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Abstract 

The aerospace, automotive and marine industries have witnessed a rapid increase of using 

adhesive bonded joints due to their advantages in joining dissimilar and/or new engineering 

materials. Joint strength is the key property in evaluating the capability of the adhesive joint. In 

this paper, developments of black-box and grey-box machine learning (ML) models are 

presented to allow accurate predictions of the failure load of single lap joints by considering a 

mix of continuous and discrete design (geometry and material) variables. Firstly, the failure 

loads of 300 single lap joint samples with different geometry/material parameters are calculated 

by FE models to generate a data set of which accuracy is validated by experimental results. 

Then, a deep neuron network (black-box) and a genetic programming (grey-box) model are 

developed for accurately predicting the failure load of the joint. Based on both ML models, a 

case study is conducted to explore the relationships between specific design variables and 

overall mechanical performances of the single lap adhesive joint, and optimal designs of 

structure and material can be obtained.  

Keywords: adhesive bonded joint; composite material; finite element model; genetic 

programming; deep neuron network 
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1. Introduction 

The long-term financial and environmental viability has pushed aviation and transportation 

industries to engage in the application of a lightweight multi-material design strategy for 

primary structures [1]. This has stimulated the application of structural adhesives due to their 

compatibility with a wide range of material types and the possibility of combining multi-

material structures. Adhesive joining also exhibits high strength-to-weight ratio, uniform stress 

transfer, design flexibility, damage tolerance, and crash/fatigue resistance over conventional 

joining methods [2]. 

The performance of adhesive bonded joints depends on several effective design variables such 

as surface treatment, material parameters (properties of adhesive and adherend), and 

geometrical configuration (adhesive thickness, overlap length, stacking sequence, fillet etc.), 

which have been studied intensively by using conventional analysis methods, such as analytical 

model, numerical model and experiment. For instance, da Silva et al. [3] investigated the 

importance of geometric parameters on the lap shear strength respectively. Similar works have 

also been done by many other researchers [4-7], either by adjusting the geometric dimensions or 

the combination of materials within the joints. Their works contribute to the science of adhesive 

bonded joints to understand the effects of individual key design factors.  

However, most of the existing studies use “one-factor-at-a-time” (OFAT) technique, which only 

investigates the effects of one design variable on responses of the interests rather than assessing 

the mutual effect of all effective variables on the overall performances. Actually, the mutual 

effect of design variables of an adhesive bonded joint is very complicated and erratic. Therefore, 

the latest studies start to use evidence-based machine learning techniques to replace the 

conventional numerical and experimental methods to investigate the mutual effects of design 

variables of the adhesive joint. Artificial neuron network (ANN) is one of these promising 
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machine learning techniques. ANN tends to find the relationships between parameters and 

outputs based on a specific form of activation function. The first interest on artificial neurons 

was emerged after McCulloch and Pitts published their work in 1943 [8]. Inspired by networks 

of biological neurons, artificial neurons were modelled by these biological neurons. At present, 

there are a few studies using the technique in analysis of structural joints. Mashrei [9] predicted 

the bond strength of fibre reinforced polymers to concrete joints using a back-propagation 

neuron networks. The method was then applied to predict the strength of a single lap joint by 

considering the effects of width and length of adherends [10], to predict the adhesive bonded 

pultruded composites by considering different bonding angles [11] and to predict the strength of 

adhesive bonded single lap composite joints with varying overlap length and adhesive thickness 

[12]. The results of these studies show that the efficiency of ANN method is very high in 

comparison with the results of analytical and multiple linear regression models. However, only 

continuous and basic geometry parameters were considered in these studies.  

Another machine learning technique, which was used in analysis of adhesive joints, is Genetic 

Programming (GP).  The technique is a variant of genetic algorithm, which attracted many 

attentions of researchers after its first application by Forsyth [13] in pattern recognition. 

Initially, researchers used genetic programming in formulating capacities of different types of 

steel beams [14-16], the distortional buckling stress of steels [17] and mechanical properties of 

rock [18]. Then, genetic programming also demonstrated its potential in tackling complex 

nonlinear structural engineering problems [19, 20] and effects of microstructure on overall 

mechanical performance of composite materials [21]. Recently, genetic programming technique 

started to be used to develop meta-models for design optimization of composite lattice materials 

[22] and functional structures [23, 24]. However, there are not many studies using GP in 

analysis of the performance of lap joints.  According to the author’s knowledge, the only work 

has been done by Al-Mosawe et al. [25] and Liu et al. [26]. In Ref [25], GP was used to predict 
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the bond strength of a double strap joint under various loading rates, which is made of carbon 

fibre reinforced polymers and steel adherends. However, the work only considered limited 

linear continuous variables in the analysis, such as bond length, loading rate and Young’s 

modulus of adherends. In Ref [26], GP was used to analyse the mode I vs. mode II strain energy 

release rate ratio at the crack tip in a single lap joint and an equation was proposed related with 

the material properties and thickness of the adherends and adhesive.  

Although some efforts have been made to use machine learning techniques in analysis of 

adhesive lap joints, the existing studies are generally based on very simple cases, which only 

consider limited continuous variables. So far, there is no well received systematic study in this 

field that involves all possible design variables of a joint in a machine learning model, 

especially the discrete variables such as the type of adherends and adhesive. Hence, this study 

aims to develop two machine learning models for predicting the performance of single lap joints 

based on both deeper ANN (DNN) and genetic programming techniques, which could consider 

the effects of mixed continuous and discrete design variables of the joints. The training and 

testing data of the machine learning models are sampled by Latin Hypercube method and 

generated by Finite Element (FE) models. Based on the results, the performances of the two 

machine learning models are analysed, and their potential applications are also discussed. 

2. Parametric FE model and validation  

To generate the data set for training and testing machine learning models, a parametric FE 

model is developed based on surface-based Cohesive Zone Method (CZM) in Ansys 

Workbench to calculate the failure load of a single lap joint under a static tensile loading. In the 

model, the geometry parameters and material parameters of the constituents (adherends and 

adhesive) of the joint are defined as variables. The schematic of the parametric geometry model 

is shown in Figure 1, which illustrates the variable geometric parameters: the thickness of top 
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and bottom adherends (T1, T2), the bond overlap length (La) and the thickness of adhesive (Ta), 

and the variable material parameters: the materials of the top adherend (Mt), the bottom 

adherend (Mb) and the adhesive (Ma). The adherend length and the tab length are fixed at 100 

and 25 mm with a joint width of 25 mm, according to the ASTM D5868 standard.  

The mesh of the model is shown in Figure 2. Four-node plane-strain elements are used for both 

the adherends and adhesive. The mesh sizes used in the adhesive and the other areas are 0.1 mm 

and 0.4 mm, respectively, after a mesh convergence study to save computational time. The 

adhesive section is modelled as two separate parts, with the neutral axis defined by contact 

debonding with surface-based cohesive properties. The material properties of adherends and the 

cohesive properties of the adhesive used for the parametric analysis are summarised in Section 3 

and illustrated in Table 1. The displacements and rotations of the entire nodes at one (left) end 

are restrained in all direction and the other (right) end are fixed in y-direction and z-direction 

movements and rotations, as indicated in Figure 2. A displacement is applied to the (right) end 

nodes till final failure. The models are computed considering non-linear geometric analysis.  

To validate the accuracy of the developed FE model, two categories of single lap joints 

(identical aluminium and composite joints) were fabricated and tested. The aluminium used in 

the joint is 6082 T6, which is a commonly series for automotive industry and the adhesive used 

for bonding the aluminium joints is Araldite® 2015, which is a two-component, room 

temperature curing structural adhesive providing a resilient bond. For the composite joints, the 

adherend was made of unidirectional Hexcel® 8552/IM7 pre-preg with a quasi-isotropic 

stacking sequence of [0/45/90/-45]S. The properties of the composite were determined in 

previous studies [27, 28] and the adhesive used in the joints is Cytec FM® 94 modified epoxy 

adhesive film (a moisture resistant adhesive designed for use in high temperature 

environments). The material properties of the adherends and the adhesives are summarized in 

Table 1. Both joint categories have adherend and adhesive thicknesses of 2 and 0.25 mm, and an 
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overlap length of 25 mm. In addition, a slightly different joint geometries were applied to 

validate the strategy of the developed FE model to fit various joints designs. For the composite 

and the aluminium joints, the adherend lengths are 114 mm and 100 mm respectively, and the 

widths of the composite and aluminium joints are 50 mm and 25 mm respectively.  

During the manufacturing of test samples, the surface treatment of the aluminium adherend 

included abrasive sanding using P40 sandpaper followed by a cleaning process with ethanol 

solvent. A thin layer of Sika Primer 204N was also applied to favour the chemical bond at the 

adherend-adhesive interface. The adhesive thickness was controlled by using glass beads of a 

given diameter of 0.25 mm in the aluminium joints, and a clamping plates with fasteners in a 

designed grip as shown in [27, 28]. For the composite joints, the adherend were manually laid 

up and cured in an autoclave. A layer of peel ply was applied to the composite panel during the 

curing procedure to provide a contaminant free surface and the OntoTM SB1050 treatment was 

applied to the adhesive overlap region before curing to promote chemical bonding interactions. 

All samples were cured in an oven at 120 ºC for 40 minutes.  

The lap shear tests of the aluminium single lap joints were carried out using an Instron machine 

with a 30kN load cell, wedge-action grips, and a displacement rate of 1 mm/min at room 

temperature, as shown in Figure 3(a). For the aluminium joint, a mechanical extensometer was 

used to measure the relative displacement between the two dots (measuring reference points) at 

a distance of 12.5 mm to the adhesive overlap (as shown in Figure 1). For the composite joints, 

a laser extensometer was mounted at a defined distance and angle (5º) to measure the relative 

displacement (a distance of 12.5 mm to the adhesive overlap) between the two pads (with 

special tabs for the laser detector) attached to the bonded overlap area of the joints, as shown in 

Figure 3(b) [27, 28]. It can be seen that both two categories of joints failed in adhesion failure as 

shown in Figure 3(c) and 3(d), although a small area of delamination in the composite adherend 

was also observed (Figure 3(d)).  
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Figure 4 presents the comparison of the load-displacement curves of the identical aluminium 

and composite joints obtained from experiments and the corresponding FE models. A good 

agreement can be found by comparing the slopes of the curves to represent the stiffness of the 

joints, which demonstrates the accuracy of the modelling technique.  

3. Machine Learning Models 

3.1 Data points sampling 

The principle of data-based approaches requires an appropriate data set from a specific problem 

domain for the purpose of accurate training and testing. It is expected that the selected data set 

can well represent the properties of the problem domain. In another words, it is better to have 

more averagely distributed data points in the problem domain. Therefore, sampling techniques 

are usually employed. Latin Hypercube Sampling (LHS) technique was used in this study, 

which has been widely employed by researchers [29]. Its superior efficiency over Mante Carlo 

Sampling (MCS) is well received. The detailed working principles of LHS can be found in 

previous studies [26, 29]. According to the principle of LHS, it is easy to find that the concept 

of random sampling in each stratified layer helps to prevent the generation of poor sampling 

areas. Hence, LHS method is expected to generate more representative samples than MCS 

method does.  

In this study, seven design variables of single lap joint are defined as shown in Table 2, and four 

of which are continuous variables representing geometric features and the other three are 

discrete variables representing different material parameters. As shown in Table 2, parameters 

P1-P4 are the thickness of top and bottom adherends (T1, T2), bond overlap length (La) and the 

thickness of adhesive (Ta), respectively. The lower and upper bounds are defined for each 

parameter respectively, according to the published studies. The three discrete variables P5-P6 

are the materials of the top adherend, bottom adherend and adhesive respectively.  Integers (1 to 
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4) for the (top/bottom) adherends represent 4 different types of adherend materials 

(Polyphtalamide(PPA) [6], Aluminium 6082 T6, Woven CFRP [27, 28] and Steel Q235) as 

shown in Table 1(a). Integers (1 to 4) for the adhesive represent 4 different adhesive materials 

(AV138 [30], Araldite 2015 [30], Loctite EA 9497 [6] and FM94 [27, 28]) as shown in Table 

1(b). Unlike the geometric parameters which are continuous values, the integer labels 1-4 

represent corresponding material properties, which are discrete values.  

Based on the definitions of these variables, LHS can be implemented to generate samples with 

different combinations of the variables. The algorithm of LHS is coded in the commercial 

software Matlab. In total, 300 sets of sample points are generated in the constrained domain. 

Then, the data sets are manually imported into Ansys Workbench, where 300 FE joint models 

with different geometry configurations and material definitions but same meshing strategy are 

automatically generated and solved. The corresponding FE simulation results are then used as 

the input data sets for the development of machine learning models.  

3.2 Data pre-processing 

To explore the problem systematically, the 300 sets of data should be processed by an 

appropriate pre-processing method before importing to machine learning models. The first step 

is to normalize the data of parameters P1-P4, since a normalized data set can regulate the whole 

data set at a same scale. The min-max normalization method was used in this analysis, since it is 

well known that the method usually has higher efficiency than Z-score normalization and 

decimal scaling normalization methods [31]. The min-max normalization is also called feature 

scaling which brings all parameters into the same range [0, 1], and it is formulated by: 

 𝑋𝑋′ =  
𝑋𝑋 −  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
 (1) 



9 

 

where X is the target parameter, and Xꞌ is the normalized data. Xmin and Xmax are the minimum 

and maximum values of the parameter X in the whole data set. Hence, the original data set can 

be transformed to a normalized data set, where each parameter is in the range [0, 1]. However, 

the three material parameters P5-P7 are not normalised. It is because that the three material 

parameters are discrete parameters that are defined by integers. And also they are of no 

necessity to be normalized in this study.  

It is a common practice to split the 300 sets of normalized data into training and testing sets for 

the training and testing purposes in machine learning models. The data is split by a ratio 0.2 

(20% of the whole set of data is testing data) which makes 240 sets of data fall into the training 

set and 60 sets of data fall into the testing set. In this study, k-fold cross-validation is employed 

to avoid the so-called ‘overfitting’ problem caused by a single random choice of the training and 

testing data in machine learning techniques [32]. The single parameter k refers to the number of 

groups that the data to be split into. In this study, three different groups of training and testing 

data are generated as shown in Figure 5. It follows the approach of 3-fold cross-validation but 

applies on a shuffled data set. In the 3 cross-validation groups, each contains 240 training sets 

and 60 testing sets. It also illustrates that each cross-validation group contains varied testing 

data, which are selected randomly. Then all the 3 groups of data are trained and tested in 

machine learning models, which will be developed in next sections.  

3.3 Deep Neural Networks 

ANN is a biological neural network inspired algorithm of which aim is to mimic a population of 

physically interconnected neurons or a group of disparate neurons [8]. Figure 6(a) shows a brief 

structure of a biological neuron. The biological neuron receives biological signals from the 

dendrites and modulate these signals in various amounts. The modulated information is output 

to the synapse as long as the strength of the signals reached a certain threshold. The principle of 
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an artificial neural network is depicted in Figure 6(b). All the input parameters obtained from 

the training data form the input layer of ANN. The information of these input parameters is 

modulated in the following hidden layer through an activation function f(x). By this way, the 

weighted sum of the inputs is calculated to represent the total strength of the input signals. In 

addition, a step function is also used to evaluate if the strength has exceeded a certain threshold. 

When the strength exceeds the threshold, the information will be delivered to the output layers. 

By performing this method, ANN presents two key characteristics [33]: (1). It presents a strong 

ability in adaptive learning. (2). It learns knowledge from data by storing information in the 

weights of neurons. With these characteristics, ANN reveals its powerful capabilities in solving 

complicated regression and classification problems.  

In this study, ANN is applied to reveal the hidden information and relationship between the 

seven joint parameters and the ultimate failure load of the joint. For describing this complicated 

relationship, an ANN structure with five hidden layers was developed as shown in Figure 7. As 

the structure becomes ‘deeper’ by having more than one hidden layer, the ANN structure is 

treated as a deep neural network (DNN). In the network, 260 sets of training data are input to 

the DNN model. These input parameters form up the input layer. Then, the information in the 

input layer is transferred to hidden layers by using weighted functions. The functions in the 

elliptical circle (Figure 7) depict how each hidden layer receives weighted information from its 

previous layer. It shows that the input information of the i’th neuron in the j’th hidden layer is 

the weighted sum of the information of all the neurons from the (j-1)’th layer. The 𝑤𝑤𝑖𝑖
𝑗𝑗 denotes 

the weight of the i’th neuron of the j’th layer, and bj is the bias term which makes the network 

more flexible by adjusting the output along with the weighted sum of the inputs. Then the 

summed information 𝑧𝑧𝑖𝑖
𝑗𝑗 is regulated by the activation function δ, which is ‘ReLU’ in this case. 

The activation function can determine if the summed information of the current neuron should 

be activated or not. The same process performs at each layer and eventually all the information 
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is output to the terminal of the network. The terminal yf is the output layer and it outputs the 

predicted failure load in this case.  

The DNN model is coded by using Keras package in Python with the backend of Tensorflow. 

As shown in Table 3, the first hidden layer has 560 parameters as there are 7 input variables 

plus a bias term and then there are 70 elements in this layer plus additional 70 elements for the 

bias term. The parameters in the other layers can be calculated by the same way. The ‘None’ in 

the output shape indicates that there is no 2-dimensional input variable in this study. As a result, 

there are in total 4922 parameters and all of which are trainable parameters.  

3.4 Genetic Programming  

Genetic programming is an automated searching algorithm which is widely used to seek for 

reliable relationships between variables in a specific data set. Koza [34] firstly proposed the 

methodology of genetic programming in his article where he also mentioned its larger 

complexity over the traditional genetic algorithm. In genetic programming, populations are 

formed by computer programs and the programs can be represented by binary trees.  Functions 

and terminals of the computer programs represent the branches and leaves of these binary trees. 

The working principal of genetic programming is exploiting, and its exploiting capability is 

inspired by Darwinian principle of natural selection and survival of the fittest [19].  The 

working principle of genetic programming is also illustrated in the previous article [26].  

The working flowchart of the developed genetic programming model in this study is shown in 

Figure 8. The 300 sets of data are imported to train and test the genetic programming model. For 

each set of data, there are four continuous and three discrete variables and their corresponding 

simulation results of failure load of the bonded joint. Firstly, the program starts with an 

initialized population. At this stage, the initial population contains randomly generated 

computer programs, which attempt to describe the relationship between the input variables and 
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output results. Then, the fitness of this generation is evaluated and checked if it satisfies the 

terminate conditions. If it does not meet the terminate conditions, the first generation of 

programs becomes the parent generation. The parent generation will go through the processes of 

mutation and crossover of which aim is to evolve the programs. The evolved programs with 

higher fitness will be left and become the first children generation. It is deemed that the overall 

fitness of the children generation should be higher than its parent generation. The fitness of the 

first children generation will be evaluated to check if there is any program meets the terminate 

condition. If the terminate condition is not satisfied, the first children generation will turn to be 

the second parent generation and go through the processes of mutation and crossover again to 

generate the second children generation. As a result, the whole evolving process will run 

repeatedly if the terminate condition is not satisfied. When the fitness of a generation meets the 

terminate condition or the evolution has completed a defined number of generations, the whole 

process will stop. At the end, the programs in the final generation are expected having the best 

fitness, which should have a good ability to predict the ultimate failure force Fs by giving the 7 

variables.  

In this study, the genetic programming method is coded using the package ‘GPlearn’ in Python. 

The specific parameters of the genetic programming model for this case are shown in Table 4. 

The population is initialized with the size of 6000 and the maximum number of evolution 

generations is 200. The stopping criteria is 0.01. It can early stop the program when the 

terminate condition is satisfied. And the chances of crossover and mutation are 0.7 and 0.25 

respectively. The parsimony coefficient is 2e-5 to control the overall length of the generated 

programs in each generation.  
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4. Results and Discussion 

4.1 Results of machine learning models 

To avoid “over-fitting”, three groups of data which were pre-processed by 3-fold cross 

validation method, are used in developing both two machine learning models. Each group of 

data is randomly divided by the ratio of 0.2. The validation of the training results of the DNN 

model on the 3 different groups of data are shown in Figure 9(a-c) respectively. The points in all 

the three charts are close to the validation lines. It illustrates that the training accuracy of the 

developed DNN model remains at a high level, although the data is varying in the different 

groups. The testing data and the DNN predicted results of the three validation groups are 

displayed in Figure 9(d-f) respectively. The testing results are all very close to the validation 

line though slight difference can be observed between different groups. A widely used method 

for evaluating the prediction accuracy is to calculate the R squared (R2) value. The definition of 

R2 is expressed by:  

 
𝑅𝑅2 = 1 −  

∑ (𝑦𝑦𝑖𝑖 −  𝑓𝑓𝑖𝑖)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2𝑖𝑖

 (2) 

where yi is the value of the i’th testing data point, and 𝑦𝑦� is the mean value of the testing data. fi 

denotes the value of the i’th predicted data point. Hence, R2 represents the proportion of the 

variance for a dependent variable that is explained by the fitting model, or simply saying the 

goodness-of-fit. In Figure 9(d-f), the R2 are 0.939, 0.892 and 0.951 for the predictions of the 

three groups of testing sets. Despite of the slight difference, the results show that the ultimate 

failure loads of the joints are accurately predicted by the developed DNN model. The accurate 

prediction rates of the 3 different cross-validation groups indicate that the DNN model does not 

have the problem of over-fitting. It ensures the accuracy of the developed model regardless of 

the different selections of data sets.  
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Similarly, the training results based on the developed GP model are shown in Figure 10(a-c) for 

the three cross-validation groups respectively.  Nearly all the points are concentrated along the 

validation line, which shows good training accuracies. Compared with the training results of the 

DNN model (Figure 9(a-c)), the GP model shows similar training rate on all the three data 

groups. Figure 10(d- f) show the testing results of the three different groups based on the GP 

model, and the corresponding R2 values are 0.934, 0.909 and 0.939 respectively. Compared to 

the testing R2 values for the three groups (0.939, 0.892 and 0.951) based on the DNN model, the 

accuracies of the first and last data groups based on GP model are slightly lower but the 

accuracy of the second data group is a bit higher than that of DNN model. On the other hand, 

both the DNN model and the GP model show high prediction accuracies on all the three cross-

validation groups though the accuracy of Group 02 is slightly lower than the accuracies of the 

other two groups. In general, it demonstrates that both the DNN model and the GP model 

present good prediction accuracies on the given data sets without any over-fitting problems.   

As both the machine learning models perform successfully on all the three groups of data sets, 

the data set of Group 01 is selected to train both the models. Although having similar prediction 

accuracies, the GP and the DNN methods actually give out different types of prediction models. 

Based on the data Group 01, the GP method generates a function: 

 
𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4,𝑥𝑥5, 𝑥𝑥6,𝑥𝑥7) = 2.5𝑒𝑒−3𝐴𝐴2 ∙ ��𝑥𝑥3 ∙ 𝑥𝑥6 ∙ ��|𝐴𝐴5| ∙ 𝐴𝐴3  +  𝑥𝑥5  −  0.272�� (3) 

where: 

𝐴𝐴1 =  �| − 𝑥𝑥1 + 7.84𝑒𝑒−4(𝑥𝑥4 +  𝑥𝑥5  −  𝑥𝑥7) − 2.13𝑒𝑒−4| 

𝐴𝐴2 =  �|�𝑥𝑥3 −  𝑥𝑥3 +  𝑥𝑥4 ∙ (�𝑥𝑥3  + 𝑥𝑥4  + 𝑥𝑥5  −  2𝑥𝑥7 + 0.028)| 



15 

 

𝐴𝐴3 = 0.028𝑥𝑥1 ∙ (
𝑥𝑥2
𝑥𝑥4

+  𝑥𝑥7) 

𝐴𝐴4 =  𝑥𝑥6 − 0.028�|𝑥𝑥3(−𝑥𝑥1 + (𝑥𝑥5  +  0.028𝑥𝑥7) ∙ 𝐴𝐴1)| 

𝐴𝐴5 = 0.028 ∙ �𝑥𝑥5  −  3𝑥𝑥7  + 
𝐴𝐴4

𝑥𝑥7 − 1.03
� ∙ (𝑥𝑥5  −  0.272𝑥𝑥6 + 0.028𝑥𝑥7) 

The joint failure load f (x1, x2, x3, x4, x5, x6, x7) is formulated by the variables x1 – x7 which 

represent the four continuous variables P1-P4 and three discrete variables P5-P7 respectively as 

shown in Table 2. The generated function is one of the viable solutions searched by the GP 

algorithm to fit the real relationship between the ultimate failure load and the geometry/material 

parameters of the joint. On the contrary, the DNN model cannot give out a visible function to 

depict the relationship between the input parameters and the output results, though it can 

perform as well as the GP model does on predicting the joint failure load. It is because the 

characteristics of a DNN model is to find the relationships between inputs and outputs by 

constructing complicated layers. These layers make the DNN model possible to fit the data that 

has nonlinear internal relationships. However, it also makes the model too complicated to give 

out a visible expression. Therefore, it can be concluded that the DNN model can be treated as a 

black box model as it gives no knowledge of the internal structure of the model, whilst the GP 

model is more like a grey box which contains a part knowledge of the whole problem. However, 

both the developed GP and DNN models could be used as tools for design and analysis of 

adhesive joints in many practical scenarios, such as, geometry optimization and material 

selection. 

4.2 Selection of adhesive and design of adhesive layer for a hybrid joint 

One of the most common scenarios in designing an adhesive joint is to determine the right 

adhesive and the configuration of the adhesive layer for two given adherends. In practice, when 
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the materials and geometries of the top and bottom adherends are determined, it is necessary to 

choose a right adhesive and determine the corresponding thickness and length of the adhesive 

layer to ensure an optimal joint strength. In the case study, it assumes that the materials of the 

top adherend is PPA and the bottom adherend is Al, of which properties are shown in Table 

1(a). The thicknesses of the top and bottom adherends are both 3 mm, which has been widely 

used in structural components. Hence, in the ML models, the input variables P1 and P2 are 

assigned by the value of 3 and the discrete variables P5 and P6 are equal to 1 and 2 respectively. 

As a result, for a given adhesive P7, only two variables P3 and P4, which represent the length 

and the thickness of the adhesive layer (Table 2), are left in the models. Then, the corresponding 

failure loads of the joint can be discussed by both DNN and GP models with the values of P3 

and P4 varying in their own bounds.  

The results of joint failure load predicted by the developed DNN model with respect to the 

length P3 and the thickness P4 of the four different adhesives are plotted in Figure 11. For all 

the four different adhesive materials, the relationships are plotted as curved surfaces, but they all 

contain the similar trend that the predicted failure loads increase when the thickness of adhesive 

decreases and the length of adhesive increases. It is also found that the peak force predicted by 

the DNN model for the joint with AV138 adhesive (P7=1) is around 1900 N, and the values are 

around 1450 N, 1600 N and 1850 N for the joints with Araldite 2015 (P7 = 2), Loctite EA 9497 

(P7 = 3) and FM94 (P7 = 4), respectively. According to the prediction results based on the DNN 

model, the suggest adhesive for the PPA/AL joint is AV138 adhesive (P7=1), and thickness of 

the adhesive is suggested to be as thin as possible (approach to 0.1 mm), and the length of 

adhesive approaches to 70 mm. This is because this design gives an approximately 1900 N peak 

failure load which is higher than the possible designs with other three adhesives.   

The three-dimensional plots of the failure loads predicted by the GP model with respect to the 

length P3 and the thickness P4 of the adhesive for four different adhesive materials are shown in 
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Figure 12. The plots demonstrate a similar trend as obtained by the DNN model, where the 

predicted failure loads increase, when the thickness of adhesive decreases and the length of 

adhesive increases. However, the shape of the curved surfaces obtained by the GP model is 

slightly different from the ones based on the DNN model. For the results of GP, when the 

thickness of the adhesive is larger than 0.5 mm and the adhesive length is smaller than 50 mm, 

the surface tends to be flatter which illustrates that the failure load tends to have lower nonlinear 

relationships with the two variables. When the thickness of the adhesive is smaller than 0.5 mm 

and the length is larger than 50 mm, a significant increment can be observed on the plot 

surfaces. It is because that the GP model tends to use combined linarites and nonlinearities to 

depict the relationships in the whole area. On the contrary, the DNN model tries to represent the 

relationships between the variables and the output by assuming global nonlinearities. Therefore, 

the DNN model manages to predict the results and have smooth transitions on the whole results 

surfaces, while on the results surfaces based on the GP model, there are more clear boundaries 

to differentiate linear and nonlinear areas. The predicted failure loads for AV138 adhesive 

(P7=1), Araldite 2015 (P7 = 2) and Loctite EA 9497 (P7 = 3) are around 1900 N, 1400 N and 

1500 N, respectively, which are similar to the values obtained by the DNN model. For FM94 

(P7 = 4), the peak failure load predicted by the GP model is 1600 N which is approximate 200 

N lower than the value predicted by the DNN model. Despite the slight difference, the 

suggested design based on the GP is same to the one suggested by the DNN model. For the 

PPA/AL joint, AV138 adhesive (P7=1) with the very thin thickness and the overlap length 

approaching to 70 mm is the suggested optimal design, which gives a peak failure load close to 

1900 N.  

5. Conclusion 

Two machine learning models (GP and DNN) are developed in this study to predict the ultimate 

failure load of single lap joints by considering four continuous geometry variables and three 
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discrete material variables. The data sets for training and testing the machine learning models 

are selected by employing the DoE method Latin Hypercube Sampling (LHS). To generate the 

data set for the machine learning models, a parametric FE model is developed in Ansys 

Workbench and validated by two different experimental tests. In total, 300 sets of data are 

generated by the developed parametric FE model, 240 sets of which are used to train the models 

and the rest 60 sets are used for testing. In order to avoid the over-fitting problem, the 3-fold 

cross-validation method is employed. The developed GP model acts as a grey-box model which 

can give out a visible expression to show the relationships between the variables and the output. 

The DNN model is, on the contrary, a total black-box model of which internal structure of the 

solution is very complicated and invisible. But the results show that both the DNN and GP 

methods have robust abilities for accurately predicting the failure load of a single-lap joint by 

considering both continuous geometry variables and discrete material variables. Therefore, both 

the developed DNN and GP models can be used in practice as a tool to analyse and design 

adhesive single lap joints. Moreover, the results may also indicate that other similar machine 

learning methods, such as adaptive neuro-fuzzy inference system (a kind of artificial neural 

network based on Takagi-Sugeno fuzzy inference system), which has been applied in predicting 

performance of composite laminates [35, 36], could be also potentially used in this field. 

In the case study of designing adhesive layer for a hybrid PPA-Al joint, both the models 

conclude a similar trend on the effects of the adhesive selection and geometry configurations of 

the adhesive layer on comparing the final failure load of the joint. And an agreed optimal design 

for the hybrid joint is suggested by both the ML models, which uses AV138 adhesive, and the 

thickness and length of the adhesive layer should be closed to 0.1 mm and 70 mm respectively. 

Actually, the developed models can be also used in other scenarios in practical design. By fixing 

the values of the confirmed design variables, the relationships between the uncertain variables 

and the failure load can be analysed, and the optimal design could be determined.   
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Figures 

 

Figure 1: Geometry and dimensions of parametric single lap joint FE model with width 

of 25 (unit: mm) 

 

 

 

Figure 2: Load and boundary conditions of single lap joint FE model 
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Figure 3: The setup of the test machine with (a) mechanical extensometer and (b) laser 

extensometer, and the failure of identical (c) aluminium joints and (d) composite joints. 

 

 

Figure 4: Load-displacement curves of identical (a) aluminium and (b) composite joints  
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Figure 5: Training and testing data sets divisions split by random 3-fold cross-validation 

method. 

 

 

Figure 6: The schematic of how artificial neuron networks mimic the function of biological 

neuron networks. 
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Figure 7: General schematic of a deep neuron network for predicting ultimate failure load of a 

single lap joint 

 

 

Figure 8: Flowchart of how genetic programming technique applies on the continuous and 

discrete variables of single lap joints. 
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Figure 9: Comparisons of the training results of the ultimate failure load for cross-validation 

(a). Group 01, (b). Group 02 and (c). Group 03, and the testing results of the failure load for 

cross-validation (d). Group 01, (e). Group 02 and (f). Group 03 based on the DNN Model. 

 

 

Figure 10: Comparisons of the training results of the ultimate failure load for cross-validation 

(a). Group 01, (b). Group 02 and (c). Group 03, and the testing results of the failure load for 

cross-validation (d). Group 01, (e). Group 02 and (f). Group 03 based on the GP Model. 



27 

 

 

Figure 11: Three-dimensional plotting of the effects of the length and the thickness of adhesive 

on 4 different adhesive materials: (a) AV138 (P7=1), (b) Araldite 2015 (P7=2), (c) Loctite EA 

9497 (P7=3) and (d). FM94 (P7=4) based on the DNN model. 
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Figure 12: Three-dimensional plotting of the effects of the length and the thickness of adhesive 

on 4 different adhesive materials: (a) AV138 (P7=1), (b) Araldite 2015 (P7=2), (c) Loctite EA 

9497 (P7=3) and (d). FM94 (P7=4) based on the GP model. 
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Tables 

Table 1: Material properties of (a). top and bottom adherends, and (b). adhesives.  

(a). Materials of top and bottom adherends. 

  Polyphtalamide (PPA) 
(50% glass fibre) [6] 

Aluminium 
6082 T6 

Woven CFRP 
[27, 28] 

Steel 
Q235 

Label Number  1 2 3 4 

Young’s Modulus, E 
(GPa) 

17.62 70.00 76.39 210.00 

Poisson’s Ratio, v 0.32 0.30 0.40 0.30 

     

(b). Adhesives. 

  AV138 
[30] 

Araldite 2015 
[30] 

Loctite EA 
9497 [6] 

FM94 
[27, 28] 

Label Number 1 2 3 4 

Young’s modulus, E (MPa) 4890 1850 7710 3000 

Poisson’s ratio, ν 0.35 0.33 0.29 0.35 

Tensile failure strength, σf (MPa) 39.45 21.63 25.35 30.00 

Shear failure strength, τf (MPa) 30.20 17.90 16.00 20.00 

Toughness in tension, GIC (N/mm) 0.20 0.43 0.26 1.50 

Toughness in shear, GIIC (N/mm) 0.38 4.70 0.90 2.70 
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Table 2: Continuous geometry parameters and discrete materiel parameters of a single 

lap joint. 

 Parameters (LHS) Lower 
Bound 

Upper 
Bound 

Symbol 

Continuous 
Values (mm) 

 

Thickness of top adherend, T1  1 10 P1 

Thickness of bottom adherend, T2 1 10 P2 

Bond overlap length, La 10 70 P3 

Thickness of adhesive, Ta 0.1 2 P4 

Discrete 
Values 

Material of top adherend Mt  1 4 P5 

Material of bottom adherend Mb 1 4 P6 

Material of adhesive Ma 1 4 P7 

 

 

Table 3: Structure of layers and elements in the generated DNN model. 

Layer (Type) Output Shape Parameters 
(DNN Layers) 

Input Layer  (None, 7) 7 

Hidden Layer 01 (Dense) (None, 70) 560 

Hidden Layer 02 (Dense) (None, 35) 2485 

Hidden Layer 03 (Dense) (None, 35) 1260 

Hidden Layer 04 (Dense) (None, 14) 504 

Hidden Layer 05(Dense) (None, 7) 105 

Output Layer (Dense) (None, 1) 1 

Total Parameters: 4, 922, Trainable Parameters: 4, 922 
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Table 4: Settings of genetic programming model by using ‘GPlearn’ in Python 

Parameters 
(GPlearn) 

Function set Population 
size 

Generations Parsimony 
coefficient 

Values ‘+’, ‘-’, ‘*’, ‘/’, ‘√’ 6000 200 2e-5 
     

Parameters 
(GPlearn) 

Crossover Subtree 
mutation 

Hoist 
mutation 

Point 
mutation 

Values 0.7 0.1 0.05 0.1 
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