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Abstract

This thesis contributes to the theory and methodology of robust estimation for two

time series models: the generalized autoregressive conditional heteroscedasticity

(GARCH) model and the vector autoregressive moving-average (VARMA) model.

More specifically, the first part (Chapter 3) of this thesis considers a class of

M-estimators of the parameters of the GARCH models which are asymptotically

normal under mild assumptions on the moments of the underlying error distri-

bution. Since heavy-tailed error distributions without higher order moments are

common in the GARCH modeling of many real financial data, it becomes worth-

while to use such estimators for the time series inference instead of the quasi max-

imum likelihood estimator. We discuss the weighted bootstrap approximations of

the distributions of M-estimators. Through extensive simulations and data anal-

ysis, we demonstrate the robustness of the M-estimators under heavy-tailed error

distributions and the accuracy of the bootstrap approximation. In addition to

the GARCH(1, 1) model, we obtain extensive computation and simulation results

which are useful in the context of higher order models such as GARCH(2, 1) and

GARCH(1, 2) but have not yet received sufficient attention in the literature. We

use M-estimators for the analysis of three real financial time series fitted with

GARCH(1, 1) or GARCH(2, 1) models.

In the second part (Chapter 4) of this thesis, we propose a novel class of

estimators of the GARCH parameters based on ranks, called R-estimators, with

the property that they are asymptotic normal under the existence of a more than

second moment of the errors and are highly efficient. We also consider the weighted
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bootstrap approximation of the finite sample distributions of the R-estimators.

We propose fast algorithms for computing the R-estimators and their bootstrap

replicates. Both real data analysis and simulations show the superior performance

of the proposed estimators under the normal and heavy-tailed distributions. Our

extensive simulations also reveal excellent coverage rates of the weighted bootstrap

approximations. In addition, we discuss empirical and simulation results of the

R-estimators for the higher order GARCH models such as the GARCH(2, 1) and

asymmetric models such as the GJR model.

In the third part (Chapter 5 and Chapter 6) of this thesis, we propose a new

class of R-estimators for semiparametric VARMA models in which the innovation

density plays the role of the nuisance parameter. Our estimators are based on the

novel concepts of multivariate center-outward ranks and signs. We show that these

concepts, combined with Le Cam’s asymptotic theory of statistical experiments,

yield a class of semiparametric estimation procedures, which are efficient (at a given

reference density), root-n consistent, and asymptotically normal under a broad

class of (possibly non elliptical) actual innovation densities. No kernel density

estimation is required to implement our procedures. A Monte Carlo comparative

study of our R-estimators and other routinely-applied competitors demonstrates

the benefits of the novel methodology, in large and small sample.
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Chapter 1

Introduction

Why a robust estimator? The reasons are twofold. First, for a statistical model,

an estimator of high quality (e.g. large efficiency) is more desirable. Second,

by using a robust estimator, heavy-tails of the innovation or a certain degree of

contamination of observations would not lead to a disaster (e.g. large deviation

from the true parameter).

This thesis is devoted to the development of robust estimators for two time se-

ries models: the generalized autoregressive conditional heteroscedasticity (GARCH)

model, which is univariate, and the vector autoregressive moving-average (VARMA)

model, which is multivariate. For the GARCH model, we investigate a class of M-

estimators proposed by Mukherjee (2008), and we propose a class of rank-based

estimators (R-estimators hereafter). We also consider a type of bootstrap for both

the M-estimators and R-estimators based on a sequence of exchangeable weights to

approximate their finite sample distributions. For the VARMA model, we propose

a class of center-outward R-estimators.

Although both are rank-based robust estimators, there are some methodolog-

ical differences between the R-estimators for the GARCH model and for the

VARMA model: (i) The former is based on classical univariate ranks and signs,

while the latter, due to lack of canonical ordering in dimension d ≥ 2, takes ad-

vantage of novel concepts of center-outward ranks and signs recently proposed by

Hallin (2017), which hinge on measure-transportation theory. (ii) Strictly speak-
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ing, the former is not genuinely rank-based as the objective function involves both

the ranks and the observations; on the contrary, the objective function of the latter

is measurable with respect to the σ-field generated by the ranks and signs; hence it

is distribution-free. (iii) The techniques we use to establish the asymptotic normal-

ities of these R-estimators are completely different: the former is based on some

results for empirical processes; the later uses Le Cam’s asymptotic theory of statis-

tical experiments and a Hájek asymptotic representation result for center-outward

rank statistics.

1.1 M- and R-estimation for the GARCH model

Financial time series, such as returns of stock indices or exchange rates, often

exhibit some important “stylized facts” such as heavy-tailed distribution, volatility

clustering, and so on; see Taylor (2005) for details. To capture these features, Engle

(1982) proposed the autoregressive conditional heteroscedasticity (ARCH) model

for the volatility process, in which the conditional variance is a linear function of

the lagged squared returns. However, one disadvantage of the ARCH model is

that it often needs many parameters to fit a financial data adequately. To deal

with this, Bollerslev (1986) proposed the generalized ARCH (GARCH) model, in

which the conditional variance is the linear function of both the lagged squared

returns and the lagged squared volatilities. Since then, the GARCH model has

enjoyed wide popularity among both researchers and financial practitioners, and

it has become an important model in financial risk management. For example, see

Francq and Zaköıan (2010) and Christoffersen (2012).

In terms of parameter estimation in the GARCH model, the most commonly-

applied method is the quasi-maximum likelihood estimator (QMLE), which is ob-

tained by maximizing the normal likelihood function. The asymptotic normality of

the QMLE was established by Weiss (1986) for the ARCH model and by Lee and

Hansen (1994) and Lumsdaine (1996) for the GARCH(1, 1) model. For the general

GARCH(p, q) model, it was proved by Berkes et al. (2003). They assumed the
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existence of the fourth moment of the innovation term in the ARCH or GARCH

model. However, financial time series were frequently reported to have heavy-

tailed distributions and this assumption may not hold. Hence, it is necessary to

develop robust estimation procedures.

A popular type of robust estimation procedure is M-estimation, which was

introduced by Huber (1964) for location models. M-estimator, with an appropriate

defined score, is usually defined through minimizing a function associated with the

score or as a solution of an equation; see van der Vaart (1998, Chapter 5). It is

a generalization of some classical estimators such as the least squares estimator

(LSE), least absolute deviations (LAD) estimator, MLE, and so on. The advantage

of the M-estimator, compared to the QMLE, is that the consistency (usually
√
n-

consistency) holds under milder moment assumption; see Huber (1964), Huber

(1973) in the context of location and regression models and Zhou et al. (2018) in

the context of high-dimensional regression model.

Another type of robust estimation procedure is R-estimation, which is not

only robust against heavy-tails but also achieves the semiparametric efficiency

bound when the chosen reference density coincides with the underlying distribu-

tion; see, e.g., Hallin and La Vecchia (2017, Section 3.2) for details. R-estimation

has been proposed first in the context of location (Hodges and Lehmann 1956)

and regression (Jurečková 1971, Jaeckel 1972) models with independent observa-

tions. R-estimation later on was extended to autoregressive time series models

(Koul and Saleh 1993, Koul and Ossiander 1994, Terpstra et al. 2001, Mukherjee

and Bai 2002, Andrews 2008, 2012). Extensions to the estimation of non-linear

time series such as AR-GARCH, discretely observed diffusions with jumps, or au-

toregressive conditional duration models were considered by Mukherjee (2007),

Andreou and Werker (2015), and Hallin and La Vecchia (2017, 2019).

This thesis considers both M-estimation (Chapter 3) and R-estimation (Chap-

ter 4) for the GARCH model. The former one was proposed by Mukherjee (2008),

for which the asymptotic normality only requires existence of a fractional moment
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of the innovation term in the GARCH model. In this thesis, a new computation-

efficient algorithm for the M-estimation is employed. In addition to some clas-

sic M-scores, such as the QMLE, Least Absolute Deviation (LAD) and Huber’s

scores, this thesis also considers some alternatives including µ-score and Cauchy

score which were not investigated in the literature. Instead of considering just the

GARCH(1, 1) model, the M-estimation is applied to some higher order GARCH

models, which has attracted attention in recent literature; see, for example, Francq

and Zaköıan (2009). Extensive simulation shows the M-estimators are more ro-

bust than the QMLE under heavy-tailed distributions. Also, it is shown that the

robustness holds when the underlying data generating process is the GARCH(1, 1)

model but is misspecified to the GARCH(2, 1) model (this type of misspecification

is essentially the case where the parameter is at the boundary of the parameter

space).

The class of the R-estimators for the GARCH model proposed in this thesis is

defined through a one-step procedure, which is based on an asymptotic linearity

result of a rank-based central sequence. It is shown that under some mild conditions,

the R-estimators, similar to the M-estimators, converge to normal distributions

at rate n1/2. Extensive simulation is carried out to compare the QMLE with

different types of the R-estimators. It shows that the QMLE is outperformed by

the R-estimators under heavy-tailed error distributions in terms of both bias and

mean square error (MSE). Except for the robustness against heavy-tails, the R-

estimators are also efficient. For example, simulation results show that for a finite

sample size, the R-estimator based on the normal score function achieves almost

the same efficiency as the QMLE under the normal error distribution, and it is

more efficient than the QMLE for heavy-tailed distributions.

This thesis also provides empirical study on the M-estimators and R-estimators

through analysing various financial time series from stock indices and exchange

rates. It is shown that the M-estimates and R-estimates are quite different from the

QMLE for some financial data. Analysis of the residuals shows that the difference
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may be caused by infinite fourth moment of the innovation term, which leads to

the failure of the QMLE.

This thesis also investigates bootstrap method for both the M-estimators and

R-estimators. Instead of resampling residuals (see Christoffersen and Gonclaves

2005, Hall and Yao 2003) or blocks of the likelihood function (see Corradi and

Iglesias 2008) in the GARCH model, which are two commonly-employed boot-

strap techniques in the literature, this thesis considers resampling weights, which

are independent of the data. The main advantages of the weighted bootstrap are its

simplicity and computational efficiency: only the weights need to be generated for

each bootstrap replicate; the computation algorithm for computing the bootstrap

estimates is at the same time software-friendly as the algorithm for computing the

robust estimates. Through extensive simulation, this thesis reveals good perfor-

mance of the weighted bootstrap approximation for both the M-estimators and

R-estimators under finite sample size settings.

1.2 Center-outward R-estimation for the VARMA

model

The VARMA model is normally used for studying the correlation structure between

multiple time series. It has applications in various fields including economics,

biology and so on; see, e.g., Tsay (2014, Section 3.15), Fujita et al. (2007) for

details. Similar to the GARCH model, the QMLE is routinely-used for estimating

the VARMA parameter, and it is
√
n-consistent and asymptotically normal under

finite fourth moment assumption. Therefore, despite its popularity, the QMLE

for the VARMA model is sensitive to heavy-tails (in fact, it is also sensitive to

asymmetry; see examples in Chapter 5), and its asymptotic and finite-sample

performance can be quite poor under non-Gaussian ones.

In principle, the ultimate theoretical remedy to this is the semiparametric

estimation method described in the monograph by Bickel et al. (1993), which
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yields uniformly, locally and asymptotically, semiparametrically efficient estima-

tors. However, semiparametric estimation procedures are not easily implemented,

since they rely on kernel-based estimation of the actual innovation density (hence

the choice of a kernel, the selection of a bandwidth) and the use of sample splitting

techniques. All these niceties thus require relatively large samples and are hard

to put into practice in a multivariate context: the higher the dimension, the more

delicate multivariate kernel density estimation and the larger the required sample

size.

A natural question is thus: “Can R-estimation palliate the drawbacks of the

QMLE and the Bickel et al. techique in dimension d ≥ 2 the way it does in

dimension d = 1”? This question, however, immediately comes up against another

one: “What are ranks and signs, hence what is R-estimation, in dimension d ≥ 2”?

Indeed, starting with dimension d = 2, the real space Rd is no longer canonically

ordered. Several notions of multivariate ranks and signs have been proposed in the

statistical literature. Among them, the componentwise ranks (Puri and Sen 1971),

the spatial ranks (Oja 2010), the depth-based ranks (Liu 1992; Liu and Singh 1993),

and the Mahalanobis ranks and signs (Hallin and Paindaveine (2002a)). Those

ranks and signs all have their own merits but also some drawbacks, which make

them unsuitable for our needs (essentially, they are not distribution-free, or not

maximally so); we refer to the introduction of Hallin et al. (2020a) for details.

The Mahalanobis ranks and signs have been successfully considered for testing

purposes in the time series context (Hallin and Paindaveine 2002b, 2004). However,

no results on estimation are available, and their distribution-freeness property is

limited to elliptical densities—a very strong symmetry assumption which we are

not willing to make in this thesis.

Based on measure-transportation results, a data-driven ordering yielding a con-

cept of ranks and signs for multivariate observations has been proposed recently

by Chernozhukov et al. (2017), Hallin (2017), and Hallin et al. (2020a). Those

center-outward ranks and signs (see Chapter 5 for details) enjoy all the properties
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that make traditional univariate ranks a successful tool of inference. In particu-

lar, they are distribution-free (see Hallin et al. (2020a) for details), thus preserve

the validity of rank-based procedures irrespective of the possible misspecification

of the innovation density. Moreover, they are invariant with respect to shift and

global scale factors and equivariant under orthogonal transformations; see Hallin

et al. (2020b). Essentially, the center-outward ranks and signs extend the validity

of Mahalanobis ranks and signs-based methods to arbitrary absolutely continuous

distributions in Rd.

Based on the center-outward ranks and signs, this thesis (Chapter 5) proposes a

new class of R-estimators for semiparametric VARMA models, with the innovation

density playing the role of nuisance parameter. Combined with Le Cam’s theory

(see, e.g., Le Cam and Yang 2000, Chapter 6 and van der Vaart 1998, Chapter 7)

and the local asymptotic normality results in Garel and Hallin (1995) and Hallin

and Paindaveine (2004), this thesis derives the relevant asymptotic theory of the R-

estimators, which are root-n consistent and asymptotically normal under a broad

class of innovation densities including, e.g., multi-modal mixtures of Gaussians.

For the sake of applicability, an algorithm which explains how to implement our

estimators is given. Extensive simulation study shows significant superiority of

R-estimators over the QMLE for non-elliptical innovations.

Contributions. The major contributions of this thesis are as follows. First, for

the GARCH model, extensive empirical analysis of various types of M-estimators

and the weighted bootstrap approximation are carried out; a novel class of R-

estimators are proposed, and the asymptotic results are derived. Second, for the

VARMA model, a class of R-estimators based on the center-outward ranks and

signs are proposed, and the asymptotic theory is developed. To the best of our

knowledge, this thesis is the first successful attempt to apply the center-outward

R-estimation to multivariate time series. It extends the application of multivari-

ate R-estimation to a wider horizon—from elliptic distributions to non-elliptic

distributions. Third, for easy of implementation, this thesis provides algorithms
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for computing the M-estimators and R-estimators for the GARCH model and R-

estimators for the VARMA model (the codes for the latter are available from the

authors’ GitHub page https://github.com/HangLiu10/RestVARMA).

1.3 Structure of the thesis

This thesis is organised as follows: Chapter 2 contains some preliminaries. The

GARCH model and some relevant topics are discussed. Different types of the

bootstrap methods and robust estimators are described. The VARMA model is

introduced.

Chapter 3 explores the M-estimators and the weighted bootstrap in the GARCH

model. Real data analysis and simulation study under different error distributions

are carried out to compare the QMLE with the M-estimators. Different boot-

strap schemes are compared through simulation. Also, the M-estimators are com-

puted and studied for higher order GARCH models in addition to the traditional

GARCH(1, 1) model.

Chapter 4 proposes a class of the R-estimators and their weighted bootstrap

in the GARCH model. Asymptotic normality are proved based on some results

on empirical processes. Different types of the R-estimators are compared with the

QMLE through both real data analysis and simulation. Bootstrap schemes are

compared under different sample sizes. Applications to an asymmetric GARCH

model is included.

Chapter 5 proposes a class of the center-outward R-estimators for semipara-

metric VARMA models. The asymptotic normality result is derived by using Le

Cam’s theory and the local asymptotic normality. Simulation is carried out under

both elliptic and non-elliptic distributions to compare the R-estimators with the

QMLE. A real data example is included.

Chapter 6, as the supplementary material for Chapter 5, collects all proofs,

computational aspects, and further numerical results of Chapter 5.

Chapter 7 concludes the thesis and discusses the topics that of future interest.
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Chapter 2

Preliminaries and literature

review

2.1 GARCH models

Financial time series, such as returns of stock indices or exchange rates, often

exhibit three important“stylized facts”; see empirical examples in Taylor (2005),

Christoffersen (2012), Bauwens et al. (2012), and so on. First, the distribution

of returns is nonnormal and has heavy-tails. Second, there is almost no corre-

lation between returns. Moreover, there is positive correlation between absolute

returns, and likewise for squared returns. The third fact is reflected by volatil-

ity clustering, that is, high volatilities are often followed high volatilities and vice

versa. Considering the fact of volatility clustering, it is inappropriate to assume

constant variance for financial time series. Therefore, the classical Autoregressive

Moving Average (ARMA) model that assumes constant variance of error term is

not suitable. Instead, one should adopt a model with variance autocorrelated and

changing throughout time.

Engle (1982) proposed the autoregressive conditional heteroscedasticity (ARCH)

model for the volatility process, which is consistent with the stylized facts. Specif-

ically, let {Xt; t ∈ Z} denote a sequence of a financial time series that forms
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the observations, and let Ft−1 stand for the σ-field generated by Xt−1, Xt−2, · · · .

Denote by vt = σ2
t the conditional variance at time t given Ft−1, where σt :=

(E(X2
t |Ft−1))1/2 is usually called the conditional volatility. Then the ARCH(p)

model is defined by two equations

Xt = σtεt, (2.1.1)

and

σ2
t = ω0 +

p∑
i=1

α0iX
2
t−i, p ∈ Z+, (2.1.2)

where ω0 > 0,α0i ≥ 0, ∀i are assumed to ensure that {σ2
t ; t ∈ Z} are strictly

positive (throughout, we use suffix 0 to denote the true model parameters), and

{εt; t ∈ Z} are unobservable independent and identical distributed (i.i.d.) errors

with mean zero.

It has been shown in the literature that for a financial time series, one often

needs to use a high order ARCH model to fit the data adequately. We can check the

adequacy of the fitted ARCH model by testing the independence of the residuals

using, e.g. ,the Ljung–Box statistics. See Tsay (2010, Section 3.4.3) for further

details. For example, for the monthly excess returns of the S&P 500 index analyzed

in Tsay (2010), an ARCH(9) model is needed. To circumvent this, Bollerslev

(1986) proposed the generalized ARCH (GARCH) model, in which the conditional

variance is the linear function of both the lagged squared returns and the lagged

squared volatilities. The GARCH(p, q) model is defined by (2.1.1) and

σ2
t = ω0 +

p∑
i=1

α0iX
2
t−i +

q∑
j=1

β0jσ
2
t−j, t ∈ Z, (2.1.3)

with ω0 > 0, α0i, β0j ≥ 0, ∀ i, j. Throughout, we will let

θ0 = (ω0, α01, ..., α0p, β01, ..., β0q)
′

denote the true parameter and Θ denote the parameter space.
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The recursive property of the GARCH model allows it to be represented as an

ARCH(∞) model. Thus, as shown in the literature, a low order GARCH model,

such as GARCH(1, 1), is usually able to fit financial time series adequately.

For a GARCH(p, q) model, when the innovation term εt is assumed to have unit

variance, which is a standard assumption adopted by many researcher, (2.1.1) and

(2.1.3) imply that the unconditional variance E(σ2
t ) satisfies

E(σ2
t ) = ω0/(1−

p∑
i=1

α0i −
q∑
j=1

β0j).

Therefore, Bollerslev (1986) showed that the condition

p∑
i=1

α0i +

q∑
j=1

β0j < 1 (2.1.4)

needs to be met for the GARCH model to be second order stationary. However,

Bougerol and Picard (1992a; 1992b) argued that many empirical financial time

series do not satisfy (2.1.4) while they are still strictly stationary (an example that

(2.1.4) does not hold is the integrated GARCH (IGARCH) proposed by Engle

and Bollerslev (1986), which assumes that the left hand side of (2.1.4) equals 1).

Hence, Bougerol and Picard (1992a; 1992b) proposed a necessary and sufficient

condition for a GARCH(p, q) model to be stationary. To state the condition, we

introduce the following notations. Let

τ n = (β1 + α1ε
2
n, β2, ..., βq−1) ∈ Rq−1,

ξn = (ε2n, 0, ..., 0) ∈ Rq−1

and

α = (α2, ..., αp−1) ∈ Rp−2,

where p, q ≥ 2 can always be achieved by letting some αi, βj equal to 0. Define a
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(p+ q − 1)× (p+ q − 1) matrix An, written in block form, by

An =



τ n βq α αp

Iq−1 0 0 0

ξn 0 0 0

0 0 Ip−1 0


,

where Iq−1, Ip−1 are the identity matrices of size q − 1 and p − 1, respectively.

Also, define the matrix norm of any d× d matrix M by

||M || = sup{||Mx||/||x||;x ∈ Rd,x 6= 0}.

The top Lyapunov exponent associate to a sequence {An;n ∈ Z} is defined by

γ = inf
0≤n<∞

{
E

(
1

n+ 1
log ||A0A1...An||

)}
.

Then a GARCH(p, q) model has a unique stationary solution if and only if

γ < 0. (2.1.5)

For a GARCH(1, 1) model, this condition reduces to E[log(β1 + α1ε
2
1)] < 0, which

is the same as the result obtained in Nelson (1990). Under the stationary condi-

tion (2.1.5), the asymptotic normality of the quasi-maximum likelihood estimator

(QMLE) was proved by Berkes et al. (2003) under some mild conditions. It is also

under this condition, the robust estimators in this thesis are proposed. Through-

out, this thesis assumes (2.1.5) holds so that the proposed robust estimators for

the GARCH model can achieve some nice properties, such as
√
n-consistence and

the asymptotic normality.

Since it has been proposed, the GARCH model has enjoyed wide popularity

among both practitioners and researcher, and there is a huge literature exploring

its applications, among which an important one is financial risk management. In
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particular, it can be used to estimate value at risk (VaR). As a popular mea-

surement of risk, the VaR was proposed by the investment bank J.P. Morgan.

Given the information up to t − 1 and a constant p (0 < p < 1), the VaR at

time t is defined as the conditional p-th quantile of the return at time t. The

estimation of the VaR using the GARCH model was discussed by Angelidis et al.

(2004), Christoffersen and Goncalves (2005), Mancini and Trojani (2006), So and

Yu (2006), Orhan and Koksal (2012), among others. Iqbal and Mukherjee (2010)

and Liu (2016) employed the likelihood ratio tests proposed by Kupiec (1995) and

Christoffersen (1998), which evaluate the VaR estimate according to the coverage

rate and independence, and concluded that the GARCH model based estimation

is reasonable. Another application of the GARCH model is the option pricing

in finance. For details, see Engle and Mustafa (1992), Duan (1995), Heston and

Nandi (2000), Duan and Simonato (2001), among others.

Except for the GARCH model, there are also other autoregressive conditional

heteroscedastic models proposed for various purposes. As reported frequently in

the literature, apart from the stylized facts mentioned above, financial time series

also exhibits other properties. Therefore, some researcher argued that models that

are more complicated than GARCH are needed to accommodate these properties.

Examples of some popular models are as follows.

It was shown in the literature that many financial datasets exhibit asymmetry

property, that is, negative and positive news tend to have different impacts on

the volatility. In particular, negative news usually have greater influence than

positive news. The volatilities in the time period pertaining to negative values

of the time series are usually larger in magnitude than those corresponding to

the time period of positive values. This is often refereed to as leverage effect of

financial time series. To allow for this asymmetry effect, Glosten, Jagannathan

and Runkle (1993) proposed a threshold GARCH (TGARCH) model (also called

the GJR model in the literature). The TGARCH(p, q) model is defined by (2.1.1)
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and

σ2
t = ω0 +

p∑
i=1

[α0i + γ0iI(Xt−i < 0)]X2
t−i +

q∑
j=1

β0jσ
2
t−j, (2.1.6)

where ω0 > 0, α0i, γ0i, β0j ≥ 0, ∀i, j. The greater impact of the negative returns

is reflected by γ0i. When γ0i = 0 for all i = 1, ..., p, the model reduces to the

GARCH(p, q) model. Note that Zaköıan (1994) also proposed a TGARCH(p, q)

model, which, instead of using the quadratic form in (2.1.6), has the form

σt = ω0 +

p∑
i=1

[
α0iX

+
t−i − γ0iX−t−i

]
+

q∑
j=1

β0jσt−j

with X+
t−i = max{Xt−i, 0} and X−t−i = min{Xt−i, 0}. Another GARCH-type model

dealing with the asymmetry effect is the exponential GARCH (EGARCH) model

proposed by Nelson (1991). The EGARCH(p, q) model is defined by (2.1.1) and

an ARMA parameterization:

log(σ2
t ) = ω0 +

1 +
∑q

j=1 β0jL
j

1−
∑p

i=1 α0iLi
g(εt−1),

where L is the lag operator, g(εt) is a linear combination of both εt and |εt| with

two parameters θ and γ that takes the form

g(εt) = θεt + γ[|εt| − E(|εt|)].

Apart from the asymmetric impact, long-memory dependence between the

squared returns was also reported for some financial data. Therefore, Baillie

(1996) suggested a fractional integrated GARCH (FIGARCH) model that uses

a fractional differencing operator (1 − L)d, with 0 ≤ d ≤ 1, to allow for a slow

hyperbolic rate of decay of the lagged squared returns in the conditional variance

function.

For more details regarding models in the GARCH-family, see monographs by

Taylor (2005), Francq and Zaköıan (2010), Tsay (2010), Bauwens et al. (2012),

among others.
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2.2 Bootstrap methods

Due to its simplicity, the bootstrap proposed by Efron (1979) has enjoyed wide

popularity among statisticians. It provides a convenient tool to study the sam-

ple distribution of some pre-specified random variable based on the given data.

In particular, the motivation behind his methodology is, as described in Efron

(1982), for a random variable R(X, F ) of interest, where X = {X1, X2, ..., Xn} is

a sequence of i.i.d. random variables from an unknown probability distribution F ,

we wish to estimate some aspect of R’s distribution, for instance, its expectation

EFR or the probability P(R < 2).

The bootstrap method provides an extremely simple solution to this problem:

Step 1. Construct the empirical distribution function F̂ by assigning probabil-

ity mass 1/n to each observed values of Xi, 1 ≤ i ≤ n.

Step 2. Draw a“bootstrap sample” from F̂ , i.e.,

X∗1 , X
∗
2 , ..., X

∗
n
i.i.d.∼ F̂ .

Step 3. Approximate the distribution of R(X, F ), which is usually unknown,

by the bootstrap distribution of

R∗ = R(X∗, F̂ ).

As a concrete example, the bootstrap is always used to estimate bias of a

statistic θ(F ), i.e., Bias = EF θ(F̂ )− θ(F ). Then one can take R(X, F ) = θ(F̂ )−

θ(F ) and get

R∗ = θ(F̂ ∗)− θ(F̂ ).

Accordingly, the bootstrap estimate of bias is B̂ias = E∗R
∗. By drawing the

bootstrap sample B times, where B is usually a large number, B̂ias can be ap-

proximated by

1/B
B∑
b=1

θ̂∗b − θ̂.
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When one is interested in estimating variance of θ(F ), i.e., Var = EF [θ(F̂ ) −

θ(F )]2. Then the bootstrap estimate of variance is the approximation by

1/(B − 1)
B∑
b=1

(
θ̂∗b − θ̂

)2
.

The bootstrap method described above that uses the empirical distribution

function is nonparametric. Another case to be distinguished, as described in the

monograph by Davison and Hinkley (1997), is when a particular parametric model

is given for the distribution of X = {X1, X2, ..., Xn}. In this situation, one can

first estimate the parameter ψ in the model by ψ̂, which is often the maximum

likelihood estimate since the distribution is known. Then by using its substitution

in the model to give the fitted model, with the distribution function F̂ = Fψ̂, one

can draw the bootstrap sample from the fitted model.

When it comes to dependent data, which is quite common for financial time

series, one cannot simply use the bootstrap methods mentioned above as they will

break the dependence structure between the random variables. Therefore, some

alternative bootstrap methods need to be considered. A good reference on this is

the monograph by Lahiri (2010), which describes various aspects of the bootstrap

for dependent data, including methodology, second-order properties, and so on.

Some methods in the book are as follows.

Suppose a sequence of random variables {Xn;n ≥ 1} satisfying

Xn = h(Xn−1, ..., Xn−p;β) + εn, (2.2.1)

where {εn;n ≥ 1} is a sequence of i.i.d. random variables from a probability

distribution F with mean zero. Let β̂n denote an estimator, e.g., the maximum

likelihood estimator. Define the raw residuals

ε̂i = Xi − h(Xi−1, ..., Xi−p; β̂n), p < i ≤ n.
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By centring the raw residuals ε̂i’s, one obtains the centred residuals

ε̃i = ε̂i − ε̄n, p+ 1 ≤ i ≤ n,

where

ε̄n = 1/(n− p)
n−p∑
i=1

ε̂i+p.

Then one can draw bootstrap sample {ε∗i ; p+ 1 ≤ i ≤ n} from {ε̃i; p+ 1 ≤ i ≤ n}

with replacement. Thus using the model (2.2.1), the bootstrap observations can

be constructed by letting

X∗i = Xi for 1 ≤ i ≤ p

and

X∗i = h(X∗i−1, ..., X
∗
i−p; β̂n) + ε∗i for p+ 1 ≤ i ≤ n.

This type of the bootstrap is often referred to as the residual bootstrap in the

literature. As pointed out by Lahiri (2010), its performance depends heavily on

the structure of the sequence {Xn;n ≥ 1} and the prior specification of the model.

In particular, it works well when the sequence {Xn;n ≥ 1} is stationary, whereas

it is very sensitive to the parameter value when {Xn;n ≥ 1} is nonstationary.

Therefore, alternative methods were developed to overcome this disadvantage.

Kunsch (1989) proposed a moving block bootstrap (MBB) method, which,

unlike the residual bootstrap, does not require us to fit a parametric or semipara-

metric model but still works for short-range dependence data. The idea is that

by resampling blocks of observations instead of a single observation at a time,

one can preserve the dependence structure of the data. In particular, let Bi =

{Xi, Xi+1, ..., Xi+l−1; 1 ≤ i ≤ N} denote a block of length l, where N = n− l + 1.

Then by resampling with replacement from {B1, ...,BN}, one can obtain a sequence

of bootstrap blocks {B∗1, ...,B∗k; k ≥ 1}. Let {X∗(i−1)l+1, X
∗
(i−1)l+2, ..., X

∗
il; 1 ≤ i ≤ k}

denote the elements in B∗i . Then the MBB sample {X∗1 , X∗2 , ..., X∗m} is of size
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m = kl. Thus, repeating the step 3 of the Efron’s bootstrap, one can obtain the

bootstrap distribution of R∗ as an approximation to the distribution of R(X, F ).

Under appropriate conditions, the consistency is achieved if l = l(n) → ∞ and

l/n→ 0. However, as pointed out by Lahiri (2010), the MBB resampling scheme

suffers from an undesirable boundary effect since it assigns less weights to the

observations toward the beginning and the end than to the middle part. To over-

come this disadvantage, he described a generalized block bootstrap by introducing

a new sequence of random variables, which is essentially the periodic extension of

the original dataset X.

Apart from the bootstrap methods mentioned above, there are also many oth-

ers in the literature. A popular one is the weighted bootstrap (WBS) (or gener-

alized bootstrap) of Chatterjee and Bose (2005). Suppose {φni(Xni,β); 1 ≤ i ≤

n, n ≥ 1} is a triangular sequence of functions taking values in Rp. Assume that

Eφni(Xni,β) = 0 for some unique parameter β0 and an estimator β̂n is defined

as the solution of the equation

n∑
i=1

φ(Xi,β) = 0.

An example of this type of estimator is M-estimator. The WBS estimator β̂
∗
B of

Chatterjee and Bose (2005) is defined as the solution of

n∑
i=1

wniφ(Xi,β) = 0,

where {wni; 1 ≤ i ≤ n, n ≥ 1} is a triangular sequence of random variables that

are exchangeable and independent of {Xni}. It turns out that a host of bootstrap

schemes such as the Efron’s bootstrap, subsampling, Bayesian bootstrap are special

cases of the WBS. Chatterjee and Bose (2005) assumed that the weights satisfy

the basic conditions

E(wn1) = 1, 0 < Var(wn1) = o(n),Corr(wn1, wn2) = O(1/n),
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and they proved the consistency of the WBS under these conditions.

When it comes to the bootstrap for the GARCH(p, q) model, the residual boot-

strap is widely-employed since the residuals {εt; t ∈ Z} are usually assumed to be

i.i.d.. Some examples include Christoffersen and Gonclaves (2005) and Mancini

and Trojani (2006). Jeong (2017) established the second-order asymptotic refine-

ment of the residual bootstrap for the GARCH(1, 1) model. For the GARCH(p, q)

model with sample size n, the residual bootstrap is illustrated as follows.

Step 1. Estimate the parameter and fit the model to obtain the estimates of

the residuals {ε̂t; 1 ≤ t ≤ n}, i.e.,

ε̂t = Xt/σ̂t

with

σ̂2
t = ω̂0 +

p∑
i=1

α̂0iX
2
t−i +

q∑
j=1

β̂0jσ̂
2
t−j.

Step 2. Draw bootstrap residuals {ε∗t ; 1 ≤ t ≤ n} from {ε̂t; 1 ≤ t ≤ n} according

to the step 1 and 2 of the Efron’s bootstrap. Note that in the literature, people

also use the centred bootstrap residuals {ε̃∗t ; 1 ≤ t ≤ n}, with

ε̃∗t = ε∗t − 1/n
n∑
i=1

ε∗t ,

to ensure that the zero mean assumption is met. See Christoffersen and Gonclaves

(2005) for details.

Step 3. Construct the sequence {X∗t ; 1 ≤ t ≤ n} using the bootstrap residuals

{ε∗t ; 1 ≤ t ≤ n}.

Step 4. Obtain the bootstrap estimate using {X∗t ; 1 ≤ t ≤ n}.

As pointed out by Hall and Yao (2003) and Linton et al. (2010), when the

fourth moment of the innovation is not finite, the above residual bootstrap fails

for the QMLE as its asymptotic distribution is nonnormal. Hence, they suggested

a percentile-t subsampling bootstrap, which works for both normal and nonnormal
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cases. In particular, the bootstrap is carried out by following steps:

Step 1. Conduct the step 1 of the residual bootstrap for the GARCH model to

obtain {ε̂t; 1 ≤ t ≤ n}.

Step 2. Standardize {ε̂t; 1 ≤ t ≤ n} as follows so that the residual has mean

zero and unit variance, i.e.,

ε̃t =
ε̂t − n−1

∑n
t=1 ε̂t√

n−1
∑n

t=1 ε̂
2
t − (n−1

∑n
t=1 ε̂t)

2
.

Step 3. Resampling {ε∗t ; 1 ≤ t ≤ n} from {ε̃t; 1 ≤ t ≤ n} with replacement.

Step 4. Construct {X∗t ; 1 ≤ t ≤ n} using the bootstrap residuals {ε∗t ; 1 ≤ t ≤

n}.

Step 4. Let m < n, compute the bootstrap estimate θ̂
∗
m using the subsample

{X∗1 , ..., X∗m}.

Assuming m = m(n) → ∞ and m/n → 0, Hall and Yao (2003) showed that

the percentile-t subsampling bootstrap is consistent.

Apart from the residual bootstrap, the block bootstrap is also employed in

the literature for the GARCH model due to that {Xt; 1 ≤ t ≤ n} are dependent.

As described in Corradi and Iglesias (2008), it is based on resampling blocks of

likelihood function. In particular, let

lt(θ) = −1

2
log vt(θ)− 1

2

X2
t

vt(θ)

denote the log-likelihood function when the innovation is assumed with standard

normal distribution. The block bootstrap for the GARCH model is by conducting

the MBB procedure of Kunsch (1989) for {lt(θ); 1 ≤ t ≤ n}, one obtains the MBB

sample of the log-likelihood function {l∗t (θ); 1 ≤ t ≤ n}. Then the block bootstrap

estimator θ̂
∗
n is

θ̂
∗
n = argmax

θ∈Θ

1

n

n∑
t=1

l∗t (θ).

A disadvantage of the block bootstrap for the GARCH model, as shown in

Corradi and Iglesias (2008), is that for a good approximation, high moment of the
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innovation must be finite. However, this does not hold for many financial data.

Due to its simplicity and computational friendly features, the WBS of Chatter-

jee and Bose (2005) is also employed for the GARCH model in the literature. Bose

and Mukherjee (2009) considered the WBS version of a weighted linear estimator

for the ARCH model and proved the bootstrap distribution is consistent. Iqbal

and Mukherjee (2010) and Liu (2016) considered the WBS for the M-estimator

of the GARCH(1, 1) model and showed it provides good approximation through

simulation. Mukherjee (2020) extended their work to the GARCH(p, q) model and

proved the consistence of the WBS.

2.3 Robust estimation

In a parameter estimation procedure, statistical assumptions are sometimes made

for mathematical convenience. For example, in a location or linear regression

model, the error term is usually assumed with normal distribution. Thus the

commonly-applied least squares estimator (LSE) is essentially equivalent to the

maximum likelihood estimator (MLE) and it is therefore asymptotic optimal (in

terms of efficiency). However, in real world, these assumptions may not hold and

small deviation could end up with loss of efficiency or even failure of the statistic.

To motivate the usefulness of the robust estimators, we mention below an example

from Mukherjee and Wang (2014, Table 1.1), where the data was heavily contam-

inated. Using the LSE, which is obtained by minimizing the sum of the square

residuals, they obtained an estimate of the coefficient that was greatly influenced

by the contamination. However, when they adopted other estimation procedures,

the contamination tended to have less influence. Due to their insensitivity, these

estimators are often called robust estimators in the literature.

In Huber and Ronchetti (2009), robustness was defined as being insensitive to

small deviations from the assumptions. They pointed out that a robust procedure

should achieve three goals:

(i). Efficiency: It should have a reasonably good (optimal or nearly optimal)
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efficiency at the assumed model.

(ii). Stability: It should have good performance when there are small deviations

from the assumptions.

(iii). Breakdown: Somewhat larger deviations from the assumptions should

not cause a catastrophe.

Aiming to achieve these goals, various types of robust procedures have been

proposed in the literature, among which includes three important types of robust

estimators: M-estimator, R-estimator and L-estimator. These estimators were

first proposed for the location model; see Hettmansperger and McKean (2010) for

definition of the location model.

The M-estimator of a location parameter was proposed by Huber (1964), where

M stands for maximum likelihood type. It is a generalization of some classical

estimators such as the LSE, least absolute deviations (LAD) estimator, MLE, and

so on. In particular, suppose a sequence {Xi; 1 ≤ i ≤ n} satisfies the location

model

Xi = θ + εi, (2.3.1)

where {εi; 1 ≤ i ≤ n} is an i.i.d. sequence with mean zero and θ is the location

parameter of interest. Let ρ denote a function and ψ denote its derivative. Then

the M-estimator of the location parameter is defined as

θ̂n = arg min
n∑
i=1

ρ(Xi − εi)

or the solution of the equation

n∑
i=1

ψ(Xi − εi) = 0.

Some examples of the M-estimator of the location parameter are as follows.

(i). The LSE: Letting ρ(x) = x2, this yields the sample mean as the estimator.

The estimator is sensitive to outliers.

(ii). The LAD: Here ρ(x) = |x|. This gives the sample median as the estimator
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and is less sensitive to outliers than the LSE.

(iii). The Huber’s estimator: Here ρ(x) = 1
2
x2I(|x| ≤ k) + {k|x| − 1

2
k2}I(|x| >

k), where k > 0 is a constant and I(·) is the indicator function. Similar to the

LAD estimator, the Huber’s estimator is less sensitive to outliers than the LSE.

As mentioned in Jurečková and Sen (1996), the M-estimator is generally locally

robust. That is, it only allows small deviations from the model assumption. In a

global sense, when the underlying distribution is unknown and belongs to a class of

distributions, e.g. symmetric distribution, a rank based procedure or R-estimator

is robust. As summarized in Hallin (2017), the reasons for using R-estimators are

twofold:

(DF) (distribution-freeness): In an i.i.d. noise models (with θ denoting the pa-

rameter of the model), the vector of (θ-residuals) ranks is distribution-free over the

(nonparametric) distribution family of non-vanishing densities f over R. Specifi-

cally, the vector R(n) := {R(n)
1 , ..., R

(n)
n } of ranks is uniform over the n! permuta-

tions of {1, ..., n}, hence distribution-free.

(HW) (semiparametric efficiency perservation): The semiparametric efficiency

bound can be reached via rank-based procedures in i.i.d. noise models; see Hallin

and Werker (2003) for more details.

The R-estimator of a location parameter was proposed by Hodges and Lehmann

(1963) for both one-sample and two-sample location models. It was motivated by

rank test statistic such as the Wilcoxon or normal scores statistic. In particular,

for the two-sample location model, the general rank test statistic, as described

in Huber and Ronchetti (2009) and Hettmansperger and McKean (2010), is as

follows.

Consider two i.i.d. samples {X1, ..., Xm} and {Y1, ..., Yn} with distributions

F (x) and F (x − ∆) respectively. Let Ri denote the rank of Xi in the combined

sample of size m + n. Let ϕ : (0, 1) → R be a square integrable, nondecreasing

function. Then the rank test for the null hypothesis H0 : ∆ = 0 against the
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alternative HA : ∆ > 0 is defined as

Sm,n =
1

m

m∑
i=1

a(Ri), (2.3.2)

where the score function a(i) is generated by ϕ as follows

a(i) = ϕ

(
i

m+ n+ 1

)
.

Under assumption that
m+n∑
i=1

a(i) = 0

or ∫ 1

0

ϕ(t)dt = 0,

the expected value of (2.3.2) is zero under H0. Thus, the estimator of shift ∆̂ is

obtained by solving the equation

Sm,n = 0. (2.3.3)

Some popular rank scores are as follows:

(i). Sign rank score: Here ϕ(u) = sign(u− 1
2
).

(ii). Wilcoxon rank score: Here ϕ(u) = u − 1
2
. This yields the Wilcoxon rank

test for the two-sample location model.

(iii). van der Waerden (vdW) rank score. Here ϕ(u) = Φ−1(u), where Φ(·) is

the c.d.f. of the standard normal distribution.

Note that there are two cases to be distinguished, i.e., mn = 2k andmn = 2k+1

for some positive integer k. Specifically, Let {W (1), ...,W (mn)} denote the ordered

differences {Yj − Xi; 1 ≤ i ≤ m, 1 ≤ j ≤ n}. When mn = 2k + 1, (2.3.3) has

unique solution

∆̂ = W (k+1).

However, when mn = 2k, (2.3.3) does not have unique solution. Hence, Hodges
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and Lehmann (1963) defined the estimate of shift as

∆̂ =
1

2
(∆∗ + ∆∗∗),

where ∆∗ and ∆∗∗ are obtained by letting

∆∗ = sup{∆ : Sm,n > 0} and ∆∗∗ = inf{∆ : Sm,n < 0}.

In both cases, these three rank scores yields

∆̂ = med{Yj −Xi}

with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For the R-estimator of the location, the i.i.d. one-sample case is equivalent to

the two-sample case with i.i.d. samples {X1, ..., Xm} and {2∆−X1, ..., 2∆−Xm}.

Thus, with the sign/Wilcoxon/vdW score, the rank statistic (2.3.3) yields the

R-estimator

∆̂ = med{1

2
(Xi +Xj)}

with 1 ≤ i, j ≤ m.

In terms of the L-estimator, it is defined as a linear combination of order statis-

tics; see Jurečková and Sen (1996), Huber and Ronchetti (2009) for more details

of its definition. In particular, for the location model (2.3.1), the L-estimator θ̂n

satisfies

θ̂n =
n∑
i=1

cniX(i), (2.3.4)

where the coefficients {cni; 1 ≤ i ≤ n} are known and {X(i); 1 ≤ i ≤ n} is the

ordered sequence of the sample. Due to the simplicity of equation (2.3.4), the L-

estimator is computationally appealing. Two classical L-estimators of the location

defined in Bickel (1965) are as follows. They are robust since the outliers are either

trimmed off or replaced.
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(i). The α-trimmed mean. For a constant α ∈ [0, 1
2
),

θ̂n = (n− 2bnαc)−1
n−bnαc∑
i=bnαc+1

X(i).

(ii). The α-Winsorized mean. Here

θ̂n = n−1

bnαcX(bnαc) +

n−bnαc∑
i=bnαc+1

X(i) + bnαcX(n−bnαc+1)

 .
The robust estimators mentioned above for the location model have been ex-

tended to linear regression and some nonlinear models.

In terms of the estimation procedure for the GARCH model, the most commonly-

employed one is the quasi-maximum likelihood estimator (QMLE), which is ob-

tained by maximizing the normal likelihood function. In particular, it assumes

that {εt; 1 ≤ t ≤ n} are i.i.d. normal distributed with mean zero. Hence, the

QMLE θ̂n is obtained by minimizing the negative log-likelihood function, i.e.,

θ̂n = arg min
θ∈Θ

1

n

n∑
t=1

[
log vt(θ) +

X2
t

vt(θ)

]

or equivalently solving the equation

1

n

n∑
t=1

[
1− X2

t

vt(θ)

]
v̇t(θ)

vt(θ)
= 0.

The asymptotic normality of the QMLE was established by Weiss (1986) for

the ARCH model and by Lee and Hansen (1994) and Lumsdaine (1996) for the

GARCH(1, 1) model. For the general GARCH(p, q) model, it was proved by Berkes

et al. (2003). They assumed that Eε4t <∞ to prove that the QMLE converges at

rate
√
n to a normal distribution. However, financial time series were frequently

reported with heavy-tails so this assumption may be violated. Therefore, vari-

ous types of robust estimators were proposed in the literature. For the ARCH

model, Horvath and Liese (2004) introduced a family of Lp-estimators based on
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weighted M-estimators. They showed that for their L1-estimator, with a suitable

choice of the weight function, the asymptotic normality holds without any mo-

ment assumption when ε2t admits a density. For the GARCH model, Peng and

Yao (2003) considered three types of the LAD estimators, among which the one

based on logarithmic transformation is unbiased and asymptotically normal when

Eε2t < ∞. Muler and Yohai (2008) defined two types of M-estimators through

the minimization of some functions. Mukherjee (2008) proposed a class of M-

estimators as the solution of an equation. It turns out that the QMLE, LAD and

Huber’s estimators all belong to this class of the M-estimators. He proved that

for some M-estimators, the asymptotic normality holds only under the existence

of fractional moment of the error distribution. For the R-estimator of the GARCH

model, Andrews (2012) considered a procedure based on the logarithm transfor-

mation of the squared observations and conditional volatilities. The R-estimator

was obtained through minimization of a rank-based residual dispersion function

and it is similar to the one proposed by Jaeckel (1972) for the linear regression

model.

2.4 The VARMA model

2.4.1 The ARMA model

Time series are usually autocorrelated, that is, for a time series {Xt; t ∈ Z}, Xt

is a function of its lagged series Xt−1, Xt−2, · · · . A simple and popular model for

accommodating this autocorrelation is the autoregressive (AR) model (with order

p), which takes a linear form as follows

(1−
p∑
i=1

aiL
i)Xt = εt, t ∈ Z,

where L denotes the lag operator and {εt; t ∈ Z} is the innovation term, which is

usually assumed to be i.i.d.. The associated characteristic equation of this model
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is

1−
p∑
i=1

aix
i = 0. (2.4.1)

If all solutions of this equation are greater than 1 in modulus, then the AR(p)

model is stationary; see Tsay (2010).

A disadvantage of the AR(p) model is that a high-order model may be needed

to fit a time series adequately well. One way to deal with this is to assume Xt is

a linear function of lagged innovation terms, which leads to the moving-average

(MA) model (with order q) that takes the form

Xt = (1 +

q∑
j=1

bjL
j)εt, t ∈ Z.

The associated characteristic equation of this model is

1 +

q∑
j=1

bjx
j = 0. (2.4.2)

For the MA(q) model to be invertible, it is required that all solutions of the above

equation are greater than 1 in modulus.

A more flexible model describing the dependence structure of time series than

the AR and MA models is obtained by combining them, which leads to the au-

toregressive moving-average (ARMA) model as follows

(1−
p∑
i=1

aiL
i)Xt = (1 +

q∑
j=1

bjL
j)εt, t ∈ Z.

An advantage of the ARMA model is that it often takes less parameters than the

AR and MA models to fit a time series adequately well. It is often assumed that

all solutions of both (2.4.1) and (2.4.2) are greater than 1 in modulus so that the

ARMA(p, q) model is both stationary and invertible. Also, we assume that there

are no common factors between the AR polynomial 1 −
∑p

i=1 aiL
i and the MA

polynoimal 1 +
∑q

j=1 bjL
j; otherwise the order (p, q) of the model can be reduced;

see Tsay (2010).
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2.4.2 The VARMA model

Let {X t; t ∈ Z} denote a d-dimensional time series and Id denote a d× d identity

matrix. The ARMA model can be generalized to the vector ARMA (VARMA)

model that takes the form

(
Ik −

p∑
i=1

AiL
i

)
X t =

(
Ik +

q∑
j=1

BjL
j

)
εt, t ∈ Z,

where A1, ...,Ap,B1, ...,Bq are d × d matrices and {εt; t ∈ Z} is the innovation

term. The following assumption is needed for the model to be stationary and

invertible:

(i) All solutions of the determinantal equations

det

(
p∑
i=0

Aiz
i

)
= 0 and det

(
q∑
i=0

Biz
i

)
= 0, z ∈ C

lie outside the unit ball in C;

(ii) |Ap| 6= 0 6= |Bq|;

(iii) Id is the greatest common left divisor of
∑p

i=0Aiz
i and

∑q
i=0Biz

i.
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Chapter 3

M-estimation and its

bootstrapped version in GARCH

models

3.1 Introduction

Recall that a series {Xt; t ∈ Z} is said to follow a GARCH(p, q) model if

Xt = σtεt, (3.1.1)

where {εt; t ∈ Z} are unobservable i.i.d. errors with mean zero and

σt = (ω0 +

p∑
i=1

α0iX
2
t−i +

q∑
j=1

β0jσ
2
t−j)

1/2, t ∈ Z, (3.1.2)

with ω0, α0i, β0j > 0, ∀ i, j. Mukherjee (2008) proposed a class of M-estimators

for estimating the GARCH parameter

θ0 = (ω0, α01, . . . , α0p, β01, . . . , β0q)
′ (3.1.3)
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based on observations {Xt; 1 ≤ t ≤ n}. The M-estimators are asymptotically

normal under some moment assumptions on the error distribution and are more

robust than the commonly-used quasi maximum likelihood estimator (QMLE).

Mukherjee (2020) considered a class of weighted bootstrap methods to approxi-

mate the distributions of these estimators and established the asymptotic validity

of such bootstrap. In this chapter, we apply an iteratively re-weighted algorithm to

compute the M-estimates and the corresponding bootstrap estimates with specific

attention to Huber’s, µ- and Cauchy-estimates which were not considered in the

literature in details. The iteratively re-weighted algorithm turns out to be partic-

ularly useful in computing bootstrap replicates since it avoids the re-computation

of some core quantities for new bootstrap samples.

The class of M-estimators includes the QMLE. The asymptotic normality and

the asymptotic validity of bootstrapping the QMLE were derived under the finite

fourth moment assumption on the error distribution. However, there are other

M-estimators such as the µ-estimator and Cauchy-estimator which are asymptotic

normal under mild assumption on the finiteness of lower order moments. Since

heavy-tailed error distributions without higher order moments are common in the

GARCH modeling of many real financial time series, it becomes worthwhile to use

these estimators for such series but unfortunately they have not been investigated

in the literature. One of the contributions of this chapter is to reveal precisely the

importance of such alternative M-estimators to analyze financial data instead of

using the QMLE.

In an earlier work, Muler and Yohai (2008) analyzed the Electric Fuel Corpo-

ration (EFCX) time series and fitted a GARCH(1, 1) model. Using exploratory

analysis, they detected presence of outliers and considered estimation of param-

eters based on robust methods. It turned out that estimates based on different

methods vary widely and so it is difficult to assess which method should be relied

on in similar situations. In this chapter, we use M-estimates with mild assumptions

on error moments to analyze the EFCX series.
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Francq and Zaköıan (2009) underscored the importance of using higher order

GARCH models such as GARCH(2, 1) for some real financial time series but the

computation and simulation results for such models are not available widely in the

literature. We investigate the role of M-estimators for the GARCH(2, 1) model

through extensive simulations and real data analysis. We also provide simulation

results and analysis for the GARCH(1, 2) model.

The chapter is organized as follows. Sections 3.2 and 3.3 set the background.

In particular, we discuss the class of M-estimators and give examples in Section

3.2. Section 3.3 contains bootstrap formulation and the statement on the asymp-

totic validity of the bootstrap. Section 3.4 discusses computational aspects of M-

estimators and its bootstrapped replicates. Section 3.5 reports simulation results

for various M-estimators. Section 3.6 compares bootstrap approximation with the

asymptotic normal approximation to distributions of M-estimators through simu-

lation. Section 3.7 analyzes three real financial time series.

3.2 M-estimators of the GARCH parameters

Throughout this chapter, for a function g, we use ġ to denote its derivative when-

ever it exists. Also, sign(x) := I(x > 0)− I(x < 0). For x > 0, log+(x) := I(x >

1) log(x). Moreover, ε will denote a generic r.v. having same distribution as errors

{εt} of (3.1.1).

Let ψ : R → R be an odd function which is differentiable at all but finite

number of points. Let D ⊂ R denote the set of points where ψ is differentiable

and let D̄ denote its complement. Let H(x) := xψ(x), x ∈ R so that H is

symmetric. The function H is called the score function of the M-estimation in the

scale model. Some of the following examples were considered in Mukherjee (2008).

Example 1. QMLE score: Let ψ(x) = x. Then H(x) = x2.

Example 2. LAD score: Let ψ(x) = sign (x). Then D̄ = {0} and H(x) = |x|.

Example 3. Huber’s k score: Let ψ(x) = xI(|x| ≤ k) + k sign (x)I(|x| > k),

where k > 0 is a known constant. Then D̄ = {−k, k} and H(x) = x2I(|x| ≤
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k) + k|x|I(|x| > k).

Example 4. Score function for the maximum likelihood estimation (MLE):

Let ψ(x) = −ḟ(x)/f(x), where f is the true density of ε, assumed to be known.

Then H(x) = x{−ḟ(x)/f(x)}.

Example 5. µ score: Let ψ(x) = µ sign(x)/(1 + |x|), where µ > 1 is a known

constant. Then D̄ = {0} and H(x) = µ|x|/(1 + |x|) is bounded.

Example 6. Cauchy score: Let ψ(x) = 2x/(1+x2). Then H(x) = 2x2/(1+x2)

is bounded.

Example 7. Score function for the exponential pseudo-maximum likelihood

estimation: Let ψ(x) = δ1|x|δ2−1sign(x), where δ1 > 0 and 1 < δ2 ≤ 2 are known

constants. Here D̄ = {0} and H(x) = δ1|x|δ2 .

Assume that for some κ1 ≥ 2 and κ2 > 0,

E(|ε|κ1) <∞ and lim
t→0

P(ε2 < t)/tκ2 = 0. (3.2.1)

Then σ2
t of (3.1.2) has the following unique almost sure representation:

σ2
t = c0 +

∞∑
j=1

cjX
2
t−j, t ∈ Z, (3.2.2)

where {cj; j ≥ 0} are defined in (2.9)-(2.16) of Berkes et al. (2003).

Let Θ be a compact subset of (0,∞)1+p × (0, 1)q. A typical element in Θ is

denoted by θ = (ω, α1, . . . , αp, β1, . . . , βq)
′. Define the variance function on Θ by

vt(θ) = c0(θ) +
∞∑
j=1

cj(θ)X2
t−j, θ ∈ Θ, t ∈ Z, (3.2.3)

where the coefficients {cj(θ); j ≥ 0} are given in Berkes et al. (2003) (Section 3,

and display (3.1)) with the property

cj(θ0) = cj, ∀j ≥ 0. (3.2.4)
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Hence the variance functions satisfy vt(θ0) = σ2
t , t ∈ Z. Using (3.2.4), (3.1.1) can

be rewritten as

Xt = {vt(θ0)}1/2εt, 1 ≤ t ≤ n. (3.2.5)

Consider observable approximation {v̂t(θ)} of the process {vt(θ)} of (3.2.3) defined

by

v̂t(θ) = c0(θ) + I(2 ≤ t)
t−1∑
j=1

cj(θ)X2
t−j, θ ∈ Θ, 1 ≤ t ≤ n. (3.2.6)

Then an M-estimator θ̂n is defined as the solution of M̂n,H(θ) = 0, where

M̂n,H(θ) :=
n∑
t=1

{
1−H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt(θ)/v̂t(θ)}. (3.2.7)

Next we describe the iterative relation of {cj(θ)} that is used to write computer

program for their numerical evaluation. The computation is discussed in Section

3.4.

Example 1. GARCH(1, 1) model: With θ = (ω, α, β)′,

c0(ω, α, β) = ω/(1− β), cj(ω, α, β) = αβj−1, j ≥ 1.

Example 2. GARCH(2, 1) model: With θ = (ω, α1, α2, β)′,

c0(θ) = ω/(1− β), c1(θ) = α1, c2(θ) = α2 + βc1(θ) = α2 + βα1

and

cj(θ) = βcj−1(θ), j ≥ 3.

Example 3. GARCH(1, 2) model: With θ = (ω, α, β1, β2)
′,

c0(θ) = ω/(1− β1 − β2), c1(θ) = α, c2(θ) = β1c1(θ) = β1α,

and

cj(θ) = β1cj−1(θ) + β2cj−2(θ), j ≥ 3.
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Example 4. GARCH(2, 2) model: With θ = (ω, α1, α2, β1, β2)
′,

c0(θ) = ω/(1− β1 − β2), c1(θ) = α1, c2(θ) = α2 + β1α1

and

cj(θ) = β1cj−1(θ) + β2cj−2(θ), j ≥ 3.

3.2.1 Asymptotic distribution of θ̂n

The asymptotic distribution of θ̂n is derived under the following assumptions.

Model assumptions: The parameter space Θ is a compact set and its interior Θ0

contains both θ0 and θ0H of (3.1.3) and (3.2.10), respectively. Moreover, (3.2.1),

(3.2.3) and (3.2.5) hold and {Xt} is stationary and ergodic.

Conditions on the score function:

Identifiability condition: Corresponding to the score function H, there exists a

unique number cH > 0 satisfying

E[H(ε/c
1/2
H )] = 1. (3.2.8)

Moment conditions:

E[H(ε/c
1/2
H )]2 <∞ and 0 < E[(ε/c

1/2
H )Ḣ(ε/c

1/2
H )] <∞. (3.2.9)

Also various Smoothness conditions on H as in Mukherjee (2008) are assumed

which are satisfied in all examples of H considered above. Define the score function

factor

σ2(H) := 4 Var{H(ε/c
1/2
H )}/{E[(ε/c

1/2
H )Ḣ(ε/c

1/2
H )]}2,

the matrix

G := E{v̇1(θ0H)v̇′1(θ0H)/v21(θ0H)}
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and the transformed parameter

θ0H = (cHω0, cHα01, . . . , cHα0p, β01, . . . , β0q)
′. (3.2.10)

Theorem 3.2.1. (Mukherjee 2008) Suppose that the model assumptions, identifi-

ability condition, moment conditions and smoothness conditions hold. Then

n1/2(θ̂n − θ0H)→ N (0, σ2(H)G−1). (3.2.11)

Note that cH used in above formulas are given by (i) cH = E(ε2) for the QMLE,

(ii) cH = (E|ε|)2 for the LAD while for the Huber, µ-estimator, Cauchy and other

scores, cH does not have closed-form expression. For such score functions, cH is

calculated using (3.2.8) as follows. We fix a large positive integer I and generate

{εi; 1 ≤ i ≤ I} from the error distribution considered for the simulation. Then,

using the bisection method on c > 0, we solve the equation

(1/I)
I∑
i=1

{
H
(
εi/c

1/2
)}
− 1 = 0.

Values of cH computed in this way were provided in Mukherjee (2008, page 1541)

for some error distributions and score functions. In Table 3.1 we provide cH for

few more error distributions and score functions such as Huber’s k-score and µ-

estimator with k = 1.5 and µ = 3 which are used in simulations and data analysis

of later sections. In the sequel, Student’s t-distributions with ν degrees of freedom

is abbreviated as t(ν). The double exponential distribution refers to the Laplace

distribution, and it is abbreviated as DE. Note that we select t(2.2) instead of t(2)

since the latter does not have finite second moment.

3.3 Bootstrapping M-estimators

In this section, we describe the bootstrap formulation of Mukherjee (2020) for

M-estimators in GARCH models. Let {wnt; 1 ≤ t ≤ n, n ≥ 1} be a triangular
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Table 3.1: Values of cH for M-estimators (Huber, µ-, Cauchy) under various error
distributions.

Huber’s µ-estimator Cauchy

Normal 0.825 1.692 0.377

DE 0.677 1.045 0.207

Logistic 0.781 1.487 0.316

t(3) 0.533 0.850 0.172

t(2.2) 0.204 0.274 0.053

array of r.v.’s such that for each n ≥ 1, {wnt; 1 ≤ t ≤ n} are exchangeable and

independent of the data {Xt; t ≥ 1} and errors {εt; t ≥ 1}. Also, ∀t ≥ 1, wnt ≥ 0

and E(wnt) = 1.

Based on these weights, bootstrap estimate θ̂∗n is defined as the solution of

M̂
∗
n,H(θ) = 0, where

M̂
∗
n,H(θ) :=

n∑
t=1

wnt

{
1−H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt(θ)/v̂t(θ)}. (3.3.1)

Examples. From many different choices of bootstrap weights, we consider the

following three schemes in Chatterjee and Bose (2005) and Mukherjee (2020) for

comparison.

(i) Scheme M. The sequence of weights {wn1, . . . , wnn} has a multinomial

(n, 1/n, . . . , 1/n) distribution, which is essentially the classical paired bootstrap.

(ii) Scheme E. When wnt = (nEt)/
∑n

i=1Ei, where {Et} are i.i.d. exponential

r.v. with mean 1. Under scheme E, θ̂∗n is a weighted M-estimator with weights

proportional to Et, 1 ≤ i ≤ n.

(iii) Scheme U. When wnt = (nUt)/
∑n

i=1 Ui, where {Ut} are i.i.d. uniform

r.v. on (0.5, 1.5). Under scheme U, θ̂∗n is a weighted M-estimator with weights

proportional to Ut, 1 ≤ i ≤ n.

A host of other bootstrap methods in the literature are special cases of the

above bootstrap formulation. Such general formulation of weighted bootstrap

offers a unified way of studying several bootstrap schemes simultaneously. See, for

example, Chatterjee and Bose (2005) for details in other contexts.
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We assume that the weights satisfy the following basic conditions (Conditions

BW of Chatterjee and Bose (2005)) where σ2
n = Var(wni) and k3 > 0 is a constant.

E(wn1) = 1, 0 < k3 < σ2
n = o(n) and Corr (wn1, wn2) = O(1/n). (3.3.2)

Under (3.3.2) and some additional smoothness and moment conditions in Mukher-

jee (2020), weighted bootstrap is asymptotic valid.

Theorem 3.3.1. (Mukherjee 2020) For almost all data, as n→∞,

σ−1n n1/2(θ̂∗n − θ̂n)→ N (0, σ2(H)G−1). (3.3.3)

We remark that since 0 < 1/σn < 1/
√
k3, the rate of convergence of the boot-

strap estimator is the same as that of the original estimator. The standard devia-

tion of the weights {σn} at the denominator of the scaling reflects the contribution

of the corresponding weights.

The distributional result of (3.3.3) is useful for constructing the confidence in-

terval of the GARCH parameters as follows. Let B denote the number of bootstrap

replicates, γ0 denote a generic parameter (one of ω0, α0i or β0j) and let γ̂n and

γ̂∗nb denote its M-estimator and b-th bootstrap estimator (1 ≤ b ≤ B), respec-

tively. Let γ0H be one of cHω0, cHα0i or β0j, as appropriate, which has a known

value for a simulation experiment. Using the approximation of
√
n(γ̂n − γ0H) by

σ−1n n1/2(γ̂∗n − γ̂n), the bootstrap confidence interval of γ0H is of the form

[γ̂n − n−1/2{σ−1n n1/2(γ̂∗n,α/2 − γ̂n)}, γ̂n + n−1/2{σ−1n n1/2(γ̂∗n,1−α/2 − γ̂n)}] (3.3.4)

where γ̂∗n,α/2 is the α/2-th quantile of the numbers {γ̂∗nb, 1 ≤ b ≤ B}. Conse-

quently, the bootstrap coverage probability is computed by the proportion of the

above set of B confidence intervals containing γ0H .

Similarly, using (3.2.11) of Theorem 3.3.1, we can obtain the confidence interval

of γ0H based on the asymptotic normality of γ̂n, and this will be called the normal
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confidence interval. Specifically, in view of Proposition 3.1 of Mukherjee (2008)

on the estimation of the variance-covariance matrix σ2(H)G−1, we can obtain the

asymptotic confidence interval of γ0H as

[γ̂n − n−1/2d̂z1−α/2, γ̂n + n−1/2d̂z1−α/2], (3.3.5)

where (d̂)2 is the estimated variance of γ̂n obtained from the appropriate diagonal

entry of the estimator of σ2(H)G−1 and z1−α/2 is the 1 − α/2-th quantile of the

standard normal distribution.

In the following Section 3.6, we will compare the accuracy of the confidence

intervals constructed by the bootstrap and asymptotic approximations.

3.4 Algorithm

We discuss the implementation of an iteratively re-weighted algorithm proposed

in Mukherjee (2020) for computing M-estimates. In particular, we highlight µ-

estimate and Cauchy-estimate of the GARCH parameters in this chapter since

their asymptotic distributions are derived under mild moment assumptions but

they were not consider in the literature before. We also consider the bootstrap

estimators based on the corresponding score functions.

3.4.1 Computation of M-estimates

For the convenience of writing, let α(c) = E[H(cε)] for c > 0. Using a Taylor

expansion of M̂n,H , we obtain the following recursive equation for computing the

updated estimate θ̃ of θ̂n from the current estimate θ of M̂n,H(θ) = 0:

θ̃ = θ+{α̇(1)/2}−1
[ n∑
t=1

˙̂vt(θ) ˙̂vt(θ)
′
/v̂2t (θ)

]−1 n∑
t=1

{
H{Xt/v̂

1/2
t (θ)}−1

}
{ ˙̂vt(θ)/v̂t(θ)},

(3.4.1)

where α̇(1) = E{εḢ(ε)} under smoothness conditions on H. Since the GARCH

residuals {Xt/v̂
1/2
t (θ̂n)} estimate only {εt/c1/2H }, in general, we cannot estimate
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α̇(1) from the data. Therefore, we use ad hoc techniques such as simulating {ε̃t; 1 ≤

t ≤ n} from N (0, 1) or standardized DE distribution and then use n−1
∑n

t=1 ε̃Ḣ(ε̃)

to carry out the iteration. Note that if the iteration in (3.4.1) converges then

θ̃ ≈ θ. Therefore in this case from (3.4.1), M̂n,H(θ) ≈ 0 and hence θ̃ is the

desired θ̂n. Based on our extensive simulation study and real data analysis, the

algorithm is robust enough to converge to the same value of θ̂n irrespective of

different values of the unknown factor α̇(1) used in computation.

In the following examples, we discuss (3.4.1) when specialized to the M-estimators

computed in this chapter.

QMLE: Here H(x) = x2 and α(c) = c2E(ε2). Hence α̇(1)/2 = E(ε2) and

θ̃ = θ +
{

E(ε2)
}−1{ n∑

t=1

[
˙̂vt(θ) ˙̂vt(θ)

′
/v̂2t (θ)

]}−1 n∑
t=1

{
[X2

t /v̂t(θ)]− 1
}
{ ˙̂vt(θ)/v̂t(θ)}.

With

Wt = 1/v̂2t (θ), xt = ˙̂vt(θ), yt = X2
t − v̂t(θ),

θ̃ can be computed iteratively as

θ̃(r+1) = θ̃(r) +
{

E(ε2)
}−1{∑

t

Wtxtx
′
t

}−1{∑
t

Wtxtyt

}
.

Note that when E(ε2) = 1, this is same as the formula obtained through the BHHH

algorithm proposed by Berndt et al. (1974).

LAD: Here H(x) = |x| and α(c) = cE|ε|. Hence α̇(1) = E|ε| and

θ̃ = θ + {2/E|ε|}
{ n∑

t=1

[
˙̂vt(θ) ˙̂vt(θ)

′
/v̂2t (θ)

]}−1 n∑
t=1

{
|Xt|/v̂1/2t (θ)− 1

}
{ ˙̂vt(θ)/v̂t(θ)}

= θ + {2/E|ε|}
{ n∑

t=1

[
˙̂vt(θ) ˙̂vt(θ)

′
/v̂2t (θ)

]}−1 n∑
t=1

{
|Xt| − v̂1/2t (θ)

}
{ ˙̂vt(θ)/v̂

3/2
t (θ)}

= θ + {2/E|ε|}
{ n∑

t=1

[
˙̂vt(θ) ˙̂vt(θ)

′
/v̂2t (θ)

]}−1 n∑
t=1

{
v̂
1/2
t (θ)(|Xt| − v̂1/2t (θ))

}
{ ˙̂vt(θ)/v̂2t (θ)}.
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With

Wt = 1/v̂2t (θ), xt = ˙̂vt(θ), yt = v̂
1/2
t (θ)(|Xt| − v̂1/2t (θ)),

θ̃ can be computed iteratively as

θ̃(r+1) = θ̃(r) + {2/E|ε|}

{∑
t

Wtxtx
′
t

}−1{∑
t

Wtxtyt

}
.

Huber: Here H(x) = x2I(|x| ≤ k) + k|x|I(|x| > k) and

α(c) = E
[
(cε)2I(|cε| ≤ k) + k|cε|I(|cε| > k)

]
.

Hence

α̇(1) = E
[
2ε2I(|ε| ≤ k) + k|ε|I(|ε| > k)

]
and

θ̃ = θ −
{
α̇(1)/2

}−1{ n∑
t=1

[ ˙̂vt(θ) ˙̂vt(θ)
′

v̂2t (θ)

]}−1
×

n∑
t=1

[
1− X2

t

v̂t(θ)
I

(
|Xt|

v̂
1/2
t (θ)

≤ k

)
− k |Xt|

v̂
1/2
t (θ)

I

(
|Xt|

v̂
1/2
t (θ)

> k

)]{
˙̂vt(θ)

v̂t(θ)

}
.

With

Wt = 1/v̂2t (θ), xt = ˙̂vt(θ)

and

yt = X2
t I
(
|Xt|/v̂1/2t (θ) ≤ k

)
+ k|Xt|v̂1/2t (θ)I

(
|Xt|/v̂1/2t (θ) > k

)
− v̂t(θ),

θ̃ can be computed iteratively as

θ̃(r+1) = θ̃(r) +
{
α̇(1)/2

}−1{∑
t

Wtxtx
′
t

}−1{∑
t

Wtxtyt

}
.

µ-estimator: Here H(x) = µ|x|/(1 + |x|) and α(c) = µ − µE [1/(1 + |cε|)].
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Hence

α̇(1) = µE
[
|ε|/(1 + |ε|)2

]
and

θ̃ = θ+

{
µ

2
E

[
|ε|

(1 + |ε|)2

]}−1 { n∑
t=1

[ ˙̂vt(θ) ˙̂vt(θ)
′

v̂2t (θ)

]}−1 n∑
t=1

[
µ|Xt|

v̂
1/2
t (θ) + |Xt|

− 1

]{
˙̂vt(θ)

v̂t(θ)

}
.

With

Wt = 1/v̂2t (θ), xt = ˙̂vt(θ), yt =
µ|Xt|v̂t(θ)

v̂
1/2
t (θ) + |Xt|

− v̂t(θ),

θ̃ can be computed iteratively as

θ̃(r+1) = θ̃(r) +

{
µ

2
E

[
|ε|

(1 + |ε|)2

]}−1{∑
t

Wtxtx
′
t

}−1{∑
t

Wtxtyt

}
.

Cauchy-estimator: HereH(x) = 2x2/(1+x2) and α(c) = E [2c2ε2/(1 + c2ε2)].

Hence

α̇(1) = E
[
4ε2/(1 + ε2)2

]
and

θ̃ = θ−
{

2E

[
ε2

(1 + ε2)2

]}−1 { n∑
t=1

[ ˙̂vt(θ) ˙̂vt(θ)
′

v̂2t (θ)

]}−1 n∑
t=1

[
1− 2X2

t

v̂t(θ) +X2
t

]{ ˙̂vt(θ)

v̂t(θ)

}
.

With

Wt = 1/v̂2t (θ), xt = ˙̂vt(θ), yt =
2X2

t v̂t(θ)

v̂t(θ) +X2
t

− v̂t(θ),

θ̃ can be computed iteratively as

θ̃(r+1) = θ̃(r) +

{
2E

[
ε2

(1 + ε2)2

]}−1{∑
t

Wtxtx
′
t

}−1{∑
t

Wtxtyt

}
.
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3.4.2 Computation of bootstrap M-estimates

Here the relevant function is M̂
∗
n,H(θ) defined in (3.3.1) and the bootstrap estimate

θ̂∗n, according to Mukherjee (2020), can be computed using the updating equation

θ̃∗ = θ − {2/α̇(1)}
{ n∑

t=1

wnt

[
˙̂vt(θ) ˙̂vt(θ)

′
/v̂2t (θ)

]}−1
×

n∑
t=1

wnt

{
1−H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt(θ)/v̂t(θ)}. (3.4.2)

Notice also that weighted bootstrap is particularly computation-friendly and

is easy to program in R. In particular, one can store

{
1−H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt(θ)/v̂t(θ)}

while computing M-estimates once and for all. After that, one simply needs to

generate weights and compute the weighted sum while solving the above equation

through iteration. Each time, the initial bootstrap estimator is taken to be the

M-estimator θ̂n.

3.5 Simulating the distributions of M-estimators

To compare performance of various M-estimators via bias and MSE, we simulate

n observations from GARCH(p, q) models with specific choice of parameters and

error distributions and compute M-estimates based on various score functions.

This procedure is replicated R-times to enable the estimation of bias and MSE.

For illustration with p = 1 = q, let θ̂n = (ω̂r, α̂r, β̂r)
′ be the M-estimator of

θ0 = (ω0, α01, β01)
′ based on a specified score function H at the r-th replication,

1 ≤ r ≤ R. Notice that (ω̂r, α̂r, β̂r) estimates (cHω0, cHα0, β0), where cH depends

on both the score function and the underlying error distribution but is known in

a simulation scenario. Therefore, to compare the performance for a specified error
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distribution across various score functions, we consider R replicates of

(ω̂r/cH − ω0, α̂r/cH − α0, β̂r − β0)′

and use the following vectors to estimate the standardized bias and the standardized

MSE:

(R−1
R∑
r=1

{ω̂r/cH − ω0}, R−1
R∑
r=1

{α̂r/cH − α0}, R−1
R∑
r=1

{β̂r − β0})′, (3.5.1)

(R−1
R∑
r=1

{ω̂r/cH − ω0}2, R−1
R∑
r=1

{α̂r/cH − α0}2, R−1
R∑
r=1

{β̂r − β0}2)′.

In Tables 3.2 and 3.3, we report the standardized bias and MSE of Huber’s and

µ-estimator to guide our choice of the corresponding tuning parameters k and µ.

The underlying data generating process (DGP) is the GARCH(1, 1) model with

θ0 = (1.65 × 10−5, 0.0701, 0.901)′ under three types of innovation distributions:

the normal, DE and logistic distribution. The above value of the true parameter

is motivated from the estimated parameter of the GARCH(1, 1) model for the

Shanghai Stock Exchange (SSE) Index data which will be analyzed later in this

chapter. We use (3.5.1) for the computation with sample size n = 1000 and

R = 150 replications.

The simulation results in Table 3.2 and Table 3.3 show that the bias and MSE

of Huber’s k-estimator and µ-estimator do not vary widely for various values of

k and µ. Therefore k = 1.5 and µ = 3 are chosen for subsequent computations.

Notice also that the minimum bias and MSE correspond to µ = 3 in a number of

cases.

M-estimators corresponding to different score functions for the GARCH(1, 1)

models have been compared under various error distributions via simulation study

in Iqbal and Mukherjee (2010). However, as mentioned by Francq and Zaköıan

(2009), higher order GARCH models are also common for some real financial time

series but the computation and simulation results for such models are not available
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Table 3.2: The standardized bias and MSE of the Huber’s estimator (with different
k values being used) under various error distributions (sample size n = 1000;
R = 150 replications).

Standardized bias Standardized MSE

ω α β ω α β

Normal

k=1 1.03×10−5 -2.44×10−3 -1.96×10−2 2.62×10−10 4.20×10−4 1.54×10−3

k=1.5 1.22×10−5 2.47×10−3 -1.98×10−2 3.33×10−10 4.55×10−4 1.58×10−3

k=2.5 1.14×10−5 -4.33×10−4 -2.02×10−2 3.10×10−10 3.71×10−4 1.58×10−3

DE

k=1 7.24×10−6 1.29×10−3 -1.57×10−2 1.87×10−10 4.65×10−4 1.58×10−3

k=1.5 7.32×10−6 1.67×10−3 -1.63×10−2 2.00×10−10 4.82×10−4 1.68×10−3

k=2.5 8.27×10−6 2.94×10−3 -1.92×10−2 2.79×10−10 5.60×10−4 2.22×10−3

Logistic

k=1 9.87×10−6 2.15×10−3 -2.03×10−2 3.18×10−10 5.25×10−4 2.28×10−3

k=1.5 1.00×10−5 2.04×10−3 -2.04×10−2 3.11×10−10 4.89×10−4 2.22×10−3

k=2.5 1.06×10−5 2.18×10−3 -2.16×10−2 3.18×10−10 4.84×10−4 2.17×10−3

Table 3.3: The standardized bias and MSE of µ-estimator (with different µ values
being used) under various error distributions (sample size n = 1000; R = 150
replications).

Standardized bias Standardized MSE

ω α β ω α β

Normal

µ=2 1.17×10−5 2.97×10−3 -2.13×10−2 4.05×10−10 6.73×10−4 2.16×10−3

µ=2.5 1.14×10−5 1.80×10−3 -2.12×10−2 3.77×10−10 5.71×10−4 2.04×10−3

µ=3 1.14×10−5 1.36×10−3 -2.11×10−2 3.68×10−10 5.21×10−4 1.97×10−3

DE

µ=2 7.39×10−6 2.23×10−3 -1.49×10−2 2.74×10−10 7.20×10−4 2.21×10−3

µ=2.5 7.36×10−6 1.50×10−3 -1.52×10−2 2.68×10−10 6.56×10−4 2.16×10−3

µ=3 7.40×10−6 1.25×10−3 -1.53×10−2 2.62×10−10 6.17×10−4 2.09×10−3

Logistic

µ=2 7.73×10−6 2.22×10−3 -1.37×10−2 2.45×10−10 6.79×10−4 1.99×10−3

µ=2.5 7.66×10−6 9.77×10−4 -1.41×10−2 2.48×10−10 5.88×10−4 1.97×10−3

µ=3 7.72×10−6 5.99×10−4 -1.42×10−2 2.54×10−10 5.44×10−4 1.94×10−3
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widely in the literature. Therefore, below we focus on comparing M-estimators

with the underlying DGP being GARCH(2, 1) and GARCH(1, 2) models. We

also evaluate the performance of M-estimators when the underlying DGP is the

GARCH(1, 1) model but it is misspecified as the GARCH(2, 1) model. This is

essentially the case where the parameter is at the boundary.

3.5.1 Simulation for GARCH(2, 1) models

We consider four types of innovation distributions: the normal, DE, logistic, t(3)

and t(2.2). There are R = 1000 replications being generated with the sample size

n = 1000 and

θ0 = (4.46× 10−6, 0.0525, 0.108, 0.832)′,

a choice motivated by the QMLE computed using the R package fGarch for the

FTSE 100 data which will be analyzed later.

The standardized bias and MSE of the various M-estimators are reported in

Table 3.4. It is worth noting that under the normal distribution, the bias and MSE

of other M-estimators are generally close to those of the QMLE. However, for more

heavy-tailed distributions, the QMLE produces larger bias and MSE compared

with other M-estimators. Under the t(3) and t(2.2) distributions, which do not

admit finite fourth moment, the advantage of the M-estimators over the QMLE

becomes more prominent. For instance, for the estimation of α1, the MSE ratio

of the QMLE with respect to the µ-estimator is 6.0 under the t(3) distribution,

and it increases significantly to 23.3 under the t(2.2) distribution. Also, under the

t(2.2) distribution, the LAD and Huber’s estimators perform poorly compared with

the µ- and Cauchy-estimators since the former two yield significantly larger MSE

than the latter two. Consequently, these provide evidence for (i) the robustness of

the M-estimators for heavy-tailed distributions is not at the cost of losing much

efficiency under the normal distribution and (ii) the µ- and Cauchy-estimators are

relatively less sensitive to heavy-tails among these M-estimators.
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Table 3.4: The standardized bias and MSE of the M-estimators for GARCH(2,
1) models under various error distributions (sample size n = 1000; R = 1000
replications).

Standardized bias Standardized MSE

ω α1 α2 β ω α1 α2 β

Normal
QMLE 3.55×10−6 1.88×10−3 3.05×10−3 -2.02×10−2 2.18×10−11 1.53×10−3 2.08×10−3 1.36×10−3

LAD 3.35×10−6 3.55×10−3 1.80×10−4 -1.76×10−2 2.08×10−11 1.74×10−3 2.36×10−3 1.32×10−3

Huber 3.53×10−6 5.54×10−3 4.37×10−3 -1.71×10−2 2.16×10−11 1.84×10−3 2.53×10−3 1.27×10−3

µ-estimator 2.84×10−6 2.48×10−3 1.16×10−3 -1.60×10−2 1.91×10−11 2.18×10−3 3.06×10−3 1.65×10−3

Cauchy 2.66×10−6 1.60×10−3 1.57×10−3 -1.55×10−2 2.03×10−11 2.51×10−3 3.58×10−3 1.94×10−3

DE

QMLE 2.51×10−6 1.42×10−2 -1.23×10−2 -1.77×10−2 1.49×10−11 2.59×10−3 2.59×10−3 1.35×10−3

LAD 1.74×10−6 1.14×10−2 -1.09×10−2 -1.31×10−2 6.60×10−12 1.45×10−3 1.84×10−3 8.53×10−4

Huber’s 1.73×10−6 1.21×10−2 -1.21×10−2 -1.28×10−2 6.73×10−12 1.49×10−3 1.92×10−3 8.93×10−4

µ-estimator 1.44×10−6 1.25×10−2 -7.18×10−3 -1.12×10−2 5.64×10−12 1.80×10−3 2.46×10−3 8.97×10−4

Cauchy 1.37×10−6 1.36×10−2 -5.67×10−3 -1.12×10−2 6.61×10−12 2.43×10−3 3.28×10−3 1.03×10−3

Logistic

QMLE 3.83×10−6 1.38×10−2 -1.73×10−2 -1.75×10−2 2.64×10−11 3.78×10−3 3.01×10−3 1.57×10−3

LAD 2.97×10−6 8.27×10−3 -1.43×10−2 -1.20×10−2 1.55×10−11 2.01×10−3 2.16×10−3 1.11×10−3

Huber’s 3.03×10−6 8.42×10−3 -1.23×10−2 -1.25×10−2 1.64×10−11 2.01×10−3 2.03×10−3 1.12×10−3

µ-estimator 2.50×10−6 6.28×10−3 -1.25×10−2 -8.64×10−3 1.33×10−11 2.19×10−3 2.98×10−3 1.23×10−3

Cauchy 2.41×10−6 6.46×10−3 -1.10×10−2 -8.62×10−3 1.42×10−11 2.50×10−3 3.49×10−3 1.46×10−3

t(3)

QMLE 1.67×10−6 2.89×10−2 -2.20×10−2 -3.48×10−2 2.74×10−11 1.37×10−2 1.56×10−2 8.02×10−3

LAD 1.00×10−6 7.28×10−3 -6.13×10−3 -1.04×10−2 5.62×10−12 3.01×10−3 4.58×10−3 2.02×10−3

Huber’s 9.74×10−7 8.20×10−3 -8.00×10−3 -1.05×10−2 5.50×10−12 2.99×10−3 4.53×10−3 2.01×10−3

µ-estimator 6.62×10−7 8.42×10−3 -8.91×10−3 -5.33×10−3 3.93×10−12 2.30×10−3 3.59×10−3 1.63×10−3

Cauchy 5.89×10−7 9.44×10−3 -9.33×10−3 -5.20×10−3 4.33×10−12 2.51×10−3 3.91×10−3 1.85×10−3

t(2.2)

QMLE -4.35×10−7 9.90×10−2 -4.39×10−2 -1.54×10−1 1.90×10−11 1.34×10−1 1.48×10−1 8.10×10−2

LAD 1.13×10−6 3.16×10−2 -8.87×10−5 -3.48×10−2 1.35×10−11 3.30×10−2 4.54×10−2 1.38×10−2

Huber 1.38×10−6 5.30×10−2 -1.08×10−2 -4.40×10−2 1.53×10−11 4.43×10−2 5.52×10−2 1.58×10−2

µ-estimator 4.55×10−7 1.60×10−2 -4.41×10−3 -1.30×10−2 5.51×10−12 5.75×10−3 9.33×10−3 5.38×10−3

Cauchy 4.69×10−7 2.04×10−2 -5.37×10−3 -1.47×10−2 6.74×10−12 6.13×10−3 1.06×10−2 6.52×10−3
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3.5.2 Simulation under a misspecified GARCH model

It is important to check whether the M-estimators are consistent when a GARCH

model is misspecified with a higher order as over-fitting can occur in practice.

In this case, we are essentially fitting a GARCH model with some component(s)

of the parameter at the boundary equal to zero. We simulate below data from

the GARCH(1, 1) model under various error distributions; however, the data are

fitted by the GARCH(2, 1) model. In simulation, we use R = 1000, n = 1000 and

θ0 = (1.65 × 10−5, 0.0701, 0.901)′, which is motivated by the QMLE obtained by

using the fGarch package for the SSE data analyzed later in Section 3.7.

The standardized bias and MSE of the M-estimators are shown in Table 3.5.

For all distributions considered, the bias are close to zero and the MSE are small in-

dicating good performance of the M-estimators under this type of mis-specification.

Similar to the results in Table 3.4, the QMLE is sensitive to the heavy-tailed distri-

butions while other M-estimators are more robust as they yield smaller MSE values

under the t(3) distribution. For example, for the estimation of α2, the MSE ratio

of the QMLE with respect to the µ-estimator is 9.4 under the t(3) distribution.

3.5.3 Simulation for the GARCH(1, 2) models

Since we did not come across a real data that can be fitted by the GARCH(1, 2)

model, we resort to simulation results to study the performance of M-estimators

for such models. We choose θ0 = (0.1, 0.1, 0.2, 0.6)′, R = 1000 replications and

n = 1000. The standardized bias and MSE of the M-estimators under various error

distributions are reported in Table 3.6. We do not report results for the QMLE

when data are generated under the t(3) and t(2.2) error distributions since the

algorithm for computing the QMLE did not converge for most replications. Under

the normal error distribution, the LAD and Huber’s estimators produce MSE

that is close to the QMLE while the µ- and Cauchy-estimators yield larger MSE

corresponding for estimating ω and α. For the DE and logistic distributions, there

is no significant difference between these estimators. Their difference becomes
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Table 3.5: The standardized bias and MSE of the M-estimators under the misspec-
ified model (sample size n = 1000; R = 1000 replications); the underlying DGP is
the GARCH(1, 1) model whereas the model is misspecified as a GARCH(2, 1).

Standardized bias Standardized MSE

ω α1 α2 β ω α1 α2 β

Normal

QMLE 1.11×10−5 -2.00×10−3 5.97×10−3 -2.38×10−2 3.94×10−10 1.55×10−3 1.87×10−3 2.64×10−3

LAD 1.09×10−5 -1.73×10−3 5.65×10−3 -2.43×10−2 4.53×10−10 1.73×10−3 2.12×10−3 3.09×10−3

Huber’s 1.22×10−5 1.25×10−3 6.08×10−3 -2.43×10−2 5.18×10−10 1.82×10−3 2.28×10−3 3.13×10−3

µ-estimator 1.11×10−5 -5.36×10−4 5.75×10−3 -2.49×10−2 5.27×10−10 2.42×10−3 2.99×10−3 3.67×10−3

Cauchy 1.13×10−5 -5.85×10−4 6.31×10−3 -2.61×10−2 6.26×10−10 2.83×10−3 3.57×10−3 4.41×10−3

DE

QMLE 9.70×10−6 -1.07×10−3 7.12×10−3 -2.45×10−2 4.19×10−10 2.82×10−3 3.33×10−3 3.78×10−3

LAD 8.11×10−6 6.07×10−4 4.72×10−3 -1.89×10−2 2.91×10−10 2.24×10−3 2.60×10−3 2.51×10−3

Huber’s 7.84×10−6 -7.00×10−4 4.79×10−3 -1.94×10−2 2.92×10−10 2.20×10−3 2.54×10−3 2.58×10−3

µ-estimator 7.21×10−6 2.45×10−3 3.15×10−3 -1.69×10−2 2.85×10−10 2.59×10−3 3.02×10−3 2.59×10−3

Cauchy 7.49×10−6 3.86×10−3 3.29×10−3 -1.79×10−2 3.48×10−10 3.10×10−3 3.65×10−3 3.20×10−3

Logistic

QMLE 1.24×10−5 -1.95×10−3 9.70×10−3 -2.68×10−2 5.24×10−10 2.14×10−3 2.61×10−3 3.28×10−3

LAD 1.03×10−5 -2.81×10−3 8.40×10−3 -2.30×10−2 3.88×10−10 1.82×10−3 2.23×10−3 2.63×10−3

Huber’s 1.00×10−5 -3.27×10−3 8.11×10−3 -2.28×10−2 3.83×10−10 1.78×10−3 2.14×10−3 2.62×10−3

µ-estimator 9.47×10−6 -2.29×10−3 8.31×10−3 -2.21×10−2 3.88×10−10 2.15×10−3 2.69×10−3 2.86×10−3

Cauchy 9.74×10−6 -8.90×10−4 8.56×10−3 -2.26×10−2 4.34×10−10 2.53×10−3 3.21×10−3 3.23×10−3

t(3)

QMLE 1.08×10−5 1.64×10−2 1.14×10−2 -5.47×10−2 1.15×10−9 1.93×10−2 2.67×10−2 1.97×10−2

LAD 4.50×10−6 1.05×10−3 2.96×10−3 -2.08×10−2 1.85×10−10 3.01×10−3 3.41×10−3 3.39×10−3

Huber’s 5.46×10−6 4.83×10−3 2.64×10−3 -2.03×10−2 2.19×10−10 3.33×10−3 3.80×10−3 3.50×10−3

µ-estimator 4.47×10−6 5.91×10−3 4.41×10−4 -1.51×10−2 1.45×10−10 2.55×10−3 2.84×10−3 2.25×10−3

Cauchy 3.65×10−6 3.85×10−3 4.77×10−5 -1.54×10−2 1.45×10−10 2.51×10−3 2.86×10−3 2.56×10−3
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clearer under heavy-tailed distributions: the µ- and Cauchy-estimators produce

smaller MSE of ω under the t(3) distribution and smaller MSE of α under the

t(2.2) distribution than the LAD and Huber’s estimators.

Table 3.6: The standardized bias and MSE of the M-estimators for GARCH(1,
2) models under various error distributions (sample size n = 1000; R = 1000
replications).

Standardized bias Standardized MSE

ω α β1 β2 ω α β1 β2

Normal

QMLE 5.53×10−2 1.10×10−3 9.65×10−2 -1.52×10−1 2.66×10−2 1.17×10−3 1.45×10−1 1.38×10−1

LAD 5.93×10−2 7.15×10−4 9.01×10−2 -1.50×10−1 3.21×10−2 1.31×10−3 1.55×10−1 1.45×10−1

Huber 6.49×10−2 4.64×10−3 9.77×10−2 -1.57×10−1 3.72×10−2 1.37×10−3 1.56×10−1 1.47×10−1

µ-estimator 7.45×10−2 8.93×10−4 1.11×10−1 -1.86×10−1 7.41×10−2 1.84×10−3 2.16×10−1 2.01×10−1

Cauchy 7.51×10−2 1.25×10−3 1.29×10−1 -2.06×10−1 6.30×10−2 2.17×10−3 2.43×10−1 2.31×10−1

DE

QMLE 5.48×10−2 2.93×10−3 1.01×10−1 -1.63×10−1 3.15×10−2 1.79×10−3 1.62×10−1 1.57×10−1

LAD 3.73×10−2 -1.93×10−3 8.76×10−2 -1.27×10−1 1.20×10−2 1.61×10−3 1.46×10−1 1.35×10−1

Huber 3.83×10−2 -1.22×10−3 9.51×10−2 -1.36×10−1 1.21×10−2 1.65×10−3 1.53×10−1 1.44×10−1

µ-estimator 4.05×10−2 1.15×10−3 1.13×10−1 -1.52×10−1 1.72×10−2 2.05×10−3 1.73×10−1 1.60×10−1

Cauchy 4.74×10−2 3.26×10−3 1.18×10−1 -1.66×10−1 2.55×10−2 2.48×10−3 1.85×10−1 1.72×10−1

Logistic

QMLE 5.77×10−2 2.76×10−3 1.06×10−1 -1.61×10−1 3.02×10−2 1.49×10−3 1.67×10−1 1.59×10−1

LAD 4.50×10−2 -5.78×10−5 7.27×10−2 -1.18×10−1 1.58×10−2 1.37×10−3 1.30×10−1 1.18×10−1

Huber 4.50×10−2 -2.33×10−4 8.85×10−2 -1.34×10−1 1.58×10−2 1.36×10−3 1.53×10−1 1.39×10−1

µ-estimator 4.52×10−2 1.32×10−3 9.39×10−2 -1.40×10−1 1.80×10−2 1.72×10−3 1.58×10−1 1.44×10−1

Cauchy 5.15×10−2 2.91×10−3 1.05×10−1 -1.57×10−1 2.98×10−2 2.08×10−3 1.85×10−1 1.70×10−1

t(3)

QMLE - - - - - - - -

LAD 2.93×10−2 2.43×10−3 1.08×10−1 -1.40×10−1 1.13×10−2 2.49×10−3 1.82×10−1 1.59×10−1

Huber 2.87×10−2 1.50×10−3 9.13×10−2 -1.26×10−1 1.18×10−2 2.30×10−3 1.60×10−1 1.40×10−1

µ-estimator 1.57×10−2 8.75×10−5 1.21×10−1 -1.37×10−1 5.59×10−3 1.88×10−3 1.63×10−1 1.42×10−1

Cauchy 1.50×10−2 6.44×10−4 1.38×10−1 -1.54×10−1 6.50×10−3 2.15×10−3 1.90×10−1 1.65×10−1

t(2.2)

QMLE - - - - - - - -

LAD 3.53×10−2 2.57×10−2 1.24×10−1 -1.85×10−1 1.30×10−2 1.41×10−2 2.41×10−1 2.21×10−1

Huber 4.86×10−2 3.99×10−2 7.81×10−2 -1.66×10−1 1.44×10−2 1.63×10−2 1.81×10−1 1.79×10−1

µ-estimator 1.72×10−2 5.18×10−3 1.51×10−1 -1.78×10−1 1.73×10−2 4.27×10−3 2.42×10−1 2.12×10−1

Cauchy 2.15×10−2 9.68×10−3 1.50×10−1 -1.85×10−1 2.05×10−2 4.90×10−3 2.34×10−1 2.14×10−1

3.6 Simulating the bootstrap distributions

To evaluate the finite sample performance of the bootstrap approximation, here

we compare the bootstrap coverage rates with the nominal levels. In particular, we

generate R = 500 data of sample size n = 1000 from the GARCH(1, 1) model with

parameter θ0 = (0.1, 0.1, 0.8)′ under both the normal and t(3) error distributions.

For each data, we compute B = 2000 bootstrap estimates using the bootstrap
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schemes M, E and U introduced in Section 3.3 and construct the bootstrap and

asymptotic confidence intervals (CI) using (3.3.4) and (3.3.5), respectively. The

coverage rates are computed as the proportions of the CI’s that cover the true

parameter. We report the coverage rates (in percentage) for the 90% and 95%

nominal levels in Table 3.7.

Under the normal distribution, the coverage rates of the bootstrap approxima-

tion are generally close to the nominal levels. Also, the bootstrap approximation

works better for the QMLE, LAD and Huber’s estimators than the µ-estimator and

Cauchy-estimator. However, under the t(3) distribution, the bootstrap approxi-

mation works poorly for the QMLE while the coverage rates are reasonably well

for other M-estimators. For both distributions, scheme U outperforms schemes

M and E. In terms of the asymptotic approximation, it works well only for few

cases and is outperformed by the bootstrap coverage rates for most cases and this

indicates the usefulness of the bootstrap approximation.

3.7 Real data analysis

In this section, we analyse daily log-returns of three financial time series: (i) the

Shanghai Stock Exchange (SSE) Index from January 2007 to December 2009 with

n = 752; (ii) the Electric Fuel Corporation (EFCX) data from January 2000 to

December 2001 with n = 498; (iii) the FTSE 100 Index data from January 2007

to December 2009 with n = 783. Based on exploratory data analysis, GARCH(1,

1) model fits well to the SSE and EFCX data. However, we fitted GARCH(2, 1)

model to the FTSE 100 data for two reasons. First, when fitted by the GARCH(2,

1) model with fGarch package in R, α2 is significant with p-value equal to 0.019;

second, the Akaike information criterion (AIC) of the GARCH(2, 1) model is

smaller than that of the GARCH(1, 1) model.
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Table 3.7: The coverage rates (in percentage) of the bootstrap schemes M, E
and U and asymptotic normal approximations for the M-estimators QMLE, LAD,
Huber’s, µ- and Cauchy-; the error distributions are normal and t(3).

90% nominal level 95% nominal level

ω α β ω α β

Normal QMLE Scheme M 89.0 86.2 88.2 91.0 92.2 91.4

Scheme E 87.2 83.8 86.8 90.2 88.4 91.2

Scheme U 90.2 87.4 87.2 94.4 92.6 93.2

Asymptotic 82.6 91.0 85.8 87.0 95.2 89.0

Normal LAD Scheme M 86.0 83.4 84.2 88.2 87.2 88.4

Scheme E 88.0 87.2 87.2 91.0 91.2 90.2

Scheme U 88.6 88.4 88.0 93.2 91.8 91.8

Asymptotic 94.0 98.8 87.0 96.4 99.4 90.4

Normal Huber’s Scheme M 88.8 85.4 86.6 91.2 89.8 91.2

Scheme E 88.2 89.0 88.0 91.4 92.4 90.0

Scheme U 89.6 90.4 88.4 93.6 93.6 91.8

Asymptotic 87.6 95.4 86.2 90.6 96.6 90.4

Normal µ-estimator Scheme M 88.0 84.6 86.8 89.6 87.8 88.6

Scheme E 87.4 84.8 86.6 89.4 88.4 88.4

Scheme U 88.6 88.4 87.6 91.8 91.8 90.6

Asymptotic 71.4 69.6 86.8 77.4 78.2 90.8

Normal Cauchy Scheme M 85.6 84.0 84.4 87.8 85.8 87.6

Scheme E 81.4 82.2 80.2 82.8 86.2 84.2

Scheme U 88.4 88.2 87.0 90.4 91.4 89.4

Asymptotic 97.8 99.8 85.0 98.2 100.0 89.6

t(3) QMLE Scheme M 71.0 75.4 74.8 75.0 79.0 78.0

Scheme E 67.6 72.4 66.8 73.4 76.2 72.4

Scheme U 75.6 84.6 75.0 81.6 87.2 80.0

Asymptotic - - - - - -

t(3) LAD Scheme M 84.4 80.6 83.0 85.4 83.8 87.8

Scheme E 84.6 85.0 81.4 87.6 87.0 86.6

Scheme U 81.6 86.2 79.2 87.4 89.2 84.8

Asymptotic 98.0 99.8 88.8 99.6 100.0 91.2

t(3) Huber’s Scheme M 83.0 80.6 81.8 85.6 83.2 86.6

Scheme E 81.8 79.2 80.8 85.8 81.6 85.8

Scheme U 86.2 88.0 86.0 90.2 91.4 90.2

Asymptotic 96.8 99.0 88.4 97.8 99.6 92.8

t(3) µ-estimator Scheme M 82.4 84.8 83.8 86.2 88.4 88.2

Scheme E 84.6 84.0 84.6 87.4 88.0 88.8

Scheme U 82.6 83.6 80.4 88.8 88.2 86.4

Asymptotic 86.6 91.8 80.8 90.6 95.6 86.4

t(3) Cauchy Scheme M 78.2 83.4 78.4 81.8 86.2 82.0

Scheme E 83.4 85.6 82.6 85.4 89.0 87.2

Scheme U 85.0 85.0 84.8 90.0 88.6 89.2

Asymptotic 100.0 100.0 85.6 100.0 100.0 90.8
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3.7.1 The SSE data and bootstrap estimates of the bias

and MSE

Table 3.8 displays the QMLE computed using the R package fGarch and the

QMLE and LAD estimates computed using the algorithm (3.4.1). The QMLEs

given by fGarch and (3.4.1) are close. Also, the QMLE and LAD estimates of β

are close.

Table 3.8: The M-estimates (QMLE and LAD) of the GARCH(1, 1) model for the
SSE data; The QMLEs are obtained by using fGarch and (3.4.1).

ω α β

fGarch 1.65×10−5 7.01×10−2 0.90

QMLE 2.88×10−5 7.97×10−2 0.87

LAD 1.62×10−5 4.99×10−2 0.86

To estimate the bias and MSE of the M-estimators of the GARCH(1, 1) pa-

rameters of the underlying DGP of the SSE data, notice that we know neither the

underlying true parameters nor the error distribution. Moreover, a M-estimator

based on H is consistent for the true parameter if and only if cH = 1. This holds,

in particular, when the QMLE is used if the underlying error distribution has unit

variance. Hence to estimate population bias and MSE using simulation, we use

population parameter as the one estimated from the SSE data using the QMLE

computed from fGarch. Then we consider the DGP from GARCH(1, 1) models

with four possible error distributions, namely, the normal, DE, logistic and t(3)

distributions and for each scenario generate R replications of n observations. We

estimate the normalized bias and normalized MSE of n1/2(θ̂n − θ0H) by

(R−1
R∑
r=1

n1/2{ω̂r−cHω0}, R−1
R∑
r=1

n1/2{α̂r−cHα0}, R−1
R∑
r=1

n1/2{β̂r−β0})′ (3.7.1)

(R−1
R∑
r=1

{n1/2(ω̂r− cHω0)}2, R−1
R∑
r=1

{n1/2(α̂r− cHα0)}2, R−1
R∑
r=1

{n1/2(β̂r−β0)}2)′.

(3.7.2)

69



Notice that the normalized bias and MSE are different from the standardized bias

and MSE by some simple multiplicative factors involving cH . The normalized

bias and MSE are used to evaluate performance of the bootstrap approximation,

while the standardized bias and MSE are used to compare performance of different

M-estimators.

To obtain the bootstrap estimates of the normalized bias and MSE, we use

three different bootstrap schemes to generate weights {wnt; 1 ≤ t ≤ n} B number

of times. We compute the bootstrap estimates {θ̂∗nb, 1 ≤ b ≤ B} using (3.4.2) and

consequently B bootstrap replicates (realizations)

{σ−1n n1/2(θ̂∗nb − θ̂n); 1 ≤ b ≤ B}

of the bootstrap distribution where θ̂n is the M-estimate of the dataset computed

using (3.4.1) based on the score function under consideration. The effect of the

bootstrap scheme is reflected in the standardization through σn. The bootstrap

estimates of the normalized bias and MSE are computed by

Bias = (1/B)
B∑
b=1

{σ−1n n1/2(θ̂∗nb−θ̂n)} and MSE = (1/B)
B∑
b=1

{σ−1n n1/2(θ̂∗nb−θ̂n)}2.

(3.7.3)

Here the squares of vectors in the MSE above should be interpreted as entry-wise

square.

Using (3.7.1) and (3.7.2) with n = 752 and R = 500, estimates of the normal-

ized bias and MSE for the QMLE and LAD under various error distributions are

shown in Table 3.9 and Table 3.10 respectively. Also, to evaluate the bootstrap ap-

proximation, we include the bootstrap estimates of the normalized bias and MSE

in these tables. Note that for the LAD, all these bootstrap schemes have good

approximation to the bias and MSE as they are generally of the same magnitude

regardless of the underlying error distribution. For the QMLE under the DE, lo-

gistic and normal distributions, except for the bias of ω, scheme M provides good

approximation while schemes E and U tend to underestimate the bias.
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Table 3.9: The normalized bias and MSE of the QMLE and their bootstrap esti-
mates for the SSE data.

Normalized bias Normalized MSE

ω α β ω α β

Error Dist.

DE 3.80×10−4 0.15 -0.86 5.02×10−7 0.70 3.51

Logisitic 4.39×10−4 0.22 -0.90 5.90×10−7 0.65 3.22

Normal 3.75×10−4 0.12 -0.78 4.14×10−7 0.48 2.59

t(3) 2.58×10−4 0.49 -1.17 6.56×10−7 6.60 11.70

Bootstrap

Scheme M 4.68×10−5 0.10 -0.18 7.58×10−7 0.83 3.99

Scheme E 8.39×10−6 5.47×10−2 -5.96×10−2 3.06×10−7 0.68 2.35

Scheme U 4.90×10−6 1.58×10−2 -3.32×10−2 1.23×10−7 0.72 1.41

Table 3.10: The normalized bias and MSE of the LAD and their bootstrap esti-
mates for the SSE data.

Normalized bias Normalized MSE

ω α β ω α β

Error Dist.

DE 1.45×10−4 4.54×10−2 -0.65 7.01×10−8 0.12 2.24

Logisitic 2.33×10−4 9.88×10−2 -0.85 1.82×10−7 0.20 3.05

Normal 2.28×10−4 6.75×10−2 -0.75 1.69×10−7 0.21 2.63

t(3) 6.06×10−5 6.12×10−2 -0.48 2.82×10−8 0.12 2.25

Bootstrap

Scheme M 2.44×10−5 6.12×10−2 -0.17 7.79×10−8 0.28 2.19

Scheme E 6.77×10−5 0.11 -0.39 6.66×10−8 0.25 1.92

Scheme U 1.29×10−5 1.88×10−2 -0.11 3.30×10−8 0.22 1.14
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Table 3.11: The M-estimates (QMLE, LAD, Huber’s, µ- and Cauchy-) of the
GARCH(2, 1) model using the FTSE 100 data; the QMLEs are obtained by using
fGarch and (3.4.1).

fGarch QMLE LAD Huber’s µ-estimator Cauchy

ω 4.46×10−6 4.65×10−6 3.13×10−6 3.55×10−6 1.02×10−5 2.51×10−6

α1 5.25×10−2 4.51×10−2 2.46×10−2 3.45×10−2 4.95×10−2 6.83×10−3

α2 0.11 9.00×10−2 5.57×10−2 6.42×10−2 0.17 4.18×10−2

β 0.83 0.85 0.84 0.86 0.81 0.80

3.7.2 The FTSE 100 data and the GARCH(2, 1) model

Here we fit the GARCH(2, 1) model with the FTSE 100 data. The estimates given

by fGarch and by our M-estimators are shown in Table 3.11. The QMLE (based

on algorithm (3.4.1)) and fGarch provide similar estimates for all components of

the parameter. Also, the M-estimates of β do not vary much. For ω, α1 and

α2, the M-estimates are quite different since cH in (3.2.10) depends on the score

function H used for the estimation.

For a GARCH(p, q) model, using (3.2.6) and the formulas for {cj(θ); j ≥ 0} in

Berkes et al. (2003) (Section 3), we have v̂t(θ0H) = cH v̂t(θ0). Since a M-estimator

θ̂n estimates θ0H , v̂t(θ̂n) estimates cH v̂t(θ0) which is a scale-transformed estimate

of the conditional variance. To examine the behavior of the market volatility after

eliminating the effect of any particular M-estimator used, we define the following

normalized volatility by

ût(θ̂n) := v̂t(θ̂n)/
n∑
i=1

v̂i(θ̂n); 1 ≤ t ≤ n. (3.7.4)

Figure 3.1 shows the plot of {ût(θ̂n); 1 ≤ t ≤ n} based on various M-estimators

against the squared returns. Notice that although the M-estimates in Table 3.11

are different, the plot of the normalized volatilities almost overlap each other based

on all M-estimators. Also, large values of the normalized volatilities and large

squared returns occur at the same time. In this sense, the volatilities are well-

modelled by using these M-estimators.
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Figure 3.1: The plot of the squared returns and the estimated normalized condi-
tional variances using various M-estimators for the FTSE 100 data

3.7.3 The EFCX data

Muler and Yohai (2008) fitted the GARCH(1, 1) model to the EFCX data and

noted that the QMLE and LAD estimates of the parameter β are significantly

different. Here in Table 3.12, we report estimates given by the fGarch and M-

estimators. Note that in our previous analysis of the SSE and FTSE 100 data,

fGarch estimates and our QMLE are quite close while their difference is much more

significant for this data. It is also worth noting that while the LAD, Huber’s, µ−

and Cauchy-estimates of β are close to each other, they are all quite different from

the corresponding estimate 0.84 of the QMLE when viewed as a M-estimate. We

explain below that such interesting behavior might be related to the infinite fourth

moment of the underlying innovation distribution.

Table 3.12: The M-estimates (QMLE, LAD, Huber’s, µ- and Cauchy-) of the
GARCH(1, 1) model for the EFCX data; the QMLEs are obtained by using fGarch

and (3.4.1).

fGarch QMLE LAD Huber’s µ-estimator Cauchy

ω 1.89×10−4 6.28×10−4 6.43×10−4 8.37×10−4 1.42×10−3 2.97×10−4

α 4.54×10−2 7.20×10−2 8.87×10−2 0.10 0.27 6.35×10−2

β 0.92 0.84 0.66 0.67 0.61 0.60

To examine whether the innovation distribution has finite fourth moment, we
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use the QQ-plots of the residuals {Xt/v̂
1/2
t (θ̂n); 1 ≤ t ≤ n} based on the µ-

estimator θ̂n against the t(d) distributions for various degrees of freedom d. We

consider µ-estimator since it imposes mild moment assumption on the innovation

distribution. The main idea behind the QQ-plots of the residuals against the t(d)

distribution is simple. Recall that if ε ∼ t(d) distribution then E|ε|ν < ∞ if and

only if ν < d. Therefore, residuals with heavier tail than the t(d) distribution

correspond to the errors with the infinite d-th moment while those with lighter

tail than the t(d) distribution have the finite d-th error moment.

The top-left panel of Figure 3.2 shows the QQ-plot of the residuals against the

t(4.01) distribution for the EFCX data. The residuals have heavier right tail than

the t(4.01) distribution which implies that the fourth moment of the error term

may not exist. On the other hand, the QQ-plot against the t(3.01) distribution

reveals lighter tail as shown at the bottom-left panel of Figure 3.2 and this implies

that E|ε|3 <∞.

For the FTSE 100 data, the QQ-plot against the t(4.01) distribution at the top-

right panel of Figure 3.2 shows that the residuals have lighter tails than the t(4.01)

distribution. For the QQ-plot against the t(12.01) distribution, as shown at the

bottom-right panel of Figure 3.2, residuals fit the distribution better. Therefore,

we may conclude that E|ε|4 < ∞ holds for the FTSE 100 data and this explains

why the other M-estimates of β in Table 3.11 are close.
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Figure 3.2: The QQ-plot of the residuals against t distributions for the EFCX (left
column) and FTSE 100 (right column) data.

3.8 Conclusion

We consider a class of M-estimators and the weighted bootstrap approximation of

their distributions for the GARCH models. An iteratively re-weighted algorithm

for computing the M-estimators and their bootstrap replicates are implemented.

Both simulation and real data analysis demonstrate superior performance of the M-

estimators for the GARCH(1, 1), GARCH(2, 1) and GARCH(1, 2) models. Under

heavy-tailed error distributions, we show that the M-estimators are more robust

than the routinely-applied QMLE. We also demonstrate through simulations that

the M-estimators work well when the true GARCH(1, 1) model is misspecified as

the GARCH(2, 1) model. Simulation results indicate that under the finite sample

size, bootstrap approximation is better than the asymptotic normal approximation
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of the M-estimators.
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Chapter 4

R-estimation in GARCH models;

asymptotics, applications and

bootstrapping

4.1 Introduction

Estimation of parameters based on ranks of the residuals was discussed by Koul

and Ossiander (1994) for the homoscedastic autoregressive model and Mukher-

jee (2007) for the heterscedastic models. For the GARCH model defined by

(3.1.1) and (3.1.2), Andrews (2012) proposed a class of R-estimators using a

log-transformation of the squared observations and then minimizing a rank-based

residual dispersion function. However, our R-estimators for the GARCH model

are defined through the one-step approach based on an asymptotic linearity result

of a rank-based central sequence and uses data directly without requiring such

transformation.

Similar to the linear regression and autoregressive models, the class of the

R-estimators for the GARCH model are also asymptotically normal and highly ef-

ficient. However, unlike the commonly-used quasi-maximum likelihood estimator

(QMLE) which is asymptotically normal under the finite fourth moment assump-

77



tion of the error distribution, the R-estimators proposed in this chapter are asymp-

totically normal under the assumption of only a finite 2 + δ-th moment for some

δ > 0. The efficient property of the R-estimators is further confirmed based on the

simulated data from the GARCH(1, 1) model and the higher order GARCH(2, 1)

model to fill some void in the literature since the computation and empirical anal-

ysis for the higher order GARCH models are not considered widely. Analysis of

real data shows that the numerical values of R-estimates can be different from the

QMLE and the subsequent analysis of the GARCH residuals lead to conclude that

such difference may be due to the assumption of the infinite fourth moment of the

innovation distribution which may not hold and consequently leads to the failure

of the QMLE.

Since the proposed class of the R-estimators are shown to converge to normal

distributions, of which the covariance matrices do not have explicit forms, we em-

ploy a bootstrap method to approximate the distributions of the R-estimators.

Chatterjee and Bose (2005) proved the consistency of the weighted bootstrap

method for an estimator defined by smooth estimating equation. We consider

weighted bootstrap with residual ranks that are integer-valued and non-smooth

function. Our extensive simulation study provides evidence that the weighted

bootstrap has good coverage rates even under a heavy-tailed distribution and for

a small simple size.

Finally, we use the R-estimators for estimating parameters of the GJR(p, q)

model proposed by Glosten et al. (1993), which is used to estimate the asymmetry

effect of financial time series. Simulation results demonstrate good performance

of the R-estimators for the GJR model.

The main contributions of the chapter are threefold. First, a new class of robust

and efficient estimators for the GARCH model parameters is proposed. Second, the

asymptotic distributions of the proposed estimators are derived based on weaker

assumption on the error moment. Third, weighted bootstrap approximations of the

distribution of the R-estimators are investigated empirically through the analysis
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of real data and simulations. In particular, we propose algorithms for computing

the R-estimators and the bootstrap replicates, which are computational friendly

and easy to implement.

4.1.1 A motivating example

To illustrate the advantages of the class of R-estimators over the commonly-

used QMLE, we consider below some simulation results corresponding to the

GARCH(2, 1) model with underlying standardized innovation density (i) the nor-

mal distribution and (ii) the Student’s t-distribution with ν = 3 degrees of freedom,

denoted as t(3). We generate R = 1000 samples of size n = 1000 with parameter

values (ω, α1, α2, β)′ = (0.1, 0.1, 0.1, 0.6)′. Simulation results described below are

similar to various other choices of the true parameters. Consider three types of

R-estimators given in Section 4.2.3. The boxplots of the QMLE and the proposed

R-estimates based on the normal and t(3) distributions are displayed in Figure 4.1

and Figure 4.2, respectively. Here the R-estimators and QMLE are standardized

by multiplying with constant matrices A and B defined in Section 4.2.5, so that

all resulting estimators can estimate the parameter θ0; see Section 4.2 for details.

An inspection of these two plots reveals overwhelming superiority of the R-

estimators over the QMLE. Under the normal error distribution, the distribution

patterns of the R-estimates of each parameter are quite similar to the QMLE

around the true parameter value. However, under the t(3) errors, the QMLE is

lot more likely to deviate from the true parameter than the three R-estimates.

Therefore, unlike the QMLE, the good performance of the R-estimators under

the normal distribution is not at the cost of poor performance under the t(3)

distribution.

4.1.2 Outline of the chapter

The rest of the chapter is organized as follows. Section 4.2 defines the R-estimators

based on an asymptotic linearity result of a rank-based central sequence. The
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Figure 4.1: Boxplots of the QMLE and R-estimators (signs, van der Waerden,
Wilcoxon) for the GARCH(2, 1) model under the normal distribution (sample size
n = 1000; R = 1000 replications). The horizontal red line represents the actual
parameter value.
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Figure 4.2: Boxplots of the QMLE and R-estimators (signs, van der Waerden,
Wilcoxon) for the GARCH(2, 1) model under the t(3) distribution (sample size
n = 1000; R = 1000 replications). The horizontal red line represents the actual
parameter value.
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asymptotic distributions and efficiency of the R-estimators are discussed. Also, we

give an algorithm for computing the R-estimators. Section 4.3 contains empirical

and simulation results of the R-estimators. Section 4.4 describes the weighted
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bootstrap for the R-estimators and includes extensive simulation results. Section

4.5 considers an application to the GJR model. Conclusion is given in Section

4.6. The technique used to establish the asymptotic distribution is included in

Section 4.7.

4.2 The class of R-estimators for the GARCH

model

In this section, we first define a central sequence of R-criteria {R̂n(θ)} based on

ranks of the residuals of the GARCH model. We prove the asymptotic uniform

linear expansion (4.2.6) of this central sequence. Consequently, we define one-step

R-estimator θ̂n in (4.2.8). We propose a recursive algorithm for computation in

Section 4.2.4.

Notations: Throughout the chapter, for a function g, we use ġ and g̈ to denote

its first and second derivatives whenever they exist. We use c, b, c1 to denote

positive constants whose values can possibly change from line to line. Let ε be

a generic random variable (r.v.) with the same distribution as {εt} and let F

and f denote the cumulative distribution function (c.d.f.) and probability density

function (p.d.f.) of ε, respectively. Let ηt := εt/
√
cϕ, where cϕ > 0 satisfies (4.2.3),

and η be a generic r.v. with the same distribution as {ηt}. Let G and g be the c.d.f.

and p.d.f. of η, respectively. A sequence of stochastic process {Yn(·)} is said to be

uP(1) (denoted by Yn = uP(1)) if for every c > 0, sup{|Yn(b)|; ||b|| ≤ c} = oP(1),

where || · || stands for the Euclidean norm.

4.2.1 Rank-based central sequence

From Lemma 2.3 and Theorem 2.1 of Berkes et al. (2003), σ2
t of (3.1.2) has the

unique almost sure representation σ2
t = c0+

∑∞
j=1 cjX

2
t−j, t ∈ Z, where {cj; j ≥ 0}

are defined in (2.7)-(2.9) of Berkes et al. (2003).

Let θ0 = (ω0, α01, . . . , α0p, β01, . . . , β0q)
′ denote the true parameter belonging
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to a compact subset Θ of (0,∞)1+p × (0, 1)q. A typical element in Θ is denoted

by θ = (ω, α1, . . . , αp, β1, . . . , βq)
′. Define the variance function by

vt(θ) = c0(θ) +
∞∑
j=1

cj(θ)X2
t−j, θ ∈ Θ, t ∈ Z,

where the coefficients {cj(θ); j ≥ 0} are given in (3.1) of Berkes et al. (2003) with

the property cj(θ0) = cj, j ≥ 0, so that the variance functions satisfy vt(θ0) = σ2
t ,

t ∈ Z and

Xt = {vt(θ0)}1/2εt, 1 ≤ t ≤ n.

Recall that {v̂t(θ)} is the observable approximation of {vt(θ)}, which is defined

by

v̂t(θ) = c0(θ) + I(2 ≤ t)
t−1∑
j=1

cj(θ)X2
t−j, θ ∈ Θ, 1 ≤ t ≤ n.

Let H∗(x) = x{−ḟ(x)/f(x)}. The maximum likelihood estimator (MLE) is a

solution of ∆n,f (θ) = 0, where

∆n,f (θ) := n−1/2
n∑
t=1

v̇t(θ)

vt(θ)

{
1−H∗

[
Xt

v
1/2
t (θ)

]}
.

However, f in H∗ is usually unknown and we therefore consider an approximation

to ∆n,f (θ).

Let ϕ : (0, 1) → R be a score function satisfying some regularity condi-

tions which will be discussed later. Let Rnt(θ) denote the rank of Xt/v
1/2
t (θ)

among {Xj/v
1/2
j (θ); 1 ≤ j ≤ n}. In linear regression models, the MLE has

the same asymptotic efficiency as an R-estimator based on the score function

ϕ(u) = −ḟ(F−1(u))/f(F−1(u)). For the estimation of the scale parameters, the

MLE corresponds to the central sequence

Rn(θ) := Rn,ϕ(θ) = n−1/2
n∑
t=1

v̇t(θ)

vt(θ)

{
1− ϕ

[
Rnt(θ)

n+ 1

]
Xt

v
1/2
t (θ)

}
. (4.2.1)

However, since vt(θ) is unobservable, we therefore replace it by v̂t(θ). Let R̂nt(θ)
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denote the rank of Xt/v̂
1/2
t (θ) among {Xj/v̂

1/2
j (θ); 1 ≤ j ≤ n}. We define rank-

based central sequence as

R̂n(θ) := R̂n,ϕ(θ) = n−1/2
n∑
t=1

˙̂vt(θ)

v̂t(θ)

{
1− ϕ

[
R̂nt(θ)

n+ 1

]
Xt

v̂
1/2
t (θ)

}
. (4.2.2)

4.2.2 One-step R-estimators and their asymptotic distri-

butions

To define the R-estimator in terms of the classical Le Cam’s one-step approach as

in Hallin and La Vecchia (2017) and Hallin et al. (2020), we derive the asymptotic

linearity of the rank-based central sequence under the following assumptions. Let

cϕ > 0 be defined by

√
cϕ = E [ϕ (F (εt)) εt]

which satisfies

E

{
ϕ [F (εt)]]

εt√
cϕ

}
= 1. (4.2.3)

Define µ(x) :=
∫ x
−∞ sg(s)ds. Since g(x) > 0, µ(x) is strictly decreasing on (−∞, 0]

with range [µ(0), 0] and strictly increasing on [0,+∞) with range [µ(0), 0]. The

functions y → µ−1(y) on [µ(0), 0] with ranges (−∞, 0] and [0,+∞) are well-defined

when the ranges are considered separately.

The following conditions on the distribution of ηt are assumed for the proof of

Theorem 4.7.1 on the approximation of a scale-perturbed weighted mixed-empirical

process by its non-perturbed version.

Assumption (A1). (i). The p.d.f. g(x), xg(x) and x2g(x) are bounded on

x ∈ R; functions y → µ−1(y)g(µ−1(y)) and y → (µ−1(y))2g(µ−1(y)) are uniformly

continuous on [µ(0), 0] when they are considered separately;

(ii).

lim
δ→0

sup

{
|x|
∫ 1

0

|xg(x)− (x+ hxδ)g(x+ hxδ)|dh;x ∈ R
}

= 0;
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(iii). There is a δ > 0 such that E|ηt|2+δ <∞.

We remark that Assumption (i) entails that µ(x) is uniformly Lipschitz contin-

uous in scale in the sense that for some constant 0 < c <∞ and for every s ∈ R,

we have supx∈R |µ(x+ xs)− µ(x)| ≤ c|s|.

A more easily verifiable condition for Assumption (ii) can be obtained, for

example, when g admits the derivative ġ which satisfies that for some δ > 0,

sup{x2 sup |g(y) + yġ(y)|;x(1− δ) < y < x(1 + δ)} <∞.

In particular, Assumptions (i), (ii) and (iii) in (A1) hold for a wide range of

distributions, including normal, double-exponential, logistic and t-distributions

with degrees of freedom more than 2.

We also need the following assumptions on the parameter space and the score

function ϕ.

Assumption (A2). Let Θ0 denote the set of interior points of Θ. We assume

that θ0,θ0ϕ ∈ Θ0, where

θ0ϕ = (cϕω0, cϕα01, ..., cϕα0p, β01, ..., β0q)
′

(4.2.4)

is a transformation of the true parameter θ0.

Assumption (A3). The score function ϕ is non-decreasing, right-continuous

with only a finite number of points of discontinuity and is bounded on (0, 1).

To state the asymptotic linearity of R̂n(θ), write vt and v̇t for vt(θ0ϕ) and

v̇t(θ0ϕ), respectively. Let

γ(ϕ) :=

∫ 1

0

∫ 1

0

G−1(u)G−1(v) [min{u, v} − uv] dϕ(u)dϕ(v), J := E(v̇tv̇
′

t/v
2
t )

ρ(ϕ) :=

∫ 1

0

{G−1(u)}2g{G−1(u)}dϕ(u), σ2(ϕ) := E {ϕ [G(ηt)] ηt}2 − 1,
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λ(ϕ) :=

∫ 1

0

∫ 1

0

G−1(u)I(v ≤ u)(1−G−1(v)ϕ(v))dvdϕ(u). (4.2.5)

Let Z be the r.v. Z :=
∫ 1

0
G−1(u)B(u)dϕ(u), where B(.) is the standard Brownian

bridge. Then Z has mean zero and variance γ(ϕ); see the proof in Lemma 4.7.5

for details. Let G̃n(x), x ∈ R be the empirical distribution function of {ηt} (which

is unobservable),

Qn :=

∫ 1

0

n−1/2
n∑
t=1

v̇t
vt

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u),

Nn := n−1/2
n∑
t=1

v̇t
vt
{1− ηtϕ [G(ηt)]} .

The following proposition states the asymptotic uniform linearity of R̂n(θ).

Proposition 4.2.1. Let Assumptions (A1)-(A3) hold. Then for b ∈ R1+p+q with

||b|| < c,

R̂n(θ0ϕ + n−1/2b)− R̂n(θ0ϕ) = (1/2 + ρ(ϕ)/2)Jb+ uP(1). (4.2.6)

Moreover,

R̂n(θ0ϕ) = Qn +Nn + uP(1), (4.2.7)

where Qn converges in distribution to E(v̇1/v1)Z with mean zero and covariance

matrix E(v̇1/v1)E(v̇′1/v1)γ(ϕ) and Nn → N (0,Jσ2(ϕ)).

The above asymptotic linearity allows us to define a class of R-estimators

through the one-step approach. Let {Υ̂n} be a sequence of consistent estimator of

Υϕ,g(θ0ϕ) := (1/2+ρ(ϕ)/2)J ; see Section 4.2.4 for a construction of Υ̂n. Let θ̄n be

a root-n consistent and asymptotically discrete estimator of θ0ϕ. More precisely,

a sequence {θ̄n} is called discrete if there exists K ∈ N such that independent of

85



n ∈ N, θ̄n takes on at most K different values in

Qn := {θ ∈ R1+p+q : n−1/2 ‖θ − θ0‖ ≤ c}, c > 0 fixed;

see Kresis (1987, Section 4) for details. We remark that here asymptotically dis-

creteness is only of theoretical interest since in practice θ̄n always has a bounded

number of digits; see Le Cam and Yang (2000, Chapter 6) and van der Vaart (1998,

Section 5.7) for more details. Then the one-step R-estimator is defined as

θ̂n := θ̄n − n−1/2
(
Υ̂n

)−1
R̂n(θ̄n). (4.2.8)

Note that strictly speaking, the R-estimators based on this definition are not func-

tions of the ranks of the residuals only. However, we borrow the terminology from

the regression and the homoscedastic-autoregression settings and still call them

(generalized) R-estimators. When, for example, ϕ(u) = u−1/2, θ̂n is an analogue

of the Wilcoxon type R-estimator.

The following theorem shows that the R-estimator defined in (4.2.2) is
√
n-

consistent estimator of θ0ϕ.

Theorem 4.2.1. Let Assumptions (A1)-(A3) hold. Then, as n→∞,

√
n
(
θ̂n − θ0ϕ

)
= −(1/2 + ρ(ϕ)/2)−1J−1(Qn +Nn) + oP(1). (4.2.9)

Hence as n→∞,
√
n
(
θ̂n − θ0ϕ

)
is normal with mean 0 and covariance matrix

J−1
[4γ(ϕ) + 8λ(ϕ)] E(v̇1/v1)E (v̇′1/v1) + 4σ2(ϕ)J

(1 + ρ(ϕ))2
J−1.

We remark that according to Theorem 4.2.1, the asymptotic covariance matrix

of θ̂n has a complicated form. Hence we consider bootstrap methods in Section

4.4 to approximate the limit distribution of
√
n
(
θ̂n − θ0ϕ

)
.

Notice that similar to the M-estimator for the GARCH model, θ̂n turns out to
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be an estimator of transformed parameter θ0ϕ defined in (4.2.4), where the factor

cϕ is unknown since the distribution of εt is unknown. Although cϕ is unknown,

one can still apply the R-estimator to get a consistent estimate of some important

quantity in financial risk management such as the Value at Risk (VaR) when

the returns are modeled as GARCH(p, q). This is because cϕ is cancelled in the

estimation process. See, e.g., Iqbal and Mukherjee (2010) for how to estimate the

VaR based on the GARCH model.

4.2.3 Examples of the score functions

Below we cite examples of three commonly-used R-scores; for similar examples of

scores in other models and settings, see Section 2.3 in Chapter 2, Mukherjee (2007)

and Hallin and La Vecchia (2017).

Example 1 (sign score). Let ϕ(u) = sign(u − 1/2). Then for symmetric

innovation distribution, cϕ = (E|ε|)2, which coincides with the scale factor of the

LAD estimator in Mukherjee (2008). Therefore, the sign R-estimator is expected

to be close to the LAD estimator. This is demonstrated later in the real data

analysis.

Example 2 (Wilcoxon score). Let ϕ(u) = u− 1/2 so that the range of ϕ(u) is

symmetric.

Example 3 (van der Waerden (vdW) or normal score). One might also set

ϕ(u) = Φ−1(u), with Φ(·) denoting the c.d.f. of the standard normal distribution.

Notice that unlike the sign and Wilcoxon score, the vdW score is not bounded as

u → 0 and u → 1. It thus does not satisfy Assumption (A3). However, an ap-

proximating sequence of bounded score functions of ϕ on (0, 1) can be constructed

as in Andrews (2012). It is demonstrated later using both real data analysis and

extensive simulation that the vdW has superior performance compared with the

QMLE.

We now provide heuristics for the definition of the R-estimator in (4.2.1). When

the underlying error distribution is known, one can obtain efficient R-estimator by
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choosing the score function as ϕ(u) = −ḟ(F−1(u))/f(F−1(u)). Since for large n,

the empirical distribution function Rnt(θ0ϕ)/(n + 1) of {εj; 1 ≤ j ≤ n} evaluated

at εt is close to F (εt), we have

ϕ

[
Rnt(θ)

n+ 1

]
Xt

v
1/2
t (θ)

≈ H∗

[
Xt

v
1/2
t (θ)

]
.

Therefore, the criteria function of the R-estimator gets close to the MLE which

is efficient. This leads to the choice of the vdW, sign and Wilcoxon under the

normal, double exponential (DE) and logistic distributions, respectively. This is

observed later in simulation study of the R-estimator.

4.2.4 Computational aspects

Here we discuss some key computational aspects and propose an algorithm to

compute θ̂n.

First, since cϕ depends on the unknown density f , it is difficult to have a

√
n-consistent initial estimator θ̄n of θ0ϕ. However, due to finite sample size in

practice, the one-step procedure is usually iterated a number of times, taking θ̂n

as the new initial estimate, until it stabilizes numerically. This iteration process

would mitigate the impact of different initial estimates; see van der Vaart (1998,

Section 5.7) and Hallin and La Vecchia (2017) for similar comments. In fact, we

observed during our extensive simulation study that irrespective of the choice of

the QMLE, LAD or θ0 as initial estimates, only few iterations result in the same

estimates.

Second, to compute θ̂n of (4.2.8), we need Υ̂n which is a consistent estimator

of (1/2 + ρ(ϕ)/2)J . The matrix J can be consistently estimated by

Ĵn(θ̄n) := n−1
n∑
t=1

{ ˙̂vt(θ̄n) ˙̂v′t(θ̄n)/v̂2t (θ̄n)}.

For estimating ρ(ϕ) which is a function of the density g, we can use the asymp-

totic linearity in (4.2.6). Here with an arbitrarily chosen b, we can substitute θ̄n
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for θ0ϕ and then solve the equation for ρ(ϕ) based on (4.2.6). A more delicate

approach for estimating ρ(ϕ) can be found in Cassart et al. (2010) and Hallin

and La Vecchia (2017, Appendix C). Based on our extensive simulation study and

real data analysis, it appears that different values of ρ(ϕ) would finally lead to

same estimate after some iterations. Consequently, we set ρ(ϕ) = 1 during the

computation which is the value corresponding to the vdW score under the normal

distribution.

In summary, we propose the following iterative algorithm to compute the R-

estimator.

θ̂(r+1) = θ̂(r) −

[
n∑
t=1

˙̂vt(θ̂(r)) ˙̂v
′
t(θ̂(r))

v̂2t (θ̃(r))

]−1

×

{
n∑
t=1

˙̂vt(θ̂(r))

v̂t(θ̃(r))

[
1− ϕ

(
Rnt(θ̂(r))

n+ 1

)
Xt

v̂
1/2
t (θ̂(r))

]}
, for r = 0, 1, ...,

(4.2.10)

with θ̂(0) = θ̄n being the initial estimator.

4.2.5 Asymptotic relative efficiency

In the linear regression and autoregressive models, the asymptotic relative effi-

ciency (ARE) of the R-estimators is high with respect to (wrt) the least squares

estimator for a wide array of error distributions. For the GARCH model, we

compare the ARE of the R-estimator wrt the QMLE based on Theorem 4.2.1.

Define a diagonal matrix of order (1 + p+ q)× (1 + p+ q) by

A := diag(c−1ϕ , ..., c−1ϕ︸ ︷︷ ︸
1+p

1, ..., 1︸ ︷︷ ︸
q

).

Then Aθ̂n is a
√
n-consistent estimator of θ0 for all score functions ϕ. Using the

forms of {cj(θ); j ≥ 0} in (3.1) of Berkes et al. (2003),

vt(A
−1θ) = cϕvt(θ), v̇t(A

−1θ) = cϕAv̇t(θ).
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Since θ0ϕ = A−1θ0 with J0 := E[v̇t(θ0)v̇
′

t(θ0)/v
2
t (θ0)], we have

v̇t(θ0ϕ)

vt(θ0ϕ)
= A

v̇t(θ0)

vt(θ0)
, J = AJ0A.

Thus Theorem 4.2.1 implies that as n → ∞, n1/2
(
Aθ̂n − θ0

)
converges to the

normal distribution with mean 0 and covariance matrix

C1 := J−10

[4γ(ϕ) + 8λ(ϕ)] E(v̇1(θ0)/v1(θ0))E (v̇′1(θ0)/v1(θ0)) + 4σ2(ϕ)J0

(1 + ρ(ϕ))2
J−10 .

For the QMLE θ̂QMLE, we can derive a similar result as follows. Define a

(1 + p + q) × (1 + p + q) diagonal matrix B = diag((Eε2)−1, .., (Eε2)−1︸ ︷︷ ︸
1+p

1, ..., 1︸ ︷︷ ︸
q

).

When Eε4 <∞,
√
n
(
Bθ̂QMLE − θ0

)
→ N(0,C2),

where C2 = (Eε4/(Eε2)2 − 1)J−10 . The ARE of the R-estimator wrt the QMLE is

C−11 C2 = J0

{
[4γ(ϕ) + 8λ(ϕ)] E

(
v̇1(θ0)

v1(θ0)

)
E

(
v̇′1(θ0)

v1(θ0)

)
+ 4σ2(ϕ)J0

}−1
× (1 + ρ(ϕ))2

(
Eε4

(Eε2)2
− 1

)
. (4.2.11)

For the sign R-estimator, γ(ϕ), λ(ϕ) and ρ(ϕ) are all zeros. Hence C−11 C2 reduces

to

(Eε4/(Eε2)2 − 1)/(4σ2(ϕ))I1+p+q,

where I1+p+q is the (1 + p + q) × (1 + p + q) identity matrix. Consequently, the

ARE of the sign R-estimator wrt the QMLE equals

(Eε4/(Eε2)2 − 1)/(4σ2(ϕ)),

which is 0.876 under the normal distribution. This corresponds to the classical

result of the ARE of the mean absolute deviation wrt the mean square deviation;

see, e.g., Huber and Ronchetti (2009, Chapter 1).
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For the vdW and Wilcoxon R-estimators, the AREs are more difficult to calcu-

late since γ(ϕ) and λ(ϕ) are non-zero. However, in the following simulation study

in Table 4.2, the estimated AREs reveal that the vdW R-estiamtor, compared with

the QMLE, does not lose any efficiency even under the normal distribution.

Scale-transformation invariance of the ARE. The following proposition

states that the ARE of the R-estimator wrt the QMLE enjoys the invariance prop-

erty of the scale-transformation in terms of the innovation. Hence, with underlying

distributions of the same type but with different variances, the AREs remain the

same. In particular, let e(ε) denote the ARE when the innovation term is {εt}.

Then we have the following proposition.

Proposition 4.2.2. Under Assumptions (A1)-(A3), e(ε̃) = e(ε), where ε̃ = cε for

a constant c.

Proof. Let c̃ϕ, η̃t, ṽt(θ), σ̃2(ϕ), ρ̃(ϕ), γ̃(ϕ), λ̃(ϕ) denote the counterparts of cϕ, ηt,

vt(θ), σ2(ϕ), ρ(ϕ), γ(ϕ), λ(ϕ) when the innovation term is {ε̃t}. Since c̃ϕ = c2cϕ,

we have η̃t = ηt and this implies that

σ̃2(ϕ) = σ2(ϕ), ρ̃(ϕ) = ρ(ϕ), γ̃(ϕ) = γ(ϕ), λ̃(ϕ) = λ(ϕ),Eε̃4/(Eε̃2)2 = Eε4/(Eε2)2.

Thus, in view of (4.2.11), we obtain e(ε̃) = e(ε).

Using the similar method of proving Proposition 4.2.2, it is easy to show that

the scale-transformation invariance of the ARE also holds in terms of the score

function. Specifically, let e(ϕ) denote the ARE when the score function is ϕ. Then

e(ϕ̃) = e(ϕ) for ϕ̃ = cϕ for a constant c > 0.

4.3 Real data analysis and simulation results

This section examines the performance of the R-estimators and compare them with

the QMLE by analysing three financial time series and by carrying out extensive

Monte Carlo simulation.
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4.3.1 Real data analysis

In this section we fit GARCH(1, 1) model to three financial time series and compare

the proposed three R-estimators with the M-estimators QMLE and LAD discussed

in Mukherjee (2008).

In an earlier work, Muler and Yohai (2008) fitted the the GARCH(1, 1) model

to the Electric Fuel Corporation (EFCX) time series for the period of January

2000 to December 2001 with sample size n = 498. The parameters of the model

are estimated by M-estimators based on various score functions. It turned out

that the M-estimates of the parameter β differ widely depending on the score

functions and so it is difficult to assess which estimate should be relied on in

similar situations. Here we compare various M-estimates and R-estimates of the

GARCH(1, 1) parameters for the EFCX series again shedding light on which could

be some possible reasons for the difference in estimates and finally which estimation

methods can be relied upon. We also compare M-estimates of the GARCH(1, 1)

parameters when fitted to two other dataset, namely, the S&P 500 stock index from

June 2013 to May 2017 with n = 1005 and the GBP/USD exchange rate from June

2013 to May 2017 with n = 998 to illustrate that the M- and R-estimates of β do

not differ widely when the underlying theoretical assumptions hold in general.

In Table 4.1, we report the QMLE computed using the fGarch package in

R program, the M-estimates QMLE and LAD and the R-estimates proposed in

Examples 1-3 of Section 4.2.3. For the EFCX data, the R-estimates of β for all

score functions are quite close to the LAD estimate, but they are very different

than the QMLE. On the contrary, for the S&P 500 and GBP/USD data, all these

estimates of β are close to each other. We can also find that the LAD estimates

of all parameters are quite close to the sign estimates and this is consistent with

the discussion in Example 1 of Section 4.2.3. Note also that for ω and α, the

R-estimates are quite different since cϕ’s of these scores have different values.

To investigate why the QMLE of β is different from the other R-estimates

and LAD for the EFCX data, we check the assumption Eε4 < ∞ for this data
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Table 4.1: The QMLE, LAD and R-estimates (sign, Wilcoxon and vdW) of the
GARCH(1, 1) parameter for the EFCX, S&P 500 and GBP/USD data.

fGarch QMLE LAD sign Wilcoxon vdW

EFCX

ω 1.89×10−4 6.28×10−4 6.43×10−4 6.27×10−4 8.44×10−5 1.12×10−3

α 4.54×10−2 7.20×10−2 8.87×10−2 8.81×10−2 1.09×10−2 0.12

β 0.92 0.84 0.66 0.65 0.67 0.69

S&P 500

ω 6.50×10−6 7.02×10−6 3.02×10−6 3.02×10−6 4.02×10−7 5.97×10−6

α 0.18 0.18 0.11 0.11 1.41×10−2 0.18

β 0.72 0.70 0.73 0.73 0.73 0.72

GBP/USD

ω 5.32×10−7 1.02×10−6 3.64×10−7 3.64×10−7 5.23×10−8 8.73×10−7

α 0.11 0.13 3.74×10−2 3.74×10−2 5.18×10−3 8.53×10−2

β 0.88 0.85 0.91 0.91 0.91 0.89

by using the QQ-plots of the residuals based on the QMLE and the R-estimates

corresponding to the vdW score against t distributions. We consider the vdW

score only since the R-estimates based on two other score functions and the LAD

are close to the vdW estimates. For comparison, we have also provided QQ-plots

for the S&P 500 data. The main idea behind the QQ-plots of the residuals against

the t(d) distribution is simple. Since if ε ∼ t(d) distribution then E|ε|ν < ∞ if

and only if ν < d, residuals with heavier tail than the t(d) distribution correspond

to the errors with the infinite d-th moment while those with thinner tail than the

t(d) distribution have the finite d-th error moment.

The top-left panel of Figure 4.3 shows the QQ-plot of the residuals against the

t(4.01) distribution for the EFCX data. The residuals have heavier right tail than

the t(4.01) distribution which implies that the fourth moment of the error term

may not exist. On the other hand, the QQ-plot against the t(3.01) distribution

reveals lighter tail as shown at the bottom-left panel of Figure 4.3 and this implies

that E|ε|3 <∞.

For the S&P 500 data, the QQ-plot against t(4.01) distribution at the top-

right panel of Figure 4.3 shows that the residuals have lighter tails than t(4.01)
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Figure 4.3: QQ-plots of the residuals against t-distributions for the EFCX (left
column) and S&P 500 data (right column); the residuals are obtained by using the
vdW R-estimator.

distribution. For the QQ-plot against t(6.01) distribution, as shown at the bottom-

right panel of Figure 4.3, the residuals fit the distribution better. Therefore, we

may conclude that E|ε|4 <∞ holds for the S&P 500 data.

4.3.2 Simulation study of the R-estimators

We now evaluate the performance of the R-estimators based on simulated data

from various error distributions. Apart from the GARCH(1, 1) model we consider

the GARCH(2, 1) model also as the computation for higher order models are not

considered frequently in the literature. Let R denote the number of replications

and θ̂ni = (ω̂i, α̂i1, ..., α̂ip, β̂i1, ..., β̂iq)
′ denote the R-estimator computed from the

i-th data, 1 ≤ i ≤ n. Note that θ̂ni is an estimator of θ0ϕ, which depends on the

score function used in the estimation. To compare R-estimates based on different
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score functions fairly, we consider the standardized bias defined by

1

R

R∑
i=1

(
ω̂i
cϕ
− ω0,

α̂i1
cϕ
− α01, ...,

α̂ip
cϕ
− α0p, β̂i1 − β01, ..., β̂iq − β0q

)′
,

and the standardized MSE defined by

1

R

R∑
i=1

((
ω̂i
cϕ
− ω0

)2

,

(
α̂i1
cϕ
− α01

)2

, ...,

(
α̂ip
cϕ
− α0p

)2

,
(
β̂i1 − β01

)2
, ...,

(
β̂iq − β0q

)2)′
.

We also compare the relative efficiency of the R-estimators wrt the QMLE under

a finite sample size, as an estimate of the ARE, by using the formula

ÂRER/QMLE = M̂SEQMLE/M̂SER.

Simulation for the GARCH(1, 1) model. Here we run simulation with

R = 500, n = 1000 and θ0 = (6.50× 10−6, 0.177, 0.716)′, where our choice of θ0 is

motivated by the estimate given by the fGarch for the S&P 500 data in Table 4.1.

The estimates of the standaradized bias and MSE of the R-estimators and QMLE

under various error distributions are reported in Table 4.2. The estimates of the

ARE are shown in the parentheses. Notice that under t(3) distribution, the QMLE

does not converge for many replications, while the R-estimators always converge.

Therefore, the bias and MSE are obtained using the replications where the QMLE

converges.

The bias of the M-estimators is close to zero under all distributions considered

in Table 4.2, indicating consistency of the M-estimators. It is worth noting that

the vdW achieves almost the same efficiency as the QMLE under the normal

distribution, and the vdW is more efficient under heavier-tailed distributions. In

general, the sign score is most efficient under the DE and t(3) distributions, while

the Wilcoxon score is optimal under the logistic distribution. Under the t(3) error

distribution with infinite fourth moment, the R-estimators outperform the QMLE

in terms of both bias and MSE. For instance, for α, the bias ratio of the QMLE
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Table 4.2: The estimates of the standardized bias, MSE and ARE of the R-
estimators (sign, Wilcoxon and vdW) and the QMLE for the GARCH(1, 1) model
under various error distributions with sample size n = 1000 based on R = 500
replications.

Standardized bias Standardized MSE and ARE

ω α β ω α β

Normal

QMLE 8.96×10−7 -4.42×10−4 -1.54×10−2 6.45×10−12 1.41×10−3 4.14×10−3

Sign 9.30×10−7 1.74×10−3 -1.54×10−2 8.39×10−12 (0.77) 1.62×10−3 (0.87) 5.16×10−3 (0.80)

Wilcoxon 1.02×10−6 3.09×10−3 -1.61×10−2 8.52×10−12 (0.76) 1.54×10−3 (0.91) 4.93×10−3 (0.84)

vdW 9.05×10−7 4.55×10−4 -1.55×10−2 6.44×10−12 (1.00) 1.43×10−3 (0.98) 4.15×10−3 (1.00)

DE

QMLE 1.02×10−6 3.56×10−3 -2.26×10−2 8.60×10−12 2.37×10−3 6.29×10−3

Sign 5.82×10−7 -3.42×10−3 -1.69×10−2 6.22×10−12 (1.38) 1.74×10−3 (1.36) 5.15×10−3 (1.22)

Wilcoxon 6.24×10−7 -2.93×10−3 -1.74×10−2 6.34×10−12 (1.36) 1.76×10−3 (1.35) 5.12×10−3 (1.23)

vdW 6.22×10−7 -4.13×10−3 -1.96×10−2 6.51×10−12 (1.32) 1.88×10−3 (1.26) 5.45×10−3 (1.15)

Logistic

QMLE 1.05×10−6 2.51×10−3 -1.51×10−2 7.44×10−12 1.63×10−3 4.28×10−3

Sign 6.85×10−7 -2.65×10−3 -1.17×10−2 5.40×10−12 (1.38) 1.42×10−3 (1.15) 3.66×10−3 (1.17)

Wilcoxon 6.82×10−7 -2.91×10−3 -1.19×10−2 5.24×10−12 (1.42) 1.38×10−3 (1.18) 3.56×10−3 (1.20)

vdW 7.06×10−7 -3.80×10−3 -1.34×10−2 5.66×10−12 (1.31) 1.42×10−3 (1.14) 3.83×10−3 (1.12)

t(3)

QMLE 9.96×10−7 2.99×10−2 -5.46×10−2 2.53×10−11 2.74×10−2 2.81×10−2

Sign 4.33×10−7 4.82×10−3 -1.80×10−2 6.78×10−12 (3.73) 3.72×10−3 (7.37) 7.73×10−3 (3.64)

Wilcoxon 4.15×10−7 4.41×10−3 -1.83×10−2 7.10×10−12 (3.57) 3.86×10−3 (7.10) 8.18×10−3 (3.44)

vdW 3.92×10−7 3.77×10−3 -2.57×10−2 9.38×10−12 (2.70) 5.33×10−3 (5.14) 1.14×10−2 (2.47)

with respect to the vdW is 7.9; the MSE ratio of the QMLE with respect to the

sign is 7.37.

To strengthen the point that the R-estimators behave better than the QMLE

under a heavy-tailed distribution, we have reported simulation results for larger

sample sizes n = 3000 and n = 5000 under t(3) distribution in Table 4.3. The

QMLE failed to converge for large sample size; for example, with n = 5000 around

8% replications do not converge. From Table 4.3, when n increases, the perfor-

mance of the R-estimators becomes even better in terms of both the bias and

MSE.

Overall, the vdW dominates the QMLE and other R-estimators sacrifice small

efficiency under the normal error distribution while they achieve much higher effi-

ciency when tails become much heavier. This provides a strong support for using

the R-estimators.

Simulation for the GARCH(2, 1) model. It was reported in Francq and

96



Table 4.3: The estimates of the standardized bias, MSE and ARE of the R-
estimators (sign, Wilcoxon and vdW) and the QMLE for the GARCH(1, 1) model
under the t(3) error distribution with larger sample sizes n = 3000, 5000 based on
R = 500 replications.

Standardized bias Standardized MSE and ARE

ω α β ω α β

n = 3000

QMLE 6.34×10−7 1.80×10−2 -3.48×10−2 1.14×10−11 1.61×10−2 1.25×10−2

Sign 1.52×10−7 1.46×10−3 -9.99×10−3 1.65×10−12 (6.89) 1.29×10−3 (12.47) 2.10×10−3 (5.93)

Wilcoxon 1.61×10−7 1.47×10−3 -1.03×10−2 1.76×10−12 (6.46) 1.35×10−3 (11.95) 2.22×10−3 (5.63)

vdW 1.58×10−7 1.01×10−3 -1.39×10−2 2.46×10−12 (4.63) 1.89×10−3 (8.49) 3.15×10−3 (3.96)

n = 5000

QMLE 3.66×10−7 1.20×10−2 -2.07×10−2 8.21×10−12 1.20×10−2 8.22×10−3

Sign 6.95×10−11 -2.00×10−3 -3.86×10−3 1.01×10−12 (8.09) 7.21×10−4 (16.67) 1.16×10−3 (7.10)

Wilcoxon -3.01×10−10 -1.81×10−3 -3.98×10−3 1.06×10−12 (7.73) 7.56×10−4 (15.90) 1.20×10−3 (6.85)

vdW -1.57×10−8 -2.37×10−3 -5.86×10−3 1.54×10−12 (5.33) 1.13×10−3 (10.64) 1.77×10−3 (4.64)

Zaköıan (2009) that higher order GARCH models may fit some financial time series

better than the GARCH(1, 1) model. Therefore, here we examine the performance

of the R-estimators under the GARCH(2, 1) model by running simulations with

R = 500, n = 1000. For choosing the true model parameters for the simula-

tions, we fitted the FTSE 100 data from January 2007 to December 2009 to the

by GARCH(2, 1) model using the fGarch package. It turned out that α2 is sig-

nificant with p-value = 0.019 and the Akaike information criterion (AIC) of the

GARCH(2, 1) is smaller than that of the GARCH(1, 1). Since the fGarch estimate

of the true parameter is θ0 = (4.46× 10−6, 0.0525, 0.108, 0.832)′, we choose this θ0

to generate sample from the GARCH(2, 1) model with various error distributions.

The R-estimators and QMLE are compared through the standardized bias and

MSE and the corresponding estimates are reported in Table 4.4. Similar to the

GARCH(1, 1) case, the advantage of the R-estimators over the QMLE becomes

prominent under heavy-tailed distributions, especially under the t(3) distribution,

where the bias and MSE of the R-estimators have smaller order of magnitude than

the those of the QMLE.
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Table 4.4: The estimates of the standardized bias and MSE of the R-estimators
(sign, Wilcoxon and vdW scores) and the QMLE for the GARCH(2, 1) model
under various error distributions (sample size n = 1000; R = 500 replications).

Standardized bias Standardized MSE

ω α1 α2 β ω α1 α2 β

Normal

QMLE 3.80×10−6 8.85×10−3 -3.16×10−3 -2.01×10−2 2.50×10−11 1.71×10−3 1.93×10−3 1.35×10−3

Sign 3.79×10−6 1.05×10−2 -5.76×10−3 -1.84×10−2 2.65×10−11 1.90×10−3 2.19×10−3 1.30×10−3

Wilcoxon 3.68×10−6 9.91×10−3 -6.51×10−3 -1.81×10−2 2.42×10−11 1.74×10−3 2.01×10−3 1.20×10−3

vdW 3.95×10−6 1.03×10−2 -7.49×10−3 -1.96×10−2 2.67×10−11 1.74×10−3 1.94×10−3 1.25×10−3

DE

QMLE 2.61×10−6 4.43×10−3 2.14×10−3 -1.99×10−2 3.11×10−11 2.53×10−3 4.01×10−3 2.33×10−3

Sign 1.96×10−6 5.02×10−3 2.57×10−4 -1.61×10−2 9.96×10−12 1.85×10−3 2.88×10−3 1.66×10−3

Wilcoxon 1.85×10−6 3.03×10−3 -2.03×10−3 -1.65×10−2 9.57×10−12 1.79×10−3 2.85×10−3 1.73×10−3

vdW 1.95×10−6 1.80×10−3 -1.96×10−3 -1.81×10−2 1.10×10−11 1.92×10−3 3.14×10−3 1.97×10−3

Logistic

QMLE 4.72×10−6 5.44×10−3 8.41×10−4 -1.98×10−2 5.24×10−11 3.75×10−3 4.49×10−3 2.06×10−3

Sign 3.17×10−6 3.23×10−3 -2.32×10−3 -1.49×10−2 2.09×10−11 1.75×10−3 2.50×10−3 1.39×10−3

Wilcoxon 3.24×10−6 2.93×10−3 -1.97×10−3 -1.51×10−2 2.20×10−11 1.73×10−3 2.48×10−3 1.42×10−3

vdW 3.62×10−6 2.49×10−3 -1.97×10−3 -1.72×10−2 2.76×10−11 1.91×10−3 2.67×10−3 1.72×10−3

t(3)

QMLE 1.78×10−6 3.06×10−2 -2.07×10−2 -3.12×10−2 2.85×10−11 7.88×10−2 7.65×10−2 1.08×10−2

Sign 9.92×10−7 3.18×10−3 -3.92×10−3 -1.29×10−2 5.67×10−12 3.25×10−3 5.25×10−3 2.42×10−3

Wilcoxon 9.78×10−7 3.69×10−3 -4.87×10−3 -1.28×10−2 5.70×10−12 3.51×10−3 5.58×10−3 2.50×10−3

vdW 9.86×10−7 5.10×10−3 -9.49×10−3 -1.56×10−2 7.59×10−12 5.66×10−3 8.08×10−3 3.57×10−3

4.4 Bootstrapping the R-estimators

Since the asymptotic covariance matrix of the R-estimators are of complicated

forms, in this section we employ the weighted bootstrap technique discussed by

Chatterjee and Bose (2005) in the context of M-estimators to approximate the

distributions of the R-estimators and we compute corresponding coverage proba-

bilities to exhibit the effectiveness of such bootstrap approximations. The weighted

bootstrap in this context is attractive for its computational simplicity since at each

bootstrap replication, only the weights need to be generated instead of resampling

the data components to compute the replicates of the bootstrapped R-estimate.

In this context, the weighted bootstrap version of the rank-based central se-

quence is

R̂
∗
n,ϕ(θ) := R̂

∗
n(θ) = n−1/2

n∑
t=1

wnt
˙̂vt(θ)

v̂t(θ)

{
1− ϕ

[
R̂nt(θ)

n+ 1

]
Xt

v̂
1/2
t (θ)

}
,
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where {wnt; 1 ≤ t ≤ n;n ≥ 1} is a triangular array of r.v.’s which satisfies the

following conditions:

(i) The weights {wnt; 1 ≤ t ≤ n} are exchangeable and independent of the data

{Xt; 1 ≤ t ≤ n} and errors {εt; 1 ≤ t ≤ n};

(ii) For all t ≥ 1, wnt ≥ 0; E(wnt) = 1; Corr(wn1;wn2) = O(1/n); Var(wnt) = σ2
n,

where 0 < c1 < σ2
n = o(n), with c1 > 0 being a constant.

Among various schemes of the weights satisfying the above conditions, we com-

pare the following three types of weights:

(i) Scheme M: {wn1, . . . , wnn} have a multinomial (n, 1/n, . . . , 1/n) distribution,

which is essentially the classical paired bootstrap.

(ii) Scheme E: wnt = (nEt)/
∑n

i=1Ei, where {Et} are i.i.d. exponential r.v.’s with

mean 1.

(iii) Scheme U: wnt = (nUt)/
∑n

i=1 Ui, where {Ut} are i.i.d. uniform r.v.’s on

(0.5, 1.5).

We use the weighted version of (4.2.10) to compute the bootstrap estimator

θ̂∗n:

θ̂∗(r+1) = θ̂∗(r) −

[
n∑
t=1

wnt
˙̂vt(θ̂∗(r)) ˙̂v

′
t(θ̂∗(r))

v̂2t (θ̂∗(r))

]−1

×

{
n∑
t=1

wnt
˙̂vt(θ̂∗(r))

v̂t(θ̂∗(r))

[
1− ϕ

(
R̂nt(θ̂∗(r))

n+ 1

)
Xt

v̂
1/2
t (θ̂∗(r))

]}
, for r = 0, 1, ...,

(4.4.1)

with θ̂∗(0) = θ̂n being the initial estimator.

4.4.1 Bootstrap coverage probabilities

Chatterjee and Bose (2005) proved the consistency of the bootstrap for an es-

timator defined by smooth estimating equation. Since ranks are integer-valued

discontinuous functions, the proof of the asymptotic validity of the bootstrapped

R-estimator is a mathematically challenging problem which is beyond the scope
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of this thesis. Instead, we resort to simulations to evaluate the performance of

the bootstrap approximation of the R-estimators by comparing the distribution of

σ−1n
√
n(θ̂∗n − θ̂n) with that of

√
n(θ̂n − θ0ϕ) in terms of coverage rates.

In particular, with the choice of the true parameter θ0 = (6.50×10−6, 0.177, 0.716)′

as in the simulation study of the GARCH(1, 1) model of the previous section, we

generate R = 1000 data each with sample size n = 1000 based on different er-

ror distributions. For each data, the exchangeable weights {wnt; 1 ≤ t ≤ n} are

generated B = 2000 times. We consider cases where the error distributions are

normal, DE, logistic and t(3). The bootstrap weights are based on Schemes M, E

and U. The bootstrap coverage rates (in percentage) for 95%, 90% nominal levels

are reported in Table 4.5. Notice that all bootstrap schemes provide reasonable

coverage rates under these error distributions. Scheme U is slightly better than

the scheme M and E under the DE and t(3) distributions.

To check the performance of the bootstrap under different sample sizes, we

run simulation with n = 200, 300, ..., 1000 for the sign, Wilcoxon and vdW scores.

There are R = 1000 replications being generated under the normal error distri-

bution, and each replication is bootstrapped B = 2000 times with the scheme U.

Figure 4.4 shows the bootstrap coverage rates for ω (first row), α (second row), β

(third row) under 95% nominal level (left column) and 90% nominal level (right

column). We notice that as the sample size increases, the coverage rates get close

to the nominal levels for all parameters and all R-estimators, with only few excep-

tions. This tends to imply the consistency of the bootstrap approximation. With

the sample size n ≥ 500, the bootstrap coverage rates are generally close to the

nominal levels.
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Table 4.5: The bootstrap coverage rates (in percentage) for the R-estimators (sign,
Wilcoxon and vdW) under various error distributions

95% nominal level 90% nominal level

ω α β ω α β

Normal sign Scheme M 94.1 93.6 92.8 90.8 88.5 89.2

Scheme E 93.5 93.3 92.8 90.3 88.1 88.8

Scheme U 94.8 94.7 93.7 91.7 90.2 89.6

Normal Wilcoxon Scheme M 96.4 96.3 93.7 93.8 90.3 89.7

Scheme E 96.5 96.0 93.2 93.2 90.0 89.3

Scheme U 96.5 95.6 94.3 93.5 91.1 90.1

Normal vdW Scheme M 94.3 92.3 93.6 91.3 89.1 89.0

Scheme E 94.2 92.2 92.7 90.5 88.5 88.7

Scheme U 95.3 94.1 93.7 91.4 90.5 89.2

DE sign Scheme M 90.8 90.5 91.6 87.8 86.0 86.8

Scheme E 90.4 89.6 90.4 87.2 85.3 86.4

Scheme U 91.9 92.7 92.7 88.8 88.9 87.8

DE Wilcoxon Scheme M 91.0 91.0 91.5 87.6 86.9 87.6

Scheme E 90.7 90.2 90.4 87.2 86.2 86.6

Scheme U 92.4 93.6 92.8 88.7 89.1 87.7

DE vdW Scheme M 90.9 87.6 89.7 87.5 83.9 85.3

Scheme E 90.4 86.9 88.9 86.9 83.1 84.8

Scheme U 92.4 90.2 91.0 89.7 85.6 86.0

Logistic sign Scheme M 93.0 91.1 92.1 89.0 87.6 88.6

Scheme E 93.4 92.3 92.5 89.8 86.3 88.4

Scheme U 93.0 92.3 91.9 88.7 87.5 87.1

Logistic Wilcoxon Scheme M 93.5 91.3 92.5 89.9 87.7 89.2

Scheme E 93.7 89.4 91.7 90.0 85.8 87.1

Scheme U 94.1 92.2 92.8 88.9 88.1 86.4

Logistic vdW Scheme M 93.1 91.2 92.3 89.3 88.0 87.0

Scheme E 92.4 91.1 91.7 88.5 87.6 86.4

Scheme U 94.4 93.6 92.2 90.4 90.8 86.8

t(3) sign Scheme M 88.3 85.3 88.3 86.0 82.6 83.5

Scheme E 88.3 85.0 87.6 84.9 82.4 82.0

Scheme U 91.8 89.0 90.6 87.5 85.6 86.4

t(3) Wilcoxon Scheme M 88.1 84.7 88.5 85.7 81.4 83.7

Scheme E 88.0 84.5 87.7 85.0 80.7 82.8

Scheme U 91.8 88.7 90.0 87.6 85.6 85.5

t(3) vdW Scheme M 85.6 82.3 86.1 81.9 79.7 81.0

Scheme E 84.4 82.1 86.0 80.9 78.7 80.2

Scheme U 90.3 85.4 88.9 86.6 81.0 83.3
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Figure 4.4: Plot of the bootstrap coverage rates for the R-estimators (sign,
Wilcoxon and vdW) at different sample sizes. The first, second and third rows are
for ω, α and β respectively. The nominal levels are 95% (left column) and 90%
(right column). Scheme U is employed and the errors have normal distribution.
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4.5 Application of the R-estimator to the GJR

model

Glosten et al. (1993) proposed the GJR(p, q) model for the asymmetric voatility

observed in many financial dataset exhibit asymmetry property. The GJR(p, q)

model is defined by

Xt = σtεt

where

σ2
t = ω0 +

p∑
i=1

[α0i + γ0iI(Xt−i < 0)]X2
t−i +

q∑
j=1

β0jσ
2
t−j, t ∈ Z,

with ω0, α0i, γ0i, β0j > 0,∀i, j. Since σ2
t is linear in parameters, we define the R-

estimators for the GJR model using the same rank-based central sequence as in

(4.2.2). See also Iqbal and Mukherjee (2010) for the extension of M-estimators

from the GARCH model to the GJR model. We do not prove any asymptotic

theory for the R-estimators of the GJR model but present here empirical analysis

using the same algorithm as in (4.2.10) to compute the R-estimators. The following

extensive simulation study, similar to the GARCH case, demonstrates the superior

performance of the R-estimators compared to the QMLE that is often used in this

model. We also carry out simulation with increasing sample sizes to show the

consistency of the R-estimators. Three types of R-estimators and the QMLE are

compared below under various error distributions. We run simulations with the

sample size n = 1000, number of replications R = 500 and true parameter

θ0 = (3.45× 10−4, 0.0658, 0.0843, 0.8182)′,

which is motivated by the estimate in Tsay (2010) for the IBM stock monthly

returns from 1926 to 2003. The estimates of the standardized bias and MSE of

the QMLE and R-estimators and those of the ARE of the R-estimators wrt the
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QMLE are reported in Table 4.6.

We remark that the results are consistent with those in Table 4.2: the vdW

score still dominates the QMLE uniformly; the optimal scores under the DE and

logistic distributions are also the sign and Wilcoxon, respectively. It is worth

noting that under t(3) distribution, the R-estimators are much more efficient than

the QMLE for the parameter γ.

Table 4.6: The estimates of the standardized bias, MSE and ARE of the R-
estimators (sign, Wilcoxon and vdW) and the QMLE for the GJR (1, 1) model
under various error distributions (sample size n = 1000; R = 500 replications).

Standardized bias Standardized MSE and ARE

ω α γ β ω α γ β

Normal

QMLE 8.70×10−5 -2.03×10−3 7.47×10−3 -2.03×10−2 4.17×10−8 7.63×10−4 1.53×10−3 3.80×10−3

Sign 9.01×10−5 -1.20×10−3 8.43×10−3 -2.00×10−2 4.73×10−8 9.40×10−4 1.92×10−3 4.30×10−3

(0.88) (0.81) (0.80) (0.88)

Wilcoxon 9.35×10−5 -8.15×10−4 8.65×10−3 -2.00×10−2 4.96×10−8 8.72×10−4 1.76×10−3 4.24×10−3

(0.84) (0.87) (0.87) (0.90)

vdW 8.72×10−5 -1.61×10−3 7.59×10−3 -2.01×10−2 4.24×10−8 7.72×10−4 1.56×10−3 3.82×10−3

(0.98) (0.99) (0.98) (0.99)

DE

QMLE 7.07×10−5 -1.28×10−3 1.13×10−2 -1.87×10−2 4.66×10−8 1.23×10−3 3.19×10−3 4.72×10−3

Sign 4.91×10−5 -2.26×10−3 6.99×10−3 -1.62×10−2 3.44×10−8 9.58×10−4 2.36×10−3 4.10×10−3

(1.35) (1.28) (1.35) (1.15)

Wilcoxon 5.06×10−5 -2.23×10−3 7.25×10−3 -1.61×10−2 3.45×10−8 9.74×10−4 2.41×10−3 4.06×10−3

(1.35) (1.26) (1.32) (1.16)

vdW 4.98×10−5 -3.35×10−3 6.73×10−3 -1.71×10−2 3.54×10−8 1.02×10−3 2.50×10−3 4.23×10−3

(1.32) (1.20) (1.27) (1.12)

Logistic

QMLE 8.01×10−5 7.88×10−4 8.85×10−3 -1.62×10−2 3.86×10−8 1.07×10−3 2.40×10−3 3.46×10−3

Sign 6.06×10−5 -2.59×10−4 5.54×10−3 -1.49×10−2 3.26×10−8 8.97×10−4 1.96×10−3 3.36×10−3

(1.18) (1.19) (1.23) (1.03)

Wilcoxon 5.97×10−5 -5.22×10−4 5.38×10−3 -1.44×10−2 3.07×10−8 8.76×10−4 1.93×10−3 3.18×10−3

(1.26) (1.22) (1.24) (1.09)

vdW 6.27×10−5 -1.18×10−3 5.18×10−3 -1.56×10−2 3.25×10−8 9.26×10−4 2.04×10−3 3.35×10−3

(1.19) (1.15) (1.17) (1.03)

t(3)

QMLE 9.91×10−5 -1.00×10−3 9.21×10−2 -6.45×10−2 1.14×10−7 4.38×10−3 1.18×10−1 2.31×10−2

Sign 5.68×10−5 4.23×10−4 2.71×10−2 -2.77×10−2 3.78×10−8 1.35×10−3 4.69×10−3 6.33×10−3

(3.02) (3.24) (25.19) (3.65)

Wilcoxon 5.69×10−5 3.94×10−5 2.74×10−2 -2.85×10−2 3.93×10−8 1.40×10−3 4.80×10−3 6.62×10−3

(2.91) (3.12) (24.57) (3.49)

vdW 6.12×10−5 -1.61×10−3 3.43×10−2 -3.71×10−2 5.13×10−8 1.93×10−3 7.45×10−3 9.58×10−3

(2.23) (2.27) (15.84) (2.41)

Simulation under different sample size. We next investigate the behaviour

of R-estimators by carrying out simulations with different sample sizes. The num-

ber of replications and true parameter are the same as those used for Table 4.6
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Table 4.7: The standardized bias, MSE of the R-estimators (sign, Wilcoxon and
vdW) for the GJR (1, 1) model under normal error distributions with different
sample sizes (R = 500 replications).

Standardized bias Standardized MSE

ω α γ β ω α γ β

Sign

n = 500 1.78×10−4 2.42×10−3 1.88×10−2 -4.84×10−2 1.43×10−7 1.64×10−3 3.72×10−3 1.33×10−2

n = 1000 9.01×10−5 -1.20×10−3 8.43×10−3 -2.00×10−2 4.73×10−8 9.40×10−4 1.92×10−3 4.30×10−3

n = 3000 2.76×10−5 -6.82×10−4 1.97×10−3 -4.47×10−3 8.75×10−9 3.05×10−4 6.11×10−4 8.73×10−4

n = 5000 2.07×10−5 -4.43×10−4 2.05×10−3 -3.43×10−3 4.57×10−9 1.70×10−4 3.68×10−4 4.62×10−4

Wilcoxon

n = 500 1.77×10−4 2.52×10−3 1.88×10−2 -4.75×10−2 1.37×10−7 1.52×10−3 3.45×10−3 1.26×10−2

n = 1000 9.35×10−5 -8.15×10−4 8.65×10−3 -2.00×10−2 4.96×10−8 8.72×10−4 1.76×10−3 4.24×10−3

n = 3000 3.01×10−5 -2.94×10−5 2.68×10−3 -4.30×10−3 8.18×10−9 2.82×10−4 5.60×10−4 7.85×10−4

n = 5000 2.45×10−5 1.52×10−4 2.82×10−3 -3.54×10−3 4.50×10−9 1.63×10−4 3.55×10−4 4.29×10−4

vdW

n = 500 1.67×10−4 1.42×10−3 1.61×10−2 -4.84×10−2 1.31×10−7 1.44×10−3 3.03×10−3 1.27×10−2

n = 1000 8.72×10−5 -1.61×10−3 7.59×10−3 -2.01×10−2 4.24×10−8 7.72×10−4 1.56×10−3 3.82×10−3

n = 3000 2.88×10−5 -1.72×10−4 1.60×10−3 -4.59×10−3 7.42×10−9 2.61×10−4 4.90×10−4 7.19×10−4

n = 5000 2.42×10−5 9.50×10−6 2.42×10−3 -4.02×10−3 4.38×10−9 1.49×10−4 3.28×10−4 4.26×10−4

and the error distribution is normal. The estimates of the standardized bias and

MSE of the R-estimators for the GJR(1, 1) model are shown in Table 4.7. In gen-

eral, for all R-estimators, both the bias and MSE decrease when the sample size

increases from n = 500 to n = 5000. This tends to reflect that the R-estimators

are consistent estimators of θ0ϕ for the GJR(1, 1) model.

4.6 Conclusion

We propose a new class of R-estimators for the GARCH model and derive the

asymptotic normality of these estimators under mild moment and smoothness

conditions on the error distribution. We exhibit the robustness and efficiency of

R-estimators with respect to the QMLE through simulation and real data analysis.

We also consider a general type of weighted bootstrap for the R-estimators which

is computational-friendly and easy-to-implement. The theoretical analysis such as

the asymptotic validity of the weighted bootstrap is an interesting but challenging

problem that can be explored in the future.
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4.7 Proofs of Proposition 4.2.1 and Theorem 4.2.1

We will use the following facts from Berkes et al. (2003) for the proofs:

Fact 1. For any ν > 0,

E

{
sup

[∣∣∣∣ v̇1(θ)

v1(θ)

∣∣∣∣ν ;θ ∈ Θ0

]}
<∞. (4.7.1)

and

E

{
sup

[∣∣∣∣ v̈1(θ)

v1(θ)

∣∣∣∣ν ;θ ∈ Θ0

]}
<∞.

Fact 2. There exist random variables Z0, Z1 and Z2, all independent of {εt; 1 ≤

t ≤ n} and a number 0 < ρ < 1, such that

0 < vt(θ)− v̂t(θ) ≤ ρtZ0, (4.7.2)

|v̇t(θ)− ˙̂vt(θ)| ≤ ρtZ1, (4.7.3)

|v̈t(θ)− ¨̂vt(θ)| ≤ ρtZ2.

Fact 3. Let {(At, Bt, Ct); t ≥ 0} be a sequence of identically distributed random

variables. If E log+A0 + E log+B0 + E log+C0 <∞, then for any |r| < 1,

∞∑
t=0

(At +BtCt)r
t converges with probability 1. (4.7.4)

Idea of the proof of Theorem 4.2.1. We first derive the following Theorem

4.7.1, Corollary 4.7.1.1 and Theorem 4.7.2 on empirical processes where a scale-

perturbed weighted mixed-empirical process is approximated by its non-perturbed

version. With θn = θ0ϕ+n−1/2b, we derive asymptotic expansion of the difference

between two quantities T 1n(θn) and T 2n(θn) which are defined later. We then

show that T 1n(θn) can be approximated by a r.v., which is asymptotic normal,

plus a term linear in b. Also, we use T 2n(θn) to approximate Rn(θn) and show

that asymptotically their difference is a r.v. with mean zero. Finally, we prove

that the difference of Rn(θn) and R̂n(θn) converges in probability to zero. Using
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these results, we are able to derive the asymptotic linearity of R̂n(θn) as shown

in Proposition 4.2.1. Finally, using the definition of the one-step R-estimator in

(5.4.8), we are able to derive the asymptotic distribution of θ̂n.

The following results state the uniform approximation of a scale-perturbed

weighted mixed-empirical process by its non-perturbed version which is used for

the derivation of the asymptotic distributions of the R-estimators.

Theorem 4.7.1, Corollary 4.7.1.1 and Theorem 4.7.2.

Let {(ηt, γnt, δnt), 1 ≤ t ≤ n} be an array of 3-tuple r.v.’s defined on a prob-

ability space such that {ηt, 1 ≤ t ≤ n} are i.i.d. with c.d.f. G and ηt is in-

dependent of (γnt, δnt) for each 1 ≤ t ≤ n. Let {Ant; 1 ≤ t ≤ n} be an array

of increasing sub-σ-fields in both n and t so that Ant ⊂ An(t+1), Ant ⊂ A(n+1)t,

1 ≤ t ≤ n − 1, n ≥ 2. Assume also that (γn1, δn1) is An1 measurable, and

{{(γnt, δnt); 1 ≤ t ≤ j}, η1, η2, . . . , ηj−1} are Anj measurable, 2 ≤ j ≤ n. For x ∈ R,

recall that µ(x) = E[ηI(η < x)] =
∫ x
−∞ sg(s)ds and consider the following weighted

mixed-empirical processes

Ṽn(x) := n−1/2
n∑
t=1

γntηtI(ηt < x+ xδnt), (4.7.5)

J̃n(x) := n−1/2
n∑
t=1

γntµ(x+ xδnt),

V ∗n (x) := n−1/2
n∑
t=1

γntηtI(ηt ≤ x), J∗n(x) := n−1/2
n∑
t=1

γntµ(x),

Ũn(x) := Ṽn(x)− J̃n(x), U∗n(x) := V ∗n (x)− J∗n(x).

Assume the following conditions on the weights {γnt} and perturbations {δnt}.
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Let Cn :=
∑n

t=1E|γnt|q for some q > 2. Let a with 0 < a < q/2 be such that

Cn/n
q/2−a = o(1). (4.7.6)(

n−1
n∑
t=1

γ2nt

)1/2

= γ + oP(1) for a positive r.v.γ. (4.7.7)

E

(
n−1

n∑
t=1

γ2nt

)q/2

= O(1). (4.7.8)

max
1≤t≤n

n−1/2|γnt| = oP(1). (4.7.9)

max
1≤t≤n

|δnt| = oP(1). (4.7.10)

nq/2−ε

Cn
E

[
n−1

n∑
t=1

{γ2nt|δnt|}

]q/2
= o(1). (4.7.11)

n−1/2
n∑
t=1

|γntδnt| = Op(1). (4.7.12)

The following theorem shows that uniformly over the entire real line, the perturbed

process Ũn can be approximated by U∗n.

Theorem 4.7.1. Under the above set-up and Assumptions (4.7.6)-(4.7.12) and

(A1),

sup
x∈R
|Ũn(x)− U∗n(x)| = oP(1). (4.7.13)

Proof. The proof is similar to the proof in Mukherjee (2007, Theorem 6.1). In par-

ticular, we show point-wise convergence for each x and then invoke the monotone

structure of the mean processes to achieve the uniform convergence. For weighted

empirical, the monotonically increasing mean process is given by the distribution

function. Although µ in the present case is not a monotone function on (−∞,∞),

we use its monotone property separately on (−∞, 0] and [0,∞).

We remark that this theorem is different from Koul and Ossiander (1994, The-

orem 1.1) and Mukherjee (2007, Theorem 6.1) where weighted empirical processes

were considered for the estimation of the mean parameters. For the estimation of

the scale parameters, in this chapter we consider weighted mixed-empirical process
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which is a weighted sum of the mixture of error and its indicator process.

The following corollary describes a Taylor-type expansion of the weighted sum

of indicator functions Ṽn(x).

Corollary 4.7.1.1. Under the above setup and under the Assumptions (4.7.6)-

(4.7.12) and (A1),

sup
x∈R
|J̃n(x)− J∗n(x)− x2g(x)n−1/2

n∑
t=1

γntδnt| = oP(1). (4.7.14)

Hence,

sup
x∈R
|Ṽn(x)− V ∗n (x)− x2g(x)n−1/2

n∑
t=1

γntδnt| = oP(1). (4.7.15)

Proof. Here (4.7.15) follows from (4.7.14) and (4.7.13). Therefore, it remains to

prove (4.7.14). Notice that the LHS of (4.7.14) equals

sup
x∈R

∣∣∣∣∣n−1/2
n∑
t=1

γnt

[
x

∫ x+xδnt

x

sg(s)ds− x2g(x)δnt

]∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣n−1/2
n∑
t=1

γntδnt

[
x

∫ 1

0

(x+ hxδnt)g(x+ hxδnt)dh− x2g(x)

]∣∣∣∣∣
=oP(1)

due to (4.7.12) and Assumption (A1).

The next theorem provides an extended version of (4.7.13) when the weights

are functions on appropriately scaled parameter space. We define the following

processes of two arguments as follows.

Probabilistic framework: Let {ηt, 1 ≤ t ≤ n} be i.i.d. with the c.d.f. G,

{lnt; 1 ≤ t ≤ n} be an array of measurable functions from Rm to R such that for

every b ∈ Rm and 1 ≤ t ≤ n, (lnt(b), unt(b)) are independent of ηt. For x ∈ R and
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b ∈ Rm, let

Ṽ(x, b) := n−1/2
n∑
t=1

lnt(b)ηtI
(
ηt < x+ xunt(b)

)
,

J̃ (x, b) := n−1/2
n∑
t=1

lnt(b)µ
(
x+ xunt(b)

)
,

Ũ(x, b) := Ṽ(x, b)− J̃ (x, b),

V∗(x, b) := n−1/2
n∑
t=1

lnt(b)ηtI(ηt < x), J ∗(x, b) := n−1/2
n∑
t=1

lnt(b)µ(x),

U∗(x, b) := V∗(x, b)− J ∗(x, b) = n−1/2
n∑
t=1

lnt(b)
[
ηtI(ηt < x)− µ(x)

]
.

Here U∗(·, ·) is a sequence of ordinary non-perturbed weighted mixed-empirical

processes with weights {lnt(·)} and Ũ(·, ·) is a sequence of perturbed weighted

mixed-empirical processes with scale perturbations {unt(·)}. In Theorem 4.7.2

below it is shown that Ũ can be uniformly approximated by U∗ under the following

conditions (4.7.16)-(4.7.24) for {lnt(·)} and {unt(·)}. Note that the statements on

assumptions and convergence hold point-wise for each fixed b ∈ Rm.

There exist numbers q > 2 and a (both free from b) satisfying 0 < a < q/2

such that with Cn(b) :=
∑n

t=1 E|lni(b)|q,

Cn(b)/nq/2−a = o(1), for each b ∈ Rm. (4.7.16)
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For some positive random process `(b),

(
n−1

n∑
t=1

l2nt(b)

)1/2

= `(b) + oP(1), b ∈ Rm. (4.7.17)

E

(
n−1

n∑
t=1

l2ni(b)

)q/2

= O(1), b ∈ Rm. (4.7.18)

max
1≤t≤n

n−1/2|lnt(b)| = oP(1), b ∈ Rm. (4.7.19)

max
1≤t≤n

{|unt(b)|} = oP(1), b ∈ Rm. (4.7.20)

nq/2−a

Cn(b)
E

[
n−1

n∑
t=1

l2nt(b)|unt(b)|

]q/2
= o(1), b ∈ Rm.(4.7.21)

n−1/2
n∑
t=1

lnt(b)unt(b) = Op(1), b ∈ Rm. (4.7.22)

∀ b, ε > 0, ∃ δ > 0, and n1 ∈ Nwhenever ‖s‖ ≤ b, andn > n1, (4.7.23)

P

(
n−1/2

n∑
t=1

|lnt(s)|
{

sup
‖t−s‖<δ

|unt(t)− unt(s)|
}
≤ ε

)
> 1− ε.

∀ b and ε > 0, ∃ δ > 0, and n2 ∈ Nwhenever ‖s‖ ≤ b, andn > n2,(4.7.24)

P

(
sup

‖t−s‖≤δ
n−1/2

n∑
t=1

|lnt(t)− lnt(s)| ≤ ε

)
> 1− ε.

Conditions (4.7.16)-(4.7.24) are regularity conditions on the weights and per-

turbations of the two-parameters empirical processes. Conditions (4.7.23)-(4.7.24)

are smoothness conditions on the weights and perturbations. Under stationarity

and ergodicity, many of these conditions reduce to much simpler conditions based

on existence of the moments.

The following theorem generalizes (4.7.13) when the weights are functions of

b.

Theorem 4.7.2. Under the above framework, suppose that conditions (4.7.16)-

(4.7.24) and Assumption (A1) hold. Then for every 0 < b <∞,

sup
x∈R,‖b‖≤b

|Ũ(x, b)− U∗(x, b)| = oP(1). (4.7.25)

Proof. Clearly, under conditions (4.7.16)-(4.7.22), Theorem 4.7.1 entails that for
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each fixed b,

sup
x∈R
|Ũ(x, b)− U∗(x, b)| = oP(1).

The uniform convergence with respect to b over compact sets can be proved as in

Mukherjee (2007, Lemma 3.2) using conditions (4.7.23) and (4.7.24).

The following facts are useful in the proofs of various results of this chapter.

Let m = 1 + p + q be the total number of parameters and fix b ∈ Rm. Let

θn = θ0ϕ + n−1/2b,

unt(b) =
v
1/2
t (θn)

v
1/2
t (θ0ϕ)

− 1, vnt(b) =
v
1/2
t (θ0ϕ)

v
1/2
t (θn)

− 1. (4.7.26)

Then {unt(b)} satisfies (4.7.20) since

unt(b) =
vt(θn)− vt(θ0ϕ)

v
1/2
t (θ0ϕ){v1/2t (θn) + v

1/2
t (θ0ϕ)}

=
n−1/2v̇′t(θ

∗)b

v
1/2
t (θ0ϕ){v1/2t (θn) + v

1/2
t (θ0ϕ)}

,

(4.7.27)

for some θ∗ = θ∗(n, t, b) in the neighbourhood of θ0ϕ for large n. The n−1/2-

factor is used later for deriving convergence of some sequence of random vectors.

Similarly, for some θ∗,

vnt(b) =
vt(θ0ϕ)− vt(θn)

v
1/2
t (θn){v1/2t (θn) + v

1/2
t (θ0ϕ)}

=
−n−1/2v̇′t(θ∗)b

v
1/2
t (θn){v1/2t (θn) + v

1/2
t (θ0ϕ)}

= n−1/2ξnt,

(4.7.28)

say. Let ant(b) = v
1/2
t (θ0ϕ)/v

1/2
t (θn) = 1 + vnt(b) = 1 + n−1/2ξnt. Then

Xt

v
1/2
t (θn)

= ant(b)ηt = ηt + n−1/2ηtξnt = ηt + n−1/2znt,

where

znt = ηtξnt = ηt ×
−v̇′t(θ∗)b

v
1/2
t (θn){v1/2t (θn) + v

1/2
t (θ0ϕ)}

.

For δ > 0 in Assumption (A1) and any c > 0,

P

[
n−1/2 max

1≤t≤n
|znt| > c

]
≤

n∑
t=1

P
[
n−1/2|znt| > c

]
≤ n

E
[
n−1−δ/2|ηt|2+δ|ξnt|2+δ

]
c2+δ

= o(1)
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since all moments of {|ξnt|} are finite and ηt and ξnt are independent for all t.

Therefore

max
1≤t≤n

∣∣∣∣∣ Xt

v
1/2
t (θn)

− ηt

∣∣∣∣∣ = oP(1). (4.7.29)

If v̇t(θn)/vt(θn) appears as the coefficients, we replace it by v̇t(θ0ϕ)/vt(θ0ϕ) and

the difference is controlled as follows. Notice that all derivatives below exist with

bounded moments and so

v̇t(θn)

vt(θn)
− v̇t(θ0ϕ)

vt(θ0ϕ)
= n−1/2At(θ0ϕ)b+ n−1A∗tn, (4.7.30)

where At(θ0ϕ) = v̈t(θ0ϕ)/vt(θ0ϕ) − v̇t(θ0ϕ)v̇
′

t(θ0ϕ)/{vt(θ0ϕ)}2. Only the term

n−1/2At(θ0ϕ)b is of our interest since others are of higher order than n.

Take lnt(b) to be equal to the j-th coordinate (1 ≤ j ≤ m = 1 + p+ q) of

Lnt(b) =
v̇t(θn)

vt(θn)
× v

1/2
t (θ0ϕ)

v
1/2
t (θn)

(4.7.31)

and unt(b) as in (4.7.26). We now show that (4.7.17)-(4.7.24) hold with such

choice.

For each t with 1 ≤ t ≤ n, {Lnt(b), unt(b)} are independent of ηt. Using a

Taylor expansion of lnt(b) at θ0ϕ for each 1 ≤ t ≤ n and noting the existence

of all moments of vt(θ0ϕ) and its derivatives of all higher orders, (4.7.17) and

(4.7.18) hold. Existence of all higher moments of {lnt(b), unt(b)} ensure conditions

(4.7.19)-(4.7.21).

To verify (4.7.22), we use (4.7.27) and that for each t, vt(·) is a smooth function

with derivatives of all order to conclude that

n−1/2
n∑
t=1

Lnt(b)unt(b) = E[v̇1(θ0ϕ)v̇′1(θ0ϕ)/v21(θ0ϕ)](b/2) + oP(1) = Jb/2 + oP(1).

Conditions (4.7.23) and (4.7.24) can be verified using the mean value theorem.

The following lemmas and their proofs represent the intermediate steps in the

proofs of Proposition 4.2.1 and Theorem 4.2.1.
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Lemma 4.7.3, Lemma 4.7.4, Lemma 4.7.5 and Lemma 4.7.6.

Let

T n1(θn) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

{
1− Xt

v
1/2
t (θn)

ϕ[G(ηt)]

}
,

T n2(θn) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

{
1− Xt

v
1/2
t (θn)

ϕ

[
G

(
Xt

v
1/2
t (θn)

)]}
and note that the difference in the definitions of these two quantities lies only

in the argument of ϕ(G(.)). We show in Lemma 4.7.3 below that
∫ 1

0
[Ṽ(u, b) −

V∗(u, b)]dϕ(u) = T n1(θn) − T n2(θn). Using results on empirical processes in

Theorem 4.7.2,
∫ 1

0
[Ṽ(u, b)−V∗(u, b)]dϕ(u) is linear in b. Consequently, we obtain

the following uniform approximations of T n1(θn) − T n2(θn) over ||b|| ≤ c where

c > 0.

Lemma 4.7.3. Let Assumptions (A1)-(A3) hold. Then, as n→∞,

T n2(θn)− T n1(θn) = Mb+ uP(1), (4.7.32)

where M = Jρ(ϕ)/2.

Proof. To use Theorem 4.7.2 in the proof, let b = n1/2(θn−θ0ϕ) and x = G−1(u) for

some 0 < u < 1. For simplicity, we use the notation Ṽ(u, b) to denote Ṽ(G−1(u), b)

which is defined in the probabilistic framework above. Accordingly

Ṽ(u, b) := n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

I

[
ηt < G−1(u)

v
1/2
t (θn)

v
1/2
t (θ0ϕ)

]

and

V∗(u, b) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

I
(
ηt < G−1(u)

)
.

With the choice based on (4.7.31) and (4.7.26) and using

v
1/2
t (θ0ϕ)

v
1/2
t (θn)

ηt =
Xt

v
1/2
t (θn)

,
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Ṽ(u, b) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

I

[
Xt

v
1/2
t (θn)

< G−1(u)

]

= n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

I

[
G

(
Xt

v
1/2
t (θn)

)
< u

]
.

Similarly,

V∗(u, b) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

I (G(ηt) < u) .

Since

∫ 1

0

I

{
G

(
Xt

v
1/2
t (θn)

)
< u

}
dϕ(u) = ϕ(1)− ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
,

we get

∫ 1

0

Ṽ(u, b)dϕ(u) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

{
ϕ(1)− ϕ

[
G

(
Xt

v
1/2
t (θn)

)]}

and ∫ 1

0

V∗(u, b)dϕ(u) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

(
ϕ(1)− ϕ(G(ηt)

)
.

Cancelling ϕ(1),
∫ 1

0
[Ṽ(u, b)− V∗(u, b)]dϕ(u) equals

n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

{
−ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
+ ϕ(G(ηt)

)}

= T n2(θn)− T n1(θn).

Using (4.7.14) and (4.7.27) with

J̃ (u, b) := n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

v
1/2
t (θ0ϕ)

v
1/2
t (θn)

µ

[
G−1(u)

v
1/2
t (θn)

v
1/2
t (θ0ϕ)

]

J ∗(u, b) := n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

v
1/2
t (θ0ϕ)

v
1/2
t (θn)

µ
(
G−1(u)

)
,
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we have

sup
u∈(0,1)

|J̃ (u, b)−J ∗(u, b)−[G−1(u)]2g(G−1(u))n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

v
1/2
t (θ0ϕ)

v
1/2
t (θn)

unt(b)| = uP(1).

Also,

|n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

v
1/2
t (θ0ϕ)

v
1/2
t (θn)

unt(b)− J | = uP(1).

Hence,

∫ 1

0

[J̃ (u, b)− J ∗(u, b)]dϕ(u) =

∫ 1

0

[G−1(u)]2g(G−1(u))dϕ(u)Jb/2 + uP(1)

= Mb+ uP(1) (4.7.33)

by recalling that M = Jρ(ϕ)/2. Finally, (4.7.32) follows from Theorem 4.7.2.

The following lemma states that the difference between T n1(θn) and Nn is

asymptotically linear in b.

Lemma 4.7.4. Let Assumptions (A1)-(A3) hold. Then, as n→∞,

T n1(θn)−Nn = Jb/2 + uP(1), (4.7.34)

where

Nn → N (0,Jσ2(ϕ)), (4.7.35)

with σ2(ϕ) = Var{η1ϕ[G(η1)]}.

Proof. The difference between T n1 andNn lies in comparingXt/v
1/2
t (θn) = ηt + n−1/2znt

and ηt and involves smooth function of b. So the proof follows easily with the de-

tails below. Notice that

T n1(θn)−Nn = n−1/2
n∑
t=1

[
v̇t(θn)

vt(θn)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
{1− ant(b)ηtϕ[G(ηt)]}

− n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
vnt(b)ηtϕ[G(ηt)] = F n1 − F n2.
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Using (4.7.30),

F n1 = n−1
n∑
t=1

At(θ0ϕ)b {1− ant(b)ηtϕ[G(ηt)]}+ uP(1)

= n−1
n∑
t=1

At(θ0ϕ)b {1− ηtϕ[G(ηt)]} − n−1
n∑
t=1

At(θ0ϕ)bvnt(b)ηtϕ[G(ηt)] + uP(1).

Using the LLN, the first term in the above decomposition of F n1 is uP(1) since

E {At(θ0ϕ)b {1− ηtϕ[G(ηt)]}} = E[At(θ0ϕ)b] E {1− ηtϕ[G(ηt)]} = 0.

For the second term, using (4.7.28) we have n−1/2 factor of vnt(b) and consequently

it is uP(1).

For F n2, we approximate vnt(b) by−n−1/2v̇′t(θ0ϕ)b/{2vt(θ0ϕ)} and use E{ηtϕ[G(ηt)]} = 1

to obtain F n2 = −Jb/2 + uP(1). Hence (4.7.34) is proved.

Using the independence of vt and ηt for each t, Nn is a sum of the vectors of

martingale differences and so (4.7.35) follows from the martingale CLT.

Now consider the rank-based counterpart of T n2(θn)

Rn(θn) = n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

{
1− Xt

v
1/2
t (θn)

ϕ

(
Rnt(θn)

n+ 1

)}
.

The following lemma provides the difference between T n2(θn) and Rn(θn). It

shows that the effect of replacing observations in T 2n(θn) by ranks is asymptoti-

cally a r.v. with mean zero.

Lemma 4.7.5. Let Assumptions (A1)-(A3) hold. Then, as n→∞,

Rn(θn)− T n2(θn) = Qn + uP(1). (4.7.36)

Also, Qn converges in distribution to E(v̇1(θ0ϕ)/v1(θ0ϕ))Z, where Z has mean

zero and variance γ(ϕ).
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Proof. Consider the following decomposition

Rn(θn)− T n2(θn)

= n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Rnt(θn)

n+ 1

]}

= n−1/2
n∑
t=1

[
v̇t(θn)

vt(θn)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Rnt(θn)

n+ 1

]}

+ n−1/2
n∑
t=1

[
v̇t(θn)

vt(θn)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
vnt(b)ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Rnt(θn)

n+ 1

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Rnt(θn)

n+ 1

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
vnt(b)ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Rnt(θn)

n+ 1

]}
= Dn1 +Dn2 +Dn3 +Dn4.

Using the n−1/2-factor in (4.7.30) and (4.7.28), Dn1, Dn2 and Dn4 are uP(1). We

next prove that Dn3 = Qn + uP(1) in detail. Recall that G̃n(x) is the empirical

distribution function of {ηt}. Let Gn(x), x ∈ R be the empirical distribution

function of {Xt/v
1/2
t (θn)}. Then

Dn3 = n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
Gn

(
Xt

v
1/2
t (θn)

)]}

= n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θn)

)]
− ϕ [G(ηt)]

}

− n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
Gn

(
Xt

v
1/2
t (θn)

)]
− ϕ

[
G̃n(ηt)

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ [G(ηt)]− ϕ

[
G̃n(ηt)

]}
= D∗n1 −D∗n2 +D∗n3.

Since D∗n1 is the weighted sum of the difference of a c.d.f. evaluated at two

different r.v.’s and integrated wrt ϕ, using the same technique for proving (4.7.33),

D∗n1 = Mb+ uP(1).

Write wt = v̇t(θ0ϕ)/vt(θ0ϕ). Since D∗n2 is the weighted sum of the difference
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of two different c.d.f.’s evaluated at two different r.v.’s and integrated wrt ϕ,

D∗n2 =

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
Gn

(
Xt

v
1/2
t (θn)

)
< u

]
− I

[
G̃n(ηt) < u

]
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
Xt

v
1/2
t (θn)

< G−1n (u)

]
− I

[
ηt < G̃−1n (u)

]
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
ηt < G−1n (u)

1

1 + vnt(b)

]
− I

[
ηt < G̃−1n (u)

]
dϕ(u).

Using (4.7.29), sup
{∣∣∣G−1n (u)− G̃−1n (u)

∣∣∣ ;u ∈ (0, 1)
}

= uP(1). Hence, by Theorem

4.7.2,

D∗n2 =

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ

(
G̃−1n (u)

1

1 + vnt(b)

)
− µ

(
G̃−1n (u)

)]
dϕ(u) + uP(1)

=

∫ 1

0

n−1/2
n∑
t=1

wtµ̇
(
G̃−1n (u)

) −vnt(b)
1 + vnt(b)

G̃−1n (u) dϕ(u) + uP(1)

=

∫ 1

0

n−1/2
n∑
t=1

wt

(
G̃−1n (u)

)2
g
(
G̃−1n (u)

) −vnt(b)
1 + vnt(b)

dϕ(u) + uP(1)

=

∫ 1

0

n−1
n∑
t=1

v̇t(θ0ϕ)v̇′t(θ0ϕ)

2v2t (θ0ϕ)

(
G−1(u)

)2
g
(
G−1(u)

)
dϕ(u)b+ uP(1)

= Mb+ uP(1).

Finally consider D∗n3 written as

D∗n3 =

∫ 1

0

n−1/2
n∑
t=1

wtηt

{
I
[
ηt ≤ G−1(u)

]
− I

[
ηt ≤ G̃−1n (u)

]}
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηt

{
I
[
ηt ≤ G−1(u)

]
− I

[
ηt ≤ G−1(G(G̃−1n (u)))

]}
dϕ(u)

=

∫ 1

0

[
Mn(u)−Mn(G(G̃−1n (u)))

]
dϕ(u)

+

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u),

where Mn(u) := n−1/2
∑n

t=1wt {ηtI [ηt ≤ G−1(u)]− µ(G−1(u))}. We show that

∣∣∣∣∫ 1

0

[
Mn(u)−Mn(G(G̃−1n (u)))

]
dϕ(u)

∣∣∣∣ = oP(1), (4.7.37)
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Qn =

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u)→ E(v̇1/v1)Z. (4.7.38)

For (4.7.37), note that {Mn(.)} converges weakly to a Brownian Bridge on (0, 1)

since for each fixed u, Mn(u) converges to a normal distribution using the martin-

gale CLT and it is tight using the bound on the moment of the difference process

in Billingsley (1968, Theorem 12.3).

Since sup{|u−G(G̃−1n (u))|;u ∈ (0, 1)} = sup{|G(x)− G̃n(x)|;x ∈ R} = oP(1),

by the Arzela-Ascoli theorem,

sup
{∣∣∣Mn(u)−Mn(G(G̃−1n (u)))

∣∣∣ ;u ∈ (0, 1)
}

= oP(1),

and consequently, (4.7.37) is proved. For (4.7.38), we use the Bahadur represen-

tation; see Bahadur (1966) and Ghosh (1971) for details. Since ġ(x) is bounded

and g is positive on R,

n1/2
(
G−1(u))− G̃−1n (u)

)
− n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

= o(1) a.s..

Applying the mean value theorem,

n1/2
[
µ(G−1(u))− µ(G̃−1n (u))

]
− µ̇(G−1(u))n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

= o(1) a.s..

(4.7.39)

Using µ̇(x) = xg(x),

Qn = n−1
n∑
t=1

wt

∫ 1

0

[
µ̇(G−1(u))n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

]
dϕ(u) + oP(1)

= n−1
n∑
t=1

wt

∫ 1

0

[
G−1(u)n1/2

(
G̃n(G−1(u))− u

)]
dϕ(u) + oP(1).

Since n−1
∑n

t=1wt → E(v̇1(θ0ϕ)/v1(θ0ϕ)), and using van der Vaart (1998, Theo-
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rem 19.3),

n1/2
(
G̃n(G−1(u))− u

)
→ B(u),

we obtain (4.7.38) with the r.v. Z having mean zero. The variance of Z is given

by

E(Z2) = E

[∫ 1

0

∫ 1

0

G−1(u)G−1(v)B(u)B(v)dϕ(u)dϕ(v)

]
=

∫ 1

0

∫ 1

0

G−1(u)G−1(v)E[B(u)B(v)]dϕ(u)dϕ(v)

=

∫ 1

0

∫ 1

0

G−1(u)G−1(v) [min{u, v} − uv] dϕ(u)dϕ(v)

= γ(ϕ).

Now recall the rank-based central sequence

R̂n(θn) = n−1/2
n∑
t=1

˙̂vt(θn)

v̂t(θn)

{
1− Xt

v̂
1/2
t (θn)

ϕ

(
R̂nt(θn)

n+ 1

)}
,

which is an approximation to Rn(θn). We have the following lemma dealing with

the difference between Rn(θn) and R̂n(θn).

Lemma 4.7.6. Let Assumptions (A1)-(A3) hold. Then, as n→∞,

Rn(θn)− R̂n(θn) = uP(1). (4.7.40)

Proof. Note that Rn(θn)− R̂n(θn) equals

n−1/2
n∑
t=1

[
v̇t(θn)

vt(θn)
−

˙̂vt(θn)

v̂t(θn)

]
(4.7.41)

+ n−1/2
n∑
t=1

[
˙̂vt(θn)

v̂t(θn)

Xt

v̂
1/2
t (θn)

− v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

]
ϕ

(
R̂nt(θn)

n+ 1

)
(4.7.42)

− n−1/2
n∑
t=1

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

[
ϕ

(
Rnt(θn)

n+ 1

)
− ϕ

(
R̂nt(θn)

n+ 1

)]
. (4.7.43)
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Due to (4.7.2), (4.7.3) and v̂t(θ) ≥ c0(θ) > 0, we have

∣∣∣∣∣ ˙̂vt(θn)

v̂t(θn)
− v̇t(θn)

vt(θn)

∣∣∣∣∣ =

∣∣∣∣∣ ˙̂vt(θn)− v̇t(θn)

v̂t(θn)
+ v̇t(θn)

vt(θn)− v̂t(θn)

v̂t(θn)vt(θn)

∣∣∣∣∣
≤ |

˙̂vt(θn)− v̇t(θn)|
v̂t(θn)

+
|vt(θn)− v̂t(θn)|

v̂t(θn)

|v̇t(θn)|
vt(θn)

≤ Cρt
[
Z1 + Z0

|v̇t(θn)|
vt(θn)

]
. (4.7.44)

Hence, in view of (4.7.1) and (4.7.4), for every 0 < b <∞,

sup
||b||<b

n∑
t=1

∣∣∣∣∣ ˙̂vt(θn)

v̂t(θn)
− v̇t(θn)

vt(θn)

∣∣∣∣∣ = Op(1),

which implies that (4.7.41) is uP(1). Since ϕ is bounded, (4.7.42) is uP(1). For

(4.7.43), since there is a n−1/2 factor from

v̇t(θn)

vt(θn)

Xt

v
1/2
t (θn)

− v̇t(θ0ϕ)

vt(θ0ϕ)
ηt ,

it suffices to prove that

Kn := n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θn)

n+ 1

)
− ϕ

(
R̂nt(θn)

n+ 1

)]
= uP(1).

Let bxc denotes the greatest integer less than or equal to x. We split the sum inKn

into two parts: in the first part, t runs till
⌊
nk
⌋
− 1 where 0 < k < 1/2. We show

that this part is uP(1) by noting that its expectation is of the form nkn−1/2 = o(1)

multiplied by expectation of v̇t(θ0ϕ)/vt(θ0ϕ)ηt and a bounded quantity because ϕ

is bounded. The number of summands in the second term is n− nk which is large

but there we bound expectation of the sum of by a quantity of the form nρbnkc
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with 0 < k < 1/2 and 0 < ρ < 1 and this is o(1). Accordingly

Kn = n−1/2
bnkc−1∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θn)

n+ 1

)
− ϕ

(
R̂nt(θn)

n+ 1

)]

+ n−1/2
n∑

t=bnkc

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θn)

n+ 1

)
− ϕ

(
R̂nt(θn)

n+ 1

)]
. (4.7.45)

To show (4.7.45) is uP(1), we prove that for every 0 < b <∞,

sup
bnkc≤t≤n
||b||<b

∣∣∣∣∣ϕ
(
Rnt(θn)

n+ 1

)
− ϕ

(
R̂nt(θn)

n+ 1

)∣∣∣∣∣ = Op(nk−1). (4.7.46)

Since sequences {Rnt(θn)} and {R̂nt(θn)} are permutations of {1, ..., n}, with the

probability tending to one as n→∞, both {Rnt(θn)} and {R̂nt(θn)} are at points

of continuity of ϕ that has a finite number of the points of discontinuity. Therefore,

to prove (4.7.46), it suffices to prove

sup
bnkc≤t≤n
||b||<b

∣∣∣∣∣Rnt(θn)

n+ 1
− R̂nt(θn)

n+ 1

∣∣∣∣∣ = Op(nk−1). (4.7.47)

For
⌊
nk
⌋
≤ t ≤ n, we decompose ranks as

Rnt(θn)

n+ 1
− R̂nt(θn)

n+ 1

=
1

n+ 1

bnkc−1∑
i=1

{
I

[
Xi

v
1/2
i (θn)

<
Xt

v
1/2
t (θn)

]
− I

[
Xi

v̂
1/2
i (θn)

<
Xt

v̂
1/2
t (θn)

]}

+
1

n+ 1

n∑
i=bnkc

{
I

[
Xi

v
1/2
i (θn)

<
Xt

v
1/2
t (θn)

]
− I

[
Xi

v̂
1/2
i (θn)

<
Xt

v̂
1/2
t (θn)

]}
,

(4.7.48)

where the first sum is OP(nk−1). For the second sum, writing

I

[
Xi

v̂
1/2
i (θn)

<
Xt

v̂
1/2
t (θn)

]
= I

[
Xi

v
1/2
i (θn)

v
1/2
i (θn)v̂

1/2
t (θn)

v̂
1/2
i (θn)v

1/2
t (θn)

<
Xt

v
1/2
t (θn)

]
,
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the modulus of (4.7.48) is bounded above by

sup
x∈R
||b||<b

1

n+ 1

n∑
i=bnkc

∣∣∣∣∣I
[

Xi

v
1/2
i (θn)

< x

]
− I

[
Xi

v
1/2
i (θn)

v
1/2
i (θn)v̂

1/2
t (θn)

v̂
1/2
i (θn)v

1/2
t (θn)

< x

]∣∣∣∣∣ .
Using |I(A)− I(B)| ≤ I(A ∩Bc) + I(Ac ∩B), this is bounded above by

sup
x∈R
θ∈Θ

1

n+ 1

n∑
i=bnkc

I(A
i,x,θ),

where the set A
i,x,θ is defined as

A
i,x,θ :=

{
Xi

v
1/2
i (θ)

< x,
Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

≥ x

}

∪

{
Xi

v
1/2
i (θ)

≥ x,
Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

< x

}
.

Therefore, it suffices to prove that
∑n

i=bnkc I(A
i,x,θ) = oP(1) uniformly with re-

spect to both x and θ. We show this with sets containing A
i,x,θ.

Recall that using (4.7.2), v̂t(θ) ≥ c0(θ) > c for a positive constant c and so

0 < v
1/2
t (θ)− v̂1/2t (θ) ≤ ρtZ0

v
1/2
t (θ) + v̂

1/2
t (θ)

≤ ρtZ0

2c
1/2
0 (θ)

.

Now using the triangular inequality,

∣∣∣∣∣v1/2i (θ)v̂
1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

− 1

∣∣∣∣∣
≤

∣∣∣∣∣∣
v̂
1/2
t (θ)

(
v
1/2
i (θ)− v̂1/2i (θ)

)
v̂
1/2
i (θ)v

1/2
t (θ)

∣∣∣∣∣∣+

∣∣∣∣∣∣
v̂
1/2
i (θ)

(
v̂
1/2
t (θ)− v1/2t (θ)

)
v̂
1/2
i (θ)v

1/2
t (θ)

∣∣∣∣∣∣ . (4.7.49)

Therefore (4.7.49) is bounded above by

ρiZ0

2c
1/2
0 (θ)

+
ρtZ0

2c
1/2
0 (θ)

.
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In view of (4.7.49), we get

∣∣∣∣∣ Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

− Xi

v
1/2
i (θ)

∣∣∣∣∣ ≤ (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ ,
where Z4 = Z0/(2C

1/2).

Therefore, A
i,x,θ is a subset of

B
i,x,θ :=

{
Xi

v
1/2
i (θ)

< x,
Xi

v
1/2
i (θ)

+ (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ ≥ x

}

∪

{
Xi

v
1/2
i (θ)

≥ x,
Xi

v
1/2
i (θ)

− (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ < x

}

=

{
ηi < x

v
1/2
i (θ)

v
1/2
i (θ0ϕ)

, ηi + (ρi + ρt)Z4|ηi| ≥ x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

∪

{
ηi ≥ x

v
1/2
i (θ)

v
1/2
i (θ0ϕ)

, ηi − (ρi + ρt)Z4|ηi| < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

=

{
x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

− (ρi + ρt)Z4|ηi| ≤ ηi < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

∪

{
x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

≤ ηi < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

+ (ρi + ρt)Z4|ηi|

}
.

Consider r.v.s X and L ≥ 0 with X independent of η. Then P[X < η < X +L] ≤

sup
y∈R
{g(y)}E(L) where the p.d.f. g is bounded. Consequently,

sup
x∈R
θ∈Θ

E

 n∑
i=bnkc

I(A
i,x,θ)

 ≤ sup
y∈R

g(y)
n∑

i=bnkc
E
{

(ρi + ρt)Z4|ηi|
}
.

Notice that since
⌊
nk
⌋
≤ t ≤ n,

n∑
i=bnkc

E
{
ρtZ4|ηi|

}
≤ nρbnkcE(Z4)E|η| = o(1)

due to 0 < ρ < 1 and E|η| < ∞. Hence,
∑n

i=bnkc I(A
i,x,θ) converges in mean to

zero uniformly with respect to both x and θ, which entails
∑n

i=bnkc I(A
i,x,θ) =

oP(1) uniformly.
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With all the results above, we can easily prove Proposition 4.2.1 and the asymp-

totic result for the R-estimator as follows.

Proof of Proposition 4.2.1.

Proof. Combining (4.7.34), (4.7.36), (4.7.32) and (4.7.40), we get

R̂n(θn)−Mb−Qn −Nn − Jb/2 = uP(1), (4.7.50)

which, by letting b = 0, entails

R̂n(θ0ϕ) = Qn +Nn + uP(1).

Hence, (4.2.6) follows by recalling that M = Jρ(ϕ)/2.

The proof of (4.2.7) follows directly from (4.7.35) and (4.7.38).

Proof of Theorem 4.2.1.

Proof. From the definition of θ̂n in ((5.4.8), (4.2.6) and (4.2.7) in Proposition 4.2.1,

consistency of Υ̂n and the asymptotic discreteness of θ̄n (which allows us to treat

n1/2(θ̄n− θ0ϕ) as if it were a bounded constant: see Lemma 4.4 in Kreiss (1987)),

we have

n1/2(θ̂n − θ0ϕ)

=n1/2

{
θ̄n − n−1/2

(
Υ̂n

)−1
R̂n(θ̄n)− θ0ϕ

}
=n1/2

{
θ̄n − n−1/2

(
Υ̂n

)−1 [
R̂n(θ0ϕ) + (1/2 + ρ(ϕ)/2)Jn1/2(θ̄n − θ0ϕ)

]
− θ0ϕ

}
+ oP(1)

=n1/2
{
θ̄n − n−1/2(1/2 + ρ(ϕ)/2)−1J−1R̂n(θ0ϕ)− (θ̄n − θ0ϕ)− θ0ϕ

}
+ oP(1)

=− (1/2 + ρ(ϕ)/2)−1J−1R̂n(θ0ϕ) + oP(1).
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In view of (4.2.7), we have

n1/2(θ̂n − θ0ϕ) = −(1/2 + ρ(ϕ)/2)−1J−1(Qn +Nn) + oP(1).

Now, it remains to obtain the asymptotic covariance matrix of
√
n
(
θ̂n − θ0ϕ

)
.

Recall (4.7.35) and (4.7.38). Since the asymptotic covariance matrices of Qn and

Nn have been derived, it remains to obtain the covariance matrix Cov(Qn,Nn).

Note that E[QnN
′
n] equals

E

{[∫ 1

0

n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u)

]

×

[
n−1/2

n∑
t=1

v̇′t(θ0ϕ)

vt(θ0ϕ)
[1− ηtϕ [G(ηt)]]

]}
. (4.7.51)

Using (4.7.39) and n−1
∑n

t=1 v̇t(θ0ϕ)/vt(θ0ϕ) → E(v̇1(θ0ϕ)/v1(θ0ϕ)), as n →

∞, (4.7.51) has the same limit as

E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
× lim

n→∞
E

{∫ 1

0

G−1(u)

{
1

n

n∑
i=1

n∑
j=1

[
I{ηi ≤ G−1(u)} − u

] v̇′j(θ0ϕ)

vj(θ0ϕ)
[1− ηjϕ [G(ηj)]]

}
dϕ(u)

}

= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
× lim

n→∞
E

{∫ 1

0

G−1(u)

{
1

n

n∑
i=1

[
I{ηi ≤ G−1(u)} − u

] v̇′i(θ0ϕ)

vi(θ0ϕ)
[1− ηiϕ [G(ηi)]]

}
dϕ(u)

}

= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)∫ 1

0

G−1(u)E
{[
I{η1 ≤ G−1(u)} − u

]
[1− η1ϕ [G(η1)]]

}
dϕ(u)

= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)∫ 1

0

G−1(u)E
{
I{η1 ≤ G−1(u)} [1− η1ϕ [G(η1)]]

}
dϕ(u),

where the first equality is due to independence of ηi and ηj for i 6= j, independence

of vj and ηj, and Assumption (A1). The second equality is due to independence

of vi and ηi. The last equality is due to Assumption (A1).
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Recall the definition of λ(ϕ) in (4.2.5), which can also be written as

λ(ϕ) =

∫ 1

0

G−1(u)E
{
I{η1 ≤ G−1(u)} [1− η1ϕ [G(η1)]]

}
dϕ(u).

We then have

lim
n→∞

Cov(Qn,Nn) = E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)
λ(ϕ).

Hence, by recalling (4.7.38) and in view of (5.4.2), the asymptotic covariance

matrix of
√
n
(
θ̂n − θ0ϕ

)
is

J−1
E
(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)
Var(Z) + Var(N ) + 2E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)
λ(ϕ)

(1/2 + ρ(ϕ)/2)2
J−1

= J−1
[4γ(ϕ) + 8λ(ϕ)] E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)
+ 4σ2(ϕ)J

(1 + ρ(ϕ))2
J−1.
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Chapter 5

Center-outward R-estimation for

semiparametric VARMA models

5.1 Introduction

5.1.1 Quasi-maximum likelihood and R-estimation

Gaussian quasi-likelihood methods are pervasive in several areas of statistics.

Among them is time series analysis, univariate and multivariate, linear and non-

linear. In particular, quasi-maximum likelihood estimation (QMLE))1 and correlogram-

based testing are the daily practice golden standard for ARMA and VARMA mod-

els. They only require the specification of the first two conditional moments, which

depend on an unknown Euclidean parameter, while a Gaussian (misspecified) in-

novation density is assumed. Their properties are generally considered as fully

satisfactory: QMLEs, in particular, are root-n consistent, parametrically efficient

under Gaussian innovations, and asymptotically normal under finite fourth-order

moment assumptions.

Despite their popularity, QMLE methods are not without some undesirable

consequences, though, which are often overlooked: (i) while achieving efficiency

under Gaussian innovations, their asymptotic performance can be quite poor un-

1Unless otherwise stated, “QMLE” here throughout refers to “Gaussian QMLE.”
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der non-Gaussian ones; (ii) due to technical reasons (the Fisher consistency re-

quirement), the choice of a quasi-likelihood is always the most pessimistic one:

quasi-likelihoods automatically are based on the least favorable innovation density

(here, a Gaussian one); (iii) root-n consistency is far from being uniform across

innovation densities; (iv) actual fourth-order moments may be infinite.

In principle, the ultimate theoretical remedy to those problems is the semi-

parametric estimation method described in the monograph by Bickel et al. (1993),

which yields uniformly, locally and asymptotically, semiparametrically efficient es-

timators. For VARMA models, the semiparametric approach does not specify the

innovation density (an infinite-dimensional nuisance) and the estimators based

on Bickel et al. (1993) methodology are uniformly, locally and asymptotically

parametrically efficient (VARMA models are adaptive, thus semiparametric and

parametric efficiency coincide). However, semiparametric estimation procedures

are not easily implemented, since they rely on kernel-based estimation of the ac-

tual innovation density (hence the choice of a kernel, the selection of a bandwidth)

and the use of sample splitting techniques. All these niceties require relatively

large samples and are hard to put into practice even for univariate time series.

A more flexible and computationally less heavy alternative in the presence of

unspecified noise or innovation densities is R-estimation, which reaches efficiency

at some chosen reference density (not necessarily Gaussian or least favorable) or

class of densities. R-estimation has been proposed first in the context of location

(Hodges and Lehmann 1956) and regression models with independent observa-

tions (Jurečková 1971, Koul 1971, van Eeden 1972, Jaeckel 1972). Later on, it

was extended to autoregressive time series (Koul and Saleh 1993, Koul and Os-

siander 1994, Terpstra et al. 2001, Hettmansperger and McKean 2010, Mukherjee

and Bai 2002, Andrews 2008, 2012) and non-linear time series (Mukherjee 2007,

Andreou and Werker 2015, Hallin and La Vecchia 2017, 2019).

Multivariate extensions of these approaches, however, run into the major dif-

ficulty of defining an adequate concept of ranks in the multivariate context. This
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is most regrettable, as the drawbacks of quasi-likelihood methods for observations

in dimension d = 1 only get worse as the dimension d increases (see Section 5.1.2

for a numerical example in dimension d = 2) while the use of the semiparametric

method of Bickel et al. becomes problematic: the higher the dimension, the more

delicate multivariate kernel density estimation and the larger the required sample

size. A natural question is thus: “Can R-estimation palliate the drawbacks of

the QMLE and the Bickel et al. technique in dimension d ≥ 2 the way it does

in dimension d = 1?” This question immediately comes up against another one:

“What are ranks and signs, hence, what is R-estimation, in dimension d ≥ 2?”

Indeed, starting with dimension two, the real space Rd is no longer canonically

ordered.

The main contribution of this chapter is to provide an answer to these ques-

tions. To this end, we propose a multivariate version of R-estimation, estab-

lish its asymptotic properties (root-n consistency and asymptotic normality), and

demonstrate its feasibility and excellent finite-sample performance in the context

of semiparametric VARMA models. Our approach builds on Chernozhukov et

al. (2017), Hallin (2017), and Hallin et al. (2020a), who introduce novel concepts

of center-outward ranks and signs based on measure transportation ideas. These

center-outward ranks and signs (see Section 5.3 for details) enjoy all the properties

that make traditional univariate ranks a successful tool of inference. In particu-

lar, they are distribution-free (see Hallin et al. (2020a) for details), thus preserve

the validity of rank-based procedures irrespective of the possible misspecification

of the innovation density. Moreover, they are invariant with respect to shift and

global scale factors and equivariant under orthogonal transformations; see Hallin

et al. (2020b). Extensive numerical exercises reveal the finite-sample superiority

of our R-estimators over the conventional QMLE in the presence of asymmetric

innovation densities (skew-normal, skew-t, Gaussian mixtures) and in the presence

of outliers. All these advantages, moreover, do not come at the cost of a loss of

efficiency under symmetry.
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Other notions of multivariate ranks and signs have been proposed in the statis-

tical literature. Among them, the componentwise ranks (Puri and Sen 1971), the

spatial ranks (Oja 2010), the depth-based ranks (Liu 1992; Liu and Singh 1993),

and the Mahalanobis ranks and signs (Hallin and Paindaveine (2002a)). Those

ranks and signs all have their own merits but also some drawbacks, which make

them unsuitable for our needs (essentially, they are not distribution-free, or not

maximally so); we refer to the introduction of Hallin et al. (2020a) for details. The

Mahalanobis ranks and signs have been successfully considered for testing pur-

poses in the time series context (Hallin and Paindaveine 2002b, 2004). However,

no results on estimation are available, and their distribution-freeness property is

limited to elliptical densities—a very strong symmetry assumption which we are

dropping here.

Leaving aside Wasserstein-distance-based methods, our contribution consti-

tutes the first inferential application of measure transportation ideas to semipara-

metric inference for multivariate time series. Measure transportation, which goes

back to Gaspard Monge (1746-1818) and his 1781 Mémoire sur la Thérorie des

Déblais et des Remblais, in the past few years has become one of the most ac-

tive and fertile subjects in pure and applied contemporary mathematics. De-

spite some crucial forerunning contributions (Cuesta-Albertos and Matrán (1997);

Rachev and Rüschendorf (1998)), statistics was somewhat slower to join. However,

some recent papers on multiple-output quantile regression (Carlier et al. 2016),

distribution-free tests of vector independence and multivariate goodness-of-fit (Boeckel

et al. (2018); Deb and Sen (2019); Shi et al. (2019); Ghosal and Sen (2019)) demon-

strate the growing interest of the statistical community in measure transportation

results. We refer to Panaretos and Zemel (2019) for a review.

5.1.2 A motivating example

As a justification of the practical interest of our R-estimation method, let us con-

sider the very simple but highly representative motivating example of a bivariate
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VAR(1) model

(Id −AL)X t = εt, t ∈ Z, (5.1.1)

with parameter vec(A) =: (a11, a21, a12, a22)
′ taking the value (0.2,−0.6, 0.3, 1.1)′.

We generated 300 replications of a realization of length n = 1000 of the stationary

solution of (5.1.1) with two innovation densities—a spherical Gaussian one and

a Gaussian mixture (see (5.5.2) for details)—which both satisfy the conditions

for QMLE validity. The resulting boxplots of the QMLE and the Gaussian score

(van der Waerden) R-estimator (see Section 5.4.2 for a definition) are shown in

Figure 5.1, along with the mean squared error (MSE) ratios of the QMLE over the

R-estimator.

Even a vary rapid inspection of the plots reveals that, under the mixture dis-

tribution, the R-estimator yields sizeably smaller MSE values than the QMLE.

For instance, as far as the estimation of a11 is concerned, the MSE ratio is 2.657:

the R-estimator is strikingly less dispersed than the QMLE. On the other hand,

under Gaussian innovations (hence, with the QMLE coinciding with the MLE and

achieving parametric efficiency), the QMLE and the R-estimator perform simi-

larly, with MSE ratios extremely close to one for all the parameters. While our

R-estimator quite significantly outperforms the QMLE under the mixture distri-

bution, thus, this benefit comes at no cost under Gaussian innovations. Further

numerical results are provided in Section 5.5 and Section 6.4; they all lead to the

same conclusion.

5.1.3 Outline of the chapter

The rest of the chapter is organized as follows. Section 5.2 briefly recalls a local

asymptotic normality result for the VARMA model with nonelliptical innovation

density: an analytical form of the central sequence as a function of the residuals

is provided, which indeed plays a key role in the construction of our estimators.

In Section 5.3, we introduce the measure transportation-based notions of center-

outward ranks and signs; for the sake of analogy, we also recall the definition

133



Figure 5.1: Boxplots of the QMLE and the R-estimator (van der Waerden) of the
parameters a11, a21, a12, and a22 of the bivariate VAR(1) (5.1.1) under the Gaussian
mixture (5.5.2) (upper panel) and spherical Gaussian (lower panel) innovation den-
sities, respectively (300 replications of length n = 1000). In each panel, the MSE
ratio of the QMLE with respect to the R-estimator is reported. The horizontal
line represents the actual parameter value.
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of Mahalanobis ranks and signs, and shortly discuss their respective invariance

properties. In Section 5.3.4, we explain the key idea of our construction of R-

estimators, which consists in replacing the residuals appearing in central sequence

with some adequate function of their center-outward ranks and signs, yielding a

rank-based version of the latter: our R-estimators are obtained by incorporat-

ing that rank-based central sequence into a classical Le Cam one-step procedure.

Root-n consistency and asymptotic normality are established in Proposition 5.4.2

under absolutely continuous innovation densities admitting finite second moment.

Some standard score functions are discussed in Section 5.4.2. Section 5.5 presents

simulation results under various densities of the various estimators; comparing

their performance confirms the findings of the motivating example of Section 5.1.2.

In Section 5.6, we show how our R-estimation method applies to a real dataset

borrowed from econometrics, where a VARMA(3, 1) model is identified. Finally,

Section 5.7 concludes and provides some perspectives for future research.

To make this chapter more concise and readable, all proofs are postponed

to Sections 6.1 and 6.2 of Chapter 6. Sections 5.2 and 5.3 are technical and

can be skipped at first reading: the applied statistician can focus directly on

the description of one-step R-estimation in (5.4.8) (implementation details are

provided in Section 6.3 of Chapter 6) and the numerical results of Sections 5.5

and 5.6 (Section 6.4 of Chapter 6).

5.2 Local asymptotic normality

Local asymptotic normality (LAN) is an essential ingredient in the construction of

our estimators and the derivation of their asymptotic properties. In this section,

referring to results by Garel and Hallin (1995) and Hallin and Paindaveine (2004),

we state, along with the required assumptions, the LAN property for stationary

VARMA models, with an explicit expression for the central sequence to be used

later on. The corresponding technical material is available in Sections 6.1 and 6.2

of Chapter 6.
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5.2.1 Notation and assumptions

We throughout consider the d-dimensional VARMA(p, q) model

(
Id −

p∑
i=1

AiL
i
)
X t =

(
Id +

q∑
j=1

BjL
j
)
εt, t ∈ Z, (5.2.1)

whereA1, . . . ,Ap,B1, . . . ,Bq are d×d matrices, L is the lag operator, and {εt; t ∈

Z} is an i.i.d. mean-zero innovation process with density f . The observed series

is {X(n)
1 , . . . ,X(n)

n } (superscript (n) omitted whenever possible) and the (p+ q)d2-

dimensional parameter of interest is

θ :=
(
(vecA1)

′, . . . , (vecAp)
′, (vecB1)

′, . . . , (vecBq)
′)′,

where ′ indicates transposition. Letting A(L) := Id −
∑p

i=1AiL
i, and B(L) :=

Id +
∑q

j=1BjL
j, the following conditions are assumed to hold.

Assumption (A1). (i) All solutions of the determinantal equations

det

(
Id −

p∑
i=1

Aiz
i

)
= 0 and det

(
Id +

q∑
i=1

Biz
i

)
= 0, z ∈ C

lie outside the unit ball in C; (ii) |Ap| 6= 0 6= |Bq|; (iii) Id is the greatest common

left divisor of Id −
∑p

i=1Aiz
i and Id +

∑q
i=1Biz

i.

Assumption (A1) is standard in the time series literature; the restrictions it

imposes on the model parameter ensure the asymptotic stationarity of any solution

to (5.2.1).

To proceed further, we assume that the innovation density f is non-vanishing

over Rd. More precisely we assume that, for all c ∈ R+, there exist constants bc;f

and ac;f in R such that 0 < bc;f ≤ ac;f < ∞ and bc;f ≤ f(x) ≤ ac;f for ‖x‖ ≤ c:

denote by Fd this family of densities.

Assumption (A2). The innovation density f ∈ Fd is such that (i)
∫
xf(x)dµ =

0 and the covariance Ξ :=
∫
xx′f(x)dµ is positive definite; (ii) there exists a

square-integrable d-dimensional vector Df 1/2 such that, for all sequence h ∈ Rd

136



such that 0 6= h→ 0,

(h′h)−1
∫

[f 1/2(x+ h)− f 1/2(x)− h′Df 1/2(x)]2dµ→ 0,

i.e., f 1/2 is mean-square differentiable, with mean square gradient Df 1/2; (iii)

letting

ϕf (x) := (ϕ1(x), . . . , ϕd(x))′ := −2(Df 1/2)/f 1/2, (5.2.2)

∫
ϕ4
i (x)f(x)dµ <∞, i = 1, . . . , d; (iv) the score function ϕf is piecewise Lipschitz,

i.e., there exists a finite measurable partition of Rd into J non-overlapping subsets

Ij, j = 1, . . . , J and a constant K < ∞ such that ‖ϕf (x)− ϕf (y)‖ ≤ K‖x− y‖

for all x,y in Ij, j = 1, . . . , J .

Assumption (A2)(i) requires the existence of the second moment of the inno-

vations (a necessary condition for finite VARMA Fisher information). (A2)(ii) is

a multivariate version of the classical one-dimensional quadratic mean differentia-

bility assumption on f 1/2. Together, (A2)(i) and (A2)(iii) imply the existence and

finiteness of the Fisher information matrix for location I(f) =
∫
ϕf (x)ϕ′f (x)f(x)dµ

appearing in Proposition 2.1 below. See Garel and Hallin (1995) for further dis-

cussion.

Let Z
(n)
1 (θ), . . . ,Z(n)

n (θ) denote the residuals computed from the initial val-

ues ε−q+1, . . . , ε0 and X−p+1, . . . ,X0, the parameter value θ, and the observa-

tions X(n) :=
(
X1, . . . ,Xn

)
; those residuals can be computed recursively, or from

(6.1.1). Clearly, X(n) is the finite realization of a solution of (5.2.1) with param-

eter value θ iff Z
(n)
1 (θ), . . . ,Z(n)

n (θ) and ε1, . . . , εn coincide. Denoting by P
(n)

θ;f

the distribution of X(n) under parameter value θ and innovation density f , the

residuals Z
(n)
1 (θ), . . . ,Z(n)

n (θ) under P
(n)

θ;f
are i.i.d. with density f .

The VARMA model (5.2.1) has no intercept—the observation yields no trend

and is centered at the origin. Adding an intercept to the list of parameters would

have no impact in the context of center-outward R-estimation since, as we shall see

in Section 5.3.1, center-outward ranks and signs are shift-invariant. This is a ma-
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jor advantage of center-outward R-estimators over their competitors (QMLEs and

the elliptical R-estimators based on Mahalanobis ranks and signs of Section 5.3.2)

which all require a preliminary centering of the residuals Z
(n)
t (θ). That centering is

typically achieved by subtracting the residual mean Z
(n)

(θ) := n−1
∑n

t=1Z
(n)
t (θ)

and has no asymptotic impact in view of the block-diagonal form of the infor-

mation matrix (the location/trend and VARMA components of central sequences

indeed are asymptotically mutually orthogonal). For the sake of notational sim-

plicity, however, we are not formalizing that centering issue and avoid adding a

d-dimensional intercept to the parameter θ.

5.2.2 LAN

Writing L
(n)

θ+n−1/2τ (n)/θ;f
:= log dP

(n)

θ+n−1/2τ (n);f
/dP

(n)

θ;f
for the log-likelihood ratio

of P
(n)

θ+n−1/2τ (n);f
with respect to P

(n)

θ;f
, where τ (n) is a bounded sequence of R(p+q)d2 ,

let

∆
(n)
f (θ) := M ′

θP
′
θQ

(n)′
θ

Γ
(n)
f (θ), (5.2.3)

where Mθ, Pθ, and Q
(n)

θ
(see (6.1.2) and (6.1.3) in Section 6.1 for an explicit

form) do not depend on f nor τ (n) and

Γ
(n)
f (θ) :=

(
(n−1)1/2(vecΓ

(n)
1,f (θ))′, . . . , (n−i)1/2(vecΓ

(n)
i,f (θ))′, . . . , (vecΓ

(n)
n−1,f (θ))′

)′
(5.2.4)

with the so-called f -cross-covariance matrices

Γ
(n)
i,f (θ) := (n− i)−1

n∑
t=i+1

ϕf (Z
(n)
t (θ))Z

(n)′
t−i (θ). (5.2.5)

We then have the following LAN result (see Section 6.2 for a proof).

Proposition 5.2.1. Let Assumptions (A1) and (A2) hold. Then, for any bounded

sequence τ (n) in R(p+q)d2, under P
(n)

θ;f
, as n→∞,

L
(n)

θ+n−1/2τ (n)/θ;f
= τ (n)′∆

(n)
f (θ)− 1

2
τ (n)′Λf (θ)τ (n) + oP(1) (5.2.6)
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with

Λf (θ) := M ′
θP

′
θ lim
n→∞

{
Q

(n)′
θ

[In−1 ⊗Ξ⊗ I(f)]Q
(n)

θ

}
PθMθ,

and ∆
(n)
f (θ) is asymptotically normal, with mean 0 and variance Λf (θ)).

The class Fd contains, among others, the elliptical densities. Recall that a

d-dimensional random vectorZ has centered elliptical distribution with scatter ma-

trix Σ and radial density f if its density has the form f(z) = κ−1d,f
(
detΣ

)−1/2
f
(
(z′Σ−1z)1/2

)
for some symmetric positive definite Σ and some function f: R+ → R+ such that∫∞
0
rd−1f(r) dr < ∞; κd,f :=

(
2πd/2/Γ(d/2)

) ∫∞
0
rd−1f(r) dr is a norming constant.

When Z is elliptical with shape matrix Σ and radial density f, ‖Σ−1/2Z‖ (where

Σ1/2 stands for the symmetric root of Σ) has density

f ?d;f(r) = (µd−1;f)
−1rd−1f(r)I[r > 0]

where µd−1;f :=
∫∞
0
rd−1f(r)d r, and distribution function F ?

d;f. Assumption (A2)(ii)

on f then is equivalent to the mean square differentiability, with quadratic mean

derivative Df1/2, of r 7→ f1/2(r), r ∈ R+
0 ; letting ϕf := −2Df1/2/f1/2(r), we get

Id;f :=
∫ 1

0

(
ϕf ◦

(
F ?
d;f

)−1
(u)
)2

du < ∞.

Elliptic random vectors admit the following representation in terms of spherical

uniform variables. Denoting by Sd and Sd−1 the open unit ball and the unit

sphere in Rd, respectively, define the spherical uniform distribution Ud over Sd

as the product of the uniform measure over Sd−1 with a uniform measure over

the unit interval of distances to the origin. A d-dimensional random vector Z

has centered elliptical distribution iff F ?
d;f(‖Σ−1/2Z‖)Σ−1/2Z/‖Σ−1/2Z‖ ∼ Ud.

Putting S
(n)

Σ,t
:= Σ−1/2Z

(n)
t /‖Σ−1/2Z(n)

t ‖, where Z
(n)
t := Z

(n)
t (θ), it follows from

Hallin and Paindaveine (2004) that the central sequence (5.2.3) for elliptical f

considerably simplifies and takes the form (5.2.3) with

Γ
(n)
i,f (θ) := (n− i)−1Σ−1/2

n∑
t=i+1

ϕ1(‖Σ−1/2Z(n)
t ‖)ϕ2(‖Σ−1/2Z(n)

t−i‖)S
(n)

Σ,t
S

(n)′
Σ,t−i

Σ1/2

(5.2.7)

where ϕ1(r) := ϕf(r) and ϕ2(r) := r, r ∈ R+.
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5.3 Center-outward ranks and signs

Parametrically optimal (in the Hájek-Le Cam asymptotic sense) rank-based in-

ference procedures in LAN families is possible if the LAN central sequence can

be expressed in terms of signs and ranks. In Section 5.3.4, we explain how to

achieve this goal using the notions of multivariate ranks and signs proposed by

Chernozhukov et al. (2017) (under the name of Monge-Kantorovich ranks and

signs) and developed in Hallin (2017) and Hallin et al. (2020a) under the name

of center-outward ranks and signs. This new concepts hinge on measure trans-

portation theory; their empirical versions are based on an optimal coupling of the

sample residuals Z
(n)
t with a regular grid over the unit ball.

5.3.1 Mapping the residuals to the unit ball

Let Pd denote the family of all distributions P with densities in Fd—for this

family the center-outward distribution functions defined below are continuous; see

Hallin et al. (2020a). The center-outward distribution function F± is defined as

the a.e. unique gradient of convex function mapping Rd to Sd and pushing P

forward to the spherical uniform distribution Ud. For P ∈ Pd, such mapping is

a homeomorphism between Sd \ {0} and Rd \ F−1± ({0}) (Figalli 2018) and the

corresponding center-outward quantile function is defined (letting, with a small

abuse of notation, Q±(0) := F−1± ({0})) as Q± := F−1± . For any given distribution

P, Q± induces a collection of continuous, connected, and nested quantile contours

and regions; the center-outward median Q±(0) is a uniquely defined compact set

of Lebesgue measure zero. We refer to Hallin et al. (2020a) for details.

Turning to the sample, for any θ ∈ Θ, the residualsZ(n)(θ) :=(Z
(n)
1 (θ), . . . ,Z(n)

n (θ))

under P
(n)

θ;f
are i.i.d. with density f ∈ Fd and center-outward distribution function

F±. For the empirical counterpart F (n)
± of F±, let n factorize into n = nRnS + n0,

for nR, nS, n0 ∈ N and 0 ≤ n0 < min{nR, nS}, where nR → ∞ and nS → ∞ as

n → ∞, and consider a sequence of grids, where each grid consists of the inter-

section between an nS-tuple (u1, . . .unS
) of unit vectors, and the nR-hyperspheres
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centered at the origin, with radii 1/(nR+1), . . . , nR/(nR+1), along with n0 copies

of the origin. The resulting grid is such that the discrete distribution with prob-

ability mass 1/n at each gridpoint and probability mass n0/n at the origin con-

verges weakly to the uniform Ud over the ball Sd. Then, we define F (n)
± (Z

(n)
t ), for

t = 1, . . . , n as the solution (optimal mapping) of a coupling problem between the

residuals and the grid.

Specifically, the empirical center-outward distribution function is the (random)

mapping

F (n)
± : Z(n) := (Z

(n)
1 , . . . ,Z(n)

n ) 7→ (F (n)
± (Z

(n)
1 ), . . . ,F (n)

± (Z(n)
n ))

satisfying

n∑
t=1

‖Z(n)
t − F (n)

± (Z
(n)
t )‖2 = min

T∈T

n∑
t=1

‖Z(n)
t − T (Z

(n)
t )‖2, (5.3.1)

where Z
(n)
t = Z

(n)
t (θ), the set {F (n)

± (Z
(n)
t )|t = 1, . . . , n} coincides with the n

points of the grid, and T denotes the set of all possible bijective mappings be-

tween Z
(n)
1 , . . . ,Z(n)

n and the n gridpoints. The sample counterpart of Q± then is

defined as Q(n)
± := (F (n)

± )−1 (again, with the small abuse of notation Q(n)
± (0) :=

(F (n)
± )−1({0})). See Section 6.4 for a graphical illustration of these concepts.

Based on this empirical center-outward distribution function, the center-outward

ranks and signs are

R
(n)
±,t := R

(n)
±,t (θ) := (nR + 1)‖F (n)

± (Z
(n)
t )‖, (5.3.2)

and (for F (n)
± (Z

(n)
t ) = 0, let S

(n)
±,t := 0)

S
(n)
±,t := S

(n)
±,t (θ) :=

F (n)
± (Z

(n)
t )

‖F (n)
± (Z

(n)
t )‖

I[F (n)
± (Z

(n)
t ) 6= 0], (5.3.3)
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respectively. It follows that F (n)
± (Z

(n)
t ) factorizes into

F (n)
± (Z

(n)
t ) =

R
(n)
±,t

nR + 1
S

(n)
±,t , hence Z

(n)
t = Q(n)

±

( R
(n)
±,t

nR + 1
S

(n)
±,t

)
. (5.3.4)

Conditional on the grid (in case the latter is random), those ranks and signs are

jointly distribution-free: more precisely, under P
(n)

θ;f
, the n-tuple F (n)

± (Z
(n)
1 ), . . . ,F (n)

± (Z(n)
n )

is uniformly distributed over the n! permutations2 of the n gridpoints, irrespective

of f ∈ Fd.

Empirical center-outward ranks and signs can be shown (Proposition 2.2 in

Hallin et al. (2020b)) to enjoy the following invariance/equivariance properties. De-

note by F Z
± the center-outward distribution function of Z and by F Z;(n)

± the empiri-

cal distribution function, associated with some grid Gn, of the sampleZ
(n)
1 , . . . ,Z(n)

n .

Proposition 5.3.1. (Hallin et al. 2020b) Let µ ∈ Rd and denote by O a d × d

orthogonal matrix. Then,

(i) F µ+OZ
± (µ+ Oz) = OF Z

±(z), z ∈ Rd;

(ii) denoting by F µ+OZ;(n)
± the empirical distribution function of the sample

µ+ OZ
(n)
1 , . . . ,µ+ OZ(n)

n

associated with the grid OGn (hence, by F Z;(n)
± the empirical distribution

function of the sample Z
(n)
1 , . . . ,Z(n)

n associated with the grid Gn),

F µ+OZ;(n)
± (µ+ OZ

(n)
i ) = OF Z;(n)

± (Z
(n)
i ), i = 1, . . . , n; (5.3.5)

(iii) the center-outward ranks R
(n)
i;± and the cosines S

(n)′
i;± S

(n)
j;± computed from Z

(n)
1 , . . . ,Z(n)

n

and the grid Gn are the same as those computed from µ+ OZ
(n)
1 , . . . ,µ+ OZ(n)

n

and the grid OGn.

We refer to Sections 3.1 and 6 in Hallin et al. (2020a) for further details,

comments on the main properties of F (n)
± and F±, and for remarks on the mini-

mal sufficiency and maximal ancillarity of the sub-σ-fields generated by the order

2Actually, for n0 > 1, the n!/n0! permutations with repetitions.
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statistic3 and by the center-outward ranks and signs, in the fixed-θ experiment

{P(n)

θ;f
|f ∈ Fd}.

5.3.2 Mahalanobis ranks and signs

Definitions (5.3.2) and (5.3.3) call for a comparison with the earlier concepts

of elliptical or Mahalanobis ranks and signs introduced in Hallin and Paindav-

eine (2002a and b, 2004), which we now describe. Associated with the centered

elliptical distribution with scatter Σ and radial density f, consider the mapping

z 7→ Fell(z) := F ?
d;f(‖Σ−1/2z‖)Σ−1/2z/‖Σ−1/2z‖

from Rd to Sd. In measure transportation parlance, Fell, just as F±, pushes the

elliptical distribution of Z forward to the uniform Ud over the unit ball Sd. This

allows us to connect the Mahalanobis ranks and signs to the center-outward ones.

Denoting by Σ̂
(n)

a consistent estimator of Σ measurable with respect to the

order statistic4 of the Z
(n)
t ’s and by F ?(n) the empirical distribution function of

the moduli
∥∥(Σ̂(n))−1/2

Z
(n)
t

∥∥, an empirical counterpart of Fell(Z
(n)
t ) is

F
(n)
ell (Z

(n)
t ) := F ?(n)

(∥∥(Σ̂(n))−1/2
Z

(n)
t

∥∥) (Σ̂(n))−1/2
Z

(n)
t∥∥(Σ̂(n))−1/2

Z
(n)
t

∥∥ (5.3.6)

with the Mahalanobis ranks (compare to (5.3.2))

R
(n)
ell,t := R

(n)
ell,t(θ) := (n+1)‖F (n)

ell (Z
(n)
t )‖ = (n+1)F ?(n)

(∥∥(Σ̂(n))−1/2
Z

(n)
t

∥∥) (5.3.7)

3An order statistic Z
(n)
(·) of the un-ordered n-tuple Z(n) is an arbitrarily ordered version of

the same; see Section 6.4 and Hallin et al. (2020a). For instance, one may consider the ordering
based on the first components.

4That is, a symmetric function of the Zt’s.
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and Mahalanobis signs (compare to (5.3.3))

S
(n)
ell,t := S

(n)
ell,t(θ) :=

F
(n)
ell (Z

(n)
t )

‖F (n)
ell (Z

(n)
t )‖

I[F
(n)
ell (Z

(n)
t ) 6= 0]

=

(
Σ̂

(n))−1/2
Z

(n)
t∥∥(Σ̂(n))−1/2

Z
(n)
t

∥∥I[(Σ̂(n))−1/2
Z

(n)
t 6= 0

]
(5.3.8)

(for F
(n)
ell (Z

(n)
t ) = 0 =

(
Σ̂

(n))−1/2
Z

(n)
t , let S

(n)
ell,t := 0). Similar to (5.3.4)), we have

F
(n)
ell (Z

(n)
t ) =

R
(n)
ell,t

n+ 1
S

(n)
ell,t,

hence

Σ̂
(n)−1/2

Z
(n)
t = (F ?(n))−1

(
R

(n)
ell,t

n+ 1

)
S

(n)
ell,t = Σ−1/2Z

(n)
t + oP(1).

5.3.3 Elliptical Fell, center-outward F±, and affine invari-

ance

Both Fell and F± are pushing the elliptical distribution of Z forward to Ud. How-

ever, unless Σ is proportional to identity (Σ = cId for some c > 0), Fell and F±

are distinct, so that F ell cannot be the gradient of a convex function. Moreover,

both Fell and F± sphericize the distribution of Z. Some key differences are worth

to be mentioned, though.

First, while sphericization and probability integral transformation, in F±, are

inseparably combined, Fell proceeds in two separate steps: a Mahalanobis spheri-

cization step (the parametric affine transformation z 7→ zΣ,µ
:= Σ−1/2(z − µ))

first, followed by the spherical probability integral transformation

zΣ,µ
7→ F ?

d;f(‖zΣ,µ
‖)zΣ,µ

/‖zΣ,µ
‖.

Second, Mahalanobis sphericization requires centering, hence the definition of

a location parameter µ. Distinct choices of location (mean, spatial median, etc.)

all yield the same result under ellipticity, but not under non-elliptical distribu-

tions. This is in sharp contrast with F±, which is location-invariant (see Hallin et

144



al. (2020b)). Similarly, all definitions and sensible estimators of the scatter yield

the same results under elliptical symmetry but not under non-elliptical distribu-

tions.

Third, even under additional assumptions ensuring the identification of Σ, the

corresponding Mahalanobis sphericization, hence also Fell, only sphericizes the

elliptical distributions, whilst F± sphericizes them all.

Its preliminary Mahalanobis sphericization step, on the other hand, makes Fell

affine-invariant. Assuming that sensible choices of µ and Σ are available, per-

forming the same Mahalanobis transformation prior to determining F± similarly

would make center-outward distribution functions affine-invariant and the corre-

sponding center-outward quantile functions affine-equivariant (in fact, for elliptical

distributions, the resulting F± then coincides with Fell). Whether this is desirable

is a matter of choice. While affine-invariance, in view of the central role of the

affine group in elliptical families, is quite natural under elliptical symmetry, its

relevance is much less obvious away from ellipticity. A more detailed discussion of

this fact, along with additional arguments related to the lack of affine invariance

of non-elliptical local experiments, can be found in Hallin et al. (2020b).

Center-outward distribution functions, ranks, and signs, however, enjoy in-

variance/equivariance with respect to shift, global scale factors, and orthogonal

transformations—see Proposition 5.3.1.

5.3.4 A center-outward sign- and rank-based central se-

quence

Efficient estimation in LAN experiments is based on central sequences and the

so-called Le Cam one-step method. Our R-estimation is based on the same prin-

ciples. Specifically, in the central sequence associated with some reference density

f , we replace the residuals Z(θ) with some adequate function of their ranks and

their signs. Then, from the resulting rank-based statistic, we implement a suitable

adaptation of the one-step method. If, under innovation density f , the substitu-
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tion yields a genuinely rank-based, hence distribution-free, version of the central

sequence, the resulting R-estimator achieves parametric efficiency under f while

remaining valid under other innovation densities; see Hallin and Werker (2003) for

a discussion.

In dimension d = 1, Allal et al. (2001), Hallin and La Vecchia (2017, 2019

and references therein) explain how to construct R-estimators for linear and non-

linear semiparametric time series models. In dimension d > 1, under elliptical

innovations density, Hallin et al. (2006) exploit similar ideas for the estimation of

shape matrices, based on the Mahalanobis ranks and signs. Hallin and Paindav-

eine (2004), in a hypothesis testing context, show that replacing Z
(n)
t in (5.2.7)

with

Σ̂
(n)1/2

F ?−1
d;f (R

(n)
ell,t/(n+ 1))S

(n)
ell,t = F−1ell ((R

(n)
ell,t/(n+ 1))S

(n)
ell,t) = F−1ell (F

(n)
ell (Z

(n)
t (θ)))

(5.3.9)

(where R
(n)
ell,t = R

(n)
ell,t(θ), S

(n)
ell,t = S

(n)
ell,t(θ), and Σ̂

(n)
is a suitable estimator of the

scatter matrix) yields a rank-based version of the central sequence associated with

the elliptic density f—namely, a random vector ∆∼
(n)
f (θ) measurable with respect

to the Mahalanobis ranks and signs (hence, distribution-free under ellipticity) such

that, under f , ∆∼
(n)
f (θ)−∆

(n)
f (θ) = oP(1) as n→∞.

However, this construction is valid only for the family of elliptical innovation

densities (in dimension one, the family of symmetric innovation densities), un-

der which Mahalanobis ranks and signs are distribution-free. Elliptic symmetry

is a severe limitation, which is unlikely to be satisfied in most applications. If

the attractive properties of R-estimators in univariate semiparametric time series

models are to be extended to dimension two and higher, center-outward ranks and

signs, the distribution-freeness of which holds under any density f ∈ Fd, are to be

considered instead of the Mahalanobis ones.

Building on this remark, we propose to substitute Z
(n)
t (θ) in (5.2.5) with

F−1± ((R
(n)
±,t/(nR + 1))S

(n)
±,t ) = F−1± (F (n)

± (Z
(n)
t (θ))) = Q± ◦ F (n)

± (Z
(n)
t (θ)), (5.3.10)
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where R
(n)
±,t = R

(n)
±,t(θ), S

(n)
±,t = S

(n)
±,t(θ), and F± and Q± are associated with

some chosen reference innovation density f ∈ Fd. This yields rank-based, hence

distribution-free, f -cross-covariance matrices of the form (i = 1, . . . , n− 1)

Γ∼
(n)
i,f (θ) := (n− i)−1

n∑
t=i+1

ϕf

(
F−1±

(
R

(n)
±,t

nR + 1
S

(n)
±,t

))
F−1′±

(
R

(n)
±,t−i

nR + 1
S

(n)
±,t−i

)
.

(5.3.11)

While this looks quite straightforward, practical implementation requires an

analytical expression for F±, which typically is unavailable for general innovation

densities. And, were such closed forms available, the problem of choosing an

adequate multivariate reference density f remains.

Now, note that in the univariate case all standard reference densities are

symmetric—think of Gaussian, logistic, double-exponential densities, leading to

van der Waerden, Wilcoxon, or sign test scores. Therefore, in the sequel, we con-

centrate on rank-based cross-covariance matrices of the form (i = 1, . . . , n − 1)

Γ∼
(n)
i,J1,J2

(θ) := (n− i)−1
n∑

t=i+1

J1

(
R

(n)
±,t

nR + 1

)
J2

(
R

(n)
±,t−i

nR + 1

)
S

(n)
±,tS

(n)′
±,t−i (5.3.12)

to which Γ∼
(n)
i,f (θ) in (5.3.11) reduces, with J1(u) = ϕf(F

?−1
d;f (u)) and J2(u) =

F ?−1
d;f (u), in the case of a spherical reference f with radial density f, yielding

a rank-based version ∆∼
(n)
f of the spherical central sequence ∆

(n)
f . More gener-

ally, we propose to use statistics of the form (5.3.12) with scores J1 : [0, 1) → R

and J2 : [0, 1)→ R which are not necessarily related to any spherical density. Then,

the notation ∆∼
(n)
J1,J2

will be used in an obvious fashion, indicating that ∆∼
(n)
J1,J2

needs

not be a central sequence.

The next section provides details on the choice of J1 and J2 and establishes

the asymptotic properties (root-n consistency and asymptotic normality) of the

related R-estimators.
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5.4 R-estimation

5.4.1 One-step R-estimators: definition and asymptotics

We now proceed with a precise definition of our R-estimators and establish their

asymptotic properties. Throughout, J1 and J2 are assumed to satisfy the following

assumption.

Assumption (A3). The score functions J1 and J2 in (5.3.12) (i) are square-

integrable, that is, σ2
Jl

:=
∫ 1

0
J2
l (r)dr < ∞, l = 1, 2, and (ii) are continuous

differences of two monotonic increasing functions.

Assumption (A3) is quite mild and it is satisfied, e.g., by all square-integrable

functions with bounded variation. Define JJ2,f :=
∫
Sd
J2(‖u‖)(u/‖u‖)F−1′± (u)dUd(u),

and

KJ1,J2,f :=

∫
Sd
J1(‖u‖)

[
Id ⊗

u

‖u‖

]
JJ2,f

[
Id ⊗ϕ′f

(
F−1± (u)

)]
dUd(u). (5.4.1)

These two matrices under Assumptions (A2) and (A3) exist and are finite in view

of the Cauchy–Schwarz inequality since u/‖u‖ is bounded.

R-estimation requires the asymptotic linearity of the rank-based objective func-

tion involved. Sufficient conditions for such linearity are available in the literature

(see e.g. Jurečková (1971) and van Eeden (1972), Hallin and Puri (1994), Hallin

and Paindaveine (2005) or Hallin et al. (2015)). In the same spirit, we introduce

the following assumption on the rank-based statistics Γ∼
(n)
i,J1,J2

(θ); the form of the

linear term in the right-hand side of (5.4.2) follows from the form of the asymptotic

shift in Lemma 6.2.3.

Decomposing the matrix Q
(n)

θ
defined in (6.1.3) into d2 × d2(p + q) blocks

(note that these blocks do not depend on n), write Q
(n)

θ
=
(
Q′

1,θ . . .Q
′
n−1,θ

)′
and

consider the following assumption.

Assumption (A4) For any positive integer i and d2(p+ q)-dimensional vector τ ,
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under actual density f , as n→∞

(n−i)1/2
[
vec(Γ∼

(n)
i,J1,J2

(θ + n−1/2τ ))− vec(Γ∼
(n)
i,J1,J2

(θ))
]

= −KJ1,J2,fQi,θPθMθτ+oP(1),

(5.4.2)

where Mθ and Pθ, which do not depend on f , J1 nor J2, are given in (6.1.2) and

(6.1.3) in Section 6.1.

Next, for m ≤ n− 1, consider

Γ∼
(m,n)
J1,J2

(θ) := ((n− 1)1/2(vecΓ∼
(n)
1,J1,J2

(θ))′, . . . , (n−m)1/2(vecΓ∼
(n)
m,J1,J2

(θ))′)′, (5.4.3)

and the truncated version

∆∼
(n)
m,J1,J2

(θ) := T
(m+1)

θ
Γ∼

(m,n)
J1,J2

(θ) where T
(m+1)

θ
:= M ′

θP
′
θQ

(m+1)′
θ

(5.4.4)

of ∆∼
(n)
J1,J2

(θ). This truncation is just a theoretical device required in the statement

of asymptotic results and, as explained in Section 6.3.2, there is no need to im-

plement it in practice. The asymptotic linearity (5.4.2) of Γ∼
(n)
i,J1,J2

(θ) entails, for

∆∼
(n)
J1,J2

(θ), the following result.

Proposition 5.4.1. Let Assumptions (A1), (A2), (A3), and (A4) hold. Then,

for any (m,n) such that m ≤ n− 1 and m→∞ (hence also n→∞),

∆∼
(n)
J1,J2

(θ + n−1/2τ )−∆∼
(n)
m,J1,J2

(θ) = −Υ
(m+1)
J1,J2,f

(θ)τ + oP(1), (5.4.5)

where Υ
(m+1)
J1,J2,f

(θ) := T
(m+1)

θ
(Im ⊗KJ1,J2,f )T

(m+1)′
θ

.

With the above asymptotic linearity result, we are now ready to define our

R-estimators. First, let us introduce some notations. Under Assumption (A1), let

ΥJ1,J2,f (θ) := lim
n→∞

Υ
(n)
J1,J2,f

(θ) and define the cross-information matrix

IJ1,J2,f (θ) := lim
n→∞

Eθ,f

[
∆∼

(n)
J1,J2

(θ)∆
(n)
f (θ)′

]
. (5.4.6)
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Let

Γ̄
(n)
i,J1,J2

(θ) := (n− i)−1
n∑

t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)S±,tS′±,t−i (5.4.7)

with S±,t := F±,t/‖F±,t‖ representing the “sign” of F±,t := F±(Z
(n)
t (θ)). De-

note by ∆̄
(n)
J1,J2

(θ) the central sequence resulting from substituting Γ̄
(n)
i,J1,J2

(θ) for

Γ∼
(n)
i,J1,J2

(θ) in ∆∼
(n)
J1,J2

(θ). Following the proofs in Lemma 6.2.4 and Lemma 6.2.3,

it is easy to see that the difference between ∆̄
(n)
J1,J2

and ∆∼
(n)
J1,J2

converges to zero

in quadratic mean as n → ∞. Therefore, ΥJ1,J2,f (θ) coincides with the cross-

information matrix (5.4.6) when Assumptions (A1), (A2) and (A3) hold; see the

proof of Lemmas 6.2.1 and 6.2.4 in Section 6.2.

Let Υ̂
(n)

J1,J2
denote a consistent (under innovation density f) estimator of ΥJ1,J2,f (θ);

such an estimator is provided in (5.4.5), see Section 6.3 for details. Also, denote

by θ̂
(n)

a preliminary root-n consistent and asymptotically discrete5 estimator of

θ. Our one-step R-estimator then is defined as

θ̂∼
(n)

:= θ̂
(n)

+ n−1/2
(
Υ̂

(n)

J1,J2

)−1
∆∼

(n)
J1,J2

(θ̂
(n)

). (5.4.8)

The following proposition establishes its root-n consistency and asymptotic nor-

mality.

Proposition 5.4.2. Let Assumptions (A1), (A2), (A3), and (A4) hold. Let

Ω(n) := d−2σ2
J1
σ2
J2

(
Υ

(n)
J1,J2,f

(θ)
)−1

T
(n)

θ
T

(n)′
θ

(
Υ

(n) ′
J1,J2,f

(θ)
)−1

.

Then, denoting by
(
Ω(n)

)−1/2
the symmetric square root of Ω(n),

n1/2
(
Ω(n)

)−1/2
(θ̂∼

(n)
− θ)→ N (0, Id2(p+q)), (5.4.9)

5Asymptotic discreteness is only a theoretical requirement since, in practice, θ̂
(n)

anyway only
has a bounded number of digits; see Le Cam and Yang (2000, Chapter 6) and van der Vaart
(1998, Section 5.7) for details.
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under innovation density f , as both nR and nS tend to infinity.

See Section 6.2 for the proof. Section 6.3 discusses the computational aspects

of the procedure and describes the algorithm we are using. Codes are available

from the authors’ GitHub page https://github.com/HangLiu10/RestVARMA.

5.4.2 Some standard score functions

The rank-based cross-covariance matrices Γ∼
(n)
J1,J2

, hence also the resulting R-estimator,

depend on the choice of score functions J1 and J2. We provide three examples of

sensible choices extending scores that are widely applied in the univariate (see e.g.

Hallin and La Vecchia (2020)) and the elliptical multivariate setting (see Hallin

and Pandaveine (2004)).

Example 1 (Sign test scores). Setting J1(u) = 1 = J2(u) yields the center-

outward sign-based cross-covariance matrices

Γ∼
(n)
i,sign(θ) = (n− i)−1

n∑
t=i+1

S
(n)
±,t (θ)S

(n)′
±,t−i(θ), i = 1, . . . , n− 1. (5.4.10)

The resulting ∆∼
(n)
sign(θ) entirely relies on the center-outward signs S

(n)
±,t (θ), which

should make them particularly robust and explains the terminology sign test scores.

Example 2 (Spearman scores). Another simple choice is J1(u) = J2(u) = u.

The corresponding rank-based cross-covariance matrices are

Γ∼
(n)
i,Sp(θ) = (n− i)−1

n∑
t=i+1

F
(n)
±,tF

(n)′
±,t−i, i = 1, . . . , n− 1, (5.4.11)

with F
(n)
±,t := F (n)

± (Z
(n)
t (θ)), reducing, for d = 1, to Spearman autocorrelations,

whence the terminology Spearman scores.

Example 3 (van der Waerden or normal scores). Finally, J1(u) = J2(u) =(
(F χ2

d )−1(u)
)1/2

, where F χ2

d denotes the chi-square distribution function with d

degrees of freedom, yields the van der Waerden (vdW) rank scores, with cross-
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covariance matrices

Γ∼
(n)
i,vdW(θ) = (n− i)−1

n∑
t=i+1

[(
F χ2

d

)−1(R(n)
±,t (θ)

nR + 1

)]1/2[(
F χ2

d

)−1(R(n)
±,t−i(θ)

nR + 1

)]1/2
× S(n)

±,t (θ)S
(n)′
±,t−i(θ), i = 1, . . . , n− 1. (5.4.12)

Adequate choices of J1 and J2, namely,

J1 = ϕf ◦
(
F ?
d;f

)−1
and J2 =

(
F ?
d;f

)−1
, (5.4.13)

yield asymptotic efficiency of θ̂∼
(n)

under spherical distributions with radial density

f. Indeed, it is shown in Chernozhukov et al. (2017) that, for spherical distribu-

tions, F± actually coincides with Fell. Hence, ∆̄
(n)
J1,J2

, under spherical density f ,

coincides with the central sequence ∆
(n)
f . Therefore, due to the convergence in

quadratic mean of ∆∼
(n)
J1,J2

to ∆̄
(n)
J1,J2

, ∆∼
(n)
J1,J2

and ∆
(n)
f are asymptotically equivalent

and ΥJ1,J2,f (θ) coincides with the Fisher information matrix; θ̂∼
(n)

then achieves

(parametric) asymptotic efficiency under innovation density f .

Condition (5.4.13) is satisfied by the van der Waerden scores for Gaussian f:

the corresponding R-estimator, thus, is parametrically efficient under spherical

Gaussian innovations. If the residuals are sphericized prior to the computation of

center-outward ranks and signs, then parametric efficiency is reached under any

Gaussian innovation density; we have explained in Section 5.3.3 why this may be

desirable or not. Neither the Spearman nor the sign test scores satisfy (5.4.13) for

any f. Efficiency, however, is just one possible criterion for the selection of J1 and

J2 and many alternative options are available, based on ease-of-implementation

(as in Examples 1 and 2) or robustness (as in Example 1).

5.5 Numerical illustration

A numerical study of the performance of our R-estimators was conducted in di-

mensions d = 2 (Sections 5.5.1, 5.5.2, and 5.5.3) and d = 3 (Section 5.5.4). Further
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results are available in Section 6.4 of Chapter 6.

In dimension d = 2, we considered the bivariate VAR(1) model

(Id −AL)X t = εt, t ∈ Z (5.5.1)

with the same parameter of interest θ := vecA = (a11, a21, a12, a22)
′ = (0.2,−0.6, 0.3, 1.1)′

as in the motivating example of Section 5.1.2 and spherical Gaussian, spherical

t3, skew-normal, skew-t3, Gaussian mixture, and non-spherical Gaussian innova-

tions, respectively. The skew-normal and skew-t3 distributions are described in

Section 6.4.2 of Chapter 6; the Gaussian mixture is of the form

3

8
N (µ1,Σ1) +

3

8
N (µ2,Σ2) +

1

4
N (µ3,Σ3), (5.5.2)

with µ1 = (−5, 0)′, µ2 = (5, 0)′, µ3 = (0, 0)′, Σ1 =

 7 5

5 5

, Σ2 =

 7 −6

−6 6

, and

Σ3 =

 4 0

0 3

. A scatterplot of n = 1000 innovations drawn from this mixture is

shown in Section 6.4.2. For the non-spherical Gaussian case, as in the last panel of

Table 5.1, we set the covariance matrix to Σ4 =

 5 4

4 4.5

, so that the bivariate

innovation exhibits a large positive correlation of 0.843.

All these densities have mean zero. As mentioned at the end of Section 5.2.1,

this is not required for center-outward R-estimation, but avoids a preliminary

centering of residuals in all other estimation methods.

For each of these innovation densities, we generated N = 300 Monte Carlo

realizations—larger values of N did not show significant changes— of the station-

ary solution of (5.5.1), of length n = 1000 (n “large”: Section 5.5.1) and n = 300

(n “small”: Section 5.5.2), respectively. For each realization, we computed the

QMLE, our R-estimators (sign test, Spearman, and van der Waerden scores),

and, for the purpose of comparison, the QMLE based on t5 likelihood (although
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inconsistent, QMLEs based on t-distribution are a popular choice in the time se-

ries literature) and the reweighted multivariate least trimmed squares estimator

(henceforth, RMLTSE) of Croux and Joossen (2008). The boxplots and tables of

bias and mean squared errors below allow for a comparison of the finite-sample

performance of our R-estimators and those routinely-applied M-estimators.

Throughout, QMLEs were computed from the MTS package in R program,

RMLTSEs were computed from the function varxfit in the package rmgarch in R

program, and t5-QMLEs were obtained by minimizing the negative log-likelihood

function using the optim function in R program. The R-estimators were obtained

via the one-step procedure as in the algorithm described in Section 6.3 of Chap-

ter 6—five iterations for n = 1000, ten iterations for n = 300.

5.5.1 Large sample results

The averaged bias and MSE of each estimator for n = 1000 (factorizing into

nRnS = 25 × 40) are summarized in Table 5.1, where ratios of the sums (over

the four parameters) of the MSEs of the QMLE over those of each of the other

estimators are also reported. The corresponding boxplots under the skew-normal

(Figure 6.2), skew-t3 (Figure 6.3)), spherical t3 (Figure 6.4) and non-spherical

Gaussian (Figure 6.5) innovations are provided in Section 6.4.3.1 of Chapter 6.

Inspection of Table 5.1 reveals that under asymmetric innovation densities

(mixture, skew-normal and skew-t3), the vdW and Spearman R-estimators domi-

nate the other three M-estimators, with significant efficiency gains under the mix-

ture and skew-t3 distributions. One may wonder what happens if asymmetry is

removed and only the heavy-tail feature is kept. The MSE ratios under the spher-

ical t3 distribution answer this question: the R-estimators still outperform the

QMLE. Recalling that asymptotic optimality can be achieved by our R-estimators

under spherical densities, it would be interesting to investigate their performance

under a non-spherical distribution with large correlation. The MSE ratios un-

der the non-spherical Gaussian distribution show that the vdW and Spearman
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Table 5.1: The estimated bias, MSE, and overall MSE ratios of the QMLE, t5-
QMLE , RMLTSE, and R-estimators under various innovation densities. The true
parameter is vec(A) = (0.2,−0.6, 0.3, 1.1)′. The sample size is n = 1000; N = 300
replications. (The bias and MSE are multiplied by 1000).

Bias (×103) MSE (×103) MSE ratio
a11 a21 a12 a22 a11 a21 a12 a22

(Spherical Normal)
QMLE -0.484 -0.054 0.201 -1.571 0.769 0.679 0.173 0.195
t5-QMLE -0.547 -0.132 0.429 -1.582 0.833 0.751 0.190 0.210 0.916
RMLTS -0.629 -0.992 0.424 -1.334 0.843 0.760 0.193 0.215 0.903

vdW -0.662 -0.434 0.504 -1.833 0.780 0.688 0.178 0.205 0.982
Spearman -1.263 -0.979 1.274 -2.134 0.810 0.728 0.189 0.216 0.935

Sign -0.372 -0.600 1.545 -2.642 1.314 1.141 0.305 0.310 0.592
(Mixture)

QMLE -1.318 -0.476 2.907 -0.103 0.839 0.153 0.342 0.056
t5-QMLE -0.852 0.483 4.820 0.248 4.420 0.261 1.641 0.156 0.215
RMLTS -0.703 0.268 3.166 -0.116 0.876 0.168 0.351 0.069 0.949

vdW -1.111 -0.465 2.347 -0.883 0.316 0.085 0.149 0.042 2.346
Spearman -0.841 -0.539 2.338 -0.791 0.291 0.088 0.140 0.041 2.480

Sign -1.691 0.048 5.256 -1.425 1.332 0.149 0.564 0.074 0.656
(Skew-normal)

QMLE -0.992 1.800 0.651 -2.108 0.804 1.039 0.281 0.311
t5-QMLE -0.378 2.588 -0.083 -2.827 1.000 1.294 0.365 0.397 0.797
RMLTS -0.519 1.515 0.172 -2.383 0.835 1.111 0.295 0.333 0.946

vdW -1.031 0.990 0.811 -2.520 0.668 0.998 0.214 0.291 1.122
Spearman -1.295 0.625 0.848 -2.171 0.694 1.032 0.222 0.294 1.086

Sign -1.608 0.888 1.346 -4.039 1.360 1.673 0.415 0.519 0.614
(Skew-t3)

QMLE -2.242 -2.055 0.763 0.213 1.022 0.856 0.379 0.336
t5-QMLE 3.032 1.865 -2.078 -2.134 1.062 0.714 0.707 0.463 0.880
RMLTS -0.186 0.357 -0.613 -1.373 0.517 0.483 0.278 0.237 1.711

vdW -1.250 0.170 1.100 -2.014 0.432 0.526 0.151 0.204 1.973
Spearman -1.022 0.119 1.018 -1.891 0.438 0.537 0.149 0.204 1.952

Sign -1.515 -0.532 1.065 -3.410 0.966 1.095 0.333 0.501 0.895
(t3)

QMLE -3.558 -0.210 2.092 -0.967 0.844 0.671 0.205 0.185
t5-QMLE -2.185 -0.433 1.332 -0.613 0.386 0.349 0.098 0.095 2.052
RMLTS -2.473 -0.510 1.313 -0.691 0.438 0.384 0.108 0.106 1.836

vdW -2.680 -1.937 2.393 -1.053 0.602 0.557 0.143 0.135 1.325
Spearman -2.880 -2.014 2.663 -1.033 0.640 0.589 0.150 0.142 1.253

Sign -2.204 -3.916 1.996 0.104 0.784 0.681 0.201 0.179 1.032
(Non-spherical)

QMLE 0.513 2.682 -0.572 -2.756 1.962 1.705 1.314 1.115
t5-QMLE 0.992 3.953 -0.154 -3.008 3.105 2.618 2.013 1.696 0.646
RMLTS 0.077 2.834 0.043 -2.473 2.118 1.886 1.400 1.181 0.926

vdW -0.335 3.327 0.156 -4.017 2.597 2.273 1.386 1.212 0.816
Spearman -0.373 3.361 0.487 -3.853 2.562 2.268 1.411 1.222 0.817

Sign 4.157 8.485 -4.713 -8.645 6.717 5.955 3.300 2.582 0.329
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R-estimators lose only little efficiency with respect to the QMLE: as we have ob-

served in the motivating example of Section 5.1.2, the good performance of the

R-estimators under asymmetric distributions is not obtained at the expense of a

loss of accuracy under the symmetric ones.

5.5.2 Small sample results

A major advantage of R-estimation over other semiparametric procedures (based

on tangent space projections) is the fact that it does not require any kernel density

estimation, which allows for applying our method also in relatively small samples.

To gain understanding on that aspect, we consider the same setting as in Section

5.5.1, but with sample size n = 300 (an order of magnitude which is quite common

in real-data applications: see e.g. Section 5.6) factorizing into nRnS = 15 × 20.

The results are shown in Section 6.4.3.2 of Chapter 6, where Table 6.1 provides the

averaged bias, MSE and overall MSE ratios of all estimators under various inno-

vation densities; all results are in line with those in Table 5.1. The corresponding

boxplots are displayed (still in Section 6.4.3.2 of Chapter 6) in Figures 6.6-6.10 and

confirm the superiority over the QMLE, also in small samples, of our R-estimators

under non-elliptical innovations: even in small samples (with nR and nS as small

as 15 and 20), our R-estimators outperform the QMLE under non-Gaussian inno-

vations, while performing equally well under Gaussian conditions.

5.5.3 Resistance to outliers

We also investigated the robustness properties of our estimators and, more partic-

ularly, their resistance to additive outliers (AO). Following Maronna et al. (2019),

we first generated Gaussian VAR(1) realizations {X t} of (5.5.1) (n = 300); then,

adding the AOs, obtained the contaminated observations {X∗t = X t+I(t = h)ξ},

where h and ξ denote the location and size of the AOs, respectively. We set h

in order to have 5% equally spaced AOs and put ξ = (4, 4)′. The parameter θ

remains the same as in the previous settings. The contaminated observations are
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demeaned prior to estimation procedures. Figure 5.2 provides the boxplots of our

three R-estimators (sign, Spearman, vdW) along with the boxplots of the QMLE,

t5-QMLE, and RMLTSE. Comparing those boxplots and the figures shown at the

bottom of Table 6.1 (Section 6.4.3.2) with the uncontaminated ones of Figure 5.1

reveals that AOs have a severe impact on the QMLE but a much less significant

one on the R-estimators. For a12 and a22, the bias and variance of the R-estimates

are comparable to those of the RMLTSE, with the latter displaying a much larger

bias for a11 and a21. Overall, we remark that for the estimation of all parameters,

vdW and Spearman R-estimators feature less variability than the t5-QMLE and

RMLTSE.

To gauge the trade-off between robustness and efficiency, we compare the MSE

ratio of RMLTSE to the MSE ratios of the R-estimators under Gaussian innovation

density, as displayed in Table 5.1 (see top panel)—see also Table 6.1 in Section 6.4.

The vdW and Spearman R-estimators exhibit MSE ratios equal to 0.982 and 0.935,

respectively, which corresponds to a smaller efficiency loss than for the RMLTSE

(MSE ratio equal to 0.903)—suggesting that the trade-off between robustness and

efficiency is more favorable for vdW and Spearman R-estimators than for the

RMLTSE.

5.5.4 Further simulation results

We also considered a trivariate (d = 3) VAR(1), with parameter of interest θ ∈ R9,

Gaussian and Gaussian mixture innovations, and sample size n = 1000. The re-

sults, which confirm the bivariate ones, can be found in Section 6.4.4 (Figures 6.11-

6.12), along with details about the simulation design.

5.6 A real-data example

To conclude, we illustrate the applicability and good performance of our R-estimators

in a real-data macroeconomic example. We consider the seasonally adjusted series
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Figure 5.2: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under Gaussian innovations in the
presence of additive outliers (sample size n = 300; N = 300 replications). The
horizontal red line represents the actual parameter value.
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of monthly housing starts (Hstarts) and the 30-year conventional mortgage rate

(Mortg—no need for seasonal adjustment) in the US from January 1989 to Jan-

uary 2016, with sample size n = 325 each (both series are freely available on the

Federal Reserve Bank of Saint Louis website, to which we refer for details). The

same time series were studied by Tsay (2014, Section 3.15.2). Following Tsay, we

analyze the differenced series; Figure 5.3 displays plots of their demeaned differ-

ences. While the Mortg series seems to be driven by skew innovations (with large

positive values more likely than the negative ones), the Hstarts series looks more

symmetric about zero. Visual inspection suggests the presence of significant auto-

and cross-correlations, as expected from macroeconomic theory.

The AIC criterion selects a VARMA(3, 1) model, the parameters of which we

estimated using the benchmark QMLE (see e.g. Tsay (2014), Chapter 3) and our

R-estimators (sign, Spearman, and van der Waerden). The QMLE-based multi-

variate Ljung-Box test does not reject the model at nominal level 1%. We report

the estimates (along with their standard error, SE, in parentheses) in Table 5.2.

Spotting the differences in Table 5.2 is all but simple, even though some look quite

significant (see, for instance, the QMLE and R-estimates of A21 and A22) and
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Figure 5.3: Plots of demeaned differences of the monthly housing starts (measured
in thousands of units; left panel) and the 30-year conventional mortgage rate (in
percentage; right panel) in the US, from January 1989 through January 2016.
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analyzing them is even more difficult.

Impulse response functions (IRFs) are easier to read and interpret; they are

widely applied in macroeconometrics—see e.g. Tsay (2014) for a book-length de-

scription. Intuitively the IRFs express the effect of changes in one variable on

another variable in multivariate time series analysis. In the VARMA case, the

IRF is obtained using a MA representation: see Tsay (2014, Section 3.15.2) and

Section 6.5 for mathematical details. In Figures 5.4, we plot the estimated IRFs

resulting from the QMLE and R-estimators. The top plots show the response of

Hstarts to its own shocks (left panel) and to the shocks of Mortg; the bottom

panels show the response of Mortg to its own shocks (right panel) and to the

shocks of Hstarts. Looking at the plots, we see that all IRFs have similar pat-

terns. For instance, for all estimators, the top left panel illustrates that the IRF

of the Hstarts to its own shocks have two consecutive increases after two initial

drops. However, the decay of the QMLE-based IRF is uniformly faster than the

R-estimator-based ones. Also, the other plots exhibit a more pronounced decay

in the QMLE-based IRFs. Thus, R-estimators suggest a more persistent impact

of the shocks: decision makers should be aware of this inferential aspect in the

implementation of their economic policy.
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Table 5.2: The QMLE and R-estimates of θ in the VARMA(3, 1) fitting of the
econometric data (demeaned differenced Hstarts and Mortg series); standard errors
are shown in parentheses. The datasets are demeaned differenced Hstarts and
Mortg series.

A1 A2 A3 B1

QMLE 0.137 0.487 -0.154 -0.199 0.032 0.056 -0.703 -0.490

(0.265) (0.353) (0.284) (0.130) (0.171) (0.072) (0.258) (0.350)

0.596 0.974 0.030 -0.400 0.070 0.110 -0.152 -0.636

(0.327) (0.537) (0.436) (0.189) (0.285) (0.077) (0.282) (0.533)

vdW 0.155 0.526 -0.096 -0.181 0.017 0.038 -0.705 -0.527

(0.141) (0.088) (0.122) (0.079) (0.133) (0.062) (0.088) (0.071)

0.561 0.943 0.094 -0.386 0.011 0.128 -0.161 -0.627

(0.148) (0.079) (0.133) (0.100) (0.098) (0.040) (0.081) (0.015)

Sign 0.087 0.536 -0.032 -0.198 0.075 -0.044 -0.705 -0.562

(0.148) (0.079) (0.133) (0.100) (0.098) (0.040) (0.081) (0.015)

0.471 1.036 0.107 -0.403 0.035 0.148 -0.161 -0.627

(0.178) (0.084) (0.165) (0.073) (0.138) (0.061) (< 10−3) (< 10−3)

Spearman 0.180 0.511 -0.090 -0.180 0.030 0.049 -0.705 -0.537

(0.066) (0.033) (0.092) (0.046) (0.113) (0.049) (< 10−3) (0.014)

0.531 0.946 0.072 -0.374 0.011 0.121 -0.161 -0.627

(0.124) (0.054) (0.115) (0.075) (0.112) (0.042) (< 10−3) (< 10−3)

Figure 5.4: Plots of estimated impulse response functions of the VARMA(3, 1)
model for the differenced Hstarts (top panels) and Mortg (bottom panels) data,
based on the QMLE and the R-estimators.
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5.7 Conclusions and perspectives

We define a class of R-estimators based on the novel concept of center-outward

ranks and signs, itself closely related to the theory of optimal measure transporta-

tion. Monte Carlo experiments show that these estimators significantly outperform

the classical QMLE under skew multivariate innovations, even when the validity

conditions for the latter are satisfied. In a companion paper, we study the perfor-

mance of the corresponding rank-based tests for VAR models, and, more particu-

larly, propose a center-outward Durbin-Watson test for multiple-output regression

and a test of VAR(p0) against VAR(p0 + 1) dependence. Our methodology is not

limited to the VARMA case, though; its extension to nonlinear multivariate mod-

els, like the dynamic conditional correlation model of Engle (2002), is the subject

of ongoing research.
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Chapter 6

Supplementary material for

Chapter 5

This chapter, as the supplementary material for Chapter 5, collects all proofs,

computational aspects, and further numerical results of Chapter 5.

6.1 Technical material: algebraic preparation

Denote by Gu and Hu, u ∈ Z the Green’s matrices associated with the linear

difference operators A(L) and B(L) in Section 5.2.1: those matrices are defined

as the solutions of the homogeneous linear recursions

A(L)Gu = Gu −
p∑
i=1

AiGu−i = 0 and B(L)Hu =

q∑
i=0

BiHu−i = 0, u ∈ Z

with initial values Id,0, . . . ,0 at u = 0,−1, . . . ,−p+ 1 and u = 0,−1, . . . ,−q+ 1,

respectively. Then, the residual process {Z(n)
t (θ); 1 ≤ t ≤ n} has the representa-
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tion

Z
(n)
t (θ) =

t−1∑
i=0

p∑
j=0

H iAjX
(n)
t−i−j

+

[
H t+q−1 · · · H t

]


Id 0 · · · 0

B1 Id · · · 0

...
...

. . .
...

Bq−1 Bq−2 · · · Id




ε−q+1

...

ε0

 (6.1.1)

(see Hallin (1986), Garel and Hallin (1995), or Hallin and Paindaveine (2004)).

Assumption (A1) in Section 5.2.2 ensures the exponential decrease of {‖Hu‖, u ∈

N} as u → ∞. Specifically, there exists some ε > 0 such that ‖Hu‖(1 + ε)u

converges to 0 as u → ∞. This also holds for the Green matrices Gu asso-

ciated with the operator A(L). It follows that the initial values {ε−q+1, . . . , ε0}

and {X−p+1, . . . ,X0} in (6.1.1), which are typically unobservable, have no asymp-

totic influence on the residuals nor any asymptotic results. Therefore, they all can

safely be set to zero in the sequel. This allows us to invert the AR and MA poly-

nomials, and to define the Green matrices Gu and Hu as the matrix coefficients

of the inverted operators (A(L))−1 and (B(L))−1:

∞∑
u=0

Guz
u :=

(
Id −

p∑
i=1

Aiz
i

)−1
and

∞∑
u=0

Huz
u :=

(
q∑
i=0

Biz
i

)−1
, z ∈ C, |z| < 1.

Associated with an arbitrary d-dimensional linear difference operator C(L) :=∑∞
i=0CiL

i (this of course includes operators of finite order s), define, for any
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integers u and v, the d2u× d2v matrices

C(l)
u,v :=



C0 ⊗ Id 0 . . . 0

C1 ⊗ Id C0 ⊗ Id . . . 0

...
. . .

...

Cv−1 ⊗ Id Cv−2 ⊗ Id . . . C0 ⊗ Id
...

...

Cu−1 ⊗ Id Cu−2 ⊗ Id . . . Cu−v ⊗ Id


and

C(r)
u,v :=



Id ⊗C0 0 . . . 0

Id ⊗C1 Id ⊗C0 . . . 0

...
. . .

...

Id ⊗Cv−1 Id ⊗Cv−2 . . . Id ⊗C0

...
...

Id ⊗Cu−1 Id ⊗Cu−2 . . . Id ⊗Cu−v


.

WriteC(l)
u forC(l)

u,u andC(r)
u forC(r)

u,u. With this notation, note thatG(l)
u ,G

(r)
u ,H(l)

u ,

and H(r)
u are the inverses of A(l)

u ,A
(r)
u ,B(l)

u and B(r)
u , respectively. Denoting by

C ′(l)u,v and C ′(r)u,v the matrices associated with the transposed operator C ′(L) :=∑∞
i=0C

′
iL

i, we have G′(l)u = (A′(l)u )−1, H ′(l)u = (B′(l)u )−1, and so on. Define the

d2(p+ q)× d2(p+ q) matrix

Mθ := (G
′(l)
p+q,p

...H
′(l)
p+q,q) : (6.1.2)

under Assumption (A1) in Section 5.2.2, Mθ is of full rank.

Also, consider the operatorD(L) := Id+
∑p+q

i=1 DiL
i (note thatD(L) and most

quantities defined below depends on θ; for simplicity, however, we are dropping
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this reference to θ), where


D′1

...

D′p+q

 := −



Gq Gq−1 . . . G−p+1

Gq+1 Gq . . . G−p+2

...
. . .

...

Gp+q−1 Gp+q−2 . . . G0

Hp Hp−1 . . . H−q+1

Hp+1 Hp . . . H−q+2

...
. . .

...

Hp+q−1 Hp+q−2 . . . H0



−1



Gq+1

...

Gp+q

Hp+1

...

Hp+q



(recall that G−1 = G−2 = · · · = G−p+1 = 0 and H−1 = H−2 = · · · = H−q+1 =

0). Let {ψ(1)
t , . . . ,ψ

(p+q)
t } be a set of d×d matrices forming a fundamental system

of solutions of the homogeneous linear difference equation associated with D(L).

Such a system can be obtained from the Green matrices of the operator D(L) (see,

e.g., Hallin 1986). Defining

ψ̄m(θ) :=



ψ
(1)
1 . . . ψ

(p+q)
1

ψ
(1)
2 . . . ψ

(p+q)
2

...
...

ψ(1)
m . . . ψ(p+q)

m


⊗ Id,

the Casorati matrix Cψ associated with D(L) is ψ̄p+q. Finally, let

Pθ := C−1
ψ

and Q
(n)

θ
:= H

(r)
n−1B

′(l)
n−1ψ̄n−1. (6.1.3)

6.2 Proofs

This section gathers the proofs of all mathematical results of Chapter 5. Through-

out, we consider f ∈ Fd (the family of densities introduced in Section 5.2.2) and
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assume that, for all c ∈ R+, there exist bc;f and ac;f in R such that 0 < bc;f ≤

ac;f <∞ and bc;f ≤ f(x) ≤ ac;f for ‖x‖ ≤ c.

Proof of Proposition 5.2.1.

The LAN result is essentially the same as in Garel and Hallin (1995, (LAN 2)

in their Proposition 3.1) and, moving along the same lines as in the proof of

Proposition 1 in Hallin and Paindaveine (2004), we obtain the form (5.2.3) of

∆
(n)
f (θ). The form of the asymptotic covariance matrix Λf (θ) and its finiteness

easily follow from applying Lemma 4.12 in Garel and Hallin (1995). Details are

left to the reader. �

To prove Propositions 5.4.1 and 5.4.2, we first need to establish the asymptotic

normality, under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
, of the rank-based ∆∼

(n)
J1,J2

(θ). As in the

univariate case, due to the fact that the ranks are not mutually independent, the

asymptotic normality of a rank statistic does not follow from classical central-limit

theorems. The approach we are adopting here is inspired from Hájek, and consists

in establishing an asymptotic representation result for the rank-based statistic un-

der study—namely, its asymptotic equivalence with a sum of independent variable

which are no longer rank-based—then proving the asymptotic normality of the

latter. This is achieved here in a series of lemmas: Lemma 6.2.1 deals with the

asymptotic normality of (n−i)1/2vec(Γ̄
(n)
i,J1,J2

(θ)), a corollary of which is the asymp-

totic normality of the truncated versions ∆̄
(n)
m,J1,J2

(θ) of ∆̄
(n)
J1,J2

(θ); Lemma 6.2.3

provides the asymptotic representation of vec(Γ∼
(n)
i,J1,J2

(θ)) by vec(Γ̄
(n)
i,J1,J2

(θ)); the

asymptotic representation of ∆∼
(n)
J1,J2

(θ) by ∆̄
(n)
J1,J2

(θ) and their asymptotic normal-

ity are obtained in Lemma 6.2.4. The proofs of Propositions 5.4.1 and 5.4.2 follow.

Let us start with the asymptotic normality of (n− i)1/2vec(Γ̄
(n)
i,J1,J2

(θ)).

Lemma 6.2.1. Let Assumptions (A1), (A2), and (A3) in Chapter 5 hold. Then,

for any positive integer i, the vector (n−i)1/2vec(Γ̄
(n)
i,J1,J2

(θ)) in (5.4.7) is asymptoti-

cally normal with mean 0 under P
(n)

θ;f
, meanKJ1,J2,fQi,θPθMθτ under P

(n)

θ+n−1/2τ ;f
,

and covariance d−2σ2
J1
σ2
J2
Id2 under both.
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Proof. Since L
(n)

θ+n−1/2τ /θ;f
= τ ′∆

(n)
f (θ)− 1

2
τ ′Λf (θ)τ+oP(1), the joint asymptotic

normality of (n − i)1/2vec(Γ̄
(n)
i,J1,J2

(θ)) and L
(n)

θ+n−1/2τ /θ;f
under P

(n)

θ;f
follows, via

the classical Wold-Cramér argument, from the asymptotic normality of

N
(n)
α,β := (n− i)1/2α′vec(Γ̄

(n)
i,J1,J2

(θ)) + βτ ′∆
(n)
f (θ)

for arbitraryα ∈ Rd2 and β ∈ R. SinceZ
(n)
1 , . . . ,Z(n)

n are i.i.d. and F±,t := F±(Z
(n)
t )

is uniform over the unit ball, N
(n)
α,β is a sum of martingale differences. If it is uni-

formly square-integrable, with finite variance C
(n)
α,β, say, such that limn→∞C

(n)
α,β =: Cα,β

exists and is finite, the martingale central limit theorem applies, andN
(n)
α,β is asymp-

totically normal with mean 0 and variance Cα,β. Now, the variance of N
(n)
α,β takes

the form

C
(n)
α,β = (n− i)α′Var

(
vec(Γ̄

(n)
i,J1,J2

(θ))
)
α

+ 2βα′(n− i)1/2Cov
(
vec(Γ̄

(n)
i,J1,J2

(θ)), τ ′∆
(n)
f (θ)

)
+ β2τ ′Var

(
∆

(n)
f (θ)

)
τ .

The entries of each Γ̄
(n)
i,J1,J2

(θ) are uniformly square-integrable. As for ∆
(n)
f (θ), it

follows from Lemma 2.2 in Hallin and Werker (2003) that, for any LAN family, a

uniformly pth-order integrable version of the central sequence exists: without loss

of generality, let us assume that ∆
(n)
f (θ), for p = 2, is one of them. The sequence

N
(n)
α,β thus has a limiting N (0, Cα,β) distribution provided that limn→∞C

(n)
α,β =:

Cα,β exists and is finite.

Due to the independence between the signs S±,t := F±,t/‖F±,t‖ and the moduli

‖F±,t‖ (which follows from the fact that F±,t ∼ Ud), and due to the fact that
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Z
(n)
1 , . . . ,Z(n)

n are i.i.d.,

lim
n→∞

(n− i)Var
(
vec(Γ̄

(n)
i,J1,J2

(θ))
)

= lim
n→∞

E
{

(n− i)vecΓ̄
(n)
i,J1,J2

(θ)(vecΓ̄
(n)
i,J1,J2

(θ))′
}

= lim
n→∞

(n− i)−1E

{[
n∑

t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)

]

×

[
n∑

t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)

]′}

=
1

d2
σ2
J1
σ2
J2
Id2 , (6.2.1)

where the last equation follows from the uniform distribution of S±,t over Sd−1.

Next, the uniform square-integrability of ∆
(n)
f (θ) and its asymptotic normality in

Proposition 5.2.1 yield

lim
n→∞

(n− i)1/2Cov
(
vec(Γ̄

(n)
i,J1,J2

(θ)), τ ′∆
(n)
f (θ)

)
= lim

n→∞
E
[
(n− i)1/2vec(Γ̄

(n)
i,J1,J2

(θ))τ ′∆
(n)
f (θ)

]
= lim

n→∞
E
[
(n− i)1/2vec(Γ̄

(n)
i,J1,J2

(θ))Γ
(n)′
f (θ)

]
Q

(n)

θ
PθMθτ , (6.2.2)

where the last equality follows from (5.2.3). Due to the independence of Z
(n)
i

and Z
(n)
j for i 6= j, only Γ

(n)
i,f (θ) in Γ

(n)
f (θ) is contributing to (6.2.2). Therefore,

using the block matrix form of Q
(n)

θ
=
(
Q′

1,θ . . .Q
′
n−1,θ

)′
, the expression in (6.2.2)

reduces to

lim
n→∞

(n− i)E
[
vec(Γ̄

(n)
i,J1,J2

(θ))(vec(Γ
(n)
i,f (θ)))′

]
Q
i,θPθMθτ . (6.2.3)
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From (5.2.5), we have

(n− i)E
[
vec(Γ̄

(n)
i,J1,J2

(θ))(vec(Γ
(n)
i,f (θ)))′

]
= (n− i)−1E

{[
n∑

t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)

][
n∑

t=i+1

vec(ϕf (Z
(n)
t ))Z ′t−i)

]′}

= E
[
J1(‖F±,t‖)J2(‖F±,t−i‖)(Id ⊗ S±,t)S±,t−iZ ′t−i(Id ⊗ϕ′f (Z

(n)
t ))

]
(6.2.4)

where the last two equalities follow from the independence of Z
(n)
1 , . . . ,Z(n)

n and

the uniform distribution of F±,t ∼ Ud. In view of (5.2.6), (6.2.2), (6.2.3) and

(6.2.4), we thus obtain

lim
n→∞

(n− i)1/2Cov
(
vec(Γ̄

(n)
i,J1,J2

(θ)), τ ′∆
(n)
f (θ)

)
= KJ1,J2,fQi,θPθMθτ . (6.2.5)

Combining (6.2.1), (6.2.5) and the asymptotic normality of ∆
(n)
f (θ) in Proposition

5.2.1 yields, for arbitrary α and β,

lim
n→∞

C
(n)
α,β = α′αd−2σ2

J1
σ2
J2

+ 2βα′KJ1,J2,fQi,θPθMθτ + β2τ ′Λf (θ)τ . (6.2.6)

It follows that
(
(n−i)1/2vec′(Γ̄

(n)
i,J1,J2

(θ)), L
(n)

θ+n−1/2τ /θ;f

)′
, under P

(n)

θ;f
, is asymp-

totically jointly normal, with mean
(
0′,−1

2
τ ′Λf (θ)τ

)′
and covariance

 d−2σ2
J1
σ2
J2
Id2 KJ1,J2,fQi,θPθMθτ

(KJ1,J2,fQi,θPθMθτ )′ τ ′Λf (θ)τ

 . (6.2.7)

The desired result then readily follows from applying Le Cam’s third Lemma.

Recall that T
(n)

θ
= M ′

θP
′
θQ

(n)′
θ

. For any positive integer m ≤ n− 1, let

∆̄
(n)
m,J1,J2

(θ) := T
(m+1)

θ
Γ̄

(m,n)
J1,J2

(θ), (6.2.8)
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where

Γ̄
(m,n)
J1,J2

(θ) :=
(
(n− 1)1/2(vecΓ̄

(n)
1,J1,J2

(θ))′, . . . , (n−m)1/2(vecΓ̄
(n)
m,J1,J2

(θ)
)′

)′ :

clearly, ∆̄
(n)
m,J1,J2

(θ), it is the truncated version of ∆̄
(n)
J1,J2

(θ) defined in Section 5.4.1.

The asymptotic normality of ∆̄
(n)
m,J1,J2

(θ) follows from Lemma 6.2.1 as a corollary.

Corollary 6.2.1.1. Let Assumptions (A1), (A2), and (A3) in Chapter 5 hold.

Then, for any positive integer m, the vector ∆̄
(n)
m,J1,J2

(θ) in (6.2.8) is asymptotically

normal, with mean 0 under P
(n)

θ;f
, mean

T
(m+1)

θ
(Im ⊗KJ1,J2,f )T

(m+1)′

θ
τ (6.2.9)

under P
(n)

θ+n−1/2τ ;f
, and covariance d−2σ2

J1
σ2
J2
T

(m+1)

θ
T

(m+1)′

θ
under both.

The following auxiliary lemma, which follows along the same lines as Lemma 4

in Hallin and Paindaveine (2002b) and Lemma 5 in Hallin and Paindaveine (2004),

will be useful in subsequent proofs.

Lemma 6.2.2. Let i ∈ {1, . . . , n− 1} and t, t′ ∈ {i+ 1, . . . , n} be such that t 6= t′.

Assume that g : Rnd = Rd × · · · × Rd → R is even in all its arguments, and such

that the expectation in (6.2.10) below exists. Then, under P
(n)

θ;f
,

E
[
g(Z

(n)
1 , . . . ,Z(n)

n )(P ′tQt)(R
′
t−iSt′−i)

]
= 0, (6.2.10)

where P t,Qt,Rt and St are any four random vectors among S
(n)
±,t and S

(n)
±,t −S±,t.

The next lemma establishes an asymptotic representation result for the rank-

based cross-covariance matrices Γ∼
(n)
i,J1,J2

(θ) defined in (5.3.12) by showing their

asymptotic equivalence with Γ̄
(n)
i,J1,J2

(θ) defined in (5.4.7). LAN implies that P
(n)

θ+n−1/2τ ;f

and P
(n)

θ;f
are mutually contiguous; (6.2.11) therefore holds under both. This

asymptotic representation in the Hájek style of a center-outward serial rank statis-

tic extends to a multivariate setting a univariate result first established by Hallin

et al. (1985).
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Lemma 6.2.3. Let Assumptions (A1), (A2), and (A3) in Chapter 5 hold. Then,

for any positive integer i,

vec
(
Γ∼

(n)
i,J1,J2

(θ)− Γ̄
(n)
i,J1,J2

(θ)
)

= oP(n−1/2) (6.2.11)

under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
, as n→∞.

Proof. Note that (n− i)1/2(Γ∼
(n)
i,J1,J2

(θ)− Γ̄
(n)
i,J1,J2

(θ)) = δ
(n)
1 + δ

(n)
2 where

δ
(n)
1 := (n−i)−1/2

n∑
t=i+1

(
J1(

R
(n)
±,t

nR + 1
)J2(

R
(n)
±,t−i

nR + 1
)− J1(‖F±,t‖)J2(‖F±,t−i‖)

)
S

(n)
±,tS

(n)′
±,t−i

and

δ
(n)
2 := (n− i)−1/2

n∑
t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)
(
S

(n)
±,tS

(n)′
±,t−i − S±,tS′±,t−i

)
.

It suffices to show that vec(δ
(n)
1 ) and vec(δ

(n)
2 ) both converge in quadratic mean

to zero as n→∞ under P
(n)

θ;f
.

Let ‖ · ‖L2 denote the l2-norm. For δ
(n)
1 , we make use of Lemma 6.2.2, and we

exploit the independence of the ranks {R(n)
±,t ; t = 1, . . . , n} and the signs {S(n)

±,t ; t =

1, . . . , n} (see Hallin (2017)). Given that (vecA)′(vecB) = tr(A′B), we have

∥∥vec(δ
(n)
1 )
∥∥2
L2 = (n−i)−1

n∑
t=i+1

E

(J1( R
(n)
±,t

nR + 1
)J2(

R
(n)
±,t−i

nR + 1
)− J1(‖F±,t‖)J2(‖F±,t−i‖)

)2
 .

The Glivenko-Cantelli result in Hallin (2017, Proposition 5.1) entails

max1≤t≤n

∣∣∣R(n)
±,t/(nR + 1)− ‖F±,t‖

∣∣∣→ 0 a.s. as n→∞. (6.2.12)

In view of the assumptions made on J1 and J2, Lemma 6.1.6.1 of Hájek et al. (1999)

yields

‖vec(δ
(n)
1 )‖2L2 → 0 as n→∞. (6.2.13)
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For δ
(n)
2 , we have

δ
(n)
2 = (n−i)−1/2

n∑
t=i+1

J1(‖F±,t‖)J2(‖F±,t−i‖)
[(
S

(n)
±,t − S±,t

)
S

(n)′
±,t−i + S±,t

(
S

(n)′
±,t−i − S′±,t−i

)]
.

Similar to the arguments used for δ
(n)
1 , Lemma 6.2.2 and (vecA)′(vecB) = tr(A′B)

imply

‖vec(δ
(n)
2 )‖2L2 ≤ 2(n− i)−1

n∑
t=i+1

E
[
(J1(‖F±,t‖)J2(‖F±,t−i‖))2 ‖S(n)

±,t − S±,t‖2
]

(6.2.14)

+ 2(n− i)−1
n∑

t=i+1

E
[
(J1(‖F±,t‖)J2(‖F±,t−i‖))2 ‖S(n)

±,t−i − S±,t−i‖2
]
.

(6.2.15)

Still in view of Proposition 5.1 in Hallin (2017), max1≤t≤n‖S(n)
±,t − S±,t‖ → 0

a.s. as n → ∞. Since J1 and J2 are square-integrable and Z
(n)
1 , . . . ,Z(n)

n are

independent, both (6.2.14) and (6.2.15) converge to 0. The result follows.

We now can extend the above asymptotic representation and asymptotic nor-

mality results from the rank-based cross-covariance matrices Γ∼
(n)
i,J1,J2

(θ) to the rank-

based central sequence ∆∼
(n)
J1,J2

(θ).

Lemma 6.2.4. Let Assumptions (A1), (A2), and (A3) in Chapter 5 hold. Then,

∆∼
(n)
J1,J2

(θ)− ∆̄
(n)
J1,J2

(θ) = oP(1) as n→∞ (6.2.16)

both under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
. Moreover, ∆∼

(n)
J1,J2

(θ) is asymptotically normal,

with mean 0 under P
(n)

θ;f
, mean

lim
n→∞

{
T

(n)

θ
(In−1 ⊗KJ1,J2,f )T

(n)′

θ

}
τ (6.2.17)

under P
(n)

θ+n−1/2τ ;f
, and covariance d−2σ2

J1
σ2
J2

lim
n→∞

{
T

(n)

θ
T

(n)′

θ

}
under both.

Note that the limits appearing in the above asymptotic means and covariances
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exist due to Assumption (A1) on the characteristic roots of the VARMA operators

involved.

Proof. For (6.2.16), due to Lemma 6.2.3 and contiguity, it is sufficient to prove

that, under P
(n)

θ;f
, for m = m(n) ≤ n− 1 and provided that m(n)→∞ as n→∞,

lim sup
n→∞

‖∆̄(n)
J1,J2

(θ)− ∆̄
(n)
m(n),J1,J2

(θ)‖ = oP(1) (6.2.18)

and

lim sup
n→∞

‖∆∼
(n)
J1,J2

(θ)−∆∼
(n)
m(n),J1,J2

(θ)‖ = oP(1). (6.2.19)

For m = n − 1, the left-hand sides in (6.2.18) and (6.2.19) are exactly zero.

Therefore, we only need to consider m ≤ n − 2. It follows from Proposition 3.1

(LAN2) in Garel and Hallin (1995) that

∆̄
(n)
J1,J2

(θ)− ∆̄
(n)
m(n),J1,J2

(θ)

=



∑n−1
i=m+1

∑i−1
j=0

∑min(q,i−j−1)
k=0 [(Gi−j−k−1Bk)⊗H ′j](n− i)1/2(vec(Γ̄

(n)
i,J1,J2

(θ)))

...∑n−1
i=m+1

∑i−p
j=0

∑min(q,i−j−p)
k=0 [(Gi−j−k−pBk)⊗H ′j](n− i)1/2(vec(Γ̄

(n)
i,J1,J2

(θ)))∑n−1
i=m+1(Id ⊗H

′
i−1(n− i)1/2(vec(Γ̄

(n)
i,J1,J2

(θ))

...∑n−1
i=m+1(Id ⊗H

′
i−q(n− i)1/2(vec(Γ̄

(n)
i,J1,J2

(θ))


for any p ≤ m ≤ n − 2,. Due to the square-integrability of J1, J2 and the fact

that Z
(n)
1 , . . . ,Z(n)

n are i.i.d., it follows from (vecA)′(vecB) = tr(A′B) that

‖(n−i)1/2(vec(Γ̄
(n)
i,J1,J2

(θ)))‖2L2 = (n−i)−1
n∑

t=i+1

E
[
J2
1 (‖F±,t‖)

]
E
[
J2
2 (‖F±,t−i‖)

]
= σ2

J1
σ2
J2
<∞.

Recall that, under Assumption (A1), the Green matrices Gu and Hu decrease

exponentially fast (see Section 6.1). Using the fact that ‖Ax‖L2 ≤ ‖A‖ ‖x‖L2

(where ‖A‖ denotes the operator norm of A) and the triangular inequality, we
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thus obtain

lim sup
n→∞

‖∆̄(n)
J1,J2

(θ)− ∆̄
(n)
m(n),J1,J2

(θ)‖L2 = 0.

The result (6.2.18) follows. Turning to (6.2.19), we have, in view of (6.2.13),

(6.2.14) and (6.2.15),

max
1≤i≤n−1

‖(n− i)1/2[vec(Γ̄
(n)
i,J1,J2

(θ))− vec(Γ∼
(n)
i,J1,J2

(θ))]‖2L2 = o(1)

as n→∞. Hence, (6.2.19) follows along the same lines as (6.2.18). The asymptotic

normality of ∆∼
(n)
J1,J2

(θ) then follows from (6.2.16) and the asymptotic normality of

∆̄
(n)
J1,J2

(θ), itself implied by (6.2.18) and Lemma 6.2.1.1. The asymptotic mean

and variance are the limits as m = m(n) and n tend to infinity, of the asymptotic

mean and variance of ∆̄
(n)
m(n),J1,J2

(θ) and do not depend on the way m grows with

n.

Proof of Proposition 5.4.1.

Proposition 5.4.1 readily follows from (6.2.19) and the asymptotic linearity of

the truncated ∆∼
(n)
m,J1,J2

(θ) implied by Assumption (A4). �

Proof of Proposition 5.4.2.

From the definition of θ̂∼
(n)

in (5.4.8), the asymptotic linearity in Proposition

5.4.1, the consistency of Υ̂
(n)

J1,J2
, the convergence of Υ

(n)
J1,J2,f

to ΥJ1,J2,f , and the

asymptotic discreteness of θ̂
(n)

(which allows us to treat n1/2(θ̂
(n)
−θ) as if it were

a bounded constant: see Lemma 4.4 in Kreiss (1987)), we have

n1/2(θ̂∼
(n)
− θ)

= n1/2

{
θ̂
(n)

+ n−1/2
[(

Υ̂
(n)

J1,J2

)−1
∆∼

(n)
J1,J2

(θ̂
(n)

)

]
− θ

}
= n1/2

{
θ̂
(n)

+ n−1/2
[
Υ−1J1,J2,f

(
∆∼

(n)
J1,J2

(θ)−Υ
(n)
J1,J2,f

n1/2(θ̂
(n)
− θ)

)]
− θ

}
+ oP(1)

= Υ−1J1,J2,f∆∼
(n)
J1,J2

(θ) + oP(1).

This, in view of the asymptotic normality of ∆∼
(n)
J1,J2

(θ) in Lemma 6.2.4, completes
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the proof of Proposition 5.4.2. �

6.3 Computational issues

6.3.1 Implementation details

In this section, we briefly discuss some computational aspects related to the im-

plementation of our methodology.

(i) Consistency requires that both nR and nS tend to infinity. In practice, we

factorize n into nRnS +n0 in such a way that both nR and nS are large. Typically,

nR is of order n1/d and nS is of order n(d−1)/d, whilst 0 ≤ n0 < min(nS, nR) has

to be small as possible—its value, however, is entirely determined by the values of

nR and nS. Generating “regular grids” of nS points over the unit sphere Sd−1 as

described in Section 5.3 is easy for d = 2, where perfect regularity can be achieved

by dividing the unit circle into nS arcs of equal length 2π/nS. For d ≥ 3, “perfect

regularity” is no longer possible. A random array of nS independent and uniformly

distributed unit vectors does satisfy (almost surely) the requirement for weak con-

vergence (to Ud). More regular deterministic arrays (with faster convergence) can

be constructed, though, such as the low-discrepancy sequences (see, e.g., Niederre-

iter (1992), Judd (1998), Dick and Pillichshammer (2014), or Santner et al. (2003))

considered in numerical integration and the design of computer experiments; we

suggest the use of the function UnitSphere in R package mvmesh.

(ii) The empirical center-outward distribution function F (n)
± is obtained as the

solution of an optimal coupling problem. Many efficient algorithms have been pro-

posed in the measure transportation literature (see, e.g., Peyré and Cuturi (2019)).

We followed Hallin et al. (2020a), using a Hungarian algorithm (see the clue R

package).

(iii) The computation of the one-step R-estimator in (5.4.8) involves two basic

ingredients: a preliminary root n-consistent estimator θ̂
(n)

and an estimator of the

cross-information matrix ΥJ1,J2,f . For the preliminary θ̂
(n)

, robust M-estimators
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such as the reweighted multivariate least trimmed squares estimator (RMLTSE)

proposed by Croux and Joossens (2008) for VAR models are obvious candidates;

provided that fourth-order moments finite, the QMLE still constitutes a reasonable

choice, though. Different preliminary estimators may lead to different one-step R-

estimators. Differences, however, gradually wane on iterating (for fixed n) the

one-step procedure and the asymptotic impact (as n → ∞) of the choice of θ̂
(n)

is nil. Turning to the estimation of ΥJ1,J2,f , the issue is that this matrix depends

on the unknown actual density f . A simple consistent estimator is obtained by

letting τ = ei, i = 1, . . . , (p + q)d2 in (5.4.5) where ei denotes the ith vector of

the canonical basis in the parameter space R(p+q)d2 : the difference ∆∼
(n)
J1,J2

(θ̂
(n)

+

n−1/2ei)−∆∼
(n)
J1,J2

(θ̂
(n)

) then provides a consistent estimator of the i-th column of

−ΥJ1,J2,f (θ). See Hallin et al. (2006) or Cassart et al. (2010) for more sophisticated

estimation methods.

6.3.2 Algorithm

We give here a detailed description of the estimation algorithm. Due to the ex-

ponential decay, under Assumption (A1) in Section 5.2.2, of the coefficients of the

MA(∞) representation of VARMA(p, q) models, there is no need to bother about

the truncation of the central sequence, which safely can be set to m = n − 1 or

m = b(1 − γ)nc with 0 < γ < 1. Then, the implementation of our R-estimation

method then goes along the lines of the following algorithm.
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Algorithm 1: Center-outward R-estimation for semiparametric VARMA

models

Input: a d-dimensional sample {X t; 1 ≤ t ≤ n}, orders p and q of the

VARMA process, number k of iterations in the one-step

procedure; truncation lag m.

Output: R-estimator θ̂∼
(n)

1. Factorize n into nRnS + n0 and generate (see (i) of Section 6.3.1), a

“regular grid” of nRnS points over the unit ball Sd.

2. Compute a preliminary root-n consistent estimator θ̂
(n)

.

3. Set the initial values ε−q+1, . . . , ε0 and X−p+1, . . . ,X0 all equal to zero,

and compute residuals Z
(n)
1 (θ̂

(n)
), . . . ,Z(n)

n (θ̂
(n)

) recursively or from (6.1.1).

4. Create a n× n matrix D with (i, j) entry the squared Euclidean distance

between Z
(n)
i and the j-th gridpoint. Based on that matrix, compute

{F (n)
± (Z

(n)
t ); t = 1, . . . , n} solving the optimal pairing problem in (5.3.1),

using e.g. the Hungarian algorithm.

5. From F (n)
± , compute the center-outward ranks (5.3.2) and signs (5.3.3).

6. Specify the scores J1 and J2 (e.g., the standard scores proposed in

Section 5.4.2) and compute M ˆθ
(n) , P ˆθ

(n) , and Q
(n)

ˆθ
(n) , as defined in

Section 6.1, then Γ∼
(n)
i,J1,J2

(θ̂
(n)

) (use e.g. one of the expressions available in

Section 5.4.2). Finally, combine these expressions into ∆∼
(n)
J1,J2

(θ̂
(n)

).

7. For some chosen τ 1, . . . , τ (p+q)d2 , compute ∆∼
(n)
J1,J2

(θ̂
(n)

+ n−1/2τ ), then,

via (5.4.5), Υ̂
(n)

J1,J2
.

8. Set θ̂∼
(n)

= θ̂
(n)

.

9. for i← 1 to k do

θ̂∼
(n)
← θ̂∼

(n)
+ n−1/2

(
Υ̂

(n)

J1,J2

)−1
∆∼

(n)
J1,J2

(θ̂∼
(n)

).

end
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6.4 Supplementary material for Section 5.5

6.4.1 Center-outward quantile contours, with a graphical

illustration

We provide here some additional concepts from Hallin (2017) and Hallin et al. (2020a).

Recall that an order statistic Z
(n)
(·) of the un-ordered n-tuple Z(n) is an arbitrarily

ordered version of the same—for instance, Z
(n)
(·) =

(
Z

(n)
(1) , ...,Z

(n)
(n)

)
, where Z

(n)
(i)

is such that its first component is the ith order statistic of the n-tuple of first

components.

The center-outward quantile contours are defined as

C(n)
±;Z(n)

(.)

(
j

nR + 1

)
:=
{
Z

(n)
t |R

(n)
±,t = j

}
, (6.4.1)

where j/(nR + 1), j = 0, 1, ..., nR is an empirical probability content, to be in-

terpreted as a quantile order. Figure 6.1 provides a graphical illustration of this

concept: n = 1000 (with nR = 25 and nS = 40) bivariate observations were drawn

from the Gaussian mixture (5.5.2), the skew-normal and skew-t3 described in Sec-

tion 6.4.2, and, for a comparison, from a spherical multivariate normal. The plots

show that the center-outward quantile contours nicely conform to the shape of the

underlying distribution in both symmetric and asymmetric cases.

6.4.2 Skew-normal, skew-t, and Gaussian mixture innova-

tion densities

The skew-normal distribution considered in Section 5.5 has density (with φ(·; Σ)

standing for theN (0,Σ) density, Φ for the univariate standard normal distribution

function)

fε(z; ξ,Σ,α) := 2φ(z − ξ; Σ)Φ(α′w−1(z − ξ)), z ∈ Rd, (6.4.2)
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where ξ ∈ Rd, α ∈ Rd, and w = diag(w1, . . . , wd) > 0 are location, shape, and

scale parameters, respectively. The skew-tν distribution has density

(6.4.3)

fε(z; ξ,Σ,α, ν) := 2det(w)−1td(x; Σ, ν)T
(
α′x

(
(ν + d)/(ν + x′Σ−1x)

)1/2
; ν + d

)
, z ∈ Rd,

where x = w−1(z−ξ), T (y; ν) denotes the univariate tν distribution function and

td(x; Σ, ν) :=
Γ((ν + d)/2)

(νπ)d/2Γ(ν/2)det(Σ)1/2

(
1 +

x′Σ−1x

ν

)−(ν+d)/2
, x ∈ Rd.

We refer to Azzalini and Dalla Valle (1996), Azzalini and Capitanio (2003) for

details.

Our samples for skew-normal and skew-t3 were simulated from the function

rmst in the R Package sn by setting ξ = 0,α = (5, 2)′,Σ =

 7 4

4 5

. In order

to satisfy the classical conditions for M-estimation, we centered the simulated

innovations about their mean, a centering which does not affect our R-estimators.

Figure 6.1 provides scatterplots of samples of size n = 1000 from the spherical

normal, the skew-normal, the skew-t3, and the Gaussian mixture described in

Section 5.5.

6.4.3 Additional numerical results

6.4.3.1 Large sample

As a complement to Section 5.5.1, we provide here, for sample size n = 1000, box-

plots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign test, Spearman,

and van der Waerden scores) under skew-normal, skew-t3, t3 and non-spherical

Gaussian innovations with covariance

Σ4 =

 5 4

4 4.5

 ;
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Figure 6.1: Empirical center-outward quantile contours (probability contents
26.9%, 50 %, and 80%, respectively) computed from n = 1000 points drawn from
the Gaussian mixture (5.5.2) (top left), the skew-normal and skew-t3 described in
Section 6.4.2 (top right and bottom left) and, for a comparison, from a standard
multivariate normal (bottom right).
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See Figure 6.2, 6.3, 6.4 and 6.5, respectively.

Under skew-normal (Figure 6.2) and skew-t3 (Figure 6.3) innovations, the vdW

and Spearman R-estimators are less dispersed than other M-estimators, showing

that they are more resistant to skewness. Under spherical t3 innovations (Fig-

ure 6.4), outlying observations are relatively frequent and the QMLE is no longer

root-n consistent. The RMLTSE does its job as a robustified estimator and slightly

outperforms the R-estimators (the weakest of which is the sign-test score one). The

non-spherical Gaussian boxplots (Figure 6.5) show that the vdW and Spearman

R-estimators are quite similar to the QMLE.

6.4.3.2 Small sample and outliers

For sample size n = 300, we display here, in Figures 6.6, 6.7, 6.8, 6.9, and 6.10, the

boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign test, Spear-

man, and van der Waerden scores) under the Gaussian mixture (5.5.2), spherical

Gaussian, skew-normal, skew-t3, and t3, respectively. These pictures complement

the boxplots available in Section 5.5.3, for the additive outlier case.

All boxplots, as well as Table 6.1 confirm the fact that, while doing equally well

under spherical and Gaussian-tailed innovations, as the common practice QMLE,

R-estimation is resisting skewness, heavy tails, non-elliptical contours, and the

presence of additive outliers, sometimes better even than the robust RMLTSE.
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Figure 6.2: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden) under skew-normal innovations (6.4.2);
sample size n = 1000; N = 300 replications. The horizontal red line represents
the actual parameter value.
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Figure 6.3: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden) under skew-t3 innovations (6.4.3); sample
size n = 1000; N = 300 replications. The horizontal red line represents the actual
parameter value.
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Figure 6.4: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under t3 innovations; sample size
n = 1000; N = 300 replications. The horizontal red line represents the actual
parameter value.
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Figure 6.5: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under non-spherical Gaussian in-
novations; sample size n = 1000; N = 300 replications. The horizontal red line
represents the actual parameter value.
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Table 6.1: The estimated bias (×103), MSE (×103), and overall MSE ratios of the
QMLE, t5-QMLE, RMLTSE, and R-estimators under various innovation densities.
The sample size is n = 300; N = 300 replications.

Bias (×103) MSE (×103) MSE ratio
a11 a21 a12 a22 a11 a21 a12 a22

(Spherical Normal)
QMLE -7.208 -2.006 2.639 -0.870 2.624 2.715 0.543 0.733
t5-QMLE -8.352 -2.065 3.701 -1.071 2.783 2.796 0.580 0.751 0.957
RMLTS -8.374 -2.423 3.481 -0.706 3.014 2.818 0.607 0.714 0.925

vdW 4.247 -3.994 -2.337 1.076 1.486 1.003 0.985 1.000 1.478
Spearman 5.041 -6.119 -3.395 3.332 1.661 1.204 1.165 1.292 1.243

Sign 6.124 -6.672 -4.254 4.294 2.586 1.839 1.487 0.992 0.958
(Mixture)

QMLE -3.430 -0.123 4.399 -1.814 2.751 0.550 1.000 0.213
t5-MLE -1.593 0.240 5.467 -1.277 12.295 0.918 4.129 0.461 0.254
RMLTS -2.459 -0.397 3.997 -1.392 2.707 0.578 1.025 0.220 0.997

vdW -2.484 -0.007 5.065 1.348 1.427 0.368 0.733 0.379 1.554
Spearman -2.632 0.742 5.160 1.104 1.329 0.379 0.694 0.332 1.652

Sign -3.152 -0.066 10.017 1.164 4.313 0.745 2.283 0.566 0.571
(Skew-normal)

QMLE -9.045 -7.223 5.870 -2.116 3.564 3.308 1.087 1.022
t5-QMLE -7.788 -7.028 6.400 -1.115 4.581 3.992 1.518 1.327 0.787
RMLTS -9.558 -6.833 5.186 -1.844 3.988 3.574 1.200 1.140 0.907

vdW -7.086 -1.523 7.358 -5.660 1.879 3.052 0.442 0.706 1.477
Spearman -6.960 -1.101 7.198 -5.676 1.911 3.109 0.448 0.721 1.451

Sign -12.525 0.748 10.592 -6.080 3.989 5.962 1.014 1.180 0.740
(Skew-t3)

QMLE -11.108 -4.201 3.932 -1.327 3.148 2.710 1.446 1.209
t5-QMLE 1.801 5.000 3.371 -1.652 3.796 2.771 2.269 1.417 0.830
RMLTS -3.378 0.428 4.358 -1.058 1.918 1.780 1.129 0.833 1.504

vdW -7.152 0.232 6.544 -3.750 1.718 2.320 0.634 1.240 1.440
Spearman -5.594 -1.927 6.402 -2.279 1.719 2.388 0.625 1.365 1.396

Sign -3.380 -1.968 6.469 -0.033 4.816 4.863 1.900 2.054 0.624
(t3)

QMLE 0.168 -0.844 2.047 -1.063 2.279 2.593 0.647 0.658
t5-QMLE -2.189 0.647 1.176 -1.347 1.160 1.215 0.339 0.343 2.021
RMLTS -3.538 2.340 0.680 -1.734 1.343 1.377 0.379 0.358 1.787

vdW -3.426 -0.037 3.681 -6.190 1.435 2.896 0.309 0.816 1.132
Spearman -2.715 0.208 3.737 -5.768 1.387 2.930 0.306 0.788 1.141

Sign -2.552 1.297 2.626 -6.454 2.842 5.634 0.564 2.045 0.557
(Additive outliers)

QMLE -154.990 -149.720 15.327 10.173 27.667 24.982 1.021 1.080
t5-QMLE -110.645 -105.918 12.836 7.714 15.310 13.590 0.859 1.049 1.777
RMLTS -76.970 -71.918 9.792 4.743 9.931 8.795 0.853 1.042 2.655

vdW -3.426 -0.037 3.681 -6.190 1.435 2.896 0.309 0.816 10.034
Spearman -2.715 0.208 3.737 -5.768 1.387 2.930 0.306 0.788 10.118

Sign -2.552 1.297 2.626 -6.454 2.842 5.634 0.564 2.045 4.939
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Figure 6.6: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under Gaussian mixture (sample
size n = 300; N = 300 replications). The horizontal red line represents the actual
parameter value.
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Figure 6.7: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under spherical Gaussian innova-
tions; sample size n = 300; N = 300 replications. The horizontal red line repre-
sents the actual parameter value.
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Figure 6.8: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under skew-normal innovations
(6.4.2); sample size n = 300; N = 300 replications. The horizontal red line
represents the actual parameter value.
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Figure 6.9: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under skew-t3 innovations (6.4.3);
sample size n = 300; N = 300 replications. The horizontal red line represents the
actual parameter value.
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Figure 6.10: Boxplots of the QMLE, t5-QMLE, RMLTSE, and R-estimators (sign
test, Spearman, and van der Waerden scores) under spherical t3 innovations; sam-
ple size n = 300; N = 300 replications. The horizontal red line represents the
actual parameter value.
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6.4.4 Higher dimension

Due to the rapid growth of their number of parameters, VARMA models are not

meant for the analysis of high-dimensional time series (where different approaches

are in order—see, e.g., Hallin et al. (2020c)). One may wonder, however, whether

the attractive properties of R-estimators extend beyond the bivariate context. We

therefore provide here some numerical results in dimension d = 3.

Consider the three-dimensional VAR(1) model

(I3 −AL)X t = εt, t ∈ Z,

with θ′ := vec′(A) = (0.55, 0.2, 0.13,−0.2, 0.5,−0.1, 0.1, 0.11, 0.6) satisfying As-

sumption (A1) of Section 5.2.2. We are limiting our investigation to two selected

innovation densities: the spherical three-dimensional Gaussian and the Gaussian

mixture

3

8
N (µ1,Σ1) +

3

8
N (µ2,Σ2) +

1

4
N (µ3,Σ3), (6.4.4)

with

µ1 = (−5,−5, 0)′, µ2 = (5, 5, 2)′, µ3 = (0, 0,−3)′
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and

Σ1 =


7 3 5

3 6 1

5 1 7

 , Σ2 =


7 −5 −3

−5 7 4

−3 4 5

 , and Σ3 =


4 0 0

0 3 0

0 0 1

 .

For the computation of the center-outward ranks and signs, we used the algo-

rithm described in Section 6.3.2 with nR = 15, nS = 66, n0 = 10. For numerical im-

plementation, we generated regular grids on the sphere via the routine UnitSphere

in R package mvmesh, where we refer to for details. The boxplots for the Gaussian

mixture and spherical Gaussian innovations are displayed in Figures 6.11 and 6.12,

respectively. Inspection of Figures 6.11 and 6.12 yields the same conclusions as in

the bivariate motivating example (Figures 5.1).

6.5 Impulse response function: a compendium

As explained in Section 5.6, impulse response functions provide a convenient way

of exploring the relation between the components of multiple time series. In par-

ticular, it is used to study the impact of changes in one variable on its own future

values and those of other time series. For the d-dimensional VARMA(p, q) model

in (5.2.1), the impulse response function can be obtained as follows.

Write (5.2.1) under the corresponding VMA(∞) form

X t = W (L)εt, t ∈ Z,

where

W (L) :=
∞∑
l=0

W lL
l =

(
Id −

p∑
i=1

AiL
i

)−1(
Id +

q∑
j=1

BjL
j

)
εt

with W l being the coefficient at lag l.

Now, suppose that we are interested in studying the impact on X t+h, h ≥ 0 of

increasing the value at time t of the kth series Xkt, 1 ≤ k ≤ d by one unit. Without
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Figure 6.11: Boxplots of the QMLE and R-estimator (van der Waerden scores)
under the Gaussian mixture innovation density (6.4.4) for d = 3; sample size
n = 1000; N = 300 replications. In each panel, the MSE ratio of the QMLE
with respect to the R-estimator is reported. The horizontal red line represents the
actual parameter value.
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Figure 6.12: Boxplots of the QMLE and R-estimator (van der Waerden scores)
under spherical Gaussian for d = 3; sample size n = 1000; N = 300 replications.
In each panel, the MSE ratio of the QMLE with respect to the R-estimator is
reported. The horizontal red line represents the actual parameter value.
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loss of generality, we can assume t = 0. Setting X t = 0 for t ≤ 0, ε0 = ek and

εt = 0 for t > 0, where ek denotes the kth unit vector in the canonical basis of

Rd, we then have

X0 = ε0 = ek, X1 = W 1ε0 = W 1,k, X2 = W 2ε0 = W 2,k, ...,
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where W l,k denotes the kth column of W l. Therefore, the impact under study

is reflected in the kth column of the coefficient matrix W h. For this reason, the

coefficient matrices {W h,k;h ≥ 0} are referred to as the coefficients of impulse

response functions; see Tsay (2014, Chapter 2 and 3) for further details.
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Chapter 7

Conclusions

This thesis aims at developing robust estimation procedures for both univari-

ate (GARCH) and multivariate (VARMA) time series models. Specifically, for

GARCH models, which are widely-used to analyse financial time series, two types

of estimators—M- and R-estimators are considered and a generalized weighted

bootstrap technique is employed to approximate their distributions. For semi-

parametric VARMA models (with the innovation density playing the role of nui-

sance parameter), which have wide applications in e.g. economics and biology,

thanks to the novel concepts of center-outward ranks and signs recently proposed

by Hallin (2017), we propose a class of R-estimators, which successfully extend R-

estimation to the setting of non-elliptical distributions. Conclusions of this thesis

are listed as follows.

• Both simulation and real data analysis show that compared to the routinely-

applied QMLE, the M-estimators for GARCH models, which are
√
n-consistent

under a mild moment assumption, are more robust under heavy-tailed dis-

tributions. For instance, the µ- and Cauchy’s estimators achieve much

lower MSE than the QMLE under the t(3) and t(2.2) distributions, where

the fourth moment of the innovation term is infinite. Under a finite sam-

ple size, we show via simulations that the weighted bootstrap, which is

easy-to-implement, provides better approximation of distributions of the M-
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estimators than the one based on the asymptotic normality.

• The R-estimators for GARCH models are asymptotic normal under the ex-

istence of a more than second moment of the errors. Thus, similar to the M-

estimators, they are more robust than the QMLE, which is asymptotic nor-

mal under the finite fourth moment assumption. Moreover, the R-estimators

are highly efficient. For example, the van der Waerden or normal score is

shown to achieve almost the same efficiency as the QMLE even under the

normal distribution for a finite sample, and it is more efficient than the

QMLE under heavy-tailed distributions. In terms of the weighted bootstrap

of the R-estimators, our extensive simulations reveal excellent coverage rates

of the approximations.

• The center-outward R-estimators for VARMA models based on Le Cam one-

step approach are proved to be
√
n-consistent and asymptotic normal under

a broad class of innovation densities including, e.g., multimodal mixtures

of Gaussians and multivariate skew-t distributions. Simulation study un-

der large and small sample sizes shows that our R-estimators significantly

outperform the QMLE under non-elliptical innovations, and they are more

robust against additive outliers than the QMLE. Also, similar to univariate

models, the good performance of the R-estimation is not obtained at the cost

of poor performance under normal innovations.

This thesis also discusses computational aspects and algorithms related to the

implementation of the methodology. In terms of the M- and R-estimators for

GARCH models, the estimators can easily be obtained by using (3.4.1) and (4.2.10),

respectively; their bootstrap estimators can also easily be computed by using (3.4.2)

and (4.4.1), respectively. Algorithm of computing the R-estimators for VARMA

models is given in Algorithm 1, which is more computational costly than those of

the robust estimators for GARCH models since it involves solving the optimization

problem in (5.3.1). This thesis uses a Hungarian algorithm, which is available in
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the clue R package, to solve the problem. To reduce the computation cost, one

may consider more efficient algorithms available in the measure transportation

literature; see, e.g., Peyré and Cuturi (2019).

For future work, there are many related topics that may worth exploring and

here we only name a few of them.

• This thesis shows advantage of the M- and R-estimators over the QMLE for

GARCH models under heavy-tailed error distributions via extensive simu-

lation. However, only symmetric distributions are considered, and whether

this advantage still holds under skew distributions needs to be investigated.

• This thesis investigates the bootstrap approximation of the distributions of

the R-estimators for GARCH models through simulation study. It remains

to derive the asymptotic results of the bootstrap to examine whether it is

consistent or not. The proof, however, could be a mathematically challenging

problem since ranks are integer-valued discontinuous functions.

• The R-estimators for GARCH models are not distribution-free since the ob-

jective functions involve both the ranks and the observations. Another defini-

tion of the R-estimators is possible by following the approach in Chapter 5—

using only the ranks and two score functions. Could these R-estimators

outperform our R-estimators in Chapter 4 under heavy-tailed or skew distri-

butions would be an interesting problem to explore.

• The technique used to prove the asymptotic normality of the R-estimators

for GARCH models is based on some results for empirical processes in Sec-

tion 4.7. Can we simplify the proofs and relax the moment assumption on the

innovation term by using the local asymptotic normality of GARCH models

and Le Cam’s asymptotic theory as in Chapter 5?

• When it comes to R-estimation in the multivariate settings, to our best

knowledge, this thesis is the first successful attempt to employ the center-
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outward ranks and signs. It would be interesting to extend the center-

outward R-estimation to other models, such as dynamic conditional correla-

tion models of Engle (2002) and nonlinear structural vector autoregressive

of Shen et al. (2019). To achieve these goals, a major step is to derive the

local asymptotic normality results of these models. For a complex model,

this is expected to be a challenging problem.

• Hallin (2017) derived various important properties, such as distribution-

freeness and the Glivenko-Cantelli theorem, of the center-outward ranks and

signs in dimension d ≥ 2. However, whether these properties will hold or

not in high dimension remains a open problem. Moreover, can we also define

ranks and signs for directional data based on the measure transportation

theory?

• We remark that applications of the center-outward ranks and signs are not

only limited to R-estimation. There are broad possible applications in statis-

tics and econometrics, and some of them, as listed in Hallin (2017), include

goodness-of-fit tests, estimating multivariate value-at-risk and multivariate

expected shortfall by using center-outward quantile contours, and so on.
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[81] Jurečková, J. and Sen, P.K. (1996) Robust Statistical Procedures: Asymp-

totics and Interrelations, New York, Chichester, Brisbane, Toronto and

Singapore, John Wiley and Sons.

[82] Jeong, M. (2017). Residual-based garch bootstrap and second order

asymptotic refinement. Econometric Theory, 3, 779–790.

[83] Koul, H.L. (1971). Asymptotic behavior of a class of confidence regions

based on ranks in regression. Annals of Mathematical Statistics, 42, 466–

476.

[84] Koul, H.L. and Ossiander, M. (1994). Weak convergence of randomly

weighted dependent residual empiricals with applications to autoregres-

sion. Annals of Statistics, 22, 540–562.

[85] Koul, H.L. and Saleh, A.M.E. (1993). R-estimation of the parameters of

autoregressive AR(p) models. Annals of Statistics, 21, 534–551.

[86] Kreiss, J.-P. (1987). On adaptative estimation in stationary ARMA pro-

cesses, Annals of Statistics, 15, 112–133.

[87] Kunsch, H.R. (1989). The Jackknife and the bootstrap for general station-

ary observations. Annals of Statistics, 17, 1217–1241.

[88] Kupiec, P.H. (1995). Techniques for Verifying the Accuracy of Risk Mea-

surement Models. Journal of Derivatives, 2, 73–84.

204



[89] Lahiri, S.N. (2010). Resampling Methods for Dependent Data, New York,

Springer.

[90] Le Cam, L. and Yang, G.L. (2000). Asymptotics in Statistics : Some basic

concepts (2nd ed.). New York: Springer.

[91] Lee, S.W. and Hansen, B.E. (1994). Asymptotic theory for the

GARCH(1, 1) quasi-maximum likelihood estimator, Econometric Theory,

10, 29–52.

[92] Linton, O., Pan, J. and Wang, H. (2010). Estimation for a nonstation-

ary semi-strong garch(1,1) model with heavy–tailed errors. Econometric

Theory, 26, 1–28.

[93] Liu, H. (2016). M-estimation and bootstrap in GARCH models. Disser-

tation for the MSc in Quantitative Finance, September, 2016, Lancaster

University.

[94] Liu, R.Y. (1992). Data depth and multivariate rank tests, in Y. Dodge,

Ed., L1 Statistics and Related Methods. North-Holland, Amsterdam, 279–

294.

[95] Liu, R.Y. and Singh, K. (1993). A quality index based on data depth and

multivariate rank tests, Journal of the American Statistical Association,

88, 257–260.

[96] Lumsdaine, R.L. (1996). Consistency and asymptotic normality of the

quasi-maximum likelihood estimator in IGARCH(1, 1) and covariance sta-

tionary GARCH(1, 1) models. Econometrica, 64, 575–596.

[97] Mancini, L. and Trojani, F. (2006). Robust semiparametric bootstrap

methods for Value at Risk prediction under GARCH-type volatility pro-

cess. SSRN Working Paper, University of St. Gallen.

205



[98] Maronna, R., Martin D., Yohai V., and Salibian-Barrera M. (2019). Robust

Statistics: Theory and Methods (with R), Wiley.

[99] Mukherjee, K. (2007). Generalized R-estimators under conditional het-

eroscedasticity. Journal of Econometrics, 141, 383–415.

[100] Mukherjee, K. (2008). M-estimation in GARCH models. Econometric The-

ory, 24, 1530–1553.

[101] Mukherjee, K. (2020). Bootstrapping M-estimators in GARCH models.

Biometrika, 107, 753–760.

[102] Mukherjee, K. and Bai, Z. (2002). R-estimation in autoregression with

square-integrable score function. Journal of Multivariate Analysis, 81,

167–186.

[103] Mukherjee, K. and Wang, Y. (2014). On the computation of R-estimators.

In Lahiri, S., Schick, A., SenGupta, A. and Sriram, T., Eds: Contempo-

rary developments in statistical theory: A Festschrift for Hira Lal Koul,

Springer, 279–288.

[104] Muler, N. and Yohai, V.J. (2008). Robust estimates for GARCH models.

Journal of Statistical Planning and Inference, 138, 2918–2940.

[105] Nelson, D.B. (1990). Stationarity and persistence in the GARCH(1, 1)

model. Econometric Theory, 6, 318–334.

[106] Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: a

new approach, Econometrica, 59, 347–370.

[107] Niederreiter, H. (1992). Random Number Generation and Quasi-Monte

Carlo Methods. CBMS-NSF Regional Conference Series in Applied Math-

ematics, vol. 63, SIAM, Philadelphia, PA.

[108] Oja, H. (2010). Multivariate Nonparametric Methods with R: an approach

based on spatial signs and ranks. Springer, New York.

206



[109] Orhan, M. and Koksal, B. (2012). A comparison of GARCH models for

VaR estimation. Expert Systems with Applications, 3, 3582–3592.

[110] Panaretos, V. M. and Zemel, Y. (2019). Statistical aspects of Wasserstein

distances. Annual Review of Statistics and its Application, 6, 405–431.
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