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Abstract

Neoclassical economic theory assumes that whenever agents tackle dynamic

decisions under ambiguity, preferences are represented by the Subjective Expected

Utility (SEU) model and prior beliefs are updated according to Bayes rule, upon

the arrival of partial information. Nevertheless, when one considers non-neutral

ambiguity attitudes, either the axiom of dynamic consistency or of consequentialism

should be relaxed. Using data from an economic experiment on dynamic choice

under ambiguity, we study which of the two rationality axioms people violate,

along with the question of whether this violation is part of a conscious planning

strategy or not. The combination of the two, allows us to classify non-SEU subjects

to three behavioural types: resolute, naı̈ve and sophisticated. The hypothesis of

Bayesian updating is rejected for more than half of the experimental population.

For ambiguity non-neutral subjects, we find that the majority are sophisticated, a

few are naı̈ve and very few are resolute.
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1 Introduction

Underlying much of economic theory are three key assumptions. These are that eco-

nomic agents: (1) use probabilities to describe risky and ambiguous situations; (2) be-

have in a dynamically consistent way; and (3) update probabilities according to Bayes

rule, upon the arrival of partial information. Subjective Expected Utility theory (SEU,

Savage, 1954) binds these three assumptions together in a logical and intellectually

satisfying manner. Nevertheless, since the seminal thought experiments proposed by

Ellsberg (1961), challenging the first assumption, a vast literature of theoretical models

emerged, aiming to accommodate Ellsberg-type preferences1. The direct consequence

of this was the rapid development of a large body of experimental work, that either

tests the attitudes towards ambiguity, or performs horse-race comparisons to identify

the model that best describes data2.

However, as it is highlighted in Gilboa and Schmeidler (1993), if one wants to con-

firm the theoretical validity of any model of decision making under uncertainty, this

model should be able to successfully cope with the dynamic aspect of the choices.

When SEU is extended to its dynamic dimension, the independence axiom (often

called the “sure thing principle”) is equivalent to two rationality axioms, namely dy-

namic consistency (DC) and consequentialism (C), along with other conventional assump-

tions. DC requires that the ex-ante preferences coincide with the ex-post ones, while

C dictates that past decisions play no role and only available options matter3. Ghi-

rardato (2002), provides the elegant result that when both DC and C are satisfied,

preferences are represented by SEU and the agent’s beliefs are updated according to

Bayes rule4. However, given that most of the non-SEU models relax the independence

1See among others Gilboa and Schmeidler (1989), Schmeidler (1989), Tversky and Kahneman (1992),
Ghirardato et al. (2004), Klibanoff et al. (2005), Maccheroni et al. (2006), Gajdos et al. (2008), Siniscalchi
(2009). For an extensive review of the models see Etner et al. (2012).

2See Halevy (2007), Hayashi and Wada (2010), Hey et al. (2010), Abdellaoui et al. (2011), Charness
et al. (2013), Hey and Pace (2014), Ahn et al. (2014), Stahl (2014), Baillon and Bleichrodt (2015). For a
review of the main results see Trautmann and van de Kuilen (2015).

3Consequentialism was first proposed in Hammond (1988) and it requires that the conditional pref-
erences to remain unaffected by the outcomes outside the conditional events. Representing the dynamic
problem with a decision tree, consequentialism is satisfied when the decision maker does not take into
account states that are not available anymore and thinks of the rest of the decision tree as being a new
problem.

4Klibanoff and Hanany (2007) claim that dynamic consistency is the primary justification for
Bayesian updating and under the view that Bayesian updating should be taken as given, DC comes
“for free” under Expected Utility.
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axiom, modelling dynamic choice requires the theoretician to abandon either DC or C

and consequently, to abandon Bayes rule.

Al-Najjar and Weistein (2009), classify theories to four different categories, depend-

ing the assumptions they make on how decision makers (DMs) tackle dynamic prob-

lems and update their beliefs upon the reception of partial information. The first cat-

egory includes theories that abandon DC and are labeled as “naı̈ve updating” theo-

ries, since it is not necessary for the decisions at the present to take into consideration

future preferences. This includes Gilboa and Schmeidler (1993), Pires (2002), Wang

(2003), Eichberger et al. (2007) and Eichberger et al. (2010)5. In this approach, each

of the stages is faced independently of the other, strategy that may lead to dynamic

inconsistencies and dominated results. The second category, includes theories that re-

quire the DM to behave in a sophisticated way, thus violating DC. This approach is

mainly represented by Siniscalchi (2011), who does not assume any particular prefer-

ence functional or update rule. The idea is based on the notion of consistent planning,

where the ex-post preferences are taken into account when the ex-ante choices are made.

An alternative way to model dynamic choice involves the relaxation of C. This family

of models proposes the use of a set of distorting updating rules that ensure DC. This

includes Klibanoff and Hanany (2007), Hanany and Klibanoff (2009) and Klibanoff

et al. (2009), who have axiomatised and extended few of the most commonly used

ambiguity models to their dynamic version. Finally, there is a category of models in

the literature that maintains both C and DC in the framework of multiple-priors rep-

resentation of beliefs. To this end, these models require the restriction of information

sets and allow the updating only of the set of beliefs that does not reverse the ex-ante

choices based on the rectangularity condition. A representative model of this approach

is presented in Epstein and Schneider (2003)6.

This classification, resembles Machina (1989), who defines four different types of

DMs in dynamic choice under risk: the so called α-people, are dynamically consistent

agents who maximise EU preferences, the β-people who are non-EU agents and ap-

ply consequentialism, acting in a dynamically inconsistent way (myopic behaviour),

5Ozdenoren and Peck (2008) in a game theoretical framework, show that violating DC is the rational
course of action, when suspicion is perceived regarding the composition of the Ellsberg urn.

6An exhaustive review of the theoretical literature is beyond the scope of this study. Al-Najjar and
Weistein (2009), Klibanoff et al. (2009) and Siniscalchi (2011), provide excellent reviews of the various
approaches on modelling dynamic preferences under ambiguity.
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the γ-people who are non-EU agents but are dynamically consistent and finally, the

δ-people who are also non-EU, are characterised as sophisticated and satisfy consistent

planning7.

In this study, we use data from an experiment on dynamic decision making and

we classify subjects to four behavioural types, the SEU maximiser, the naı̈ve, the reso-

lute and the sophisticated type which correspond to the β-people, γ-people and δ-people

respectively.

Our aim is to understand how people behave in a dynamic decision problem un-

der ambiguity where decisions are made before and after the resolution of some un-

certainty. Using two-stage allocation questions, with partial information revealed in

an interim stage, this study aims to investigate three main questions: first, do people

behave according to the predictions of the SEU model and therefore, update beliefs in

a Bayesian way? Second, when people deviate from SEU, which of the two rational-

ity axioms do they violate? Third, when subjects violate the axioms of SEU, are they

aware of this violation? In other words, is this violation the consequence of a con-

scious planning strategy? The latter allows the classification of subjects to the various

behavioural types.

Surprisingly, experimental studies of dynamic decision making under ambiguity

are quite scarce. Cohen et al. (2000), in a non-incentivised experiment, study the

descriptive validity of the main two updating rules that have been axiomatised for

the multiple-priors family, the Maximum Likelihood Updating (MLU) rule and the Full

Bayesian Updating (FBU) rule. Using a design based on the dynamic Ellsberg urn, they

confirm the Ellsberg type behaviour and show that the FBU rule is applied more often.

They assume separability (an assumption close to C), which does not allow for a direct

test of which of the two axioms a subject satisfies. Dominiak et al. (2012) use a similar

design as in Cohen et al. (2000). They test whether subjects satisfy DC or C, provid-

ing evidence of extensive violation of DC, whilst finding supportive evidence for the

FBU rule. Finally, Georgalos (2019), using a set of two-stage allocation questions with

partial revelation of information, and assuming naı̈ve updating, tests the predictive

capacity of various dynamic ambiguity models, finding support for the Tversky and

7A similar classification has been also applied in a hyperbolic discounting context (O’Donoghue and
Rabin, 1999) and later in Hey and Panaccione (2011) and Barberis (2012), in the context of dynamic
decision making under risk.
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Kahneman (1992) Prospect Theory specification.

Georgalos (2019) assumes consequentialism and estimates various models and up-

dating rules. Although the present study will use the same data set as in Georgalos

(2019), we extend their analysis in two ways: first, we test which of the two axioms

is violated by ambiguity non-neutral agents. Second, by defining various behavioural

rules in planning strategies, we investigate whether subjects are aware of this violation

and whether they take it into consideration when they make choices.

Overall, we find substantial heterogeneity in behaviour. Only half of our experi-

mental population behaves according to SEU. For the ambiguity non-neutral subjects,

the majority are best described by the sophisticated type, few by the naı̈ve and a small

minority by the resolute. We also find extensive violations of dynamic consistency.

The rest of the paper is organised as follows: section 2 presents the decision task,

section 3 presents the theoretical framework and the different planning strategies,

section 4 summarises the assumptions for the statistical model and the estimation

method, while section 5 presents the results. We then conclude.

2 Data and the Portfolio Choice Problem

In this paper we use experimental data to estimate various preference functionals. We

elicit beliefs and strategies based on a revealed preference argument. To achieve this, we

use data from a series of two-stage portfolio allocation questions, in an experimental

design inspired by Loomes (1991). This allocation procedure has the potential to pro-

vide more informative data and has been generally applied in the literature in various

contexts8.

The two-stage portfolio allocation task consists of three, payoff relevant, mutually

exclusive states of nature. Each state s, corresponds to state-contingent Arrow security,

the return of which equals es if state s occurs and 0 otherwise. es is the rate of return

of asset s (henceforth exchange rate) for every unit of income allocated to this asset.

8Studies that use allocation problems include Choi et al. (2007) in a portfolio choice experiment under
risk, Charness and Gneezy (2010) studying portfolio choices, Hey and Panaccione (2011) on dynamic
decision making under risk, Ahn et al. (2014) in a portfolio choice experiment under ambiguity, Hey
and Pace (2014) comparing different static models of choice under ambiguity and Loomes and Pogrebna
(2014) studying individual risk attitudes. See Loomes and Pogrebna (2014) for an extensive discussion
on the allocation procedure.
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Ambiguity is represented with the aid of a transparent and non-manipulable device,

a Bingo Blower. Inside the transparent Bingo Blower, there were 20 balls in total, of

three different colours (red, blue and yellow), representing the three potential states

of the world. The balls were in continuous motion and the actual composition of the

Bingo Blower consisted of 4 blue (20%), 6 red (30%) and 10 yellow (50%) balls out

of the total 20. The advantage of this device is that although there exist objective

probabilities, known only to the experimenters, the subjects lack this information and

they somehow form subjective beliefs, regarding the probabilities of the three states

of the world, that may not be known to them in a conscious way. That is, while they

can observe that there is at least one ball of each colour (lower bound probability), it

is almost impossible to be able to identify the exact composition of the Bingo Blower,

generating, in this way, genuine ambiguity. During the experiment, the subjects could

observe the physical Bingo Blower placed in the middle of the lab and they could also

consult live streaming of the blower projected in two large screens in the front of the

lab.

Each allocation question consists of an experimental income m, expressed in to-

kens, and an exchange rate es for each of the possible states of the world, with s being

either blue, red or yellow. At the first stage, the subjects were asked to allocate their

experimental income between the three colours, knowing that at the end of the second

stage, one ball would be extracted from the Bingo Blower, and the payoff would be

the product between the tokens allocated to this colour and its respective exchange

rate. Before that, there was an interim stage, where the subjects would obtain partial

information regarding the ball that was extracted, but they would not learn the actual

colour of the ball. For example, the subjects would learn that “the ball is not blue”.

Then all the tokens that were allocated to the blue colour were lost and the subject was

given the opportunity (if she wished so) to re-allocate the remaining endowment to

the two available colours, red and yellow. The subjects knew that during the interim

stage, they would receive the information that the colour is not blue, yellow or red

with equal chances.

At t = 2, all ambiguity would be resolved, the actual state of the world would be

revealed and the DM would be paid the state-contingent dividend. A crucial aspect of

the experimental design is that the revealed preference methodology was based on the
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strategy method, that is, but the only time the period t=2 was carried out was after the

experiment when the question that would be played for real was presented. Realising

t = 2 for every question, and therefore allowing continuous sampling from the Bingo

Blower, could potentially generate learning effects regarding the actual probability dis-

tribution, thus transforming the problem into a risky situation (ambiguity/uncertainty

is eliminated) with objective probabilities9. As the objective of the experiment was to

estimate belief updating models, rather than belief learning ones, participants were

informed that no actual draws will take place during the experiment, but instead,

hypothetical draws, and subsequently hypothetical partial information would be an-

nounced to subjects.10.

The same task was repeated for a total of sixty, independent allocation questions,

where each question involved a varying endowment from 9 to 110 tokens, while the

exchange rates for the three colours were varied between 0.1 to 1.811. The subjects had

to allocate all their endowment in each question.

Subjects were paid according to a random incentive mechanism, where one of the

allocation questions was played for real. There are data from 58 subjects (see Georgalos

2019 for analytical details on the design).

3 Theoretical Framework and the Different Types

In this section we present the latent structural models of decision making that we fit to

our data, as well as the various behavioural types of DMs. First we provide the formal

definitions of the axioms needed to characterise the different types, namely dynamic

consistency, consequentialism and the principle of consistent planning. Using a theo-

9See for example Trautmann and Zeckhauser (2013), Ert and Trautmann (2014) and Baillon et al.
(2018).

10This form of hypothetical signals has been previously applied in the literature in Griffin and Tver-
sky (1992) and Kraemer and Weber (2004). The computer was programmed to draw i.i.d. virtual balls
from a uniform distribution. Then it would announce that the ball is not one of the two remaining
colours with equal chances. For instance, if a ball was blue, it would announce that the ball is not red
with probability 50% and not yellow with the residual probability. This procedure was communicated
to the subjects. The information that the subjects received on average was “not blue” 34.54%, “not
yellow” 34.36% and “not red” 31.09%.

11The questions have been chosen after extensive Monte Carlo simulations that would ensure three
issues: (1) that for a simulated dataset using a given set of parameter values, it is possible to estimate
(recover) the value of the actual parameters; (2) that it is possible to identify between the different
specifications and; (3) that our estimation programs work efficiently. See section 4 for details on the
econometric analysis.
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retical framework similar to Savage (1954), we define a state space S, which includes

all the possible states of the world (in our framework S = {R, B, Y} for the red, blue

and yellow assets), and a set of outcomes C, which includes the payoffs from the port-

folio. An act f is a mapping from the state space S, to the set of outcomes C, which in

our framework corresponds to an allocation. An event E is a subset of S. In the general

case, an act fEg assigns the outcome f (s) to each state of nature s ∈ E, and the out-

come g(s) to each state s ∈ S\E. A decision maker is endowed by preferences % over

the set of all possible acts F . After learning that an event E has occured, the decision

maker updates her beliefs and constructs conditional preferences represented by %E.

Also, let u : R→ R be a standard utility function that satisfies the usual assumptions

of being twice differentiable, strictly increasing and strictly concave.

Dynamic Consistency. An agent satisfies dynamic consistency (DC) if for any non-empty

event E and all acts f , g ∈ F , such that f (s) = g(s) for each s ∈ S\E, f % g implies f %E g.

While in a pairwise choice context, DC dictates the lack of preference reversals, in

our allocation context, DC should guarantee that the ex-ante allocations between two

assets should be identical to the ex-post allocations, conditional on the partial informa-

tion that the event E provides.

Consequentialism. An agent satisfies consequentialism (C) when for every non-null event

E and all acts f , g ∈ F , f (s) = g(s) for each s ∈ E implies f ∼E g.

More specifically, this axiom is divided in two parts: that no weight is placed on

the consequences of acts that are not available any more, and that the conditional

preferences depend only on the information provided by the conditioning event E.

Al-Najjar and Weistein (2009) refer to this type of updated preferences as fact-based

updated. In the context of the dynamic portfolio choice problem, consequentialism

implies that previous allocations to the state that is no longer available, play no role

on the conditional preference between assets. In addition, it implies that inconsequen-

tial characteristics of the dynamic problem, such as the ex-ante optimal plan or vari-

ous feasibility constraints at previous stages of the problem, have no influence to the

conditional preferences. Machina (1989) describes consequentialism as if the decision

maker is snipping off or ignoring any part of the tree that can no longer be reached. In

that sense, the DM is forward looking and history has no effect to subsequent choices.
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Finally, the last definition is required for those DMs who proceed to violate DC,

but are aware of this violation. It is based on the notion of consistent planning, first

introduced in Strotz (1955-56) and extended in Siniscalchi (2011).

Consistent Planning. An agent adopts the consistent planning (CP) strategy, if at each

decision node, the best plan among those that will be actually followed is chosen.

This concept borrows elements from the game theoretical literature, where the dy-

namic problem is represented by a game played by multiple selves of the same indi-

vidual. The DM applies backward induction and her planning strategy requires to first

consider the terminal choice node of a decision tree and choose the optimal course of

action at this point. Then, by “folding back”, she calculates the optimal choice in the

previous nodes, taking into consideration her future preferences. Siniscalchi (2011)

formally axiomatises this concept for dynamic choice under ambiguity by deriving ex-

ante conditional preferences over decision trees rather than over acts. We next describe

the behaviour for each of the specifications that we consider. We start by presenting

the benchmark model of SEU with Bayesian updating and then, we subsequently re-

lax the assumption of ambiguity neutral attitudes. We present the strategies assuming

a generic form regarding the utility representation.

3.1 Subjective Expected Utility

The DM is assumed to hold a unique set of subjective, additive priors π = {π(R), π(B), π(Y)}

regarding the three possible states of the world such that π(R) + π(B) + π(Y) = 1.

As already highlighted, a convenient feature of the SEU model is that the DM satisfies

both DC and C. Consequently, the beliefs of the agent are updated according to the

Bayes rule which ensures that the ex-ante allocation coincides with the ex-post. Hence,

it suffices to solve the problem as if it was a static one with three possible states of the

world. The objective of the DM is to calculate the optimal portfolio X = (xR, xB, xY),

based on her subjective beliefs, that maximises the expected utility according to the

utility function u(.), subject to the budget and the non-negativity constraints. The
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optimal allocation is given by maximising:

max
X

π(R)u(eRxR) + π(B)u(eBxB) + π(Y)u(eYxY)

s.t. xR + xB + xY = m

where xs is the amount of tokens allocated to asset s and es is its exchange rate (es × xs

determines the payoff of asset s). By definition, a DM that holds additive subjective

beliefs is characterised by a neutral attitude towards ambiguity.

3.2 The α-Maxmin Model

Here we relax the assumption of additive beliefs and we introduce non-neutral ambi-

guity attitudes assuming that the DM has α-Maxmin preferences (α-MEU, Ghirardato

et al., 2004). In this model the agent believes that the true probabilities over the state

space lie within a continuous, closed and convex set of subjective priors Π (multiple-

priors representation). This set includes all the possible scenarios regarding the fu-

ture states of the world, in the form of subjective probability distributions (beliefs).

Figure 1 illustrates this set Π using a two-dimensional unit simplex (known as the

Marschak-Machina Triangle12) where the probability that the state of the world is R

(Y) is represented in the horizontal (vertical) axis. Assuming that there exist non-zero

low bounds of the DM’s subjective beliefs (π(R), π(B), π(Y)), we are able to draw the

interior triangle, the size of which illustrates the degree of ambiguity perception of the

agent. When this interior triangle shrinks to a single point, then all ambiguity van-

ishes and the model reduces to SEU. In the general case, a portfolio X = (xR, xG, xB) is

evaluated as a convex combination of its minimal and its maximum expected utilities

over this set Π of prior probability vectors over the three states of the world:

U(X) = α min
π∈Π

[
∑
s∈S

π(s)u(es xs)

]
+ (1− α)max

π∈Π

[
∑
s∈S

π(s)u(es xs)

]
(1)

with Π = {π(s) : π(s) ≥ π(s)} and s ∈ {B, R, Y}13. The α coefficient can be inter-

preted as a measure of the agent’s aversion to this perceived ambiguity. When α = 1

12This representation of prior beliefs in the MEU model first appeared in Hey et al. (2010) and then
broadly used in the ambiguity literature (see Kothiyal et al., 2014).

13We summarise the various sets of priors in Table 1.
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the model collapses to the MEU preferences (Gilboa and Schmeidler, 1989), where

maximal aversion to ambiguity is expressed. In contrast, when α = 0, all the weight

is put on the optimistic outcome. Intuitively, α > 0.5 implies that the DM is ambigu-

ity averse, whereas α < 0.5 implies ambiguity seeking. Notice that in the particular

framework of our study, α = 0.5 does not imply ambiguity neutral attitudes and the

model does not collapse to SEU as is the case in Ahn et al. (2014). Neutral attitudes

are expressed by the uniqueness of the set Π. When this set is a singleton, the model

is equivalent to the SEU and the parameter α cannot be identified.

Before presenting the different types of DMs we present how this model can be

extended to its dynamic form. As is common in the ambiguity literature, this model

satisfies the property of separating subjective beliefs from tastes (ambiguity attitudes).

Therefore, when updating takes place, only the belief aspect of the preferences’ repre-

sentation is affected, while utility remains intact.

3.3 Updating Beliefs in Multiple-priors Models

We first present the updating rules for MEU, the special case of α-MEU when α = 1.

Then these rules can be naturally extended for the Hurwicz α criteria family (Hurwicz,

1951). Two ways have been suggested to update beliefs in multiple-priors models, one

that satisfies DC (Epstein and Schneider, 2003; Hanany and Klibanoff, 2009; Hanany

et al., 2011) and one that satisfies C (Gilboa and Schmeidler, 1993; Pires, 2002; Eich-

berger et al., 2007). In the former case, it suffices to solve the problem as a static one,

where the allocation in the first period will determine the conditional allocation of the

second period, respecting always the MEU preferences of the DM. The interesting case

is when C is assumed, which allows the agent to behave in a dynamically inconsistent

manner. The two most commonly updating rules include the Maximum Likelihood Up-

date (MLU) and the Full Bayesian Update (FBU)14 rule. According to the MLU rule,

only the set of priors that maximise the probability of the conditional event are up-

dated according to the Bayes rule. In the FBU rule , all the sets of priors are updated

in a Bayesian way and the set of posteriors is used to evaluate the different acts. In the

supplementary material, we show that in our framework with three ambiguous as-

14See Gilboa and Schmeidler (1993) for an axiomatisation of the rules and for references. They refer
to these rules as pseudo-Bayesian rules.
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sets, the predictions of MLU and FBU coincide. Therefore, in our analysis we assume

that beliefs are updated according to the MLU rule. We now define the three non-SEU

behavioural types we consider and we describe how the update rules are extended to

accommodate α-MEU type preferences (when updating takes place).

3.4 The Resolute Type

The resolute type, first introduced in Hammond (1988), and later formalised in Mc-

Clennen (1990) and Machina (1989) in risky contexts, embraces the simplest strategy.

A resolute DM satisfies DC and the allocations at both stages coincide. This may hap-

pen for two reasons: either the DM is dedicated to somehow commit to the first stage

allocations regardless the available information at t = 1 (aversion to information),

or one can assume that beliefs are updated in a dynamically consistent manner as in

Epstein and Schneider (2003). In either case, the resolute strategy with commitment

is behaviourally equivalent to the dynamically consistent updating of beliefs, and to

find the optimal solution, it suffices to solve the first stage problem. The optimal al-

location is calculated by optimising Equation 1 subject to the budget constraint, given

the DM’s individual characteristics and subjective beliefs. We denote with zs the return

of asset s which is defined as the product between the exchange rate of the asset (es)

and the amount of income that has been allocated to this asset (xs): zs = es × xs with

s ∈ {R, B, Y}. Then, in order to calculate the optimal allocation, one needs to take into

consideration the relative ranking between the returns of the three assets. The various

rankings depend endogenously on the amount allocated to each asset. Take for exam-

ple the ranking zR ≥ zB ≥ zY
15 where red is the best possible outcome and yellow the

worst. The maximum expected utility occurs at the point where the probability of the

best outcome to happen is maximised (point A in Figure 1). Similarly, the minimum

expected utility is obtained at the point where the probability of the best outcome R

is minimised, or stating it differently, where the probability of the worst outcome Y is

15In total there are 7 possible rankings between the three outcomes with 6 weak inequalities and 1
strict equality.
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maximised (point C). Then the α-Maxmin utility from a portfolio X is:

U(X) =α[π(R)u(eRxR) + π(B)u(eBxB) + (1− π(R)− π(B))u(eYxY)]

+ (1− α)[(1− π(B)− π(Y))u(eRxR) + π(B)u(eBxB) + π(Y)u(eYxY)]

and writing the utility from the portfolio in its general form, the objective of the DM is

to find an allocation X that optimises U(X) = ∑s∈S π(s)u(esxs), subject to the budget

and the non-negativity constraints. Here π(s) is defined as π(s) = απmin(s) + (1−

α)πmax(s) where πmin (πmax) stands for the set of priors where the probability that

the best outcome occurs is minimised (maximised). The solution of this program will

provide the optimal demand for the three assets in the form x∗s = f (π, m, e, l), where

π are now the non-additive subjective beliefs and l includes both the risk and the

ambiguity attitude, which will coincide with the optimal conditional demand.

3.5 The Naı̈ve Type

The naı̈ve or myopic behaviour was first introduced in the literature in Strotz (1955-56),

and later in Pollak (1968), indicating an agent who fails to understand the sequential

nature of the problem. As a consequence, each of the stages is faced independently

of the other, strategy that may lead to dynamic inconsistencies and dominated results.

The allocation at each stage is based on the optimisation of the objective function at the

current stage, or in other words, the DM solves a series of static problems and max-

imises his current utility. A naı̈ve DM ignores that she is dynamically inconsistent and,

as a result, the decisions that are made can potentially differ from those that had been

originally planned. At the first stage, this type behaves in the same way as a resolute

does and solves the problem as if it is a static one, leading to the unconditional port-

folio X = (x∗R, x∗B, x∗Y). Then, at stage 2, she receives the partial information that one of

the states did not occur, updates her prior beliefs, and based on these posteriors, she

solves the maximisation problem that now involves the two remaining states, subject

to the available income. Consider again the ranking zR ≥ zB ≥ zY. The DM chooses a

portfolio allocation for the first period. Now assume that the partial information that

the ball is not yellow (¬Y) is revealed. Using the MLU rule, the DM updates those

priors that maximise the probability of the event π(¬Y) (or π(R ∪ B)). In Figure 1,
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this occurs in both the prior sets A and B. In addition, since the ranking of the out-

comes requires that zR ≥ zB
16, for the evaluation of the α-Maxmin utility it holds that

πmax = πA and πmin = πB. We denote with xR
¬Y, xB

¬Y the allocations to assets R and

B respectively, conditional on the information that the state is not Y. The utility of the

DM inthis conditional portfolio is:

U(X) = π(R|¬Y)u(eRxR
¬Y) + π(B|¬Y)u(eBxB

¬Y) (2)

with π(R|¬Y) = απB(R|¬Y) + (1 − α)πA(R|¬Y) (π(B|¬Y) is defined in a similar

way17). The problem now requires us to find the conditional allocation that optimises

this α-MEU, subject to both the non-negativity constraint and the new budget con-

straint m̂¬Y = m− x∗Y, where m is the initial endowed income and x∗Y is unconditional

allocation to asset Y. The conditional demand will be of the form x∗s
¬q = f (π̂, m̂¬Y, e, l)

for s ∈ S\q and s 6= q, where π̂ is now the set of the updated beliefs.

3.6 The Sophisticated Type

Strotz (1955-56) and Pollak (1968) were among the first to recognise that pre-commitment

(resolute type) is not always the optimal strategy. More specifically, the idea is that

a DM who is not able to commit to her future behaviour, would prefer to adopt a

strategy of consistent planning and then pick up the optimal plan that will actually be

followed, sketching the profile of a sophisticated type. A sophisticated DM applies back-

ward induction in order to figure out the optimal strategy for every given problem. As

Hammond and Zank (2014) describe, sophistication is like the sub-game perfect Nash

equilibrium of an extensive form game, between the future and present self of the DM,

as in Selten (1975). Starting from the final decision nodes of a decision tree (the last pe-

riod), a DM anticipates an event E to occur and therefore, the future course of action is

determined by the conditional preferences of the ex-post self. Working backwards and

applying the same principle to all the previous decision nodes, always satisfying the

preferences of the ex-post self, she can define the optimal path that will lead her from

16Notice that for the naı̈ve DM, it is not necessary for the ranking between the returns of two assets
to be the same in both stages. Our estimation algorithm takes this possibility into consideration.

17The interested reader can consult the supplementary material where we extensively present how
all the updated beliefs are calculated.
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the start of the tree to the most preferable node. In this way, an optimal plan of ac-

tion for the whole problem is chosen. Following this process, the DM will violate DC,

as the second period optimal allocation is based on the conditional beliefs which have

been updated in a dynamically inconsistent way18. Nevertheless, the agent is aware of

this inconsistency and as Strotz (1955-56, p. 173) describes “succeeds to adopt a strat-

egy of consistent planning and choose the best plan among those that he will actually

follow.” Siniscalchi (2011) has axiomatised this idea in the context of dynamic choice

under ambiguity.

The optimal solution for the sophisticated type requires two steps. Let again the

same ordering of the outcomes zR ≥ zB ≥ zY. She first solves all the three conditional

problems (¬R,¬B,¬Y), by using her conditional beliefs and satisfying the budget and

non-negativity constraints. For instance, when the information is ¬Y, the optimisation

problem is to find the conditional allocation for assets R and B, taking into considera-

tion the conditional beliefs, and always satisfying the outcome ranking (zR ≥ zB), and

the conditional budget constraint m̂¬Y = m − x∗Y. The conditional allocations x∗R
¬Y

and x∗B
¬Y can be written in the general form x∗s

¬q = f (π̂, e, m̂, l) for s ∈ S\q and s 6= q.

Likewise, we solve for the conditional allocations for ¬B and ¬Y. These demands are

calculated in the same way as the second-stage decisions of the naı̈ve DM (see section

3.5) and they indicate to the agent the optimal course of action for each of the condi-

tional states (last stage of the decision problem). In the second step, the DM solves

the first stage unconditional problem by taking into consideration the optimal condi-

tional allocations, the non-negativity and budget constraint, and the relevant ranking

constraint between the outcomes. The α-Maxmin utility of this two-stage portfolio is

given by:

U(X) =
1
2

π(¬Y)
[
π(R|¬Y)u(eRx∗R

¬Y) + π(B|¬Y)u(eBx∗B
¬Y)
]

(3)

+
1
2

π(¬B)
[
π(R|¬B)u(eRx∗R

¬B) + π(Y|¬B)u(eYx∗Y
¬B)
]

+
1
2

π(¬R)
[
π(B|¬R)u(eBx∗B

¬R) + π(Y|¬R)u(eYx∗Y
¬R)
]

with π(R|¬Y) = απB(R|¬Y) + (1 − α)πA(R|¬Y) and π(¬Y) = απB(¬Y) + (1 −

α)πA(¬Y) where πA = πmax and πB = πmin are the sets of priors that satisfy the

18Otherwise the sophisticated strategy is identical to the resolute one.

15



ranking of the outcomes (the probabilities for ¬R and ¬B are defined in a similar

way). The probability of each conditional event is multiplied by 1/2 since the sub-

jects were informed in advance that the partial information to be revealed is randomly

chosen between the two available states 19. Notice that the conditional demands are

a function of the conditional income m̂¬s = m− x∗s , which in turn is a function of the

unconditional optimal demand for the asset s at stage 1. To calculate the unconditional

demand for the three assets, it suffices to substitute the conditional income to Equation

3 and optimise with respect to the unconditional demands x∗s .

At this point, it would be appropriate to discuss the equivalence between the α-

MEU and the Chateauneuf et al. (2007) Choquet expected utility with a neo-additive

capacity model (CEU). Using a notion similar to Epstein and Wang (1994) ε-contamination

to define the set of prior distributions, Chateauneuf et al. (2007) show that the two

models are equivalent in their static version20. This model has been empirically inves-

tigated in Dimmock et al. (2015), Baillon and Bleichrodt (2015) and Baillon et al. (2018)

among others. Eichberger et al. (2010) and Eichberger et al. (2012) extend this model

to its dynamic version by applying the updating rules of (Eichberger et al., 2007). Our

specification is equivalent to a CEU model along with a Generalised Bayesian Updating

rule.

3.7 Identification of Type Heterogeneity

To summarise, each of the types violates a particular axiom and this violation leads to

heterogeneity in planning strategies. The resolute type satisfies DC either by updating

in a dynamically consistent way or by ignoring new information but violates C. The

naı̈ve satisfies C and violates DC without realising her dynamically inconsistent be-

haviour. Finally, the sophisticated type satisfies C and violates DC but is aware of the

potential dynamic inconsistency. Therefore, the sophisticated satisfies the consistent

planning principle.

19This was defined by the experimental software by an independent, random draw from a uniform
distribution for each of the allocation problems.

20In the Choquet expected utility model with a neo-additive capacity the probability of a state s is
given by P(s) = α(1− δ)π(s) + (1− α)[(1− δ)π(s) + δ] where π(s) is a reference probability distribu-
tion, α is the attitude towards ambiguity and δ is a parameter measuring the degree of confidence. In
our framework the probability is given by π(s) = απmin(s) + (1− α)πmax(s). The models are equiva-
lent, if one substitutes πmin(s) and πmax(s) with π(s)(1− δ) and π(s)(1− δ) + δ respectively.
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We conclude this section with a note on the identification of type heterogeneity with

the use of an example. We assume a decision task with an initial endowment of

m = 100 and for simplicity we set the exchange rates for the three assets to be equal

to 1. We assume that the SEU type holds beliefs equal to 0.2, 0.5 and 0.3 for the blue,

yellow and red asset respectively (for simplicity these are set equal to the objective

probabilities that were used in the experiment, but any other additive distribution can

be assumed). The lower probability bounds for the α-MEU types are assumed to be

equal to 0.12, 0.3 and 0.18, for the blue, yellow and red asset. The lower bounds are set

to be equal to 60% of the reference probability distribution of the SEU type (see foot-

note 20). Again, any non-additive distribution would be appropriate for this example,

as long as it satisfies the ranking of the reference probability distribution. Setting the

power utility coefficient equal to 0.5, we calculate the optimal allocations for all the

behavioural types. We assume two levels of ambiguity attitudes: ambiguity seeking

with α = 0.35; and ambiguity averse, with α = 0.65. The allocations are shown in

figures 3a and 3b.

Both figures show the first and second-stage allocations for the blue and yellow

assets, conditional on the partial information that the ball is not red (¬R). The diago-

nal line represents all allocations where the subject can secure an equal payment from

either state. The arrows in the figures show the direction of the conditional allocation.

We begin with the choices of the SEU type as a benchmark. This agent is dynami-

cally consistent, ambiguity neutral and maximises the corresponding expected utility

function.

The resolute type is dynamically consistent but has ambiguity non-neutral pref-

erences. An ambiguity seeking agent allocates more to both the worst (blue) and the

best (yellow) outcome, compared to the SEU type, whilst an ambiguity averse allocates

more to the worst state and less to the best. In both cases, the attitude towards ambi-

guity determines whether more weight is put on the worst or the best outcome. Since

a resolute solves the problem as a single-stage one, the allocation remains unchanged

in the second stage.

The naı̈ve type, behaves similarly to a resolute type in the first stage, but upon

the reception of the partial information, her beliefs are updated, and performs a re-
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allocation of the available income. When the agent is ambiguity averse, the new allo-

cation moves closer to the 45°line. This is a sign that the beliefs for the worst outcome

have been updated and more weight is now put on this state compared to the uncon-

ditional stage. Therefore, the agent is willing to allocate more to this asset, behaviour

which could potentially reduce her overall welfare as it was not anticipated in stage 1.

On the contrary, the sophisticated type anticipates this kind of behaviour and takes

it into consideration when deciding the first-stage allocation. In both cases (ambi-

guity seeking and ambiguity aversion) the sophisticated agent allocates more to the

worst outcome at stage 1, compared to the naı̈ve agent, while in the second stage,

the sophisticated agent allocates more to the best outcome. The intuition behind this

strategy could be that the sophisticated agent takes into consideration all the possible

conditional states when deciding the first-stage allocation. This agent realises that the

most preferred asset (yellow) may not be available in the second stage, so she refrains

from allocating the highest possible amount during the first stage. Upon reception of

the partial information, the agent updates her beliefs in an anticipated way, and she

allocates more to the preferred state. Indeed, the allocation of the sophisticated agent

move to the opposite direction to the naı̈ve’s. Therefore, she always finds herself with

higher payoffs compared to a naı̈ve.

It becomes apparent from the Figures that a different choice pattern is predicted for

each type and for each allocation problem with varying income and exchange rates.

Thus, subject to asking participants a large number of allocation questions, it is pos-

sible to behaviourally distinguish between the different types. Suffice to say that for

the SEU agent, all types predict the same optimal allocations and therefore are be-

haviourally indistinguishable. For the optimal allocations we obtain closed-form so-

lutions by solving the corresponding maximisation problems (see Appendix).

4 Econometric Analysis

Using maximum likelihood estimation techniques, we estimate the parameters of al

the specifications presented in section 3 at the subject level. This allows to introduce

between and within subjects heterogeneity in three different dimensions. First, we

assume heterogeneity for all the preference parameters (risk and ambiguity attitudes,
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beliefs, precision). Then, we allow for heterogeneity regarding the planning strategies

of the agents. Finally, we allow for within-participant variation, by incorporating a

random (stochastic) part in choices to capture noise in decision making.

In order to fit the various theoretical models, one needs to make several assump-

tions regarding the ambiguity model, the shape of the utility function and the stochas-

tic structure of the data. Regarding the ambiguity model, we adopt the α-MEU spec-

ification for four reasons: (1) it provides a parsimonious way to capture perceived am-

biguity; (2) the α-MEU takes into consideration both the worst and the best case sce-

nario, providing a measure of attitude towards ambiguity; (3) well-established up-

dating rules for the multiple-priors family of models have been axiomatised, for both

the dynamically consistent and inconsistent DM; (4) kinked specifications have been

shown to fit experimental data better compared to smooth ones (Ahn et al., 2014; Hey

and Pace, 2014; Baillon and Bleichrodt, 2015).21.

We turn now to the utility function. A way to obtain enough observations, and at

the same time keep the structure of the decision task simple and the representation

of ambiguity unchanged, is to present subjects a series of the same task with differ-

ent amounts of endowment and exchange rates in each problem. A trade-off of this

method is that one needs to assume a utility function over outcomes and consequently

elicit the shape of this function (risk coefficient). Joint elicitation of risk and ambiguity

attitudes has been employed in studies of choice under ambiguity such as Ahn et al.

(2014), Hey and Pace (2014) or Baillon et al. (2018). In addition, Antoniou et al. (2015)

argues in favour of controlling for risk aversion when eliciting beliefs, showing that

it significantly alters inferences on deviations from Bayes Rule. Alternative designs

that eliminate the use of a utility function such as pairwise choice tasks or probability

matching tasks, either provide inadequate information to fit statistical models (Do-

miniak et al., 2012), or are not able to identify heterogeneity in planning strategies

(Bleichrodt et al., 2018).

21We also estimated the models assuming Tversky and Kahneman (1992) Prospect Theory (Rank-
dependent utility) preferences. Both models generate qualitatively similar results (similar distribution
of types) but we opt for the α-MEU model as: (1) it provides an overall better in-sample fit, and; (2)
there is a lack of an axiomatised updating rule for the intertemporal version of Prospect Theory.
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We assume a time-invariant power utility function of the following form:

u(z) =

 z1−r

1−r if r 6= 1

ln(z) if r = 1

where z is the respective payoff and r is the coefficient of risk aversion. The reasons

why we favour the power form of utility are twofold. This function provides a good fit

to experimental data (Wakker, 2008; Stott, 2006; Balcombe and Fraser, 2015) and also

does not allow for boundary portfolios.22.

Since the allocations are constrained to the interval [0, m], a convenient way to

model noise in choices is to assume that the ratios xs/m, at a specific allocation ques-

tion, are distributed according to a Dirichlet distribution. The random variable fol-

lows a continuous probability distribution over multinomials which are m-tuples x =

(x1, · · · , xm) that sum up to one. A simple parametrisation of the Dirichlet is given by

setting

σ =
K

∑
k=1

βk

and

K =

(
β1

σ
, · · · ,

βK

σ

)
with the vector K summing up to one. In our context with K = 3, the shape parameters

of the distribution are defined as

βs =
x∗s
m

σ

where x∗s is the theoretical optimal allocation to asset s. This specification has the nice

property that the mean of the distribution is centered to the optimal allocation since

the expression for the mean of the distribution is given by:

E(
xs

m
) =

βs

∑k βk
=

x∗s
m σ

σ
=

x∗s
m

where σ is the precision of the Dirichlet distribution.23

We then need to specify the likelihood function that will be maximised. There are

22Only a risk neutral or risk loving agent would choose a boundary portfolio in this particular frame-
work.

23The higher the value of σ, the more precise are the choices.
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two stages, with 3-way allocations in the first stage and 2-way in the second. For a

particular allocation problem, let the unconditional allocation xR, xB, xY to red, blue

and yellow and assume the conditional state ¬Y that will lead to the conditional al-

location xR
¬Y, xB

¬Y and the conditional income m̂¬Y. Using the allocations at the first

stage, we assume that x = ( xR
m , xB

m , xY
m ) is Dirichlet distributed with the appropriate

shape parameters that satisfy the properties above. The contribution to the likelihood

function by the first stage allocation is given by:

g1(r, α, π, σ, x, x∗) = log(Ψ(β, σ))

where Ψ is the density function of the Dirichlet distribution,x is the vector of the actual

allocations and x∗ the vector of the optimal allocations.

In the second stage, there are two available allocations to be made and the dimen-

sion of the distribution is equal to 2 (it becomes a standard Beta distribution). In our

example, we assume that x¬Y = ( xR
¬Y

m̂¬Y , xB
¬Y

m̂¬Y ) is Dirichlet distributed, subject to the suit-

able shape parameters. The contribution to the likelihood function by the first stage

allocation is given by:

g2(r, α, π, σ, x¬Y, x¬Y∗) = log(Ψ(β, σ))

The total contribution to the likelihood function of a particular problem is given by

g = g1 + g2. We consider the remaining two conditional states in a symmetric way.

The likelihood function to maximise over the 60 allocation problems, is defined as:

ln(L(r, α, π, σ, X)) =
60

∑
i=1

gi(r, α, π, σ, x, x∗)) (4)

By maximising Equation 4, we estimate the parameters using Maximum Likeli-

hood Estimation techniques. To ensure that the solution is not trapped to a local

optimum, we use a general nonlinear augmented Lagrange multiplier optimisation

routine that allows for multiple restarts of the solver.24

We conclude this section by commenting on the number of parameters for all the

24The estimation was conducted using the R programming language for statistical computing (The
R Manuals, version 3.0.2. Available at: http://www.r-project.org/). The estimation codes are available
upon request.
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specifications, as well as on the lower and upper bounds that we apply in our estima-

tion. For the SEU specification there are four parameters to estimate, the coefficient of

risk attitude r, the subjective beliefs for two out of the three states and the precision pa-

rameter σ. For the α-MEU specification, we need to estimate on top of r and σ, the set of

non-additive priors π (the lower bounds) and the coefficient of ambiguity attitude α, in

total six parameters. We assume either risk aversion or risk neutrality therefore, r ≥ 0.

The set of non-additive beliefs should satisfy the constraint π(R) + π(B) + π(Y) ≤ 1

and α is constrained to the interval [0,1], with 0 expressing extreme ambiguity seeking

and 1 extreme ambiguity aversion. The maximum number of parameters to estimate

is 6 and taking into consideration the amount of available choice data (120 allocation

questions per subject) the obtained fit is quite stable. Finally, we assume that the type

of the subjects remains stable during the experimental session and the same holds for

their preferences.

5 Results

To obtain an overview of our results, we first plotted the portfolios of the subjects for

each of the conditional states. Figure 2 illustrates the choices for three subjects for

all the cases where the information ¬B was revealed. The horizontal (vertical) axis

represents the payoff if the ball is yellow (red). The 45° line stands for all the portfolio

allocations that guarantee the same payoff, regardless the actual state of the world25.

The hollow (solid) dots correspond to portfolios at period 0 (1). First, it is apparent that

there is extensive violation of DC. On top of that, these violations do not seem to follow

a uniform pattern, indicating the existence of heterogeneity in planning strategies.26

The latter calls for further structural investigation.

For each subject and for each type, we have estimates of their subjective beliefs,

the coefficient of risk and ambiguity attitudes (r and α), the precision parameter σ

and the value of the maximised log-likelihood. Based on the value of the maximised log-

likelihood, we can detect which type best provides the best fit to the data and therefore,

classify subjects to different types. To correct for the degrees of freedom, we use both
25An extremely risk averse agent would always choose portfolios along this line.
26Indeed, subsequent econometric analysis confirmed that the left panel in Figure 2 belongs to a

resolute subject (subject 13), the middle to a naı̈ve (subject 17) and the right to a sophisticated one
(subject 27).
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the Bayesian Information Criterion (BIC), which controls for the different number of

parameters, and the Akaike Information Criterion (AIC), which accounts for both the

number of the parameters and the number of observations27. The average values for

both measures are reported in Table 2.

In Table 3 we use the values of the maximised log-likelihood, the AIC and the BIC,

to classify types at the individual level. In the first column, subjects are classified based

on the fitted log-likelihood. As expected, SEU always performs worst due to the lower

degrees of freedom. For the rest of the types, the sophisticated is the best for 55% of the

subjects, followed by the naı̈ve with 29% and the resolute with 16%. Columns 2 and

3 report the same information based on the corrected log-likelihoods. When AIC is

used to interpret the data, the prominent type is the sophisticated (41%), followed by

the SEU type (31%), the naı̈ve (22%) and the resolute with only 5%. However, when

BIC is used, 48% of the subjects are classified as SEU, followed by the sophisticated

type (31%), the naı̈ve (16%) and finally the resolute with 5%. Depending on the two

information criteria, it seems impossible to make a safe inference regarding the best

type that describes data, but there seems to be a consensus that the majority of the

subjects are either SEU or sophisticated. Hence, we test whether the maximised log-

likelihood for the best-fitting type is significantly higher compared to SEU using a

likelihood ratio test. This test allows to compare two nested models where the null model

is a special case of the alternative model28. The test statistic is given by the ratio of the

two fitted likelihood functions

LRT = −2 ln

(
Ls(θ̂)

Lg(θ̂)

)

whith Ls the maximised likelihood of the simpler model (the nested model) and Lg

the maximised likelihood of the general model (the nesting model). The LRT statistic

follows a Chi-square distribution with degrees of freedom d fg − d fs, with d fg and d fs

being the number of free parameters for the nesting and the nested model respectively.

With 4 parameters of the SEU and 6 of the α-MEU, the test statistic is distributed with

27BIC = −2 ln(L(θ̂|x)) + k ln(n), AIC = −2 ln(L(θ̂|x)) + 2k where ln(L(θ̂|x)) is the value of the
maximised log-likelihood, k is the number of the free parameters in the model and n the number of
observations. As is the case with the value of the log-likelihood, a lower value indicates a better fitting.

28Two models are nested, if the first model can be transformed into the second model by imposing
constraints on the parameters of the first model. In our framework, when the beliefs are additive, the
α-MEU is transformed to the SEU, so the SEU model is nested within the α-MEU.
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2 degrees of freedom. Table 4 reports the classification of the subjects to types, based

on the significance of the LRT. SEU best describes behaviour for 48% (40%) of our

experimental population at 1% (5%) level of significance. For the remaining non-SEU

population, the majority can be classified as sophisticated 31% (34%), naı̈ve 16% (21%)

and resolute 5% (5%).

Finding 1. For more than half of our the experimental population, we can reject the null hy-

pothesis of Bayesian updating at the 1% significance level. Focusing on the non-SEU subjects,

the sophisticated type is best for more than half of the sample, followed by the naı̈ve and the

resolute type.

Based on the classification of the different types, it is now possible to infer whether

subjects satisfy C or DC, and when they violate DC, whether they take this into con-

sideration or not. When we consider only the non-SEU subjects, 95% of the subjects

satisfy C, while only 5% satisfy DC, which is in line with Dominiak et al. (2012).

Finding 2. The vast majority of the experimental population with non-neutral ambiguity

attitude satisfies C, while a very small percentage satisfies DC.

We now turn to the estimates of our structural models. Table 5 reports a summary

of the mean and the standard deviation of the estimated values of the parameters. We

also report the median, as overfitting for few subjects may inflate the average. On

aggregate, there is extensive heterogeneity regarding the values of the parameters.

Figure 4 shows the distribution of the risk aversion coefficient which confirms the lack

of a uniform level of risk aversion. Figures 5, 6 and 7 show the distribution of the esti-

mated subjective probabilities for the blue, red and the yellow states respectively, for

all the types (the vertical dashed line indicates the objective probability of each state).

First, it seems that the distribution of the estimated beliefs when SEU is assumed, is

characterised by less fat tails compared to the non-SEU types. Then, when the value

of subjective beliefs is compared to the actual probabilities, it seems that subjects over-

estimate low probability events and under-estimate high probability events. Evidence

for this finding is provided by both Table 5 and Figures 5-7. In all four cases, both

the median and the average of the low probability event (B) is significantly higher

compared to the actual one (0.200) which causes a right skewness to the distributions.
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Likewise, the estimates for the high probability event (Y) are significantly lower com-

pared to the objective probability (0.500) causing left skewness to the distributions.

This result is in line with similar findings with a commonly observed over (under)-

weighting of low (high) probability events, confirming the existence of likelihood insen-

sitivity29. Various experiments have demonstrated the existence of this insensitivity

in both student and general populations, all in static frameworks (see among others

Wakker, 2010 and Abdellaoui et al., 2011). The present study, verifies the existence of

this component of ambiguity attitudes, in dynamic choice frameworks.

Finding 3. There is a systematic over-weighting of the low probability event and similarly, an

under-weighting of the high probability event.

Finally, Figure 8 illustrates the distribution of the α parameter α for the three α-

MEU types. It is easy to see that there is significant heterogeneity on the attitudes,

with modes at the two extremes, indicating a large number of extremely ambiguity

averse people (α=1), and a considerable amount of extremely ambiguity seeking (α=0).

We can then classify subjects according to their attitudes towards ambiguity. Notice

that all SEU subjects are automatically classified as ambiguity neutral. For the classifi-

cation of the non-SEU subjects, we consider the estimated value of α for the subject’s

best fitting type. 48.3% (39.7%) of the subjects are classified as ambiguity neutral,

27.6% (31%) ambiguity averse and 24.1% (29.3%) ambiguity seeking at 1% (5%) level

of significance respectively. These results are in line with Charness et al. (2013), Hey

and Pace (2014), Ahn et al. (2014) and Stahl (2014), all accounting for ambiguity atti-

tudes in static frameworks. A possible explanation for the relatively high percentage

of ambiguity neutral subjects is provided in Stahl (2014) where the author in footnote

2 comments on the Ahn et al. (2014) findings that “[. . . ] one reason they may have

found more expected utility maximisers that we find is that the portfolio composition

task may provide context that reduces confusion among many subjects.”

Finding 4. We can reject the null hypothesis of neutral ambiguity attitudes and SEU prefer-

ences for more than half of the population. For the non-SEU agents, almost half of the popula-

tion is characterised by ambiguity aversion and the remaining by ambiguity seeking attitudes.
29As is explained in Trautmann and van de Kuilen (2015), likelihood insensitivity appears when peo-

ple cannot distinguish between events bounded away from zero and one and transform subjective
likelihoods towards fifty-fifty, resulting to an over-weighting of unlikely events and under-weighting
of highly likelihood events.
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Of course, one could criticise the assumption of a time-invariant utility function

and hypothesise that the reason of dynamically inconsistent behaviour could be at-

tributed to changes in the risk attitude upon reception of new information. We re-

peated the above analysis introducing an extra type of an expected utility maximiser

with varying risk attitudes between the two stages. According to a likelihood ratio

test, this model fitted best for 17% (17%) of the subjects at 1% (5%) level of signifi-

cance. The proportions of the remaining types are 40% (29%) for the SEU, 24% (28%)

for the sophisticated, 5% (5%) for the resolute and 14% (21%) for the naı̈ve.

6 Conclusion

In this study we use the data from a simple two-period portfolio allocation experiment

and we study heterogeneity in dynamic decision making under ambiguity. Based on

the planning strategy and the axioms our subjects satisfy, we classify them to expected

utility maximisers, resolute, naı̈ve and sophisticated. Our results are summarised as:

(1) almost half of the subjects behave according to the SEU model and apply Bayesian

updating; (2) there is extensive violation of dynamic consistency by the non-SEU sub-

jects; (3) the majority of the non-SEU subjects are sophisticated , few are naı̈ve and a

few are resolute, and; (4) ambiguity neutrality prevails, followed by ambiguity aver-

sion and ambiguity seeking attitudes, almost in equal proportions.

Of course one should interpret these results with some caution. It is not possible

to expect that the preference functionals presented in section 3 are the exact equations

that the subjects are maximising in their minds, so the elicited behaviour should be

mostly considered as an “as if” approximation. More specifically, these preference

functionals, capture some crucial characteristics of behaviour that affect the way peo-

ple make decisions in a dynamic environment. In particular, the SEU and the resolute

type, tend to be dynamically consistent and these types are characterised by either dy-

namically consistent ways to update beliefs, or simply by their capacity to commit to

their initial choices. The sophisticated type reflects the behaviour of the agents who

anticipate that they will probably re-assess or change their preferences in the future,

depending on the available information at this point, and they take this element into

consideration when the make choices that include a longer horizon. Finally, the naı̈ve
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decision makers are those that do not fully understand the impact that their present

choices will have to their future welfare. All the types that were presented in the anal-

ysis may not fully characterise the exact decision process that each subject follows, but

they seem to be successful in capturing one of the three essential elements of dynamic

decision making (dynamic consistency, naı̈veté and sophistication).

Our results seem to provide support to those theories that assume consequen-

tialism and abandon dynamic consistency as in Gilboa and Schmeidler (1993), Pires

(2002), Eichberger et al. (2007), Eichberger et al. (2010). In particular, support is pro-

vided to theories that assume sophistication as in Siniscalchi (2011), while little sup-

port is provided in favour of theories that assume dynamic consistency (Epstein and

Schneider, 2003; Klibanoff et al., 2009). The implications of the above are twofold.

Recent empirical research in dynamic financial decision making, based on field data

(Thimme and Völkert, 2015; Jeong et al., 2015), assumes dynamic consistency, whereas,

recent theoretical studies on dynamic asset markets under ambiguity (Easley and O’ Hara,

2009; Mele and Sangiorgi, 2015), assume heterogeneity in planning strategies and be-

haviour. Hence, accounting for heterogeneity could potentially provide better insights

of how people actually behave in dynamic, ambiguous environments, fact that calls for

further empirical investigation. Our paper is a first step towards studying behavioural

heterogeneity regarding planning strategies in dynamic environments under ambigu-

ity. Future research could focus on more complicated environments that include dif-

ferent representations of ambiguity (e.g. natural events), longer time horizons, effects

of social interaction or connect it with the decision from experience literature, as well as

with the time preferences literature.
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Table 1: Prior beliefs in the MMT

π π(R) π(B) π(Y)
A 1− π(B)− π(Y) π(B) π(Y)
B π(R) 1− π(R)− π(Y) π(Y)
C π(R) π(B) 1− π(R)− π(B)

Table 2: Average values of goodness of fit

Type LL AIC BIC

SEU -210.79 429.59 440.74
(121.19) (242.37) (242.37)

Resolute -208.31 428.62 445.34
(122.14) (244.28) (244.28)

Naı̈ve -206.13 424.25 440.98
(120.99) (241.98) (241.98)

Sophisticated -202.96 417.93 434.65
(119.90) (239.81) (239.81)

Obs 58 58 58

The Table reports the average values of the Log-likelihood, the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) for all types. The stan-
dard deviation is reported in brackets.
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Table 3: Classification based on goodness of fit

Type LL AIC BIC

SEU 0 18 28
% (0) (0.31) (0.48)
Resolute 9 3 3
% (0.16) (0.05) (0.05)
Naı̈ve 17 13 9
% (0.29) (0.22) (0.16)
Sophisticated 32 24 18
% (0.55) (0.41) (0.31)

Total 58 58 58

The Table reports the classification of the subjects based on the values of the Log-
likelihood, the Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) for all types. The percentages are reported in brackets.

Table 4: Classification based on LRT significance

Type
Number
of subjects with
highest LL

Significantly different
from SEU at 1%

Significantly different
from SEU at 5%

SEU 0 - -
% (0.00) - -
Resolute 9 3 3
% (0.16) (0.05) (0.05)
Naı̈ve 17 9 12
% (0.29) (0.16) (0.21)
Sophisticated 32 18 20
% (0.55) (0.31) (0.34)
Non-EU 58 30 35
% (1.00) (0.52) (0.60)
Total 58 58 58

The Table reports the classification of the subjects based on the Likelihood Ratio sig-
nificance test (LRT), at both 1% and 5% levels of significance. The percentages are
reported in brackets.
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Table 5: Summary of Estimates

Parameter SEU Resolute Naı̈ve Sophisticated

Mean 0.279 0.254 0.228 0.222
πB Median 0.298 0.281 0.261 0.260

St.Dev 0.077 0.088 0.104 0.105
Mean 0.370 0.346 0.318 0.337

πY Median 0.355 0.340 0.335 0.341
St.Dev 0.060 0.059 0.100 0.111
Mean 0.350 0.329 0.291 0.334

πR Median 0.339 0.322 0.316 0.322
St.Dev 0.059 0.059 0.099 0.073
Mean 1.470 1.353 1.346 1.358

r Median 0.875 0.852 0.856 0.892
St.Dev 2.110 1.924 1.831 1.689
Mean - 0.478 0.482 0.502

α Median - 0.435 0.501 0.547
St.Dev - 0.417 0.407 0.370
Mean 38.690 39.320 39.692 40.282

σ Median 14.878 15.031 15.548 15.407
St.Dev 52.412 52.635 52.721 52.648

The Table reports the average values, the median values and the standard deviations
of the estimates for all types.
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Figure 4: Kernel Distribution of the Estimated Risk Aversion Parameter
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