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Abstract

The way to analyze data in spectroscopy has changed substantially. At the same time, data 

science has evolved to the point where spectroscopy can find space to be housed, adapted 

and be functional. The integration of the two sciences has introduced a knowledge gap 

between data scientists who know about advanced machine learning techniques and 

spectroscopists who have a solid background in chemometrics. To reach a symbiosis, the 

knowledge gap requires bridging. This review article focuses on introducing data science 

subjects to non-specialist spectroscopists, or those unfamiliar with the subject. The article will 

explain concepts that are covered in machine learning, such as supervised learning, 

unsupervised learning, deep learning, and most importantly, the difference between machine 

learning and artificial intelligence. This article also includes examples of published 

spectroscopy research, in which some of the concepts explained here are applied. Machine 

learning together with spectroscopy can provide a useful, fast, and efficient tool to analyze 

samples of interest both for industrial and research purposes.

Keywords

Machine learning, chemometrics, artificial intelligence, data science, Infrared and Raman 

spectroscopy 

Aims of the study

The main objective of the article introduced here is to present to scientists involved in any 

spectroscopic field a brief background on machine learning and artificial intelligence, as well 

as to present the different concepts and methods commonly used in this field. 
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Introduction

Data science is the combination of statistics, computer science and domain knowledge [1]. 

Scientists in the spectroscopy field by definition have spectroscopy specific domain 

knowledge. Most spectroscopists have a background in the use of statistics specific to 

chemical analysis, chemometrics, but few have a broad computer science background. The 

use of machine learning (ML) has become increasingly popular in a wide range of scientific 

fields, including spectroscopy, as datasets increase in size and milestones in the wider field of 

artificial intelligence (AI) are publicized [2, 3]. 

The authors are spectroscopists, who have aimed to take advantage of the potential 

advantages provided by ML algorithms such as, reducing pre-processing [4 - 7] alongside 

increasing accuracy  and / or computational efficiency [7 - 9]. During our research, we have 

identified a number of definitions, practices and concepts that are common between data 

science and spectroscopy, which if clear earlier would have made ML use quicker and easier. 

We have also found a need for comparison between different techniques, using the various 

strengths of different algorithms for different stages of research and kinds of data.

It is for this reason that we have written this review, with synonymous terms provided in 

brackets to aid translation. Different spectroscopic techniques, such as, dielectric, Infrared, 

Raman Spectroscopy together with ML will be discussed, demonstrating the breadth of ML in 

spectroscopy. Advantages of the techniques, such as the high-throughput, non-destructive 

nature of vibrational spectroscopy that provides the opportunity to repeatedly analyze and 

sample using for multiple methods are also highlighted. Our research focuses on bio-

spectroscopy and we therefore focus on biomedical examples but the principles are 

expandable to other fields of spectroscopy. 

The review is designed for focused reading, meaning that different sections do not rely on all 

previous sections. A reader wishing to know about clustering can read only the clustering 

sections, the same applies for classification, regression or a background in AI. The theory for 

each ML sub-type, how they relate or overlap with chemometric techniques is provided in the 

background. The reader can then determine the best group of algorithms for their application 

and then read about examples of these algorithms in later sections of the review.  
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Common examples of chemometric techniques include principle component analysis (PCA) 
[10, 11], linear discriminant analysis (LDA) [11 - 15] partial least squares (PLS) [17, 18], support vector 

machines (SVM) [18-20] and hierarchical cluster analysis (HCA) [16]. Most of these algorithms 

(LDA, PLS, SVM and HCA) may justifiably also be called ML, a potential cause of confusion 

elaborated on in further sections. A typical feature of traditional chemometric techniques is 

accuracy, when the number of features (measurements / wavenumbers) is larger than the 

number of observations (number of samples / collected spectra). Accuracy when the number 

of collected spectra is lower than the number of wavenumbers is an advantage in 

spectroscopy, where thousands of spectra may need collecting before observations (spectra 

from separate samples) exceeds the number of features. Collecting thousands of spectra may 

initially sound easy to a researcher collecting Raman or IR maps, but collecting multiple 

spectra from the same sample risks overfitting. Overfitting reduces the generalisation of the 

model, meaning that it will be highly accurate when analysing the original sample but may be 

inaccurate when a new sample is introduced (even if the sample is similar to the original), 

result in errors. Therefore, thousands of spectra maps may need to be collected (a significant 

time burden), making the production of large datasets unpractical, highlighting chemometrics 

advantage for accuracy in spectroscopy when features are lower than observations. 

The disadvantage of some chemometric algorithms is their computational cost, an 

increasingly problem as dataset become larger. Machine learning (ML) is a branch of artificial 

intelligence (AI) [21] that uses advanced statistical methods to determine key features within 

a dataset [22]. Learning is the process of modified understanding that results from interactions 

with an environment, both physical and virtual [23]. In spectroscopy, ML algorithms identify 

features (wavenumbers) produced within the samples physical environment that produce 

labels (biomarkers) in classification or predictions in regression.  

Vibrational spectroscopy has been used in cancer research [11, 24, 25], analysis of biofilms [26-28] 

and the development and monitoring of drugs and drug delivery [29-32]. In spite of the high 

accuracies published using vibrational spectroscopy, it has been relatively slow to be used in 

mainstream pathology labs. There may be several reasons for this but one cause may be the 

relatively small size of the typical vibrational spectroscopy dataset when compared to data 

collected by health services such as the NHS (National Health Service) in the UK or during 

phase III trials. The use of chemometrics, whilst providing relatively quick analysis during an 
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early stage of an investigation may be slowing the use of vibrational spectroscopy techniques 

on a larger scale. ML techniques potentially provide a solution to this problem. 

Artificial Intelligence and Machine Learning (Background)

Artificial intelligence (AI) is being applied to numerous fields of research [33]. But what is 

artificial intelligence? AI is better defined by what it has done than what it aims to do, with 

in-depth discussions on how to define AI available [34]. Traditionally the focus has been on 

replicating different factors of human intelligence in computational form, from game playing 

algorithms [35] that have become world champions in games such as chess [2] and Go [3], 

grandmaster at Starcraft II [36] and played poker [2]. With applications in medical research such 

as speeding cancer drug development [37] and predicting useful protein structures [38]. The 

traditional goal of human-like general intelligence, considered impossible by some [39] has 

incrementally been supplemented by subfields such as machine vision, data mining, natural 

language processing, robotics and relevant for spectroscopy, machine learning [34]. AI is 

therefore a general term, with ML being the specific area of AI applicable to spectroscopy [22, 

23].

ML is defined as an algorithm that “learns” associations within data [22, 40, 41]. Learning is a 

complex process to define [22]. A suggested definition of when a machine learns is its core 

structure changing, constituted by a program or asset of data, where the behaviour of the 

algorithm is estimated to improve [5]. There are several overlapping sub-sections of machine 

learning. These relate to the kind of learning they carry out (unsupervised, semi-supervised, 

unsupervised and reinforcement), the kind of problem they are used for (clustering, 

classification or regression) and its influence on its environment from the data provided 

(active or passive) [23, 41]. 

Active learning interacts with the environment, in other words, while the experiment is 

running the active learner questions and flag out queries. Passive learning needs the data 

from outside. Whatever happens within the environment, the passive learner observes that 

data without direct manipulation or influence. An algorithm may for example be an 

unsupervised, passive learning algorithm used for classification. In some cases, capable of 

both classification and regression depending on the algorithm’s configuration and 

application. PLS for example is a regression algorithm [42-44], but partial least squares 
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discriminant analysis (PLS-DA) is a classification algorithm [45, 46]. Neural networks are also 

capable of both classification and regression [6, 47, 48, 49]. 

The algorithms that publicized the advances in ML such as AlphaGo [35], AlphaZero [3] and 

AlphaStar [36] are reinforcement-learning algorithms. Reinforcement learning aims to 

replicate the human brain, where dopamine “rewards” the brain for behaviours expected to 

be evolutionarily beneficial to humans. In ML, the algorithm investigates a virtual 

environment (game space) with the goal of maximising rewards (increased game play score) 
[3]. Self-play, where the algorithm plays itself at the game repeatedly, allows the algorithm to 

determine and retain (learn) reward maximising (game winning) strategies, which are stored 

in memory. The high number of games played (millions-billions) allows the algorithm to 

experience a far higher number of possible games than a human player, who is limited by life 

span, allowing the algorithm to accurately compute the probability of any given move leading 

to victory. Reinforcement learning and self-play have been used for vibrational spectroscopy 

investigations [50-52] but are not as widely applied as supervised learning or unsupervised 

learning algorithms. No evidence of semi-supervised learning algorithm use in spectroscopy 

is known to the authors. 

Unsupervised learning methods are defined by their lack of sample labels. Because the 

algorithm has no way of knowing what a sample is, unsupervised methods have the advantage 

of objectivity. An example application of unsupervised learning in medicine may be analysis 

of patient clinical information to identify heart attack risk [53]. The disadvantage of 

unsupervised methods is that the algorithm has no way of knowing a typical sample, making 

them sensitive to outliers that can distort the relationships determined by the algorithm. 

Examples of unsupervised learning include clustering in chemometrics and autoencoders in 

neural networks [11, 54]. An application of unsupervised learning may be to determine the 

features (biomarkers) that distinguish the spectra cancerous and non-cancerous tissue with 

clustering. In supervised learning, sample labels direct the algorithm. The advantage of 

labelled data is potentially increased accuracy; the disadvantage is the introduction of 

subjectivity into the analysis. It is due to the reduction in objectivity that unsupervised 

algorithms are commonly paired with unsupervised algorithms for feature selection [13, 18, 49]. 

Selection of the best features to direct supervised algorithms is a key skill in data science. 
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It is predicted that being able to analyze big data sets, will bring productivity, efficiency, 

innovation and competitiveness to every field of industry. Three different attributes exist in 

process-systems engineering that need fulfilling so machine learning can be applied. 

Compatibility of process knowledge, effectiveness to deal with uncertainties, and to generate 

interpretable solutions. Since, these attributes are valid for engineering processes, they might 

be extrapolated to any scientific field [40].  ML can be applied to different fields, such as 

finance, marketing, IT, medicine, biology, physics, astronomy, chemistry, robotics, etc. 

Machine learning can also potentially be used to detect, voices and faces [22]. However, as 

essential objectives, ML will search accuracy of prediction and interpretation of data at every 

analysis [40]. 

Theory: Chemometrics, dimension reduction and unsupervised learning 

Principle component analysis (PCA) is one of the most commonly used techniques in 

chemometrics. Dimension reduction is required to reduce the features being analyzed by a 

model, improving computational efficiency and highlighting regions of interest within a 

spectrum. Although there are also different forms of dimension reduction [55], PCA is the most 

common by far in spectroscopy. PCA is used in ML but is not widely considered a ML 

algorithm, as it highlights key features in the data through transformation rather than 

learning. PCA is typically used as a pre-processing step for machine learning algorithms such 

as LDA [12 - 15], SVM [18 - 20] or PLS [16, 17]. PCA provides an objective perspective during the 

exploration of vibrational spectroscopic data, as it is an unsupervised method. Unsupervised 

techniques analyze unlabelled data, allowing the data to be inspected without pre-existing 

bias. 

It is important to note that in different situations, features, wavenumbers and biomarkers can 

be the same thing. To a spectroscopist, a spectrum contains three thousand wavenumbers, 

to a data scientist these are features. PCA reduces the dimensions, and aids feature selection 

(the process of determining significant features) by projecting the wavenumbers into 

hyperspace along new dimensions that are orthogonal and ordered to account for the 

maximum variance from the first principle component. Once features (wavenumbers / ratios 

or combinations of wavenumbers) have been determined that best label, diagnose or 
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separate a pathogen, it becomes a biomarker to a biomedical researcher. The different terms 

used in the different fields of research all ultimately refer to the individual molecules or bonds 

that the wavenumbers are linked to.

PCA orders the dimensions that provide the greatest information (variance) through eigen 

decomposition of the data matrix X into the score matrix W and the loadings matrix T [56]. The 

data matrix X is produced by stacking the collected spectra on top of each other in a n×m 

matrix, where n is the number of observations (spectra) and m are the number of 

measurements (wavenumbers). The scores matrix is calculated by multiplying the data matrix 

by the transpose of the data matrix (W = XXT) and the loadings matrix is calculated by 

multiplying the data matrix by the score matrix (T = XW). Each column of scores matrix is an 

eigen vector, where each value is a score for the entire spectrum on that row of the data 

matrix. 

The value of unsupervised analysis is highlighted in Figure 1, where the H&E stained sample 

is shown in Fig. 1A and PC 1-4 is shown in Fig 1. B-E. To many people the word “cancer” is 

emotive, the reason the sample is being analyzed is because it is cancerous. To the researcher 

collecting the data, the cancer is “important”. PC1 disagrees, the highest scores are shown in 

the extracellular matrix (ECM) regions of the sample, shaded light pink in Fig. 1A. Potentially 

surprising to the researcher, at least initially. PC2 and 3 appear to highlight the tumorous cell 

regions, shaded dark purple in Fig. 1A. But the greatest detail is captured in PC4. As PC4 has 

been measured to represent only 99% of the variance, the PCA analysis seems not to have 

considered the cancer as important as the ECM. But if complete ignorance of cancer is 

assumed, the results make more sense. The majority of the sampled area is ECM, if no pre-

existing bias is present, the larger number of ECM spectra becomes more prominent. It is this 

capacity to remove pre-existing bias that makes unsupervised exploration of data prior to 

supervised analysis so valuable.
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C D

E F    

Figure 1 – A) H&E stained luminal breast cancer sample showing the cancerous cells (purple) and the extracellular 
matrix (pink). B-E) False-colour shading based on principle components 1, 2, 3 and 4 score respectively (white low / 
dark purple high). F) Cumulative explained variance plot showing the majority of variance is explained in the first six 
principle components. This figure was made with data owned by the authors. 

It is possible to classify samples in two or three-dimensional score plots, the bigger the 

distinction between clusters letting the researcher know how well the samples are classified. 

Repeatability is indicated through the tightness of a cluster, the tighter the cluster, the greater 

the repeatability. The loading plot indicates the wavenumbers that contribute to the spread 

of the clusters, the further from zero the loading for a given wavenumber, the more 

“statistically interesting” it is. It is a common misconception that a specific wavenumber with 

a high loading is individually responsible for the distribution of the score plots, as a number 

of wavenumbers may be responsible in combination.

Another kind of unsupervised technique is clustering. There are numerous kinds of clustering 

algorithms, with some of the most popular including, K-means [57, 58] and hierarchical cluster 

analysis (HCA) [16]. Clustering labels samples based on features that group it with similar 

samples. The ability to label features without the analysis being influenced by previous 
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knowledge of the samples has the advantages of providing objectivity to a study, reducing 

potential bias in the analysis. 

Unsupervised learning is a key tool when determining relationships within new data. An 

example is shown in Figure 2, where HCA is used to form a dendrogram (Fig. 2A) that splits 

the samples into descending, hierarchical clusters and sub- clusters. Each cluster is given a 

label and by rearranging the labels column back into the original shape of the collected image, 

the distribution of the groups can be plotted (Fig. 2B) and compared to an imaging technique 

such as H&E staining (Fig. 2C). 

A                                             

B C

Figure 2 – A) HCA dendrogram, diving the spectra into clusters relating to their spectral similarity when 
each feature is projected into multidimensional space. B) Each pixel is coloured depending on its cluster, 
relating to either tumorous (yellow), healthy (blue) or intermediate tissue (green). C) To verify the HCA 
shaded image in B, a H&E stained image is provided, with the dark purple staining the nuclei. The high 
density of nuclei at the right of the image showing the location of the tumour and the light pink stains the 
collagen fibres of the ECM to the left of the image. This figure was made with data owned by the authors.

The value of unsupervised clustering is that it confirms and visualizes relationships within the 

data. In Figure 2, a question such as “can FTIR determine the difference between cancerous, 

intermediate and healthy tissue?” is quickly and simply answered, yes. The tumorous tissue 

shown in purple in the H&E stained image (Figure 2), intermediate and healthy tissues, stained 
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pink are shown as yellow, green and blue respectively in Figure 2. It separates the regions by 

labelling samples based on how similar they are to other samples. The dendrogram is used to 

inform the number of clusters chosen, each branch representing a cluster. It can be seen in 

Figure 2,  two and three clusters are clearly defined but the clusters become similar after that 

point. 

The speed and objectivity of unsupervised methods make them ideal for exploratory data 

analysis, an early phase of analysing a data set. Algorithms such as HCA allows for quick and 

easily visualisation of relationships within data. PCA can then be used for dimension 

reduction, reducing the number of features that need to be considered and highlighting 

potential regions of interest within the loadings plot. Once a relationship within the data has 

been confirmed through unsupervised techniques, supervised methods can be used for more 

specific questions. It is common to carry out dimension reduction with PCA before carrying 

out LDA, SVM or PLS analysis. The reduced dimensions lowers the computational cost and 

loadings plots can be used to highlight potential regions interest in the spectrum. Plotting 

principle components, from the covariance matrix plots. 

PCA and HCA are two of the most commonly used unsupervised methods used in 

spectroscopy but there are several other that were out the remit of this paper to discuss (Fig 

3). Each has advantages for different applications but the main advantage of all is the 

objectivity that they provide. The main disadvantage of unsupervised techniques is the lack 

of direction. For a more targeted approach, supervised learning is required.

Figure 3. Unsupervised methods commonly employed when analysing spectral data.
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Theory: Supervised learning (Regression, classification and Neural networks)

Supervised learning algorithms can be created either for classification predictive modelling, 

or as regression predictive modelling. Nonetheless, the difference lies in predicting classes 

(labels), or quantities. In spectroscopy both approaches can be achieved depending on the 

nature of the study, we have identified that the classification predictive models tend to be 

the most common [59, 60].

Support Vector Machines

Support Vector Machines (SVM) is a learning method used for classification and regression 

purposes. Based on pattern recognition method the SVM use hyperplanes (lines, planes) as 

decision boundaries to clearly separate classes in a multi-dimensional space. As shown on 

Figure 4 the hyperplane is separating the classes, however to find the ideal hyperplane it is 

necessary to calculate the distance between the nearest support vector (nearest data point) 

and the hyperplane. These distances are called margins [59, 61]. Normally, margins and the 

optimum hyperplane is calculated by the algorithms previously designed in the software used 

such as The Unscrambler and Python Scikit learn library [62]. Support vectors influence the 

hyperplane position, in other words the hyperplane location will depend on the layout of the 

data.   

Figure 4. Support Vector machine data separation behaviour. A) Shows a cluster separation formed by a linear regression 
model fit. B) Shows a cluster separation by the hyperplane and the distance of the points to it.

An SVM algorithm works differently when it is used to classify than when a linear regression 

is performed. In the first case, binary or multiple classification is possible. In a binary 

classification, the algorithm decides which support vector belongs to a certain class by 

calculating the margin of each support vector based on the individual hyperplane of each 
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class. In other words, as Figure 5 illustrates, class A decision boundary is described by the 

formula w*x+b=-1 and class B decision boundary is described by w*x+b=+1, where w is weight 

vector (vector which helps to classify the training examples), x is the feature or input vector 

(wavelength, wavenumbers), and b the bias unit (useful to detect the best hyperplane 

between each class) [60, 61, 63]. Hence, each support vector with a margin less than -1 and 

greater than +1 will be assigned either to class A or B, respectively.

Figure 5. Illustrative approach from the decision boundary of a Support Vector Machine.

Nevertheless, data classified under SVM algorithms can be obtained by using non-linear 

decision boundaries. Decision boundaries are also known as kernels. Kernels offer a different 

approach to classify binary and multi-class datasets. Figure 6 shows different approaches of 

SVM decision boundaries using Scikit learn library for Python programming [62]. 
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Figure 6. Different applications of decision boundaries applied to a SVM model of plants where sepal length and width are 
being classified.

As mentioned previously, SVM can be performed as a regression model. Differently from the 

classification method, this model depends only from a subset of training samples since the 

function who is dedicated to find the optimum decision boundary do not care on the error of 

predicting samples [62]. 

Linear Regression

Linear regression compares an independent variable X against a dependent variable Y in the 

equation Y = β0 + β1X + ε where β0 is the y-axis intercept, β1 is the slope of the regression line 

and ε is the error term [64]. If more than one feature is to be used to predict an outcome, 

multiple linear regression is used by including more terms into the equation e.g. Y = β0 + β1X 

+ β2X... βnX + ε [65, 66]. In this case, n denotes the number of features included in the analysis.  

Linear regression is rarely used in vibrational spectroscopy, where thousands of wavelengths 

(features) are compared when analysing samples. To reduce the number of features, principle 

component regression (PCR) may be used [66, 67]. Principle component regression is an 

unsupervised algorithm carried out over two steps. Firstly, PCA is used to reduce the 

dimensions (features / wavelengths) being analyzed, then a linear or multiple linear 

regression is carried out on the principle components, allowing predictions to be made that 

are compared to separate measurements. PCR is used in near-infrared spectroscopy to 

Page 13 of 43

URL: http://mc.manuscriptcentral.com/spectroscopy  Email: jsneddon@mcneese.edu

Applied Spectroscopy Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

calibrate quantitative measurements, where known substance concentrations are compared 

to predicted values and the error determined through measures such as the coefficient of 

determination R2 [68-70]. The closer to one, the greater the accuracy of the model. PCR has the 

advantage of being relatively interpretable but has the disadvantage of not being directed by 

the known measurements (as it is an unsupervised technique). 

Partial least squares (PLS) is a supervised technique, generally more accurate than PCR [69, 70] 

as it rotates its dimensions in such a way as to find the greatest variance with the known 

measurements accounted for  [70]. As a result, PLS is more common in vibrational spectroscopy 

as a predictive method of calibration quantitative measurements and as a classifier when the 

discriminant analysis variant is applied (when Y is categorical) [71]. There are several 

computational methods to carry out PLS, they all generally aim to do the same thing. 

Compared to PCR, which uses eigenvalue decomposition (PCA) to rotate the data within the  

data matrix X onto a new axis that accounts for the maximum variance, PLS rotates the data 

so that it accounts for the maximum variance between the X and Y matrices [72].  When looking 

at a single feature (univariate analysis) PLS is known as type one PLS (PLS1) and when looking 

at more than one feature (multivariate analysis) type two PLS (PLS2). By accounting for both 

the observed data (X) and the known data (Y), PLS increases the accuracy of the model by 

including known measurements (Y) that direct prediction [69-71].

Logistic regression 

Logistic regression (LR) has a similar behaviour as linear regression, however LR is widely used 

for classification thanks to the nature of the mathematical function of the algorithm [62]. LR is 

ruled by the sigmoid function [72]. The typical problems that LR approach are in the categorical 

form, i.e. spam or not spam, big or small, malignant or nor malignant . 

The sigmoid function brings any real value between 0 and 1 and it is defined as: 

The plotted form of this the previous function is shown in Figure 7a. as follows:

Page 14 of 43

URL: http://mc.manuscriptcentral.com/spectroscopy  Email: jsneddon@mcneese.edu

Applied Spectroscopy Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 7. Sigmoid function plot.

On the other hand, t within the function is a linear function, previously described.

Hence, the logistic equation will become:

    

Therefore, once the data is performed under the LR equation, every data point will fall 

between the values one and zero as shown in Figure 7b 8. 
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Figure 78. A) Sigmoid function plot. B)  Illustrative example of data classification using logistic regression model. Logistic 
regression is typically used for binary classifications. For example, the X axis on the Figure may represent the tumor size 
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located at any specific region of the human body,  whereas the Y axis represents the probability of the tumor to be 
malignant or not. Normally, the value of 1 is used to classify a TRUE outcome, in this case a positive malignant tumor, while 
0 is a FALSE outcome or negative malignant tumor. In other words, and keeping with the tumor example, all those samples 
(orange dots)  grouped on Y=0 will belong to a negative prediction of a malignant tumor, and all those samples (orange 
dots) on Y=1 will be considered as malignant . 

Neural networks 

Neural networks are a group of algorithms that simulate the architecture of a neuron. An 

artificial neural network (ANN) is a shallow neural network. A definitive distinction between 

a shallow and deep neural network is hard to define but around five to ten layers is the grey 

area between them, although with neural networks being produced that are hundreds of 

layers deep, the distinction may change in time. There are a range of software available to 

build neural networks such as R [73, 74], Matlab [75] and Python [6]. The most common method 

of building neural networks is in Python, using libraries such as PyTourch [73, 74] and 

TensorFlow/Keras [6, 9]. PyTorch was developed by Facebook and is one of the most popular 

package alongside Googles TensorFlow [77]. Google also developed Keras as a more 

approachable format that uses a Tensorflow backend. The libraries provide commands for 

different parameters, allowing the model to be customized for a specific application. 

TensorFlow / Keras is regularly used in vibrational spectroscopy studies [4,5,78,79]. TensorFlow 

applications include improving diagnosis of bone metastasis of prostate cancer through the 

analysis of 1281 spectra from 427 patients [78]. The convolutional neural network had 

improved accuracy when compared to chemometric techniques such as PCA-LDA, PCA-LR and 

SVM, whilst excluding radiation exposure and reducing the cost of diagnosis induced during 

the typical detection method, radionuclide bone scan [78]. Another TensorFlow produced CNN 

was used to analyse Raman spectra collected from extracellular vesicles, spherical particles 

that are secreted by mammalian cells [4]. The aim of the project was to distinguish blood 

derived (healthy) and tumour derived (pathogenic) extracellular vesicles as a means of cancer 

diagnosis [4]. The CNNs maximum accuracy was 96.6% using the 400-1800cm-1 region of the 

spectrum [4]. The results were compared to a previous study, where quadratic discriminant 

analysis was used after pre-processing and PCA dimension reduction of the data, producing a 

maximum accuracy of 95% when the same region of the spectrum was analyzed [4]. The 

advantage of the CNN was that it did not require any data pre-processing or dimension 

reduction [4], an advantage also determined during the analysis of chemicals using a Keras-

TensorFlow CNN [79]
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Feed forward networks are made of three main kinds of layers, input, hidden and output 

layers. Input layers enter the data into the model; in spectroscopy, the initial input would 

typically be a spectrum or selected wavelengths with each node inputting one wavelength [48]. 

Each “neuron” (node) in the hidden layer (or layers) and output layer has an input (dendrite), 

a processing unit (soma) and an output (axon) (Figure 8 9). Each processing unit multiplies 

inputs by a weight (a factor or parameter which has a substantial effect on the input), sums 

the multiples, adds a bias and classifies the summed inputs with an activation function. A 

range of activation functions exist [20], but a common one in beginner neural networks is the 

sigmoid function, found in logistic regressors as previously described. 

Figure 89. Feed Forward Neural Network scheme. The flow of data goes forwards, from the input to the output as the 
arrows illustrate.

The exponential within the sigmoid function results in outputs tending to either one or zero 

(depending on where it is positive or negative), the same as the logistic regressor. The neurons 

that output close to zero result therefore diminish in statistical importance as the neuron fails 

to “fire”, reducing its contribution to the next layer. The weight of each feature and bias of 

each neuron therefore influences how “important” the feature is within the model.  The 

highlighted combinations are then passed onto the next layer in a process known as forward 

propagation. Each layer therefore acts as a filter, determining the statistical importance of 

each feature and combination of features towards the labelling of a sample. 

The sigmoid function has remained popular in online courses and introductory lectures for 

neural networks, possibly as ML novices may find the near binary output they provide more 

intuitive. The disadvantage of sigmoid functions for deeper neural networks is the vanishing 

gradient problem [21]. Tanh, sigmoid and rectified linear unit (ReLU) activation functions are 
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other commonly used options [21]. ReLU is by far the most popular activation function, with 

variations such as the parametric ReLU (PReLU), leaky ReLU and randomized leaky ReLU 

(RReLU) [21, 78, 80], although these are outside the scope of this review. Softmax is the most 

commonly used activation function for the output layer because it provides a probability [21]. 

The need for experimentation is required to determine the correct activation function for a 

given application to maximize accuracy. The final (output) layer ends by outputting some 

result, the accuracy of which is determined by a loss function, such as cross-entropy for 

classification problems [81].

Loss functions determine the error by comparing the predicted label produced with test data, 

against the actual label. By quantifying the error, the loss function provides a metric to 

optimize through refinement of the model. The percentage of data held back for testing is 

typically 20-30%. If the loss of two configurations of weights, biases and neuron inputs are 

calculated, the difference between the two values reveals the difference in accuracy between 

the two configurations. Different factors, which could be (but are not limited to) weights for 

different inputs or different neuron biases, may have a greater or lesser influence on the 

accuracy. Put in mathematical terms, they have different rates of change. A factor with a 

larger rate of change has a greater influence on model accuracy. 

Figure 9 10 – The output of the loss function (y-axis)  for a single variable is plotted for a range of fabricated alterations 
(x-axis). A local minima is shown (red star) and the global minima (green star)   

To visualize the rate of change, Figure 910 shows the fabricated outputs of a loss function for 

a single factor (blue line), with the gradient of the line indicating the rate of change. The goal 
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of the optimisation function is to find the global minimum (the lowest output of all the 

potential losses – Figure 10 green star). Calculating the loss of all weights and biases for all 

combinations of inputs would be computationally inefficient. Strategies for efficiently 

determining the optimal configuration is a key topic in machine learning. Initially, the weights 

and biases were randomly selected and optimisation used to try to determine the global 

minimum but altering the weights and biases over steps, with step-size decided by the 

researcher. Care is required when selecting step-size, as local minima (Figure 10 red star) may 

result in a reduced optimisation. A key factor that effects a neurons loss is the input (feature) 

entering the neuron itself. In the input layer, the input values are fixed. In the hidden layers 

however, the weights and biases can be adapted to influence the input into the next level. In 

a process known as back-propagation, the optimisation of the previous layer (Figure 9 – 

hidden 2) takes the optimisation of the output layer into account, refining the input to the 

output layer. The same process happens to hidden layer 1, as the entire model is refined for 

maximum accuracy. 

Different neural networks have been developed to suit different applications. Convolutional 

neural networks for example are typically for image analysis. Recurrent neural networks have 

been widely used in signal processing as the input data size is not required to be consistent, 

whereas unsupervised applications require autoencoders or Restricted Boltzmann machines 

(combinations of autoencoders). In spectroscopy, the most common forms of neural network 

are artificial and one-dimensional convolutional neural networks. Convolution uses a kernel 

to average regions of a spectrum or image. Different kernels may be used to highlight 

different features, or regions of the spectrums that identify a sample [80]. Convolution 

converts the image or spectrum into abstractions of the original data, that are typically 

smaller than the original dataset whilst retaining the key aspects of the data that defines a 

sample label. Convolutional layers therefore reduce the amount of information being 

processed in subsequent layers, reducing the computational cost and time [80].  The kind of 

model used is determined by the kind of data a researcher has. For example, images are 

typically analyzed with convolutional neural networks, sequences with recurrent neural 

networks and spectra most commonly are analyzed through feedforward neural networks. 

There are numerous other supervised methods (Fig. 1011), with an algorithm for each major 

sub-section (regression, classification and neural networks) discussed. The main advantages 
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of directed learning and disadvantage of subjectivity were presented. With a background into 

how chemometrics and ML techniques are related and the theory into common algorithms, 

examples of ML algorithms use in life science and medical spectroscopic research will now be 

discussed. 
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Figure 10 11. Supervised learning methods used in spectroscopy techniques.

Applications

Spectroscopy, Machine Learning, and Life Sciences.

ML – Spectroscopy analysis has been extensively explored for a number of years. In the 

nineties dielectric spectroscopy was paired with neural networks to analyse the metabolite 

concentrations of different cell suspensions [82]. Dielectric spectroscopy is based on applying 

a static electric field with low frequency across the plasma membrane, causing amplification 

of the frequency signal. Employing neural networks to different cell cultures helped to 

differentiate and compare the metabolism of different cells. Additionally, it is described that 

artificial neural networks (ANN) analysis from the collected data allows qualitative prediction 

of the metabolic activity of unknown samples, specifically when cells are processing or 

metabolising glucose [82]. Different aspects of neural networks, such as node and layer 

numbers were explored to determine the maximum efficiency, finding that two or more 

layers actually reduced the accuracy [82]. The authors describe that coupling ANN with this 

spectroscopic technique can potentially be used to identify organisms as well as their main 

metabolic status [82]. 

Similarly, dielectric spectroscopy and electrochemical impedance spectroscopy identifies 

changes that occur between the interaction of the analyzed solution and the sensor, which 

has been applied to microorganism studies [83, 84]. Microorganisms suspended in an electrolyte 

solution makes the microbes, which have different external charges, attach to the electrode 
[83]. Results from a study of binary mixes of microorganisms studied suggested that basic 

statistical analysis does not identify and classify data efficiently [83]. However, when the ANN 

model was implemented to the impedance spectra, using Bayesian Regularization, the overall 

prediction was of 98.9%. Bayesian regularization is efficient with few data sets [83].

Dahlstrand et al. 2019 describe another significant aspect of ML – spectroscopy application 

study, using extended-wavelength diffuse reflectance spectroscopy (EWDRS). EWDRS uses a 

fibreoptic probe to analyse tissues by detecting the reflectance of visible light and near 

infrared (NIR) with a wavelength number between 400 to 1000 nm, and NIR to short-wave 

infrared range 1000 – 1700 nm [86, 87]. The study differentiated between five types of porcine 
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skin tissues by coupling EWDRS and ML methods, support vector machines (SVM) specifically. 

Implementing PCA-SVM as supervised methods to analyse the data resulted in a 98% overall 

accuracy, indicating the possibility to build efficient and accurate predictive models for 

further applications [85]. 

Both the ML and vibrational spectroscopy have also been used in molecular biology. 

Vibrational spectroscopy (Raman or Infrared), is characterized by raising the molecular 

energetic state, due to the absorption of external electromagnetic radiation causing specific 

vibrations of chemical bonds [88]. 

Using surface enhanced Raman spectroscopy (SERS) to analyse damaged DNA fixed onto a 

gold grate, the aim of this study was to classify, identify and predict photo-induced damaged 

DNA. The research showed that ANN presented positive results with 98% of accuracy in the 

prediction of damaged DNA. The application of SERS as a non-invasive tool indicates a 

promising applicability for nucleotide molecules even if small changes occur in the molecular 

structure [89]. 

Microbiology has also found ML applications in spectroscopy. Recently, Sharaha et al. 2019, 

analyzed E. coli strains resistant to antibiotics by FTIR in combination with machine learning 

methods as analytical tool. Antibiotics such as, Cotrimoxazole, Piperacillin/tazobactam, 

Ceftriaxone, and Ceftazidime were identified to not be susceptible against E. coli strains. FTIR 

spectra collection was performed directly from the identified resistant colonies. Support 

vector machines (SVM) as the side machine learning tool helped to identify and predict 

susceptible and resistant E. coli strains to antibiotics. The test was able to predict the best 

antibiotic choice above than 89% of sensitivity [90]. In the same year, bacteria responsible for 

severe food poisoning were studied by Bağcioğlu et al. 2019. Bacillus cereus, Bacillus 

cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis, 

microorganisms complicated to diagnose in ordinal clinical tests could efficiently be 

differentiated by FTIR spectroscopy and ML methods.  methods did not provide a good 

differentiation of the data between the previous bacterial strains. The ANN model was 

formulated using the spectral regions between 3100 – 2800 cm-1 (fatty acids assignment) and 

1800 – 700 cm-1 (Lipids, proteins, carbohydrates, assignments). The model identified 99.5%, 

overall, from the strains used [91]. 
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Another example in which FTIR spectroscopy has been implemented together with ML, can 

be shown in the study done by Dziuba B., 2013, in which Propionibacteria species were 

analyzed. PCR was used to molecularly separate and identify bacterial strains. The previous 

allowed a correct identification. As complementary analysis and identification, the study used 

multilayer perceptrons (MLP) and probabilistic NN (PNN) to analyse the FTIR spectra from 

Propionibacteria strains.  Three different analytical layers constituted the ANN. Absorbance 

values, wavenumbers selected by a genetic algorithm, and a hidden layer. The ANN algorithm 

could correctly identify Propinobacterium genus (93% of accuracy) at three specific 

wavelength regions 900 – 600 cm-1, 1200- 900 cm-1, and between 1500 – 1200 cm-1 [92]. 

Similarly,  Rebuffo – Scheer et al. 2007, demonstrated the efficiency of using PCR-FTIR-ML to 

study and compare serovars of Listeria monocytogenes. The study showed that in the 

wavenumber region between 1200 – 900 cm-1 a carbohydrate peak assignment can be found, 

furthermore in this region peak absorbance changes, suggesting that serotype identification 

is linked to the carbohydrate structural changes. ANN analysis provides a bigger identification 

accuracy for sample the FTIR spectroscopy, giving a 98% of identification accuracy outcome 

compared to the 95% using PCR [93].

Moreover, it has been found that Campylobacter coli and Campylobacter jejuni, are bacteria 

responsible for causing severe acute gastroenterological diseases [94]. Four Campylobacter 

genotypes were isolated and analyzed under FTIR spectroscopy. As a supervised method, MLP 

and PNN, two types of neural network models, allows to classify and identify data.  The 

analyzed spectral regions were 1200 – 900 cm-1 (Region W4) and 900 – 700 cm-1 (region W5). 

Four-layer ANN was build using these methods. The best prediction occurred by using MLP 

on W4, giving 99.16% of correctly identified microorganisms. 94% for W5. Whereas, the lowest 

identification percentage was seen with PNN method in the region W5, showing  89% of 

identification [94]. Furthermore, in 2018 a study leaded by Lasch et al. also aimed to identify 

and differentiate pathogenic bacteria. FTIR spectral maps (spectra of some of the 

Burkholderia species is shown in Figure 1112) of different strains of B. cenocepacia, B. 

thailandensis, B. caledonica, B. cepacia, B. gladioli, B. vietnamiensis, B. stabilis, and B. glathei 

were processed using ANN analysis (Figure 1213). Every pixel from the maps is equals to a 

spectral point, hence the pixels giving information regarding the region of interest were 

subtracted to serve as an input for the ANN model. Resilient back propagation (BP) learning 
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algorithm was used to train data, as well as Covar feature as selective method. The detection 

of Burkholderia strains was variable, the image prediction accuracies substantially changed, 

since 90% and 75% of predictive accuracy was obtained, respectively [95].  

Wenning et al. 2010, also studied microorganisms, lactic acid bacteria (LAB) specifically, using 

FTIR and ML to identify and recognize these non-pathogenic microorganisms. The analyzed 

spectral windows between 700 – 1800 cm-1 and 2800 – 3000 cm-1 serving for data training 

purposes.  In order to validate the accuracy of the ANN test spectra from each of the known 

species were collected, giving 98% of accuracy. On the other side, to validate the model, 558 

spectra of 85 unknown strains were collected and then processed with ANNs. The results gave 

93% of accuracy, which is considered as a good prediction [96]. ANN - FTIR spectroscopy 

conjunction has been used to identify S. aureus serotypes of capsulated varieties. The 

principal aim of the study conducted by Grunert et al. 2013, was to differentiate the 

polysaccharide structure of the capsules from the different S. aureus variants. Within the 

spectral region between 1200 – 800 cm-1 polysaccharide peak assignments can be found, 

mainly C-O-C and C-O-P vibrational stretches. Additionally, between 845 – 810 cm-1 is 

described to be specific of alpha-anomeric composition of carbohydrates. NeuroDeveloper 

software was used to perform the ANN model. The model run under Rprop algorithm. The 

combination of ANNs – FTIR provided a 98.2% of accuracy, overall [97].
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Figure 1112. FTIR spectrograms of Burkholderia species. A peak localized at 1738 cm-1 present in B. cenocepacia, and B. 
glathei  indicates the presence of PHB (Poly beta-hydroxybutyrate), a bio-polyester. PHB interferes with the 
infrared identification of microorganisms based. Between the 3000-2800 cm-1 region its eidentified to belong to 
C-H stretching, additionally. 1490-1370 cm-1 possesses deformation mode of =CH2, and 1200-900 cm-1 is 
characterized for having -CH3 functional groups contributions. [17]

Adapted with permission from reference [95]. Copyright (2018), American Chemical Society

Page 26 of 43

URL: http://mc.manuscriptcentral.com/spectroscopy  Email: jsneddon@mcneese.edu

Applied Spectroscopy Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review OnlyFigure 12 13. Infrared imaging data from the ANN prediction of the different Burkholderia species. It can be seen that the 
ANN algorithm used to predict the microorganism gave 75% - 90% of accuracy. Indicating that spectral imaging together 
with machine learning algorithms such as ANN can be useful to identify and predict different bacterial species [17]. 

Adapted with permission from reference [95]. Copyright (2018), American Chemical Society.    

Moving from the field of microbiology, but without leaving the life sciences, it is worth 

mentioning that in pharmacology the use of the spectroscopy-ML set has also been explored. 

Monoclonal antibodies [98], carbamazepine, nicotinamide, ibuprofen [99], Emtricitabine and 

Tenofovir alafenamide fumarate [100], active principle ingredients [101], and cephalexin [102]. 

However, cellular cultures that are used for production of biopharmaceutical drugs have been 

also evaluated using ANN and spectroscopy [103]. Le et al. 2018 analyzed by Raman 

spectroscopy and ML methods, bevacizumab, infliximab, ramucirumab, and Rituximab, 
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monoclonal antibodies (mABs), that help to treat cancer. In this study, it was found that the 

structure of the mABs can be identified along the 1650 – 1300 cm-1 region, peaks 

corresponding to amide I and amide III regions, respectively. Utilising ANN, compared to linear 

discriminant analysis, the identification error reduces up to 88.3%. Arabzadeh et al. 2019 and 

Takashi et al. 2015 utilized UV-vis – ML methods to evaluate different pharmaceutical aspects. 

In both cases the ANN methods used was feed forward back-propagation learning. Takashi et 

al. 2015 concluded that potential applications can be performed using UV-vis-ML, such as bio-

sensors to quantify metabolites, and nutrients. Furthermore, comparing linear discriminant 

analysis, PLS, genetic algorithms methods to ANNs methods, results to be more efficient in 

predicting spectral data [98, 99, 101, 102, 103]. 

Mid-infrared spectroscopy and NIR- spectroscopy [104 - 108], coupled with ML methods, such as 

k nearest neighbours (kNN) [104, 107], logistic regression (LR) [104, 105], support vector machines 

(SVM) [103,107], random forests (RF) [104, 107, 108], gradient boosted trees (XGB) [103, 107], Levenberg-

Marquardt (damped least-squares) optimization [105], Radial-Basis Function (RBF) [106], 

Learning Vector Quantization (LVQ) [109] , naïve Bayes (NB) [107], multilayer perceptron (MLP) 
[107], and Generalized boosted machines (GBM) [108], has been used in other life sciences fields. 

In the last 3 years, recent studies in fields like botany, zoology, and ecology, have 

demonstrated that using spectral data together with ML methods is better and more efficient 

to predict than using linear discriminant analysis [104 - 109]. 

Spectroscopy and Machine Learning in the Medical field.

Recently, ML methods also have been used in Medicine to enhance and aid the early 

detection of diseases. Chaber et al. 2019 employed FTIR spectroscopy together with ML 

methods, such as k-nearest neighbour (KNN), support vector machine (SVM), Random forest 

(RF), Linear discriminant Analysis (LDA), and Gradient Boosted Classifier (GBC), specifically, to 

predict Erwin Sarcoma. The authors found that predicting infrared spectra (Figure 136) and 

using SVM gives 92.3% of accuracy in relapsed patients before a chemotherapy. However, in 

death patients the best accuracy was predicted with Random Forest algorithm (92.3%) after 

chemotherapy sessions (Table 1) [109]. Similarly, in the prediction of tumours, FTIR micro-

spectroscopy coupled with ANNs has been used to analyse and predict glial abnormal growth. 

ANN algorithm predicted 5% of error the changes that occur among nerve tissue sample, 

mainly in proteins (random coils, α-helices, β-sheets, and β-turns) [110]. 
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Table 1. Machine learning methods used with their respective prediction accuracy of different sample groups. [106]  
Adapted with permission from Molecular Diversity Preservation International.    

Dead patients after chemotherapy

KNN 69.2%

SVM 88.5%

RF 92.3%

LDA 53.8%

Algorithm 

employed and 

accuracy obtained
GBC 76.9%

Relapsed samples previous to 

chemotherapy

KNN 61.5%

SVM 92.3%

RF 69.2%

LDA 69.2%

Algorithm 

employed and 

accuracy obtained
GBC 61.5%

Figure 13 14. Red line indicates normal bone tissue IR spectra. Blue line represents the IR spectra from the tissue diagnosed 
with Erwin Sarcoma (ES). In green, IR spectra of ES tissue after chemotherapy. [31]  
Adapted with permission from reference [109], Copyright (2019). Molecular Diversity Preservation International (MDPI).    

Other studies related to brain diseases and cancer have explored other spectroscopic 

techniques such as magnetic resonance [111] and Raman spectroscopy [112, 113], together with 

ML methods. Jermyn et al. 2016, used a portable Raman equipped with a 785 nm lase fibre 

optic probe to study healthy and cancerous human brain tissue from 177 subjects. To predict 

and classify the cancer prevalence in humans, ANNs together with boosted trees were 
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implemented and compared between each other. The best prediction accuracy was obtained 

using ANNs (90%) while boosted trees algorithm present poor predictive accuracy (71%). 

Erzina et al. 2020, predicted different cancer cell lines using SERS. The prediction was obtained 

using convolutional neural networks (CNN) of Raman spectroscopy data from the cancerous 

cell. After 400 iterations the model was able to predict regions of interest in the different 

substrates where SERS was performed. The predictive accuracy of prediction was of 100% 

indicating that this algorithm works perfectly for classification and prediction of abnormal 

samples.

However, Ralbovsky et al. 2019 analyzed biofluids (saliva), differently from tissues, saliva is 

easier to obtain since its acquisition can be classified as a non-invasive method. Saliva was 

collected from 39 patients and analyzed by Raman spectroscopy. ANNs was applied and 

validated using latin partition, the implementation of this algorithm helped to differentiate 

Alzheimer, mild cognitive impairment, and healthy donors. It was possible to differentiate 

Alzheimer patients with 99.33% of accuracy. The previous described, has shown that 

spectroscopy techniques coupled with ML methods can efficiently be applied to medicine. 

Other medical research fields have also explored using the spectroscopy-machine learning 

combination to predict  and classify different diseases and disorders. Raman spectroscopy 

and ANNs could classify and predict atherosclerosis with 5% of error. Sixty histological 

samples of coronary arteries from healthy and affected patients were analyzed [115]. Joint 

tissue, such as such as cartilage, subchondral bone, cancellous bone and meniscus were 

analyzed using diffuse reflectance spectroscopy coupled with FLDA (Fourier linear 

discriminant analysis) and LDA. Using these methods more than 99% of accuracy was achieve 

for all different tissues [116]. ATR-FTIR spectroscopy coupled with ML methods was applied to 

cervical cytology samples. Cervical cytology is used to detect abnormal cervix cells or potential 

cancerous cells, mainly used for HPV screening. The ML methods used, such as eClass, SVM, 

ANN, k-NN were compared. eClass for this study resulted more efficient as a predictive tool 
[117]. In addition, Hereditary Haemorrhagic Telangiectasia (HHT), a vascular disorder caused by 

gene mutations, was studied using mid-infrared spectroscopy and ANNs. The authors 

collected blood plasma from 202 healthy and diagnosed patients, concluding that the 

obtained 95 sensitivity and specificity results proved that the study could potentially be 

applied in a bigger scale [118].      
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NIR spectroscopy and ANNs was assessed estimation of glucose levels in blood. With a sample 

size of 50 samples, 94% of accuracy was achieved [119]. Likewise, Guevara et al. 2018, used a 

portable Raman probe (785 nm laser and 90 mW of power) to assess the early detection of 

diabetes mellitus type 2 (DM2). The Raman probe was positioned in different anatomical 

points, from healthy and DM2 diagnosed patients (ear lobe, inner arm, thumb nail, and 

median cubital vein), the spectra collection from the anatomical point were compared with 

blood samples. Feed-forward ANN and SVM were implemented as ML methods as supervised 

comparison methods. The best results were implementing ANN algorithm when collecting 

spectra from the inner arm site, since it was possible by this method to get 96% score of 

prediction accuracy [120]. On the other hand, blood hyper viscosity identification with 97% of 

accuracy, and using NIR spectroscopy was achieved by Liu et al. 2018.

In the last decade, applications of spectroscopy to medicine combined with machine learning 

methods have proven to be efficient in predicting diseases and medical disorders. The 

implementation of statistical algorithms along with analytical tools, such as spectroscopy, 

may in the not-too-distant future provide patients with a way to promptly diagnose critical 

medical conditions, thus physicians can prescribe an effective treatment to lessen the impact 

of the disease.   

Conclusion  

After taking a deep dive into this subject area, it can be confidently concluded that 

spectroscopy is an area that together with machine learning can have a significant use to 

develop better prediction and classification techniques and thus improve everyday processes. 

Although, it has been reported in multiple articles that artificial neural networks provide 

better efficiency to perform these tasks. However, the efficiency of prediction with other ML 

techniques could change according to the approach that the scientists decide to apply. Lastly, 

multiple software described in Figure 1415, aid the analysis, bringing a better overview of the 

multivariable analysis of the data collected. The combination of these techniques is booming, 

there is much to explore and exploit in this area, and will undoubtedly provide better 

prospects for possible future implementations and applications in multiple sectors.

Page 31 of 43

URL: http://mc.manuscriptcentral.com/spectroscopy  Email: jsneddon@mcneese.edu

Applied Spectroscopy Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 14 15. In the last decade computational sciences has been a powerful ally on the analysis of, identification, 
classification and prediction of spectral data. This image describes some different software and side tools used 
for ML applications in spectroscopy.   
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