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Abstract—Distributed Execution Frameworks (DEFs) such as
Apache Spark have become ubiquitous as a solution for the
execution of user-defined jobs to process terabytes of data across
hundreds of nodes. One of the key costs of DEFs is scheduling of
which parts of each job are placed on each host; better scheduling
decisions provide lower overall execution time for each job,
more efficient resource usage, and reduced energy consumption.
Existing DEFs use a static approach to scheduling, either with
a single generalised scheduler which aims to be a good fit for
most workloads, or with a special-purpose scheduler which is
tuned to optimise for a particular kind of workload. In both
cases the scheduling implementation is fixed at design-time such
that the DEF is unable to adjust to the actual characteristics
of workloads that arrive at deployment time. In this paper
we introduce an emergent scheduler for Distributed Execution
Frameworks. This scheduler can be composed and re-composed
at runtime from a set of different building blocks, allowing the
system to dynamically provide the benefits of differing scheduling
policies over time depending on the actual properties of incoming
workloads – with improved performance and resource usage.
In this paper we present the overall design of our emergent
scheduler, we discuss the theoretical design space of different
scheduling approaches, and we examine a specific research ques-
tion to determine the correlation between workload properties and
scheduling performance for different scheduler implementations.
Our results are based on a real implementation of our emergent
DEF running across multiple hosts in a real datacentre, and our
implementation is made available as open-source software.

I. INTRODUCTION

The increasing volume of data created today, combined with
increases in processing capabilities and data storage capacity,
has led to the emergence of distributed execution frameworks
(DEFs) such as Apache Spark [1] to assist with scheduling
and processing tasks across hundreds or thousands of compute
nodes. Common examples of such tasks include searching
or sorting huge databases [2], training deep learning models
on very large training sets [3], or processing data science
workloads to gain business intelligence [4]. A user submits
their overall processing job to one of these frameworks, which
then determines how to split up the input data and parallelise
and schedule the execution tasks across hundreds of hosts
in order to output the data processing result as quickly as
possible. DEFs are typically hosted in cloud computing in-
frastructures, and will usually be processing multiple (tens, or
even hundreds) of such jobs from different users concurrently.

As the use of DEFs has increased over the last decade,
and the range of different uses for them has increased, this
has created a very wide variety of different job types –
which makes scheduling very difficult to optimise across the
different properties and behaviours of those job types and
their combinations. Using the wrong scheduling approach for
a given mixture of workloads can be extremely costly in
completion time, and in power consumption across the set of
servers which are being used to process the workloads [5]–[7].

The state of the art in scheduling design for DEFs offers
both different scheduling architectures (e.g. centralised or
decentralised) and different scheduling policies within those
architectures (e.g. first-in-first-out). Overall there are three
major approaches to date. General-purpose schedulers attempt
to represent a ‘best fit’ for most workloads, using a single
scheduling architecture and policy, such as that of Apache
Spark [1]. Workload-specific schedulers, such as that of Ray
[8], focus on improving end-to-end performance for a specific
workload type, for which a general-purpose scheduler would
perform poorly. Hybrid (e.g., [9]–[11]) and adaptive [2], [12],
[13] approaches attempt to gain the best of both by simulta-
neously employing multiple different scheduling architectures
or policies. However, to date they use hand-crafted rules or
expect the user to submit detailed specifications with their
data processing job to enable selection of the ideal scheduler
– or alternatively use offline training of a policy which is then
fixed at runtime. Overall, no DEF scheduling approach has
examined runtime learning of scheduling architecture and/or
policy under uncertainty, based only on real-time observations.

In this paper we introduce an emergent scheduler, which
composes individual building blocks of behaviour at runtime
to form different DEF scheduling architectures or policies. Our
approach is able to continuously and seamlessly recompose the
scheduler architecture and policy at runtime, based on obser-
vations of its deployment environment, to continually drive the
system towards an optimal scheduling behaviour based on the
actual workloads that it is receiving and the way in which those
workloads behave on the set of computational hosts available
to the DEF. In principle this allows the scheduler to constantly
lower its scheduling overhead and improve decision quality
– thereby completing workloads faster and using less server
power to do so. Our emergent DEF system in itself provides a
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new examplar of a compositional self-adaptive system – and
in this paper we report on using our emergent DEF to help
answer three research questions:

• RQ1: What are the dimensions of compositional adapta-
tion in a self-adaptive DEF scheduler?

• RQ2: Do different DEF workloads correlate with differ-
ent ideal scheduler policy compositions, and if so how?

• RQ3: If ‘yes’ to RQ2, can we identify points in a
workload at which it is rational to adapt between different
scheduler compositions?

To study these questions we have built a fully-functional
emergent DEF system, the scheduling element of which can
be formed from a variety of different building blocks. We
answer RQ1 using a theoretical analysis of the design space.
For RQ2 and RQ3 we deploy our emergent DEF in a real data
centre environment and provide it with a range of different
workloads to examine which workloads operate best under
which scheduler compositions.

Our empirical results demonstrate that different workloads
do strongly correlate with different optimal scheduler com-
positions, such that no composition is best in all workloads,
and that there are some potential indicators in the workload
trace of when the system should change between different
compositions according to the workload’s trajectory. This
study indicates that compositional adaptation is promising in
a DEF’s scheduler system, and serves as a baseline for future
work in which we aim to develop online machine learning
support to automate the decision making of which composition
to use at any point in time. Our system is made available as
open-source software, along with detailed instructions of how
to recreate our empirical results1.

In the remainder of this paper we first present related work
in Sec. II. We then introduce our emergent DEF design in
Sec. III, along with an analysis of its adaptation dimensions.
We then present our empirical evaluation in Sec. V, and
conclude the paper in Sec. VI.

II. RELATED WORK

Distributed Execution Frameworks (DEFs) provide a solu-
tion to the increasing demands of large-scale data processing
workloads, providing the means for simplified submission,
deployment, and distributed execution of submitted jobs. As
one of the dominant uses for data centre and cloud systems at
present, DEFs have received significant research attention.

In this section we focus specifically on research that consid-
ers scheduling in DEFs, which is one of their key operational
costs. Improvements to scheduling provides lower end-to-end
completion time of workloads [2], [3], [8], higher resource
utilization [5], [6] and, lower energy consumption [7]. In
existing research there are four main differing approaches to
scheduling workloads within DEFs: general purpose sched-
ulers, workload-specific, hybrid, and adaptive.

1http://www.projectdana.com/research/seams2021dean

A. General purpose

First, general-purpose approaches, which consist of a sin-
gle architecture and scheduling policy. General-purpose ap-
proaches are able to schedule a large set of workload types
applying the same policy to all workloads received [1], [6],
[14]–[16]. One prominent example, Apache Spark [1], utilises
a fixed scheduling policy ensuring higher quality scheduling
decisions through guaranteeing data locality. However, this
limits the performance for scheduling a single workload type
as the scheduler is accommodating a larger set of workloads
the cost of scheduling adversely effects latency sensitive
workloads [8], [17].

B. Workload specialists

Second, workload specific approaches, focus on improving
the performance of a specific workload type, reducing the
performance for workloads not specific to the framework [8],
or lose the ability to schedule the majority of workloads
[3], [4]. While limiting the performance of a wider set of
workloads, workload-specific approaches address the issues
of scheduling recent diverging and complex workloads, for
example reinforcement learning [8], machine learning [3]
and, real-time processing [4], [18]. However, through limiting
the number of workloads intended to be scheduled by the
framework, the performance of scheduling for a workload is
improved. This can be seen with Ray and Apache Spark,
Ray provides a reduced scheduling overhead and provides
improved performance for latency sensitive tasks in compari-
son to Spark [8]. However, the ability to make higher quality
scheduling decisions are lost by Ray as the scheduler loses the
guarantee of data locality and encounters a performance hit
when encountering data-intensive workloads a property spark
guarantees [1]. In addition, workload specific approaches may
require improvements or alternate frameworks to reacquire lost
scheduling behaviour and guarantees, for example, accommo-
date multi-tenant scenarios [5] or improve the efficiency of
scheduling decisions [19].

C. Hybrid approaches

Third, Hybrid approaches, attempt to provide the benefits
of improved performance offered by workload specific ap-
proaches for the larger set of workloads available to general-
purpose approaches through the combination of multiple
scheduling approaches. The use of multiple scheduling ap-
proaches simultaneously provide improved performance for
scheduling a larger set of workloads as the policy or archi-
tecture may be switched to a set alternative, better suited to
schedule the incoming workload [9], [10]. However, hybrid
approaches split cluster resources by reserving resources for
each approach or add an overhead of switching the scheduling
approach and suffer a performance hit if incorrectly selected;
this limitation creates difficult scenarios for hybrid approaches
to outperform the performance offered by general-purpose
approaches, further difficulties arise as users may need to add
attributes to the submitted workload to aid in the correct policy
is selected [11].
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D. Adaptive and learned schedulers

The fourth set of approaches are learning and self-
adaptive approaches to scheduling. Learning-based approaches
to scheduling are appealing as they offer a significant improve-
ment to reducing the overhead of scheduling in comparison to
previous frameworks. The increased performance is achieved
through the application of a machine-learning model to in-
crease scheduling performance by lowering the scheduling
overhead and rewarding high quality scheduling decisions
[2]. However, with a significant increase in performance the
approach is limited to a specific workload type and would
require the model to be re-trained for unforeseen workloads.
Adaptive approaches achieve performance increases through
the adaptation of the scheduling policy or architecture at run-
time, providing the benefit of an alternate scheduling approach
autonomously without the limitations of hybrid approaches
requiring two separate approaches simultaneously. However,
current adaptive approaches to scheduling are limited by
their need for user provided parameters to inform scheduling
decisions [12], or the need for user-generated models [13].
The need for domain-specific knowledge and user intervention
for informing adaptation limits the approach as scheduling
may only be improved and maintained across all encountered
workloads with sufficient data and correct models for all.
This requires a significant amount of time and knowledge in
an environment where workloads are becoming increasingly
complex, sporadic and potentially non-repeating.

III. APPROACH

Every DEF approach has some core conceptual elements in
common, illustrated by Fig. 1. Specifically, they are architected
such that one distinct software system operates as a cluster
manager (Resource Manager) for the collection of host com-
puters (workers/Node Managers) available to the DEF, acting
as the overall orchestrator of the system and the place to which
jobs are initially submitted by users. A separate but interrelated
software system (Application Manager) then operates on one
of the available worker nodes to manage delivery and execu-
tion of individual tasks on each host (Executors). Besides this
basic commonality, there is then significant variation between
different DEF approaches in the detail of how scheduling
works between the cluster manager and each worker node –
with some approaches using a centralised scheduling design
where the cluster manager makes all decisions, and others
using a decentralised design where worker nodes manage
and schedule their own task allocations. Broadly speaking,
centralised scheduling approaches may make better decisions
(which is good for long-running tasks), but take longer to
calculate those decisions (which is bad for short tasks); while
decentralised solutions may take much quicker scheduling
decisions as they are considering only local states, but may
make decisions of poorer quality.

At a high level our emergent DEF is constructed as two
different emergent systems representing these two core roles
of cluster manager and worker node agent; in principle this
allows us to adjust both the distributed scheduler architecture

Resource Manager

Application Master 
Service

Scheduling 
Components

Node Manager

Application 
Manager 

Executor

Node Manager

Executor

Application 
Manager 

Node Manager

Executor

Executor

Fig. 1. Overview of a Distributed Execution Framework architecture

and the scheduling policies used within that architecture. In
this section we first introduce general background on how
emergent software systems work, then present our emergent
DEF system as implemented with this paradigm.

A. Emergent Software Systems Background

Emergent software systems use an assembly, perception,
and learning framework to automatically construct a working
system from a large pool of potential building blocks, and
then to continually re-assemble that system while it is running.
Continuous re-assembly at runtime is based on real-time
observations of the system’s performance and deployment
environment conditions, connected to real-time learning which
explores possible compositions of behaviour to continually
move towards a higher-performing composition. To date they
have been used in web server systems in both single-host and
distributed multi-host environments [20], [21].

Operationally, the assembly part of the framework is pro-
vided with a ‘main’ component, and examines the depen-
dencies (exposed as ‘required interfaces’) of that component.
For each of those required interfaces, the assembly module
searches for all available implementing components; many
such interfaces will have multiple implementation variants
such as different sorting algorithms, buffer management strate-
gies, or cache implementations. The assembly module then
examines all of the required interfaces of those components,
recursively, until it has a set of possible discrete compositions
of components which all perform the same functional task
but do so in different ways. Probes are then injected into the
composed system to read metrics of interest, which are fed
to the perception module for collation. A learning algorithm
communicates with both the assembly and perception modules
to select a composition of interest, read reward information
about that composition after an observation period, and then
select the next composition. Each composition choice causes
the assembly module to compute a delta between its current
composition of components and the selected one, and to
perform a series of specific runtime adaptations which hot-
swap the relevant components to reach the target composition.

3
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The pool of components available to an emergent software
system can be dynamically changed at runtime by adding new
variants of existing interfaces or removing existing ones. We
use the generalised emergent software framework reported
in [22], and our emergent DEF is built using the Dana
component-oriented programming language which provides
seamless runtime hot-swaps with guaranteed soundness [23].

B. An Emergent DEF

Our emergent DEF is composed of two distinct emergent
systems: one acting as a cluster manager to which jobs are
submitted, and the other as a node manager resident on each
worker node that is part of the cluster. This approach in
principle allows us to create multiple different scheduling
architectures (e.g. centralised / decentralised) by adding the
appropriate component building block variants to the pool
available to the cluster manager and node manager. For the
purpose of the study in this paper, however, we use only a
centralised two-tier scheduling architecture and provide multi-
ple scheduling policy implementations within this architecture
– such as first-in-first-out or resource-balanced policies.

Fig. 2 shows a subset of the components used by the cluster
manager and node manager systems, focusing on the elements
for which relevant variation is available for the purpose of
our study (in reality both systems are composed of over 30
components). The cluster manager itself is divided into two
different systems, a resource manager and an application
manager. The resource manager schedules overall jobs and
allocates resources for them, while the application manager
schedules individual tasks within the resources allocated to a
specific job.

When a data processing task is submitted, for example a
Map/Reduce job [24], the description of the job is sent to the
resource manager. In the Map/Reduce example, this includes
the user-defined scripts representing the map and reduce logic,
plus the data source from which input data for map processes
will be pulled. As part of the job description, the resource
manager may have an estimate of how many CPU cores and
how much RAM each map and reduce task is anticipated to
need, which may or may not be accurate; even if it is accurate,
the resource manager will have no information about how long
each map or reduce task may take to complete.

Based on this job description, the DEF then needs to
consider both this data processing job and all of the others
that have been concurrently submitted or are still in progress,
and determine which jobs to schedule, how many resources to
allocate in terms of worker nodes, and which specific worker
nodes to use based on their relative work profiles and network
locations / network path capacities.

In a centralised scheduling architecture, the resource man-
ager is responsible for collating information about the current
task load and completion status of each worker, and makes
global scheduling decisions on the basis of this. In order
to gain this information, worker nodes and application man-
agers exchange regular heartbeat messages with the resource
manager, which periodically update the resource manager’s
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Fig. 2. Example of a composed Resource Manager, with alternative schedul-
ing policy components.

view of the cluster status. When a centralised scheduler is
making decisions, it is therefore usually doing so on slightly
out of date information about the cluster – unless it actively
probes every worker node before every decision, which adds
significant latency to decision-making in clusters of hundreds
or thousands of worker nodes. When the resource manager has
made a scheduling decision, resource containers are allocated
on each worker node, and an application manager is started
to manage to flow of tasks for that job within its allocated
resources. From the central resource manager’s perspective, its
objective is to ensure that resource utilisation in each worker
is maximised, while also ensuring that no worker is ever
overloaded in terms of its RAM or CPU core usage from
its current collection of tasks, since this can cause extreme
slowdown in task / job completion.

Many distributed data processing jobs, including our
map/reduce example, also have dependencies in their job
between different sub-tasks; for this reason it is useful to
separate out the operation of each job to its own application
manager, which can analyse the dependency graph for that
job and determine which tasks should go into which allocated
resources in the cluster for that job. In our map/reduce example
these dependencies exist between map and reduce tasks:
reduce tasks rely on the data transformation of map tasks, and
so reducer tasks only begin to be started up once enough map
tasks have finished. This also creates a data locality question
for the application master in deciding which tasks to place into
which allocated worker resources, since reducers are fed data

4



[pre-print version for personal use] Appears at IEEE SEAMS 2021

from appropriate map tasks; to avoid networking bottlenecks,
reducer locations are ideally arranged in such a way that this
data does not need to travel far in the cluster (for example by
placing reducers tasks on the same host at which at least some
of the data from relevant map tasks is already stored).

Overall this creates a very complex scheduling problem
even in a static or single-use system. The co-location of many
processing jobs on the same cluster, and uncertainty over the
precise resource requirements and run time of each task in a
job, also makes it a highly dynamic problem.

C. Scheduler Architecture

Our current scheduler architecture is restricted to a cen-
tralised approach, which reflects the dominant architecture of
systems like Apache Spark [1]. Although our emergent DEF
design allows alternative scheduling architectures to be added
to the pool of alternatives, including fully decentralised ones,
for this study we are focused on different scheduling policies
within the centralised scheduling approach.

We specifically study four different policies, representing
four different compositions of components in the resource
manager which schedules entire jobs and allocates resources
on worker nodes in which the tasks of those jobs can execute.

The first scheduler is first-in-first-out (FIFO), a common
approach implemented by a range of existing DEF frameworks
[1], [18]. FIFO handles incoming job requests sequentially
without considering the relative resource profiles of each job.
This means that a very resource-hungry job may be the only
thing scheduled in the cluster due to it being first in the
queue, even if the next four jobs in the queue could have been
executed in parallel as they have lighter resource requirements.
More commonly, it also means that if the third job in the queue
could in theory have been executed alongside the first job, but
the second job would not fit with the first job, then only the
first job is run by itself to completion rather than running it
in parallel with the third job in the queue. In general, a FIFO
scheduling approach tends to be good in cases where the job
queue is relatively homogeneous in resource usage, but bad in
cases where it is not.

Our second and third schedulers are implementations of
Naive Fair [25], which schedules jobs dependent on their
resource usage and attempts to ensure resource utilisation
fairness across submitted jobs. This approach is also used
across a range of existing DEF frameworks (e.g., [14], [19]),
and works by allocating resources on the basis of evenly
sharing a particular resource (such as memory) between all
jobs which request that resource. If five jobs are submitted
to the resource manager at the same time, and all request
the same amount of memory overall, the resource manager
will deploy all five jobs into the cluster but give them an
equal share of the available cluster’s memory (such that each
job may get less memory than it would like). We implement
two different versions of this scheduler; one which prioritises
CPU core usage as its fairness objective, and the other which
prioritises memory usage. In general, Naive Fair scheduling
tends to be good when the job list is heterogeneous and

most jobs submitted to the DEF have the same dominant
resource (i.e., all are memory-intensive), but is bad in cases
where different jobs have a different dominant resource (so
some require memory and some require CPU cores). In this
case a Naive Fair CPU-based scheduler for example will not
establish fairness of memory, allowing a memory-intensive job
to dominate the cluster at the potential expense of all others.

Our final scheduler implementation is Dominant Resource
Fairness (DRF), a scheduling policy designed to improve
fairness among applications through comparing the applica-
tions’ relative dominantly-reserved-resource rather than using
a system-wide policy of either checking memory or thread
usage [26]. DRF otherwise works in a similar way to Naive
Fair, and tends to be good when both the job list and dominant
resource are hetergeneous. If the job list and resource usage
tend to be homogeneous, however, DRF will spend longer
taking potentially equivalent decisions to a simple approach
like FIFO. In addition, all of the ‘fair’ schedulers can have a
tendency to over-share resources which can slow down com-
pletion times for all jobs in high-concurrency settings – and in
extreme cases can consequently result in longer cumulative job
completion times compared to a simpler approach like FIFO.

IV. ADAPTATION ANALYSIS

Our specific study in this paper focuses on the runtime
adaptation of scheduling policies. However, our overall emer-
gent DEF supports a wider range of compositional adaptation.
Based on our broader implementation work to date, in this sec-
tion we provide an analysis of each compositional adaptation
dimension and the likely effects and tradeoffs of adaptation in
those dimensions.

These dimensions are the scheduler architecture; application
master scheduling policy; and fault tolerance strategy. We
also examine the key challenges for successful self-adaptive
systems in this domain, which are workload analysis, mixed
workloads, and action latency.

A. Adaptation Dimensions

a) Scheduler architecture: The top-level architecture of
the scheduler can range from fully centralised to fully de-
centralised, or a hybrid of the two. Centralised architectures
maintain a central list of resources and current task allocations,
though this list is often slightly out of date as it relies on
periodic notifications from worker nodes; when the list is up
to date the scheduler is able to make high quality decisions,
but ones that can often take time to compute. Decentralised
schedulers operate by worker nodes scheduling tasks initially
based on their local compute availability; these decisions are
fast but uncoordinated [18]. Hybrid scheduling architectures
concurrently provide or separate cluster resources for a com-
bination of scheduling approaches and schedule tasks via one
approach typically determined by their estimated runtime;
incorrect decisions on the scheduling approach are costly and
the extended decision process adds additional overhead [11].
Centralised architectures tend to work well in data-intensive
workloads, but poorly in latency sensitive workloads where
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even millisecond delays can greatly impact performance [8].
Decentralised schedulers work well with latency sensitive
workloads as overheads for scheduling are reduced, but are
poor for workloads requiring data locality guarantees or “bin-
packing” scenarios [18]. Hybrid schedulers work well for both
coarse and fine grained workloads, but add latency and may
perform poorly with unexpected workloads as they balance
trading scheduling overhead and execution guarantees [9].
One adaptation dimension is therefore overall the architecture
of the scheduler to further reduce scheduling overheads or
improve the quality of scheduling decisions, suppressing the
limitations of a single architecture and the cost of concurrently
maintaining multiple.

b) Application master scheduling policy: Our current
study focuses on the scheduling policy of the top-level re-
source manager. However, in scheduling architectures which
use an application manager to govern task execution of a
particular job, the way in which that application master sched-
ules tasks within its allocated resources is an obvious point
of implementation variation. Classic strategies like first-in-
first-out, or more nuanced approaches which weight execution
order by location in the dependency graph, are possible in the
application manager, as well as approaches which consider
data locality in different ways between dependent tasks in the
job. Because variation at the application manager level would
create two inter-dependent autonomous tiers, some form of
coordination or planning/knowledge exchange is likely to be
necessary between the resource manager’s adaptation strategy
and that of application managers.

c) Fault tolerance strategy: Finally, the way in which
DEFs handle fault tolerance can make a big impact on their
completion times. In real deployments host failures and com-
mon, and the workload characteristics can make a significant
difference to the best recovery strategy. At a task level, for
example, long-running tasks can be periodically checkpointed
so that they can be quickly resumed elsewhere in their current
host worker node fails; while for short-running tasks this
approach is unlikely to be worthwhile since re-executing a
failed task from start is relatively fast. The same applies to
the overall job level, where options include checkpointing the
application manager’s state of the current job progress, or
running multiple resource manager copies which mirror each
others’ state to maintain knowledge of application manager
resource reservations and results.

B. Self-Adaptation Challenges

As discussed above, while there are interesting adapta-
tion dimensions in the DEF domain, enabling self-adaptive
behaviours comes with specific challenges – in particular
workload analysis, mixed workloads, and potentially extreme
action-effect latency.

a) Workload behaviour analysis: One of the most inten-
sively studied aspects of self-adaptation in DEFs is workload
behaviour analysis (though not in the context of compositional
adaptation for the DEF’s implementation itself). One of the
key challenges to making accurate scheduling decisions is

correctly estimating the characteristics of each job, including
how many CPU cores it needs, how much RAM it needs per
task, and how long each task is likely to execute for. The
more accurately these properties can be estimated, the better
the decision-making can be at the scheduler. A wide range
of research has therefore examined how to use various proxy
measurements of a submitted job and its associated data input
to attempt to predict the job’s runtime properties [9], [10],
[15], [27]. This research is complementary to our own, and
would fit into our framework prior to the initial scheduling
step.

b) Mixed workloads and action-effect latency: For sys-
tems that can continually adapt their behaviour, a particular
challenge in DEFs is that workloads observed in a real deploy-
ment will tend to be mixtures of each individual anticipated
workload, where any given mixture is untested – and each
different mixture creates a new state about which to learn at
runtime. It may therefore be useful to abstract over details
of specific workloads, and transfer learned information about
individual workloads into mixtures of those workloads.

In this context it is also unclear how best to measure
performance of a self-adaptive DEF at runtime: whether aver-
age task execution time is sufficient, or whether the average
completion time of entire job sets is needed to gain an accurate
measure of scheduling effectiveness. Entire jobs can take days
to complete in some application settings, so this has significant
implications for the speed with which adaptation can take
place – and the speed at which traditional explore/exploit
reinforcement learning can occur.

Finally, there is likely to be relatively high latency in
the effect of taking an action (i.e., adapting to a different
composition). When changing from one scheduling policy to
another, or from one architecture to another, a large number of
in-progress tasks are likely to exist which were scheduled by
the previously-used DEF policy or architecture, and it will take
time – potentially a long time – for the set of all active tasks to
shift to an allocation that is entirely the design of the newly-
chosen scheduling policy. This again makes decision-making
potentially slow, unless factors such as gradually improving
task execution times can be taken as evidence that the system
is moving in the right direction and so can ‘score’ the chosen
DEF composition early and continue exploring others.

V. EVALUATION

Our second and third research questions are studied using
an empirical evaluation. These questions are:

• Do different DEF workloads correlate with different ideal
scheduler policy compositions, and if so how?

• If ‘yes’, can we identify points in a workload at which it
is rational to adapt between scheduler compositions?

The answers to these questions are informative towards
future application of machine learning approaches to automate
the self-adaptation of our emergent DEF scheduling frame-
work. Our experiments use the four different scheduling policy
alternatives presented in Sec. III-C: FIFO, Naı̈ve Fair Thread,
Naı̈ve Fair Memory, and DRF. Each scheduling alternative
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Fig. 3. Average total run-time of each workload class, by granularity

was deployed on a real data centre cluster and issued with
a set 15 synthetic workloads of differing granularity. In each
experiment, for each scheduling alternative, we record the
time to complete each job within a workload and the overall
completion time of each workload. All of our source code,
including workloads and instructions to repeat our evaluation,
is made available online2.

A. Methodology

Our evaluation uses synthetic workloads which are specif-
ically designed to support a methodical examination of the
design space for DEF scheduling. Our 15 workloads consist
of 5 coarse-grained containing higher demand for system
resources, 5 fine-grained workloads containing lower resource
demand and higher task counts, and 5 mixed-grain workloads
containing a mixture of fine and course grained workloads. The
specific content of each workload, including thread and mem-
ory requirements and task counts, is generated with random
variation within a certain threshold (such that coarse-grained
workloads required thread counts within a certain range). Each
workload features 20 distinct data processing jobs, which are
submitting to the DEF with a regular 300ms interval (such
that the cluster is often processing multiple overlapping jobs
in parallel, as is typical in DEF services). Each individual job
in a workload contains up to 40 tasks which can be deployed
with varying levels of parallelism across the cluster.

All experiments performed were within a real data centre
across a five-node cluster, consisting of one Resource Manager
and four Node Managers. The Resource Manager has a Xeon
CPU E5-2630v4 (20 threads x 2.20GHz), 16GB memory. The
remaining four Node Managers each have a Xeon CPU E3-
1280v2 (16 threads x 3.60GHz), 16 GB of memory. The nodes
are connected via gigabit Ethernet. Experiment workloads and
scheduling policies differ; however, the underlying hardware
remains unchanged throughout the experiments.

B. Results for workload granularity

In this section we present our results on the performance
of scheduling policies Naı̈ve-Fair Memory (NF-M), Naı̈ve-Fair
Thread (NF-T), FIFO, and Dominant Resource Fairness (DRF)
when subjected to the set of workloads described above.

2http://www.projectdana.com/research/seams2021dean
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Fig. 4. Example total run-time of a specific workload for each granularity

Fig. 3 shows the average total running time results from
each workload class, on each of our four scheduling alter-
natives. Overall we see that the coarse-grained workload is
completed most efficiently by the FIFO scheduler, which is
also the most effective scheduler for the fine-grained workload.
The mixed workload, by comparison, is completed most
efficiently by the NF-M scheduler. This results demonstrates
that there is not a single ideal scheduler alternative across
different workload patterns, and confirms the results of various
workload-specialist DEF research studies. If we consider the
time difference between the best and worst scheduler choices
in these scenarios, on average FIFO completes its fine-grained
workload in 20% less time than NF-T, which is a significant
amount of computation power and energy consumption.

These overall results indicate that suitable divergence exists
between scheduler implementations for compositional self-
adaptation to yield positive results. However, there is also
significant variation within these averages; as an example,
Fig. 4 shows the same data for just one of the workloads
from each class, on each scheduling alternative. Here we
see that there can be significantly more variation in overall
workload completion time between scheduler alternatives than
the average picture shows, and in particular we see that DRF
performed best for the coarse-grained workload variant within
this particular experiment, versus FIFO being best for this
workload on average.

We next examine the detailed execution of each workload,
which reveals a much more complex story than the average re-
sults suggest – and shows that different scheduling alternatives
appear to be better at different phases of a single workload.
We next examine these detailed execution results.

For each class of workload we present one detailed ex-
ecution analysis as an exemplar of that class. Our coarse-
grained workload class example is shown in Fig. 5. This
graph shows each individual job in the workload on the x-
axis, in the order in which they were submitted to the DEF
(with each job submitted 300ms apart). We overlay the timing
results from each scheduling alternative on the same graph,
even though each scheduling alternative was executed on this
workload in isolation. The graph therefore shows how quickly
each scheduler alternative completes each successive job in its
workload, relative to the other scheduling alternatives, which
helps to explain the above variation in average performance.
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Fig. 6. Individual Job runtime for workload FG-W3
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Fig. 7. Individual Job runtime for workload MG-W3

8



[pre-print version for personal use] Appears at IEEE SEAMS 2021

Examining our coarse-grained workload results on Fig. 5
in detail, we make three observations. First, out of the 20
jobs in the workload, FIFO completes 7 of them faster than
any other scheduler alternative and is close to the fastest in
another 6 jobs. This helps to explain why FIFO is better
on average for the coarse-grained workload class. Second,
there are therefore 7 jobs for which FIFO performs notably
worse than alternative schedulers, and in the majority of these
cases it performs much worse – for example in AppCG26
and AppGC35. Third, it is notable that FIFO performs worse
across successive jobs in the workload for a sustained period
of time, seen between AppCG26–28, and AppCG34–36. In
both of these time periods, the NF-T scheduler is consistently
a better choice, indicating a potential detectable change point
at which mid-workload adaptation could yield positive results.
However, it is also worth noting that the higher performance of
NF-T at these points in the workload is at least partly depen-
dent on the previous decisions made by NF-T in earlier parts
of the workload; disentangling these temporal dependencies
may be non-trivial.

The detailed view of our fine-grained workload is shown in
Fig. 6, for which our average data suggests that FIFO is also
the better choice overall. Our detailed view for this specific
fine-grained workload demonstrates that FIFO was better than
other scheduling alternatives for only 8 out of the 20 jobs in the
workload, with the NF-T scheduling alternative being better
than FIFO for 7 out of the 20 jobs in the workload. Despite
this detailed result, FIFO still completed the overall workload
marginally faster than NF-T. This lends further credence to the
potential gain from adapting between scheduler alternatives in
the middle of a set of processing jobs.

Finally, an example detailed view of our mixed-grain work-
load is shown in Fig. 7, for which our average data suggests
that NF-M is the better scheduler choice overall for the
fastest workload completion time. Mixed-grain workloads are
generally the most difficult for any one scheduler to deal
with, with expected average workload granularity being one of
the key targets for specialist schedulers. Our mixed workload
uses a mixture of long-running jobs and short-running jobs,
again submitted at the same frequency of 300ms between job
submissions. The x-axis of Fig. 7 notes which jobs are long or
short, using CG to indicate long ones and FG to indicate short
ones. In this particular example, NF-T (not NF-M) completes
the overall workload fastest; however, NF-T is fastest at
completing just 6 out of 20 of the specific jobs in this workload
compared to other schedulers. Despite this low level of specific
job performance across the workload, no other scheduler has
a higher number of specific jobs at which it was fastest. As
with the above experiments, we again see significant periods
during the workload over which other scheduler alternatives
were better than NF-T, with NF-M in particular being better
during the sustained set of fine-grained jobs FG-184–109. This
in particular may suggest sustained dominant job granularity
as a useful discriminator for self-adaptation between scheduler
alternatives in mixed DEF workloads.

C. Discussion

The above experiments highlight both the potential value
of adapting at runtime between different DEF scheduler ar-
chitectures, in terms of significantly faster job completion
times, but also show the difficulty in understanding how to
efficiently schedule based on a workload alone. Our data
indicates two possible alternatives in detecting and potentially
learning which scheduler to use at runtime. One point is
at the resource manager, which observes the submission of
new jobs to the system – and has some ability to determine
the data size of those jobs and potential properties of the
computation profile that a job may have (e.g., memory or CPU-
intensive). This high-level detection may indicate whether the
current mixture of jobs tends towards something uniform, or
is a diverse mixture, which may inform overall scheduling
policy decisions. The second possible detection point is in the
detailed execution performance of jobs in the cluster; here
we see multiple instances in which a particular scheduler
gets progressively worse at job completion time despite the
fact that the job characteristics are relatively constant over
time; this may act as a second point of feedback to adjust
the scheduling policy to an alternative. In either case, a
self-adaptive controller is complicated by the fact that prior
scheduling decisions have a ‘long tail’ into the performance
of a newly-selected scheduler, such that it takes time for
the set of currently-scheduled jobs to be such that each job
was scheduled by the currently-chosen scheduler. This effect
may also cause a form of hysteresis whereby the mixture
of scheduling decisions made by two different schedulers is
actually the ideal.

VI. CONCLUSION

The increasing amount of data available today, combined
with large volumes of readily-available compute power, has
led to distributed data execution frameworks becoming a key
feature of global computation. The scheduling policies used
by these DEF frameworks have a significant impact on the
completion time of data processing tasks, and on the amount of
energy consumed by the underlying compute resources. In this
paper we have presented a platform with which to study self-
adaptive behaviours in DEFs, with our emergent DEF system.

Using this system we have also presented an initial study
of compositional adaptation for scheduling policies in DEFs.
Using a set of synthetic workloads generated to represent
different points in the DEF design space, while also providing
a high level of reproducibility, this study demonstrates that
there are notably different ideal scheduler policies for different
kinds of DEF workload. When we examine the details of
these workload executions, we also see clear evidence that
a particular scheduler which is best on average experiences
significant periods during a workload in which it performs
very poorly compared to alternative schedulers.

In future work we will examine self-adaptive control strate-
gies which are able to take advantage of these divergence
points to learn when to adapt to each scheduler alternative.
In addition, we will examine the complexities of multi-tier
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scheduling, coordinating the adaption of task and resource
manager scheduling policies concurrently. We will also exam-
ine changes to overall scheduler architecture, to move between
centralised and decentralised approaches, and how this more
extensive kind of adaptation affects scheduling performance.
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