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Abstract

This paper exploits a large-size auction experiment conducted by two Chinese Govern-
ment Treasury security issuers—the Chinese Development Bank and the Export-Import
Bank—to investigate whether Treasury securities should be sold through uniform or
discriminatory auction mechanisms. Based on the outcomes of more than 300 Trea-
sury securities issued through an alternating auction-rule market experiment, we find
that yield rates of the two auction formats are not statistically different. Further, these
estimates indicate that there is no significant economic difference in terms of revenue
between the two auction mechanisms. This result is robust across different bond-yield
rate measurements and participation behavior.
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Porter, Mike Tsionas, and Giorgio Valente for their insightful suggestions. We are also grateful to all seminar
and conference participants at the Auctions and Informational Economics: Theory and Econometrics workshop
in Memory of Artyom Shneyerov (Paris), the Policy Research Institute at the Ministry of Finance Japan
(Tokyo), Hong Kong Institute for Monetary Research, Econometric Society 2020 World Congress (Milan), Asia-
Pacific Industrial Organization Conference (Auckland), Auctions, Competition, Regulation, and Public Policy
Conference (Lancaster University), Colby College, Durham University, University of Glasgow, University of
St. Andrews and Virginia Tech for their helpful comments.



1 Introduction

Researchers have long tried to understand which multi-unit auction format generates a lower

yield rate and a higher price for bond issuers (Back and Zender, 1993; Bikhchandani and

Huang, 1993; Goswami et al., 1996; Kremer and Nyborg, 2003; Hortaçsu and McAdams,

2010; Hortaçsu and Kastl, 2011; Kastl, 2011). The debate is also of public interest, as a

well-designed Treasury auction market could potentially generate larger revenues and reduce

tax burdens. The two auction methods most frequently used to sell Treasury Bonds are

discriminatory and uniform-price auctions. In discriminatory-price auctions, trades occur at

different rates indicated in the bids while, in uniform-price auctions, all winning bidders obtain

the same yield rate—equal to the highest winning bid rate.

Ausubel et al. (2014), in their seminal paper in the theoretical multi-unit auction liter-

ature, derive general revenue rankings of uniform and discriminatory auctions under several

conditions. They find that changing model setups, such as bidder-information symmetry and

risk-neutrality assumptions, can produce different revenue rankings. An empirical identifica-

tion of which assumptions hold in multi-unit auctions is, however, a challenge. Therefore,

they argue that determining the revenue-enhancing pricing rule is an empirical question and

encourage empirical researchers to pursue either direct or counterfactual comparison of multi-

unit auction outcomes.

In this paper, we exploit an alternating-auction-rule market experiment (hereinafter ‘the

experiment’) conducted between 2012 and 2015 by two large Chinese government banks—

the Chinese Development Bank (CDB) and the Export-Import Bank (EIB)—to investigate

the revenue ranking of uniform and discriminatory auctions.1 The experiment lasted three

years and the total value was U 1.95 trillion (approximately $ 291 billion). Because the

Treasury auction formats are alternated in the experiment, the CDB and EIB design their

auction formats based neither on bond characteristics nor on financial and economic market

conditions. Our summary statistics and balance tests confirm that the auction format used by

the CDB and EIB to sell government bonds was not correlated with observed bond features

or market conditions. Consequently, the two auction rules were used in an otherwise similar

environment that allows for unbiased estimates to assess the effect of a specific auction rule

on yield rates and revenue.

In the Treasury auction data, we see that the yield rates generated from the two auction

formats are not statistically different. We also see no substantial difference in revenue. In

1These banks are government policy banks that finance economic policies and the securities they issue
are ‘Chinese government bonds.’ These institutions have the same short and long credit ratings awarded by
Moody’s, Standard & Poor’s, and Fitch.
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addition to these findings, this paper provides the first study on multi-unit auction revenue

comparison using real market data in a large-scale market-based experiment.2 Notably, this

experiment offers us a novel research design that other Treasuries and banks worldwide could

replicate to assess other revenue increasing strategies of auction mechanisms.3

Our empirical analysis looks for any difference in the yield rate of securities sold through

discriminatory and uniform auctions during the experiment. This direct empirical comparison

of yield rates is important because the theoretical literature is inconclusive regarding revenue

superiority between the two auction formats.4 As in Hortaçsu et al. (2018), our variable

of interest is the normalized auction yield rate, constructed as the weighted-average auction

winning rate minus the prior day’s corresponding market yield of Chinese bonds based on

maturity and institution.5 Hereafter, this is the ‘normalized rate.’ The normalized rate

attempts to control for unobserved heterogeneity across auctions as it captures fluctuations

of economic environments. Additionally, the same security at different times may experience

dissimilar demand-side factors and accounting for unobservable heterogeneity at the auction

level becomes crucial.

Analyzing the market-based experiment, we control for bond characteristics and market

conditions in all specifications. Results from a control-based estimation approach with rele-

vant baseline variables perform better (improve efficiency and increase statistical power) and

dominate the uncontrolled estimates even when observable characteristics in groups (e.g.,

auction format) are statistically not different (Bruhn and McKenzie, 2009).

Our ordinary least squares regression (OLS) results indicate that normalized rates are not

statistically different between uniform and discriminatory auctions. In our OLS results, the

point estimates range from 0.001 to 0.008 percent depending on the empirical specification.

Additionally, we use the Bayesian regression technique in our empirical models. Results from

Bayesian models indicate that our estimated coefficients of the dummy variable that captures

the difference in the two auctions range from -0.006 to 0.002.

We perform additional tests to ensure that our results are robust. First, we investigate

2The debate over the revenue comparison is more than a half-century old, originally initiated by Milton
Friedman (1959 and 1991). Friedman (1991) claims that, by switching from the discriminatory to the uniform
format, the US Treasury would save 75 basis points.

3They include the effects of asymmetric bidding behavior, set-asides, lot-size effect, uncertain supply, and
tilted supply function to potentially increase revenues.

4Bukhchandani and Huang (1989) show that uniform auctions yield higher revenue than discriminatory
auctions in common value Treasury auctions with resale opportunities. Back and Zender (1993) show that
a Treasury’s switch from the discriminatory to the uniform auction format could reduce revenue. Under a
risk-neutral and symmetric information environment, Wang and Zender (2002) show a revenue advantage in
discriminatory over uniform auctions.

5Simon (1994), Nyborg and Sundaresan (1996), and Malvey et al. (1998) name the normalized auction
yield rate as the mark-up.
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whether bidders are potentially aware of the alternating-rule auction format during the exper-

iment and behave strategically by choosing the most profitable auction mechanism. Our find-

ings suggest that bidders did not change their participation and bidding patterns throughout

the experiment based on the auction format. Second, we examine whether there is a difference

in normalized rates between auction formats due to the high and low yield rates observed in

discriminatory auctions. To address this concern, we re-estimate our models with the highest

and lowest normalized winning bids for discriminatory auctions. We find, again, that the

absence of a statistical difference between uniform and discriminatory formats holds as well

for the normalized highest and lowest bids of discriminatory auctions compared to uniform

auctions.

Additionally, we investigate whether our results hold for the full distributions of normal-

ized rates by re-estimating the empirical models using the quantile regression method. The

results are qualitatively similar to the ones shown in the mean regressions indicating that

there is no significant difference between normalized rate distributions generated by uniform

and discriminatory auctions. Further, we examine whether there are any differences in the

auction yield rates between uniform and discriminatory auctions held by the CDB and EIB

individually. Our results indicate that, regardless of the institution, the revenues generated

from uniform or discriminatory auctions have no statistical difference. Finally, we take advan-

tage of within-day variation in format to control for unobserved heterogeneity. Our findings

indicate that, after controlling for unobserved heterogeneity, the normalized rates from the

two auction formats are not statistically different. Details of these robustness tests and results

are presented in Section 7.

However, a reader may question whether our point estimates on the difference in the

normalized rates does correspond to the actual difference in revenue in the two auction formats.

Therefore, we estimate the change in revenue if the CDB and EIB had issued their bonds in

uniform (discriminatory) over discriminatory (uniform) auctions. This exercise shows that

the potential loss/gain from issuing all bonds through a uniform auction ranges from -0.00041

percent (worst case) to 0.00054 percent (best case) of Chinese government expenditure during

the three-year experiment. The value in billions of U ranges from -0.233 to 0.312. These

results show that the use of uniform or discriminatory formats does not generate considerable

revenue difference.

Our research also refers to the recent empirical literature on Treasury auctions. Pioneered

by Hortaçsu (2002), recent studies build and estimate structural Treasury auction models

and base the evaluation of different auction rules on counterfactual simulation (Hortaçsu
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and McAdams, 2010; Hortaçsu and Kastl, 2011). Nevertheless, the counterfactual results

based on structural estimation do not provide clear-cut conclusions about which Treasury

auction rule generates a lower yield rate and larger revenue. Some studies present results

favoring uniform auctions, others support discriminatory auctions. For instance, Kang and

Puller (2008) analyzed a one-shot-auction-rule switch from discriminatory to uniform auctions

at the Korean Treasury. They concluded that there is a slight revenue advantage for the

discriminatory format. However, the revenue difference between the two formats is quite

small due to the competitiveness of the market.6

Another set of studies reports that the two mechanisms would generate quantitatively

similar revenues.7 Although revenue equivalence is often reported in empirical studies, given

the ambiguous revenue ranking in the theoretical literature (Wang and Zender, 2002; Ausubel

et al., 2014), a close experimental investigation is required to further understand Treasury

auction markets.

By analyzing the one-shot auction-rule change (i.e., single time-point auction rule switching

during an investigation period) introduced by the U.S. Treasury in 1973-76 and 1992-93,

other studies have investigated which format generates a lower yield rate and a higher price

(Simon, 1994; Mester, 1995; Nyborg and Sundaresan, 1996; Malvey and Archibald, 1998).8

However, these studies were unable to provide unbiased estimates for revenue ranking as

the bonds issued under the two auction formats were different in several dimensions (market

conditions, maturity, duration, volume, etc.).9 Conversely, the auction format used by the

CDB and EIB to sell government bonds during the experimental period was not related to

bond characteristics and market conditions, which allow our OLS and Bayesian regressions to

provide unbiased estimates for the difference in the yield rates of uniform and discriminatory

auctions. Our findings also complement previous structural estimations and counterfactual

results.

The paper is organized in the following manner. Section 2 explains the market background

and Section 3 presents the experiment and the data. Section 4 explains the auction market.

6Using bids from uniform and discriminatory auctions, Kang and Puller (2008) also compare the efficiency
properties of the two formats. They find that the discriminatory auction better allocates treasury bills to the
highest value financial institutions.

7Tenorio (1993), Umlauf (1993), and Armantier and Sbai (2006) report a revenue advantage in the uniform
format, while Simon (1994) and Fevrier et al. (2004) support the discriminatory format. However, the
most popular finding—Nyborg and Sundaresan (1996), Malvey et al. (1998), Hortaçsu (2002); Hortaçsu and
McAdams (2010), and Bonaldi et al. (2015)—is empirical revenue equivalence with statistically insignificant
differences.

8Tenorio (1993) also investigates one-shot changes from one auction format to another in Zambian foreign
exchange.

9Using laboratory experimental data, Sade et al. (2006a), Sade et al. (2006b), and Morales-Camargo et
al. (2013) investigate revenue ranking, collusion, and bidders’ information asymmetry in multi-unit auctions.
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Section 5 presents the results and Section 6 assesses the revenue difference between the two

auction formats. Section 7 presents robustness tests. Section 8 offers concluding remarks.

2 Market background

In this section, we introduce two government policy-bank bond issuers—the CDB and the

EIB—which conducted the alternating rule experiment in the People’s Republic of China

(henceforth, PRC). We then present the identical credit ratings of these two institutions.

Lastly, we explain the yield curve of each institution’s securities, publicly announced every

business day.

2.1 Two government security issuers (CDB and EIB)

The CDB issues bonds to finance government-initiated national development projects (do-

mestic and foreign), while the EIB auctions off bonds to raise funds for projects related to

exports and high-tech industries. The CDB and EIB do not mandate the number of times

a dealer participates or the volume they purchase. Participating in these auctions is strictly

voluntary. However, in these Treasury auctions, primary dealers are required (according to

prequalification requirements) to bid frequently and win a substantial number of Treasury

auctions to retain their primary dealership status in the future. According to the financial

consultants and market practitioners we talked to and given the high stakes involved in the

primary market for Treasuries, primary dealers avoid selecting themselves into specific auc-

tions or auction formats in order to keep their dealer status. Barbosa et al. (2020) provide a

detailed explanation of the historical background of these two institutions.

2.2 Credit ratings

The CDB’s and EIB’s short- and long-term ratings are listed in Table A.1 in the Appendix.

The credit ratings are awarded by three foreign agencies: Moody’s, Standard & Poor’s, and

Fitch. This table also lists the ratings of government securities issued by the Ministry of

Finance (MOF) as a benchmark reference. All institutions have homogeneous credit ratings

within each year indicating that all government securities are categorized equivalently.

The credit ratings of these government banks are homogenous because their bonds are

administered by the People’s Bank of China (Chen, 2014). Further, bond market participants

perceive that bonds issued by these institutions are fully backed by the Chinese government
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(Chen, 2010; Li, 2014).10,11 Thus, the CDB and EIB have historically had the same credit

ratings, enabling us to compare auction outcomes across institutions. Finally, although in-

stitutional credit ratings were awarded to these bond-issuing institutions, each government

security has no credit rating. These institutions do not appear to have solicited credit analyses

from rating agencies prior to 2017.

2.3 Yield curves

We use the market yield curve to normalize the bond-level auction yield rates and control for

market volatility. The market yield data are obtained from the China Central Depository &

Clearing Co., Ltd. (CCDC), a State Council-approved agency (also authorized by the China

Banking Regulatory Commission) that records all government bond-related transactions.12

Based on previous resale market transactions, the CCDC publicly announces every business

day the yield curves and maturity for securities issued by each institution to provide official

benchmarks to general investors.13,14 Moreover, resale market yield rates, especially for short-

term bonds, experience significant volatility and convey information about market conditions.

Hence, in our regression analyses, we use the variance of the yield curve from five business

days before the auction date to control for volatility in the Chinese bond market.15

3 The experiment

For the periods May 2012-July 2014 and July 2013-May 2015, the CDB and EIB alternated

between discriminatory and uniform pricing auction formats. The CDB held their weekly

(or bi-weekly) auctions on Tuesdays, while the EIB typically held their bi-weekly (often less

frequent) auctions on Fridays. Both institutions usually held multiple auctions with bonds

of varying maturities.16 During these market-based experiment periods, the institutions con-

trolled the auction formats (alternating between them) but did not announce the experiment

10The People’s Bank of China, which governs the CDB and EIB, operates directly under the government.
11See Chen (2014) for the background on the CDB and EIB. Also see Chen (2010) and Li (2014) for details

on credit rating equivalence.
12The secondary market for government bonds in China is quite substantial, with nearly 14 trillion USD in

bonds traded on a yearly basis.
13In China, the CCDC’s yield curves are the most representative benchmarks. Zhongzheng yield curves are

the second-most recognized benchmarks. However, according to the Baidu search engine (a representative web
search engine in China), the CCDC yield curves are nearly 18 times more popular than the Zhongzheng yield
curves.

14Construction of the yield curve is described in Table A.3.
15The variance is separately derived for each institution by the corresponding maturity.
16For instance, on April 8th, 2014, the CDB auctioned off four types of securities—with one-, two-, three-,

five-, and seven-year maturities—through separate auctions.
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publicly. Also, at any time, the institutions could have stopped the experiment. Most im-

portantly, the auction rule choices cannot conceivably be correlated with the observed and

unobserved bond characteristics or with financial market variables in our regression models.

As we show in Section 5, observable bond characteristics and financial and economic market

conditions are not correlated with the auction format.

3.1 CDB experiment

During the experiment, the CDB held a total of 269 auctions—139 uniform and 130 discrim-

inatory. Within each (bi-)week, the CDB auctioned off bonds of different maturities (two-,

three-, five-, and seven-year) with varying auction rules.17 Table A.2, Panel A presents a

stylized pattern of this experiment. The auction mechanism alternated between discrimina-

tory and uniform auction rules (see discriminatory auctions on 22 January 2013 and uniform

auctions on 29 January 2013). Additionally, for some weeks, the CDB set the discriminatory

format for three- and seven-year maturity notes, and the uniform format for five-year notes.

However, in the following (bi-)week, all maturities were sold through the uniform auction

format.

3.2 EIB experiment

Similarly, the EIB also experimented with their security auction rules. From July 2013 to May

2015, the EIB held 79 auctions—49 uniform and 30 discriminatory. Although the alternating

auction rule pattern is not as stylized as that used by the CDB due to fewer and relatively

infrequent auctions, the pattern of the EIB’s auction rule experiment is as follows. The

EIB conducted bi-weekly (often less frequent) auctions, held typically on Fridays. The EIB

alternated the two different auction rules for different maturities (see Table A.2, Panel B.1)

and, in the latter half of the experimental period, the EIB used both auction rules for bonds

of the same type when reissuing them (see Table A.2, Panel B.2).18

17In addition to the two-, three-, five- and seven-year notes, the CDB also auctioned off one-year bills
and ten-year notes, always through the uniform-pricing format. Hence, one-year and 10-year securities are
excluded from our regression analyses.

18When reissued, each bond received a new ID. From the old bond ID we can identify the reissue of an old
bond.
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3.3 Auction rules

During the experimental period (2012-2015), the CDB and EIB were required to follow strict

security issuance guidelines set by the People’s Bank of China.19 Accordingly, the participants

in the CDB and EIB auctions knew which format was going to be used only three business days

before each auction date. To illustrate what was known by auction participants, consider the

following example. Suppose that auctions are held every Tuesday and we consider two auctions

in two consecutive weeks. Once the first auction’s transactions are settled, the outcome is

made public on Wednesday. Then, institutions announce the specific details of the second

auction (e.g. date, volume, mechanism, corresponding maturity, etc.) on Thursday.20,21 Our

data confirm that the CDB and EIB followed the guidelines set by the People’s Bank of

China. Hence, ex-ante, bidders did not know the specific date, volume, and maturity of

upcoming auctions nor associated future auction formats. Therefore, based on the timing of

the announcement and published government documents, bidders face great uncertainty about

future auction rules. Hence, we postulate that bidders could not condition their current bids

on upcoming auction mechanisms.22

Further, according to the primary market rules set by the Peoples Bank of China (the Cen-

tral Bank), issuers are prohibited from subscribing (and/or subscribing in disguised) financial

bonds issued by themselves. Additionally, all potential bidders are required to submit both

price (rate) and quantity when submitting bids and all tenders are treated as competitive

bids.

4 Auction market data

We obtain data on Treasury auctions in the Chinese bond market from two data sources—

the Wind Database and Chinabond.com.cn. The Wind Database is maintained by the Wind

Information Co. Ltd., a financial data and information provider in China. Chinabond.com.cn

is the official website of the CCDC, which is the only government bond depository authorized

by the MOF and is responsible for the establishment and operation of the government bond

19These guidelines explicitly state that the public notice of a new issuance auction has to be made at least
three business days in advance.

20A small number of deviations may occur when there are long intervals between two auction dates or during
public holidays.

21Specifically, the CDB announced the auction rule on Thursday and bids were submitted on Tuesday of
the following week. The EIB announced the auction rule typically on Tuesday and bids were submitted on
Friday of the same week.

22Our conversations with market practitioners in the Shenzhen Exchange and PricewaterhouseCoopers
China (PwC CN) also suggest that they agree with this view.
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depository system.

The Wind Database provides access to details of the CDB and EIB bond auctions. Our

data contain not only the information of auctioned bonds, such as maturity, auction method,

size of auction, and tender subjects (e.g., price or yield), but also the auction outcomes of

weighted-average winning yield rate (or price), total submitted bid quantities for securities,

allotment per auction, number of bidders, number of bids, number of winning bids, number of

winners, final coupon rate for each auction, the presence or absence of floating coupons, and

the highest and the lowest winning and losing rates in both auction formats. We collect sup-

plementary information from Chinabond.com such as bond types, subsidies, coupon payment,

and the date of each bond issued by the CDB and EIB.

Our data provide information at the auction level. Bid-level data with the identity of bid-

ders are not available due to the restrictive nature of Chinese bond market data. Nevertheless,

the experimental data contain information on Treasury security yield rates for the two auction

formats to directly answer the long-standing revenue-ranking question in the literature. The

definitions of the variables used in this paper are in Table A.3 in the Appendix.

4.1 Auction rules and market conditions

A potential concern about our empirical strategy is the possible correlation between auction

formats, bond features, and market conditions. If a specific auction rule is endogenously

chosen when the financial market experiences a specific circumstance, then our estimates

would be biased despite using experimental data. There are three reasons why the auction

formats are not correlated to unobserved bond and market characteristics. First, under the

(bi-)weekly alternating nature of the auction rules, as well as the strictly regulated timing

of the auction announcements, it is not plausible that the unobserved bond characteristics,

nor present and future financial and economic market conditions, have room to influence the

auction rule. Second, systematic changes in financial market conditions do not normally occur

on a (bi-)weekly basis. Lastly, during the experimental period of the EIB (described above)

two auction rules were used within the same week. Also, note that the differenced construction

of the normalized yields suppresses potential unobserved heterogeneity across auctions.

We find statistical evidence that the auction rules are not associated with any specific bond

type, nor are they chosen to match specific financial conditions. Table 1 reports summary

statistics for observables associated with uniform and discriminatory auctions, where we show

the mean of the prior day’s yield curve, the maturity of the auctioned security, market volatil-

ity, and the value of maturing bonds by institution for a given month. Similar to Park and
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Reinganum (1986) and Ogden (1987), we include an indicator variable that captures whether

the auction date takes place seven days before or seven days after the end of the month. This

control variable captures large financial transactions concentrated at the end of the month,

as financial institutions prefer to keep a relatively large liquidity at that time. In Table 1, we

also provide 95 percent confidence intervals and calculated t-values. The null hypothesis is

the means (or proportions) reported in the first two columns are equal.

The results in Table 1 show that these variables are not statistically different between

uniform and discriminatory auctions, indicating that bond characteristics and financial market

conditions were well-balanced during the experiment. For example, the average yield curve

rate of Chinese bonds one day before the auction date is 3.685 percent for uniform auctions,

while it is 3.683 percent for discriminatory auctions. The 95 percent confidence intervals

clearly overlap between uniform and discriminatory auctions and the calculated t-value is

0.044. Similar conclusions are derived for other variables presented in Table 1. These results

also hold for 90 percent confidence intervals.23 Considering other regression variables, the

period between two auctions is about 8.5 days and the bid-to-cover ratio is about 2.5. We use

the bid-to-coverage ratio as a measure of auction competitiveness as used by other researchers

(for example, see Gordy, 1999 and Goldreich, 2007).

In Table 2, we provide summary statistics for all the dependent variables used in this study

separately for uniform and discriminatory auctions. Given that our primary interest is in the

gap of outcome variables between auction formats, we have shown the difference between

the two auction mechanisms and the corresponding t-test statistics. The null hypothesis

is the means reported in the columns two and three are equal. The results indicate that

the differences in outcome variables are not statistically different between auction formats.

However, given that these differences in outcome variables are not controlled for any market

conditions, we advise a cautious interpretation of these t-values.24

In our sample, we observe 47 floating bond auctions that represent about 13.5 percent of

all auctions. Note that these floating bonds were issued only by the CDB through uniform

auctions. To preserve the integrity of the experiment, in our baseline estimates, we use all

auctions, including the floating bonds. However, we report results without these 47 floating

bond auctions ‘side-by-side’ and show that these results are qualitatively similar as the ones

23In addition to the t-test, we perform a Kolmogorov-Smirnov (KS) test to evaluate the equality of distri-
butions of each variable by auction type. In all cases, we fail to reject that distributions are equal by auction
format.

24In Figure A.1, we present the average normalized winning rates weighted by volume by auction format for
a given day. We also draw a local polynomial mean smoothing plots with 95% confidence intervals for both
auction formats.
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using the full sample.

4.2 Auction rules and number of bidders

Another concern is the equality of the number of potential bidders in these two auction formats

during the experiment. It is worth noting that, to bid in the primary market, bidders have to

be prequalified. Primary market bidders have to go through a rigorous prequalification process

and past performance influences continuation as a primary dealer. On average, during the

experimental period, the CDB had about 76 pre-qualified bidders while the EIB had about

66. Additionally, we observe that more than 90 percent of dealers continued from year to year

during the experiment period at each institution. Considering new entrants, the CDB and

EIB had, respectively, about six and five new entrants every year during this period. More

importantly, on average, about 88 percent of primary dealers participated in the auctions of

both institutions. We observe a similar pattern for the pre- and post-experimental period.

More detailed information can be found in Barbosa et al. (2020). However, the CDB and

EIB enforce neither mandatory participation nor purchasing volume requirement. Hence,

we examine bidders’ participation behavior during the experiment period. In this case, we

estimate the following equation:

nijt = γDijt +X ′
ijtϕ+ αj + τt + uijt, (1)

where our dependent variable is the number of bidders in an auction i sold by an institution

j at a given time t. The indicator variable, D, controls for the auction mechanism (D = 1 for

discriminatory auctions). Other observable characteristics, such as time gap between auctions

by institution, bid-to-cover ratio of bonds, duration of the bond sold, and market conditions,

are represented by the vector X. Institution effects and time effects are denoted by α and τ

respectively and u is the error term.

Given that the number of bidders is a count, we estimate Equation (1) using the Poisson

Pseudo Maximum Likelihood (PPML) method.25 We also estimate the above model using

OLS. Table 3 reports these results with and without floating bonds. Our main interest is in

the coefficient of the auction mechanism dummy. Our results show that there is no statistical

difference in the number of bidders based on auction rule during the experimental period.

It is important to note that the absence of a statistical difference of the number of bidders in

these two auction formats during the experiment is compatible with the result of no statistical

25For PPML estimation, the only condition required for consistency is the correct specification of the
conditional mean of the independent variable (see Santos Silva and Tenreyro, 2006, 2010; Wooldridge, 1999).
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difference in terms of revenue between mechanisms presented in the next section, which is in

line with Ausubel et al.’s (2014) findings. According to Ausubel et al. (Section 5.4), in an

auction with endogenous entry (infinite pool of potential entrants that may join an auction

after incurring a fixed cost), the ranking of entry corresponds to the inverse of the revenue

rankings as higher revenue to the auctioneer relates to less expected surplus to the bidders,

thereby encouraging less entry.

Note that, in the presence of no statistical difference in revenue between two auction

mechanisms, both auction formats leave the same expected surplus to the pool of bidders

(primary dealers). Consequently, following the standard auction entry equilibrium arguments,

and consistent with Ausubel et al. (2014), these two auction formats should exhibit the same

number of bidders, as reported in our entry regression results.

One may also note that participation in the auctions in our setup could potentially be

endogenous, and, hence, an auction format could attract different types of bidders. If this

is the case, the potential selection of bidder types into an auction format can be potentially

confounding. An application of selection empirical methods, in the spirit of Heckman (1974,

1976, 1979), could deal with selection of bidders into the auction format. Nevertheless, those

methods require bidder identities at each auction, which was not released by the CDB and

EIB to preserve the confidentiality of the bidders. Given this data limitation, we perform

alternative empirical tests to investigate whether there is selection into an auction format by

analyzing the highest losing bid rate (the worst bid),26 the average submitted bid quantities

for securities, the average allotment per bidder, and the primary dealers’ secondary-market

debut-day return (see Appendix A.2). Although not fully suppressing selection from our

estimates, these additional tests provide results that give us cautious confidence that our

insignificant statistical revenue difference between uniform and discriminatory auctions is not

driven by a selection of types in an auction format.27

Hence, conditional on controls, this experimental environment enables us to conceivably

interpret the auction rule variable as conditional mean-independent, treating it as exogenously

26Samuelson (1985), Marmera et al. (2013), and Gentry and Li (2014) show that the marginal valuation
(type) of the worst bidder conveys relevant information about the types of bidders that enter an auction.
In this spirit, we examine whether the marginal valuation of the worst bidder is the same in both auction
formats. Note that, in the context of Treasury auctions, the worst losing bid is the highest bid rate in an
auction. Given that the pool of pre-qualified primary dealers (potential bidders) are the same in both auction
formats, types of bidders in the two format auctions tend to be the same (no selection of bidders’ type) if the
marginal valuation of the worst bidder (lowest bidder type) is the same.

27We have spoken to officials in the Shenzhen Exchange and an official at PricewaterhouseCoopers China
(PwC CN) and they say that primary dealers do not strategically pick the auctions and the auction format
that suit them better. These views are in line with the outcomes of the statistical analyses that we present in
Figure A.1, Section 7.1 and Appendix A.2.
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assigned. Taken all together, the Treasury auction experimental environment in China is quite

advantageous to directly comparing the revenues generated from uniform and discriminatory

auctions. In the next section, we conduct our empirical analysis by investigating whether there

is any difference in the yield rate of the CDB and EIB securities sold through discriminatory

and uniform auctions.

5 Estimation results

To assess the revenue ranking of uniform and discriminatory auctions, we consider the follow-

ing empirical model:

yijt = βDijt +X ′
ijtφ+ αj + τt + εijt, (2)

where our dependent variable, y, is the normalized yield rate for a given auction i, from

institution j, in period t. The variable D is a dummy variable which identifies the auction

mechanism as described before. The coefficient β identifies the difference in normalized rates

generated from uniform and discriminatory auctions. We also include other controls (X) as

described before. The error term is denoted by ε while α and τ are institution and time effects.

We estimate the parameters in Equation (2) using two different estimation methods. First,

we conduct our empirical analysis using the OLS approach. Second, we use a Markov-Chain-

Monte-Carlo (MCMC) technique based on a hybrid Metropolis-Hastings sampling scheme

with Gibbs updates to estimate our posterior mean and posterior standard deviations of the

parameters in Equation (2). OLS results are presented in the first three columns of Table 4,

while Bayesian results are presented in the last three columns.

In all our Bayesian regressions, we use uniform priors for the regression coefficients and an

inverse-gamma prior with shape and scale parameters of 0.1 for the error variance. Further,

we implement 22,500 iterations and the first 2,500 are omitted to mitigate possible start-up

effects.28 This Bayesian approach offers several considerable advantages. First, the MCMC

gives us the finite-sample properties of the resulting estimates rather than asymptotic ap-

proximations. Second, incorporating a non-parametric unobserved heterogeneity component

makes the specification of the model more flexible and, hence, the results more robust (Li

and Zheng, 2009). However, in practice, one must verify the convergence of MCMC before

making any inferential conclusions about the obtained results. In our exercise, we see that

the posterior distribution looks normal. The kernel density estimates based on the first and

second halves of the sample are very similar to each other and are close to the overall density

28Gelman et al. (2004) provide a detailed description of the Bayesian method used in this paper.
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estimate. Given an experimental setting, both approaches enable econometricians to have

unbiased and consistent estimators.

In our base model, presented in Column 1 of Table 4, we regress the normalized yield

rate on a parsimonious model with an indicator for discriminatory auctions, floating bonds,

monthly effects, year effects, and market drift terms. Controlling for monthly and year effects

are suitable because the government objectives or budgets could change yearly and/or the

promotion of high-tech industries may vary by season. For example, it is quite common

to promote new television models in November or December than in July or August. Our

estimated coefficient from this regression indicates that normalized winning rates for uniform

and discriminatory auctions are statistically not different and are close to zero. This shows that

our results on the statistical indifference of the yield rate between the two auction mechanisms

hold even without controlling for additional observable auction characteristics and market

conditions.

Exploiting a market-based experiment, in our other specifications we control for bond char-

acteristics and market conditions to examine the auction-rule effect. As Bruhn and McKenzie

(2009) have pointed out, in such non-laboratory experiments, a control-based estimation ap-

proach with relevant baseline variables improves efficiency, increases statistical power, and

dominates the uncontrolled estimates even when observable characteristics in groups (e.g.,

discriminatory vs. uniform auctions) are not statistically different.

Hence, in Column 2 of Table 4, we include additional controls for auction and financial

market conditions. Specifically, we do so in Column 2 and in all subsequent models (excluding

Column 4) as we pool the observations from the CDB and EIB auctions. We also include bond-

issuer fixed effects to account for any difference between bonds of different issuers that goes

beyond their credit risk. In Columns 3 and 6, we include the number of bidders in addition

to other controls. Overall, our results indicate that there is no statistical difference between

the normalized yield rates of uniform and discriminatory auctions. From our estimations in

Table 4, regardless of the empirical specification, the coefficients of the discriminatory auction

dummy are close to zero. They vary from -0.006 percent (-0.6 bps) to 0.008 percent (0.8 bps),

which corresponds to -0.001 percent and 0.002 percent of the mean auction rate of the bonds

in our sample (the mean auction rate is 4.394 percent, i.e., 439.4 bps).

In Table 5, we report the results for the sample without floating bonds. Overall, as in the

full sample, our results indicate that there is no statistical difference between the normalized

yield rates of uniform and discriminatory auctions. In our full specification, presented in

Columns 3 and 6, the coefficients of the discriminatory auction dummy are -0.006 percent
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(-0.6 bps) and 0.007 percent (0.7 bps) respectively. In general, regardless of the estimation

method, our results indicate that the estimated yield rate difference generated between uniform

and discriminatory auctions is close to zero and has no statistical significance.

6 Assessing revenue difference

In the previous section, we have shown that the normalized yield rates are not statistically

different across the two auction formats. However, the point estimates are not perfectly equal

to zero and the large monetary value involved in Treasury auctions raises questions about the

exact size of the revenue gap created by the different auction formats. Thus, we investigate

whether the bond issuers would experience any economically relevant change in revenue if

they switched from one auction format to the other.

We use the point-estimates of the difference in the normalized rates reported by the dis-

criminatory auction dummy in Table 4 to calculate the change in CDB and EIB revenue if

they issued their bonds using a uniform (discriminatory) auction rather than a discriminatory

(uniform) one. We then compute the percentage change in total revenue, the total change in

revenue with respect to Chinese government expenditure, and the yearly cost of debt during

the three-year experiment.

For each institution, we first derive its total bond revenue by calculating the summation of

all bonds that were auctioned off using uniform or discriminatory auctions. Next, we compute

the total revenue if all bonds were sold through uniform auctions by replacing the price (pi)

of each bond issued by discriminatory auctions with its counterfactual price (pci), which is its

equivalent price if that bond was auctioned off through a uniform format. Accordingly, the

counterfactual total revenue, TRc, is then given by:

TRc =
∑
i∈ua

piqi +
∑
i∈da

pciqi, (3)

where pi and qi are the observed prices and quantities for each bond in auction i, and ua

and da respectively refer to the subsets of bonds which were auctioned off using uniform or

discriminatory mechanisms.

To obtain TRc, we need to compute pci using the estimated difference in the normalized

rates, β, reported in Table 4. Adopting fixed-income pricing theory to our setting, we can
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write the pci of a bond that was hypothetically issued through a discriminatory auction as:

pci =
∑
i∈m

k × V

(1 + yield+ spread− β)m
+

V

(1 + yield+ spread− β)m
, (4)

where m is the number of coupon periods of the bond (i.e., its maturity), k is the periodical

coupon rate payment on the maturity value V , yield is the period market yield rate, and spread

is the margin over the market yield curve for a bond issued in a discriminatory auction.29 For

the CDB and EIB, the maturity value, V , of every bond is equal to 100 RMB. Note that, at

the time of issuance, the yield+spread corresponds to the coupon rate, which makes the issue

price of each bond equal to 100 RMB. To compute the counterfactual price pci , we calculate

the present value of the expected cash flow by subtracting the estimated β from the spread.30

Now, with pci computed from Equation (4), we can use Equation (3) to obtain the change

in total revenue. In Table 6, we present the results from this exercise. The first row shows

the estimated difference in the normalized rates, β, reported in Table 4. In the second and

third rows in each column, we respectively report the percentage change in the total revenue

and the total change in revenue with respect to Chinese government expenditure during the

three years of the experiment.

The results in Table 6 Panel A reveal that the percentage change in the total revenue,

if the bond issuers have issued all their bonds using a uniform auction, ranges from -0.012

to 0.016 percent at the mean (U -0.233 billion to U 0.312 billion). Further, the potential

loss or gain from issuing all the EIB and CDB bonds through a uniform auction ranges from

-0.00041 to 0.00054 percent of the Chinese government expenditure during the three years

of the experiment, which is negligible. Similarly, the cost of debt (interest rate paid extra)

ranges from -0.263 to 0.350 percent.

A similar approach can be used to compute the total revenue if all bonds were sold through

discriminatory auctions. Table 6 Panel B shows the results when the bond issuers have issued

all their bonds using discriminatory auctions. In Panel C, we compare revenues when all

auctions were uniform vs. all discriminatory auctions. The results indicate that the potential

loss or gain from using all uniform or discriminatory auctions ranges from -0.00103 to 0.00137

percent of Chinese government expenditure. When considering the value in billions of U, it

ranges from -0.593 to 0.790.

29For example, see Fabozzi (2015).
30For floating bonds, pci was computed by considering the yield curve for each security benchmark rate at

the issued date to obtain the expected future coupon payments.
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7 Robustness tests

In this section, we present the details of the additional tests we performed to ensure that

our results are robust. First, we examine whether bidders behave strategically by choosing

the most profitable auction mechanism. Next, we analyze whether there is a difference in

normalized rates between auction formats due to the high and low yield rates observed in dis-

criminatory auctions. Third, we investigate whether our results hold for the full distributions

of normalized rates. Fourth, we consider whether there are any differences in the auction yield

rates between auction formats held by the institutions individually. Additionally, we take ad-

vantage of within-day variation in format to control for unobserved heterogeneity. Finally, we

control for bonds which are re-issued.

7.1 Bidders’ behavior in alternating auctions

Given that the CDB and EIB alternated between the two auction formats with remarkable

regularity for three years, one could argue that primary dealers could have been aware of

the upcoming auction formats and, therefore, waited for the auction format that was most

profitable to them. To test this potential threat to our research design, we conduct a number of

exercises. First, if bidders wait for the format that is most favorable to them, they will behave

differently in the first half of the experiment (when they are unaware that the issuing banks

are alternating the auction formats) compared to the second half (after realizing the pattern

of the experiment). To test this, we divide the CDB and EIB data into two periods—the first

and second half of the experiment. We again estimate similar empirical models presented in

Table 4, Columns 2, 3, 5, and 6. Our results are presented in Table A.4 and indicate that

there is no statistical difference between uniform and discriminatory auction yields in the first

and second half of the experiment. This suggests that bidders did not change their bidding

patterns throughout the experiment.

Next, we record bidder participation by examining the average number of bidders by

auction type during the experiment. The uniform auctions attracted 34.30 (5.82) bidders on

average per auction, while discriminatory auctions attracted 35.88 (4.88) bidders on average

(standard deviations are in parentheses). When considering the average number of bidders by

institution, the CDB averaged 33.99 (5.26) bidders per auction while the EIB averaged 38.54

(4.56).31

31As no Treasury notes were sold using the discriminatory auction format before or after the experiment
by either institution, we cannot compare the number of bidders per auction before, after, and during the
experimental period.
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In Figure 1, we have plotted a scatter plot to show the number of bidders by auction for-

mat and by day of auction. Then, we draw local polynomial mean smoothing plots with 95%

confidence intervals. As one can see, these plots overlap each other. Even though these plots

are not conditional upon any other observable characteristics such as maturity or institutions,

one can observe that both auction types have a similar random pattern for the number of

bidders per auction. If bidders were using a dynamic waiting strategy, the number of partic-

ipants in discriminatory and uniform auctions would move in opposite directions throughout

the auction series. Instead, this figure indicates that the number of bidders remains similar

(random) across auction formats during the experimental period, indicating that bidders did

not wait for their preferred auction format.

In addition to this, we formally test whether there is a difference in the number of bidders

in the first and second half of the experiment depending on the auction format. We regress

the number of bidders on the auction mechanism dummy, a categorical variable that indicates

that the auction is let during the second half (= 1), and also on another variable that captures

the difference between uniform and discriminatory auctions in the second half (second half

indicator × discriminatory auction indicator). We also control for observable auction and

market characteristics. In Table A.5, we report estimations using the PPML method in Col-

umn 1 and the OLS method in Column 2. All our estimated results in Table A.5 indicate that

there is no statistical difference between the number of bidders in uniform and discriminatory

auctions in the first and second period.

Another possible way to examine the robustness of bidder participation and normalized

rates results is to investigate the differences of these outcomes just before and after the exper-

iment. However, such a comprehensive investigation is not possible as the CDB and the EIB

did not use discriminatory auctions prior to or following the experiment period. Alternatively,

we compare the bidder participation and auction yield outcomes in uniform auctions during

the experiment period and 12 months later. Our results indicate that the bidders did not

behave differently during and after the experiment period (See Table A.6).32

These exercises further support the notion that bidders (i) did not discriminate between

auction formats as part of a static participation or dynamic waiting strategy, due to the rigidly

32We could examine whether there were any differences in bidder entry and auction outcomes focusing only
on uniform auctions. However, such a comparison faces challenges as, before the experiment period, auctions
were much less frequent and had smaller volumes. For example, from 2011:11 to 2012:04, the average number
of auctions per month was about 5.5, while, during and six months after the experiment, the average frequency
of auctions per month was 20 and 23, respectively. In Figure A.2 and A.3, we plot the monthly frequency and
volumes for the CDB and the EIB from January 2004 to January 2016 respectively. Additionally, in Figure
A.4, we draw the volumes for Treasury notes relevant to the experiment that were auctioned off by the CDB
and the EIB. As one can see from these figures, even though there was an upward trend in overall value during
the period, the value of notes related to the experiment stayed relatively constant.
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framed non-overlapping auction announcement cycles, and (ii) did not behave differently

during and after the experiment period. It is worth noting that, as the institutions neither

officially nor publicly announced the end date of the experiment, the CDB and EIB could have

stopped the experiment at any given time. In addition, as the experiments themselves are

not publicly announced, these institutions could have also modified their alternating patterns

at any time during their experiments. These uncertainties made a potential forward-looking

waiting strategy quite challenging, if not impossible, for bidders.

7.2 High and low auction rates in discriminatory auctions

In the main estimation results presented in Table 4, we consider only the auction-specific

normalized weighted average winning bids. One could argue that the difference between

auction formats might differ when we measure outcomes with the highest or lowest winning

auction rates observed in discriminatory auctions. To address this concern, we re-estimate

our models with the normalized highest and lowest winning primary bids for discriminatory

auctions using the specification in Table 4, Column 3 for OLS regression and in Column 6

for Bayesian estimation. Note that, in discriminatory auctions, the average range between

the normalized highest and lowest winning bids is 0.032 percent with a standard deviation of

0.026.

In Table A.7, we report the results for normalized weighted-average auction winning rate-

based uniform auctions and highest and lowest winning bids of discriminatory auctions. The

first two columns in Table A.7 report the OLS estimation results, and the last two columns

report the results of the Bayesian estimation. In Panel A, we report the results for all auctions

while, in Panel B, we report for auctions without floating bonds. The results indicate that

our main finding–that there is no statistical difference between uniform and discriminatory

formats–holds true for the normalized highest and lowest bids of discriminatory auctions

compared to uniform auctions as well.

7.3 Effect on the distribution of bids

A potential concern is that our results may not hold for the full distribution of the normalized

weighted average outcome of the yield. To address this issue, we re-estimate the empirical

models using the quantile regression method for the 15th, 25th, 50th, 75th, and 85th quantiles.

We present these estimated results in Table A.8.33 Note that these empirical specifications are

33Hahn (1995) shows that the asymptotic variance matrix of the quantile regression estimator depends on
the density of the error. Hahn notes that, for regressors, the bootstrap distribution is shown to converge
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similar to the ones presented in Table 4, Column 3. The results are qualitatively similar to

the ones shown in the OLS tables and indicate that there is no significant difference between

outcomes generated from the two auction formats (Panel A.1). In Panel A.2, we report

results using the normalized highest yield while, in Panel A.3, we report the normalized

lowest yield of discriminatory auctions. We also estimate these specifications without floating

bids, obtaining qualitatively similar results that indicate that there is no statistical difference

between normalized rates based on auction formats (See Panel B.1 - B.3). We do not present

these results in this paper, but can provide them upon request.34,35

7.4 CDB vs. EIB

During our sample period, the experiments were conducted by the two institutions separately.

Hence, we next examine whether there are any differences in the normalized rates between

uniform and discriminatory auctions by institution. To do this, we re-estimate the models

presented in Table 4, Columns 3 and 6, by institution. The results are presented in Table A.9.

Columns 1 and 2, present the OLS results for the CDB with and without floating bonds. In

Column 3, we report the OLS results for the EIB. Columns 4-6, present the Bayesian results

for the normalized rates. All columns indicate that, regardless of the institution, the revenues

generated from the two auction mechanisms have no statistical difference.

7.5 Within day auctions

In a recent paper, Allen et al. (2020) take advantage of within-day variation to control for

unobserved auction heterogeneity. They note that their empirical strategy could identify

dependencies in demand for Treasury Bills of different maturities on the same day. We also

observed 168 auctions using both auction formats on the same date by the same institution.

However, our sample size declined by more than 50% in this exercise as we use only the days

weakly to the limit distribution of the quantile regression estimator in probability. Therefore, the confidence
intervals constructed by the bootstrap procedures have shown to provide asymptotically valid estimators.
Hence, we obtain standard errors (reported in Table A.8) via bootstrapping the variance-covariance matrix.
Note that we implement the bootstrap procedure by repeating the regression 100 times on a randomly drawn
new sample with replacement from the original data.

34A minor exception is that, in Panel C Table A.3, when comparing the lowest normalized winning bids
of discriminatory auctions with normalized uniform winning bid rates, we observe that the discriminatory
auction rate is lower by -0.060% (-6.00 bps) compared to uniform auctions in the 85th quantile.

35Note that here we are using the quantile method proposed by Koenker and Bassett (1978). This method
essentially estimates a conditional Quantile Treatment Effect (QTE) under exogeneity (see Frölich and Melly,
2013). In our case, we have argued that the implementation of the two auction mechanism is random. Hence,
our quantile regression results can also be treated as evidence from a conditional QTE approach.
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on which both types of auctions were held by an institution.36 Hence, we advise caution in

interpreting these results while presenting them in Table A.10. Results are robust and indicate

that the normalized winning rate, worst rate, and the number of bidders are not statistically

different between the auction formats.

7.6 Effect of reissue bonds

During the market experiment, both the CDB and EIB re-issued bonds. Reissued bonds

can have two opposing effects on auction outcomes. As the liquidity of the reissued bonds

increases, it could result in a higher liquidity premium in the primary auction outcome yields.

On the other hand, as the supply volume increases, it shifts the supply function of that specific

bond to the right, which could result in a lower price (or higher yield) in the primary auction

market. These liquidity and supply effects are expected to have opposite directions. The bid-

to-cover ratio could be considered a no-contradiction test for these two opposing effects. If

the liquidity effect is stronger, the bid-to-cover will increase. On the other hand, if the supply

effect is stronger, the bid-to-cover would decrease. We find that the bid-to-cover ratios are

not statistically different across standard and reissued securities (see Table A.14 in Appendix

A.2).

As for the relation between auction mechanism and reissuance, the crucial question is

whether the potential unobserved variables are correlated with the auction rule indicator

through the channel of reissuance. Hence, we have estimated an empirical model with a

reissue indicator variable that takes the value of one for reissued bonds and zero otherwise.

These results are presented in Table A.11. The auction type variable’s coefficient indicates

that the normalized rates from the two auction formats are not statistically different as in our

main findings.

8 Conclusion

We have exploited a large auction experiment conducted by two Chinese Government Treasury

security issuers to investigate whether treasury securities should be sold through uniform or

discriminatory auction mechanisms. We find that outcome yield rates for both formats are not

statistically different. There is no relevant economic difference in terms of revenue between

the two mechanisms. Our results also do not provide statistical support that the bidders

36Further, the control variable duration passes the balance test only at the 90 percent confidence interval
for the same day sample.
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prefer one format to the other.

Our observed empirical results are connected to preceding influential works as recent de-

velopments in the structural Treasury auction literature provide insightful views on market

design. For instance, Hortaçsu and McAdams (2010) report that, in their counterfactual simu-

lation of Turkish Treasury auctions, switching from the discriminatory to the uniform format

does not significantly increase revenue. Their result is similar to our finding. In addition,

Bonaldi, Hortaçsu, and Song (2015) report that, in the Federal Reserve’s Mortgage-Backed

Security auctions, there is a “negligible” revenue difference between the discriminatory format

and truthful bidding uniform price auction (which works as a benchmark in their study) with

mixed directions of revenue change when they counterfactually simulate each auction. Our

direct comparison with alternating auction rules complements these prominent counterfactual

studies by adding market-based experimental support—empirically, there is no substantive

economic difference in revenue between uniform and discriminatory auctions.

Although the Chinese experiment enables us to compare auction outcomes directly and

provide inferences on which Treasury auction rule generates a lower yield rate (larger rev-

enues), our study has some limitations. Specifically, the lack of bid-level data with information

about bidder identity prevents us from studying some aspects of market design—asymmetric

bidding behavior with heterogeneous costs, informational advantage with primary dealership,

and allocative efficiencies—which researchers actively investigate these days (e.g., Cassola,

Hortacsu, and Kastl, 2013; Hortacsu, Kastl, and Zhang, 2018; Bonaldi, Hortacsu, and Song,

2015). However, this study demonstrates that an alternating auction rule experiment has the

legitimate potential to uncover underlying revenue incentives. We leave an investigation of

these advanced topics to future researchers who can exploit Treasury auction bid data with

alternating auction rules.
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Figure 1: Number of bidders by auction type
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Notes: This figure plots the number of bidders per auction for all treasury notes by auction format by date

during the experiment. The lines represent the expected number of bidders per auction by auction format

estimated by a local polynomial mean with 95% confidence intervals.
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Table 1: Results of the balance test for covariates
Variable Uniform Discriminatory t-Value

Market yield of Chinese bonds one day before the auction date 3.685 3.683 0.044

[3.617, 3.753] [3.612, 3.753]

Log of duration 1.391 1.417 -0.703

[1.347, 1.435] [1.357, 1.477]

Log of bid-to-cover ratio 0.865 0.888 -0.813

[0.818, 0.912] [0.858, 0.919]

Volatility 0.026 0.029 -1.604

[0.023, 0.028] [0.026, 0.032]

Log value of maturing bonds by institution for a given month 14.505 14.672 -1.013

[14.265, 14.746] [14.461, 14.883]

First and last week of the month 0.824 0.838 -0.322

[0.770, 0.879] [0.780, 0.895]

This table reports the mean, the 95% confidence intervals and the calculated t-values for prior day’s yield curve,

duration, bid-to-cover ratio, market volatility, and value of maturing bonds by the institution for a given month

of the CDB and the EIB government bonds sold through uniform and discriminatory auctions. The variable

duration refers to Macaulay duration, which is the weighted average term to maturity of the cash flows from a

bond.

Table 2: Summary statistics of dependent variables
Variable All Uniform Discriminatory Difference t-Value

Normalized rate 0.801 0.795 0.806 -0.011 -0.267

[0.761, 0.841] [0.726, 0.863] [0.760, 0.852]

Normalized highest discriminatory 0.813 0.795 0.830 -0.035 -0.853

auction winning rates [0.774, 0.853] [0.726, 0.863] [0.784, 0.876]

Normalized lowest discriminatory 0.797 0.795 0.798 -0.003 -0.074

auction winning rates [0.757, 0.836] [0.726, 0.863] [0.752, 0.844]

Normalized worst rates 1.043 1.046 1.041 0.006 0.132

[0.100, 1.087] [0.971, 1.122] [0.991, 1.090]

Number of bidders 35.189 34.404 35.881 -1.477 -2.42

[34.585, 35.794] [33.452, 35.356] [35.120, 36.643]

This table reports the mean, the 95% confidence intervals and the calculated t-values for outcome variables

used in this study. To be specific, they are normalized yield rate constructed as the weighted-average auction

winning rate minus the prior day’s corresponding market yield of Chinese bonds based on maturity and insti-

tution, normalized highest and lowest discriminatory auction winning bids, normalized worst bids, and number

of bidders.
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Table 3: Regression results for number of bidders
Variable Number of bidders

PPML OLS

(1) (2) (3) (4)

Discriminatory auction 0.001 0.001 0.006 0.005

(0.014) (0.014) (0.016) (0.016)

Floating bond -0.053 -0.051

(0.026) (0.031)

Market yield of Chinese bonds 0.015 0.008 0.011 -0.001

one day before the auction date (0.025) (0.025) (0.029) (0.029)

Log of duration -0.030 -0.025 -0.032 -0.025

(0.019) (0.020) (0.024) (0.026)

Log of bid-to-cover ratio 0.244 0.227 0.264 0.246

(0.025) (0.026) (0.033) (0.035)

Volatility 0.065 -0.106 0.113 -0.057

(0.265) (0.273) (0.295) (0.305)

Log of time lag between auctions 0.016 -0.005 0.016 -0.007

by institution (0.011) (0.015) (0.013) (0.017)

Log value of maturing bonds by -0.000 -0.002 -0.001 -0.002

institution for a given month (0.005) (0.006) (0.006) (0.007)

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 348 301 348 301

R2 0.570 0.593 0.541 0.557

This table presents the estimates for the number of bidders in an auction,
controlling for auction type, institutions, market conditions, time gap between
auctions by institutions, bid-to-cover ratio, institution effects, first and last
week of the month, monthly effects, year effects, and market drift. The vari-
able duration refers to Macaulay duration, which is the weighted average term
to maturity of the cash flows from a bond. We estimate this using the Pois-
son Pseudo Maximum Likelihood (PPML) method and also using OLS. The
regressions in Columns (1) and (3) include the full sample while the ones in
Columns (2) and (4) include only non-floating bonds. Robust standard errors
are in parentheses.
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Appendix

A.1 Extra Figures and Tables

Figure A.1: Normalized average winning rates by auction type
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Notes: This figure plots the normalized volume-weighted average of winning rates by auction format by date

during the experiment. The lines represent the expected winning rates by auction format estimated by a local

polynomial mean with 95% confidence intervals.
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Figure A.2: Frequency of auctions by month

 

Notes: This figure plots monthly frequency of bonds issued from January 2004 to December 2015.

Figure A.3: Volume of bonds issued

 

Notes: This figure plots monthly volume of bonds issued from January 2004 to December 2015.
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Figure A.4: Volume of bonds issued during the experiment

 

Notes: This figure plots monthly volume of bonds issued during the experiment (May 2012 - May 2015).
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Table A.1: Chinese government and policy banks’ security credit ratings
Year Fitch Moody’s Standard & Poor’s

MOF CDB EIB MOF CDB EIB MOF CDB EIB

Panel A: Long-term

2012 A+ A+ A+ Aa3 Aa3 Aa3 AA- AA- AA-

2013 A+ A+ A+ Aa3 Aa3 Aa3 AA- AA- AA-

2014 A+ A+ A+ Aa3 Aa3 Aa3 AA- AA- AA-

2015 A+ A+ A+ Aa3 Aa3 Aa3 AA- AA- AA-

Panel B: Short-term

2012 F1 F1 F1 P-1 — — A-1+ A-1+ A-1+

2013 F1 F1 F1 P-1 — — A-1+ A-1+ A-1+

2014 F1 F1 F1 P-1 P-1 — A-1+ A-1+ A-1+

2015 F1 F1 F1 P-1 P-1 — A-1+ A-1+ A-1+

This table reports the long-term and short-term credit ratings awarded by
Moody’s, Standard Poor’s, and Fitch to the Chinese government bonds
issued by the Minister of Finance (MOF), the Chinese Development Bank
(CDB) and the Export- Import Bank (EIB). If a rate was updated in the
middle of a calendar year, the updated rate is listed. “—” denotes that no
rate was given by a credit rating agency.
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Table A.3: Description of the variables
Variable Description

Discriminatory auctions This variable takes the value one when the auction format is discriminatory

and zero when the auction mechanism is uniform.

Floating bonds The floating bonds variable is a binary indicator, which is equal to one if

an auction is for floating bond, zero otherwise. Note that all of the floating

bonds are sold through the uniform-price format only.

Market yield of Chinese bonds This variable is the publicly announced yield curve rates by the CCDC.

one day before the auction date Each business day, the CCDC publicly announces the yield curves for bonds

issued by the CDB and EIB by maturity, which are based on previous resale

market transactions. These yield curves provide official benchmarks to

general investors. The CCDC constructs the official yield curve

mainly using settlement prices of government bonds in the inter-bank market.

When they are unavailable, the CCDC uses bilateral quotes in the inter-bank market,

bilateral quotes in the OTC market, transaction prices in the exchange market,

quotes and final prices in fixed income platform of the exchange market,

quotes of money broking corporations, and the estimated value of yield

rate from market members.

Duration The duration variable refers to Macaulay duration, which is the weighted

average term to maturity of the cash flows from a bond. A similar duration

variable is used by Simon (1994).

Bid-to-cover ratio This variable is the ratio of the total amount of submitted bid quantities for

securities divided by supply (allotment) volume. This variable controls the

strength of demand and the degree of competitions in an auction. A similar

measure is used by Cordy (1999) and Goldreich (2007). In our sample, total

submitted bid quantities was always more than the allotment.

Lag time between auctions This variable measures the business days since the last auction held by

an institution.

Value of maturing bonds by This is the sum of face values, which the issuer has to pay in a specific month.

institution for a given month This variable controls the possibility that financial institutions may recycle

their liquidity obtained through matured securities to bid for new issuance.

Number of bidders This is the number of bidders in an auction.

CDB This variable is a binary indicator variable that takes the value of one when

auctions are let by the CDB and zero otherwise.

First and last week of the month This indicator variable is equal to one if the auction date takes place seven

days before or seven days after the end of the month, and equal to zero

otherwise.

Market drift This variable is constructed by counting the number of weeks since the start of

the experiment by dividing each week by the number of total weeks in which the

CDB and EIB conducted their market experiment. Simon (1994) notes that a

market-drift variable controls for gradual unobservable changes that bidders face

during the market experiment period. Although a model of long-term relationships

with dynamic trade-offs is beyond the scope of this study, other studies point out

that a repeated auction environment can sustain a variety of strategies in equilibria

(see e.g., Skrzypacz and Hopenhayn, 2004) , and this time-shifting variable

parsimoniously controls for potential gradual changes in long-term interactions

among bidders, regardless of the auction formats.
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Table A.4: Results for normalized rate in the first– and second–half of the experiment
Variable Normalized rate

OLS Bayesian

First–half Second–half First–half Second–half

(1) (2) (3) (4)

Panel A: All auctions

Discriminatory auction -0.021 0.009 -0.021 0.002

[-0.184, 0.142] [-0.090, 0.109] [-0.121, 0.084] [-0.074, 0.075]

Floating bond -0.765 0.160 -0.753 0.134

[-1.055, -0.475] [-0.342, 0.662] [-0.864, -0.646] [0.023, 0.243]

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 148 200 148 200

R
2 0.524 0.547

Log marginal likelihood -201.260 -158.042

Panel B: Without floating bonds

Discriminatory auction -0.032 0.015 -0.018 -0.003

[-0.102, 0.038] [-0.085, 0.114] [-0.057, 0.017] [-0.075, 0.056]

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 104 197 104 197

R
2 0.879 0.567

Log marginal likelihood -37.590 -136.970

This table reports OLS and Bayesian regressions for the normalized rates auctioned off in the first–
and the second–half of the experiment. In all Columns, we control for all auction format, other
auction, and market controls in addition to floating bonds, monthly effects, year effects, market drift,
and bond-issuer fixed effects as in Table 2 Column 3 and 6. In Columns 1 and 2, 95% confidence
intervals calculated based on robust standard errors are in brackets and in Columns 3 and 4, 95%
credible intervals are in brackets.
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Table A.5: Results for number of bidders during the experiment
Variables Number of bidders

All auctions Without floating bonds

PPML OLS PPML OLS

(1) (2) (3) (4)

Discriminatory auction -0.008 -0.019 -0.024 -0.687

(0.026) (0.982) (0.026) (1.018)

Second half -0.074 -2.194 -0.162*** -5.242**

(0.053) (1.854) (0.055) (2.036)

Second half × Discriminatory auctions 0.011 0.114 0.032 0.934

(0.030) (1.114) (0.031) (1.159)

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 348 348 301 301

R2 0.576 0.590 0.606 0.616

This table presents the estimates for the number of bidders in an auction, control-
ling auction type, institutions, market conditions, the time gap between auctions by
institutions, bid-to-cover ratio, and institution effects which are denoted by auction
and market controls. Additionally, we have included month effects, year effects, and
market drift. Robust standard errors are in parentheses.

Table A.6: Bidder behavior in uniform auctions during and after the experiment
Variable All auctions Without floating bonds

Number of bidders Normalized Number of bidders Normalized

Winning rate Winning rate

(1) (2) (3) (4)

After (12 months) -0.001 -0.111 0.054 -0.026

(0.026) (0.080) (0.021) (0.059)

Floating bond -0.061 -0.549

(0.037) (0.122)

Market yield of Chinese bonds one day -0.075 -0.040

before the auction date (0.024) (0.024)

Other controls Yes Yes Yes Yes

Observations 359 359 309 309

R2 0.393 0.391 0.450 0.357

This table presents the estimates for the number of bidders and normalized winning in auctions controlling for after
experiment period, institutions, market conditions, time gap between auctions by institutions, bid-to-cover ratio,
institution effects, and all other market and time controls. The Columns 1 and 3 are estimated using the Poisson
Pseudo Maximum Likelihood (PPML) method and Column 2 and 4 are estimated using OLS. Robust standard errors
are in parentheses.
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Table A.7: Results for normalized rates with highest and lowest discriminatory auction rates
Variable Normalized rate

OLS Bayesian

Highest Lowest Highest Lowest

(1) (2) (3) (4)

Panel A: All auctions

Discriminatory auction 0.028 -0.007 0.029 0.003

[-0.053, 0.110] [-0.089, 0.074] [-0.035, 0.090] [-0.050, 0.063]

Floating bond -0.491 -0.497 -0.485 -0.483

[-0.727, -0.256] [-0.733, -0.260] [-0.556, -0.416] [-0.583, -0.385]

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 348 348 348 348

R2 0.499 0.492

Log marginal likelihood -269.235 -281.385

Panel B: Without floating bonds

Discriminatory auction 0.022 -0.015 0.031 -0.007

[-0.058, 0.102] [-0.095, 0.066] [-0.016, 0.079] [-0.052, 0.036]

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 301 301 301 301

R2 0.480 0.481

Log marginal likelihood -162.473 -165.701

This table reports OLS and Bayesian regressions of normalized rates with highest and lowest discrimi-
natory auction bids. Our dependent variables is the auction-specific normalized highest (Columns 1 and
3) and the lowest (Columns 2 and 4) winning rate on a given date. In all columns, we control for auc-
tion format, other auction, and market characteristics in addition to month effects, year effects, market
drift, and bond-issuer fixed effects. In Columns 1-2, 95% confidence intervals calculated based on robust
standard errors are in brackets while in 3-4, 95% credible intervals are in brackets.
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Table A.8: Quantile regression results for normalized rates
Variable Normalized rate

Quantile

0.15 0.25 0.50 0.75 0.85

Panel A: All auctions

Panel A.1: With weighted averages of discriminatory auction winning rates

Discriminatory auction -0.008 -0.051 -0.037 -0.029 -0.030

(0.060) (0.053) (0.032) (0.030) (0.035)

All controls Yes Yes Yes Yes Yes

Observations 348 348 348 348 348

R2 0.417 0.327 0.263 0.337 0.406

Panel A.2: With highest discriminatory auction winning rates

Discriminatory auction 0.014 -0.016 -0.011 -0.014 -0.008

(0.059) (0.059) (0.027) (0.030) (0.040)

All controls Yes Yes Yes Yes Yes

Observations 348 348 348 348 348

R2 0.418 0.328 0.265 0.340 0.407

Panel A.3: With lowest discriminatory auction winning rates

Discriminatory auction -0.027 -0.042 -0.036 -0.047 -0.060

(0.059) (0.045) (0.033) (0.039) (0.033)

All controls Yes Yes Yes Yes Yes

Observations 348 348 348 348 348

R2 0.417 0.325 0.260 0.336 0.403

Panel B: Without floating bonds

Panel B.1: With weighted averages of discriminatory auction winning rates

Discriminatory auction -0.046 -0.042 -0.038 -0.046 -0.039

(0.054) (0.040) (0.033) (0.029) (0.034)

All controls Yes Yes Yes Yes Yes

Observations 301 301 301 301 301

R2 0.264 0.225 0.337 0.453 0.519

Panel B.2: With highest discriminatory auction winning rates

Discriminatory auction -0.013 -0.026 -0.022 -0.019 -0.014

(0.055) (0.045) (0.032) (0.028) (0.029)

All controls Yes Yes Yes Yes Yes

Observations 301 301 301 301 301

R2 0.258 0.250 0.335 0.453 0.519

Panel B.3: With lowest discriminatory auction winning rates

Discriminatory auction -0.064 -0.045 -0.046 -0.048 -0.059

(0.056) (0.040) (0.033) (0.029) (0.031)

All controls Yes Yes Yes Yes Yes

Observations 301 301 301 301 301

R2 0.264 0.254 0.333 0.453 0.518

This table reports quantile regressions for the 15th, 25th, 50th, 75th and 85th quantiles of the normalized rates. Panel A considers the full sample,

an Panel B includes only the non-floating bonds. In Panel A.1 and B.1, the dependent variables are the normalized auction-specific weighted-average

winning rate. In Panel A.2, A.3, B.1 and B.2, the dependent variables are the normalized auction-specific highest and lowest discriminatory auction

winning bids respectively in addition to normalized uniform auction bids. All controls include auction format, other auction, and market controls in

addition to floating bonds, monthly effects, year effects, market drift, and bond-issuer fixed effects as in Table 2, Column 3. Bootstraped standard

errors are in parentheses.
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Table A.10: Regression results controlling for within-day variation
Variable OLS Bayesian PPML OLS

Normalized Normalized Number of bidders

Winning rate Worst rate Winning rate Worst rate

(1) (2) (3) (4) (5) (6)

Discriminatory auction 0.071 0.060 0.042 0.029 0.013 0.412

[-0.025, 0.167] [-0.070, 0.191] [-0.020, 0.104] [-0.036, 0.096] (0.016) (0.539)

Auction and market controls Yes Yes Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes Yes Yes

Date effetcs Yes Yes Yes Yes Yes Yes

Observations 168 168 168 168 168 168

R2 0.757 0.758 0.774

Log marginal likelihood 85.275 77.182 -467.676

This table reports results for normalized rates and the number of bidders for the within-day exercise. Models in
Columns 1 and 3 provide the results winning rates, and Columns 2 and 4 reports the results for worst bids. In
Columns 5 and 6, we report the results for the number of bidders. In Columns 1 through 4, we include date fixed
effects. In all columns, we control for auction format, bond-issuer effects, volatility, bid-to-cover ratio, the time lag
between auctions, number of bidders, and value of maturing bonds by the institution that vary with a day and/or by
auction. In Columns 1, and 2, 95% confidence intervals calculated based on robust standard errors are in brackets
and in Columns 3 and 4, 95% credible intervals are in brackets. The regressions in Columns 4 and 5 report robust
standard errors in parentheses.
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A.2 Complementary analysis: Auction formats and bidder types

In this section of the Appendix, we perform a series of statistical tests to examine if there

is statistical evidence of bidder types selecting into auction formats. These tests analyze the

worst bidder type (marginal valuation), the average submitted bid quantities for securities, the

average allotment per bidder, and the primary dealers’ secondary-market debut-day return

and examine whether they do or do not statistically vary with auction format. Together,

as we show next, they indicate that an insignificant statistical revenue difference between

uniform and discriminatory auctions is not driven by a selection of types in an auction format.

However, as mentioned in Section 2.1 in the paper, note that there is an important institutional

feature in the CDB and EIB Treasury auctions that restrain bidders from strategically picking

the auctions and the auction format that suit them better.

Marginal valuation of the worst bidder type. Theoretical results from auction models

with endogenous entry (Samuelson, 1985; Marmera et al., 2013; Gentry and Li, 2014) show

that the marginal valuation (type) of the worst entering bidder in an auction characterizes the

equilibrium entry behavior. These results indicate that the types of bidders in two different

auctions are the same (no selection of bidders’ type) if the pool of potential bidders and the

marginal valuation of the worst bidders (lowest bidder type) are the same in both formats.

In this spirit, we examine whether the marginal valuation of the worst bidder (lowest type)

is the same in both auction mechanisms. The preceding analysis starts investigating whether

bidder types select into an auction, given the pool of pre-qualified primary dealers–potential

bidders–are the same in both auction formats.

To evaluate whether the marginal valuation of the lowest bidder types are the same in

both auction formats, we rely on the theoretical results in Ausubel et al. (2014). Focusing

on the modeling framework of their Proposition 1 and Theorem 1, Ausubel et al. (2014)

describe the bidder’s bidding strategy in the uniform auction. They precisely show that, if

a bidder has a positive probability of influencing the price in a situation where the bidder

wins a positive quantity, then the bidder has incentives to shade her/his bid. However, if a

bidder cannot be pivotal for small quantities (which could happen with a large number of

bidders), then s/he bids her/his expected values for them. If the same bidder is pivotal with

positive probability for large quantities, then s/he shades her/his bid for such quantities. In a

similar vein, Kastl (2011) and Hortacsu, Kastl and Zhang (2018) show that, whenever there

is a positive probability of the market clearing price (rate) being below (above) her/his bid,

a bidder’s bid will be higher than her/his marginal valuation for the corresponding quantity.
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Note that the market clearing price (rate) in a uniform auction will never be below (above)

the worst losing bid. Therefore, based on Kastl (2011), Ausubel et al. (2014) and Hortacsu,

Kastl and Zhang (2018), the bidder of a worst losing bid in a uniform auction optimally sets

a bid that corresponds to her/his marginal valuation. From their results, one can conclude

that the worst losing bid in a uniform auction for Treasury securities corresponds to the true

marginal valuation of a bidder for the corresponding quantity.

Next, in Proposition 2 of the same paper, Ausubel et al. describe the bidder’s bidding

strategy in the discriminatory auction that is characterized in their Equation (6). From an

inspection of Equation (6), one can also conclude that the worst losing bid in a discriminatory

auction for Treasury securities corresponds to the true marginal valuation of a bidder as well.

Therefore, based on Ausubel et al.’s (2014) results, one can conclude that the worst losing bids

in both auction formats indicate the true marginal valuation of a bidder for the corresponding

quantity.

Following these results, we empirically investigate whether the worst losing bid rates are not

statistically different across auction formats. If the worst losing bid rates are not statistically

different, it implies that the marginal valuation of worst losing bidder types are the same

in uniform and discriminatory auctions. This is because the demand for a given bond (the

submitted bid quantities) are statistically equal in both auction formats, as shown below in

the section “Submitted bid quantities for securities”. Note that, in the context of Treasury

auctions, in which a bid consists of a step demand function represented by pairs composed by

a bid rate and amount of securities, the worst losing bid is the highest bid rate in an auction.

To compare the worst losing bid rates in uniform and discriminatory auctions, we consider

the empirical model described in equation (2) using the normalized worst losing bid rate as

a dependent variable. Table A.12 reports the estimated parameters based on the sample

containing only all bonds (Columns 1 and 2) and non-floating bonds (Columns 3 and 4) using

OLS and Bayesian estimation methods and two different samples. (The table is presented

below as well.) OLS results are presented in Columns 1 and 3 of Table A.12 while Bayesian

results are presented in Columns 2 and 4. Our OLS results indicate that normalized worst

losing bid rates are not statistically different between uniform and discriminatory auctions.

In our OLS results, the point estimates range from 0.000 to 0.008 percent depending on

the empirical specification. The results from Bayesian models indicate that our estimated

coefficients of the dummy variable that capture the difference in the worst losing bid rates in

the two auctions are not statistically significant, with point estimates ranging from 0.022 to

0.032. This empirical exercise reveals that the worst losing bidder’s type is not statistically
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different in uniform and discriminatory auctions. This empirical exercise on the worst losing

bidder’s type, combined with the fact that the pool of pre-qualified primary dealers are the

same in both auction formats, and the statistical equality of number of bidders in both formats,

provides our first set of results suggesting that there is no bidder type selection into auction

formats.

Additionally, we examine the robustness of normalized worst rates results to investigate

the differences of these outcomes just before and after the experiment using uniform auctions

during the experiment period and 12 months later. Our results indicate that the normal-

ized worst rates from uniform auctions were not statistically different during and after the

experiment period (See Table A.13).

Although our results provide supporting evidence that bidders do not select into auction

formats, they should be interpreted cautiously as the foundations of our empirical strategy

were inspired by theoretical findings for single-unit auction models (Samuelson, 1985; Marmera

et al., 2013; Gentry and Li, 2014). However, note that, to the best of our knowledge, bidder

entry behavior is still a developing area in multi-unit auction models. Hence, the character-

ization of the equilibrium entry behavior in a multi-unit auction is still an open question in

the auction literature. Given the relevance of this subject, we believe that it is an interesting

path for future research on the topic.

Submitted bid quantities for securities. We also examine whether the total submitted

bid quantities for securities normalized by supply (bid-to-cover ratio) and the total submit-

ted bid quantities (total demand) varies with auction format. After controlling for market

conditions, the submitted bid quantities for securities in an auction reveals information about

bidders’ appetite for these debt instruments, which turns out to unveil information about the

type of bidders that are ultimately acquiring these securities in an auction. Hence, if the bid-

to-cover ratio as well as the total submitted bid quantities for securities does not vary with

the auction format, it also suggests that the bidder types are likely to be the same in both

auction formats. Note that the total submitted bid quantities corresponds to the end-points

of the demand schedule.

To compare the bid-to-cover ratio and the total submitted bid quantities in uniform and

discriminatory auctions, we consider a similar empirical model described in equation (2). In

Panel A of Table A.14, we show the estimated parameters for bid-to-cover ratio based on the

sample containing all bonds (Columns 1-3) and only non-floating bonds (Columns 4-6) using

OLS estimation methods. Our results indicate that the bid-to-cover ratio is not statistically

different between uniform and discriminatory auctions in all specifications. In Panel B, we
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report the findings for total submitted bid quantities. They are also not statistically different

between the auction formats.37 This shows that the end-points of the demand schedule are

not statistically different between uniform and discriminatory auctions.

Average allotment per bidder. Further, we investigate the average submitted bid quan-

tities for securities and allotment per bidder between auction formats. Here also, our results

indicate that the average submitted bid quantities and average allotment per bidder are sta-

tistically not different between the two auction mechanisms.38

Primary dealers’ secondary-market return. Finally, we examine whether the short-

term returns of primary dealers, measured by the difference between primary and secondary

market returns on the debut-day (the initial secondary market trading day in which a given

security is allowed to be resold), vary with auction format.39 In this analysis, the primary

dealer’s return is defined as the difference between the yield of a bond acquired in a primary

market auction minus the yield of the same bond sold in a secondary market transaction.40

That corresponds to the primary dealers’ actual debut-day return in the secondary market, as

it is based on primary-to-secondary transaction data. The primary-secondary market return

is a matter of interest to primary dealers in China as primary dealers buy to make markets.

During the market experiment period, we observe that they sold about 95% of the bonds they

acquired in the primary auctions a few days later, on the debut-day. (See Barbosa et al.,

2020 for more details on that.) Therefore, any statistical difference in the secondary-market

debut-day return of primary dealers (that could be explained by the auction format) would

also unveil a selection on bidder types in an auction format.

In Table A.15, we report the effect on auction format on the primary-to-secondary return of

primary dealers. Our estimations indicate that the secondary-market debut-day measurement

of primary dealers’ short-term returns are statistically not different in uniform and discrimi-

natory auctions in all specifications. This also indicates that primary bidders are indifferent

between the two auction mechanisms as they yield the same returns, further supporting our

37These point-estimates are about 3 percent of the total submitted bid quantities.
38The average mean of submitted bid quantities for securities per bidder for uniform auctions was 39,302.85

[37,595.87, 41,009.83] while, for discriminatory auctions, it was 38,985.95 [37,707.27, 40,224.63]. Similarly, the
average mean of the allotment per bidder for uniform auctions was 16,627.91 [15,915.53, 17,340.30] while, for
discriminatory auctions, it was 38,985.95 [15,524.70, 16,611.93]. All values are in U 10,000 and 95 percent
confidence intervals are in parentheses.

39Dealers are strictly prohibited from having resale trades (of auctioned securities) before the bond’s debut
day, typically five days after an auction.

40A bond’s yield is defined as the discount rate that makes the present value of all of the bond’s cash flows
equal to its agreed price.
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main regression outcome.

Summary. In a nutshell, the above empirical tests show that the lowest type (marginal

valuation), the average submitted bid quantities for securities, the average allotment per

bidder, and the primary dealers’ secondary-market debut-day return do not statistically vary

with auction format. These statistical tests, to an extent, successfully eliminated possible

type selection patterns.

We would also like to re-emphasize that these non-statistical differences in various exercises

are in line with practitioners’ views of the market. Regardless of no-profitability-difference or

institutional background reason, the results did not reveal any statistical evidence of dealers

selecting into different formats. Consequently, the market experiment we study is quite ad-

vantageous to measure the effects of the auction mechanism: in addition to the (bi-)weekly

alternating rule advantage, we also have a similar pool of bidders in both auction formats,

which further supports the otherwise equivalent market environment in our main regression

analyses.
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Table A.12: Results for worst losing rates
Variables Normalized worst rate

All auctions Without floating bonds

OLS Bayesian OLS Bayesian

(1) (2) (3) (4)

Discriminatory auction 0.008 0.032 -0.0003 0.022

[-0.080, 0.097] [-0.045, 0.122] [-0.089, 0.088] [-0.023, 0.070]

Floating bond -0.458 -0.397

[-0.691, -0.226] [-0.453, -0.327]

Auction and market controls Yes Yes Yes Yes

Institution effects Yes Yes Yes Yes

First and last week of the month Yes Yes Yes Yes

Month and year effects Yes Yes Yes Yes

Market drift Yes Yes Yes Yes

Observations 348 348 301 301

R2 0.576 0.590 0.606 0.616

Log marginal likelihood -311.033 -177.206

All regressions include log of duration, log of bid-to-cover ratio, volatility, log of time lag between
auctions by institution, log value of maturing bonds by institution for a given month, and log number
of bidders. In OLS estimates, 95% confidence intervals calculated based on robust standard errors are
in brackets and in Bayesian estimates, 95% credible intervals are in brackets.

Table A.13: Bidder behavior in uniform auctions during and after the experiment
Variables Normalized worst rate

All auctions Without floating bonds

(1) (2)

After (12 months) 0.005 0.104

(0.087) (0.065)

Floating bond -0.552

(0.123)

Other controls Yes Yes

Observations 359 309

R2 0.386 0.332

This table presents the estimates for the normalized worst rates in auctions
controlling for after experiment period, institutions, market conditions, time
gap between auctions by institutions, bid-to-cover ratio, institution effects, and
all other market and time controls. All models are estimated using OLS. Robust
standard errors are in parentheses.
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Table A.14: Relation between bid-to-cover ratio, submitted bid quantities and auction format

Variables All bonds Without floating bonds

(1) (2) (3) (4) (5) (6)

Panel A: Bid-to-cover ratio

Discriminatory auction -0.043 0.040 0.030 -0.105 0.048 0.041

(0.079) (0.093) (0.096) (0.095) (0.094) (0.097)

Floating bond 0.031 -0.175

(0.132) (0.141)

Bank effects No Yes Yes No Yes Yes

Year and month effects No Yes Yes No Yes Yes

Market drift No Yes Yes No Yes Yes

Other variables No No Yes No No Yes

Observations 348 348 348 301 301 301

R-squared 0.001 0.160 0.202 0.004 0.186 0.232

Panel B: Submitted total bid quantities

Discriminatory auction 48,839.761 51,149.832 50,396.770 66,898.273 50,289.752 45,862.608

(42,662.788) (51,683.729) (53,588.759) (45,460.939) (51,459.393) (53,365.247)

Floating bond 44,754.909 -48,090.852

(84,721.548) (86,290.515)

Bank effects No Yes Yes No Yes Yes

Year and month effects No Yes Yes No Yes Yes

Market drift No Yes Yes No Yes Yes

Other variables No No Yes No No Yes

Observations 348 348 348 301 301 301

R-squared 0.004 0.155 0.193 0.007 0.171 0.219

This table reports OLS results for bid-to-cover ratio (Panel A) and submitted total bid quantities (Panel B). We use
an indicator variable (Discriminatory auction) which takes the value of one when auction format is discriminatory
and zero otherwise. In Column 1-3, we use all bonds while in Columns 4-6 we present results without floating
bonds. Robust standard errors are in parentheses.
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Table A.15: Regression results for market gap during the alternating-rule experiment
Variable Primary rate – secondary rate

(1) (2) (3) (4) (5)

Panel A: All auctions

Discriminatory auction -0.043 -0.050 -0.042 -0.049 -0.050

(0.033) (0.034) (0.033) (0.034) (0.034)

Floating bond -0.791 -0.799 -0.792 -0.800 -0.801

(0.089) (0.087) (0.089) (0.087) (0.087)

Log number of bidders 0.350 0.341 0.350 0.341 0.342

(0.169) (0.164) (0.170) (0.165) (0.166)

Lag of days between primar market and -0.036 -0.045 -0.034 -0.042 -0.038

secondary market (0.045) (0.046) (0.044) (0.046) (0.047)

Log of trading volume on the previous month -0.099 -0.122 -0.096 -0.119 -0.119

(0.041) (0.044) (0.041) (0.044) (0.044)

Volatility 0.392 0.115 0.516 0.289 0.301

(0.655) (0.664) (0.701) (0.706) (0.711)

Volatility of FTSE bank index at the day before 4.758 4.908 4.983

secondary market (2.212) (2.218) (2.229)

Government yield gap between primary auction 0.092 0.135 0.142

date and day before the secondary market (0.153) (0.154) (0.155)

Log value of maturing bonds by institution for a 0.007

given month (0.010)

Institution effects Yes Yes Yes Yes Yes

Month & year effects Yes Yes Yes Yes Yes

Observations 348 348 348 348 348

R2 0.553 0.559 0.553 0.560 0.560

Panel B: Without floating bonds

Discriminatory auction -0.042 -0.040 -0.041 -0.039 -0.038

(0.031) (0.031) (0.031) (0.031) (0.031)

Other controls as in Panel A Yes Yes Yes Yes Yes

Observations 301 301 301 301 301

R2 0.484 0.485 0.486 0.487 0.487

This table reports the OLS results for the market gap between uniform and discriminatory auction formats during
the alternating experiment period. All explanatory variables are similar as Table 2. Two policy banks, CDB and
EIB, conducted auction experiment from 2012 to 2015. The experiment period of CDB is between May 2012 and
July 2014, while the experiment period of EIB is between July 2013 and May 2015. Robust standard errors are
in parentheses.
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