prominent on the collection plane, where

flipped bits have been found to be ≈ 9% more frequent. This is understood to be caused

by the flipped bits which escape correction by the filter and distort the waveform, forcing

the hit finder to allocate extra hits to fit the waveform shape. Because only small shifts

in ADC counts escape correction, these additional hits have small amplitudes. Using a

data-driven simulation of the flipped bits we have evaluated the impact on the hit energy

resolution to be ≈ 10%. Note these additional hits are effectively rejoined when summing

over all the hits within the cluster to estimate its energy, resulting in a similar impact

on the event. Due to the dominant (≈ 20%) contribution to the resolution caused by the

failure to reconstruct very low energy photons radiated by the electrons [14], we deem

this additional contribution acceptable, even though the investigation of the origin of the

flipped bits continues. In addition, not all the hits contributing to the 0.1 − 0.2 MeV peak

come from flipped bits, as the ZS is found to also create additional radiative-like hits in

that region, shown by the peak found in the trigger stream distributions with simulated

ZS in figure 19(b), for which flipped bits were not simulated.

7 The Continuous Readout Stream as a development platform

The MicroBooNE SN stream is the first realized stage toward a self-triggering LArTPC

based on TPC information. Its successful operation enables both physics measurements

and a platform to develop and test TPC-based data selection algorithms for current and

future detectors. For example, the zero-suppressed ROIs can be processed offline to extract

features to be used as trigger primitives, which then would be clustered and processed

through pattern recognition. See reference [17] for an example using the DUNE trigger

primitive prescription [18]. A detailed discussion is beyond the scope of this work, but

our analysis of Michel electrons already suggests that the energy bias observed in the

reconstruction of the ionization component is an effect to be taken into account when

defining the thresholds for such a trigger. The possibility of triggering using any of the TPC

planes, especially for enabling an online 3-D hit reconstruction based on matching time and
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(a) Y plane (standard trigger stream).
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(b) Y plane (trigger stream with ZS emulation).

Figure 17. Hit energy spectra of the Michel electron candidate ionization component reconstructed

using only the collection plane. The markers and colors follow the same convention as figure 8. The

peak at 0.1 − 0.2 MeV found in the SN stream data is dominated by additional hits caused by

flipped bits affecting the ADC words.

wire coordinates, which can reduce the impact of noise and ambiguities when clustering,

is very attractive. In this regard, we observe a large loss (≈ 20%) of reconstructed Michel

electrons on the second induction plane caused by the ZS, which would decrease the trigger

efficiency for this plane. The second induction plane is shielded by the first induction

plane, resulting in signals with smaller amplitudes, which are more difficult to separate

from the electronics noise, and symmetrical, which makes them prone to cancellation due

to destructive interference. While the long induction rising edge of the signals on the first

induction plane may be challenging to capture, the asymmetrical nature of the pulses on

this plane makes them more suitable for triggering. The inefficiency of a shielded plane can

be partially mitigated if a peak-signal-to-noise ratio large enough is achieved (for reference,

MicroBooNE U and V planes have S/N of 18.1 and 13.1, respectively [19]), which would

allow the setting of lower ZS thresholds.

8 Conclusion

MicroBooNE is the first liquid argon time projection chamber experiment to successfully

commission and operate a continuous readout, opening a new way to look at data from the

MicroBooNE detector. This novel data stream gives MicroBooNE the possibility to detect

the burst of core-collapse supernova neutrinos using the SNEWS alert as a delayed trigger,

expanding the physics program of the experiment. We defer the discussion of reconstruction

and selection of those neutrinos to future work. After one and a half years of successful

operation, during which we have tested multiple FPGA-based compression algorithms, the

goal of reaching a stable compression factor ≈ 80, with sensitivity to supernova neutrino
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(a) U plane (standard trigger stream).
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(b) U plane (trigger stream with ZS emulation).
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(c) V plane (standard trigger stream).
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(d) V plane (trigger stream with ZS emulation).

Figure 18. Hit energy spectra of the Michel electron candidate ionization component reconstructed

using only one of the induction planes. The top row shows the first induction plane (plane U), the

bottom row shows the second induction plane (plane V). For each row, the markers and colors

follow the same convention as figure 8. The SN stream data in (a) shows a low-energy tail above

the trigger stream reference caused by the incomplete acquisition of the slow-rising pulses of the

first induction plane resulting from the limited number of samples below threshold available in the

FPGA implementation of ZS.
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(a) Y plane (standard trigger stream).
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(b) Y plane (trigger stream with ZS emulation).

Figure 19. Hit energy spectra of the Michel electron candidate radiative component reconstructed

using only the collection plane. The markers and colors follow the same convention as figure 8. The

peak at 0.1 − 0.2 MeV in the SN stream data is found to be caused by a combination of ZS and

flipped bits affecting the ADC words. A similar effect is observed on the induction planes.

energies, has been accomplished on all the TPC planes, including the induction planes

where the pulse shapes are more challenging. The best performance was found for a

zero-suppression algorithm that employs static baselines and bandwidth-driven individual

thresholds for each channel.

Based on the rate of Michel electrons from stopping cosmic-ray muons reconstructed

in the continuous readout stream, relative to the rate observed in the trigger stream, we

estimate a relative detection efficiency of (93.0±0.8)% on the collection plane, (72.4±0.5)%
on the second induction plane, and (94.8 ± 0.7)% on the first induction plane, where the

uncertainties are statistical, and do not include systematic effects such as seasonal variations

in the cosmic ray rate.

An unexpected challenge in the implementation of the continuous readout stream is

the appearance of flipped bits, affecting ≈ 4% of the ADC samples. Their origin is still

being investigated, but their effect has resulted in an acceptable contribution to the energy

resolution (≈ 10%) due to several mitigation steps in the offline reconstruction. Efforts

continue to understand and correct for this effect.

The continuous readout of a LArTPC is the first stage towards eventually developing

a trigger based on the ionization patterns observed in the TPC. Analysis of the Michel

electrons reveals that the zero suppression impacts the reconstruction of the ionization

component of the electrons, resulting in reconstructed lower energies. This effect is well re-

produced by our readout simulation. While this energy bias would have little impact on the

measurement of the energy of supernova neutrinos, where the total energy is computed by

including radiative-like components, it is an effect that would have to be accounted for when
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setting thresholds for an hypothetical TPC-based trigger that uses the zero-suppressed ion-

ization clusters. We also observe a large inefficiency (≈ 20%) in the reconstruction of Michel

electrons on the second induction plane caused by the combination of the smaller signals

due to screening by the first induction plane and the zero suppression.

Whereas this work focuses on using the SN stream to detect low-energy electrons such

as those produced by supernova neutrinos, MicroBooNE can use the SN stream data to

make novel measurements of other off-beam physics such as nucleon decay (proton decay,

neutron-antineutron oscillation, etc) in a liquid argon TPC and is a platform to develop

analyses for future detectors and to study possible backgrounds [20].

A Dynamic-baseline algorithm

This appendix describes the algorithm implemented in the FEM FPGA to estimate the

baseline in real time. The estimation of the channel baseline is performed using 3 con-

tiguous blocks of 64 samples each (each block corresponding to 32 µs of the waveform,

see figure 20). A rounded mean ADC value for each block is computed by summing the

ADC values of all 64 samples and then dropping the 6 least significant bits (equivalent

to an integer division by 64). A truncated ADC variance for each block is computed by

summing the squared differences between the ADC value of each sample and the rounded

mean computed above, and then dropping the 6 least significant bits. If the absolute value

of the difference between an ADC sample and the rounded mean is greater than or equal

to 63 ADC counts, the contribution of that sample to the variance is fixed to 4095 ADC

counts to prevent arithmetic overflows. The rounded mean and the truncated variance

of each block are compared to the values from the other two blocks to avoid choosing a

baseline corresponding to an actual signal or a non-representative fluctuation. If the three

rounded mean differences and the three truncated variance differences between blocks are

within the configurable tolerance values, the rounded mean of the central block is taken as

the new baseline and applied for ZS for ADC samples beginning after the third block. The

local baseline estimation is applied continuously as a sliding window from the beginning

of the run, dropping the oldest 64-sample block and adding a newer block. The baseline

tolerance parameters (rounded mean and truncated variance differences) are configured per

FEM (i.e. in groups of 64 channels). If the baseline conditions are not satisfied (e.g. the

difference between blocks never meets the tolerance) in a channel, the ZS algorithm does

not produce output data for that channel.

B Physics-driven plane-wide zero-suppression thresholds

This appendix describes the first method used to determine the settings for the ZS of TPC

waveforms. This method aims at establishing a single threshold for each TPC plane to

separate signals (dominated by cosmic-ray muons) from electronics noise.

Using events from off-beam zero-bias triggers from the trigger stream during previous

runs with good electron lifetime, a first pass with a software emulation of the ZS algorithm

with a threshold of ±5 ADC counts (chosen arbitrarily to reduce the raw data while keeping
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Figure 20. Cartoon showing how the waveform is split into blocks for the dynamic baseline

estimation.

the signals and some noise fluctuations) and dynamic baseline was done. ADC spectra of

the maximum and minimum ADC values found in each zero-suppressed waveform, after

offline baseline subtraction using the first sample, were produced as shown in figure 21.

For these spectra, the peak closest to the origin is interpreted as noise, while the peak

furthest from the origin is interpreted as the signal, dominated by near-MIP cosmic-ray

muons. The FPGA firmware only admits one threshold value per channel and its polarity.

For the U plane, the negative valley was used to set the threshold at −25 ADC counts

(unipolar negative threshold). For the V plane, the two valleys are found at approximately

the same absolute ADC value. Hence, a threshold of ±15 ADC counts (bipolar threshold)

was established. For the Y plane, the valley in the positive ADC distribution was used to

set the threshold at +30 ADC counts (unipolar positive threshold).

These amplitude thresholds were tested with the dynamic-baseline ZS, with the base-

line tolerance parameters set to 2 ADC counts for the rounded mean and 3 ADC2 counts

for the truncated variance based on the MicroBooNE noise levels [19]. In the end, these am-

plitude thresholds were deprecated in favor of the bandwidth-driven thresholds described

in section 4, which allow the recording of more data.
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Figure 21. Maximum (a) and minimum (b) ADC values in the regions of interest produced by

the emulation of the ZS algorithm with a ±5 ADC count threshold to decimate the SN stream raw

data, as a function of channel number. The horizontal black lines mark the location of the chosen

thresholds for the three TPC planes: −25 ADC counts for plane U (channels 0 − 2399), ±15 ADC

counts for plane V (channels 2400− 4799) and +30 ADC counts for plane Y (channels 4800− 8255).
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