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Abstract 
 

Simulation software has for many years been developed to enhance the research and development 

phase of new vehicle introductions. With the introduction of the testing embargo in most forms of 

world championship motorsport, model validation is a necessity. To optimise the unknown vehicle 

and tyre parameters and to reduce the error between measured and simulated data in such a multi-

input multi-output non-convex optimisation problem, a novel multi-objective particle swarm 

optimisation (PSO) technique is applied to ensure a fully validated vehicle model is developed and 

analysed for speed and performance.  

These optimisation algorithms are further developed to explore the trajectory planning problem to 

improve the lap time for the shortest path, minimum curvature and a combined approach, 

producing optimal racing line pathways and vehicle dynamic inputs and output responses by 

exploring trajectories and vehicle traction circle limits. 

Finally, a hybrid electric vehicle transient dynamics model for the control of energy management 

is presented. The hybrid powertrain contains an internal combustion engine, kinetic energy 

recovery system and heat energy recovery system with deployment and harvesting control 

parameters. 

The performance of single-objective and multi-objective particle swarm optimisation algorithms 

are compared and analysed. The proposed simulation model and optimisation techniques are 

applied to address an array of problems, including model validation, racing line trajectory design, 

fastest lap time problem, and energy management strategies.  All results are validated and 

optimised with respect to the experimental data collected on the real track in Silverstone to ensure 

the results can be applied to physical real-world scenarios.  

 

Keywords— Particle Swarm Optimisation; Parameter Estimation; Validation; 

Simulation; Trajectory Planning; Race Optimisation; Hybrid Electric Vehicles; 

Vehicle Dynamics; Energy Management Strategies; Hybrid Race Vehicles.  
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1. Introduction 
 
 

This introductory chapter explains the basic fundamentals of Vehicle Dynamics and stability, 

hybrid powertrain architecture and electrical energy flow within a hybrid vehicle system. The 

motivation for the thesis is discussed and the simulation validation, optimisation and control 

problems are presented. The literature utilised during the thesis is discussed and personal 

contributions are included. An outline of the remaining chapters is given to conclude the chapter.  

This thesis firstly develops a twenty-degree of freedom vehicle dynamics model: four degrees of 

freedom for the vehicle body (longitudinal, lateral, yaw and heave) and 4 degrees of freedom for 

each tyre (longitudinal, lateral, aligning and vertical force, to mimic race vehicle behaviour. This 

model is firstly validated against measured race vehicle data and unknown parameters are 

optimized through the development of a particle swarm optimisation algorithm. This model is then 

expanded to develop optimisation algorithms through a curvilinear abscissa approach [1], to 

produce race circuit topology and to optimize the ideal racing line for optimal lap time. Finally, 

energy management and transient vehicle dynamic and powertrain modelling of a Hybrid race 

vehicle is investigated using Particle Swarm Optimisation (PSO) algorithms to determine the ideal 

strategy for energy deployment whilst maintaining an appropriate vehicle motion for best lap 

times.  

The race vehicle model is based on the Federation Internationale de l'Automobile (FIA) 2019 

Formula One powertrain architecture and energy flow constraints [2] with some amalgamation to 

the 2019 Hybrid Le Mans Prototype [60] vehicles to allow a potential new Hybrid GT era to be 

optimised for inclusion in the 2021 or beyond World Endurance Championship. The powertrain 

consists of an internal combustion engine, a kinetic energy recovery system and a thermal energy 

recovery system. In the Formula One race series the motor/generator alone is not permitted to 

power the wheels and thus places the vehicle into the parallel hybrid drivetrain category [3]. 
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1.1 Vehicle Dynamics 

 
When a vehicle is travelling along a road it is subject to forces both acting upon the vehicle 

(resistive) and the vehicle acting upon the world (tractive). The vehicles movement and forces act 

in all three directions (Figure 1.1). The vehicle can be subject to linear movement: longitudinal 

(x), lateral (y) and vertical (z), and also turning forces around these axes: roll; about the 

longitudinal axis, pitch; about the lateral axis and yaw; about the vertical axis. 

 

 
Figure 1.1 Co-ordinate axis of a vehicle (6DOF). 

 

A right-handed orthogonal system is implemented (Figure 1.2) such as that a positive rotation 

about y rotates z into x, thus when the vehicle is on a flat road the x-axis is horizontal and forward 

is positive, the positive y-axis points away to the driver’s left and the positive z-axis is upward. 

Anti-Clockwise rotation (yaw) when viewed from above is defined as positive such as when the 

vehicle enters a left-hand turn, positive pitch occurs during deceleration and weight is transferred 

to the front of the vehicle (under acceleration negative pitch would occur), and positive roll is to 

the right when the vehicle is viewed from behind [4].  
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Figure 1.2 Right-handed orthogonal rule. 

 

The vehicle’s tractive force is subject to its mass and acceleration, such as defined by Sir Isaac 

Newton in his second law [5], force is equal to mass multiplied by the acceleration. Therefore, 

vehicle acceleration can be defined as: 

 
$8

$[
=
∑., − ∑.A

#
 

(1.1) 

where 

V = Vehicle speed 

., = Tractive effort (total) 

.A = Resistance (total) 

m = Vehicle mass 

 

Vehicle resistance is described as the total forces opposing the vehicle movement; this could be in 

the form of road gradient (uphill) resistance, aerodynamic drag and rolling resistance of the tyre at 

the road surface. When a vehicle is travelling along a gradient the vehicle mass will always produce 

a force in the downward direction (Figure 1.3), this either aids the vehicle if it is travelling down-

hill or opposes the forward movement when travelling up-hill. This grading resistance with a road 

angle (() is expressed in Eqn. 1.2: 
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.I = 5 sin ( 

(1.2) 

1.1.1 Rolling resistance 
 

The rolling resistance of a vehicle is typically due to the tyre contact patch with the road 

and the hysteresis of the tyre compound and materials [6]. When a tyre sits on a hard road surface 

the tyre pressure distribution tends to deflect as shown in (a) of Figure 1.4 and during forward 

motion the pressure distribution will deflect similar to (b). The tyre will also deform due to impact 

with raised objects such as kerbs parameterising the edge of the racing circuit on a corner. The 

rolling radius (_=) depicted in Figure 1.4 is also subject to change due to acceleration forces and 

compression of the tyre. Suitable vehicle dynamic behaviour can be simulated without the 

inclusion of vertical tyre deformation within the tyre model.  

 

 
Figure 1.3 Grading resistance applied to a vehicle travelling uphill. 

 
Tyre adhesion and grip is commonly modelled using a brush tyre model [7]. The brush tyre model 

was one of the first tyre models produced and the origin of every tyre model currently in use can 

be linked back to the brush model [9] in that two processes within the brush model are assumed 

for the tyre generating grip; i) shear stiffness of the tyre in contact with the ground causes 
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resistance; and ii) a sliding tyre causes friction. Three types of tyre model without deformation 

characteristics are such as those presented in [6, 8, 9] with the inclusion of road adhesion 

coefficients to mimic that of road surface qualities. This rolling resistance coefficient is a function 

of the tyre properties and environmental conditions, particularly; tyre materials, structure, tread 

pattern, tyre pressure, temperature, road material and the road adhesion qualities, for example the 

presence of rain or spilled liquids (Table 1.1). It is important to note tyre models can be extremely 

detailed and could be the work of a complete thesis project alone. 

 

 
Figure 1.4 Tyre pressure distribution for a static(a)and moving vehicle along a hard surface (b). 

 
 
Table 1.1 Typical rolling resistance co-efficient for tyres on various road surfaces [3]. 

Condition Co-efficient 

Car tyres on a concrete or asphalt road 0.013 

Car tyres on a rolled gravel road 0.02 

Tar macadam road 0.025 

Unpaved road 0.05 

Field 0.1-0.35 

Truck tyre on a concrete or asphalt road 0.006-0.01 

Wheel on iron rail 0.001-0.002 

 

Ω ∙ _= 

8* 

_= 
_ 

a 

B 

a 

_ 

(a) (b) 
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Some models include tyre pressures and temperature variations and their effect on grip [27,28].  

The complete tyre model is detailed in Chapter 3 and the tyre modelling literature is discussed in 

Chapter 2. However, for this project tyre temperatures and pressures are ignored and it is assumed 

the vehicle is in the normal tyre operating range.  

 
 

1.1.2 Aerodynamics 
 
When a vehicle is in motion, the air that surrounds it acts as a force upon the vehicle’s body and 

floor. This can be in the form of down-force; air pressure in the negative vertical (z-axis) direction 

to aid handling, lift; air pressure in the positive vertical direction trying to push the car up from the 

road and finally as a resistance to the forward motion (x-axis), this force is known as aerodynamic 

drag (negative x). Drag is a function of the environment (air density), the vehicle body shape and 

its coefficient of drag, the frontal area and the vehicle speed. The drag on a vehicle can differ 

drastically even for vehicles with the same frontal area, (Figure 1.5). Aerodynamic drag (-&) and 

downforce (-.&) are presented in equations (1.3) and (1.4) respectively: 

 

 

 

Figure 1.5 Body shape versus drag coefficient. 
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-& = 0.5U)!*"8*M 

(1.3) 

 

-.& = 0.5U)!*"#8*M 

(1.4) 

 

where 

U = Air density 

)! = Vehicle frontal area 

*" = Coefficient of drag 

*"# = Coefficient of downforce 

8* = Vehicle longitudinal velocity 

 

The headwind speed (8G) is also a resistive force and thus also influences the aerodynamic drag. 

This can be accounted for by subtracting headwind speed from the vehicle speed: 

 

-& = 0.5U)!*"(8*M − 8G)M					 

(1.5) 

 

1.1.3 Vehicle Dynamics 
 
 
Vehicle Dynamic studies tend to use various forms of modelling concepts with several variations 

to degrees of freedom utilised as will be discussed in Chapter 2. Single track, lumped mass vehicle 

model simulations can be very effective at producing fast, consistent results for lateral acceleration 

within a 2-6% tolerance of measured vehicle data [1, 10, 11, 12,]. Single-track models commonly 

known as the bicycle model tend to be used for steady state analysis and are limited in their degrees 

of freedom, no roll behaviour or longitudinal acceleration, for instance. For this study, where race 

circuit position of all four wheels is beneficial and roll dynamics are required for vertical force 

calculations upon a tyre, a double-track vehicle is utilised, (Figure 1.6), as per the majority of 
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literature available into vehicle dynamic studies [4, 13, 14]. As can be seen in Figure 1.6 

longitudinal force (.*) is in line with the rim and (.+) is perpendicular to the rim. It should be noted 

that the direction of travel of the wheel hub can be different from the direction of the force due to 

slip angles. In models where a double track vehicle is utilised, but Ackerman angle is omitted @N =

@M. 

 
Figure 1.6 The double-track vehicle model (6 DOF vehicle body). 

 
The four degrees of freedom utilised within the body of the vehicle dynamics model are 

longitudinal motion, lateral motion, yaw motion and roll motion, vertical motion and pitch are 

negated due to computing performance and time usage of modelling suspension components. The 

four degrees of freedom model is chosen as an improvement step from the two degrees of freedom 

and lumped mass models. It will still take some features from the lumped mass model in that 

Ackermann steering is negated and one steering angle is defined. It is acknowledged that the 4DOF 

will still contain a reasonably accepted error to a real-world scenario, but it is a sacrifice in order 

to reduce mode complication as during the particle swarm optimisation (PSO) simulations the 

vehicle dynamic model will have to run 5000 times (50 particles, 100 iterations) and upwards as 

the PSO is expanded.  The equations of motion are described in equations 1.6 – 1.9 respectively 

and fully derived in Appendix 10. Accelerations for yaw and roll are accented with a double dot 

and single dot for longitudinal and lateral acceleration: 
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8*̇ =	
.*.
#

+ 8+Ẋ − ℎ sinV h
53 − .*.ℎ	ijkV − 2l2++ − 233mijkVn+iVV̇Ẍ

2++ijkMV + 233n+iMV
o 

                                 (1.6) 

 

8+̇ =	
.+.
#

− 8*Ẋ − ℎ	ijkV	n+iVẌM

+
ℎ

2**
l.+.ℎ	n+iV +#pℎ	ijkV − 4%V − *%V̇ + ẌMl2++ − 233mijkV	n+iVm 

                   (1.7) 

 

Ẍ = 	
53 − .*.ℎ	ijkV − 2l2++ − 233mijkVn+iVV̇Ẋ

2++ijkMV + 233n+iMV
 

(1.8) 

 

V̈ =
.+.ℎ	n+iV +#pℎ	ijkV − 4%V − *%V̇ + ẌMl2++ − 233mijkV	n+iV

2**
 

(1.9) 

where 

.*. = Total longitudinal force on the body 

ℎ = Height of centre of gravity (CoG) 

53 = Total aligning torque on body 

2/= Inertia around the appropriate axis  

.+. = Total lateral force on the body 

4%= Total roll stiffness  

*%= Total roll damping 

 

The forces acting on the vehicle body are due to the tractive effort of the tyres. These longitudinal 

and lateral tyre forces are described in Chapter 3. The total longitudinal (.*.), lateral (.+.) and 

aligning (53), forces applied to the body are given in equations 1.10 – 1.12: 
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.*. = .*'O + .*'' + (.*#O + .*#')n+i@ − l.+#O + .+#'mijk@ 

(1.10) 

 

.+. = .+'O + .+'' + l.+#O + .+#'mn+i@ − (.*#O + .*#')ijk@ 

(1.11) 

 

53 = l.+#O + .+#'m:	n+i@ − l.+'O + .+''m; + (.*#O + .*#'):	ijk@

+ l.*'' + .*#'n+i@ + .+#Oijk@ − .*'O − .*#On+i@ − .+#'ijk@m= 

(1.12) 

 

where 

.*(/) = Longitudinal force from tyre (i denotes tyre position on vehicle where the nomenclature 

describes the front or rear followed by left or right side of the car) 

.+(/) = Lateral force from tyre 

@ = Steering angle at tyre  

: = Distance from front axle to CoG 

; = Distance from rear axle to CoG 

= = Distance from tyre centre line to CoG (half vehicle track width) 

 
1.1.4 Stability 

 
 

A vehicles design with regards steering and suspension set-up, power distribution, weight and 

location of centre of gravity characterises the way it will tend to perform during cornering. The 

three ways a vehicle negotiates a corner are neutral-steer, over-steer and under-steer.  

A car with a forward bias of weight or front-wheel drive tends to hold under-steer characteristics, 

this is when a driver applies a steered angle, and the vehicle pushes straight on or negotiates a 

much larger arc than required. Rear wheel drive vehicles tend to display over-steer characteristics 

whereas the vehicle turns much tighter than required as the rear of the vehicle begins to steer the 

vehicle. This can be intentional by power application to cause power over-steer. A vehicle that is 
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travelling the arc intended by the driver is classed as neutral steer. The SAE definitions of under 

and over steer are: 

 

‘A vehicle is in understeer at a given trim if the ratio of the steering wheel angle gradient to the 

overall steering ratio is greater than the Ackermann steer angle gradient’ and ‘A vehicle is in 

oversteer at a given trim if the ratio of the steering wheel angle gradient to the overall steering 

ratio is less than the Ackermann steer angle gradient’ [15, 16], (Figure 1.7). 

The stability factor (6!) of a vehicle is directly related to the tyre cornering force and location of 

the centre of gravity. Although in the elementary bicycle model [11] the derivatives are 

independent of speed, further detailed models include velocity and motion as variables, especially 

for vehicles fitted with aerodynamic packages where down-force will affect the centre of gravity 

location via centre of pressure as speed increases.  

 
 

 
Figure 1.7 Vehicle under-steer, over-steer, neutral steer with defined critical and characteristic 

speed. 

 
 
The stability factor (6!) is defined in Eqn. (1.13) where equilibrium determines neutral steer. A 

positive stability factor denotes under-steer, and a negative stability factor denotes over-steer. The 

critical speed is classed as when an oversteering car requires zero degrees of steering angle to 
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negotiate the turn, and the characteristic speed is defined as when an understeering car requires 

twice the amount of steering angle to negotiate the same turn as a neutral steering car. [15] 

 

6! = l.+#O + .+#'m − l.+'O + .+''m 

(1.13) 

 
 

1.2 Hybrid Powertrains 
 
 
There are three types of combined Hybrid Electric powertrain architecture: Parallel [17], Series 

[18] and Series Parallel [19]. The parallel hybrid vehicle (Figure 1.8) consists of an internal 

combustion engine (ICE) and motor deployed as the name suggests in parallel. The vehicle can be 

propelled by three power deployment variants: solitary Motor, solitary internal combustion engine 

and combined motor and internal combustion engine mode. 

 

 
Figure 1.8 The architecture of a Parallel hybrid electric drivetrain. 
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A series hybrid’s powertrain architecture (Figure 1.9) is positioned in line whereby the internal 

combustion engine can only provide power to the generator to allow re-generation of electrical 

energy. The motor alone propels the vehicle forward.  
 

 
Figure 1.9 The architecture of a series hybrid electric drivetrain. 

 
 
A series parallel hybrid vehicle (Figure 1.10) takes design considerations from both drive-train 

layouts above and can be propelled by solitary motor, solitary internal combustion engine or 

combined. Whilst in motor or regenerative mode the engine can power a second generator to create 

electrical energy for the energy storage component.  

 

Many hybrid electric vehicles can regenerate energy to store in an energy storage device, which 

will be discussed in more detail in Chapter 2. However, it is common with current technologies 

that most road vehicles cannot regenerate enough energy to allow large distances to be covered on 

electric only power and thus plug-in hybrid electric vehicles (PHEV) are the norm [20]. These 

vehicles can be connected to the electrical grid either at the home or the roadside. This charge to 

the energy store can enable an extended range on electric only and combined mode.  
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Figure 1.10 The architecture of a series-parallel hybrid electric drivetrain. 

 
 

1.3 Motivation 
 

The study of vehicle dynamic behaviour by computer modelling and simulation has progressed 

rapidly over the past few decades due to the constant development of computing power. Many 

various applications and simulation platforms are utilised in the Motorsport and Automotive 

industries, developed as pure mathematical simulations [42], or as real time control, optimisation 

or development models for software in the loop (SiL) [43, 44], hardware in the loop (HiL) [44,45] 

and driver in the loop (DiL) [46,47] testing. These modelling strategies contain various types of 

simulation to determine key performance indicators for components and systems such as active 

suspension modelling [48,49], braking systems [50] and controller designs and validation.  

Advanced models are based on several systems and subsystems so complete vehicle models can 

be utilised for Hybrid race vehicle dynamic modelling incorporating energy management and 

optimisation [51,52,53], kinematic and dynamic motion planning for ideal vehicle trajectory and 

lap/race time simulations within the motorsport industry [54,55] or for autonomous vehicle 

development [56] within the automotive sector.  
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These models can be furthered utilised as SiL and HiL simulation for controller design in vehicle 

stability systems [57], fault detection within safety critical applications [58] and uncertainty 

modelling. All Formula One teams and the majority of WEC and Formula-e teams now use DiL 

training and full race vehicle simulators [59] for driver training and evaluating vehicle performance 

and race strategies due to ‘live’ testing restrictions.  Furthermore, the necessity of simulators and 

race simulation prior to a race weekend has been borne from the race rules and regulations [60, 

61] that dictate energy management strategies and vehicle set-up analysis difficult to practically 

assess with the testing embargo. 

 

These rules have created complexity and intricacy of Hybrid Electric Race Vehicle design, 

development and implementation of the powertrain to maximise fuel saving, use of electric energy 

and electric machine performance as have the electric regeneration strategies for Electric only race 

vehicles such as those utilised in Formula-e [62] whereby the electric charge is the only energy 

available for propulsion. From an automotive industry standpoint, the UK Government in 2017 

stated that all sales of new cars with an internal combustion engine, whether it be Diesel or Petrol 

combustion will be banned from 2040 onwards [63], the main part of that statement that is 

commonly misinterpreted in the media is the fact that they stated vehicles will not be able to utilise 

the internal combustion engine as the ‘sole means of propulsion’.  

Therefore, at the time of writing, not only electric vehicles but also hybrid vehicles have a long 

future ahead of them; especially until battery technology and charging infrastructures can catch up 

with demand [64].  

Manufacturers have led the design and development of race rules and regulations with the 

Federation Internationale de l'Automobile (FIA) for both the world endurance Le-Mans Prototype 

One (LMP-1) category in the World Endurance Championship (WEC) and Formula One whereby 

both series’ have Hybrid technology incorporated into the design of the race car. Where better to 

develop future road car applications than in the demanding environment of motorsport where both 

performance and reliability are crucial.   

 

In an industry as technologically advanced as motorsport it is imperative that the Race Strategists 

and Vehicle Dynamic Engineers have access to vehicle simulation and optimisation packages 

whether it be at the race circuit or through Research and Development departments via Race 
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Simulation Engineers at research laboratories. These models and simulations must incorporate race 

strategy analysis and the determination and optimisation of lap-times, through performance 

indexing and energy management strategies, race times (lap time versus fuel and energy use and 

conservation/regeneration) and vehicle dynamic behaviour.   

 
1.4 Contributions and Novelty 

 
Although there are several simulation packages available to the industry, none of these packages 

whether used for lap time simulation or vehicle dynamic studies include an integrated dynamic 

control and energy management optimisation. The main software companies focus their products 

at either vehicle dynamics, lap time simulation or energy management strategies whilst using look 

up tables or set vehicle maxima for cornering, braking or speed. If the software is based on vehicle 

dynamics or lap time, then again, the software will use look up tables for Hybrid deployment if 

indeed it has the capability.  

 

The main current industry standard software for vehicle modelling is:  

 

• MSC Adams – Multi-Body dynamics software for vehicle dynamics and component 

motion. 

• GT-Suite - Linear emission testing, engine development and drivetrain efficiency based on 

look up tables.  

• Lapsim– lap time simulation based on premeasured data from vehicles. 

• ChassisSim – Transient dynamic lap time simulation. Validated through premeasured data 

from vehicles. 

• GT-Drive – Longitudinal drive train dynamics for hybrid vehicles based on pre-defined 

engine look up tables.  

 

 Each software package although used by the industry are limited by look up tables or pre-

determined data sets and as such many companies have to purchase several packages to allow all 

 



 
 
 

17 

types of control, simulation and optimisation to be analysed. Typical restrictions of the packages 

are: 

 

• ‘Bring a vehicle to its dynamic limits or near targets you define.’ [21] 

• ‘Driver simulation with racing environment data import.’ [22]  

• ‘One can select the corners where there is boost and the corners which are just energy 

recovery.’ [23] 

• ‘Cornering simulation can be added with speed/acceleration/braking events pre-defined.’ 

[24] 

 

The novelty of this thesis is to develop a simulation product within Matlab® and Simulink® that 

includes the validation of vehicle dynamic models through particle swarm optimisation algorithms, 

trajectory planning and race line optimisation and the integration of energy management 

optimisation and vehicle dynamic behaviour for any race circuit or road orientation the user 

provides by developing Co-operative Particle Swarm optimisation techniques (CPSO – Sk) [72, 

73]. Although this study is based on race vehicles in light of the Volkswagen emission scandal 

[25], the model could be used for true dynamic road driving rather than based on 1D speed data. 

 

During the process of developing this thesis and model the author has presented several papers 

based on vehicle dynamics [11], control and energy management of hybrid vehicles [26] and at 

the time of submission two journal papers are being prepared and edited for submission based 

upon the findings and development of single and multi-objective particle swarm optimisation and 

their use within the Automotive/Motorsport Industry.  

 

1.5 Aims & Objectives 
 
This thesis aims to investigate, by mathematical design and simulation, various vehicle dynamic 

models, vehicle trajectory and hybrid energy deployment strategies to establish and create 

appropriate optimisation algorithms for vehicle model validation and lap time optimisation of ICE 

only and Hybrid electric race vehicles. 
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To establish a reasonable outcome to the final model(s) the aims of the project include: 

 

1. Determine appropriate degrees of freedom model for optimal balance of accuracy of results 

and computing speed. 

2. Design and develop vehicle dynamics model in Matlab® and Simulink ®. 

3. Design and develop a powertrain and drivetrain model in GT-Power, Matlab® and 

Simulink®. 

4. Design and develop a hybrid electrical system model in Matlab® and Simulink ®. 

5. Establish system input and output functions for control system design and optimisation for 

energy management. 

6. Develop race circuit trajectory modelling algorithms. 

7. Evaluate through simulation and model analysis appropriate control and optimisation 

solutions. 

 

1.6 Thesis Structure 
 

 
Upon completion of the above aims and objectives the thesis has been structured into the chapters 

as follows: 

 

• Chapter 2 expands upon the introductory narrative, aims and motivational synopsis from 

Chapter 1 by discussing further literature and Automotive/Motorsport industry practices. 

• Chapter 3 addresses the longitudinal and lateral behaviour of a race vehicle and develops 

the mathematical algorithms for the chassis and tyre models. 

• Chapter 4 describes Hybrid-Electric powertrains used in race series’ today and identifies 

the topology of a Formula One race vehicle and proposed GT race vehicle including the 

Motor/Generator and internal Combustion Engine systems.  

• Chapter 5 explores the implementation of single and multi-particle swarm optimisation 

for the validation of vehicle dynamic simulation models  
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• Chapter 6 details the race circuit mapping, vehicle dynamic constraints and co-operative 

particle swarm optimisation algorithm for vehicle trajectories.  

• Chapter 7 develops the dynamic energy management parameters.  

• Chapter 8 summarises the results detailed in each chapter and concludes with the 

observations found for the implementation of PSO algorithms and their use within the 

Industry. A conclusion is presented and suggestions for future work discussed. 
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2. Vehicle Model and Simulation  
 
 

2.1 Introduction 
 

This chapter introduces the major components of a vehicle to be modelled in order to develop a 

realistic simulation environment to test different hypotheses in design of a hybrid race vehicle. 

Therefore, as the first step the industry standard tyre models are discussed to show how vehicles 

create grip. This inevitably has a large impact on vehicle dynamic behaviour and model output. 

The aim is to validate a tyre model in future chapters, and therefore through further literature 

review the tyre model is discussed and its impact on the vehicle modelling is analysed. In addition, 

an overview of various degrees of freedom vehicle dynamic models are discussed and an insight 

into hybrid energy management strategies is included prior to a detailed description in the 

following chapter. 

 

2.2 Tyre models  
 
Tyres are a complex and vital component of the vehicle dynamic studies and as such a tyre model 

can have various inputs and outputs to determine grip. The tyre model can have systems with 

numerous sub-systems and algorithms, however the main factors that contribute to grip are the 

tyres contact patch, slip ratio, slip angle, tyre pressure, tyre temperature, tyre spring rate and tyre 

compound.  Additional system settings on the vehicle may also influence the tyre such as toe and 

camber; camber has been modelled within the tyre models in various tyre formulae [6, 9]. The 

most basic of tyre models such as the linear tyre model [10], generate tractive forces based on the 

contact patch and the deformation.  
 

2.2.1 Tyre Contact Patch 
 

The contact patch is determined as the area of contact between the tyre and road surface. The tyre 

size, camber angle and pressure all have an effect on the tyre contact patch size (Figure 2.1). The 

deformation of the contact patch results in longitudinal and lateral grip, the deformation results 
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from the contact patch moving longitudinally fore and aft of the wheel centre during acceleration 

and braking events (Figure. 2.2 (a) and (b)) due to friction and the abrasive qualities of the road 

surface. This movement is known as the slip ratio [9]. 

 
 

 
Figure 2.1 The effect of tyre size and camber angle on tyre contact patch size. 

 
 
The ratio specified is the variation in velocity of the contact patch versus the vehicle velocity, 

equation (2.1). 

 

" = Ω ∙ &"
'#

− 1 

(2.1) 
where: 

B = Slip ratio 

Ω = Angular velocity of the hub (rad/s) 

_=	= Rolling radius of the tyre 

8* = Velocity of the hub in the plane of the rim parallel to the ground. 

 

Lateral forces arise from the shear forces from pure friction. When a steering angle is applied the 

tyre rotates around the z-axis and due to abrasion, the contact patch has a separate heading than 

that of the tyre. The variation between the tyre heading and contact patch heading is known as the 
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slip angle (Figure 2.2, (c)). The tyre model, with the inclusion of empirical data or measured co-

efficients from a tyre dynamometer, creates a curve that determines the peak force at a specific 

slip ratio and slip angle, either side of this peak the tyre is not operating at its optimal.   

The most basic of tyre models is the linear tyre model [29], equation (2.2), whereby the lateral 

force of the tyre has a linear relationship with slip. This model allows low computational effort 

however unless desired or measured vehicle cornering data is parameterised [30] the model is 

ineffective for optimisation studies or racing car modelling as the tyre will continue to create force 

as slip angles head to infinity. A common slip angle for a racing slick would be in the region of 

five to seven degrees [9]. 

 

.+,/ = *$,/ ∙ (/ 

(2.2) 

Where: 

*$ = Cornering stiffness of the tyre 

(/ = Slip angle 

 

 

 
Figure 2.2 Tyre slip ratio under (a)deceleration, (b) acceleration, and slip angle (α) definition 

for (c) pure lateral and (d) combined longitudinal and lateral forces (d). 
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2.2.2 Brush Tyre Model 
 

The brush tyre model is so called due to the make-up of the mathematical formulae. The model 

consists of bristles that are in contact with the surface and can deflect parallel to the road. In 

longitudinal dynamics the bristles are said to be vertical and do not deflect when there is no tractive 

effort applied (braking or acceleration). During acceleration the first bristle (front) is pushed into 

the ground and deflects (Figure 2.3), the combined elasticity of the tread and tyre carcass 

determines the compliance of the remainder of the bristles. The opposite occurs during braking. 

This has the effect of moving the contact patch fore or aft of the centre line, generating a slip ratio.  

 

 
 

Figure 2.3 Brush tyre model tread deflection, (a) motionless and (b) during acceleration. 

 

During cornering a steered angle is applied to the tyre and the bristles again can deform in 

the y-axis direction, the angle of the contact patch compared to tyre heading generates the slip 

angle. The forces generated on the Y-Axis are perpendicular to the contact patch (Figure 2.4). 

When the tyre is subject to only lateral or longitudinal force the model is described as being in 

pure lateral slip and pure longitudinal slip [6], whereas when acceleration or braking is present 

with steered wheel angle the tyre is in combined slip (Figure 2.4).  
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Figure 2.4 Brush tyre model deflection during cornering (top) and combined deflection with 

braking and cornering (bottom). 

 
 

2.2.3 Pacejka Tyre Model 
 

Pacejka [6] developed a model based on the brush model equations that includes empirical data 

for curve fitting from tyre testing. This means a series of coefficients are required to develop 

accurate results. However, this model is seen as one of the industry standards ‘go to’ models within 

vehicle dynamic studies [4, 6, 10, 11, 27, 31] due to its accuracy. Pacejka’s Magic Formula has 

gone through many iterative steps and the current model is the MF 5.2, additional complexities 

can be added to the model and is used in many of the industry standard software mentioned in 

Chapter One, Adams and Simulink’s Simscape and Sim-Driveline blocks to name two. Using the 

complete MF 5.2 model can allow the tyre to be parameterised with over one hundred different 

variables. 

 The Pacejka tyre model in one of the simplest forms, taking pure lateral slip as an example, 

lateral force is defined with equation (2.3).  
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.+ = -+ sin q*+ tan:N qr+(/ − 3+lr+(/ − tan:Nlr+(/mmss 

(2.3) 

 

The constant numbers are determined by the coefficients D, C, B and E. These equations are fully 

developed in Chapter 3, but equation (2.3) produces lateral force. Varying slip angle allows lateral 

force to be plotted against slip angle (Figure 2.5) for a given vertical load. The above equation can 

be manipulated for pure longitudinal force by substituting slip angle with slip ratio.  

 
Figure 2.5 The mathematical development of the Pacejka curve profile (graphical example). 

 
 
The complete model described in Chapter 3 covers longitudinal force versus slip ratio, lateral force 

versus slip angle and the combined slip angle and slip ratio forces. The aligning torque is also 

described in detail in the following chapter. Tyre and vehicle behaviour still needs to be understood 

with the use of the Pacejka model so as not to produce unreasonable results with the use of incorrect 

Pacejka coefficients, it is important to observe that the maximum co-efficient of friction of the tyre 

drops off linearly with load, camber angle of the tyre will increase the maximum lateral grip of the 

tyre to infinity, requiring a maximum camber geometry setting to be observed for the race vehicle 

being tested, longitudinal forces will decrease as camber angle is increased: peak longitudinal force 
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will be observed at zero degrees of camber and in the lateral force formulae, post peak slip tends 

to have a small reduction in force. These observations mean Nowlan [9] proposes the Pacejka 

model is not ideal for racing tyres and introduces his own model based on look up tables and 

empirical data from race cars, namely the ChassisSim v3 tyre model. This model is ideal and does 

eradicate some of the weaknesses of the Pacejka model. However, fully explored and analysed 

vehicle set-ups and vehicle responses are required of the race vehicle to ascertain limitations, 

maxima, parameters and look-up tables [32]. For these reasons the ChassisSim tyre is discounted 

from this study. 
 

2.2.4 TaMe Tyre model 
 

 
The Pacjeka Magic Formula and ChassisSim v3 tyre models are based on empirical data and as 

such the majority of tyre modelling, vehicle dynamics simulation and studies have been based on 

the Pacejka model as determined in the previous section. However, there is a derivative of the 

brush tyre model, produced by Michelin during the time they were last involved in Formula One 

(c. 2001 – 2006): The Michelin TaMe Tyre model.  

The model uses the tyres structural properties and so is derived by three parts, mechanical model 

(structure), rubber characteristics and a thermal model [28, 33]. The TaMe tyre model generates 

friction as a function of speed, temperature and pressure, however for this model the structural 

properties of the tyre must be known alongside the frictional properties of the tyre surface as a 

function of speed, temperature and pressure. In the mystique of Formula One this data would be 

very difficult if not impossible to come by and as such, although this may be a superior tyre model 

(with the correct inputs utilised) the model is beyond the scope of this thesis.  
 

2.2.5 Traction Ellipse 
 
 
The previous sections have determined that a peak longitudinal and lateral force is generated at a 

specific slip ratio and angle respectively. This peak force changes due to vertical force on the tyre 

but none-the-less a maximum is present for all vertical force possibilities. This statement dictates 

that for a race vehicle with a specific race tyre at a given load there is an optimum point in slip that 

the tyre will generate peak force. Taking the peak forces for lateral and longitudinal dynamics 
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(Figure 2.6) it is obvious to see there is no gain to going beyond these maxima. However, this only 

determines the peak force in purely longitudinal or lateral slip conditions. The tyre can generate 

forces in both directions, but the peak is only available when no other motion is required. 

 
Figure 2.6 Lateral and longitudinal tyre forces versus slip ratio, slip angle and aligning torque. 

 
If the tyre could generate an equal amount of force in pure longitudinal and lateral acceleration 

then this could be depicted as a circle (Figure 2.7), however race tyres do not work in that way 

especially when aerodynamic downforce is introduced into the equations and as such the combined 

forces are depicted analogous to an ellipse. 
 
A race vehicle cannot brake or accelerate and corner at its peak force and if attempted by a driver 

the vehicle will lose traction and lock a wheel or spin. Through data logging of a race vehicle the 

traction ellipse [34] can be generated in the terms of longitudinal G-Force versus lateral G-Force 

(Figure 2.7, note right hand corners are negative). It is clear to see an aerodynamic bias vehicle 

can corner harder than it can accelerate or brake, and the braking power (deceleration), is far 

superior to the acceleration rate, due to powertrain output power. The driver whilst searching for 

the best performance of the car is subconsciously trying to follow the outer circumference of the 

traction circle. Figure 2.7 depicts the main areas of the traction circle where the driver is attempting 

to extract the maximum performance from the tyre during the combined forces. Maximum 
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accelerations are also seen during the combined forces as the vehicle accelerates out of a corner 

from a slower speed where acceleration is high. During pure acceleration events the vehicle 

velocity is high enough whereby acceleration is lower, however peak deceleration is always in a 

straight line, where the driver can extract maximum velocity retardation from the tyre.  Peak lateral 

accelerations for a GT style car tend to occur during pure lateral and combined acceleration up to 

a maximum of 0.25G (positive and negative) longitudinal acceleration. 

 

 
Figure 2.7 The measured traction ellipse (G-G diagram) from a Lotus Evora GTE (note right 

hand corners are negative sign). 

 
 

2.3 Vehicle dynamics and variants of DOF 
 

There are several degrees of freedom associated with vehicle modelling and vehicle dynamics [16]. 

A model can have a plethora of degrees of freedom when all systems and components equations 

of motion are included together; for simplicity this project takes the vehicle body as the 

hierarchical component that implies the total degrees of freedom (4DOF). Although the tyre model 
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has in itself degrees of freedom these are discounted from the model’s assignment of motion title.  

The most basic of vehicle dynamic model consists of i) lateral and ii) yaw motion, therefore, is 

assigned as a two degree of freedom (2DOF) model. This model tends to be a single-track (bicycle) 

model and is used for steady state analysis whereby vehicle speed is constant [10]. 

 
Studies that do not involve longitudinal acceleration can produce excellent results from the 2DOF 

model, such as constant speed analysis of the fishhook, J-Turn [4] or lane change [30] manoeuvres 

for example. The authors of [30] collated measured data from a vehicle and then compared the 

results to their 2DOF model. The authors conclude for constant speed testing that a simple model 

can produce lateral dynamic results ‘very well’ and that added complexity to the Pacejka tyre gives 

very little gain in accuracy of the results and that for a 2DOF model the far more complex double 

track model is not able to enhance the accuracy of results.  However, in [10] the same authors do 

acknowledge ‘for more convincing conclusions to be established, additional thorough 

investigations will be needed, e.g., considering combined lateral and longitudinal dynamics.’  

 

The three degrees of freedom model adds longitudinal acceleration and therefore can 

establish results of a vehicle’s motion on the X-Y plane. The author of this Thesis in [11] carried 

out studies based on [10, 30] and from measured data taken from a race vehicle to compare the 

results with Simulink® 2DOF and 3DOF models. Although the results were close to measured 

data in constant velocity tests, the lateral acceleration maxima and minima consisted of an error of 

six percent in some instances as the numbers of corners and speeds varied with a 2DOF model.  

As roll and pitch effect vertical load and thus tyre performance a 4DOF (roll), 5DOF (pitch) and 

6DOF (heave) model may be beneficial to the industry when tyre performance and modelling is 

important, although additional degrees of freedom add mathematical complexity to the model and 

increase computing power requirements.  

 

Lot et al [1] concentrate mainly on creating a new approach to road modelling for lap time 

simulation, to ease computing power of the vehicle model a 3DOF model is utilised. This model 

maintains single-track geometry and appropriate circuit mapping and racing line plots appear to 

be produced. However, this paper fails to validate the vehicle model or take any comparisons of 

measured data into account. To move forward from this point into a 4DOF model, as weight 



 
 
 

30 

transfer characteristics are to be included, a double-track model is necessary. In a 2DOF or 3DOF 

model, double-track models can be implemented [35] but found unnecessary [4] unless tyre 

modelling temperatures and weight transfer is required. Complexities to a model can be added 

without the overall expense of computing power by concentrating on a Newton-Euler approach to 

vehicle dynamic studies, as per [31], a 6DOF study is derived creating a model suitable both for 

‘high-accuracy simulation as well as for nonlinear control design.’ The majority of lap time 

simulation, optimisation and track mapping studies use 2DOF and 3DOF models in various single 

and multi-track model forms [12, 13, 36, 37], although none compare to measured data. The lap 

time analysis of [13, 35] however, produces lap time results close to that of 2014 and 2016 Formula 

One Vehicles (within 0.1s) [38]. In these studies, some effects on horizontal and vertical force are 

ignored such as drag reduction systems and a constant vehicle mass is used (no fuel mass usage) 

[38] having an impact on tyre dynamics. Lateral stability control for high lateral acceleration 

cornering vehicles must take into account roll dynamics as the tyres can have significantly different 

slip angles and therefore forces, as found in [39], where linear and Pacejka tyre models were tested 

against various DOF models to develop stability control. Linear tyre models and lower order 

vehicle dynamic models are unsuitable for stability control in high lateral acceleration events 

because of the lack of lateral transfer and the lack of saturation of the tyre force at high slip angles. 

 

The focus of this thesis is to create a model that would allow development and implementation of 

further degrees of freedom and tyre temperature models relatively easy and so a double-track, 

Pacejka tyre, 4DOF model is developed in Chapter 3, allowing a sensible approach to computing 

power demand for the optimisation and control problems and somewhat of a novel approach from 

most of the cited literature.  

 
2.4 Energy management 
 

The priority for hybrid electric vehicles is the use of the electrical motor and in the case of 

automotive manufacturers how that usage will reduce emissions. For the motor to be used 

effectively over greater distances the vehicle must be able to regenerate energy somewhat and 

manage the usage during electric only and combined states. The term used for this monitoring and 
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usage is energy management. Energy management in road vehicles normally has two states, charge 

depleting and charge sustaining [40].  During charge depleting mode the energy storage is used 

continuously, whereas in charge sustaining mode the energy store is depleted to a predefined lower 

limit that the store will not go beyond. The Formula One regulations [2] include energy flow 

limitations during a lap (appendix 1). The kinetic energy motor/generator unit (MGU-K) can 

supply two mega-joules of energy to the energy store and the energy store can provide four mega-

joules of energy to the MGU-K, in turn the energy store can store four mega-joules of energy per 

lap. The additional two mega-joules must come from the thermal energy motor/generator unit 

(MGU-H). The MGU-H can supply an unlimited amount of energy to both the energy store and 

direct to the MGU-K. The MGU-H is located on the same common shaft as the compressor and 

turbine wheels of the turbocharger, allowing turbo compounded [41] internal combustion engines 

to be utilised. The optimum regeneration from both MGU’s is required to provide enough energy 

to be utilised within the regulations but providing the maximum amount of power available to 

improve acceleration and improve lap time without impeding stability.  
 

2.5 Conclusion 
 

 
Tyre models and the appropriate literature have been presented and discussed with reasoning 

behind the choice of appropriate tyre models, an overview of amounts of degrees of freedom to be 

utilised has been included along with a brief overview of energy management strategies with 

regards to current race series.   
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3. Hybrid Race Vehicle Dynamic Model 
 
 

3.1 Introduction 
 

 
Presented in this chapter is a discussion on standard industry modelling as the motivation and 

justification to dynamic modelling choices within the Thesis. The mathematical vehicle dynamic 

model is developed including the vehicle chassis, aerodynamic body and tyre models that will be 

validated in Chapter 5 through optimisation algorithms.  

 
3.2 Vehicle Industry Standard Models 

 
 
There are a variety of vehicle dynamic studies ranging from basic two degrees-of-freedom (DOF) 

[54, 65] models up to complex multi-DOF models [48, 66].  Single track, lumped mass vehicle 

model simulations can be very effective at producing fast, consistent results for lateral acceleration 

within a 2-6% tolerance of the measured vehicle data [54, 65, 67]. Single-track models commonly 

known as the bicycle model tend to be used for steady state analysis and are limited in their degrees 

of freedom, no roll behaviour or longitudinal acceleration, for instance. For this study, where race 

circuit position of all four wheels are beneficial and roll dynamics are required for vertical force 

calculations upon a tyre, a double-track vehicle is utilised as per the majority of literature available 

into vehicle dynamic studies [42, 68, 69].  To allow multi-optimisation of systems or multi-

controllers to be utilised the vehicle dynamics model is best developed as a series of subsystems 

(Figure 3.1). Therefore, all unknown parameters can be estimated through optimisation techniques.   

All vehicle body dynamic studies have one thing in common: the use of tyre models. There are 

three common types of tyre model: 1- linear, 2- Pacejka, and 3- Michelin’s TaMe [6, 11, 28,]. As 

previously discussed, the linear tyre model has its limitations. When the tyre is at the extreme slip 

angles and ratios, it continues to create grip (Figure 3.2), which is unrealistic and must have a 

defined maximum. The Michelin model is probably the most advanced model as it includes 

thermal properties; however, it is seen as too memory heavy for some studies [33]. Therefore, the 

Pacejka Magic Formula model is the most common model utilised and also within this study as 

well.  
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Figure 3.1 Vehicle dynamics sub-system components including powertrain and driver. 

 

 
Figure 3.2 A comparison of linear tyre model output (red, dashed line) versus Pacejka tyre curve 

(blue, solid line) with regards to lateral force versus slip angle. 

 
 
 The latest version of the Pacejka tyre model (named MF5.2), utilises the coefficients in (2.3) as a 

base to set the shape of the Pacejka curve (Figure 3.2). These coefficients are either taken from a 

tyre dynamometer test or manufacturers data. In the event that this data is neither available nor is 

accessible through a dynamometer test, the parameters have to be manipulated to develop an 
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appropriate curve match to longitudinal and lateral acceleration events. Therefore, the need for an 

accurate optimisation algorithm is required that can generate the results in a reasonable amount of 

time.  

 
3.3 Chassis Model 

 
The four DOF chassis dynamic model used in later section of this thesis includes longitudinal 

motion, lateral motion, yaw motion and roll motion. The equations of motion were described in 

Eqns. (1.6) – (1.9) respectively and the forces acting upon the body in Eqns. (1.10) – (1.12). 

Accelerations for yaw and roll are accented with a double dot and a single dot for longitudinal and 

lateral acceleration. To be able to write the model as an S-Function block, the dynamic model is 

converted to the standard state-space format.  

 

Combining Eqns. (1.6) – (1.9) with the notations used in Table 3.1, the final equation of motions 

can be described as follows 

 

tṀ =	
uN
#

+ tStT − ℎ2N2U	

                        (3.1) 

 

tṠ =	
uM
#

− tMtT − ℎ2N2MtT
M + ℎ2S	

           (3.2) 

 

tṪ =	
uU − uNℎ	2N − 2l2++ − 233m2N2MtVtT

2++2N
M + 2332M

M  

            (3.3) 

 

tV̇ =
uMℎ	2M +#pℎ	2N − *%tW − 4%tV + tT

Ml2++ − 233m2N2M
2**

 

(3.4) 
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where 

ijkV = 	 2N 

n+iV = 	 2M 

t6̇ = 	 2U   

t8̇ = 	 2S   

.*. = uN 

.+. = uM 

53 = uU 

Table 3.1 Dot product assignment. 

Complete Form x 

assignment 

Single dot 

product 

Longitudinal Displacement (X) t1  

Longitudinal Velocity (8*) t2 t1̇ 

Longitudinal Acceleration (8*̇) t2̇ t2̇ 

Lateral Displacement (Y) t3  

Lateral Velocity (8+) t4 t3̇ 

Lateral Acceleration (8+̇) t4̇ t4̇ 

Yaw Displacement (X) t5  

Yaw Velocity (Ẋ) t6 t5̇ 

Yaw Acceleration (Ẍ) t6̇ t6̇ 

Roll Displacement (V) t7  

Roll Velocity (V̇) t8 t7̇ 

Roll Acceleration (V̈) t8̇ t8̇ 

 

The vehicle body dynamics is written as an S-Function with the R2020a Matlab® and Simulink® 

environment. There are two outputs, one for displacement and one for acceleration for all 4DOF 

from the S-function. A simple derivative block allows the acceleration to be calculated externally 

from the block.  

There are three inputs to the S-Function, which are the outputs of equations (1.10) – (1.12), 

respectively. The inputs are created via a forming matrix. The eight inputs into the B matrix are 
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the longitudinal and lateral forces from each tyre expressed in equation (3.5) and the three outputs 

are shown in equation (3.6). 

 

| = 	l.*#O		.*#' 	.*'O	.*'' 	.+#O	.+#' 	.+'O.+''m
. 

     (3.5) 

 

u = }
.*.
.+.
53

~ 

       (3.6) 

 

The inputs and outputs are related via the forming matrix u = r|, as shown in (3.7) 

 

 

 

�X =

⎝

⎜
⎜
⎜
⎜
⎛

n+i@
n+i@
1
1

−ijk@
−ijk@
0
0

ijk@
ijk@
0
0

n+i@
n+i@
1
1

(:	ijk@ + =	n+i@)
(:	ijk@ − =	n+i@)

=
−=

(:	n+i@ − =	ijk@)
(:	n+i@ + =	ijk@)

−;
−; ⎠

⎟
⎟
⎟
⎟
⎞

 

       (3.7) 

 

3.4 Tyre Modelling 
 

 
The tyre models for each tyre are developed from the Pacejka magic formula. Each tyre within the 

Matlab environment has 2 blocks: a slip block and a Pacejka Block. The slip block defines the 

longitudinal and lateral slip for the tyre whilst the Pacejka block calculates the lateral and 

longitudinal forces for the input into matrix B.  
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The Pacejka model is formulated in much the same way for lateral and longitudinal forces with 

the exception of longitudinal or lateral slip being substituted for the appropriate model. The 

combined model is developed from both equations.  

 

The pure longitudinal model is expressed in equation (3.8) whilst the lateral model is shown in 

equation (3.9). The combined model is calculated through (3.10). The two equations shown in 

(3.10) are the outputs from Pacejka tyre model block 2 as described above, for all four tyres, 

generating the eight inputs for matrix B as defined in equation (3.5). 

 

.*_-_/ = -*ijk(**arctan	(r*B* − 3*(r*B* − arctan	(r*B*)))) + 68* 

    (3.8) 

 

.+_-_/ = -+ijkl*+arctan	(r+(+ − 3+(r+(+ − arctan	(r+(+m))) + 68+ 

      (3.9) 

 

.*/ = -*$ijk(**$arctan	(r*$(E − 3*<(r*$(E − arctan	(r*$(E)))) 

.+/ = -+Yijkl*+Yarctan	(r+YBE − 3+Y(r+YBE − arctan	(r+YBEm))) 

        (3.10) 

 
The slip block outputs are tyre slip angle (() and tyre slip ratio (B). The two inputs into each tyre 

Pacejka block, calculated through the slip blocks are defined for all tyres according to equations. 

(3.11) – (3.18). Additionally the Pacejka tyre model includes vertical load as an input.  

 

 

(#' = :_n[:k h
ijk@lẊ>! − 8*m + n+i@lẊ: + 8+m

n+i@l8* − Ẋ>!m + ijk@lẊ: + 8+m
o 

      (3.11) 

(#O = :_n[:k h
n+i@lẊ: + 8+m − ijk@lẊ>! + 8*m

n+i@lẊ>! + 8*m + ijk@lẊ: + 8+m
o 

(3.12) 
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('' = :_n[:k h
8+ − Ẋ;

8* − Ẋ>A
o 

(3.13) 

 

('O = :_n[:k h
8+ − Ẋ;

8* + Ẋ>A
o 

(3.14) 

 

B#' =	−h1 −
/Z#'

n+i@l8* − Ẋ>!m + ijk@lẊ: + 8+m
o 

(3.15) 

 

B#O =	−h1 −
/Z#O

n+i@l8* + Ẋ>!m + ijk@lẊ: + 8+m
o 

(3.16) 

 

B'' =	−h1 −
/Z''

8* − Ẋ>A
o 

      (3.17) 

 

B'O =	−h1 −
/Z'O

8* + Ẋ>A
o 

(3.18) 

 

where 

/  = Rolling radius of tyre 

Z/ = Angular velocity of tyre 

>! = Half track width (front) 

>A = Half-track width (rear) 

 



 
 
 

39 

3.5 Load Transfer 
 

 
The peak factor parameters -* and -+ within the tyre model are a function of the normal force 

acting on the tyre and the increase/decrease in vertical load due to weight transfer. The curvature 

factors (3* and 3+) and the stiffness factors r* and r+ are also directly linked to load via a stiffness 

coefficient 4* and 4+. The load on each tyre is determined by the sum of normal load of the vehicle 

distribution per tyre. These include, equation (3.19), aerodynamic downforce, equation (1.4), and 

weight transfer during roll equations (3.20) – (3.23), whereby mass is transferred from one wheel 

to the opposite wheel. As this model omits pitch the weight transfer is purely lateral across wheels 

of the same axle.  

 

.3_/ = # ∙ 9=_AH_/ ∙ 9=_!A_/ 

(3.19) 

where 

9=_AH_/ = Weight distribution right/left (%) 

9=_!A_/  = Weight distribution front/rear (%) 

 

 

∆.3_#O = −
4%V + *%V̇

4 ∙ >!
 

(3.20) 

∆.3_#' =
4%V + *%V̇

4 ∙ >!
 

(3.21) 

∆.3_'O = −
4%V + *%V̇

4 ∙ >A
 

(3.22) 

∆.3_'' =
4%V + *%V̇

4 ∙ >A
 

(3.23) 
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3.6 Aerodynamics 
 

3.6.1 Downforce 
 

 
According to equation (1.4), the total aero vertical force, is calculated prior to distribution across 

the four tyres via the centre of pressure location (*+,) and aero balance. The front and rear aero 

downforce is then calculated via the centre of pressure location, as a percentage of wheelbase from 

the rear tyres. 

 

-.' = -.& ∙ *+, 

(3.24) 

 

-.# = -.& ∙ (1 − *+,) 

(3.25) 

 

Finally, the aero force for each tyre is applied by even distribution across the vehicle body width 

as: 

 

-./ =
-.!AK0,	KA	AB<A

2
 

(3.26) 

 

3.6.2 Aerodynamic Drag 
 

 

A resistance force to the tractive effort of the vehicle is the aerodynamic drag, or the air resistance 

to the body as shown in equation (3.27). This resistance can be reduced by a drag reduction system 

(DRS), whereby the rear aerofoil can open to release drag but inevitably downforce. Therefore, 

ensuring DRS is only active on the straightaways of the circuit whilst it remains closed during 

cornering for maximum downforce and stability.  
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Again, drag is distributed to the front and rear wings as a ratio of the centre of pressure to the 

wheelbase. This allows the drag reduction system to reduce drag as a function of the rear wing.  

 

-&' = -& ∙ *+, 

(3.27) 

-&# =	-& ∙ (1 − *+,) 

(3.28) 

 

The loss of drag and downforce is based on the percentage of the whole body and the CoP: 

á+ii = à
7AB=CD
1 − *+,

â /100 

(3.29) 

where  

á+ii = Percentage loss 

+!$"%& = Total reduction across the entire body (%) 

 
And therefore, during DRS operation  

 

-.'_"') = -.' − (-.& ∙ *+, ∙ á+ii) 

(3.30) 

 

-&'_"') = -&' − (-& ∙ *+, ∙ á+ii) 

(3.31) 

3.7  Conclusion 
 
 
This chapter has covered the vehicle dynamic mathematical formulae and details the modelling 

parameters, systems and subsystems from a mechanistic view of the architecture for a 4 DOF 

vehicle body dynamic model (16 DOF model including the tyres) that will be utilised to explore 

particle swarm optimisation.  
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4. Hybrid Race Vehicle Powertrain 
 
 
 

4.1 Introduction 
 

 
This chapter introduces the hybrid electric powertrain for a proposed GT type race vehicle that can 

be coupled to the vehicle dynamic model outlined in the previous chapter. It will explain the 

justification of the GT powertrain utilising current world championship rules and regulations. The 

mathematical formulae for the separate mechanical and electrical subsystems will be presented 

and an accurate 1-D engine model will be produced and validated against the physical engine test 

results to ensure consistency to the physical world counterparts. A GT hybrid powertrain concept 

is also developed and discussed based on an amalgamation of current and future F1 and WEC rules 

and regulations. 

 

Current trends in both high-level motorsport and supercar development have been to introduce 

hybrid technologies. Formula One (F1) and the World Endurance Championship (WEC) have had 

the inclusion of hybrid systems in various guises since 2009 [74] and 2014 [75], respectively. A 

major revision to the F1 powertrain in 2014 [76] introduced a much more efficient and powerful 

hybrid system. In 2020/2021 the World Endurance Championship is set to change again with the 

removal of the LMP1 category and replacing it with a hypercar class that will include hybrid 

powertrain technologies [77]. The British Touring Car Championship also aims to include hybrid 

technologies by 2021 [78]. It is therefore a fair assumption to state that GT racing will also become 

a hybrid formula prior to all electric powertrain development. Due to the fact that amongst other 

race series most homologated GT cars are included in the endurance series’ in a class below the 

LMP1(hypercar from 2021) and LMP2 categories, distance is still an important factor for GT 

racing and a limiting factor for electric only vehicles.  
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4.2 The Formula One Powertrain  
 

 

As the Formula One powertrain and the limiting performance parameters are in existence, it is 

appropriate to develop a model based on this powertrain and the rules and regulations, and later 

refine it to be used for a GT specification vehicle. WEC hybrid rules allow for four-wheel drive 

systems, and therefore only some aspects from this series will be used to inform the GT 

specification. The powertrain model is calculated from three lookup tables; the Internal 

Combustion Engine’s (ICE) torque in Nm, the torque (Nm) of the kinetic energy recovery 

Motor/Generator Unit (MGU-K) and the fuel flow rate determined from the Brake Specific Fuel 

Consumption (BSFC) of the ICE.  

 
 

4.2.1 ICE Power 
 

The torque profile of the engine is a two-dimensional map as a function of the engine speed, 

revolutions per minute (RPM) and throttle position angle. This is formulated according to equation 

(4.1). 

 

7567	 = ã(Ω567 , (.1)) 

(4.1) 

where: 

 

7567	= Internal combustion engine torque 

Ω567 = Internal combustion engine speed (RPM) 

(.1) = Throttle position angle 

 

The power of the engine (,567) is directly related to the torque through equation (4.2) 

 

,567 = 7567 	 ∙ 	Z567 

(4.2) 
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where Z567 is the engine speed in rad/s 

 

Z567 =
Z!"#∙M\
T----

. 

(4.3) 

 

4.2.2 MGU-K Power 
 
The torque profile of the MGU-K is a x-y axis data set as a function of the motor speed (RPM), 

which is directly related to the ICE speed through a fixed ratio (4). 

 

7289:?	 = ã(Ω289:? ∙ 4) 

(4.4) 

 

The power of the motor is directly related to the torque through equation (4.5): 

 

,289:? = 7289:? 	 ∙ (Z567 ∙ 4) 

(4.5) 

 

 

4.2.3 Brake Specific Fuel Consumption 
 
The brake specific fuel consumption of an engine is determined by the fuel used for the power 

created over time (as grams per kilowatt hour, g/kW-h) and is a function of the engine speed and 

the throttle position 

 

r6.* = ã(Ω567 , (.1)) 

(4.6) 
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The Formula One regulations state that fuel flow rate cannot exceed one hundred kilograms per 

hour (100kg/h) when the engine speed is above 10500RPM. Section 5 of the Formula 1 rules and 

regulations stipulate that: 

 

5.1.4 Fuel mass flow must not exceed 100kg/h. 

5.1.5 Below 10500rpm the fuel mass flow must not exceed: Q (kg/h) = 0.009 N(rpm)+ 5.5. [2] 

 
Table 4.1 RPM versus permissible fuel flow [kg/h]. 

RPM 4000 5000 6000 7000 8000 9000 10000 10500+ 

Fuel Flow [kg/h] 41.5 50.5 59.5 68.5 77.5 86.5 95.5 100 

 
 
By applying the formulae from the rules and regulations, the allowable fuel mass flow can be 

produced as shown in Table 4.1.  The instantaneous fuel flow from an engine model simulation 

(similar to the one described in Section 4.4), can be used to determine engine load parameters. 

Engine map sites for normalised fuel flow (.̇) can be determined as in Table 4.2, where 1 = 

100kg/h. 

 
Table 4.2 Normalised fuel flow (permissible Engine sites in green). 

       RPM 

TPS 

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 

0 0.11 0.14 0.14 0.07 0.05 0.02 0.02 0.02 0.02 0.02 0.02 

10 0.41 0.50 0.59 0.68 0.76 0.32 0.43 0.58 0.54 0.42 0.46 

20 0.41 0.50 0.59 0.68 0.77 0.85 0.92 0.94 0.95 0.98 1.48 

30 1.36 0.90 0.91 0.92 0.77 0.84 0.93 0.94 0.96 0.98 1.01 

40 1.11 1.06 0.94 0.90 0.91 0.85 0.92 0.95 0.97 1.02 1.03 

50 0.82 1.13 0.96 0.90 0.90 0.86 0.93 0.95 0.97 1.02 1.16 

60 0.90 1.09 0.98 0.89 0.90 0.88 0.94 0.95 0.98 1.14 1.19 

70 0.90 1.03 0.99 0.89 0.90 0.91 0.94 0.95 0.98 1.14 1.20 

80 0.91 1.11 0.99 0.89 0.90 0.92 0.94 0.95 0.98 1.14 1.20 

90 0.86 0.72 0.99 0.88 0.90 0.92 0.94 0.95 0.98 1.14 1.20 
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From empirical data1, it can be seen that the common speed range of a Formula One V6 hybrid 

engine is between 9500RPM and 12500RPM. The power below this RPM would be mapped in a 

way that meets the regulations, however, it would produce an unusable low power output.   

The power output of the ICE is increased by the use of a turbocharger. The turbocharger also 

consists of a motor/generator unit (MGU) that can be used to spin the turbocharger and create 

boost, which in turn creates additional power at the crankshaft and avoids lag at low turbine speeds 

if only exhaust gases are used to rotate the turbine side of the turbocharger.  It can also be used to 

regenerate energy from the spinning turbine that is rotated by the flowing exhaust gases. Since 

these gases are hot in nature the MGU unit is known commonly as Motor/Generator Unit – Heat 

(MGU-H). Representatively, the MGU-H may utilise 60kW of power to rotate the compressor 

wheel of the turbocharger and the ICE output is boosted by 20kW, the waste gate is open and 

purely electrical power is rotating the compressor, however when the waste gate closes and exhaust 

gases are used to rotate the turbine wheel, 40kW of power can regenerated from the MGU-H and 

the ICE power drops by 20kW. (Figure 4.1). 

 

 

 
Figure 4.1 Motor Usage (60kW) creates 20kW at the crank-train. 

 
 

 
1 Onboard footage from rounds of the 2019 & 2020 Formula One championship. 
https://www.formula1.com/en/video.html 
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4.3 Powertrain 
 

 
The combined ICE and MGU-H power can be calculated via equations (4.7) and (4.8). 

 

,289:;
<== = ãl,289_; ,9Im 

(4.7) 

where 

 

,289:;
<==  = additional power at the crank-train 

9I = waste-gate position (normalized to 1 = open, 0 = closed). 

 

Thus, the boosted engine power output is 

 

,4!"# =	
,289:;
<==

,289:;
><* − ,289:;

>/0 ∙ l,289$ − ,289:;
>/0 m + ,567 

(4.8) 

where 

 

,289_; = çl,289:;
><* − ,289:;

>/0 m ∙ 9I + ,289:;
>/0 é ∙ .̇. 

(4.9) 

 

Finally, total powertrain power can be calculated  

 

,1. = ,4!"# + ,289:? 	. 

(4.10) 

The total powertrain torque (in Nm) is 

 

71. =
,1.
Z567

	 ∙ 1000 

(4.11) 
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and therefore, the total torque at the driven shafts is 

 

7EF<!, = 71. ∙ 1/ ∙ A8JK* 

(4.12) 

 

where A8JK*	is the mechanical efficiency of the gearbox and 1/ is the total gear ratio 

(instantaneous gear ratio multiplied by the constant final drive ratio). 

 

Equation (4.12) can be distributed to each powered wheel through division by the number of driven 

wheels. It would be beneficial in the case of Formula 1 vehicles to distribute the power via a 

percentage of torque to simulate an electronically operated differential as a function of steering 

angle	@ and yaw rate X. 

 

7=/E, = ãl@, Ẋm 

(4.13) 

 

Finally, torque at the wheel shaft is shown in equation (4.14), where j  indicates the wheel location 

(rear left for example) 

 

7GFBBH% = 7EF<!, ∙ 7=/E, 

(4.14) 

 

The speed at the driven wheel is calculated according to equation (4.15) and is an input to the slip 

model for slip ratio and forms part of the numerator as shown in equations (3.15) – (3.18). 

 

Z/ =
Z567

1/
	 

(4.15) 
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4.4 MGU Regeneration 
 

 

The regeneration mode for the MGU-H is determined by the power required at the wheel and the 

amount of energy stored. The MGU-K energy harvest storage flow is limited to 2MJ per lap [2], 

however, additional harvested energy can be transferred to the MGU-H at an unlimited amount 

(Appendix 1). The regeneration and deployment of both MGU machines can be via optimization 

or control parameters, however, it is inevitable that the MGU-K should harvest as a function of 

deceleration (braking). 

 

The braking torque is assumed to be at the maximum based on tyre braking force peak curves, and 

hence an additional braking above that of the MGU-K is assumed to come from the hydraulic 

braking system. As a result, for all braking instances, the brake force .JA<]B 	 ∈ [0,1]	but is a 

function of longitudinal grip: 

 

.JA<]B = ã(.*)	 

(4.16) 

4.5 GT Race Vehicle Hybrid Powertrain 
 

 
Formula One and a GT race vehicle engine model have been developed through the use of GT 

Suite 1D simulation and the GT engine has been validated against measured data. It is imperative 

that the engine model produces the same power as that installed in the vehicle to ensure the 

dynamic internal combustion engine model matches the performance parameters as that used in 

the vehicle dynamic model where the measured data will be utilised to validate the performance 

index of the Matlab/Simulink models versus measured data.  To ensure the model performance 

outputs compared to the Cosworth engine installed in the Lotus Evora GTE car, a spare engine 

was stripped down, measured and casts taken of the intake and exhaust ports.  

 

The castings were then converted into 3D models to allow appropriate discretisation of the port 

shapes as shown in Figure 4.2. All measurements and architecture of the engine were used to 

develop a 1D simulation model within the GT-Power software package. 
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Figure 4.2 3D CAD model of the intake and exhaust ports (top) and their transfer into GEM 3D 
for discretisation of pipes and flow splits to ensure accurate modelling in GT Power (1D engine 

simulation). 

 
The engine architecture dimensions, and specific design parameters forms part of a non-disclosure 

agreement between the Author and Lotus Cars (GB). Therefore, the basic information only could 

be provided in Table 4.3.  

 

The input parameters, such as environment and combustion model were identical to that as utilised 

in the Cosworth dynamometer test bench results to allow validation of the performance output 

from the simulated engine. Figure 4.3 illustrates an overlay of the simulated engine model 

(1000RPM to 8500RPM) compared to the data provided by Cosworth from their dynamometer 

bench tests (4500RPM to 8500RPM). It is worth noting that, due to the non-disclosure agreement 

the values are normalised.  
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Table 4.3 Engine Architecture of GLC107. 

Part Measurement 

Stroke 94mm 

Bore 94mm 

Compression Ratio 14.75:1 

Connecting Rod Length 147.5mm 

Inlet Valve Diameter 38.15mm 

Intake Port 38.15x 37mm 

Intake Runner Post Throttle Exit 56.5mm x 37mm 

Intake Runner Post Throttle Length 122mm 

Intake Runner Post Throttle Entrance Diameter 56.5mm 

Throttle Butterfly Diameter 57.4mm 

Intake Trumpet Entrance Diameter 91mm 

Exhaust Valve Diameter 32.25mm 

Exhaust Port Diameter 40.4mm 

Exhaust Manifold Entrance Diameter 40.4mm 

Exhaust Manifold Runner Diameter 48mm 

Exhaust Manifold Runner Length 500mm (3 runners for each manifold) 

Exhaust Single Pipe Diameter 60mm 

Exhaust Single Pipe Length 500mm 
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Figure 4.3 Normalised Power (blue line) and Torque (red line) curves for simulated GT Power 

model versus Cosworth dynamometer bench testing of the GLC engine. 

 
 

Although Cosworth only provided test data for 4500RPM onwards, the plot shows a very accurate 

simulated engine model as shown in Table 4.4. The measured racetrack data from Silverstone that 

will be used for comparison of the simulated vehicle dynamic data shows that a minimum RPM 

during one flying lap is 4314RPM.  

 
Table 4.4 Power and torque error for all RPM thresholds - simulated engine versus Cosworth 

dynamometer test results. 

RPM 4500 5000 5500 6000 6500 7000 7500 8000 8500   
Power 
Error 
[%] 3.752 5.238 -2.244 3.422 0.279 0.034 -1.228 -0.564 0.309 

Average 
Error  

[%] 1.000 
Torque 
Error 
[%] 3.757 5.243 -2.238 3.427 0.285 0.039 -1.222 -0.558 0.314 

Average 
Error  

[%] 1.005 

 
This fully validated engine model allows equations (4.1) – (4.15) to be utilised and through the 

brake specific fuel consumption model a fuel limit can be set. Energy usage across a lap will be 

determined based on the World Endurance Championship rules and regulations, whereby 8 MJ of 

energy is allowed to be deployed across a lap of Le Mans (circuit de la Sarth layout), Formula One 
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cars are restricted to 4 MJ at all circuits. As this is the longest lap distance of the race calendar, the 

WEC rules state ‘the amount of releasable energy per lap will be limited in the proportion of length 

of circuit relative to the length of Le Mans circuit multiplied by a factor 1.55 and the amount of 

fuel allocation per lap will be limited in the proportion of length of circuit relative to the length of 

Le Mans circuit multiplied by factor 1.11’ [75]. 

 

Table 4.5 GLC 4.0L normally aspirated fuel flow (kg/h) versus engine speed and throttle 
position. 

       RPM   
        
TPS [o] 

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 

0 9.0 8.2 8.2 8.5 8.9 9.0 9.1 9.2 9.2 9.2 
10 26.6 31.0 38.1 48.0 54.6 57.7 59.7 61.4 62.7 63.4 
20 27.4 32.8 45.7 55.4 64.1 69.8 72.6 74.1 76.4 78.3 
30 26.9 32.2 46.7 57.6 65.6 72.9 77.1 78.8 80.8 83.1 
40 26.0 32.0 45.9 59.4 66.0 74.3 80.1 82.1 83.8 86.2 
50 25.3 32.3 44.5 60.4 66.2 74.4 81.6 84.1 85.4 87.6 
60 24.7 32.7 42.9 61.1 66.6 74.0 82.5 85.8 86.8 88.5 
70 24.5 32.9 42.1 61.2 66.9 73.7 82.7 86.5 87.3 88.8 
80 24.4 33.1 41.5 61.1 67.2 73.3 82.7 87.1 87.9 89.0 
90 25.7 30.8 42.0 57.2 70.7 72.2 79.8 88.8 92.4 91.7 

 

This gives the LMP1 8 MJ class at the Silverstone GP event a max deployment of 5.3 MJ, they are 

also limited to 82.9kg/h of fuel flow, restricting the hybrid model proposed in Chapter 7 to 

7000RPM. The fuel and hybrid deployment limitations will be determined during the optimisation 

and control process, however, based on the brake specific fuel consumption and fuel injector flow, 

the Evora GTE GLC engine’s fuel flow (kg/h) is shown in Table 4.5. 

 

4.6 Conclusion 
 

 
A detailed description of current world series’ powertrains has been discussed and a new prototype 

GT Hybrid series has been presented. The architecture, system mathematical topology and engine 

model simulations have been implemented and validated against real world data. The engine fuel 

flow and energy limitations have also been determined. The mathematical model detailed in this 
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chapter will be coupled with the transient vehicle dynamic model previewed in the previous 

chapter.  
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5. Vehicle Dynamic Parameter Estimation 
and Optimisation 

 
 

5.1  Introduction 
 
 
A plethora of algorithms have been used for optimisation over the decades and the literature 

outlined in this chapter shows there have been many varied results and viewpoints on preferred 

methods and techniques. This chapter discusses particle swarm optimisation algorithms and the 

literatures headline statements, both for and against the algorithm. Single objective and multi 

objective optimisation techniques are implemented and evaluated to validate the transient dynamic 

model detailed in Chapter 3. The numerical optimisation results are analysed for accuracy, 

computing power, and computational time.  

 
5.2 Particle Swarm Optimisation for Vehicle Dynamic 

Validation 
 
 
Evolutionary based optimisation techniques are proven effective techniques in design and analysis 

of various engineering problems [107, 108, 109]. The optimisation algorithms may have various 

levels of success depending on the optimisation problem in hand, number of objectives, computing 

power and the range of variable parameters. Over the decades, evolutionary based algorithms [79], 

such as genetic algorithm optimisation (GA) [80], differential evolution (DE) [81], and particle 

swarm optimisation (PSO) [82] have all been studied and compared against each other. Montazeri 

et al [83] developed single objective (SO) and multi-objective (MO) optimisation for a 7-DOF 

robotic arm manipulation, comparing both SOGA and MOGA algorithms and found the MOGA 

approach more favourable in terms of the improved accuracy in parameter estimation and lower 

values for the output error estimation. The new method proposed in [83] relies on the multi-

objectivization technique to convert a single objective output error identification problem to a 

multi-objective problem. This research is continued in [84] and [110] by comparing MOGA to 

SOPSO and MOPSO for the same robotic arm. In both lines of research, the input output data used 

for parameter estimation of robot is collected from one joint of the robotic manipulator. In 
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conclusion, the results in [84] found that the non-dominated sorting genetic algorithm (NSGA-II) 

and MOPSO, both performed well in finding a solution to the problems posed; however, depending 

on what we are looking for as a measure in an optimisation algorithm, i.e., convergence speed 

versus estimation accuracy, both algorithms can have their own advantages. As shown in [84], the 

NSGA-II algorithm is three times slower than PSO and although both algorithms show an error 

when the estimated values are compared to measured experimental data, the NSGA-II algorithm 

and MOPSO produce very similar results and therefore accuracy benefits are inconclusive.  

 
Several automotive studies now utilise PSO as an optimisation tool with the domination method 

one of the most popular. Multi-objective optimisation tends to use a Pareto dominance method 

[85] although many variations of the algorithm exist [79,86]; it is observed that pareto dominance 

algorithms produce the best results [86]. A 5-DOF vehicle vibration model was optimized by using 

a multi-objective uniform-diversity genetic algorithm (MUGA) [88]. This study was based once 

again on pareto optimisation and comparisons made to the results generated by Bouazara et al [87]. 

In relation to the data in [87] the GA generated excellent convergence results.  Wang [89] as 

Weiling [84] also compare PSO to GA, in this instance the neighbourhood cultivation genetic 

algorithm (NCGA), with the faster convergence rate accredited to the MOPSO algorithm and in 

this case, the results are much more accurate than that of the NCGA. A Hybrid PSO and GA 

algorithm is proposed in [79]. The results in [79] shows that the combined model is more 

favourable in terms of both convergence time and the result accuracy, when compared with that of 

Zadeh [91]. Several algorithms and optimisation techniques, including but not limited to Nelder–

Mead simplex, differential evolution and particle swarm optimisation are tested against the Pacejka 

coefficients in [90]. The algorithms are utilised to match Pacejka curve shapes for lateral, 

longitudinal and aligning forces. This research uses the algorithm to create the Pacejka curves, and 

hence is based upon the curve matching of the known tyre measured data and curves with very 

limited success in fit success of the Pacejka curve.  

 

Latest developments in PSO algorithms within the literature suggest a PSO model is the most 

suitable algorithm in terms of the convergence speed. In the current investigation a single and 

multi-objective PSO algorithm is developed to create a new generation of simulation environment 

for dynamic modelling and optimisation of a hybrid powertrain race vehicle such as those that can 
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be found in Formula One and the World Endurance Championship. In this way, it is possible to 

make a detailed numerical study to compare the performance of different PSO algorithms within 

the search space objective function(s). Unlike the previous results, in this thesis, the tyre 

coefficients are found by comparing the outputs of the vehicle dynamic simulated data to the data 

measured from the vehicle in the real race circuit. Therefore, by creating a Pacejka tyre shape the 

tyre model is generated by each particle searching for 20 tyre coefficients that enable the cost 

function to match closely the simulation vehicle dynamic output, with the data measured from the 

real race vehicle. By looking at the parameter search space, the PSO algorithm tries to match the 

data measured from the vehicle at each corner, each acceleration, and deceleration event around 

the circuit with the outputs from the developed simulation environment. This strategy allows three 

major contributions to vehicle dynamic modelling: 1. Enables data driven modelling to include 

both the vehicle dynamic system and tyre modelling system to work in harmony, 2. Multi-

objectivisation of the output-error problem for the parameter estimation, 3. Numerical analysis and 

comparison of the single and multi-objective evolutionary algorithms. 

 

Single-objective particle swarm optimisation (SOPSO) and a modified derivative of the same 

brethren multi-objective particle swarm optimisation (MOPSO) have improved performance over 

other optimisation algorithms as discussed within the literature review section. It is imperative that 

in both cases the algorithm should be tuned for the best performance to ensure accurate results.  

 

To ensure the best performance, in terms of minimization of the cost function and to ensure that 

the search space is fully explored, the parameters of the particle swarm optimisation algorithm 

must be tuned carefully. In the case of this study each particle used within the swarm contains a 

number of parameters determined by tyre coefficients and chassis parameters. The PSO algorithm 

contains the initial conditions for each particle and the update equation for each iteration. Each 

particle is subject to an inertia weighting coefficient (w) and personal (c1) and social (c2) 

acceleration coefficients. These coefficients affect the direction and distance a particle travels 

within the search space. The mutation of such particles (pm) also has to be considered to ensure 

local minima and false plateaus are avoided. 
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As the first step and to determine the suitable parameters for the algorithm are tuned, the PSO 

algorithm is evaluated to estimate some known parameters. This is carried out by taking measured 

data from a race vehicle and using this data as an input (wheel speed and steering angle only at 

this stage) and simulating a twenty degrees of freedom (total) vehicle dynamics model through 

Matlab and Simulink. The output data obtained from the simulation of the vehicle dynamic model 

with known parameters were then used to tune the particle parameters of the PSO algorithm to 

estimate these twenty-two parameters in the vehicle dynamic model. As the particles containing 

these parameters within the PSO are swarming around a search space to find an optimum result, 

they each contain twenty variables for the Pacejka tyre model and two variables from chassis 

stiffness and damping. This stage enables a sanity check and tuning of the PSO through the 

observation of results of the error between known simulation data and PSO output data as opposed 

to measured data versus PSO data. After the tuning stage the PSO will be utilised to optimise the 

parameters of a vehicle dynamic simulation model for accuracy against measured data from a 

physical race vehicle. 

 

To address the complexity and non-convexity of the optimisation problem a multi-objective PSO, 

is also developed and the results are compared with the single objective algorithm (one single 

vehicle dynamic output) to analyse the suitability of the algorithms in terms of convergence speed 

and estimation accuracy of the parameters. (closeness of the actual vs simulated parameters) and 

finally the best appropriate fitness function for comparing dynamic output plots of the vehicle 

model to actual data. The 4DOF model is utilised to determine best vehicle behaviour. The model 

consists of five inputs: steering and all four, wheel angular velocities (@, Ω!H , Ω!A , ΩAH , ΩAA) taken 

from the measured race car data. The four outputs (and their integrals) are the vehicle dynamic 

outputs from (3.1) to (3.4), and a various number of parameters for the PSO search space to be 

determined after sensitivity analysis. The parameters are based upon the tyre model and chassis 

stiffness and damping. The tyre model parameters are firstly tested at the top level: shaping factor, 

peak factor, stiffness factor and curvature factor (B to E respectively in (3.10)), and later at the 

lower coefficient level as shown in Table 5.1 with the inclusion of an axis shifting parameter 68+Y. 
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Table 5.1 Pacejka tyre curve factors and their coefficients. 

Tyre Factor Coefficient 

r*$ _r*N, _r*M 

**$ _**N 

-*$ _í*N 

3*< _3*N, _3*M 

r+Y _r+N, _r+M, _r+U 

*+Y _*+N 

-+Y _í+N, _í+M 

3+Y _3+N, _3+M 

68+Y	 _8+N, _8+M, _8+U, _8+S, _8+^, _8+T 

 

 

Each particle will vary the parameters and determine best positions based upon the fitness of the 

vehicle dynamic output plots (cost function). Therefore, two conditions will be analysed: the 

parameter estimation versus known data for these parameters and the PSO cost function comparing 

measured or simulated vehicle dynamic data against the PSO output vehicle dynamic data. The 

parameter estimation error will simply be based upon known parameter results minus the PSO 

parameter results and the dynamic data cost function will be based up fitness of the curves to 

known dynamic data (5.0). After the sensitivity analysis is concluded in the following section 

details of the best error and cost functions are discussed in Section 5.5 and shown in (5.12) and 

(5.14). However it is important to acknowledge at this stage that the overall cost function algorithm 

can use two sources to calculate the errors: 1. the vehicle dynamic measured data from the race car 

(from this point forward named as measured data), 2. the results of the 4DOF model simulation, 

completed with known variables from the car and tyre manufacturer given to the tyre and chassis 

parameters, (from this point known as simulated data). Dependant on accuracy and validation of 

data each of the measured or simulated data can be assigned as a base to determine the accuracy 

of the output vehicle dynamic data from the vehicle dynamic model whilst using PSO, (from this 

point forward named as PSO data). In the case of trying to find the best fit of one vehicle dynamic 

output this would be detailed as single optimisation particle swarm optimisation (SOPSO) and in 
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the case of trying to find the best fit for multiple vehicle dynamic outputs this would be detailed 

as multi-objective particle swarm optimisation (MOPSO).  

 

,3 = ì
t −	tî

t
ì 

ï("D) = 	−ñ"D − "=&ñL 
 

(5.0) 
 

where 
 

‖t‖L =	 òô |t|L
_

:_
$tõ

N
L
 

 
and 
 
,3 is the relative parameter estimation error 

t is the value of the known parameter  

tî is the value of the parameter within the PSO iteration 

ï is the cost function error 

ú	is the norm and can be 1, 2 or ∞ 

"=& is the known vehicle dynamic output(s) from measured or simulated data. 

"D is the best vehicle dynamic output(s) from the PSO.	"Nis longitudinal velocity (8*), "M is 

longitudinal acceleration (8*̇), "U	is lateral acceleration (8+̇) and  "S is yaw rate (Ẋ).  

 

The measured data are collected from the race vehicle in a qualifying lap of Silverstone GP circuit. 

Therefore, the parameter estimation problem is further analysed by using the data collected from 

several corners around the lap and the entire lap. The main purpose for the use of PSO in this 

chapter is to validate a vehicle dynamics model against track data so that in the following chapter 

the model can be utilised to find the fastest path around a circuit.  
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5.3 Multi Objective PSO Problem Formulation 
 

 
Multi objective algorithms were borne from a need to establish a result whereby not one objective 

function is to be optimised but several, therefore there is an assembly of solutions rather than one 

unique solution.  

The objective of the MOPSO is to optimise k objective functions simultaneously. This means the 

k objective functions has to be maximised, minimised or a combination of both.  

 

The basis of the MOPSO algorithm is to find a solution vector x to satisfy both equality and 

inequality constraints, ℎ̀ (t) and p/(t) in (5.2) and (5.3), respectively. 

 
ûü⃗ ∗ =	 [tN∗, tM∗, … , t0∗]. 

(5.1) 
ℎ̀ (û) = 0, ¢ = {1,2…ú} 

(5.2) 
p/(û) ≥ 0, j = {1,2…#} 

(5.3) 
 
The aim of the multi-objective optimisation problem is to find a solution vector û  for the vector 
function (5.4) 
 

¶⃗(ûü⃗ ) = [ãN(t⃗), ãM(t⃗), … , ã](t⃗)]. 
(5.4) 

such that  
ûü⃗ = 	 [tN, tM, … , t0]. 

(5.5)	
 

is a vector of decision variables. In the scenario of optimising race car dynamic behaviour ãN, ãM 

etc would be the norm function error of each given vehicle dynamic output and  tN, tM etc would 

be for example the tyre factor or coefficients parameters as given in Table 5.1.   Solutions are then 

compared to determine the domination property. Domination is determined if the following two 

conditions are satisfied: 

 

1. Solution 1 is not worse than solution 2 in all objectives 

2. Solution 1 is better than solution 2 in one objective 

 



 
 
 

62 

If these conditions are not met, then solution 1 does not dominate. 

 

For the PSO algorithm to reasonably explore the solution space, each particle is given a minimum 

and maximum value for its position, velocity, and the inertia value used to control the behaviour 

of the algorithm. The initial value of the position and velocity of each particle is usually assigned 

randomly within the given minima and maxima. The velocity of each particle is then updated by 

having the local and global best solutions during each iteration. The velocity of the particle is 

updated as 

 
|/=
]bN = >	 ×	|/=

] + nN × _N
] × lú/=

] − t/=
] m + nM × _M

] × lúI=
] − t/=

] m 
(5.6) 

 
and the new position for each particle is calculated from 
 

t/=
]bN = t/=

] + |/=
]bN 

(5.7) 
 
where 

> = inertia weight based on a linear reduction or increase in a range between 0 and 1. This 

allows scaling of the velocity and control the search behaviour. Low values equate to 

exploitation around a particular particle results whereas high values allow exploration.  

|/=
]  = dimension velocity of the particle 

nN = personal learning coefficient 

_N
] , _M] = random number values defined in range [0,1] 

ú/=
]  = personal (local) best dimensional position of particle i  

t/=
]  = dimensional position of the particle i 

nM = global learning coefficient 

úI=
]  = global best dimensional position of particle i 
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The pseudo-code for the MOPSO algorithm used for optimisation can be outlined as follows 

 

1. Initialisation Loop 

2. Particle initialisation – Twenty-two parameter results randomly selected within an upper 

and lower bound.  

3. Simulate Vehicle Dynamic Model and produce cost result.  

4. Individual Particle and Global best positions are recorded 

5. Main Loop – Simulate vehicle dynamic model per iteration until stopping criteria is met 

6. Stopping criteria is not satisfied 

a. Evaluate vehicle dynamic output versus known result (error) 

b. Update Personal and Global best positions. Parameter results within the particle are 

stored along with best cost of dynamic output error.  

c. Random swarm movement by updating the velocity of each particle. 

d. Select the personal best 

e. Select the global best 

f. Update 

7. End 

 
To ensure the results stay within the boundaries of the solution space, the updated values are 

checked after each iteration according to these inequalities 

 

lt/=
] m = 	 ®

(#jk/= , )						jã	t/= < #jk/=
(#:t/= , )						jã	t/= > #:t/=

´ 

(5.8) 
 
Then the personal best is selected for each particle and its value is compared to the global best. 

The global best is only updated if pbest > gbest. 

 

Without the use of a tyre dynamometer or access to tyre manufacturer data it is not possible to 

determine full data for tyre simulation modelling and empirical knowledge isn’t the ideal, the same 

can be said for some aspects of the vehicle itself, in particularly as in equation (1.9), roll stiffness 

and damping affect overall roll that in turn affects the remaining 3-DOF of the model due to 

coupling of the formulae. Again, unless the vehicle manufacturer provides this information, or the 
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chassis stiffness is measured dynamically it is not possible to truly know the result without 

parameter estimation and therefore remain an unknown. Prior to developing an algorithm to 

identify exact parameters through a genetic algorithm a sensitivity analysis process should be 

employed to identify the minima and maxima of the system parameters.  

 

5.3.1 Sensitivity Analysis 
 

 
As described in Section 5.2 the tyre model contains co-efficients that generate the shaping factors. 

As there are seventy-three various co-efficients the first stage of the sensitivity analysis was to use 

the co-efficients that relate to the combined Pacejka model. Basing the sensitivity analysis on the 

topology of the model, namely B, C, D and E, further reduction of the parameters can be 

established, this ensures that rather than seventy-three parameters for each tyre having to be tested 

reductions can be made from analysis of results. Other unknown parameters for the vehicle were 

the Inertia values around the X, Y and Z axes of the race car and the Chassis Stiffness and 

Damping. 

 

After successful analysis of the results, it is then possible to run sensitivity analysis on the 

coefficients under each tyre parameter if the outputs are modestly affected. The sensitivity of cost 

functions ï(8*), ï(8*)̇ , ï(8+)̇ 	and ï(X)̇  were carried out (as measured car data was available) as an 

error formulation with respect to the eight tyre parameters and the chassis stiffness, damping and 

finally the inertia around the X, Y and Z axes, Table 5.1 identifies the variance of parameters. The 

initial parameters listed in Table 5.1 are taken from dynamometer testing of a race tyre and from 

the vehicle manufacturer. Dependent on the sensitivity of the system the next stage of analysis is 

plotting the model output (8*, 8*̇, 8+̇	and Ẋ) versus measured data so that the parameters can be 

ignored, or the variance refined. The analysis was carried out over several corners around the race 

circuit.  In this instance the Silverstone Grand Prix circuit and corners: Abbey and Village, The 

Loop and Arena section. (Figure 5.14). 
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Table 5.2 Initial Sensitivity Analysis Parameters and Variance 

 
Input Parameter Initial Parameter Minimum/Maximum/Variance 

Bx 12.3 0/24/1 
By 13.1 0/24/1 
Cx 1.14 1/2/0.1 
Cy 1.14 1/2/0.1 
Dx 1500 1000/2000/100 
Dy -4000 -6000/-2000/100 
Ex 0.3 0/1/0.1 
Ey 0.32 0/1/0.1 
*% 19000 [Nm-s/rad] 1000/20000/1000 
4% 100000 [Nm/rad] 10000/200000/10000 
Ixx 300 [kg-m2] 100/1000/100 
Iyy 700 [kg-m2] 100/1000/100 
Izz 1500 [kg-m2] 500/2500/100 

 

 
Initial analysis to determine the sensitivity of the system shows that there are several parameters 

that cause large variations in results but that these results can change from output to output due to 

coupling of the system (3.1) to (3.4). As per Figures 5.1 and 5.2 it is clear to see that the inertia 

around the Z axis varies the lateral acceleration immensely, introducing noise. However, the results 

show that an inertia in the range of 1500 to 2500kg-m2 have little effect on the lateral acceleration. 

The same results were also observed for Yaw rate. However as expected a less than 1% change 

was made to longitudinal dynamic results. Using a progressive approach to test each parameter as 

listed in Table 5.1, it was observed that for Cx and Cy (Figure 5.3) the value is changing across the 

duration of the simulation and therefore a constant number model creates unrealistic results. 

Therefore, for detailed analysis they would have to be returned back to their constituent numerical 

input co-efficients that includes two and three separate inputs respectively.  The same conclusion 

was drawn for Bx, By, Dx, Dy, Ex, and Ey. These six tyre formulae components make up 91% of the 

co-efficient parameters within the tyre model and therefore results were inconclusive by testing 

these topology parameters and are re-evaluated through a PSO process in Section 5.3. 
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Figure 5.1 Lateral acceleration for Abbey corner with regards to changes in inertia around the 

z-axis. 

 

 
Figure 5.2 Lateral acceleration for Village, The Loop/Arena section with regards to changes in 

inertia around the z-axis. 
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Figure 5.3 Effect of constant Cy ranging from 1 – 10 upon lateral acceleration through Abbey 

corner vs measured race car data. 

 
The remaining tyre parameters in initial modelling analysis shows that they stay constant 

throughout any race car manoeuvre and conclusive testing could be carried out. It was observed 

that very little changed for all outputs of the system when varying Cx and Cy by a 10% change 

between 0 and 100% with a final value of 1.2 returning the least error for longitudinal dynamics 

and no change to lateral when varying Cx and vice versa when varying Cy. When this variance was 

increased to a 100% change from 0 to 1000%, larger variations once again in results were observed 

both in longitudinal and lateral dynamics when moving further from a constant of three.  
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Figure 5.4 Best results of roll stiffness and damping combined variance for Village/The 

Loop/Arena section with regards to (a) lateral acceleration, (b) roll velocity and (c) all results 
for roll velocity. 
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Throughout the initial sensitivity analysis, it was observed that ranging to extremes and unrealistic 

numerical data would cause chaos in the results. But it was apparent that tyre data even with some 

small changes can have a great effect on various dynamic outputs. However, the greatest change 

was from the stiffness and damping of the chassis itself. Figure 5.4 (a) and Figure 5.4 (b) show 

that satisfactory results can be found within a tolerance of real data however utilising a large 

variation in stiffness and damping can create a large change in roll behaviour (Figure 5.4 (c)). It 

was determined that empirically sourced GT inertia numerical data [9] should be utilised as this 

included a typical GT style vehicle inertia value and returned the least error (8* =	−0.1475,	 8*̇ =

−0.53, 8+̇ = 60, X =̇ 11.2). Tyre manipulation would form part of the particle swarm optimisation 

algorithm. However, as stiffness and damping are coupled a design-of experiments loop was 

created to test all variations of damping against all variations of stiffness (Figure 5.4 (c)). 
 

5.3.2 Performance surface 
 

 
Observing Figure 5.4 (c), it is almost impossible to analyse the data sufficiently with such a 

plethora of results and variation; therefore, a more desirable analysis method is through the 

creation of performance surfaces. This allows a detailed understanding of the system behaviour 

and can determine the selection of an appropriate optimisation model.  The visualization of the 

system behaviour is created by generating a 3-dimensional surface of 2 input parameters listed in 

Table 5.2 against the error of the measured data versus simulated data for various corners.  

 

As can be seen through Figures 5.5 to 5.7 a variation in results occurs dependent upon the measured 

data comparison. The surface performance plots also allow a visual representation to determine 

whether local minimum (Figure 5.6) could occur during an optimisation algorithm and whether 

the variable limits should be reduced or extended. As observed in the plan views of Figures 5.5 to 

5.7 the trend to lowest error is based around the Croll = 19000Nm-s/rad and Kroll = 1000000 

Nm/rad results.   
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Figure 5.5 Isometric and plan view of the performance surface for longitudinal acceleration of 

the error function (e =	"> - "=; J(Kϕ,Cϕ) = −‖&‖M) as a function of chassis damping and 
chassis stiffness through Abbey corner. Here 	"> and 	"= are the measured and simulated data. 
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Figure 5.6 Isometric and plan view of the performance surface for lateral acceleration of the 
error function (e =	"> - "=; J(Kϕ,Cϕ) = −‖&‖M) as a function of chassis damping and chassis 

stiffness through Abbey corner. Here 	"> and 	"= are the measured and simulated data. 
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Figure 5.7 Isometric and plan view of the performance surface for yaw rate of the error function 
(e =	"> - "=; J(Kϕ,Cϕ) = −‖&‖M) as a function of chassis damping and chassis stiffness through 

Abbey corner. Here 	"> and 	"= are the measured and simulated data. 
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The final results of surface analysis are presented in Table 5.3 after refinement of the variables and 

testing of both Abbey and Village/The Loop complex a compromise of best results can be 

determined. Although the results indicate a large variation between the error for longitudinal 

acceleration across a performance surface all vehicle dynamic outputs tend towards zero at Croll 

= 19000Nm-s/rad and Kroll = 1000000 Nm/rad results. The remaining vehicle dynamic output 

results, further analysis of the measured versus simulated data demonstrates that Yaw and Lateral 

Acceleration generate least error results. 
 

Table 5.3 Final results for chassis stiffness and damping with norm 2 cost function for Abbey 
and Village/The Loop corners at the Silverstone Grand Prix circuit. 

Abbey Corner 4% *% Cost 
Longitudinal Velocity (m/s) 100000 19000 -1.98 
Longitudinal Acceleration (m/s2) 20000 3000 2.21 
Lateral Acceleration (m/s2) 10000 7600 0.04 
Yaw Rate (rad/s) 10000 3000 0.07 
Village/The Loop 4% *% Cost 
Longitudinal Velocity (m/s) 19000 1000 -3.68 
Longitudinal Acceleration (m/s2) 19000 1000 -0.58 
Lateral Acceleration (m/s2) 13000 2600 0.45 
Yaw Rate (rad/s) 13000 2800 0.21 

 
 
Reducing the variation to within the parameters shown in Table 5.2 and refining the step size a 

best result can be determined. Although a compromise has to be established it is apparent from 

surface performance analysis that a plateau is available to work within and as such a final result of  

4% = 100000 *% = 19000 was established as a best possible measured versus simulated error 

compromise (Figure 5.8 and 5.9). 

 
Further analysis of the response at standard tyre coefficients, standard inertia values and the 

improved result for chassis stiffness and damping show that the inertia is good as Ixx and Iyy caused 

very little interference and the response in Yaw from one direction to the other has an error of 

almost zero so for future analysis inertia can be ignored.  Figure 5.8 does show that an issue occurs 

for peak Yaw rate and Lateral acceleration during left hand cornering.  Firstly, it should be 

observed that the response seen at the 1080m marks is due to the steering input parameter. At this 

point on the circuit in the measured data the driver was catching some over-steer and although the 
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measured data does not catch a large response to this but settles the car the simulated data responds 

much faster and causes an unnecessary spike in the data so can be ignored. This was also true when 

this vehicle data was used for a full lap analysis simulation. (Figure 5.9). It can be justified that 

the issue is down to tyre modelling. For simulation speed a 4-DOF model has been built that 

ignores suspension geometry therefore wheel camber (although set in the tyre model) cannot 

change with time and is not coupled to the roll dynamics. 		
 

With roll, and inevitable weight transfer, (equations (3.20) to (3.23)) a left tyre can generate much 

more grip during right-handed corners and the right tyre during left hand corners. As can be seen 

in Figure 5.10, where a right, left section of corners in quick succession has taken place the tyre 

responds accordingly establishing weight transfer and vertical force is working appropriately.   

However, the tyre fails to reach maximum performance as per the manufacturers tyre data for the 

same load, depicted as the peak traction ellipse. This can change dependant on corner and load, 

but a change in camber to the wheel in the tyre model may improve the maximum forces produced 

for certain corners. Camber values can form part of optimisation problem and therefore can be 

added to the PSO as another parameter. 

 

These results demonstrate that many parameters dictate the overall performance index of the 

vehicles behaviour and how due to coupling of the system that a compromised final parameter 

must be established. Therefore, it can be determined that a multi-objective algorithm would be 

suited for this problem. However, simulation time and computing power should still be considered 

and so a SOPSO and MOSPSO will be compared for overall result accuracy of the model outputs 

versus measured data as a function of time.  
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Figure 5.8 Results of roll stiffness and damping combined variance for Village/The Loop section 

with regards to lateral acceleration, longitudinal acceleration, longitudinal velocity and yaw 
rate. Least error measured (red line) vs simulated data (blue line). 

 
 

 
Figure 5.9 Lateral acceleration measured (red line) versus simulated (blue line) for an entire lap 

of the Silverstone Grand Prix Circuit. 
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Figure 5.10 Combined lateral and longitudinal tyre forces for a front left and front right tyre 
during the Village/Loop corners. The outside ellipse shows the peak combined force maxima 

taken from peak tyre forces within the measured vehicle data. 

 
 

5.4 Optimisation problem formulation 
 
 
The cost function of the particle swarm optimisation problem is to minimise the error between the 

measured data and simulated output of the Simulink vehicle dynamic output (equation. 5.9). A 

single objective PSO would minimise the error of one of these outputs whereas multi-objective is 

minimising the error for all output parameters simultaneously.  

 
 

+u[úu[ = 	 ¨8*	, 8̇*	, 8̇+	, Ẋ≠ 
(5.9) 

 
The input parameters (u) to the Simulink model are the measured vehicle input data based on the 

physical vehicle telemetry data, each individual wheel speed and the steering input. 

 
u = 	 [ΩGFBBH 	, @] 

(5.10) 
 

Within the sensitivity analysis section, it was apparent that changing the top level Pacejka shaping 

and curvature factors were not ideal as they change with time due to vehicle dynamic behaviour 

and corner architecture. Therefore, the PSO parameters to be optimised are the Pacejka tyre 
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coefficients, that are constant numbers and used to establish the combined Pacejka tyre model 

shaping factors. These coefficients be optimised along with and the chassis stiffness and damping.  

 
Y = 	 ¨_r*N	, _r*M	, _**N	, _3*N	, _3*M	, _í*N	, _r+1, _r+M, _r+U, _*+N, _3+N, _3+M, _í+N,

_í+M	, _8+N	, _8+M	, _8+U	, _8+S	, _8+^	, _8+T	, 4%	, *%≠ 
(5.11) 

 
5.5 Performance tuning and optimisation 

 
5.5.1 PSO Acceleration Co-efficients 

 
 

From the literature [70, 71] it has been established that PSO algorithms work best when c1 + c2 = 

4. As shown in (5.6), c1 and c2 are the acceleration coefficients for the particle best position vector 

and global best position vector respectively, whereby they can aid/inhibit movement towards the 

local best or global best solution. Therefore, a loop was created to establish the optimal c1 and c2 

within each iterative step to find Best Tune. The PSO was set to use a swarm of 50 particles (all 

containing 22 parameters) over 10 iterations with each iteration having a further 10 iteration loops 

to change c1 and c2. Changing c1 stepped linearly between 0 and 4 (basing the linear step on 

maximum iterations) and changing c2 based upon c2 = c1 – 4 ensured the literature research of c1 

+ c2 = 4 could be maintained.  

 

 
Figure 5.11 Results of SOPSO during variation of c1 and c2 where c1 = (0, 4, 10) and c2 = c1 + 

c2 = 4. 
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A trend appeared during all iterations of the SOPSO and for all outputs (longitudinal velocity, 

lateral acceleration, and yaw rate).  As seen in Figure 5.11 the SOPSO found the lowest best cost 

during the internal loop on iterations 3 to 9. During only 1 tuning simulation (lateral acceleration, 

50 population and 10 iterations) did the results change. In figure 5.11, the best iterations (3 to 9) 

refer to c1 = 1.278 to 3.61 and c2 = 2.722 to 0.39 respectively: a broad spectrum of change. During 

the one simulation mentioned above where results differing from these were established found that 

c1 = 0.5 to 3.61 yields the same result with regards to best cost. Therefore, it was determined that 

c1 and c2 = 2 would be utilised.  

 

As per Figure 5.12 changing the inertia weighting (w) of the particle has an effect on the time to 

convergence. However, it is apparent that with a lower inertia weighting the best cost for each 

iteration starts much lower to the final convergence number. This means that there is a chance that 

a false minimum could be located as the entire search space may not be explored and therefore a 

local best is found rather than a global best. The best option for convergence and speed is to find 

the compromise whereby the entire search space is explored but convergence occurs within the 

number of iterations required. 

 

After initial testing of inertia weight, it is apparent that a compromise is to be sought. 0.1, 0.3 and 

0.5 all deliver their own desirable results so it was determined that a final test should be carried 

out whereby the inertia weighting can linearly change from 0.1 to 0.5 across the simulation 

iterations and also vice versa 0.5 to 0.1.  

 

It was established that a 0.5 to 0.1 (w = linspace (0.5,0.1, MaxIt)) linear change was preferred as 

to allow high diversity during the early stages of optimisation whilst limiting the search space 

during the final iterations of the optimisation ensuring the global maximum, Figure 5.12 illustrates 

that by using a 0.1 to 0.5 linear change meant the best cost converged at a higher rate than that of 

a 0.5 to 0.1 linear change. 
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Figure 5.12 Inertia weighting variation convergence during SOPSO simulation for yaw rate 

during the Maggots/Becketts complex of corners. 

 
 
The comparison of these curves with regards to fixed state inertial weightings shows that high 

weightings (0.5) generate greater diverse particles compared to low weightings (0.1). Therefore, a 

combined inertia weighting is a suitable compromise to utilise. 

Once the particle behaviour had been tuned, six optimisation simulations were carried out for 

several corners around the Silverstone GP Circuit (Abbey, The Loop/Arena section, Luffield, The 

Maggots and Becketts complex and Vale, followed by a full lap simulation (Figure 5.13.) to 

measure best cost and accuracy of variables whereby the variables from norm where set with a 

large range exploration criterion to generate the search space.  

 

 



 
 
 

80 

 
Figure 5.13 Silverstone Grand Prix circuit using the Grand Prix paddock and pit lane. 

 
 

5.5.2 Single-Objective PSO 
 

 
To evaluate the performance of single objective particle swarm optimisation, the algorithm is 

running by considering each individual vehicle dynamic output (longitudinal velocity, lateral 

acceleration and yaw rate) as the cost function. By running the algorithm over each individual 

vehicle dynamic output, the cost function (5.12) is evaluated for each vehicle dynamic output and 

is defined in (5.0). The results are recorded alongside the error for all vehicle dynamic outputs 

mentioned above against the simulated race car outputs within the time domain, as the vehicle 

dynamic output errors will place the car on different paths. The results are evaluated for a 

manoeuvre for specific corners of the Silverstone track and the entire lap. The input parameter 

variables remained the same as used in the tuning process (Table 5.2) 

 

ï("D) = 	−ñ"D − "=&ñL 
(5.12) 

 

Due to the coupling of the four degrees of freedom vehicle body dynamic, the issue with SOPSO 

in these scenarios is that optimising for longitudinal behaviour can have a negative effect on lateral 

and yaw outcomes. As can be seen from Tables 5.4 to 5.9 the best cost and mean square error is 
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changing for each channel depending on the corner and output used for the optimisation. The 

results for the full lap of Silverstone are listed in Table 5.9 to 4d.p. 

 
 
Table 5.4 SOPSO results of Abbey corner for longitudinal velocity, lateral acceleration and yaw 

rate. Error = error of measured and simulated PSO output. 

 
Abbey 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best Cost -0.0521 -1.9596 -0.0692 
Error Vx 3.30E-04 4.2E-04 0.0003 
Error Ay 0.1853 0.1711 0.1906 
Error Yaw 8.15E-05 8.37E-05 0.0001 

 
 
Table 5.5 SOPSO results of The Loop corner for longitudinal velocity, lateral acceleration and 

yaw rate. Error = error of measured and simulated PSO output. 

 
The Loop 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best cost -0.0226 -1.4749 -0.0890 
Error Vx 4.38E-05 4.57E-05 6.01E-04 
Error Ay 0.0806 0.0722 0.0939 
Error Yaw 0.122 0.0001 0.0001 

 

Table 5.6 SOPSO results of Luffield corner for longitudinal velocity, lateral acceleration and 
yaw rate. Error = error of measured and simulated PSO output. 

 
Luffield 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best cost -0.0688 -3.5003 -0.0230 
Error Vx 5.85E-05 5.85E-05 6.02E-05 
Error Ay 0.1056 0.1056 0.1060 
Error Yaw 9.38E-06 9.38E-06 1.18E-05 
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Table 5.7 SOPSO results of Maggots/Becketts complex of corners for longitudinal velocity, 
lateral acceleration and yaw rate. Error = mean square error of measured and simulated PSO 

output. 

 
Maggots/Becketts 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best cost -0.0077 -3.5307 -0.0037 
Error Vx 1.77E-06 1.12E-05 2.43E-06 
Error Ay 0.0811 0.0857 0.0802 
Error Yaw 1.18E-06 7.28E-06 6.23E-07 

 
 

Table 5.8 SOPSO results of Vale corner for longitudinal velocity, lateral acceleration and yaw 
rate. Error = error of measured and simulated PSO output. 

 
Vale 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best cost -0.0224 -1.9265 -0.1000 
Error Vx 1.94E-04 2.43E-04 2.43E-04 
Error Ay 0.2605 0.2597 0.2597 
Error Yaw 2.67E-04 2.80E-04 2.80E-04 

 
 
Table 5.9 SOPSO results of a lap of the Silverstone GP circuit for longitudinal velocity, lateral 
acceleration and yaw rate. Error = error of measured and simulated PSO output. 

 
Silverstone GP 

 SOPSO Vx SOPSO Ay SOPSO Yaw 

Best cost -8.95E-08 -1.27E-05 -2.46E-07 
Error Vx 1.49E-11 7.38E-13 4.69E-11 
Error Ay 1.94E-08 1.10E-09 1.42E-08 
Error Yaw 8.68E-12 6.18E-13 1.07E-11 

 
 
The full GP circuit results yielded a best cost and error range of 1.42E-08 to 6.18E-13. The 

objective of this study is to compare SOPSO and MOPSO algorithms in terms of convergence time 

and parameter estimation accuracy and as such an error of accuracy of resultant input parameters 

vs real data was also analysed. The results shown in Appendix 2 to 4 has shown a significant 

change from one corner to another corner for the parameter results, that is a physical impossibility 
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as the parameters would be the same in a physical chassis and tyre. Therefore, the results for 

parameter estimation are optimised for each corner individually to ascertain the best results for 

each corner, irrelevant of the fact they would be a fixed number on the physical vehicle.  Basing 

the analysis on the error results for each vehicle dynamic output it can also be concluded that not 

all parameters are sensitive to the outcomes as they can change for each corner but produce very 

accurate results when compared to the measured data. It can be concluded that parameters that 

vary largely from corner to corner but have no effect on the dynamic output are less sensitive to 

the overall output. 

 
The main discrepancy within the SOPSO results is with the best cost for lateral acceleration due 

to the variation between the initial condition of simulated data to PSO. When lateral acceleration 

is not the focus of the PSO the error within the lateral acceleration result is also higher than any 

other vehicle dynamic output. 

 

A precise simulation requires the consideration of the initial conditions of the car just before each 

corner that is to be optimised around the lap. The vehicle dynamic model requires lateral velocity 

(equation 3.1) and is a requirement of the initial conditions for time = 0, this is then differentiated 

to calculate acceleration. However, several initial conditions for independent corners are unknown 

and therefore the simulation converges after several time steps (Figure 5.15). This is eradicated in 

the full GP simulation, as the initial conditions from measured data are known as there is data 

available prior to the start of the full lap simulation. The measured data was taken from a qualifying 

lap of Silverstone, this lap is preceded by several laps (out of pit lap and one warm up lap). 

Therefore, initial conditions for all velocities and accelerations are known or can be calculated at 

time = 0, based upon the previous lap’s final conditions. This allows a much more accurate 

calculation from the vehicle dynamics model at time = 0, for a full lap (Figure 5.18). The start 

finish line of the full lap is also situated on a straight away ensuring yaw rate and lateral 

acceleration are equal to zero. This leaves a discrepancy between simulated data and the vehicle 

dynamic data that is subject to PSO optimisation at the start of each individual corner simulation 

as the initial condition for lateral velocity has to be approximated so the model can calculate lateral 

acceleration.  
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Figures 5.14 – 5.19 show a range of results for various corners and as can be seen for lateral 

acceleration (Figure 5.16) and yaw rate (Figure 5.16) there is a discrepancy between simulated and 

PSO results at the start of each individual corner simulation due to velocity not being known as an 

initial condition as discussed above. This is clearly eradicated in Figures 5.17 to 5.19. Interestingly 

the SOPSO works extremely well to optimise one single vehicle dynamic output, lateral 

acceleration for example in Figure 5.15, but as the particles will only find best solutions to the 

parameters that directly influence the vehicle dynamic output to be optimised the other outputs 

suffer. This can be seen in figures 5.17 to 5.19 where longitudinal velocity is the optimisation, 

Figure 5.17 shows an almost identical solution to that of the simulated data, however lateral 

acceleration and yaw rate have not been optimised. This analysis shows that multi-objective PSO 

is what is required so all vehicle dynamic outputs can be optimised to match the simulated data 

and therefore the particles are searching for the best solution by locating the best parameter that 

matches those used within the 4DOF simulation testing.  

 

 

 
Figure 5.14 Simulated output versus PSO model output after optimisation for longitudinal 

velocity during Abbey corner.  
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Figure 5.15 Simulated output versus PSO output for lateral acceleration during Abbey corner. 

 
Figure 5.16 Simulated output versus PSO output for yaw rate during The Loop corner. 

 

 
Figure 5.17 Simulated output versus PSO output for longitudinal velocity during a full lap of the 

Silverstone GP circuit. Individual corner names denote the additional simulations performed 
during tuning of SOPSO. 
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Figure 5.18 Simulated output versus SOPSO output for lateral acceleration during a full lap of 

the Silverstone GP circuit. 

 
Figure 5.19 Simulated output versus SOPSO output for yaw rate during a full lap of the 

Silverstone GP circuit. 

 
Once these results have been analysed, one final tuning of the SOPSO was carried out to compare 

SOPSO for each change of p-norm as described after (5.0) where p-norm = 1 is the integral 

absolute error, p-norm = 2 is the root mean square error and p-norm = infinity is #:t|t|.The work 

in [84] shows that p-norm infinity is generally the best fit for genetic algorithms in terms of cost 

function, however, SOPSO may not necessarily perform best with p-norm infinity. To evaluate the 

effect of different cost functions on the overall performance of the algorithm, the p-norm cost 
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function with p equal to infinity, 1 and 2 are all tested. The results are compared for best cost and 

output error purely based on the entire Silverstone GP lap to ensure a correct initial condition is 

used in the simulations. The simulation results are summarised in Table 5.10. 
 

Table 5.10 Variation in results of best cost and output mean square error for longitudinal 
velocity, lateral acceleration and yaw rate for the Silverstone GP circuit. (for p-norm equal to 

inf, 1 and 2). 
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Best cost -8.95E-08 -3.03E-05 -7.34E-07 -1.27E-05 -0.0005365 -3.73E-06 -2.46E-07 -3.15E-06 -1.71E-06 

err Vx 1.49E-11 1.93E-11 2.64E-10 7.38E-13 2.42E-10 3.03E-14 4.69E-11 6.27E-10 1.00E-08 

err Ay 1.94E-08 2.05E-08 9.12E-08 1.10E-09 2.53E-07 1.52E-11 1.42E-08 6.44E-07 8.13E-06 

err Yaw 8.68E-12 1.16E-11 6.28E-11 6.18E-13 1.48E-10 1.01E-14 1.07E-11 3.74E-10 5.14E-09 
 
 
As can be seen from the table, for most simulations the minimum best cost is achieved using a p-

norm infinity cost function. However, for Lateral Acceleration the results for p-norm equal to two 

has yielded an improved result.  Looking at the data plot error for different norms shows that since 

the difference for error values is so small for various norms the infinite norm is chosen as the 

overall best cost function for SOPSO algorithm. 

 

Finally, for comparison of the results with MOPSO algorithm the convergence time of SOPSO 

algorithm for each run is recorded. The results show that the average time for convergence of 

SOPSO is six minutes per corner per vehicle dynamic output and it is 49 minutes for a full lap 

simulation per vehicle dynamic output when using a 2.7 quad core i7 MacBook with 16GB of 

memory.  

 

5.5.3 Multi-Objective PSO 
 

 

To evaluate the performance of MOPSO algorithm, we follow the same methodology used for 

SOPSO algorithm in the previous section.  Here, a similar set of parameters such as population 
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count, iteration number, particle acceleration factor, particle weighting, and number of variables 

(parameters) should be tuned. The MOPSO algorithm has been used for optimisation over the 

identical corners as the previous simulations and for a full lap of the Silverstone GP Circuit. The 

objective functions used for the optimisation problem at this stage is a collection of the single 

objective functions used for each output channel in SOPSO algorithm.  

 

The initial and obvious advantage of running a MOPSO is that the vehicle dynamic output 

objectives can all be optimized in one simulation. Table 5.10 highlights the run-time for both 

SOPSO and MOPSO algorithms. As to be expected, the SOPSO completes the optimisation 

simulation on average 12 – 17% quicker than the MOPSO, however, when taking into 

consideration that only one output is being used for optimization at a time, the MOPSO can use 

all three outputs for optimisation, 254% quicker than that of the SOPSO algorithm. 

 

 More importantly, the performance of SOPSO and MOPSO algorithms are compared in terms of 

the mean square error of the vehicle outputs and the accuracy in estimating the vehicle parameters.  

 

The first analysis that should be considered for critical scrutiny is the best cost and mean square 

error of the vehicle dynamic outputs.  The numerical results achieved from MOPSO algorithm are 

summarised in Table 5.12. A full comparison of mean square errors provided in Appendix 4 

confirms that the results are not as accurate as SOPSO. The main differences lie with the best cost 

for lateral acceleration whereby MOPSO gives a much larger value. The simulation results from 

SOPSO for lateral acceleration at each individual corner shows the best cost range between -1.4749 

(The Loop) to -3.5307 (Maggots/Becketts) whereby the simulation results for MOPSO are ranged 

between -3.78 and -17.30 for each individual corner, resulting in the SOPSO generating much 

better dynamic output responses close to the simulated data plots. Although the MOPSO is 

searching for values to improve three vehicle dynamic outputs simultaneously it doesn’t produce 

results as good as each individual dynamic output from SOPSO and therefore further tuning of the 

MOSPO is required. 
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Table 5.11 Multi-objective and single-objective algorithm run times. 

Comparison of MOPSO and SOPSO run time [minutes, decimal clock] 

Simulation MOPSO SOPSO Vx SOPSO Ay SOPSO Yaw SOPSO Total 
Abbey 4.2 4.1 4.4 4.1 12.6 
The Loop 8.3 7.5 8.1 8.6 24.2 
Luffield 5.9 7.1 7.5 5.2 19.8 
Maggots/Becketts 9.2 9.9 10.9 8.3 29.1 
Vale 5.1 3.9 4.5 4.5 12.8 
GP 49.4 35.7 36.9 37.4 110.0 
Total 82.1 68.2 72.3 68.1 208.5 
      
Percentage run time comparison MOPSO vs SOPSO 

Simulation MOPSO SOPSO Vx SOPSO Ay SOPSO Yaw SOPSO Total 
Abbey Baseline 97.6% 104.8% 97.6% 300.0% 
The Loop Baseline 90.4% 97.6% 103.6% 291.6% 
Luffield Baseline 120.3% 127.1% 88.1% 335.6% 
Maggots/Becketts Baseline 107.6% 118.5% 90.2% 316.3% 
Vale Baseline 76.5% 88.2% 88.2% 251.0% 
GP Baseline 72.3% 74.7% 75.7% 222.7% 
Total Baseline 83.1% 88.1% 82.9% 254.0% 

 

It should be noted that, the majority of the discrepancy in the best cost results is due to the initial 

conditions being unknown for corners.  Although the mean square errors for both MOPSO and 

SOPSO are very similar, SOPSO would find a greater accuracy in results of parameter estimation 

error and best cost, with parameter estimation error to 1x1013 and best cost to 1x108, while MOPSO 

would only give a result to 1x107 accuracy for parameter estimation error and 1x102. The greatest 

anomaly between SOPSO and MOPSO is that MOPSO has a much larger cost for lateral 

acceleration for the full lap simulation. With the initial conditions known for this simulation, a 

deeper analysis into the parameter estimation accuracy would be possible. 

 

As per the SOPSO algorithm, the first tuning option for MOPSO is to test the fitness values for 

different norms (inf, 1, and 2) are tested listed in Table 5.13. As can be seen in Table 5.13 these 

can greatly influence the final results. To eradicate any anomalies with initial conditions the fitness 

function was altered for the full lap simulation only. 
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Table 5.12 Best cost and mean square error for multi-objective algorithm. 

MOPSO Best Cost and Vehicle Dynamic Mean Square Error 
 Abbey The Loop Luffield Magg/Beck Vale GP 
Cost Vx -0.06 -0.03 -0.07 -0.04 -0.03 -0.03 
Cost Ay -3.78 -14.97 -16.30 -17.30 -8.89 -23.02 
Cost Yaw -2.06 -1.60 -3.57 -3.55 -2.23 -1.30 
Error Vx 0.00035689 0.00003896 0.000053402 2.2077E-06 0.00020266 4.3323E-06 
Error Ay 0.1793 0.0699 0.1069 0.0801 0.2615 0.004 
Error Yaw 0.000081221 0.000062605 9.7292E-06 4.7261E-07 0.00026775 2.4424E-06 

 
By changing the p-norm the best cost has been improved significantly for the lateral acceleration, 

but it is detrimental to the longitudinal velocity and Yaw Rate in the case of p-norm equal to 1. In 

the case of p-norm equal 2, lateral acceleration yields the lowest best cost with only a slight change 

to the longitudinal velocity (+ 0.2) but again a larger change to the Yaw Rate as can be inferred 

from Table 5.13. However, the values for the output errors are largely unchanged.  

 
Table 5.13 Variation in MOPSO results of best cost and output mean square error for 

longitudinal velocity, lateral acceleration and yaw rate for the Silverstone GP circuit. (p-norm = 
inf, 1 and 2). 

Variation of p-norm for MOPSO Silverstone GP 

 p-norm = inf p-norm = 1 p-norm = 2 

Cost Vx -0.03 -4.58 -0.23 
Cost Ay -23.02 -2.48 -0.14 
Cost Yaw -1.30 -91.74 -5.12 
Error Vx 4.33E-06 9.79E-06 1.16E-05 
Error Ay 0.004 0.005 0.004 
Error Yaw 2.44E-06 3.48E-06 3.54E-06 

 
Although different fitness functions have an effect on the error value for three vehicle dynamic 

outputs, it does not produce any conclusive evidence on which fitness function is preferred for 

MOPSO. Further analysis into the parameter estimation accuracy proves that several parameters 

are moving to the predefined range and getting stuck at that their minima or maxima. This has 

occurred on average on 5 of the 22 variables and in every case three parameters have the same 

values, i.e., tyre coefficients rBx1 and rHy1 and chassis stiffness kroll. 
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The particle acceleration and inertia weights are tuned by changing their values inside a loop within 

each iteration of the SOPSO. This loop is utilised to change the acceleration and weight parameters 

in a linear step, allowing each iteration to test all possibilities of particle acceleration and inertia 

weights within the proposed parameters. The best costs yielding the best c1 to be between 1.2 and 

1.8. whereby all best cost results were identical. Since the sum of c1 and c2 values should be equal 

to four the values found for c2 would be between 2.2 to 2.8. Therefore, it was decided c1 = 1.5 and 

c2 = 2.5 as the final tuning and the inertia weight is changing linearly from 0.5 to 0.1. Setting the 

inertia weight between 0.1 and 1 would produce the risk that the algorithm fails to explore the 

whole search space or moves quickly around the search space and misses the potential areas of 

maxima.  

 

Having the newly tuned parameters for the MOPSO algorithm, the GP circuit simulation is tested 

once again. The best cost generating a much-improved result of -0.03, -0.02 and -1.2 for 

longitudinal velocity, lateral acceleration and Yaw Rate respectively. However, two of the twenty-

two parameters, in this instance chassis stiffness and damping (kroll and croll), reached their 

minimum or maximum values during each iteration.  

 

The final conclusion from this result is that the algorithm is failing to generate a diverse set of 

population to explore the search space properly. Therefore, a more effective mutation scheme 

compared to the Binary Tournament Selection scheme used currently would be required.  

 

It is important to note that one way to improve the diversity of the population is to extend the 

iteration number or the number of particles in each iteration.  In this way, the MOPSO algorithm 

will perform for a longer time, to the length of three times greater than SOPSO.  However, the 

purpose of the analysis is to generate a MOPSO algorithm, showing the same performance with 

an identical population and iteration size at a fraction of time. Therefore, tuning and development 

of such an algorithm is at the forefront of the research.  

 
Using binary tournament selection, the initial parameter estimation is carried out by a fixed 

mutation rate. Through mutation the algorithm is searching for a better solution based on a single 

random number generation. If the new solution dominates the previous one it will be substituted 



 
 
 

92 

into the population. The mutation probability, pm, is reducing linearly by the iteration number as 

in (5.13). 

 

ú# = à1 −
j[ − 1

5:t2[ − 1
â

N
>C

 

(5.13) 

where 

ú# is the mutation probability 

j[ is the current iteration 

5:t2[ is the maximum number of iterations 

#u is the mutation rate  

 

In the first case, mu is assumed to be constant at 0.3. However, since the algorithm cannot explore 

the entire search space properly it fails to find a global best. Therefore, as an improvement of the 

algorithm the mutation rate (mu), is randomly selected as a number between 0 and 1.  

 

 
Figure 5.20 Partial mutation code, detailing change of mu from a fixed number to a random 

number per iteration. 

 

To address this problem, a new mutation algorithm is illustrated by pm in Figure 5.20. In this 

scheme, by randomly selecting a mutation rate (murandout) rather than a constant mu, a new 

random number is generated for the selected particles in the population, allowing for a much 

broader search space per generation. As an example, for one particle, the values for pm using a 

constant mu and a random value for mu are compared in Table 5.14 for 10 iteration step sample. 
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Table 5.14 Difference of linearly decreasing pm and random pm during a 50-iteration 

optimisation simulation. 

10 iteration gap sample mu mutation generation 

Iteration 1 10 20 30 40 50 
Linear decreasing pm 1 0.83 0.65 0.47 0.28 0.1 
Random pm 0.28 0.12 0.81 0.93 0.54 0.45 

 
 

By applying the mutation algorithm proposed above the MOPSO algorithm has been executed for 

the whole lap in Silverstone GP. The new results for the best cost and parameter estimation are 

listed in Table 5.15, showing a much more desirable performance than the previous MOPSO 

algorithm. As can be seen from this table, the best cost value for the longitudinal velocity is 

reduced from -0.03 to -0.000845, the value for the lateral acceleration is reduced from -23.02 to -

0.000964, and the value for the Yaw Rate is reduced from -1.3 to -0.03. Although these values are 

still slightly higher than that of their SOPSO counterparts, i.e., -8.95E-08, -1.27E-05, and -2.46E-

07 respectively, the results show a much smaller error in terms of the mean square error of the 

outputs and the parameter estimation error, reduced from 20.3 for the SOPSO algorithm to 2.181 

for the MOPSO algorithm.  

 

According to the sensitivity analysis and results achieved from the MOPSO algorithm, it is 

apparent that certain parameters in the vehicle dynamic are less sensitive to the cost function, 

however, the MOPSO algorithm because of using different objective functions is capable of 

producing a result closer to the true value. By removing the least sensitive parameters (choosing 

10 most sensitive parameters compared to 22 parameters), and maintaining the same particle count 

and iteration number, the best cost can be further reduced to -5.47E-14, -5.69E-16 and -5.22E-11 

for longitudinal velocity, lateral acceleration and yaw rate respectively. Moreover, the square error 

for the output is reduced to 8.33E-28, 4.65E-28, and 6.59E-32 respectively. 
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Table 5.15 Comparison of best cost, mean square error and parameter estimation error 
(including error based on Equation 5.13). 

Comparison of MOPSO Initial Simulation versus Tuned (Silverstone GP) 

    Initial MOPSO Tuned MOPSO    

  

Cost Vx 
Cost Ay 
Cost Yaw  

-0.03 
-23.02 
-1.30 

-8.45E-04 
-9.64E-04 

-0.03    

  MS err Vx  4.33E-06 1.86E-09    

  MS err Ay  0.004 1.84E-06    

  MS err Yaw  2.44E-06 1.15E-09    

    

   

Initial 
Range 
Error 

Tuned 
Range 
Error Variable Parameters Validated Range Min Range Max 

rBx1 13.2 5 20 10.00 13.41  0.242 0.016 

rBx2 -13.9 -20 -5 -15.00 -14.00  0.079 0.007 

rCx1 1.14 0 2 0.00 1.47  1.000 0.291 

rEx1 0.317 0 1 0.32 0.34  0.024 0.072 

rEx2 0.109 0 1 0.23 0.10  1.069 0.083 

rHx1 -0.00856 -0.1 0 -0.02 -0.01  1.336 0.168 

rBy1 14.6 5 20 10.00 14.50  0.315 0.007 

rBy2 10.9 5 20 15.00 10.84  0.376 0.006 

rBy3 0.0156 0 0.2 0.00 0.02  0.908 0.114 

rCy1 1.14 0 3 0.00 1.20  1.000 0.053 

rEy1 0.389 0 2 0.00 0.40  1.000 0.028 

rEy2 0.358 0 2 0.00 0.31  1.000 0.128 

rHy1 -0.0635 0 1 -0.20 -0.07  2.150 0.102 

rHy2 -0.0492 0 1 -0.20 -0.05  3.065 0.016 

rVy1 0.56 0 2 1.84 0.60  2.291 0.071 

rVy2 18.5 10 30 19.05 18.63  0.030 0.007 

rVy3 0.0188 0 0.2 0.00 0.01  1.000 0.468 

rVy4 0.0203 0 0.2 0.02 0.03  0.084 0.467 

rVy5 1.9 0 5 0.67 2.00  0.645 0.053 

rVy6 19.2 10 30 15.00 19.00  0.219 0.010 

kroll 100000 80000 200000 85000.00 99900.00  0.150 0.001 

croll 19000 8000 30000 25269.44 19216.65  0.330 0.011 

      Total Error 18.314 2.181 
 

Table 5.15 includes a range error as per (5.14) for all parameters. The variance in the error between 

the validated parameter and the output from the PSO can be quantified with this equation. The 

tuned range error column shows how tuning the MOPSO mutation algorithm has a beneficial effect 
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on the parameter estimation result. The total error is the Sum of all errors giving an indication to 

how the overall parameters have been improved. 

 
	

∑ ì
t −	tî

t
ì 

(5.14) 
  

5.6 SOPSO versus MOPSO Comparison 
 
Throughout the testing of both SOPSO and MOPSO it became apparent that both optimisation 

techniques yield exceptional results, and both have a place in the optimisation algorithm arena. It 

is essential that both optimisation algorithms are tuned appropriately for the presented problem, 

and in some cases the algorithms behaviour can be identical with regards to the inertia and 

acceleration coefficients.  

A full comparison of the results can be seen in Appendices 2 through 6. The main difference 

between SOPSO and MOPSO was the value achieved for the best cost. When scrutinised prior to 

the mutation change, the MOPSO performed worse with regards to best cost value but generated 

identical results for the mean square output error (Appendix 4) and in most cases the accuracy of 

the parameter estimation was much closer to the actual values for each individual parameter and 

as a sum of the total error (Table 5.16 and Appendix 4).  Table 5.15 show the sum of each parameter 

estimation error (equation 5.13) for all parameters included in the optimisation prior to the 

mutation change within the MOPSO algorithm.  
 
Table 5.16 Comparison of multi-objective and single-objective algorithm simulation parameter 

estimation. Sum of total errors. 

Sum of Total Error 

 MOPSO 
SOPSO 
Average 

Abbey 30.01050604 25.01061203 
The Loop 22.80505002 25.73865931 
Luffield 24.4423585 26.47802094 
Maggots/Becketts 29.80540662 22.99515024 
Vale 22.03292139 24.07985867 
GP 18.31395458 20.32646805 
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Having the new mutation scheme, it can be seen that the best cost has been reduced to a value that 

can be positively compared to SOPSO. However, the sum of square error, parameter estimation 

error, and sum of total parameter estimation error has been improved significantly compared to 

SOPSO. Taking into consideration the computation time of MOPSO (44 minutes for the 

Silverstone GP lap) compared to the average computation time of 36 minutes for SOPSO, the main 

advantage of MOPSO algorithm will become clear. It is worth noting that, the MOPSO algorithm 

is dealing with all three objective functions in 40% of the time taken to run three SOPSO 

algorithms for the same objective functions.  Therefore, for this vehicle dynamic optimisation 

problem, SOPSO would not be the preferred method due to the unsuitability of tuning the 

parameters for one equation at a time. The coupling within the vehicle dynamic equations insists 

that all objectives are tuned together. As can be seen in Figures 5.14 to 5.19 and Figures 5.21 to 

5.26, both optimisation algorithms produce satisfying results that can be utilised within the 

industry as a parameter estimation technique, however SOPSO is only suitable for single 

optimisation problems. In this study where outputs and algorithms are coupled, SOPSO does not 

produce an overall satisfactory result . The MOPSO results are so close it is difficult to see the 

variation within the vehicle dynamic outputs across a full lap (Figures 5.21, 5.23 and 5.25). 

Therefore, the error between the simulated data and PSO data is presented in Figures 5.22, 5.24 

and 5.26. The achieved numerical results although differ, it is evident that such a minute numerical 

result difference does not affect the dynamic output of the vehicle.  

 
Figure 5.21 Simulated output versus MOPSO output for longitudinal velocity during a full lap of 

the Silverstone GP circuit. 
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Figure 5.22 Simulated output results minus MOPSO output result (VxSim – Vx) for longitudinal 

velocity during a full lap of the Silverstone GP circuit. 

 
 
 
 
 

 
Figure 5.23 Simulated output versus MOPSO output for lateral acceleration during a full lap of 

the Silverstone GP circuit. 
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Figure 5.24 Simulated output results minus MOPSO output result (AySim – Ay) for lateral 

acceleration during a full lap of the Silverstone GP circuit. 

 
 
 
 
 

 
Figure 5.25 Simulated output versus MOPSO output for yaw rate during a full lap of the 

Silverstone GP circuit. 
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Figure 5.26 Simulated output results minus MOPSO output result (YawSim – Yaw) for yaw rate 

during a full lap of the Silverstone GP circuit. 

 
 
 

 
Figure 5.27 Example of max variation (0.0001) of simulated vs MOPSO. 

 
 
Figure 5.27 presents a zoomed in area of the final output achieved for lateral acceleration at from 

running the MOPSO algorithm. The results are so close as shown in Figures 5.22, 5.24 and 5.26 

with the error between the PSO plot and simulated plot within the order of 4 decimal places it can 

be concluded the MOSPO results are extremely accurate.  
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Table 5.17 Final tuned MOPSO, best cost and errors versus tuned SOPSO. 

Comparison of best cost, errors and sum of errors (SOPSO vs MOPSO mutation tuning) 

 Silverstone GP 

 SOPSO Vx SOPSO Ay SOPSO Yaw MOPSO 

Best cost -8.94E-08 0.0000127 -2.45E-07 

-8.45e-04 
-9.64e-04 
-0.03 

Error Vx 1.49E-11 7.38E-13 4.69E-11 1.86E-09 
Error Ay 1.93E-08 1.09E-09 1.42E-08 1.84E-06 
Error Yaw 8.68E-12 6.18E-13 1.07E-11 1.15E-09 
Sum of error Vx 14.456    
Sum of error Ay  21.828   
Sum of error Yaw   24.695  
Sum of total error 

 SOPSO combined MOPSO 

Sum of Total Error 20.326 2.181 
 
 
 

5.7 Conclusion 
 
 
In this chapter particle swarm optimisation algorithms and tuning parameters have been discussed 

and the importance of sensitivity analysis has been detailed. The results presented in this chapter 

show that with appropriate tuning of the parameters and critical analysis of the results, a very 

accurate particle swarm algorithm can be produced that satisfies the optimisation problem to an 

acceptable error for the parameter estimation and within a reasonable convergence time. It can also 

be concluded that for certain outcomes a SOPSO is relevant, however as the complexity of the 

problem increases, MOPSO algorithm with multi-objectivisation approach must be utilised. Aside 

the problem output count forcing the algorithm used, both SOPSO and MOPSO produced excellent 

results and taking into consideration the output counts the convergence has the same net time spent 

on locating best costs.   
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6. Trajectory Planning and Optimisation 
 
 

6.1 Introduction 
 

 
The ensuing chapter details the next stage of particle swarm optimisation (PSO) algorithm, testing 

and assessing the PSO for its appropriateness within the automotive industry. A typical 

engineering problem is posed whereby the PSO does not know the target solution, differentiating 

the process from that in the previous chapter, whereby best cost is the minimum value of either the 

shortest path or least curvature fitness functions. These trajectories are discussed with regards to a 

racing line around a circuit. The single objective PSO (SOPSO) and multi-objective PSO 

(MOPSO) will be evaluated through various problems included vehicle dynamic behaviour to 

locate best racing lines and best lap times.  

 
6.2 Trajectory Planning and Race Driver Simulation 

 
 
To realise the vehicles full potential with regards to the lap time, the trajectory path of the vehicle 

must be optimised. There are several approaches to trajectory planning based upon the limitation 

of vehicle’s dynamic acceleration capabilities [92], whereby the vehicles maximum performance 

(longitudinal acceleration, deceleration and lateral deceleration) is already known and therefore 

the G-G diagram is used as a limitation to the vehicle performance and ultimately lap-time. Other 

limitations include that of the tyre limitations [1] whereby a lumped mass bicycle model is used, 

and forces calculated based on known maximum tyre performance. This work differs from these 

approaches as single and multi-objective particle swarm optimisation algorithms are used for 

trajectory planning. Firstly, utilising the SOPSO, the shortest path and minimum curvature 

trajectories are established and finally a MOPSO is utilised to include the parametric values of the 

vehicle by optimising the shortest path, minimum curvature and a combined fastest trajectory. 

The literature in this area is usually split between the utilisation of a lumped mass bicycle model 

[1, 93] and four-wheel models of various degrees of freedom [92, 94, 95, 96]. The literature 

discusses various optimisation techniques from using a genetic algorithm [97] to simple linear 

minimisation algorithmic techniques [96] and the use of feedback controllers to match simulated 
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speeds. None of the literature compares various techniques aside Cardamone et al [97], who 

compare their GA approach to that of the Simplex bot [98]. The results show where one approach 

may create a faster lap time to another, but none compared to measured data, meaning evaluation 

of the lap time is inconclusive. In [92], the controller is designed to follow the maximum 

longitudinal and lateral acceleration rates based on a G-G diagram (traction ellipse) and therefore, 

although the conclusion satisfactorily shows that the controller can follow peak acceleration 

conditions this does not necessarily equate to the best lap time or ideal trajectory profile as the 

measured data is not included. 

 

The race driver model in [96], generates a least curvature and shortest distance optimisation 

problem. The model is then optimised to find a weighting between the two cost functions to 

approximate the best lap time. However, this approach negates the possibility that one of the two 

solutions could be beneficial per corner, and therefore calculates a preferential weighting between 

least curvature and minimum distance for the entire lap.  

 

The track models utilised are also extremely important in the trajectory optimisation and planning 

and can vary in the literature from a 2-D model (X and Y co-ordinates) [95] to a 3-D model [96] 

and finally a complex 3-D model [1] containing X, Y and Z coordinates generating camber of the 

road surface and creating a three-dimensional curvilinear track map. In all instances, the 

boundaries of the track are known as is the centre line of the track. For this study, continuing with 

the measured race vehicle data, the Silverstone-GP circuit will be utilised. 

 

6.3 Geometric Parameterisation 
 

 
The constraints of the track map are limited by the inner and outer limits of the tarmacadam surface 

and curbs. This produces two opportunities for optimisation: the shortest distance and the least 

curvature. The shortest distance would follow the tightest curve around a corner whereby the least 

curvature optimisation algorithm for the radii of the corner mathematically is trying to establish a 

straight line and therefore would tend to zero. 
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The track must be broken down into sections that can include individual non-linear increments to 

include straight aways and left and right turns.  

Firstly, the physical race vehicle was driven around the outer edge of the race circuit and the inner 

edge of the circuit so that the GPS and distance [m] coordinates could be plotted. The width of the 

track at each point was dissected so that a centre line could also be established (Figure 6.1). 

 

 
Figure 6.1 Inner, centre and outer parameterisation of Silverstone GP circuit. 
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6.4 The Shortest Path Problem 
 

 
The fastest lap time is a compromise between shortest path and minimum curvature due to the 

vehicle dynamic limitations, tyre grip, and ultimately accelerations. The shortest path line is the 

path taken to appropriately navigate the circuit whilst maintaining the least amount of distance 

necessary for all corners and straights. Figure 6.2 depicts the shortest path trajectory for 

Brooklands and Luffield corners. 

 

 
Figure 6.2 Shortest path trajectory (white line) of Brooklands and Luffield corners of the 

Silverstone GP circuit.  

 
 
The position (() at the beginning or ending of a segment will be determined by the width of the 

track and is directly related to the x and y coordinates of the inner and outer parameters of the 

circuit, ( therefore will be a number between [0,1]. 

 

((i) = (t(i), Æ(i)) 

(6.0) 
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With the circuit segmented the total squared length of the trajectory is: 

 

áM = ØΔ,*,/
. ∙ Δ,*,/ +

0:N

/cN

Δ,+,/
. ∙ Δ,+,/

= ¨Δ,*,N	Δ,*,M 	⋯ 	Δ,*,0≠
.
≤

Δ,*,N
Δ,*,M
⋮

	Δ,*,0

¥ + ¨Δ,+,N	Δ,+,M 	⋯ 	Δ,+,0≠
.
≤

Δ,+,N
Δ,+,M
⋮

	Δ,+,0

¥ 

(6.1)  

where P refers to the length of the projections at each segment. 

 

Δ,*,/ =	 [Δt/bN	, Δt/] µ
(/bN
(/

∂ + Δt/,A 

Δ,+,/ =	 [ΔÆ/bN	, ΔÆ/] µ
(/bN
(/

∂ + ΔÆ/,A 

(6.2) 

with clarity to the Matlab script the auxiliary variables are defined as 

 

[Δt/bN	, Δt/] = [#ú∑/
. 

[ΔÆ/bN	, ΔÆ/] = [#ú∏/
. 

(6.3) 

 

µ
(/bN
(N

∂ = (π/ 

(6.4) 

 

Δt/,- = t_(j + 1) − t_(j) 

ΔÆ/,- = Æ_(j + 1) − Æ_(j) 

(6.5) 

 

where 

t_ and Æ_ are the X and Y co-ordinates for the right-hand side of the track at the given segment.  
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Therefore, equation (6.1) can be written for the x co-ordinates in the more compact form 

 

ØΔ,*,/
. ∙ Δ,*,/ =

0:N

/cN

Ø(π/
.[#ú∑/

0:N

/cN

[#ú∑/
.(π/ + 2(π/

.[#ú∑/Δt/,- + Δt/,-
M  

(6.6) 

The first term of the objective function (6.6) can be written in the matrix form as 

 

2N = [(πN
. (πM

. ⋯	(π0.]

⎣
⎢
⎢
⎡
[#ú∑N[#ú∑N

. 0 ⋯ 0
0 [#ú∑M[#ú∑M

. ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 [#ú∑0[#ú∑0

. ⎦
⎥
⎥
⎤
¡

(N
(M
⋮
(0

¬ 

 

(6.7) 

In the same way, the second term can be written as 

 

2M = [(πN
. (πM

. ⋯	(π0.] ≤

[#ú∑N 	 ∙ -&=[:/*N 	 ∙ 2
[#ú∑M 	 ∙ -&=[:/*M 	 ∙ 2

⋮
[#ú∑0 	 ∙ -&=[:/*0 	 ∙ 2

¥ 

(6.8) 

 

where -&=[:/* refers to the x coordinate for the right-hand side of the circuit determined via 

t/bN −	t/. Similarly, matrices are created for -&=[:/+ and all y coordinate components.  

 

In (6.7) and (6.8), the parameter (π/ can be written as 

 

(π/ = 3/ ∙ (π 

(6.9) 

 

where 

                 √d = ƒ0 ⋯ 0
0 ⋯ 0

	
1/ 0
		0 1/bN		

0 ⋯ 0
0 ⋯ 0

≈                                              

(6.10) 
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(π = ∆
(/
⋮
(0

« 

(6.11) 

(π/ = µ
(/bN
(/

∂ 

(6.12) 

Therefore, (6.6) can be written as 

 

ØΔ

0:N

/cN

,*,/
. Δ,*,/ = Ø(π.3/

.[#ú∑/[#ú∑/
.3/(π +Ø2(π.3/

.[#ú∑/-&=[:/t/ +	

0:N

/cN

Ø-&=[:/t/
M

0:N

/cN

	

0:N

/cN

 

(6.13) 

 

By defining the matrices above 

íE,* =	Ø3/
.[#ú∑/[#ú∑/

.3/ 	

0:N

/cN

 

(6.14) 

rE,* = 	23/
.[#ú∑/-&=[:/t/ 

(6.15) 

 

The cost function to formulate the optimisation problem for the x coordinate can be written as 

 

ØΔ

0:N

/cN

,*,/
. Δ,*,/ =	íE(π. + rE(π. +Ø-&=[:/t/

M
0:N

/cN

 

(6.16) 

 

Moreover, the complete shortest distance equation by including both x and y coordinates can be 

written as 

á = 	»íE,*(π. + íE,+(π. + rE,*(π. + rE,+(π. + -&=[:/tM + -&=[:/ÆM 

 

(6.17) 
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6.5 The Minimum Curvature Problem 
 

 
In conflict with the shortest path problem mentioned in the previous section, to achieve the best 

lap time an overall optimal trajectory is somewhere near to the minimum curvature. The minimum 

curvature is the line taken to appropriately navigate the circuit whilst maintain the least amount of 

steering angle necessary for all corners and straights as shown in Figure 6.3. 

 

 
Figure 6.3 Minimum curvature trajectory (white line) of Brooklands and Luffield corners of the 

Silverstone GP circuit.  

 

As depicted in Figure 6.4, the curvature k can be determined from 

 

i = /… 

(6.18) 

where 

/ =  
$i

$Y
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and 

À =
1

/
=  

$Y

$i
  

(6.19). 

here 

s is the length of curvature for the segment between P1  and P2. 

R is the radius of the circle. 

Y is the angle of segment between points P1 and P2. 

 

Assuming that T is the trajectory tangent to the corresponding points 

 

7 = _& ėg ⇒
$7

$i
= j

$Y

$i
_& ėg 

(6.20) 

 

and this yield 

 
$7

$i
 =  

$Y

$i
 = À 

(6.21) 

 
Figure 6.4 Segmentation nomenclature between two points of the track. 
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In this way, the curvature at each point shown in Figure 6.4 can be calculated through Eqn. (6.22) 

 

7/ =
$t

$i
j +

$Æ

$i
¢ì
EcL%

$7/
$i

=
$Mt

$iM
j +

$MÆ

$iM
¢

 

À = Õh
$Mt

$iM
o
M

+ h
$MÆ

$iM
o
M

 

(6.22) 

when a cubic spline has the second derivative, the first term in (6.22) can be written in the matrix 

form as 

 

$Mûπ

$iM
= Œûπ 

(6.23) 

 

where  

D is the n x n matrix for the shape of the track 

ûπ is the n x 1 vector containing the segment points. 

 

As can be inferred from (6.23) the curvature can be calculated from the weighted distance of the 

points on the track with respect to the origin of the track coordinates. The total curvature is 

calculated from the square root of the norm of the vector resulting from this weighted distance in 

both x and y directions.   

 

The parameterisation of the track and the vector of each point of the trajectory at the end of each 

segment can be written in the matrix form as follows 

 

ûπ = ûA + œû	– 

(6.24) 
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where x and ûA are two k × 1  column vectors and œû and	– are k × k and k × 1 matrices, used 

to parametrise a point with the track. Therefore, by substituting (6.24) in (6.23) and squaring 

both sides  

 

$Mûπ

$iM
= ŒûA + Œ	œû	– 

⟹ h
$Mûπ

$iM
o
M

=	 (ŒûA + Œ	œû	–).(Œûh + Œ	œû	–) 

= ûA.Œ.ŒûA + 2–.œû.Œ.ŒûA + –.œû.Œ.Œœû– 

 

Therefore, the least curvature (Γ) equation can be derived as 

 

*ki[ = ûA.Œ.ŒûA 

íi = –.œû.Œ.Œœû( 

ri = 2–.œû.Œ.ŒûA 

Γ = 	”–.[íi]– + {ri}– + *ki[ 

(6.25) 

 

The equations and matrices above are derived on the x axis direction. All equations can be 

derived for the y axis in a similar way and summed within the current ones.  

 

The cubic spline interpolation is determined by calculating the distance between two segment 

points (ℎj̇) and developed through equations (6.26) to (6.32) as follows 

 

;*,` =
1

ℎ̀
lt̀ bN − t̀ m 

(6.26) 
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1
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1
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ℎ̀
lt̀ bN − t̀ mõ 
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=
1
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« 

(6.27) 

Developing matrices where: 

‘`bM =
1

ℎ̀ ℎ̀ bN
 

‘`bN =
1

ℎ̀ ℎ̀ bN
+

1

ℎ̀M
 

‘` =
1

ℎ̀M
 

(6.28) 

and putting the elements in (6.27) in the matrix form we have 

 

’k =

⎣
⎢
⎢
⎢
⎡
a*,N
a*,M
a*,U
⋮

a*,0:M⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
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⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
tN
tM
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⋮
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⎥
⎥
⎥
⎤

 

 

(6.29) 

 

A more convenient way to derive the (6.29) in the closed form is by stacking the elements in 

(6.26) in the matrix form as follows 
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⎣
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								�*,0:N×	0 

 

(6.30) 

Moreover, the relationship between a*,/ and ;*,` can be written in the matrix form as 
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(6.31) 

 

By defining ⁄k in (6.23) as to be equal to ⁄¤  when the las row and column are eliminated, it is 

possible to write ’k directly in terms of tm by multiplying the matrices as shown in (6.33). 
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(6.32) 
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6.6 Circuit Discretisation and Performance Surfaces 
 
 
For the initial test of the algorithm a circular track is created consisting of an inside radius boundary 

of 590m and an outside boundary of radius 600m, giving a constant 10m track width. As this track 

was generated within MATLAB, the co-ordinates are generated in an anti-clockwise fashion. For 

the track position, ( = 0 means the boundary for the outside track, and ( = 1  means the inside 

track boundary. A test was carried out through the PSO with no tuning to see how the alpha is 

used. When alpha is forced to zero the outside track trajectory is followed with a trajectory total 

distance and PSO cost function of 1884.93m (equivalent to pd) and when alpha is set to one the 

inside trajectory is followed with a cost function of 1822.10m. The definition of inner and outer 

trajectories is illustrated in Figure 6.5. Similarly, the value ( =0.5 follows the centreline between 

the track boundaries (length of 1853.52m). This ensures that the algorithm is correct and distance 

testing for minimum distance or radius for least curvature is purely down to the PSO algorithm 

tuning once ( is set to be optimised in the range [0, 1].  
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(a)                                                                   (b) 

Figure 6.5 (a) The definition of outer trajectory paths (red line) for a = 0 (b) The definition of 
inner trajectory paths (red line) for a = 1. 

 
 
 

 
Figure 6.6 Centre line trajectory for a = 0.5. 
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As this is a simple circle rather than an ellipse or a track that varies through left and right corners, 

then the PSO algorithm can also be tested for shortest distance as this should find the minimum 

circumference as the distance, in this case the inside line. During this testing and tuning of the PSO 

it became apparent that the number of variables to be optimised affected simulation time and 

accuracy and once again a compromised solution had to be found to play off accuracy against 

simulation time. 

 

For the circular track, it was found that the personal and social acceleration coefficients in the PSO 

algorithm were found to be best at c1 = 3 and c2 = 1. Whilst the inertia coefficient produces the 

best results when determined by a linear increment between 0.1 and 1, dictated by the number of 

iterations. Reducing the number of segments within the track means a loss to geometric accuracies 

and shape.  Increasing the population size of the PSO algorithm to coincide with the segmentation 

size, increases the simulation time and the required computing power.  

 

 
Figure 6.7 Section of the circular circuit with 361 segments (50 iterations, 100 population size 

for SOPSO). 
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As can be seen in Figure 6.7, the SOPSO with a 361-segment circuit cannot find the minimum 

distance using 50 iterations and a 100-population size. This simulation, however, only takes 11 

minutes to complete with a 2.3GHz Quad-core i7 processor and 16GB memory. Increasing the 

population or iteration has an exponential growth rate on simulation time and therefore a reduced 

number of segments (nVar) were tested (Table 6.1) 

 
Table 6.1 A sample of PSO tuning tests (best costs = green, variation from baseline = blue). 

Test  c1 c2 w Best cost @It Its Pop nVar Run Time 
1 3 1 linspace(0.1,1,MaxIt) 1894 37 50 100 361 10.94m 

2 2 2 linspace(0.1,1,MaxIt) 2192 31 50 100 361 10m 

3 3 1 linspace(0.1,1,MaxIt) 1820 49 50 50 50 9.5 s 
4 3 1 linspace(0.1,1,MaxIt) 1848 43 50 100 100 38 s 

 
 
The data from several tests (Table 6.1) determines that for a reasonable run time and accuracy of 

results, 50 segments are a limit to the SOPSO accuracy. Test 3 gives the exact minimum curvature 

of the circle (inside circumference) and the segments are plotted in Figure 6.8. Although the time 

at this stage appears reasonable and could be increased by increasing the track segmentation, 

iterations and population size, time may become an issue when the track shape becomes more 

complex.  

 

Once the track shape is updated to a more complex pathway, the PSO will need tuning for speed 

and accuracy. To this end, the outer and inner track trajectory will be tested by holding alpha to 

zero or one and then the output number is observed so that the inner and outer lengths of the track 

will be achieved. Least curvature will be checked against the curvature of each corner. Therefore, 

it is essential to correctly discretise the circuit geometry. It may be feasible to test sectors of the 

circuit in 50 segment sections, however, including longer segments inevitably requires a MOPSO 

so that all sectors could be optimised within one execution of the algorithm. 
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Figure 6.8 Circular circuit. 50 segments (total) vs 50 iterations and 50 population size for 

SOPSO. 

 
The results of the circle testing show that the track parameters and section lengths will be sensitive 

inputs for the results achieved from PSO. Therefore, to gain accuracy detailed track maps are 

required. This concludes that the inner and outer track boundaries are required for any given 

circuit. The discretisation of this data may also change dependant on number of sections required 

for suitable results. Using a physical car to continuously drive the inner and outer circuit 

parameters each time a change is required to the track parameters or section count is unfeasible. 

Therefore, a laser scanned model of the grand prix Silverstone circuit was used to find the 

boundaries. The GPS and track co-ordinate telemetry were taken from the iRacing simulator, 

whereby a Ferrari 488 GT3 car was used to drive the inner and outer boundary of the track. This 

telemetry data was exported to Motec i2 data analysis software and later exported to Excel for 

further processing. As the data can only be exported in Hz, the time taken to drive at a slow pace 

the inner and outer boundaries of the track meant the data had unequal data samples across the 

distance of the circuit length. The data was cleansed to allow appropriate data points to be stored 

at similar co-ordinates around the track albeit at the inside or outside track boundary, leaving 361 

data points that could determine the track geometry, boundaries and sectors as shown in Figure 
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6.9. This inevitably produces unequal sector lengths. This amount of data points was chosen so as 

to represent the same amount of data points from the physical measured data, so vehicle dynamic 

behaviour can be compared.  

 

 
 

Figure 6.9 Silverstone Grand Prix circuit segmentation using 361 data points connecting the 
inner and outer boundaries of the circuit. Pink represents the inside boundary and blue the 

outside boundary. 

 
Once the segments have been established a performance surface analysis procedure was carried 

out to determine the PSO tuning and correct the implementation of (. As the Silverstone GP circuit 

is an anticlockwise circuit, ( = 0 indicates the inside boundary of the circuit or the drivers’ right-

hand side and ( = 1 indicates the left-hand boundary.  
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As a sanity check, various sectors of the circuit were chosen to analyse the performance surface 

behaviour. In the right-hand corners, the surface should tend towards zero and the left-handed 

corners should tend towards one. The actual result is dependent on the transition from the previous 

sector or into the next sector, due to the straight-aways or corner direction.  Since the shortest 

distance or least curvature (straight line) between sectors may lie away from a certain boundary 

edge it is important to utilise a section that is mid corner so as to reveal a result close to 0 or 1. 

 
 

 
 

Figure 6.10 Variation to ,, performance surface for the left/right chicane (Vale), sections 335 
and 336. 

 
The two middle sections of the Vale Left/Right chicane have been chosen for the performance 

surface. Figure 6.10 depicts a best line tending to the middle of the circuit (( = 0.5). As would be 

expected, a straight line between the left and right corner would be presumed the shortest path 

from one apex to the following corner apex. For a range of juxtaposed left or right-handed sectors, 

the performance surface should result in ones and zeros for the parameter ( as illustrated in Figures 

6.11 and 6.12, respectively.  
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Figure 6.11 Performance surface for the left-handed Brooklands corner, sections 112 and 113. 

 
 

 
Figure 6.12 Performance surface for the 1st right-handed (Abbey) corner, sections 11 and 12. 
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Once established that the performance surfaces were responding as assumed the tuning of the PSO 

algorithm could begin to locate the least curvature and shortest distance trajectories around the 

Silverstone Grand Prix circuit. 

 
6.7 Shortest Path Trajectory – Single Objective PSO 

 
The PSO was set to maintain ( = 0, followed by ( = 1, so that the length of the right-hand and 

left-hand trajectory paths could be checked against known measured data. The right trajectory was 

recorded as 5832m as opposed to the driver in the loop data of 5811m and the left trajectory 

recorded as 5902m as opposed to 5892m. The discrepancies could lie in GPS data accuracy from 

the race car simulator and the ability of a driver to stick exactly to the inside and outside line 

perfectly. As the distances were close to measured data the 5832m and 5902m will be used as the 

distance for PSO. It is, however, clear that the shortest path trajectory should be lower than either 

of these numbers due to optimising the shortest path through a left or right corner. Using straight 

lines through any S shaped turns such as the Maggots and Becketts complex, and the inside line 

on all other corners the actual shortest path around Silverstone is 5560m. 

 

As per the tuning for the vehicle dynamics model (Chapter 5), the particle acceleration (c1, c2), 

inertia coefficient (w), iteration size, population size and mutation coefficient (pm) are all tested 

for cost accuracy and speed of convergence. The samples listed in Table 6.2 show a variation 

across parameters, however, one parameter change at a time was also included in the tuning study. 

In all cases, c1+c2 = 4 must be adhered to.  

 
Table 6.2 Variations to PSO parameters as tested individual samples versus baseline. 

 c1 c2 w Iter. Pop pm 

Baseline 2 2 linspace(0.1,1,MaxIt) 
 

50 50 0.95 

Sample 1 1 3 linspace(0.5,1,MaxIt) 
 

20 20 0.5 

Sample 2 2 2 linspace(0.1,0.5,MaxIt) 
 

100 100 0.1 

Sample 3 3 1 linspace(0.1,1,MaxIt) 50 50 0.95 
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As previously found in the vehicle dynamic PSO tuning, the personal and social acceleration 

coefficients (c1, c2) make a large difference on the cost function outcome, however they do not 

affect time. The best cost result was always found whilst using c1 = 3 and c2 = 1, whether just these 

variables were varied or when used with a change in other parameters. 
 

Table 6.3 A sample of PSO tuning tests (best costs = green, variation from baseline = blue). 

Shortest Path SOPSO Results     
Test  c1 c2 w Best cost Iterations Population Run Time(m) 
Pre_1 2 2 linspace(0.1,1,MaxIt)  5850 50 50 10.97 
Pre_2 2 2 linspace(0.1,1,MaxIt)  5832 50 50 10.97 

1 2 2 linspace(0.1,1,MaxIt)  6019 20 20 1.78 
2 2 2 linspace(0.1,1,MaxIt)  5771 50 50 10.75 
3 2 2 linspace(0.5,1,MaxIt)  5993 50 50 15.08 
4 2 2 linspace(0.1,0.5,MaxIt)  5767 50 50 15.1 
5 2 2 linspace(0.1,1,MaxIt) 5849 50 50 15.08 
6 3 1 linspace(0.1,1,MaxIt)  5681 50 50 15.03 
7 1 3 linspace(0.1,1,MaxIt)  5963 50 50 14.98 
8 3 1 linspace(0.1,0.5,MaxIt)  5753 50 50 16.48 
9 3 1 linspace(0.1,0.5,MaxIt)  5722 100 100 59.75 
10 3 1 linspace(0.1,1,MaxIt) 5665 100 100 47.18 
11 3 1 linspace(0.1,1,MaxIt)  5674 50 100 24.7 
12 3 1 linspace(0.1,0.5,MaxIt)  5740 50 100 24.7 
19 3 1 linspace(0.1,1,MaxIt) 5648 50 100 24.15 

 
 
With tuning complete it was once again, as in the case of the circular track, apparent 361 segments 

were a limitation to finding the optimum shortest distance without the use of high-end computing 

or extraordinary long simulation times. 

 

The trajectory plot within Figure 6.13, shows that with a 24-minute simulation an optimum is not 

found. The trajectory does not follow the inside curvature of several corners and within the straight 

aways the trajectory creates a wandering effect, adding length to the overall path.  Increasing 

population and iteration size has an exponential effect on the simulation time, and although a 100 

iteration, 1000 population simulation (40 hours) was carried out a similar result was found, 

suggesting a limitation on the number of variables is a factor for the accuracy of a SOPSO.  
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Figure 6.13 Shortest Path Trajectory (red line) with 361 segmentation of the Silverstone GP 

Circuit. 

 
With the use of the driver in the loop simulation and utilising a centre line, the data can be exported 

at a greater or lower rate, creating an increase or decrease in data points if required. The centre line 

allows the left and right co-ordinates to be produced by assuming a 15m wide track as per the 

majority of Silverstone circuit. The centre line data is offset by +/- 7.5m and new data points are 

plotted. The use of the centre line ensures each segment has an equal length. A 500-segment equal 

length (as opposed to 361 unequal length), Silverstone was produced to further refine all corners. 

This data was split into ten sectors of the circuit, each consisting of fifty segment sections. The 

iterations remained at 50 and population size was increased to 200 (Appendix 5). 
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Figure 6.14 Shortest path trajectory (red line) with 50 segmentation sectors of the Silverstone 

GP circuit. a) from the start/finish line through Abbey corner to f) Copse corner (the black 
arrow depicts direction of travel). 

 
 

a) b) 

c) d) 

e) f) 
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Figure 6.15 Shortest path trajectory (red line) with 50 segmentation sectors of the Silverstone 

GP circuit. a) from Maggotts and Becketts complex to d) Vale and Club corners to the 
start/finish line (the black arrow depicts direction of travel). 

 
 
Figures 6.14 and 6.15 detail that in some cases the shortest path is found for the overall sector and 

in some cases only for certain segments of the sector (such as Village and The Loop). There is also 

the issue that the end of one sector may not align with the start of the next sector when looking for 

overall shortest path. Using the ( result from the last segment of the previous sector and applying 

that value to segment in one of the next sector results in a least favoured path as shown in Figure 

6.16 compared to the results shown in Figures 6.14 and 6.15. However, reducing the sectors had a 

beneficial effect on the trajectory as shown in Figure 6.16. It is clear that the segment number and 

initial starting condition for ( can have a positive and negative effect on the outcome (Figure 6.16). 

a) b) 

c) d) 
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It is important to note that within the literature [96, 97] the final trajectory is subject to spline 

manipulation and smoothing. 

 

 
 

Figure 6.16 Shortest path trajectory (red line) with 50 segmentation sectors versus 30 
segmentation sectors for Village, The Loop and Aintree corners. a) 50 segments (, = rand). b) 

50 segments, (segment 1, , = 1, segments 2-49 , = rand). c) 30 segments (, = rand), The black 
arrow depicts direction of travel.  

 
 
Each 50-segment path took approximately fifteen minutes to converge and 30 segment sectors 

took 14.8 minutes, ten minutes quicker than the first full lap, a 361-segment optimisation utilising 

a 50 iteration, 200 population usage. For a 500-segment lap, splitting the lap up takes 
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approximately 150 minutes at 50 segments (10 sectors) and a 480-segment lap takes 250 minutes 

for 30 segments (16 sectors) to complete all sectors of a lap.  

Maintaining a 50 iteration, 200 particle PSO and re-plotting the circuit once more with a variation 

in the data collection rate. The sample rate is changed so that 360 segments could be created (to 

coincide with the original measured data of 361 sections), a 12 sector, 30 segment discretisation 

of the circuit can be utilised (Appendix 5). This resulted in a 187-minute total run time; however, 

the shortest distance cost function was greatly reduced to a total lap length of 5513m as opposed 

to 5614m for the 480-segment combined sector lap. The more accurate trajectory can be seen in 

Figures 6.17 – 6.18, the trajectory plot is far more accurate than the 50 segmented sectors, Vale 

and Club corner for instance follow the inside line throughout the corner.  

 

There are still some anomalies in the SOPSO whereby start and finish points of a sector may not 

connect, The Loop to Aintree and Brooklands to Luffield corners in particular. This means the 

PSO must use the initial condition so the first segment start point (() is equal to the last segment 

of the previous sector. This is clearly illustrated in Figure 6.17 whereby the shortest path through 

Luffield is found perfectly but has not taken into account the preceding corner Brooklands as a 

left-hand corner and therefore a transition of left to right should be included. Only choosing sectors 

that start and finish on a straight away would be a preferred choice, however, this is difficult if 

splitting each sector into equal amounts as they may not always start and end on a straight away, 

inevitably over complicating the number of sectors and segments used.  An optimisation was 

incorporated to include one full lap, with 360 segments to test for accuracy, but very poor trajectory 

profiles were created (Figures 6.19 – 6.22) even when increasing the particle population size to 

allow similar PSO simulation time as that of the 12 sector, 30 segment optimisations. The 

simulation time and best cost compromise suggests 12 x 30 segment sectors are feasible for Spline 

intervention, as in Table 6.4 where the results and simulation time of the SOPSO are summed.    

 

The single sector simulations returned a poor cost function (5844m) when compared to the that of 

the split sectors ranging between 5620m and 5513m when using a similar population size. The 

increase in population size to 800 reduced the best cost to 5828m some 300m worse than that of 

the 12 sector, 30 segment PSO with a saving of 18 minutes (Table 6.4). 
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Table 6.4 Summation of 361 and 500 segment track discretisation with singular, fifty and thirty 
segment sector splits. 

Sectors Segments per 

sector 

Best cost (Total 

length) 

Total simulation 

time(m) 

Iterations Population 

1 361 5648 24.15 50 100 

10 50 5620.63 146.50 50 200 

16 30 5614.72 241.23 50 200 

12 30 5513.87 187.98 50 200 

1 360 5844.48 39.44 50 200 

1 360 5828.98 169.7 50 800 

The final output is plotted by means of straight lines connected together for each segment as 

practiced in [96]. Therefore, the final raw data will be manipulated by the spline function in 

Matlab to create a more realistic arced path. However, as the track sectors are split, it is 

considered to be more effective to combine all simulations into a multi-objective PSO whereby 

all sectors can be optimised simultaneously, and the best costs summed prior to Spline 

manipulation. The raw data will be subject to optimisation of vehicle dynamic behaviour with an 

MOPSO algorithm. This may eradicate some impossibilities of direction change within the 

trajectory, so it is proposed that the trajectory data is not manipulated until after the dynamic 

constraints and lap time optimisation is included as the final step. By utilising a suitable track 

section segmentation and an appropriate population size to ensure computer power and 

optimisation results are optimised the result of 5513.87m and 5614.72m are within 47m and 54m 

of the defined shortest path possible (5560m). This suggests the 12 x 30 segment path may be 

losing some detail and showing an overall shorter path but is the closest to the actual figure and 

therefore will be used for the remainder of the study. It must be added that a straight line was 

proposed for some sections of the Maggots and Beckets section when calculating the official 

shortest path length whereas in Figure 6.18b each corner follows the inside line of the corner 

exactly allowing for some reduction in distance.   
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Figure 6.17 Shortest path trajectory (red line) with 30 segmentation sectors of the Silverstone 
GP circuit. a) From the start/finish line through Abbey corner to f) Copse corner (the black 

arrow depicts direction of travel). 

a) b) 

c) d) 

e) f) 
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Figure 6.18 Shortest path trajectory (red line) with 30 segmentation sectors of the Silverstone 
GP circuit. a) Copse corner to f) Vale and Club corners through to the start/finish line, (the 

black arrow depicts direction of travel). 

a) b) 

c) d) 

e) f) 
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Figure 6.19 Shortest path trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. SOPSO set to 50 iterations, 200 particles. 

 

 
Figure 6.20 Shortest path trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. Detailed view of the Maggotts, Becketts and Chapel series of corners. 
SOPSO set to 50 iterations, 200 particles, (the black arrow depicts direction of travel). 
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Figure 6.21 Shortest path trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. SOPSO set to 50 iterations, 800 particles. 

 

 
Figure 6.22 Shortest path trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. Detailed view of the Maggotts, Becketts and Chapel series of corners. 
SOPSO set to 50 iterations, 800 particles, (the black arrow depicts direction of travel). 
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6.8 Minimum Curvature Trajectory 
 

 
As per the shortest path validation a circular track was first utilised to establish correct 

functionality of the SOPSO and minimum curvature algorithm. The same circular track was used 

with an outer path consisting of a constant radius (R) of 300m and the inside path radius of 290m. 

The centre line therefore (for basing the segment length upon) has a radius of 295m. Curvature is 

calculated for a circle simply as 1/R. This determines that the curvature for the inside path is 

0.00345 and the outside path is 0.00333. Using the PSO algorithm and setting a to 1 (inside line) 

the algorithm returned a cost of 0.0034421and setting alpha to 0 returned 0.003333.  

 

 
Figure 6.23 30 segments of a 360 segments (total) circular circuit. Inside and outside trajectory 

(red line) returning a curvature of 0.0034421 and 0.003333 respectively. 

 

With the inner and outer curvature established as accurate, the SOPSO was set to minimise the 

curvature with a  = rand, for 50 iterations and a population of 200. The minimum best cost was 

located at iteration 42, with a best cost of 0.008637. The circular track although perfect for 

analysing inner and outer curvature as mathematically it can be calculated with ease, it is not ideal 

for minimum curvature as the trajectory will always be attempting to straighten up (tend to 

infinity), but the constant radius effects the results. Again, it is apparent segment size influences 

the results significantly.  

Using a 360-segment track but minimising the SOPSO to 30 segments of that track, the trajectory 

as can be seen from Figure 6.24 is attempting to straighten as much as possible, tending curvature 
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to infinity. It is possible to see from the trajectory in Figure 6.24 that the curvature is larger than 

the outside path as the trajectory has sections of the straight lines (lower curvature) but section of 

higher radius therefore skewing the result. It is inevitable from these results that the PSO once 

again has a tendency to struggle with large amounts of parameters.  
 

 
Figure 6.24 Trajectory of 30 segments of a 360-segment circular track. Curvature result of 

0.008637. 

 
 

 
Figure 6.25 Fitness function development across 50 iterations (200 population) of 360 segment 

circular track. Curvature result of 0.008637. 
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6.8.1 – Minimum Curvature of Silverstone GP 
 

 
Utilising a 30-segment sector to minimise the parameters required for SOPSO show a very good 

return on the trajectory as listed in Table 6.5. Figures 6.27 and 6.26 show all sectors of the circuit 

without any use of spline manipulation of the results as suggested is required in the literature [96]. 

The minimum curvature results are more analogous to that of what is expected as the ‘racing line’ 

as opposed to the shortest path results whereby in the case of shortest path a vehicle would need 

to slow dramatically to follow a tighter curve.   

 

It is possible to see once again that some sections start, and end points vary from those that precede 

or follow that segment. This suggests that MOPSO may be a preferred way to run all segments in 

parallel or to include an initial condition for alpha so that the consecutive segments start with the 

final alpha of the preceding segment.  

 

 
Table 6.5 SOPSO curvature result, iteration number at best result, number of variables 

(segments), sector number, outside and inside path curvature and run time for each section of 
the Silverstone GP circuit. 

Minimum Curvature SOPSO Results    

Test  Curvature iteration nVar Sector Out/In Curvature Run Time(m) 

3 0.026741 40 30 1 0.0328/0.029 15.77 
4 0.072307 39 30 2 0.10052/0.10865 15.68 
5 0.024006 40 30 3 0.026/0.03 15.74 
6 0.046769 38 30 4 0.047571/0.059665 15.83 
7 0.063945 39 30 5 0.076374/0.059178 15.58 
8 0.0066796 41 30 6 0.014624/0.013447 15.63 
9 0.016251 40 30 7 0.026/0.023 15.20 
10 0.033624 33 30 8 0.045092/0.043364 15.75 
11 0.019228 36 30 9 0.021705/0.020473 15.63 
12 0.011359 42 30 10 0.016956/0.015654 15.63 
13 0.02682 34 30 11 0.037863/0.032885 15.80 
14 0.050482 43 30 12 0.074516/0.061866 15.79 
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Figure 6.26 Minimum curvature trajectory (red line) with 50 segmentation sectors of the 
Silverstone GP circuit. From a) the start/finish line and Abbey corner to f) Copse corner, (the 

black arrow depicts direction of travel). 

a) b) 

c) d) 

e) f) 
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Figure 6.27 Minimum curvature trajectory (red line) with 30 segmentation sectors of the 

Silverstone GP circuit. a) Copse corner back to f) the start/finish line, (the black arrow depicts 
direction of travel). 

a) b
) 

c) d
) 

e) f) 
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Finally, as a comparison to the shortest path results, a full circuit, a 360-segment optimisation was 

carried out with the simulation criteria set to 50 iterations and a 200 population (Table 6.6, Test 

15) followed by 50 iterations and an 800 population (Test 16). 

 
 

 
Figure 6.28 Minimum curvature trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. SOPSO set to 50 iterations, 200 particles. 

 
The full lap optimisation fairs much better than of that for shortest path, with regards to expected 

trajectory plot, however, during the 200 particles experiment the straight aways tend to have an 

erratic response instead of a straight line where curvature should tend to infinity. This is also visible 

in the 12 x 30 sector tests, Figure 6.26, National Pit Straight and Figure 6.27, Hangar Straight for 

instance. However, it is much more pronounced over the full lap simulation.  



 
 
 

140 

 
Figure 6.29 Minimum curvature fitness function versus iteration number (Test 15) with 1 by 360 

segmentation sector of the Silverstone GP circuit. SOPSO set to 50 iterations, 200 particles. 

 
To ensure consistency with the test steps of shortest path SOPSO, the particles count was increased 

to 800 and this increase almost eradicated the issue accept in the straight prior to Maggotts and 

Becketts (similar to that in 12 x 30 sector tests), and along Hangar straight. This was totally 

eradicated in the 12 x 30 sector tests. All fitness functions from the 12 x 30 segment tests returned 

a result lower that the inside or outside trajectory curvature, as expected, since the optimisation 

should find a straighter path than that of just the outside or inside line. In the case of full lap 

optimisation as per Table 6.6 the fitness function did not find the minimum curvature from the 

outside or inside path.  
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Figure 6.30 Minimum curvature trajectory (red line) with 1 by 360 segmentation sector of the 

Silverstone GP circuit. SOPSO set to 50 iterations, 800 particles. 

 

 
Figure 6.31 Minimum curvature fitness function vs iteration number (Test 16) with 1 by 360 
segmentation sector of the Silverstone GP circuit. SOPSO set to 50 iterations, 800 particles. 
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Table 6.6 SOPSO curvature result, iteration number at best fitness function, number of variables 
(segments), sector number, outside and inside path curvature and run time for a full lap of the 

Silverstone GP circuit. 

Minimum Curvature SOPSO Results    

Test  Curvature Iteration nVar Sector Out/In Curvature Run Time(m) 

15 0.2467 37 360 All 0.18681/0.18895 24.84 
16 0.20634 40 360 All 0.18681/0.18895 108.61 

 
 
 

6.9 Multi Objective PSO 
 

Using a multi-objective algorithm, the simulation can be set to test several objectives 

simultaneously. The MOPSO can be used to optimise all twelve sectors at once, to determine the 

pareto front and therefore best trajectories as a trade-off between shortest path and minimum 

curvature, and also to include further optimisation outputs such as minimum best lap time, vehicle 

dynamic performance and energy management of a hybrid system. As is the case in Chapter 5, 

MOPSO does not necessarily save much time in simulation processing and therefore the 

determined appropriate first instance of using MOPSO would be to compare shortest path against 

minimum curvature for individual sectors rather than testing all sectors simultaneously for shortest 

path or minimum curvature.  

 
The optimisation algorithm is set to find the best cost for both of the two conflicting fitness 

function parameters; shortest path (most likely the highest curvature and smallest radius around a 

corner) and minimum curvature (a longer but straighter path around a corner) and compare these 

results along a pareto front. 
 

6.9.1 MOPSO vs SOPSO Results 
 

 
With the MOPSO algorithm set for trajectory a true minimum curvature or shortest path 

trajectory cannot be found but a compromise between the two. The nature of a MOPSO means that 

inevitably there are iterations where minimum curvature or shortest path dominates. The overall 

fitness functions of each iteration where both results cannot be dominated yields a pareto front 
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curve as shown in Figure 6.32. All results in this figure are ranked as number one in a hierarchy 

results table.  

 

 
Figure 6.32 MOPSO pareto front for Abbey and Farm corners. 

 
The optimum solution across the pareto front is a compromise between shortest path and least 

curvature, choosing a trajectory from either the lowest curvature result or shortest path result shows 

a trajectory curve tending towards that of the SOPSO but as expected the true minimum is never 

found whilst the conflict exists. A mid pareto point where neither minimum curve nor shortest 

trajectory is at the lowest found the output in some instance produced a trajectory close to what 

would be known as the racing line within the Motorsport Industry. The racing line trajectory 

normally follows a path closer to minimum curvature, but it can also be of a path that resembles 

that of shortest path, minimum curvature or of a compromise between the two, dependant on 

vehicle dynamic ability and extracting the maximum performance from the tyre, which ultimately 

will determine lap time as detailed in Sections 6.9 to 6.11 

 
Table 6.7 details each individual 30-segement sector and shows the resulting minimum curvature 

and shortest path results for the Best Minimum Curvature, Best Shortest Path and a Mid Pareto 
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point, the individual Best minimum Curvature and Best shortest path results are also included from 

the SOPSO as a comparison.  

 
Table 6.7 MOPSO and SOPSO results including minimum curvature result and shortest path 

result for best minimum curvature, best shortest path and mid-pareto point. 

 

 
 
 

The values of minimum curvature and shortest path show that the two paths are in conflict, as 

minimum curvature decreases, shortest path increases, allowing for a reasonable sized pareto front 

and several options for analysis of best path. The numerical size variation of minimum curvature 

to shortest path, (1e-02 Minimum Curvature result as opposed to the shortest path numerical result 

of 1e+02) show that the error between the best result within the MOPSO when compared to the 

best result of the SOPSO results in a larger percentage for minimum curvature trajectory.  

 

 

 

Sector 
Best Minimum 
Curve 

Best Shortest 
Path Mid Pareto SOPSO Results 

MOPSO 
Run 
Time (m) 

 Results = Minimum Curvature, Shortest Path  
1 0.0419, 472.96 0.0676, 469.59 0.0500, 470.57 0.0267, 465.66 20.55 
2 0.1077, 470.46 0.1694, 447.11 0.1343, 456.76 0.0723, 437.87 20.99 
3 0.0468, 472.61 0.0724, 468.44 0.0585, 470.26 0.0240, 465.49 20.45 
4 0.0736, 469.52 0.0958, 461.65 0.0823, 464.69 0.0467, 457.13 20.43 
5 0.1080, 462.28 0.1200,456.05 0.112, 457.92 0.0639, 441.81 20.51 
6 0.0180, 472.78 0.0274, 472.57 0.0217, 472.60 0.0066, 470.73 20.39 
7 0.0384, 471.39 0.0603, 468.44 0.0453, 469.63 0.0162, 465.84 18.68 
8 0.0840, 467.41 0.1028, 462.79 0.0919, 464.53 0.0336, 456.81 18.77 
9 0.0384, 471.15 0.0595, 470.26 0.0406, 470.58 0.0192, 468.94 18.77 
10 0.0303, 471.66 0.0428, 471.23 0.0325, 471.37 0.0113, 469.71 18.86 
11 0.0459, 470.54 0.0674, 466.93 0.0522, 468.05 0.0268, 462.26 18.85 
12 0.0749, 473.48 0.1280, 460.64 0.0973, 464.68 0.0505, 451.62 19.19 
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Table 6.8 Error of MOPSO results versus SOPSO results. Best minimum curvature and best 
shortest path. 

 Minimum Curvature Shortest Path 

Sector MOPSO SOPSO % Error MOPSO SOPSO % Error 

1 0.0419 0.0267 56.93% 469.59 465.66 0.84% 
2 0.1077 0.0723 48.96% 447.11 437.87 2.11% 
3 0.0468 0.024 95.00% 468.44 465.49 0.63% 
4 0.0736 0.0467 57.60% 461.65 457.13 0.99% 
5 0.108 0.0639 69.01% 456.05 441.81 3.22% 
6 0.018 0.0066 172.73% 472.57 470.73 0.39% 
7 0.0384 0.0162 137.04% 468.44 465.84 0.56% 
8 0.084 0.0336 150.00% 462.79 456.81 1.31% 
9 0.0384 0.0192 100.00% 470.26 468.94 0.28% 
10 0.0303 0.0113 168.14% 471.23 469.71 0.32% 
11 0.0459 0.0268 71.27% 466.93 462.26 1.01% 
12 0.0749 0.0505 48.32% 460.64 451.62 2.00% 
 Minimum Curvature Shortest Path 

Sector MOPSO SOPSO Numerical 
Error 

MOPSO SOPSO Numerical 
Error 

1 0.0419 0.0267 0.0152 469.59 465.66 3.9300 
2 0.1077 0.0723 0.0354 447.11 437.87 9.2400 
3 0.0468 0.024 0.0228 468.44 465.49 2.9500 
4 0.0736 0.0467 0.0269 461.65 457.13 4.5200 
5 0.108 0.0639 0.0441 456.05 441.81 14.2400 
6 0.018 0.0066 0.0114 472.57 470.73 1.8400 
7 0.0384 0.0162 0.0222 468.44 465.84 2.6000 
8 0.084 0.0336 0.0504 462.79 456.81 5.9800 
9 0.0384 0.0192 0.0192 470.26 468.94 1.3200 
10 0.0303 0.0113 0.0190 471.23 469.71 1.5200 
11 0.0459 0.0268 0.0191 466.93 462.26 4.6700 
12 0.0749 0.0505 0.0244 460.64 451.62 9.0200 

 
 

The numerical error of course is much smaller for minimum curvature. The resultant fitness 

function results are therefore not just the only means of scrutiny and the trajectory paths must be 

plotted.  

 
Based on trajectory plots, the error is not as unacceptable as first appears, when comparing 

trajectories to those from the SOPSO simulations both trajectories are a compromise between the 

two output functions (Figure 6.33 – 6.34). All Pareto front and vehicle trajectories for MOPSO 
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versus SOPSO can be found in Appendix 6. Whereby the middle pareto point is chosen and 

compared to the best minimum curvature result and best shortest path results from the MOPSO.  

 

In some instances, as per Sector 8, shown in Figure 6.34, the MOPSO best minimum curvature 

trajectory from the Pareto front is closer to that of the SOPSO minimum curvature. The MOPSO 

best shortest path from the pareto front does not follow the true shortest path and is worse off than 

that of the shortest path SOPSO, even though a 150% error is calculated for MOPSO minimum 

curvature as opposed to 1.31%. For this reason, visual analysis has to be included in the result 

conclusion. 

 

It is also paramount to conclude that although the MOPSO is working effectively and finding a 

compromise a lap time should be optimised to find the ideal line. With the inclusion of lap time, 

vehicle dynamic behaviour and thus vehicle speed and lateral and longitudinal accelerations should 

be modelled.  
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Figure 6.33 a) SOPSO shortest path and b) SOPSO minimum curvature trajectory comparison 
with c) MOPSO best shortest path trajectory result, d) MOPSO best minimum curvature result 

and e) mid-pareto trajectory result for Sector 1. 

 

c) d) 

e) 



 
 
 

148 

 
Figure 6.34 a) SOPSO shortest path and b) SOPSO minimum curvature trajectory comparison 
with c) MOPSO best shortest path trajectory result, d) MOPSO best minimum curvature result 

and e) mid-pareto trajectory result for Sector 8. 

 
 
 
 
 
 
 

a) b) 

c) d) 

e) 
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6.10 Dynamic Constraints 
 

 
The next stage is to define mechanical grip limits for the race vehicle. Although the tyre determines 

the maximum grip levels in a longitudinal and lateral direction, the lateral maximum G-Forces are 

used as per [92, 96]. However further in this study a concept GT Hybrid vehicle will be introduced, 

and so maximum longitudinal dynamics cannot be utilised once the Hybrid model is incorporated, 

as maximum acceleration may not always be available dependant on battery charge and use of the 

motor. This ensures this work differs from other published material by incorporating the dynamic 

model from Chapter 3. Maximum deceleration is modelled as per the vehicle dynamic ability and 

assumed that regeneration is occurring in all instances within the Hybrid model; where additional 

braking force (above the regeneration capabilities) is required, it is assumed the hydraulic brake 

fulfils the discrepancy between motor regeneration capabilities and maximum braking ability.    

 

Firstly, prior to including the dynamic model for optimisation of a Hybrid model, vehicle 

constraints are included into the MOPSO via the validated GT model from the Particle Swarm 

Optimisation model in Chapter 5. The vehicle dynamic model is set to sweep through the full range 

of steering angles physically permissible by the car and so simulations were carried out whereby 

the steering is slowly increased at a specific longitudinal speed. This is then repeated over several 

speeds that represent the minimum and maximum corner speeds (20 – 65 m/s) as observed from 

the measured data of a flying lap of the Silverstone GP circuit. This results in a surface plot form 

the two inputs imposed on the model; steering angle and longitudinal velocity and the calculated 

output; lateral acceleration.  (Figure 6.35 – 6.36).   

 

A +/- 10 % speed range was also included above and below the original physical vehicle measured 

data to allow slower and faster corner speeds to be optimised and finally the results from the test 

were smoothed to eradicate anomalies. The longitudinal velocity and steering angle (at the wheels) 

vs lateral acceleration are then plotted in Figures 6.37 and 6.38. This data is discretised and 

interpolated into finer increments to the magnitude of velocity = [0: 0.1: 70], steering = [-0.1745: 

0.001: 0.1745] with lateral velocity interpolated between all points.  
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Figure 6.35 Velocity(m/s) vs steering angle (rad), at the wheels, vs lateral acceleration (m/s^2). 

 
 

 
Figure 6.36 Plan view of velocity(m/s) vs steering angle (rad), at the wheels, vs lateral 

acceleration (m/s^2). 
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Figure 6.37 Velocity(m/s) vs steering angle (rad), at the wheels, vs lateral acceleration (m/s^2) 

smoothed data. 

 
 

 
Figure 6.38 Plan view of velocity(m/s) vs steering angle (rad), at the wheels, vs lateral 

acceleration (m/s^2). 

 
 
The dynamic model as described in chapters three, four and five are also utilised to determine the 

maximum acceleration and deceleration to and from maximum velocity, whereby Vmax = 70m/s 

due to transmission and final drive gearing and aerodynamic drag of the vehicle. Data form the 

measured race vehicle again only extends to a maximum of 65m/s due to acceleration and track 
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constraints and has the lowest speed of 20m/s, since the vehicle never arrives at a complete stop 

on circuit unless in the pit lane whereby maximum deceleration is not utilised. Therefore, the 

validated dynamic model was simulated to accelerate from 0 – 70m/s as plotted in Figure 6.39, 

and then decelerate as fast as possible as can be seen from Figure 6.40. This data is transposed into 

a look up table within the vehicle dynamic constraints parameter for the trajectory MOPSO. The 

maximum acceleration parameter was set within the trajectory model for all speeds greater than 

70 m/s so that acceleration = 0 m/s2, therefore restricting the top speed of the vehicle to 70 m/s as 

per the actual race vehicle.  
 

 
Figure 6.39 Maximum acceleration from 0 to 70 m/s with zero radians of steering through all 6 

gears. 

 

 
Figure 6.40 Maximum deceleration from 70 to 0 m/s with zero radians of steering. 
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6.11 Optimum Trajectory and Lap Time 
 
 

The problem posed for fastest lap time is via a hierarchical order ultimately based on the vehicle 

dynamic behaviour and the peak operating range of the vehicle and powertrain. The vehicle 

dynamic operating range is explored to locate minimisation of the curvature or minimisation of 

the length of the trajectory. An optimisation algorithm must be identified to satisfy these two 

conflicting objectives whilst optimising the vehicle dynamic behaviour for lap time reduction.  

 

As proposed earlier the ideal trajectory for best lap time lies somewhere between shortest path and 

the minimum curvature trajectories determined also by the vehicle dynamic constraints allowing 

for tyre grip (traction circle), available power and aerodynamic efficiency. Therefore, the optimum 

MOPSO solution for a track segment is: 

 

 
min
/c	N:0

[Γ, á, á7] 

(6.36) 

where lap-time is calculated from (6.37) and ℎ(j) is the distance of the trajectory path for a segment  

Øℎ(j)/|t(j)

0

/c-

 

(6.37) 

 

An optimum lap time around the Silverstone circuit for a GT3 car is currently circa 1.59.50 

(m.s.ms) in qualifying trim and 2.01.40 in race trim (with fuel) for professional gold standard 

drivers [101] and a 2.02.50 (qualifying trim) to 2.04.00 (race trim) for amateur drivers [102].  As 

discussed previously the optimum trajectory and therefore ideal lap time lies somewhere between 

the least curvature and shortest path and is determined by the vehicle dynamic limitations. The 

measured data as detailed in Chapter 5 and utilised for the dynamic constraints modelling is taken 

from a 2011 GTE car with lower power than the latest GT3 cars and less aerodynamic force. The 

Evora GTE in low weight qualifying trim (low fuel) can circulate Silverstone GP in 2.05.143 and 

in Race Trim, a fastest lap of 2.08.626 with a slowest race trim lap of 2.09.502 [103].  
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6.11.1 Shortest Path MOPSO including Dynamic Constraints 
 

Initially for comparison analysis, MOPSO optimisation simulations were conducted to understand 

the lap time output against shortest path and minimum curvature trajectories individually with the 

addition of the vehicle dynamic constraints. The SOPSO as per Section 6.6 and 6.7 is modified to 

optimise for a specific trajectory path but are now also optimising Lap time and constrained within 

each sector by maximum steering and accelerations as shown in Figures 6.37 to 6.40.  

For the shortest path trajectory as the vehicle is negotiating low radius corners so as to follow the 

inner radii of any given corner the speed is reduced and therefore lap time is increased. 

Nevertheless, at the same time accelerations and thus velocities are attempting to maximise so as 

to decrease lap time. The ideal shortest path trajectory result returned a length of 5923.6 with the 

second fitness function returning a lap time of 2.10.591, however the fastest lap time fitness 

function returned a time of 2.08.979 with a trajectory length of 5966.5m, 42.9m longer than the 

shortest length best cost and 1.612 seconds faster (Figure 6.41). As a comparison the SOPSO for 

shortest path with the same population size and iteration count as detailed in Section 6.6, Table 6.4 

returned a best cost result of 5844.48m highlighting that the dynamic constraint is working against 

the minimum curvature to optimise lap time.  

 

 
Figure 6.41 Lap time vs iteration for shortest path SOPSO. 
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Figure 6.41 depicts that the fastest lap generated during the shortest distance SOPSO was recorded 

at iteration 22 where a length of 5966.5m was recorded suggesting a further distance (and 

potentially higher curvature) will yield the best lap time whereas the shortest path best cost was 

recorded at Iteration 39.  

 
As can be seen in Figure 6.42, the vehicle has to slow dramatically for certain corners, less than 

20m/s, whereas the measured, simulated and PSO data presented in Chapter 5 never falls below 

20m/s. This is much more noticeable through the Luffield Corner (2200m) and the Maggotts and 

Becketts complex (3500m to 3750m) for the vehicle to maintain the shortest path.  

 

 

 
Figure 6.42 The vehicle dynamic output for a) Vehicle velocity, b) steering input, c) lateral 

acceleration and d) longitudinal acceleration vs distance for an ICE only race vehicle around 
Silverstone GP circuit (shortest path trajectory). Best lap time (blue line) versus best shortest 

path length (red line) 

a) 

b) 

c) 

d) 
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The steering angles although very similar occur at different distances into the lap. The peak figures 

are very similar suggesting the fastest lap is generated by traveling further on a straight before 

braking and turning into the corner, ensuring higher speeds. Figure 6.43 shows the delta difference 

between the best lap time and shortest distance plots (Best Shortest Distance Data – Best Lap Time 

Data), depicted in Figure 6.42 plotted over segments rather than distance to show a comparison 

within each segment. As can be seen for all straight aways the best lap time vehicle returns a higher 

velocity, however in some cases the velocity mid corner is lower suggesting the late turn in means 

the car has to slow down further to make the later apex of the corner.  

 

 

 
Figure 6.43 a) Distance variation and error variance between best lap fitness function versus 

trajectory length fitness function for b) vehicle velocity, c) steering input, d) lateral acceleration 
and e) longitudinal acceleration for an ICE only race vehicle around Silverstone GP. 

 
 
 

a) 

b) 

c) 

d) 

e) 
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6.11.2 Minimum Curvature MOPSO with Dynamic Constraints 
 
Within the minimum curvature trajectory, the vehicle should open up the corner and utilise more 

longitudinal acceleration by reducing lateral acceleration due to the constraints within the traction 

circle.  The minimum curvature trajectory yields a best curvature of 0.357 and returned a lap time 

of 2.07.551, however, the fastest lap time was a 2.05.592 also with a minimum curvature fitness 

function (best cost) of 0.363.  

 

The slower lap time generated a total length of 5902.4 whilst the faster lap times total distance 

travelled was 5956.1. This again shows that the faster lap time travels farthest by 53.7m showing 

that shortening a distance around a corner has a negative effect on lap time but also the fastest lap 

was not found with the fitness function of the minimum curvature at the best cost.  

 

Figure 6.44 depicts that the fastest lap generated during the minimum curvature SOPSO falls at 

iteration 45 where the curvature was higher but the best cost for minimum curvature was found at 

iteration 34 with a curvature of 0.357 suggesting the distance, as shown in Figure 6.47, has a role 

to play in lap time also and the fastest lap time is somewhere between minimum curvature and 

shortest path. This is inevitably ensuring a combined shortest path, minimum curvature and vehicle 

dynamic MOPSO would be a preferred method to find ultimate lap time.  

 

 
Figure 6.44 Lap time vs iteration for the minimum curvature SOPSO. 
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Figure 6.45 shows that the vehicle generated a minimum curvature best cost although the steering 

input during certain corners were higher. This is suggesting a higher curvature, although the 

steering input is less than those in the shortest path optimisation. This enables a shorter distance 

but explains that the transition between corners (straight aways) are important also and the path 

along the straight away can be much shorter if the vehicle does not transition from one side of the 

track to the other. It is acknowledged that the minimum curvature results found in this study are 

much higher than that of the SOPSO, and therefore the vehicle dynamic behaviour once again has 

a dramatic effect on results.  

 

 

 
Figure 6.45 a) Vehicle velocity, b) steering input, c) lateral acceleration and d) longitudinal 

acceleration vs distance for an ICE only race vehicle around Silverstone GP circuit (minimum 
curvature trajectory). 

 
 

a) 

b) 

c) 

d) 
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The delta difference between the two best costs, i.e., minimum curvature and lap time show that 

the best lap time is generated from higher speeds and improved accelerations (Figure 6.46). The 

delta plots show that the best lap time accelerates harder within the range of 0.25 to 0.5ms2 and 

decelerates later by on average 0.6 ms2, in turn not needing as much steering angle to negotiate a 

corner by opening the corner up. 

 

 
Figure 6.46 a) Distance variation and error variance between best lap fitness function versus 

trajectory curvature fitness function for b) vehicle velocity, c) steering input, d) lateral 
acceleration and e) longitudinal acceleration for an ICE only race vehicle around Silverstone 

GP. 

 
Maintaining vehicle speed over a longer distance, steering inputs and vehicle acceleration in Figure 

6.45, all confirm that certain sections of the track are more detrimental to lap time than others. 

Alongside the physical vehicle constraints, the minimum curvature or shortest path alone cannot 

produce the best alp time as confirmed by the best lap times not falling at shortest path or minimum 

curvature in the previous experiments. By plotting the shortest path MOPSO and minimum 

a) 

b) 

c) 

d) 

e) 
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curvature MOPSO against total length as in Figure 6.47, it is clear that a combined MOPSO as per 

equation (6.36) is required. Nonetheless, it is important to add that the minimum lap time for the 

least curvature SOPSO generated a time within 0.45s of the physical vehicle and the measured 

data presented in Chapter 5.  

 

 
Figure 6.47 Lap time vs distance for shortest path and minimum curvature SOPSO. 

 
When comparing similar lap times, the minimum curvature and shortest path tend to yield similar 

vehicle dynamic performance, however, the optimum dynamic behaviour of the vehicle is not 

being extracted as the MOPSO is not set to optimise a combined path. 

 

The vehicle dynamic model for the MOPSO presented in Sections 6.10.1 and 6.10.2 utilises the 

equation (6.38) to calculate curvature (À) that works well for steady state situations, but not always 

producing desired results in transient situations [9]. This results in a very square wave pattern for 

some steering inputs (start of the lap) and a lack of exploitation for high lateral acceleration and 

steering parameters. As seen in Figures 6.42 and 6.45 the steering input (at the steering wheel) 

results in a maximum 0.7 radians as opposed to a maximum steering input of 2.443 radians at the 
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steering wheel, or 0.1745 radians at the wheels. This limitation due to the dynamic constraints then 

limits the lateral acceleration of the vehicle. 

 

 

À = 	
1

*!A/D,/K0/8*
 

(6.38) 

 

where 

*!A/D,/K0 = *!A/D + C	 ×	-.& 

(6.39) 

and 

*!A/D = 	C	 ×	(#	 × 	p) 

(6.40) 

 

Steering is derived from curvature by Equation 6.41. 

 

@ = >;	 × 	À 

(6.41) 

 

In (6.41), >; is referring to the vehicle wheelbase.  

 

As a further evidence for utilising a combined trajectory MOPSO it can be concluded that the 

curvature calculation from the minimum curvature algorithm can be utilised as the actual curvature 

at any dynamic point on the circuit. This is eradicating any anomaly between PSO curvature (Γ) 

and calculated curvature (À).  As both minimum curvature and shortest path algorithms utilise the 

same a input variable for the track location, the calculated dynamic curvature can be included in 

the dynamic constraint model and for a combined trajectory MOPSO optimisation. The minimum 

curvature algorithm is incorporated into the vehicle dynamics model and replaces equations 6.38 

to 6.40 for the dynamic constraint steering calculation to determine the transient curvature and 

therefore steering angle. 
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6.11.3 MOPSO including Dynamic Constraints 
 
 
The multi-objective PSO returns much improved lap times and appropriate expected vehicle 

dynamic results. The best cost results congregate around the 2 minute, 5 seconds to 2-minute, 6 

seconds lap times as expected from this vehicle. The results are shown in Figure 6.48. These are 

similar to the results presented in the SOPSO. However, there are samples whereby 2 minute 2 

second and 2 minute 3 seconds are found as best lap time with a 2.02.106 as the best recorded lap 

time.  

 

 
Figure 6.48 Three-dimensional pareto front, MOPSO. 

 
 

The best lap time of 2.02.106 is recorded with a slightly longer length (20m) and a higher curvature 

(0.06) than the cluster around the 2-minute, 5 seconds mark (Figure 6.49). This lends itself to much 

better lap time due not only to the curvature of the corner sections but also to the improved straight 

away sections and how those sections are entered with improved acceleration (Figures 6.50, 6.51). 

It can also be seen with the improved curvature calculation implemented into steering angle, the 

steering angle range is greatly improved and hence lateral accelerations.  
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The vehicle dynamic properties are improved with the inclusion of the transient curvature 

algorithm allowing for a much broader search space and usage of the dynamic constraints. 

 

 
Figure 6.49 Parallel plot results - curvature vs distance vs lap time (Blue = Best 10%). 

 
The resultant output from the vehicle follows more closely what is expected from a vehicle (Figure 

6.50) and less like a digital signal (Figure 6.45) as resulted from the single trajectory MOPSO. 

This enables the vehicle to accelerate earlier, brake later and corner with higher forces than the 

previous MOSPO simulations and enables much better lap times for given sector lengths as 

illustrated in Figures 6.50, 6.51. The lateral acceleration is now producing results that explore the 

full range of lateral acceleration up to 18m/s2 as opposed to 5m/s2 within the previous MOPSO 

results. However, with the sensitivity of the steering input the final trajectory (Figure 6.50) has 

some very minor abnormal paths more noticeably at the lead straight away into the Maggotts and 

Becketts complex.  
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Figure 6.50 MOPSO trajectory (red line) with 1 by 360 segmentation sector of the Silverstone 

GP circuit. 

 
Spline interpolation can produce a smoother more accurate trajectory and smoothing of the data 

can assist the final vehicle dynamic data. As the vehicle dynamic constraints are based on the a 

input from the trajectory the constraints algorithms can be independently simulated without the 

need for PSO by utilising a trajectory as the input. This allows the spline interpolated trajectory to 

be used as an input after the MOPSO has found the preferred trajectory and make small variations 

to the vehicle dynamic output to coincide with the smoothed trajectory. The final smoothed 

trajectory and data are shown in Figures 6.51 and 6.52. 
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Figure 6.51 a) Vehicle velocity, b) steering input, c) lateral acceleration and d) longitudinal 

acceleration vs distance for an ICE only race vehicle around Silverstone GP circuit. 

 

 
Figure 6.52 Spline interpolated and smoothed trajectory for the combined trajectory MOPSO. 

 
 

a) 

b) 

c) 

d) 
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6.12 Conclusion 
 

 
The particle swarm optimisation algorithm has been experimented with until failure. Limitations 

have been sought to satisfactory performance of results. It is apparent that the PSO does perform 

better as particle population increases but this has an adverse effect on simulation time and in some 

cases with the shortest path SOPSO, yielded very little gains in results. 

Where results can be similar, in the instance of shortest path whereby two almost linear paths could 

be very close in length in a single section, especially on a straight away. The PSO could not 

determine the best overall path on said straights as the variation in some paths could be in the range 

of 0.1, and therefore unless the simulation was to employ large population counts for much longer 

simulation times, some possibilities cannot be explored and the best path is not always found. This 

can then have a negative effect on overall trajectory as one path connects to the next segment path 

which again may find several optimums of the same length, creating a non-linear line concluding 

with erratic trajectories on straight aways.   

 
Figure 6.53 Trajectory variation with alpha = rand (to 4d.p). 

 
As an exaggerated example, Figure 6.50 depicts three potential trajectories for shortest path across 

2 segments of the circuit. The PSO determines the location of a, x or 1 via alpha, and alpha is a 

random number to an accuracy to four decimal places. As the next segment is calculated b, y or 2 

is the returned positional result for alpha. As the track width is 15m, the distance between any 
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points across the width of the track could be 0.15mm. This results in various trajectories returning 

results as per the line depicted by a, b and c, x, y and z or 1, 2 and 3. These trajectories can be very 

similar in length whereby line a-b-c is very similar to x-y-z die to the very nature of the accuracy 

of the random number generator. Hence why smoothing is essential after the results are produced.   

 

SOPSO and MOPSO fared much better for minimum curvature as the curve is always expanding 

and produced excellent results. The MOPSO algorithm with the inclusion of vehicle dynamics and 

lap time objectives certainly found acceptable results that can be closely compared to actual 

measured vehicle behaviour and lap time. Figure 6.52 overlays two similar lap times, one from the 

MOPSO (2.05.437) and one from the physical measured Lotus race vehicle data (2.05.143). The 

MOPSO travels 112m further but carries more speed through all corners and minimises steering 

angle however the MOPSO vehicle dynamics are very similar to a physical vehicle and produces 

results within 0.3s. 

 
Figure 6.54 MOPSO vs Measured Evora GTE Data. a) Vehicle velocity, b) steering input, c) 
lateral acceleration and d) longitudinal acceleration vs distance for an ICE only race vehicle 

around Silverstone GP circuit. MOPSO vehicle dynamic output (red line) versus physical 
measured race car data (blue line) 

a) 

b) 

c) 

d) 
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7. Race Car Hybrid Energy Management  
 
 

7.1 Introduction 
 

In this chapter a hybrid electric vehicle is proposed based upon the modifications to the vehicle 

discussed in the previous chapters. Energy management strategies are studied, and hybrid energy 

deployment strategies are compared to the best lap time of the MOPSO presented in Chapter 6.  

The results are analysed by using the vehicle parameters estimated for the transient vehicle 

dynamic model presented in Chapter 3. The hybrid electric vehicle includes the powertrain model 

developed in Chapter 4 and is used to determine the fuel saving of a hybrid vehicle to its ICE only 

counterpart. The chapter concludes with a MOPSO algorithm which considers an electrified 

version of the developed vehicle dynamic model as an additional constraint to determine the fastest 

lap time alongside the best trajectory.  

 
7.2 Hybrid Race Car Power Balance  

 
 

Current trends dictate that race series such as such as World Rally, Touring Cars, World Endurance 

and the Formula One world championship introduce electric only or hybrid vehicles as their racing 

category and many have implemented or are due to launch hybrid electric vehicle inclusion for the 

2021 race season. It is inevitable that GT racing will follow suit sooner rather than later. The final 

optimisation scenario for this thesis is to determine the validity of a hybrid vehicle category for 

GT and endurance racing in the form of a case study. As a hybrid vehicle is yet to be conceived, 

the analysis will be based upon creating a hybrid package with appropriate battery capacity and 

motor power to assess fair competition with the view that GT racing will adopt the hybrid race 

cars into their current plethora of ICE only vehicles, especially in GT4, GT3 and GTE. For 

comparison analysis several hybrid energy deployment strategies are simulated for a hybrid 

electric race vehicle and compared against an internal combustion engine vehicle.  

 
All vehicles that compete in a GT series must undergo the FIA balance of performance (BOP) tests 

[100] to assign performance levels of the vehicle. Furthermore, vehicles competing in the LMP1 
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category contains hybrid and ICE only vehicles so an equivalence of technology (EoT) [106] is 

also implemented as a way to handicap power. Both handicap systems enable the event organisers, 

the possibility to limit or improve performance on a race-to-race basis, thus creating similar lap 

times for all vehicles. It is fair to assume any hybrid vehicle proposed in future rules and 

regulations, entering such a series would be scrutiny to similar constraints.  

 
As the work is for a hypothetical race car, the analysis will be based upon both hybrid and non-

hybrid version of the race car with an identical vehicle mass and similar torque output. It is 

proposed that if a hybrid vehicle uses a smaller capacity ICE then the motor can be larger or vice 

versa, and hence the torque profiles can be matched with ICE only vehicles. Another alternative 

for hybrid vehicles is that the ICE can be switched off or ‘pegged’ at certain sites so the additional 

motor output can create equal torque outputs to that of an ICE only vehicle, and therefore fuel can 

be utilised as an optimisation metric. These options enable a study of an appropriate hybrid 

package to be assessed and utilised to identify the appropriate hybrid powertrain on/off ratio. 

Power from the motor can be analysed and optimised, thus allowing balance of performance of the 

torque from the powertrain and equalising lap times through acceleration performance. 

Acceleration and torque profiles for all hybrid powertrain concepts were generated as detailed in 

Chapters 4 and 6. 

 

7.3 Hybrid Race Car Power Characteristics for Deployment 
 

 
To enable fair usage of the hybrid electric powertrain, the regeneration power will be set to 

maximum regeneration for all braking events and power deployment limited. In a deceleration 

zone, if the braking force required does not exceed the power of the generator unit, the energy 

harvested will be through electric only regeneration and the MGU-K will be the sole braking force 

applied to the vehicle; a fast corner for instance where very little braking is applied. When required 

deceleration forces exceed the motor power, it is assumed maximum regeneration will be harvested 

from the generator unit and the remaining deficit in braking power retardation and deceleration of 

the car is from the hydraulic braking system. This scenario allows all possible electrical energy to 

be harvested in all braking zones. 
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Energy deployment will be optimised via a change in variables through the management strategy 

logic. 

 

For clarity, regeneration will be calculated as a negative number and motor usage as a positive 

number added to the ICE power, generating the required power to propel the car. Required vehicle 

power (,=) is calculated through equation (7.1). 

 

 

,= =	
|*

1000
(#pãA + -.& +#2:*) 

(7.1) 

where 

|* is the longitudinal velocity 

-.& is the aerodynamic drag force 

ãA is the rolling resistance of the tyre 

2 is the rotational inertia factor. 

 

 
The controller parameters for MGU-K systems and MGU-K/MGU-H combined systems are as 

presented in Figures 7.1 and 7.2 and Appendix 7. For clarity to the rules and regulations, the MGU-

H is for namesake only, however it will be used only as a generator and will not provide motoring 

power. The parameters defined on the arrows in Figures 7.1 and 7.2 are an illustration of the 

variables used to control the power transfer and will be subject to scrutiny and optimisation. 

 

As an initial analysis to test the effect of the parameters listed in Table 7.1 for the energy 

management purposes, the trajectory and lap time (2.08.979) results from the MOPSO as described 

in Section 6.11.1 are utilised to test for appropriate functioning of the energy management model. 

After this test the results for best lap time (2.02.106) combined trajectory MOPSO from Section 

6.11.3 are utilised to ascertain a balance of performance. The nature of this chapter is to analyse 

electric power usage as a means to reduce ICE usage for the same dynamic results and lap time 

produced by the ICE only car in 6.11.3.  
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Figure 7.1 Example controller parameters for regeneration and hybrid power deployment, single 

MGU-K (non-MGU-H). 

 

Figure 7.2 Example controller parameters for regeneration and hybrid power deployment, 
MGU-K/MGU-H system. 
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Table 7.1 Initial scenario used for energy management evaluation. 

 Steering Wheel Steered Wheels Velocity Acceleration SOC 

Deployment 0 +/- 0.28 rads 0 +/- 0.02 rads <= 70 m/s Positive N/A 

Regeneration 

(MGU-K) 

0 +/- 2.44 rads 0 +/- 0.1745 rads <= 70 m/s Negative N/A 

Regeneration 

(MGU-H) 

N/A N/A N/A N/A N/A 

 

 
The test was carried out, allowing the vehicle to deploy energy at all acceleration zones up to 

maximum velocity, but limited to low steering angle inputs only, negating deployment within a 

corner. Regeneration was set during all deceleration zones from the MGU-K, while the MGU-H 

was switched off and all steering inputs were permissible during regeneration. This ensures all 

deceleration events within a corner are captured. The hybrid battery was assumed to be fully 

charged from the previous lap(s).  

 

With the aim to test and identify the extremities of the power deployment and regeneration and 

also understand how much energy could be deployed, if the available battery power was to be 

utilised for a 120kW motor during all straight aways. Based upon the Formula One powertrains, 

120kW motors are utilised and as this power is close to 30% of the ICE power output of a modern 

GT3 car, this power output for the motor appears to be appropriate as it is utilised within the 

motorsport industry already. Reducing ICE power by 30% has the potential to generate results that 

can be appropriately analysed and scrutinised for the proposal of a hybrid vehicle.   

 

By having the energy management constraints described above, the aim is to repeat the vehicle 

dynamic results for a full lap single trajectory MOPSO (section 6.11.1), by including the energy 

management constraints along with the dynamic constraint investigated in Chapter 6. As explained 

in Chapter 4, the maximum deployment limit of the world endurance vehicle around Silverstone 

is 5.3MJ per lap. However, Figure 7.3 shows that the total energy flow over a lap both from 

harvesting and power deployment is 6.37MJ. Whilst 5.59MJ of energy was deployed, only 0.78MJ 
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has been harvested. These results suggest a full lap deployment would not be possible as it breaches 

the rules. In fact, the black line in Figure 7.3 depicts the maximum permissible deployment. This 

scenario suggests the parameters in Table 7.1 would not be an ideal for a race set-up as several 

laps would be required to recharge the batteries to full.  

 

 
Figure 7.3 Battery usage during the best lap time (2.08.979) shortest path trajectory, (the black 

line depicts the maximum power deployment usage allowed). 

 
Within this scenario, with the battery fully charged at the start of a qualifying lap, there is a 

potential, through optimisation of the deployment strategy, to limit the deployment to 5.3MJ. In 

this case, the battery power can be consumed for almost an entire lap using the same dynamics as 

presented in Section 6.11.1, Figure 6.42 of the shortest path trajectory, dynamic constraint 

MOPSO.   

 

The motor was set to deploy at 100% during all acceleration zones and use 100% harvesting power 

during braking events.  This can be clearly seen in Figure 7.4 in the motor power and regeneration 

power plots. Equation 7.2 determines the state of charge (SOC) of the battery and from Figure 7.4, 

it can be concluded as there is no limitation to usage in the initial test parameters that either SOC 

or Charge status (MJ) will need to be assigned to the control strategies and appropriate parameters 
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set to establish a suitable complete MOPSO simulation for one lap qualifying events and multi-lap 

race sessions.  

 
As analysed in Section 6.11.3, the vehicle dynamic behaviour from the combined trajectory, 

dynamic constraints MOPSO, generates improved longitudinal acceleration/deceleration profiles 

(Figure 6.51), and is a much-preferred method for testing the hybrid capabilities. This is due to the 

fact that the deceleration events should enable a substantial improvement on energy harvesting. 

The results from section 6.11.3 will be utilised for analysis of energy management strategies 

Although the initial test using the data from section 6.11.1 ensures the hybrid energy system is 

working as expected with regards to power deployment and harvesting as shown in Figure 7.4.  

 

 

 
Figure 7.4 a) SOC, b) Motor Power (kW), c) Regen Power(kW) and d) Charge Status (MJ) usage 

during the best lap time (2.08.979) using trajectory results from the shortest path MOPSO 
presented in section 6.11.1. 

 
 
 
 

a) 

b) 

c) 

d) 
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7.4 Hybrid Energy Management Scenarios  
 

 
In this section, the aim is to optimise the variables involved in different power deployment 

strategies and investigate the typical modes of a hybrid vehicle battery energy, i.e., 1. charge 

depleting, 2. charge sustaining, and 3. maximum deployment.  

For this purpose, the energy management strategy is combined with the vehicle dynamic 

constraints, and trajectory path created for the best lap time of 2.02.106 from Chapter 6, Section 

6.11.3. 

 

The SOC is determined from maximum power deployment as set by the rules and regulations 

(5.3MJ). However, as charge is unlimited (Appendix 7), the SOC is allowed to mathematically go 

beyond one so as to determine an appropriate battery sizing after the initial simulations. The 

instantaneous SOC is determined by charge at the vehicle position at any given track segment and 

the maximum charge capacity of the battery. As the maximum deployment is 5.3MJ, the max 

charge is set identical to this value as can be inferred from (7.2).  

 

6›*(/) =	
*ℎ:_p&(/)
*ℎ:_p&><*

 

(7.2) 

where 

j refers to any given segment of the track 

 

By considering the dynamic and energy management constraints as explained just now, the 

analysis of the energy management problem for each scenario is determined by two measures 

written in (7.3).  

 

Charge Depleting = min
Np/p]

6›*/ 

 

Charge Sustaining = )q6'
)q6(

 

(7.3) 
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here 

6›*/ is the state of the charge at segment i of the track. 

k is the current segment of the track during one lap which is always less than the number of 

segments in the track (n). 

 

In the charge depleting scenario, the minimum battery state of the charge is found from the 

beginning of the lap up to the current segment travelled by the vehicle. While in the charge 

sustaining scenario the ratio of the battery state of the charge between the last segment and the 

last segment is evaluated.  

 

The trajectory and vehicle dynamic data results are used as a means to produce the same lap time 

as the ICE only vehicle, however, the inclusion of the hybrid management strategy is included to 

enable analysis and exploration of control parameters so as to design effective strategies to be 

utilised within the transient vehicle dynamic model presented in Chapters 4 and 5.  The following 

energy management strategy scenarios are to estimate battery usage and tune the energy 

management parameters.  

 

7.4.1 Charge Depleting Scenario 
 

 
In the first examination, the parameters presented in Section 7.3, (Table 7.1), are utilised with the 

addition of electrical harvesting from the MGU-H, allowing for unlimited discharge to determine 

energy usage over a lap with very little restrictions. The parameters listed in Table 7.2, clarifies 

that the regeneration through the MGU-K will be during all deceleration events, and contains the 

inclusion of MGU-H regeneration during low acceleration events. As previously discussed in 

Chapter 4, this limits the power taken away from the engine when the MGU-H is operating. The 

SOC is ignored at this stage. 
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Table 7.2 Charge depleting scenario used for energy management evaluation. 

 Steering Wheel Steered Wheels Velocity Acceleration SOC 

Deployment 0 +/- 0.28 rads 0 +/- 0.02 rads <= 70 m/s Positive N/A 

Regeneration 

(MGU-K) 

0 +/- 2.44 rads 0 +/- 0.1745 rads <= 70 m/s Negative N/A 

Regeneration 

(MGU-H) 

0 +/- 2.44 rads 0 +/- 0.1745 rads >= 65 m/s <=1.5 m/s2 

>0 m/s2 

N/A 

 
The improved vehicle dynamic data as presented in Chapter 6; Figure 6.51 ensures the maximum 

deceleration performance of the vehicle is exploited for maximum regeneration.  The vehicle 

begins the lap with a full charge (5.3MJ) available at the start of the lap as would be the case for a 

qualifying lap. Here, the car would charge up the batteries on the out-laps prior to a qualifying lap. 

As listed in Table 7.3, in this charge depleting scenario, the energy usage is within the maximum 

deployment parameters set by the rules. Moreover, as depicted in Figures 7.6, 7.7 and 7.8, the 

vehicle regenerates enough energy so that almost an entire second lap could deploy energy. This 

can be inferred from Figure 7.5 that the state of charge at the end of one lap contains 44.6% of the 

initial charge. With the additional benefit of the MGU-H, some energy is harvested whilst the 

vehicle is still increasing speed towards the maximum velocity of the vehicle. The motor and 

combined MGU-H/MGU-K generator usage are plotted in Figure 7.6 along with the vehicle 

velocity. It can be clearly seen in Figure 7.6 that, the sections at the end of long straights, especially 

the ones at 310m, 1760m, 2860m and 4800m (circled), where regeneration power has started to be 

harvested whilst power is being deployed from the motor and velocity is towards its maximum.  

This additional recharge from the MGU-H at the end of certain straights when speed is high and 

acceleration is low, adds an additional 0.23MJ of harvested energy as listed in Table 7.3. 
 

Table 7.3 The result of energy charge depletion over one lap of Silverstone GP circuit. 

MOPSO 
Energy 

     

 Deployed 
(MJ) 

MGU-K 
Regen (MJ) 

MGU-H 
Regen (MJ) 

Net 
Deployment 
(MJ) 

SOC end of 
Lap 

 5.0303 1.8633 0.23 2.9370 0.446 
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Figure 7.5 a) SOC, b) motor power (kW), c) regeneration power (kW) and d) charge status (MJ) 

usage during the charge depletion strategy utilising the 2.02.10s lap-time trajectory results.  

  
Figure 7.6 Motor power (red) and regeneration power (green) along with the vehicle velocity. 

a) 

b) 

c) 

d) 
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The regeneration has been drastically improved from the results found in Section 7.3. In the energy 

management scenario using the results from section 6.11.1, all of the battery power was depleted, 

and the rule parameters of maximum deployment usage were breached (Figure 7.3), due to lower 

maximum deceleration results (Figure 6.42).  

 

As shown in Figure 7.7, by improvement in harvesting, the net energy used is 2.937MJ. with a 

total energy deployment of 5.03MJ, allowing 0.3MJ to be deployed during cornering if traction is 

available. This information can be carried forward into a MOPSO so that the dynamic constraints 

of the traction circle can be explored within the dynamic vehicle model presented in Chapters 3 

and 5. 

 
 

 
Figure 7.7 Total energy, Net energy deployment and regenerated energy. 
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Figure 7.8 Total energy flow, total energy deployment and regenerated energy. (The black line 

depicts total permissible energy deployment over a single lap). 

 
From the total deployed energy in this scenario, it can be deduced that for a qualifying lap, where 

charge is only required for one full lap, a larger motor could be utilised. as there is additional 

charge left in the batteries at the end of the lap. Potentially allowing a larger deployment power to 

regeneration power MGU-K strategy.  However, as a race vehicle has to contend with longer race 

distances and not just one lap qualifying, the power deployment and regeneration has to be 

strategised to ensure power is available to maintain a balance of performance with ICE only 

vehicles each lap. Therefore, for all energy scenarios a 120kW motor will be utilised for the 

remainder of the study. 

 

7.4.2 Charge Sustaining 
 
 
The charge sustaining energy management scenario dictates that the battery level at the end of a 

lap must be equal to the battery level at the start of the lap. Therefore, the net energy usage across 

one lap of Silverstone GP circuit is zero.  
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Table 7.4 Charge sustaining scenario used for energy management evaluation. 

 Steering Wheel Steered Wheels Velocity Acceleration SOC 

Deployment +/- 0.28 rads +/- 0.02 rads <= 70 m/s Positive >= 1 

Regeneration 

(MGU-K) 

+/- 2.44 rads +/- 0.1745 rads <= 70 m/s Negative >= 0 

Regeneration 

(MGU-H) 

+/- 2.44 rads +/- 0.1745 rads >= 65m/s <=1.5 m/s2 

>0 m/s2 

>= 0 

 
As the braking zones are used for full regeneration of the MGU-K, the total amount of regenerative 

energy for a given scenario with identical control parameters remains the same when comparing 

the energy strategies. The MGU-H regeneration takes power away from the engine (Chapter 4, 

Figure 4.1), and the acceleration and speed loss resulting from additional MGU-H may directly 

affect the braking zones lengths. The MGU-H regeneration, therefore, during these preliminary 

tests must maintain the same parameters as the initial charge depleting test, so that it is not affecting 

the acceleration and speed of the vehicle. 

 

Figure 7.9 details how the battery constantly tops up the SOC level prior to usage aside from the 

initial start to the lap during the initial acceleration zone and prior to a braking section. The SOC 

is allowed to go numerically above 1, however, in reality this energy management strategy would 

have to be utilised below 96.5% of SOC. This is due to the fact that the peak regeneration causes 

a SOC of 103.5%, or the energy store would need to have a maximum capacity of 5.49MJ. Figure 

7.10 overlays the energy deployment and harvesting along with the vehicle velocity profile. In this 

scenario, the power deployment is only utilised after each braking zone, when the SOC is above 

the initial SOC. Once the initial SOC is breached, the energy is no longer deployed during that 

acceleration zone. The end of the lap is utilised to deplete any excess energy stored above the 

initial SOC.  
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Figure 7.9 a) SOC, b) motor power (kW), c) regeneration power (kW) and d) charge status (MJ) 

for charge sustaining control utilising the 2.02.10s lap-time trajectory results. 

 
 
Table 7.5 The energy usage and regeneration results for the charge sustaining scenario over one 

lap of Silverstone GP circuit. 

MOPSO 
Energy 

     

 Deployed 
(MJ) 

MGU-K 
Regen (MJ) 

MGU-H 
Regen (MJ) 

Net 
Deployment 
(MJ) 

SOC end of 
Lap 

 2.1026 1.8633 0.23 0.0093 0.9982 
 
 

In general, with any controlled additional power deployment within the powertrain, the low speed, 

high acceleration zones always yield the best lap time improvements. This is because the 

aerodynamic drag is at a minimum and the motor torque is high. Early deployment after the braking 

zones is a preferred hybrid strategy for a race vehicle to improve the lap times. The scenario 

a) 

b) 

c) 

d) 
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presented for the charge sustaining case would be an ideal solution to maintain the energy and 

deploy that energy at the most effective acceleration zones.  

 

Figures 7.11 and 7.12 show the energy used and regenerated for the charge sustaining scenario. 

The results open the scope for a race vehicle to change to charge depleting for a lap and recover 

almost instantly the energy used. Here, the charge depleting lap used 2.937MJ, then by changing 

to charge sustaining mode it enables the car to still accelerate at appropriate times and maintain a 

charge for any consecutive laps. The regeneration only mode would allow 2.093MJ to be harvested 

during a lap with no deployment.  

 

 
Figure 7.10 Charge sustaining motor power (red) and regeneration power (green) along with 

the vehicle velocity. 
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Figure 7.11 Total energy, net energy deployment and regenerated energy for the charge 

sustaining scenario. 

 

Figure 7.12 Total energy flow, total energy deployment and regenerated energy for the charge 
sustaining scenario (the black line depicts total permissible energy deployment over a single 

lap). 
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7.4.3 Maximum Deployment 
 
 
In this scenario, all battery energy will be deployed with no limitation to maximum energy 

deployment. The battery is charged to 5.3MJ at the start of the lap, and the optimisation variables 

were changed to those shown in Table 7.6. In this case, the SOC has no influence over deployment.  

 
Table 7.6 Maximum depletion scenario used for energy management evaluation. 

 Steering Wheel Steered Wheels Velocity Acceleration SOC 

Deployment +/- 2.1 rads +/- 0.15 rads <= 70 m/s Positive >= 0 

Regeneration 

(MGU-K) 

+/- 2.44 rads +/- 0.1745 rads <= 70 m/s Negative >= 0 

Regeneration 

(MGU-H) 

+/- 2.44 rads +/- 0.1745 rads >= 65 m/s <=1.5 m/s2 

>0 m/s2 

>= 0 

 
As shown in Figure 7.13 and Figure 7.14, the energy is deployed in all acceleration zones for the 

entirety of the lap. This includes higher steering angles to exploit the full potential of the traction 

circle. As shown in Figures 7.15 and 7.16, the total energy deployed is 7.38MJ, and the total energy 

flow through the deployment and regeneration system is 9.473MJ. As listed in Table 7.7, a similar 

regeneration strategy to that of charge sustaining mode ensures 2.093MJ of energy has been 

harvested between the MGU-K and MGU-H. As depicted in Figure 7.16, the 7.38MJ breaches the 

rules and regulations of the total deployment, set out by the WEC regulations. Nevertheless, for 

testing parameters purposes this scenario shows that all of the energy available can be utilised 

across a lap, if required and permitted, and as can be seen from Figure 7.15, the net energy 

deployment usage is 5.2864MJ. Interestingly, if the net usage (rather than total usage) was the 

regulated limit, this scenario would be within the proposed rules and regulations. This dictates that 

a smaller capacity ICE engine could be offset against hybrid higher-powered electric motors and 

permissible electric energy usage to maintain an equilibrium of torque profiles against ICE only 

vehicles. However, for the energy management parameter analysis, the maximum energy as per 

rules and regulations need to be adhered to.  
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Figure 7.13 a) SOC, b) motor power (kW), c) regeneration power (kW) and d) charge status 

(MJ) usage for charge depletion during a lap time of 2.02.106. 

 
 

Table 7.7 Energy usage, one lap of Silverstone GP circuit - charge depleting. 

MOPSO 
Energy 

     

 Deployed 
(MJ) 

MGU-K 
Regen (MJ) 

MGU-H 
Regen (MJ) 

Net 
Deployment 
(MJ) 

SOC end of 
Lap 

 7.3797 1.8633 0.23 5.2864 0.0026 
 
 
 
 

     

a) 

b) 

c) 

d) 



 
 
 

187 

 
Figure 7.14 Motor power (red) and regeneration power (green) for the charge depleting 

scenario along with the vehicle velocity. 

 
Figure 7.15 Total energy, net energy deployment and regenerated energy for the charge 

depleting scenario. 
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Figure 7.16 Total energy flow, total energy deployment and regenerated energy for the charge 

depleting scenario (the black line depicts total permissible energy deployment over a single lap). 

 
 

7.4.4 Maximum Permissible deployment 
 
 
The final scenario to determine specific set of optimisation variables is for maximum deployment 

to the FIA rules and regulations at the Silverstone GP for the LMP1 category (5.3MJ per lap). The 

list of optimisation variables for this scenario are listed in Table 7.8.   

 
Table 7.8 5.3MJ depletion scenario used for energy management evaluation. 

 Steering Wheel Steered Wheels Velocity Acceleration MJ Deploy 

Deployment +/- 0.80 rads +/- 0.05 rads <= 60 m/s Positive <= 5.3 

Regeneration 

(MGU-K) 

+/- 2.44 rads +/- 0.1745 rads <= 70 m/s Negative SOC >= 0 

Regeneration 

(MGU-H) 

+/- 2.44 rads +/- 0.1745 rads >= 65 m/s <=1.5 m/s2 

>0 m/s2 

SOC >= 0 
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The controller is enabled to deploy energy earlier within a corner whilst a higher rate of steering 

angle is applied but limits the maximum velocity allowed for deployment.  This is to exploit the 

lap time improvements associated with additional power at lower speeds as described in Section 

7.4.2. This energy management strategy allows the energy across a lap to be depleted by 5.3MJ 

(Figures 7.17 and 7.20), with the regenerated energy this equates to a net deployment of 3.2MJ 

(Figure 7.19), and with top speed deployment reduced to less than 60m/s this again allows for a 

bias towards lower speed, corner exit deployment (Figure 7.18).  

 
Figure 7.17 a) SOC, b) motor power (kW), c) regeneration power(kW) and d) charge status (MJ) 

for maximum deployment scenario during the best lap time (2.02.106). 

 
Table 7.9 Energy usage, one lap of Silverstone GP circuit - 5.3MJ charge depleting. 

MOPSO 
Energy 

     

 Deployed 
(MJ) 

MGU-K 
Regen (MJ) 

MGU-H 
Regen (MJ) 

Net 
Deployment 
(MJ) 

SOC end of 
Lap 

 5.296 1.8633 0.23 3.2027 0.396 

a) 

b) 

c) 

d) 



 
 
 

190 

 
Figure 7.18. Motor power (red) and regeneration power (green) for the maximum deployment 

scenario along with the vehicle velocity. 

 

 
Figure 7.19 Total energy, net energy deployment and regenerated energy for the maximum 

permissible deployment scenario. 
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Figure 7.20 Total energy flow, total energy deployment and regenerated energy for the 

maximum permissible deployment scenario (the black line depicts total permissible energy 
deployment over a single lap). 

 
 

7.5 Fuel Use Analysis of the Hybrid Race Vehicle 
 
 

Utilising the vehicle data acquired from the vehicle trajectory MOPSO in Chapter 6 Section 6.11.3 

the steering and vehicle velocity results can be set as input data for the dynamic model as detailed 

in Chapter 5 (Appendix 8).  Considering the hybrid race car powertrain model developed in 

Chapter 4, it is possible to calculate the fuel consumption profile per lap. Adding the hybrid 

constraints outlined in Section 7.4, the optimum fastest lap time problem can be formulated and 

solved using the techniques proposed in Chapter 5. The speed data (Figure 6.51) from the MOPSO 

results in section 6.11.3 would be used to optimise the powertrain as detailed below.  
 
The wheel speed is a function of the engine RPM and therefore can be calculated from equation 

(7.4) as  
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9'12 =
2*3'12
-/

⟹ 8* =
9'12 	× 96

60000
 

(7.4) 

where 

9'12 is the wheel speed in revolutions per minute. 

2*3'12 is the engine speed in revolutions per minute. 

-/ is the total drive ration of the gearbox and final drive. 

96  is the wheel circumference (including tyre). 

 
As a race vehicle is in the most efficient gear at all times, based upon the engine RPM, the gear 

and drive ratio can be calculated for the maximum power delivery. Throttle position (TPS) is 

derived from the power demand calculated from Equation 7.1 and the engine power look up table 

generated by the GT Suite model described in Section 4.5. This look up table was produced by 

setting the engine model to run at 5% increments of throttle position (0 to 100%) and the results 

stored similar to that as shown in Figure 4.3 albeit in a table format of RPM vs TPS vs Power. Due 

to the non-disclosure agreement the table of results is omitted. Having the RPM and power demand 

calculated, the TPS is therefore derived from this 3D look up table containing TPS and RPM vs 

Power.  

 

For the non-hybrid vehicle studied in Chapter 6, the optimised lap time of 2.02.106 was achieved. 

The dynamic constraint included in the optimisation were rooted in the engine and power train 

described in Chapter 4 as well as the range of throttle position and RPM fuel usage sites from the 

GT Suite model described in Section 4.5. Having the vehicle velocity profile along with the TPS 

and RPM sites, fuel usage can be found off the brake specific fuel consumption (BSFC) (g-kW/hr) 

table, shown in Figure 7.21. The vehicle velocity profile achieved as a result of the MOPSO 

algorithm in Section 6.11.3 and using the TPS and RPM values derived from equations (7.1) and 

(7.4) the fuel consumption is determined and highlighted with blue dots in Figure 7.21. The fuel 

used for such vehicles is high octane race fuel. For the engine performance measured data, shown 

in Figure 4.3, the engine used Sunoco fuel, given as 0.748kg/l [105].   
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Figure 7.21 Transient engine RPM and throttle sites vs brake specific fuel consumption. 

 
Integrating the brake specific fuel consumption usage data for each segment of track, over the 

segment time and multiplying by engine power results in the isolation of fuel mass from BSFC 

which is measured in g-kW/hr. The sum of the mass of fuel used for all segments equates to the 

mass of fuel used over one lap. In this scenario with a fuel mass of 0.748g per litre, the fuel usage 

equates to 2.885 litres per lap.  

 

In the previous cases of assuming identical dynamic constraints (maximum acceleration and 

deceleration) for the race car hybrid engine vehicle (Section 7.4), the vehicle dynamic parameters 

for the algorithm remain the same as ICE only engine. As such, the optimum lap time achieved as 

a result of optimisation will be the same as before through all hybrid deployment strategies. 

Consequently, for all hybrid energy deployment strategies, the throttle sites will be the same for 

all simulations, however, the deployment time will be different for the hybrid system dependant 

on energy management strategy.  

 

Integrating the total time of hybrid deployment for each of the energy strategies discussed in 

section 7.4 and removing the 120kW power and equivalent torque at a given speed from the engine, 
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the BSFC data can be utilised to analyse the fuel saving for the same total power deployment 

(reduced ICE output + motor output).  Figure 7.22 shows the normalised measured total engine 

power and torque, simulated engine power and torque, and motor power and torque. When the 

motor is in use, the power generated form the motor at that point will be taken away from the 

engine power to maintain equilibrium with the ICE only power and torque.  

 

This offsetting of the engine torque and power against motor torque and power as illustrated in 

Figure 7.23, confirms a reduction on ICE power between 40% and 85%, permitting the vehicle to 

generate the equivalent acceleration. Since the force at the driven wheels and the vehicle mass are 

equal for both non-hybrid and hybrid vehicles, a balance of performance and equivalence of 

technology is created with this scenario.  

 

 

 
Figure 7.22 Hybrid Powertrain - normalised power and torque deployment. 
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Figure 7.23 Engine power and torque; normalised total use with hybrid Motor ON = Normalised 

Engine Power - Normalised Motor Power. 

 
Utilising a throttle histogram based on Figure 7.21 the fuelling can be calculated and a reduction 

in BSFC, and thus fuel saving, can be established per kilowatt-hour. By integrating this over the 

lap-time, the summation of the fuel usage for each hybrid energy strategy yields a fuel usage 

between 39.04% to 83.54% of that when the hybrid system is not utilised. The fuel saving results 

achieved over one lap for various hybrid strategies are listed in Table 7.10. 

 
Table 7.10 Fuel saving over one lap of Silverstone GP for various hybrid strategies. 

 Motor Power 

Deployment time per 

lap [%] 

Fuel Usage per lap [L] Fuel Usage Difference 

[%, L] 

ICE Only 0 2.885L N/A 

Charge Sustaining 18.45% 2.41L -16.46%, -0.475L 

Charge Depleting 

(Full) 
68.29% 1.127L -60.94%, -1.758L 

Charge Depleting 

5.3MJ 
54.07% 1.493L -48.25%, -1.392L 
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7.6 Fastest Lap Time of the Hybrid Vehicle 
 
 
A final MOPSO was carried out to determine the lap time with the hybrid energy strategy set to 

that of maximum permissible usage as per the charge depleting scenario but constrained to 5.3MJ. 

The cost function for this scenario is the same as presented in (6.36). However, the dynamic 

constraints presented in Section 6.10; Figure 6.39 has been changed for a harder accelerating 

vehicle (Figure 7.24). The new dynamic constraint is based upon the engine and hybrid 

deployment at full deployment rather than offsetting electrical power against mechanical power 

by once again as in Chapter 5 allowing the vehicle dynamic model presented in Chapter 3 to 

accelerate at 100% throttle create a new acceleration profile, albeit in this case with the MGU-k 

set to 100% power as an addition to ICE power. 

 

 
Figure 7.24 Maximum longitudinal acceleration for 100% ICE and Motor deployment. 

 

The aim is to understand the possible gains if the ICE power and torque were maintained and the 

hybrid system is used as an additional power with a maximum possible additional power of 

120kW. By having the increase in torque during the acceleration zones due to the deployment 

strategy as listed in Table 7.8, the vehicle can accelerate quicker and therefore the higher speeds 

on the straight aways promote a faster lap time. The results shown in Figure 7.28 clearly confirms 

an increase in longitudinal acceleration and speed, producing the fastest lap times from the pareto 
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front ranging between 118.371 seconds (1.58.371 [m.s.ms]) and 118.451 seconds (1.58.451), 

conferring from Figures 7.25 and 7.26.  

 

 

 
Figure 7.25 Three-dimensional pareto front achieved by running MOPSO algorithm under the 

maximum permissible deployment scenario. 

 
 
This fastest lap time is 3.74 seconds faster than the best MOPSO when ICE only or combined 

hybrid power is utilised and 1.13 seconds faster than a professional driver in a GT3 car. As the 

hybrid usage was set to utilise 5.3MJ and from the energy management case study detailed in 

section 7.3.4 the energy can only be deployed at this rate for 2 laps before a recharge is required. 

Nonetheless, it is inevitable to see that a hybrid category in the WEC GT series would be possible 

with balance of performance and equivalence of technologies employed. Simple changes to energy 

deployment limits and weight additions would allow a competitive race series.  
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Figure 7.26 Parallel plot results for 5.3MJ deployment, curvature vs distance vs lap time 

(Orange = Best 50%). 

 
Figure 7.27 depicts the final trajectory for the 1.58.371 lap after smoothed and spline interpolation 

has taken place. A detailed view of the race car trajectory performance for all corners with both 

the optimal ICE only and the hybrid race vehicle is provided in Appendix 9. These final trajectories 

can be utilised as a driving aid to assist drivers with their racing lines, knowing that the vehicle 

dynamic limits would not be breached.   
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Figure 7.27 The final trajectory achieved after optimisation via MOPSO algorithm and 

smoothed via the spline method (1.58.371 lap time). 

 
Figure 7.28 Vehicle dynamic outputs, a) vehicle velocity and b) longitudinal acceleration, 

utilising additional hybrid power (blue line) vs integrated hybrid power (red line). 

 
 

a) 

b) 
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7.7 Conclusion 
 

 
A hybrid GT conceptual car has been introduced and tested as a case study to utilise all various 

simulation and optimisation models produced during this thesis. Such models were produced as a 

sole necessity to test particle swarm optimisation algorithms for validation of simulation data to 

physical results. The initial ‘real world’ data ensured a validated model that was produced and 

used as a basis to inform the next stage (trajectory planning) of the optimisation. It is an excellent 

conclusion to finalise the thesis by completing each stage of optimisation and utilising the results 

to inform the next step of modelling and optimisation. The results from one model can inform the 

next, dynamic model results into trajectory results or vice versa for instance. These trajectory 

MOPSO results are eventually feeding back into the initial dynamic model, allowing for the fuel 

analysis to start an iterative process of simulation and optimisation to take place. Moreover, the 

resultant vehicle dynamic behaviour from the dynamic model can be used to create dynamic 

constraints for the trajectory and lap time optimisation MOPSO. The results presented in this 

chapter show the trajectory, lap time, and vehicle dynamic behaviour can be optimised for a vehicle 

simulation model and produce an output of that of modern-day GT cars, resulting in a realisation 

that a robust model has been produced enabling PSO to be fully scrutinised and assessed as an 

alternative to other optimisation algorithms.  
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8. Conclusion and Future Work 
 

8.1 Conclusion 
 
A suite of simulation models and optimisation packages has been presented. The suite of 

programmes has proven to be robust with coherent validated results produced against ‘real world’ 

physical measured data taken from logged race vehicle data.  The problems posed have been 

confronted from an academic, empirical and practical stance to ensure vigorous critical analysis of 

the simulation models and optimisation techniques. With limitation to a 2.3 GHz Quad-Core Intel 

Core i7, 16GB RAM personal computer an optimisation suite has proved to produce accurate 

results in reasonable simulation times and with the development of algorithms for optimisation 

tuning parameters, improvements to mutation algorithms and the use of sensitivity analysis, the 

accurate and validated results have been produced within a sensible computing time constraint.  

 

Sensitivity analysis provides an insight into the parameter estimation problem and assists with 

generating appropriate search spaces for the PSO algorithm. Tuning of the PSO is inevitable as the 

crowd population size, and weighting and acceleration coefficients can affect the PSO 

considerably. However, once a robust optimisation model has been produced, the results can be 

very effective an achieved in suitable time constraints.  

 

Although an initial aim was to produce a one-stop simulation process the complexity of the 

modelling and inevitable development of succinct and accurate models, the computing time took 

precedence over a complete simulation programme. However, the simulation and optimisation 

package produced, dissects the required model validation and optimisation algorithms into three 

clear areas; 1. Model correlation and validation – simulated vehicle parameters and vehicle 

dynamic behaviour validation through optimisation. 2. Optimisation - trajectory planning, racing 

line optimisation, vehicle dynamic optimisation and lap time optimisation, 3. Simulation -

modelling of vehicle and engine transient behaviour. This process allows a continuous research 

and development loop to be established.  
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As discussed in the literature review there are conflicting theories for particle swarm optimisation 

accuracy and convergence time. Sensitivity analysis assists with reducing errors of search space 

parameters and aids with the reduction in accuracy and convergence time. The main observations 

taken from the results presented over the past three chapters are 

 

• Large search space parameters and incorrectly tuned acceleration and velocity coefficients 

can generate local best costs restricting the final solution. 

• Large population sizes can assist in finding an area of global best costs, enabling secondary 

PSO algorithms to be used with a tighter search space ensuring global best fixation.  

• PSO input parameter size can affect output results. Trajectory planning highlighted this 

when 360 input parameters were utilised. Reducing this amount produced sensible and 

realistic results in a preferred simulation time.  

• Accurate results are obtained when population size is appropriate to input parameter size 

• Increasing iteration or population size increases simulation time by a factor of 2, increasing 

both population and iteration size results in a time multiplication of a factor of 4.  

• Appropriately tuned parameters and population sizes ensure fast, accurate convergence. 

 

The optimisation presented addresses one of the major issues with simulation models, the adage 

attached to simulation; results that are produced are only as good as the inputs entered.  

Validation of model outputs, and therefore input parameters is a must within the motorsport 

industry as simulation continues a meteoric rise, borne from the testing embargo in race series such 

as WEC, IMSA and F1. The use of the MOPSO to reduce the error between measured data and 

simulation results enables a fast (49 minutes with a standard computation power), accurate, fully 

validated, simulation model to be developed. From this point forward further analysis of vehicle 

dynamic changes, component changes or race strategies can be optimised and assess again in fast 

time frames.  

 

In the endeavour to robustly test PSO algorithms, a suite of motorsport engineering simulation 

models has been produced and a cycle of optimisation has been created, closing of the loop feels 

like the story has reached its conclusion.  
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The novelty of the thesis was to develop:  

 

1. A simulation product within Matlab® and Simulink® that includes the validation of vehicle 

dynamic models through particle swarm optimisation algorithms. 

 

A transient dynamic model has been developed and both SOPSO and MOPSO has been 

implemented to generate appropriate results to aid in the validation of industry simulation models.  

 

2. Trajectory planning and race line optimisation using particle Swarm Optimisation 

 

Trajectory planning, race line optimisation and lap time analysis has been performed through the 

development of SOPSO and MOPSO algorithms.  

 

3. The integration of energy management optimisation and vehicle dynamic behaviour for 

any race circuit or road orientation  

 

Integrated energy management control and optimisation has been implemented however the 

simulations are not integrated together.  Due to computer performance and a search for balance of 

simulation time, aim 1 is utilised to inform the optimisation and vehicle simulations in aim 2. Aim 

3 has been integrated with simulation models detailed in aims 2 and 3, independently. This thesis 

was carried out on a 2.3 GHz Quad-Core Intel Core i7, 16GBRAM personal Mac computer. Future 

work would include a complete integration of all 3 simulations with powerful computing or cloud-

based computing so as to maintain reasonable simulation times.  

 

In the endeavour of these novelties the aims and objectives of this thesis were 

 

i. Determine appropriate degrees of freedom model for optimal balance of accuracy of 

results and computing speed. 
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Through validation of measured results versus simulated results, the use of PSO algorithms and 

analysis of data, a balance of vehicle dynamic degrees of freedom model versus computation time 

and simulation result error output has been created that produces appropriate and reasonable 

results. 

 

ii. Design and develop vehicle dynamics model in Matlab® and Simulink ®. 

 

Vehicle dynamic and lap time simulation models have been created in Matlab and Simulink 

 

iii. Design and develop power-train and drive-train model in GT-Power, Matlab® and 

Simulink®. 

 

Engine simulation models validated to measured data from a dynamometer have been created and 

results utilised in an integrated transient vehicle dynamic model.   

 

iv. Design and develop hybrid electrical system model in Matlab® and Simulink®. 

 

A Hybrid Energy system has been modelled and integrated independently into a transient vehicle 

dynamic model and lap time simulation and trajectory model.  

 

v. Establish system input and output functions for control system design and optimisation for 

energy management 

 

A control system was created for a vehicle dynamic model and published in [26], further control 

parameters were developed to integrate into the energy management algorithms within the 

MOPSO.  

 

vi. Develop race circuit modelling algorithm. 
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Algorithms and mathematical models for Trajectory planning, race line optimisation and lap time 

optimisation have been created and results validated.  

 

vii. Evaluate through simulation and model analysis appropriate control and optimisation 

solutions. 

 

Simulation and analysis of Energy optimisation, vehicle dynamic behaviour validation and lap 

time optimisation has produced appropriate vehicle dynamic and energy control modelling.  
 

8.2 Future Work 
 
 

Several areas of exploration are envisaged for future work, with such an elaborate set of simulation 

tools and models this work was too large to analyse other forms of optimisation and the aims of 

work was to fully explore particle swarm optimisation and its benefits and limits.  A similarly sized 

study utilising other optimisation techniques and algorithms, NSGA-II for instance, would be 

complementary to this research. Detailed control strategies would also be a deep exploratory 

exercise that could aid the models. Furthermore, as computing power continues to progress the 

introduction of artificial intelligence and enhance machine learning would be a future exploratory 

research possibility whereby the algorithms could learn appropriate optimisation algorithms and 

trends for engineering problems. Software in the loop and Driver in the loop simulation could also 

be a next step to enhance the software suite presented in this research. With improvements in 

computing power inevitable the vehicle dynamics model can be developed with the inclusion of 

full suspension systems to create complex multi-degrees of freedom models.   

 
One area particularly of note and one that has been identified by the author as the next steps is to 

couple the PSO algorithms set out in this work to Industry Standard software to limit the error 

when generating models that require thorough validation. 
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Appendix 1 – Formula One Hybrid Powertrain Energy Flow 
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Appendix 2. Comparison of Single objective PSO results versus simulated baseline data 
 
 

Table A2.1. Specific corner and a full lap results comparison for tyre and chassis parameters and their relative error compared to the 
baseline for the longitudinal velocity SOPSO including sum of all parameter errors. 

 
 
 

 
 
 
 
 

 

SOPSO comparison of baseline variables to simulated data (Longitudinal Velocity)  

 Tyre Parameters Chassis Parameters  
 rBx1 rBx2 rCx1 rEx1 rEx2 rHx1 rBy1 rBy2 rBy3 rCy1 rEy1 rEy2 rHy1 rHy2 rVy1 rVy2 rVy3 rVy4 rVy5 rVy6 kroll croll  
Baseline 13.200 -13.900 1.140 0.317 0.109 -0.009 14.600 10.900 0.016 1.140 0.389 0.358 -0.064 -0.049 0.560 18.500 0.019 0.020 1.900 19.200 100000.00 19000.00  
Abbey 11.729 -15.000 0.000 1.000 0.720 -0.020 14.396 10.232 0.049 2.661 0.450 0.000 -0.200 -0.200 1.089 16.572 0.100 0.008 1.496 20.481 115000.00 15000.00  
The Loop 14.711 -15.000 2.000 0.628 0.973 -0.020 11.707 12.977 0.037 1.243 0.540 0.000 -0.200 -0.200 2.241 18.835 0.077 0.015 0.064 23.758 115000.00 15000.00  
Luffield 11.530 -15.000 1.764 0.907 0.659 -0.020 14.204 10.000 0.008 1.978 0.744 0.000 -0.200 -0.200 3.000 16.143 0.076 0.080 0.916 19.055 115000.00 25000.00  
Maggots/Becketts 10.138 -15.000 0.743 0.244 0.900 -0.020 13.106 12.370 0.000 1.513 0.823 0.000 -0.200 -0.200 2.374 15.307 0.068 0.100 1.833 21.788 91474.96 19112.28  
Vale 10.000 -15.000 2.000 0.521 0.041 -0.020 13.833 10.000 0.017 3.000 0.658 0.000 -0.200 -0.200 2.358 17.476 0.000 0.009 5.000 21.945 115000.00 15783.73  
Silverstone GP 13.592 -15.000 0.664 0.423 0.223 -0.020 15.000 12.653 0.018 0.907 0.731 0.000 -0.200 -0.200 0.000 17.510 0.024 0.033 4.839 17.709 100000.04 19000.02  
Relative Error Sum 
Abbey 0.111 0.079 1.000 2.155 5.601 1.336 0.014 0.061 2.134 1.334 0.156 1.000 2.150 3.065 0.944 0.104 4.319 0.583 0.213 0.067 0.150 0.211 26.786 

The Loop 0.114 0.079 0.754 0.981 7.931 1.336 0.198 0.191 1.371 0.091 0.388 1.000 2.150 3.065 3.001 0.018 3.112 0.253 0.966 0.237 0.150 0.211 27.597 
Luffield 0.127 0.079 0.548 1.860 5.048 1.336 0.027 0.083 0.504 0.735 0.912 1.000 2.150 3.065 4.357 0.127 3.029 2.939 0.518 0.008 0.150 0.316 28.918 

Maggots/Becketts 0.232 0.079 0.349 0.230 7.256 1.336 0.102 0.135 1.000 0.327 1.115 1.000 2.150 3.065 3.240 0.173 2.615 3.926 0.035 0.135 0.085 0.006 28.590 
Vale 0.242 0.079 0.754 0.642 0.620 1.336 0.053 0.083 0.092 1.632 0.691 1.000 2.150 3.065 3.211 0.055 1.000 0.576 1.632 0.143 0.150 0.169 19.375 

Silverstone GP 0.030 0.079 0.417 0.333 1.048 1.336 0.027 0.161 0.142 0.204 0.879 1.000 2.150 3.065 1.000 0.054 0.293 0.613 1.547 0.078 0.000 0.000 14.456 
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Table A2.2. Specific corner and a full lap results comparison for tyre and chassis parameters and their relative error compared to the 
baseline for the lateral acceleration SOPSO including sum of all parameter errors. 

 
 
 

 
 
 
 
 
 
 

 

SOPSO comparison of baseline variables to simulated data (Lateral Acceleration)  

 Tyre Parameters Chassis Parameters  
 rBx1 rBx2 rCx1 rEx1 rEx2 rHx1 rBy1 rBy2 rBy3 rCy1 rEy1 rEy2 rHy1 rHy2 rVy1 rVy2 rVy3 rVy4 rVy5 rVy6 kroll croll  
Baseline 13.200 -13.900 1.140 0.317 0.109 -0.009 14.600 10.900 0.016 1.140 0.389 0.358 -0.064 -0.049 0.560 18.500 0.019 0.020 1.900 19.200 100000.00 19000.00  
Abbey 13.454 -15.000 0.564 0.733 0.354 -0.020 15.000 14.894 0.025 0.000 0.260 0.000 -0.200 -0.200 3.000 15.015 0.010 0.084 5.000 25.000 85000.00 25000.00  
The Loop 14.884 -15.000 2.000 0.071 0.007 -0.020 15.000 15.000 0.000 0.000 0.705 0.000 -0.200 -0.200 3.000 15.682 0.000 0.079 5.000 19.870 115000.00 20426.16  
Luffield 10.781 -15.000 0.000 0.810 0.000 -0.020 10.536 11.641 0.050 2.116 1.000 0.000 -0.200 -0.200 3.000 20.000 0.000 0.008 5.000 25.000 115000.00 25000.00  
Maggots/Becketts 11.383 -15.000 0.000 1.000 0.168 -0.020 14.784 12.989 0.031 0.890 1.000 0.000 -0.200 -0.200 1.585 16.952 0.089 0.027 5.000 16.026 85000.00 25000.00  
Vale 12.739 -15.000 1.311 1.000 0.409 -0.020 11.811 10.041 0.050 0.000 0.260 0.000 -0.200 -0.200 3.000 19.654 0.100 0.080 5.000 20.144 115000.00 25000.00  
Silverstone GP 12.318 -15.000 0.882 1.000 0.116 -0.020 12.087 13.088 0.029 3.000 0.000 0.000 -0.200 -0.200 2.786 17.307 0.028 0.061 0.000 24.307 100000.47 18999.97  
Relative Error Sum 
Abbey 0.019 0.079 0.505 1.311 2.251 1.336 0.027 0.366 0.586 1.000 0.331 1.000 2.150 3.065 4.357 0.188 0.457 3.123 1.632 0.302 0.150 0.316 24.552 
The Loop 0.128 0.079 0.754 0.776 0.935 1.336 0.027 0.376 0.996 1.000 0.811 1.000 2.150 3.065 4.357 0.152 1.000 2.894 1.632 0.035 0.150 0.075 23.729 

Luffield 0.183 0.079 1.000 1.554 1.000 1.336 0.278 0.068 2.205 0.856 1.571 1.000 2.150 3.065 4.357 0.081 1.000 0.628 1.632 0.302 0.150 0.316 24.811 
Maggots/Becketts 0.138 0.079 1.000 2.155 0.538 1.336 0.013 0.192 1.016 0.219 1.571 1.000 2.150 3.065 1.830 0.084 3.759 0.320 1.632 0.165 0.150 0.316 22.727 

Vale 0.035 0.079 0.150 2.155 2.750 1.336 0.191 0.079 2.205 1.000 0.332 1.000 2.150 3.065 4.357 0.062 4.319 2.961 1.632 0.049 0.150 0.316 30.372 
Silverstone GP 0.067 0.079 0.227 2.155 0.064 1.336 0.172 0.201 0.884 1.632 1.000 1.000 2.150 3.065 3.975 0.064 0.499 1.993 1.000 0.266 0.000 0.000 21.828 
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Table A2.3. Specific corner and a full lap results comparison for tyre and chassis parameters and their relative error compared to the 
baseline for the yaw rate SOPSO including sum of all parameter errors. 

 
 
 

SOPSO comparison of baseline variables to simulated data (Yaw Rate)  

 Tyre Parameters Chassis Parameters  
 rBx1 rBx2 rCx1 rEx1 rEx2 rHx1 rBy1 rBy2 rBy3 rCy1 rEy1 rEy2 rHy1 rHy2 rVy1 rVy2 rVy3 rVy4 rVy5 rVy6 kroll croll  
Baseline 13.200 -13.900 1.140 0.317 0.109 -0.009 14.600 10.900 0.016 1.140 0.389 0.358 -0.064 -0.049 0.560 18.500 0.019 0.020 1.900 19.200 100000.00 19000.00  
Abbey 14.870 -15.000 1.760 0.472 0.703 -0.020 12.305 13.367 0.042 2.279 0.378 0.000 -0.200 -0.200 0.484 17.405 0.091 0.000 3.485 21.294 85000.00 15000.00  
The Loop 10.000 -15.000 0.399 0.599 1.000 -0.020 13.520 14.132 0.050 1.861 1.000 0.000 -0.200 -0.200 0.000 16.866 0.006 0.027 0.691 25.000 85000.00 25000.00  
Luffield 14.216 -15.000 1.907 0.365 0.960 -0.020 12.034 11.881 0.049 2.395 0.776 0.000 -0.200 -0.200 1.516 16.612 0.044 0.015 0.292 15.000 85000.00 15000.00  
Maggots/Becketts 13.600 -15.000 0.107 0.686 0.067 -0.020 12.451 10.820 0.033 2.926 0.868 0.000 -0.200 -0.200 0.307 16.748 0.048 0.001 1.388 19.679 100600.58 16079.96  
Vale 12.466 -15.000 1.280 0.000 0.286 -0.020 13.951 15.000 0.050 0.541 0.867 0.000 -0.200 -0.200 3.000 17.770 0.026 0.045 0.000 15.000 115000.00 25000.00  
Silverstone GP 11.976 -15.000 0.000 0.675 0.091 -0.020 13.363 15.000 0.037 2.053 0.996 0.000 -0.200 -0.200 2.955 16.167 0.100 0.000 2.809 25.000 99999.90 18999.94  
Relative Error Sum 
Abbey 0.127 0.079 0.544 0.490 5.450 1.336 0.157 0.226 1.710 0.999 0.029 1.000 2.150 3.065 0.135 0.059 3.834 1.000 0.834 0.109 0.150 0.211 23.694 

The Loop 0.242 0.079 0.650 0.890 8.174 1.336 0.074 0.297 2.205 0.632 1.571 1.000 2.150 3.065 1.000 0.088 0.682 0.350 0.636 0.302 0.150 0.316 25.890 
Luffield 0.077 0.079 0.673 0.151 7.809 1.336 0.176 0.090 2.158 1.101 0.996 1.000 2.150 3.065 1.707 0.102 1.364 0.244 0.846 0.219 0.150 0.211 25.705 

Maggots/Becketts 0.030 0.079 0.906 1.165 0.386 1.336 0.147 0.007 1.087 1.567 1.231 1.000 2.150 3.065 0.453 0.095 1.544 0.967 0.269 0.025 0.006 0.154 17.668 
Vale 0.056 0.079 0.123 1.000 1.622 1.336 0.044 0.376 2.205 0.525 1.228 1.000 2.150 3.065 4.357 0.039 0.390 1.212 1.000 0.219 0.150 0.316 22.492 

Silverstone GP 0.093 0.079 1.000 1.130 0.164 1.336 0.085 0.376 1.368 0.801 1.561 1.000 2.150 3.065 4.276 0.126 4.304 1.000 0.478 0.302 0.000 0.000 24.695 
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Appendix 3. Comparison of multi-objective PSO results versus simulated baseline data 
 

Table A3.1. Specific corner and a full lap results comparison for tyre and chassis parameters and their relative error compared to the 
baseline for the MOPSO including sum of all parameter errors. 

 
 
Comparison of baseline variables to simulated data (Multi-objective)  

 Tyre Parameters Chassis Parameters  
 rBx1 rBx2 rCx1 rEx1 rEx2 rHx1 rBy1 rBy2 rBy3 rCy1 rEy1 rEy2 rHy1 rHy2 rVy1 rVy2 rVy3 rVy4 rVy5 rVy6 kroll croll  
Baseline 13.200 -13.900 1.140 0.317 0.109 -0.009 14.600 10.900 0.016 1.140 0.389 0.358 -0.064 -0.049 0.560 18.500 0.019 0.020 1.900 19.200 100000.00 19000.00  
Abbey 11.207 -15.000 1.992 0.984 0.967 -0.020 10.000 15.000 0.033 2.965 0.000 0.000 -0.200 -0.200 2.963 15.377 0.002 0.027 0.000 24.984 85537.38 18438.79  
The Loop 14.736 -15.000 2.000 0.947 0.449 -0.020 10.000 13.345 0.016 1.170 0.000 0.000 -0.200 -0.200 1.329 20.000 0.000 0.100 0.691 24.195 85000.00 15539.39  
Luffield 11.298 -15.000 0.221 0.030 0.751 -0.020 15.000 14.257 0.041 1.096 0.293 0.000 -0.200 -0.200 0.244 16.646 0.056 0.055 4.765 25.000 97114.37 7955.41  
Maggots/Becketts 11.101 -15.000 1.055 0.818 0.888 -0.020 13.491 11.622 0.030 0.692 0.963 0.000 -0.200 -0.200 2.843 17.487 0.051 0.077 3.538 21.931 98990.03 6751.38  
Vale 10.188 -15.000 0.882 0.814 0.213 -0.020 15.000 10.000 0.002 0.280 1.000 0.000 -0.200 -0.200 3.000 15.003 0.026 0.000 5.000 23.985 85000.00 15000.00  
Silverstone GP 10.000 -15.000 0.000 0.325 0.226 -0.020 10.000 15.000 0.001 0.000 0.000 0.000 -0.200 -0.200 1.843 19.049 0.000 0.019 0.674 15.000 85000.00 25269.44  
Relative Error Sum 
Abbey 0.151 0.079 0.747 2.105 7.871 1.336 0.315 0.376 1.086 1.601 1.000 1.000 2.150 3.065 4.291 0.169 0.880 0.312 1.000 0.301 0.145 0.030 30.011 

The Loop 0.116 0.079 0.754 1.988 3.121 1.336 0.315 0.224 0.020 0.027 1.000 1.000 2.150 3.065 1.373 0.081 1.000 3.926 0.637 0.260 0.150 0.182 22.805 
Luffield 0.144 0.079 0.806 0.905 5.892 1.336 0.027 0.308 1.654 0.038 0.248 1.000 2.150 3.065 0.565 0.100 1.985 1.720 1.508 0.302 0.029 0.581 24.442 

Maggots/Becketts 0.159 0.079 0.074 1.582 7.142 1.336 0.076 0.066 0.899 0.393 1.477 1.000 2.150 3.065 4.078 0.055 1.722 2.794 0.862 0.142 0.010 0.645 29.805 
Vale 0.228 0.079 0.227 1.567 0.952 1.336 0.027 0.083 0.845 0.754 1.571 1.000 2.150 3.065 4.357 0.189 0.361 1.000 1.632 0.249 0.150 0.211 22.033 

Silverstone GP 0.242 0.079 1.000 0.024 1.069 1.336 0.315 0.376 0.908 1.000 1.000 1.000 2.150 3.065 2.291 0.030 1.000 0.084 0.645 0.219 0.150 0.330 18.314 
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Appendix 4. MOPSO results versus SOPSO 
 
 

Table A4.1. Full lap results comparison of the vehicle dynamic data error (simulated versus PSO). SOPSO results show the error and 
best cost for each specific dynamic optimisation algorithm (longitudinal velocity, lateral acceleration and yaw rate) as opposed to all 

three vehicle dynamic outputs within the MOPSO. 
 
 
Comparison of Best Cost, Errors and Sum of Errors (SOPSO vs MOPSO) 

 Abbey The Loop Luffield Maggots/Becketts Vale Silverstone GP 

 
SOPSO 
Vx 

SOPSO 
Ay 

SOPSO 
Yaw MOPSO SOPSO Vx SOPSO Ay 

SOPSO 
Yaw MOPSO SOPSO Vx SOPSO Ay 

SOPSO 
Yaw MOPSO 

SOPSO 
Vx SOPSO Ay 

SOPSO 
Yaw MOPSO SOPSO Vx SOPSO Ay 

SOPSO 
Yaw MOPSO 

SOPSO 
Vx SOPSO Ay 

SOPSO 
Yaw MOPSO 

Best Cost -0.0521 -1.9596 -0.0692 

-0.06 
-3.78 
-2.06 -0.0226 -1.4749 -0.0890 

-0.03 
-14.97 
-1.60 -0.0688 -3.5003 -0.0230 

-0.07 
-16.30 
-3.57 -0.0077 -3.5307 -0.0037 

-0.04 
-17.30 
-3.55 -0.0224 -1.9265 -0.1000 

-0.03 
-8.89 
-2.23 0.0000 0.0000 0.0000 

-0.03 
-23.02 
-1.30 

Error Vx 0.0003 0.0004 0.0003 0.0004 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 

Error Ay 0.1853 0.1711 0.1906 0.1793 0.0806 0.0722 0.0939 0.0699 0.1056 0.1056 0.1060 0.1069 0.0811 0.0857 0.0802 0.0801 0.2605 0.2597 0.2597 0.2615 0.0000 0.0000 0.0000 0.0040 

Error Yaw 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 
Sum of 
Error (Vx) 26.786    27.597    28.918    28.590    19.375    14.456    
Sum of 
Error (Ay)  24.552    23.729    24.811    22.727    30.372    21.828   
Sum of  
Error (Yaw)   23.694    25.890    25.705    17.668    22.492    24.695  

Sum of Total Error 

 SOPSO Average MOPSO SOPSO Average MOPSO SOPSO Average MOPSO SOPSO Average MOPSO SOPSO Average MOPSO SOPSO Average MOPSO 
Sum of 
Total Error 25.011 30.011 25.739 22.805 26.478 24.442 22.995 29.805 24.080 22.033 20.326 18.314 
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Appendix 5. Trajectory Parameters 
 
 

Table A5.1. SOPSO shortest path Trajectory parameters 500 segment lap. 
 
 

Test  c1 c2 w Length 

Iteration 
at best 
length Its Population nVar pm 

Run Time 

26 3 1 linspace(0.1,1,MaxIt);  567.02 45 50 200 1 to 50 0.95 21 

27 3 1 linspace(0.1,1,MaxIt);  543.86 50 50 200 51 to 100 0.95 14.17 

28 3 1 linspace(0.1,1,MaxIt);  540.52 50 50 200 51 to 100 0.95 14.17 

29 3 1 linspace(0.1,1,MaxIt);  543.68 65 75 200 51 to 100 0.95 21.48 
30 3 1 linspace(0.1,1,MaxIt);  575 47 50 200 101 to 150 0.95 14.94 
31 3 1 linspace(0.1,1,MaxIt);  541 48 50 200 151 to 200 0.95 14.91 

32 3 1 linspace(0.1,1,MaxIt);  573 44 50 200 201 to 250 0.95 15.12 

33 3 1 linspace(0.1,1,MaxIt);  569 47 50 200 251 to 300 0.95 14.45 

34 3 1 linspace(0.1,1,MaxIt);  559 45 50 200 301 to 350 0.95 14.82 

35 3 1 linspace(0.1,1,MaxIt);  575 45 50 200 351 to 400 0.95 14.86 

36 3 1 linspace(0.1,1,MaxIt);  565.77 47 50 200 401 to 450 0.95 14.92 

37 3 1 linspace(0.1,1,MaxIt);  555.32 48 50 200 451 to 500 0.95 14.48 

38 3 1 linspace(0.1,1,MaxIt);  556.44 45 50 200 451 to 500 0.95 14.96 
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TableA5.2. SOPSO shortest path Trajectory parameters 360segment lap. 
 
 

Test  c1 c2 w Length 

Iteration 
at best 
length Its Population nVar pm Run Time 

42 3 1 linspace(0.1,1,MaxIt);  465.66 43 50 200 1 to 30 0.95 15.50 
43 3 1 linspace(0.1,1,MaxIt);  437.87 45 50 200 31 to 60 0.95 15.47 
44 3 1 linspace(0.1,1,MaxIt);  465.49 41 50 200 61 to 90 0.95 15.42 
45 3 1 linspace(0.1,1,MaxIt);  457.13 47 50 200 91 to 120 0.95 15.23 
46 3 1 linspace(0.1,1,MaxIt);  441.81 48 50 200 121 to 150 0.95 14.74 
47 3 1 linspace(0.1,1,MaxIt);  470.73 46 50 200 151 to 180 0.95 14.94 
48 3 1 linspace(0.1,1,MaxIt);  465.84 48 50 200 181 to 210 0.95 14.95 
49 3 1 linspace(0.1,1,MaxIt);  456.81 49 50 200 211 to 240 0.95 14.91 
50 3 1 linspace(0.1,1,MaxIt);  468.94 43 50 200 241 to 270 0.95 18.33 
51 3 1 linspace(0.1,1,MaxIt);  469.71 43 50 200 271 to 300 0.95 15.69 
52 3 1 linspace(0.1,1,MaxIt);  462.26 45 50 200 301 to 330 0.95 15.67 
53 3 1 linspace(0.1,1,MaxIt);  451.62 43 50 200 331 to 360 0.95 17.13 
54 3 1 linspace(0.1,1,MaxIt);  5844.48 45 50 200 1 to 360 0.95 39.44 
55 3 1 linspace(0.1,1,MaxIt);  5828.98 36 50 800 1 to 360 0.95 169.72 
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Appendix 6. Pareto front and trajectory plots  

 

 
Figure A6.1. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Abbey and Farm Corner. c) Best shortest 
path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results.  
 

c) d) 

e) 

a) b) 
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Figure A6.2. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Village and The Loop complex. c) Best 

shortest path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path 
results. 

 

c) d) 

e) 

a) b) 
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Figure A6.3. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Aintree and Wellington Straight. c) Best 

shortest path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path 
results. 

c) d) 

e) 

a) b) 
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Figure A6.4. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Brooklands corner. c) Best shortest path, d) 

minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 
 

c) d) 

e) 

a) b) 
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Figure A6.5. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Luffield corner. c) Best shortest path, d) 

minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 
 

c) d) 

e) 

a) b) 
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Figure A6.6. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for National Pit Straight. c) Best shortest path, d) 

minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 
 

c) d) 

e) 

a) b) 
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Figure A6.7. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Copse corner. c) Best shortest path, d) 
minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 

 

c) d) 

e) 

a) b) 
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Figure A6.8. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for the Maggotts and Becketts complex. c) Best 

shortest path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path 
results. 

c) d) 

e) 

a) b) 
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Figure A6.9. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Chapel corner. c) Best shortest path, d) 
minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 

c) d) 

e) 

a) b) 
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Figure A6.10. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Hangar Straight and Stowe corner. c) Best 

shortest path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path 
results. 

 

c) d) 

e) 

a) b) 
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Figure A6.11. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Stowe and Vale corners. c) Best shortest 

path, d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 

c) d) 

e) 

a) b) 
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Figure A6.12. a) SOPSO Shortest Path and b) SOPSO minimum curvature vs MOPSO for Vale and Club corners. c) Best shortest path, 

d) minimum curvature and e) mid-pareto front are presented from the MOPSO results as a comparison of trajectory path results. 
Appendix 7. Hybrid Energy Management 

 

c) d) 

e) 

a) b) 
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Figure A7.1. Proposed GT hybrid category - powertrain energy flow. 
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Figure A7.2. An example of variables used to control regeneration and hybrid power deployment, single MGU-K (non-MGU-H). 
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Figure A7.3. An example of variables used to control regeneration and hybrid power deployment, MGU-K/MGU-H system. 
Appendix 8. Simulink Model with Hybrid Powertrain. 
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Figure A8.1. Transient dynamic Simulink model - hybrid powertrain and vehicle layout. 
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Figure A8.2. Transient dynamic Simulink model - hybrid powertrain sub-system. 
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Figure A8.3. Transient dynamic Simulink model – dynamic behaviour sub-system. 
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Appendix 9. Final Trajectory Plots 
 
 
 
 

 
 
 
 

Figure A9.1. Smooth spline interpolation of the 2.02.106 and 1.58.371 MOPSO lap times. 
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Figure A9.2. Detailed sections of all corners of the Silverstone GP circuit for the best lap-time for a non-hybrid vehicle. 
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Figure A9.3. Detailed sections of all corners of the Silverstone GP circuit for the best lap-time for a hybrid vehicle. 
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Appendix 10 – Equations of Motion Derivation 
 
 
Assuming a three-coordinate system (Figure 1.6), the vehicles fixed frame (!!!), is rotated with a yaw angle (") about the z-axis of the vehicles 
inertia frame (!"!), where ## is the vehicle yaw rotation matrix: 
 
 

$# = &
cos" −sin" 0
sin" cos" 0
0 0 1

/ 

(A10.1) 
 
Pitch (0), is the rotation around the y-axis and therefore denoting the chassis rotation frame as !$!, and the chassis rotation matrix: 
 

$$ = &
cos 0 0 sin 0
0 1 0

− sin 0 0 cos 0
/ 

 
(A10.2) 

The final rotation frame around the body (!%!), is the roll angle (1) around the x-axis, creating the body rotation matrix: 
 
 

$% = &
1 0 0
0 cos1 − sin1
0 sin1 cos1

/ 

 
(A10.3) 

The centre of gravity position in the body rotational frame is ℎ3%which is equal to [0 0 ℎ]&, the centre of gravity height above ground with the 
body sat on a flat plane with no roll or pitch angle. Therefore, the centre of gravity position in !!!: 
 

ℎ3# = $$$%ℎ3% 
(A10.4) 

 
 



 
 
 

246 

 

 
Figure A10.1 – Inertia Frame and vehicle fixed frame, rotating and translating.  

 
 

Point P, consists of coordinates 6̅ with respect to the vehicle frame that is travelling at a velocity with respect to the inertia frame. Given a vector 

!8 , then 
'
'(9"!

!8 = '
'(9!!

!8 + ;< × !8,	the velocity of P is therefore: 

 
 

!8) = !8* +
@
@AB"!

6̅ = !8* +
@
@AB!!

6̅ + ;< × 6̅ 

(A10.5) 
 
 
 
 
 
 

!"! 

!!! 
!8* 

;< 

6̅ 

P 
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Acceleration is therefore  
 

C8+ =
@
@AB!!

D!8* +
@
@AB!!

6̅ + ;< × 6̅E + ;< × D!8* +
@
@AB!!

6̅ + ;< × 6̅E 

 

=	
@
@AB!!

!8* +
@,

@A,F!!
6̅ +

@
@AB!!

6̅ + ;< × 6̅ × ;< × (;< × 6̅) + 2;< ×
@
@AB!!

6̅ 

 
(A10.6) 

 
 
 
External forces acting on a rigid body (B), utilising the Newton-Euler rule is defined as: 
 

∫%C8+@K) = KC8- = L8 
(A10.7) 

 
where 
@K)	are all mass elements  
C8-  is the acceleration at the centre of mass. 
 
Therefore, the total external moments are; 
 

@
@AB"!

∫%6̅ × !8)@K) =
@
@AB"!

M#!!;<"! = N< 

(A10.8) 
 

 
where 
M#!! is the inertia moments matrix in respect to the vehicle fixed frame.  
;<"! = [1̇ 0̇ "̇]& 
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Utilising (A10.7) and (A10.8) and where the angular velocity of the vehicle fixed frame equals ;<# = [0 0 "̇]& then  
 

M#!!;̇<"! + ;<# × M#!!;<"! = N<  
(A10.9). 

 
 
In (A10.9) the inertia is constant with respect to the vehicle fixed frame, whereas the inertia is typically measured from the body frame. The 
inertia, however, can be calculated using: 
 

M#!! = $$$%M%$%&$%&  
 
where 
M% is the moment of inertia around the body frame. It is assumed for simplicity with cross terms neglected that  
 

M% = P
Q.. 0 0
0 Q// 0
0 0 Q00

R 

(A10.10) 
 
 

which gives 
 

M#!! = &
Q1 Q, Q2
Q, Q3 Q4
Q, Q4 Q5

/ 

 
(A10.11) 

where 
Q1 = STU,(0)Q.. + UVW,(0)UVW,(1)Q// + UVW,(0)STU,(1)Q00 
Q, = sin(0) sin(1) cos(1) XQ// − Q00Y 
Q2 = −sin(0) cos(0) ZQ.. − Q// + STU,(1)XQ// − Q00Y[ 
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Q3 = STU,(1)Q// + UVW,(1)Q00 
Q4 = sin(1) cos(1) cos(0) XQ// − Q00Y 
Q2 = sin,(0)Q.. + cos,(0) XUVW,(1)Q// + STU,(1)Q00Y 
 
Assuming the vehicle frame is at the centre of mass in the x-y plane, 6̅ = 0 in (A10.5). Therefore, the velocity in the x and y directions are !8 =
[!. !/]&. 
 
The force equations are found by a combination of (1.10), (1.11) from Chapter 1 and (A10.6), (A10.7). It is assumed 6̅ = 0 and all derivatives 
thereof.  Similar can be carried out for the equations of motion around the yaw axis by combining (1.10), (1.11), (1.12), (A10.9) and (A10.11). 
Reshuffling of the equations final equations of motion are provided in (1.6) to (1.9). 
 


