
1 
 

Uncertainty assessment of drought characteristics projections in 1 

humid subtropical basins in China based on multiple CMIP5 2 

models and different index definitions 3 

 4 

Kai Xua, Chuanhao Wua,b*, Ce Zhangc,d, Bill X. Hua,b 5 

a Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, 6 

China 7 

b Green Development Institute of Zhaoqing, Zhaoqing, China 8 
c Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United 9 
Kingdom 10 
d UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster LA1 4AP, 11 
United Kingdom 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Author for correspondence 22 

Chuanhao Wu (wuch0907@jnu.edu.cn) 23 

Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, 24 

China. 25 

 26 

http://link.springer.com/search?facet-creator=%22Bill+X.+Hu%22
mailto:wuch0907@jnu.edu.cn


2 
 

Abstract 27 

This study presents an assessment of projection and uncertainty of drought 28 

characteristics (frequency DF, drought area Da) using three drought indices (Palmer 29 

Drought Severity Index, PDSI; Standardized Precipitation Index, SPI; Standardized 30 

Precipitation Evapotranspiration Index, SPEI) in the humid subtropical Pearl River 31 

basin in southern China during the period 2021-2050. The projection is based on 13 32 

CMIP5 general circulation models (GCMs) under three Representative Concentration 33 

Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5). Specifically, the SPI is derived by 34 

the precipitation simulations of 13 GCMs, whereas the PDSI and SPEI are computed 35 

based on the simulations from the Variable Infiltration Capacity (VIC) model forced 36 

by 13 GCMs. The uncertainty of projected drought indices (PDSI, SPI and SPEI) due 37 

to various GCMs and RCPs is quantified by the variance-based sensitivity analysis 38 

approach. The results indicate that the sign and magnitude of the projected changes in 39 

DF and Da are highly dependent on the index definition at the regional scale, and the 40 

SPI tends to underestimate the projected changes in DF compared with PDSI and 41 

SPEI. There is a large model spread in the projected DF changes (especially for SPEI) 42 

under all RCP scenarios, with larger model spread for more extreme drought events. 43 

Uncertainty analysis shows that GCM contributes more than 90% of total uncertainty 44 

in drought indices projections, while the RCP uncertainty is rather limited (< 10%) 45 

compared with GCM. The GCM uncertainty is spatially unevenly distributed and 46 

shows large variability at the interannual scale. This study highlights the sensitivity of 47 

drought projections to the index definition as well as the large spatial-temporal 48 

variability of general sources of uncertainty in drought projections. 49 

 50 

Key words: Drought projection; Drought indices; uncertainty quantification; CMIP5; 51 

RCPs 52 

 53 

1. Introduction 54 

Drought is a stochastic and recurring natural hazard that has devastating impacts on 55 
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economy, society, and ecosystem services around the word (Piao et al., 2010; Dai, 56 

2011a; Thornton et al., 2014; von Buttlar et al., 2018). The economic loss caused by 57 

drought hazards is enormous, with an annual loss estimate of $6~8 billion at a global 58 

scale (Wilhite, 2000). The Intergovernmental Panel on Climate Change (IPCC)’s 4th 59 

and 5th Assessment Report (AR4 and AR5) indicated that global surface mean 60 

temperature (T) is likely to increase 0.3~4.8°C, accompanied by changes in spatial 61 

patterns and intensity of precipitation (P) by the end of this century (IPCC, 2007; 62 

2013). Global warming is expected to exacerbate extreme events such as droughts, 63 

leading to significant changes in area and intensity of drought all around the world 64 

(Dai, 2013; Cook et al., 2014; Trenberth et al., 2014; Gudmundsson et al., 2017; 65 

Samaniego et al., 2018). Exploring projected changes in drought intensity and 66 

frequency under various emission scenarios can help prepare for future disaster 67 

prevention and mitigation, and support sustainable development. 68 

 69 

Drought is an abnormal phenomenon that can occur in short periods (days and weeks) 70 

or long periods (months or longer), and can commonly be characterized by drought 71 

monitoring indices. Typically, droughts are classified into four major types: 72 

meteorological drought, hydrological drought, agricultural drought, and 73 

socioeconomic drought (Heim, 2002; AMS, 2004; Hayes et al., 2011; Mishra and 74 

Singh, 2011). Different types of drought have distinct spatiotemporal characteristics, 75 

and they vary at different scales (Peters et al., 2006; Tallaksen et al., 2009). 76 

Meteorological drought is identified by a prolonged lack of P as the main indicator, 77 

resulting in total soil moisture (SM) deficits (i.e., agricultural drought) as well as the 78 

decrease of streamflow, groundwater, reservoir and lake levels (i.e., hydrological 79 

drought). Such drought hazards can also lead to severe consequence of drinking water 80 

scarcity, and negatively impact crop yield and production, and result in economic loss. 81 

Socioeconomic definitions of drought associate the supply and demand of certain 82 

economic good with elements of meteorological, agricultural and hydrological 83 

drought (Wilhite and Glantz, 1985). 84 

 85 
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In the past decades, numerous indices have been proposed to quantify the drought and 86 

wet conditions based on different hydroclimatic variables (e.g., T, P, 87 

evapotranspiration ET, SM and runoff RO), of which the most commonly used is the 88 

Palmer Drought Severity Index (PDSI; Palmer, 1965), the Rainfall Anomaly Index 89 

(RAI; van Rooy, 1965), the Crop Moisture Index (CMI; Palmer, 1968), the Soil 90 

Moisture Drought Index (SMDI; Hollinger et al., 1993), the Surfacewater Supply 91 

Index (SWSI; Shafer and Dezman, 1982), the Standardized Precipitation Index (SPI; 92 

Mckee et al., 1993, 1995), the Standardized Runoff Index (SRI; Shukla and Wood, 93 

2008), the Standardized Precipitation Evapotranspiration Index (SPEI; 94 

Vicente-Serrano et al., 2010), and the aridity index (AI; Huang et al., 2016). The use 95 

of different types of drought indices often leads to different spatio-temporal 96 

variabilities of drought characteristics, even though they are calculated using the 97 

inputs of hydroclimatic variables generated by the same modeling system (Burke and 98 

Brown, 2008; Ukkola et al., 2018). For example, PDSI and SPEI can measure the 99 

warming effect more explicitly through enhanced ET than other drought indices based 100 

on P alone (e.g., SPI). 101 

 102 

The General Circulation Models (GCMs), released by the Coupled Model 103 

Intercomparison Project (CMIP), are the primary tools for estimating trends and 104 

variability of future climate change (IPCC, 2007; 2013). Based on GCM simulations, 105 

the influence of climate change on droughts have been investigated by numerous 106 

studies. The majority of research indicated an increased drought risks over different 107 

regions globally as the level of greenhouse gas (GHG) emission increases (e.g., Wang, 108 

2005; Sheffield and Wood, 2008; Li et al., 2012; Dai, 2011b, 2013; Cook et al., 2014; 109 

Wang and Chen, 2014; Rhee and Cho, 2016; Wu et al., 2016; Zhao and Dai, 2017; 110 

Ruosteenoja et al., 2018; Wang et al., 2018; Amnuaylojaroen et al., 2019; Rudd et al., 111 

2019). Although enormous efforts have been made to project how the drought risk 112 

would occur as the result of GHG emission increase, few studies have assessed and 113 

quantified the source of uncertainty in projecting future drought conditions. This 114 

uncertainty is due mainly that drought is a complex process coupled with multiple 115 
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meteorological factors (e.g., P and ET), as well as various geomorphic and 116 

topographic characteristics of specific regions. These key factors are described 117 

differently amongst GCMs, which form the main source of uncertainty resulting in the 118 

lack of consistency between model projections (Wang et al., 2018; Lee et al., 2019; 119 

Xu et al., 2019b; Wu et al., 2021). 120 

 121 

This research focuses on Pearl River as the third longest River in China and composed 122 

of West River, North River, East River, and Pearl River Delta. Pearl River is an 123 

important source of fresh water for large cities in the Guangdong-Hong Kong-Macao 124 

Greater Bay Area, such as Guangzhou, Zhuhai, Hong Kong and Macau (Zhang et al., 125 

2008). The Pearl River basin (PRB) is climatically humid with abundant P, but the 126 

spatiotemporal distribution of P is uneven across the basin, with frequent extreme 127 

weather events, such as floods and droughts. In recent years, the PRB has suffered 128 

from droughts considerably with large severity and prolonged periods of water deficit, 129 

presenting severe droughts events such as in 2004, 2005, 2010 and 2011 (Zhang et al., 130 

2012; Zhang et al., 2015; Wu et al., 2016; Chen et al., 2017; Xu et al., 2019a).  131 

 132 

The temporal and spatial evolution of drought characteristics in the PRB has been 133 

analyzed by several drought metrics (e.g. Zhang et al., 2009; Zhang et al., 2012; 134 

Fischer et al., 2013; Niu et al., 2015; Xiao et al., 2016; Xu et al., 2019a). Recently, 135 

several studies have projected changes in drought characteristics in the PRB under 136 

future climate scenarios using CMIP5 models (Wu et al., 2016; Wang et al., 2018). 137 

For example, Wang et al. (2018) predicted the spatiotemporal changes in future 138 

drought in PRB using the PDSI and CMIP5 GCM simulations, and found that the 139 

severity of drought would likely to be increased in the central and western regions of 140 

the PRB. However, these studies were based solely on one drought index and a few 141 

models. Previous research has reported that the sign and magnitude of projected 142 

drought is highly dependent on the selection of drought index, region, and model 143 

ensemble (Burke and Brown, 2008; Rhee and Cho, 2016; Ahmadalipour et al., 2017; 144 

Ukkola et al., 2018; Lee et al., 2019). More importantly, general sources of 145 
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uncertainty (e.g., GCMs and RCP scenarios) in drought projection have not been 146 

explored in the PRB, and hence our knowledge on uncertainties and their spatial and 147 

temporal variability in GCM-projected drought remains limited at the basin scale. 148 

 149 

To address this gap, our research presents a basin-scale assessment of future drought 150 

characteristics projections in the PRB (including the West River and North River) by 151 

using 13 CMIP5 GCMs, three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5), and 152 

three different drought indices (PDSI, SPI and SPEI). Specifically, an advanced 153 

hierarchical sensitivity analysis is conducted to quantify the uncertainties in the 154 

projection of three drought indices (PDSI, SPI and SPEI) due to three RCP scenarios 155 

and 13 GCMs at both spatial and temporal scales. The objectives of this study are (1) 156 

to test the sensitivity of projection of future drought characteristics with respects to 157 

index definition and various model ensemble members and (2) to explore the 158 

spatio-temporal variability of uncertainties of GCM and RCP, and rank the 159 

contribution of each uncertainty to the projections of drought indices. In Section 2, 160 

detailed information on the observed and modeling datasets for the study area, and the 161 

methods for bias correction, hydrological modeling, drought indices and uncertainty 162 

estimation used in this study are provided. Followed by the results and discussion 163 

presented in Sections 3 and 4, respectively. Finally, the conclusions are drawn in 164 

Section 5. 165 

 166 

2. Study area and data source 167 

2.1 Study area 168 

The Pearl River, located in southern China, is the third largest River in drainage basin 169 

area in China (Fig.1). It consists of the West River, North River and East River as well 170 

as the Rivers within the Pearl River delta. The water resources are unevenly 171 

distributed spatially over the PRB and are mainly concentrated in the West River and 172 

North River basins, account for approximately 93.7% of the total area of the PRB 173 

(Zhang et al., 2013a). The PRB is characterized by tropical and subtropical climate 174 
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zones, with mean annual T ranging from 14 to 22 ℃ and mean annual P of 175 

approximately 1525 mm (Zhang et al. 2012; Wu et al. 2013). The P over the PRB is 176 

mainly concentrated in the flooding season between April and September, covering 177 

80% of the total annual P (Zhang et al. 2012). Due to climate warming, the 178 

hydrological cycle has become more changeable over the PRB in recent years, 179 

resulting in an increased risk of extreme flooding and drought (e.g., droughts in 2004, 180 

2005, 2010, and 2011), influence significantly on agriculture and ecological 181 

environment, and causing disastrous damage to human lives and social economy. 182 

 183 

2.2 Data sources and processing 184 

2.2.1 Meteorological and hydrological observations 185 

In this study, the observed data of meteorology and hydrology from 1971 to 2000 186 

were collected for analysis. The daily data of P, maximum/minimum T, and wind 187 

speed were obtained from 57 meteorological stations (Fig.1) over the PRB as 188 

provided by the National Meteorological Information Center (NMIC) of China 189 

Meteorological Administration (http://data.cma.cn). For quality control of the 190 

observed data, we checked any cases of maximum T less than minimum T or P values 191 

below 0 mm. The daily record of the neighboring stations were also cross-compared, 192 

which helps to check the correctness of values and any outliers. In addition, the 193 

homogeneity evaluation of data was carried out and the test indicated that the 194 

meteorological data used were free from severe errors (Wu et al., 2016). Daily runoff 195 

observations from the Gaoyao (1980-2000) and Hengshi (1970-2000) hydrological 196 

stations, in the West River and North River basins, were provided by the Hydrology 197 

Bureau of Guangdong Province, China. 198 

 199 

2.2.2 GCM simulations 200 

The downscaling results of the multimodel dataset of the 13 CMIP5 GCMs (Table 1) 201 

were provided by the College of Global Change and Earth System Science, Beijing 202 

Normal University. These 13 GCMs were chosen because they demonstrated well 203 
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performance in simulating the spatial and temporal variability of T and P over 204 

southern China (Huang et al., 2013; Chen and Frauenfeld, 2014). The downscaling 205 

process of 13 GCMs is as follows: first, the monthly outputs of GCMs were 206 

interpolated to the sites over the Pearl River basin by using the bilinear interpolation 207 

method, and corrected by the observed data. Then the bias-corrected outputs of GCMs 208 

were weighted averaged by the Bayesian model averaging method at the site scale, 209 

and were temporally downscaled to multiple daily simulation samples (30 samples) 210 

using the stochastic weather generation method according to the four categories 211 

(hot-wet, hot-dry, cold-wet, and cold-dry) of the historical weather years. Finally, the 212 

daily simulations were interpolated onto a common 0.25° × 0.25° grid over the Pearl 213 

River basin using the bilinear interpolation method. The detailed information on the 214 

statistical downscaling process of the 13 GCMs can be found in Wu et al. (2014).  215 

 216 

The downscaling simulations of these GCMs were used in this study, mainly because 217 

of their good performance in reproducing daily variability of T and P in the Pearl river 218 

basin (see Figures 4b and 5b in Wu et al., 2014). In addition, the multiple simulation 219 

samples of the 13 GCMs can well represent the uncertainty range of GCMs. The daily 220 

data for the baseline period 1971-2000 and the near future period 2021-2050 with three 221 

different RCPs scenarios (i.e., RCP2.6, RCP4.5 and RCP8.5) are employed. For each 222 

RCP scenario, a total of 30 simulation samples were collected to represent the 223 

uncertainty range of GCMs.  224 

 225 

3. Methodology 226 

3.1 Bias correction and adaptability assessment 227 

Many studies did not use climate model outputs directly for analyzing climate change 228 

impact due to bias in GCM data (Lafon et al., 2013, Wu and Huang, 2016). In this 229 

research, a “delta change” method was adopted to correct bias in T and P data of the 230 

downscaling multi-model ensembles of 13 CMIP5 GCMs (Hay et al., 2000; Sperna 231 

Weiland et al., 2010; Wu and Huang, 2016). For T (in units of ℃), an additive 232 
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correction was used: 233 

( ), , , ,, , , , obs i j sim i jcor i j sim i jT T T T= + −                           (1) 234 

For P (in units of mm), a multiplicative correction was applied: 235 

, ,
, , , ,

, ,

obs i j
cor i j sim i j

sim i j

PP P
P

= ×                             (2) 236 

where ( , ,cor i jT ) , ,cor i jP  and ( , ,sim i jT ) , ,sim i jP are the bias-corrected and simulated thi  237 

daily T (P), respectively, for the thj grid point. , ,obs i jT ( , ,obs i jP ) and , ,sim i jT ( , ,sim i jP ) are 238 

the 30-year averages of the observed and simulated thi  daily T (P), respectively, at 239 

the thj grid point for the baseline period 1971-2000. 240 

 241 

3.2 VIC model 242 

The VIC model is a macro-scale, semi-distributed hydrological model based on a 243 

grid-based land surface process scheme (Liang et al., 1994). It has the characteristics 244 

of ET calculation based on physical process, computation of water and energy 245 

balances simultaneously, and consideration of spatial heterogeneity in SM content of 246 

the grid (Liang et al., 1996). More detailed information about VIC model can be 247 

found at the University of Washington’s website 248 

(http://ftp.hydro.washington.edu/Lettenmaier/Models/VIC/). As a typical land surface 249 

model, the VIC model has been successfully applied in the PRB for SM simulation 250 

(Niu et al., 2015) and the impact of climate change on hydrology by coupling with 251 

GCMs (e.g. Wu et al., 2014; Wu et al., 2015; Yan et al., 2015; Wang et al., 2018). 252 

 253 

Here, the latest version VIC 5.0 model (https://vic.readthedocs.io/en/master/) was 254 

adopted to run at a spatial resolution of 0.25˚×0.25˚ over the West and North River 255 

basins. The soil column of the model is divided vertically into three layers (top, 256 

middle and bottom), and the top and middle soil layers were considered for 257 

calculating the PDSI (Wang et al., 2018). The soil parameters were derived from the 258 

https://vic.readthedocs.io/en/master/
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1-km spatial resolution global soil classification and texture dataset provided by the 259 

FAO’s Harmonized World Soil Database (HWSD) (FAO et al., 2009). The soil 260 

information was converted into soil hydraulic parameters based on Saxton and Rawls 261 

(2006). The land cover data were driven from the global 1-km land cover 262 

classification of the University of Maryland (Hansen et al., 2000; 263 

https://www.geog.umd.edu/landcover/1km-map.html). This dataset includes 264 

vegetation-related parameters such as architectural resistance, leaf-area index, albedo, 265 

minimum stomata resistance, and fraction of root depth of each soil layer. We 266 

assumed that the land cover of the PRB would not change significantly in the future, 267 

and the land cover data of 2000 was used for hydrological simulation over both 268 

baseline (1971-2000) and the future period (2021-2050). The VIC model provides 269 

several daily output variables for surface water fluxes calculation, including ET, PET, 270 

SM and runoff (RO). The daily simulations of VCI model were aggregated into 271 

monthly time series to compute the monthly water balance and drought indices (SPEI 272 

and PDSI). 273 

 274 

3.3 Drought indices 275 

3.3.1 SPI and SPEI 276 

The SPI was originally developed to quantify the P deficit at multiple time-scales 277 

(Mckee et al., 1993). Although the SPI considers only P, it has been widely used in 278 

different meteorological, agricultural and hydrological applications thanks to its 279 

simplicity in calculation and general applicability, as well as the consistency over 280 

space and time (Hayes et al., 1999; Mishra et al., 2005; Zhang et al., 2009; Mishra and 281 

Singh, 2011; Huang et al., 2014; Zhu et al., 2016; Xu et al., 2019a). For SPI 282 

calculation, the probability distribution is used initially to fit the long-term monthly P, 283 

and the cumulative distribution function (CDF) is then turned into the normal 284 

distribution through equal probabilities. The gamma distribution is used in this 285 

research to describe the probability density function (PDF) of P： 286 

https://www.geog.umd.edu/landcover/1km-map.html
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11( )
( )

x

g x x eα β
αβ τ α

−
−=

                              (3) 287 

where α>0 is a shape parameter, β>0 denotes a scale parameter, and τ(α) represents 288 

the ordinary gamma function of α. 289 

 290 

As an extension of the SPI, Vicente-Serrano et al. (2010) proposed the SPEI by 291 

including both P and potential ET (PET) in identifying drought. Here, the PET was 292 

estimated by the FAO-56 Penman-Monteith (PM) method included in the VIC model 293 

(Allen et al., 1998). The SPEI was derived through the following steps: (1) the 294 

difference between P and PET for the ith month is calculated as: Di = Pi-PETi; (2) the 295 

Di is aggregated at a certain (e.g., 3-month) timescale; and (3) the following 296 

log-logistic probability distribution g(x) is used to fit the Di to calculate SPEI: 297 
2

1( ) ( ) 1 ( )x xf x ϕ ϕϕ γ γ
ψ ψ ψ

−
−  − −

= + 
 

                            (4) 298 

where φ, ψ, and γ are the scale, shape and origin parameters, respectively. The D is in 299 

the range of γ< D ˂ ∞. 300 

 301 

The SPI and SPEI can be used to quantify P deficit at multiple timescales (e.g., 1, 3, 6, 302 

12, 24 and 36 months). The short time scale SPI/SPEI (e.g., 1-month) reflects 303 

short-term dryness and wetness conditions and are sensitive to P short-term changes 304 

in general. Whereas, the long timescale SPI/SPEI (e.g., 24-month) reflects the 305 

long-term (small) variation of dryness and wetness (WMO, 2016). In this study, the 306 

3-month scale is used to compute the SPI and SPEI (i.e., SPI3 and SPEI3) because it 307 

reflects seasonal variation of dryness and wetness conditions. The SPI is calculated 308 

based on the P from the GCMs outputs, and the SPEI is calculated based on the P 309 

from GCMs and PET simulated by the VIC model forced by the GCM outputs. The 310 

drought classifications based on the SPI and SPEI are shown in Table 2. 311 

 312 

3.3.2 PDSI 313 
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The PDSI is based on the concept of climatically appropriate for existing conditions 314 

(CAFEC) proposed by Palmer (1965). It can be used to describe the degree of water 315 

deficit in a specific region less than the appropriate moisture content of the local 316 

climate. In this study, the P from the GCM outputs, and the PET, ET, SM (the top two 317 

soil layers) and RO simulated by the VIC model forced by the GCM outputs are used 318 

to estimate recharge to soils (R), water loss to soil layers (L), potential recharge (PR), 319 

potential runoff (PRO), and potential loss (PL) to derive CAFEC at the monthly scale. 320 

Then the PDSI is computed based on the difference between P and CAFEC. The 321 

CAFEC represents the amount of P required to keep a normal SM level for a given 322 

time, which is defined as: 323 

i i i iCAFEC PET PR PRO PLα β γ δ= + + −                         (5) 324 

where i indicates the calendar month of a year (from 1 to 12). iα , iβ , iγ  and iδ  325 

are climatological coefficients expressed as: 326 

i
i

i

ET
PET

α =   
i

i
i

R
PR

β =   
i

i
i

RO
PRO

γ =   
i

i
i

L
PL

δ =                       (6) 327 

The difference between P and CAFEC for a particular month is the moisture departure 328 

( d P CAFEC= − ). The climatological standardization process aims to use d as a 329 

standardized drought index, considering local climate and drought duration, and the 330 

self-calibrating procedure (Wells et al., 2004): 331 

1 2

1 1

-1

i

i i i

Z K K d
X qZ
X pX qZ

= × ×
 =
 = +

                                 (7) 332 

where Z is the moisture anomaly index for the ith month; K1 denotes the temporal 333 

correction weight; K2 represents the spatial correction weight; p and q are duration 334 

factors; and Xi-1 is the PDSI for the previous month. For more information on the 335 

calculation of K1, K2, p and q, please refer to Wells et al. (2004). Table 2 shows the 336 

classification of drought in accordance to the PDSI definition. 337 

 338 

3.3.3 Drought area and frequency  339 
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Based on the classification definition of drought (Table 2), a threshold value of -1 340 

(-0.5) for PDSI (SPI/SPEI) is used to identify the occurrence of drought. Drought area 341 

is defined as: 342 

1 100
n
i a

a
a

d
D

n
== ×∑                             (8) 343 

where Da is the percentage of drought area (%), da is the number of grid points with 344 

PDSI ≤ -1 (SPI/SPEI ≤ -0.5), and na is total number of grid points. 345 

100m
F

m

nD
N

= ×                              (9) 346 

where DF is the drought frequency (%), nm and Nm are the number of drought months 347 

and the total number of months, respectively. 348 

 349 

3.4 Variance-based sensitivity analysis framework 350 

In this study, the variance-based two-layer sensitivity analysis framework was used to 351 

quantify the uncertainty of GCMs and RCP scenarios in the projection of future 352 

drought indices (Dai et al., 2017; Xu et al., 2019b). In this framework, the model with 353 

a form of 1( )= ( , , )kf fθ θ θ∆ =   is a set of uncertain model inputs, with total 354 

variance (V(Δ)) being decomposed as: 355 

i i i i
( ) ( ( | )) ( ( | ))i iV V E E Vθ θ θ θθ θ∆ = ∆ + ∆

 
                       (10) 356 

where ∆  is the objective function of the model output and { }1= , , kθ θ θ . 357 

i i
( ( | ))iV Eθ θ θ∆


 is the partial variance contributed by θi, while 

i i
( ( | ))iE Vθ θ θ∆


358 

represents the partial variance caused by model inputs apart from θi and interactions 359 

amongst all inputs (Dai and Ye, 2015; Dai et al., 2017). 360 

 361 

Based on Eq. (10), the total variance (V(Δ)) is decomposed as: 362 

| |( ) ( | ) ( | )
     

  
    = ( ) ( )

V E V V E
V V

∆ = ∆ + ∆

+
R S R R S RR R
S R

                      (11) 363 

where R is the set of multiple RCP scenarios, and S is the set of multiple GCMs. The 364 
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subscript |S R indicates the change of GCMs under particular RCP scenario. The terms 365 

in Eq. (11) refer to variances from RCP scenarios and GCMs uncertainty, respectively. 366 

The sensitivity of RCPs ( SR ) and GCMs ( SS ) can then be determined as follows: 367 

 

( | ) ( )
( ) ( )
( | ) ( )
( ) ( )

V E VS
V V

E V VS
V V

∆
= =

∆ ∆
∆

= =
∆ ∆

R S|R

R S|R

S,R R

S,R S

R

S

                           (12) 368 

For each drought index (PDSI, SPI3 and SPEI3), the mean and variance of outputs 369 

with respects to uncertainty from GCMs under certain RCP scenario are calculated, 370 

and the mean and variance of RCP scenarios are quantified. Assume that there are k 371 

alternative RCP scenarios and n plausible GCMs for each RCP scenario, the 372 

uncertainty of GCMs is estimated as: 373 

( ) ( ) ( )
2

2

1 1

( ) ( | )

1 1         = | |
n n

i k i k kk
i i

V E V

S R S R P R
n n= =

= ∆

  ∆ − ∆     
∑ ∑ ∑

R S|RS S,R

                (13) 374 

where ( )kP R  is the weight of RCP scenario, subject to ( ) 1kk
P R =∑ , and the 375 

uncertainty of RCP scenarios is deduced as: 376 

( )( ) ( )( )

( ) ( ) ( ) ( )

2 2

22

1 1

( ) ( | )

         = | |

1 1        | |
n n

k i k i k kk k
i i

V V E

E E E E

P R S R S R P R
n n= =

= ∆

∆ − ∆

    = ∆ − ∆    
    

∑ ∑ ∑ ∑

R S|R

R S|R R S|R

R R

R R        (14) 377 

 378 

4. Results 379 

4.1 Evaluation of GCM and VIC simulations 380 

Fig. 2 shows the comparison between the observed and bias-corrected monthly 381 

average T and P of 30 simulation samples of 13-GCM ensembles in the West River 382 

(Fig. 2a, 2c) and North River (Fig. 2b, 2d) basins for the baseline period 1971-2000. 383 

As shown in Fig. 2, the majority of model simulations reproduce the intra-annual 384 

variability of T reasonably well (despite a bit underestimation in a few months). 385 
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Compared with T, greater uncertainty range is identified in the simulations of P, 386 

especially in the flood season (May-August). Moreover, larger uncertainty range is 387 

found in the North River basin compared to the West River basin. Overall, the 388 

bias-corrected model simulations can simulate the intra-annual variability of P for the 389 

two basins, particularly for the dry season (October-March). 390 

 391 

Fig. 3 demonstrates the comparison of simulated and observed daily discharges at the 392 

Gaoyao and Hengshi stations for the calibration and validation periods. The daily 393 

Nash-Sutcliffe efficiency coefficient (NSE) at the Gaoyao and Hengshi stations are 394 

0.85 and 0.9 (0.89 and 0.9) in the calibration (validation) period, respectively, and the 395 

relative errors (Res) are 7.25% and 2.95% (0.21% and 0.42%), respectively, in the 396 

calibration (validation) period. Overall, the VIC model can reproduce the low 397 

discharge accurately during dry season and the flood peak during flooding season, and 398 

the occurrence time is generally consistent between the observed and simulated ones, 399 

indicating that the VIC model is applicable for subsequent GCM-projections of 400 

drought. 401 

 402 

Fig. 4 shows the comparison of the simulated PDSI, SPI3 and SPEI3 with the 403 

observed ones in the West and North River basins during the baseline period 404 

1971-2000. As witnessed in Fig. 4, the model simulations tend to underestimate the 405 

variability of PDSI, SPI3 and SPEI3, and fail to capture some extreme wet and dry 406 

events in wet and dry years, particularly in the West River basin. Compared with 407 

PDSI, the temporal variability of SPI and SPEI tends to be large for both basins, 408 

bringing challenges for the model to simulate the dryness/wetness conditions 409 

characterized by SPI and SPEI. Overall, the three drought indices are simulated more 410 

accurately in the North River basin than West River basin. 411 

 412 

4.2 Sensitivity of projected Da changes to index definition, GCM 413 

ensemble and RCP 414 
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This section focuses on the sensitivity analysis of projected drought area changes to 415 

index definition, GCM ensemble and RCP scenario. Fig. 5 reveals the temporal 416 

evolutions (2021-2050) of the projected changes in Da indicated by the PDSI (≤ -1), 417 

SPI3 (≤ -0.5) and SPEI3 (≤ -0.5) for the future period 2021-2050 (relative to the 418 

baseline period) in the two basins under three RCP scenarios. Clearly, there are 419 

obvious differences in projected Da changes between different indices. However, 420 

compared with PDSI, SPI and SPEI demonstrate more similar and larger temporal 421 

variability of the projected Da changes for both basins. Large GCM spread 422 

(uncertainty range) is found in projected Da changes, especially in the North River 423 

basin, which is significantly larger than that of drought indices and RCPs. In contrast, 424 

there are relatively small differences in projected Da changes under three RCP 425 

scenarios compared with GCMs and drought indices. 426 

 427 

4.3 Sensitivity of projected DF changes to index definition, GCM 428 

ensemble and RCP 429 

This section focuses on the sensitivity analysis of the projected DF to index definition, 430 

GCM ensemble and RCP scenario. The projected DF changes indicated by the PDSI, 431 

SPI3 and SPEI3 with extreme, severe, moderate and mild drought events for the West 432 

and North River basins during the future period 2021-2050 under three RCP scenarios 433 

were calculated (relative to the baseline period 1971-2000). 434 

 435 

Fig.6 shows the uncertainty range (GCM spread) of the projected DF changes (%) 436 

indicated by three drought indices under three RCP scenarios. From the figure, clearly 437 

there is a large GCM spread in the projected DF changes (especially for that indicated 438 

by SPEI) under all RCP scenarios, with the larger GCM spread in the North River 439 

basin than West River basin. In contrast, the RCP discrepancy in the projected DF 440 

changes is generally smaller compared with GCM. In terms of drought events, larger 441 

GCM uncertainty range is found for the projected changes in extreme drought than 442 

other drought events. There are also large discrepancies in the sign and magnitude of 443 
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the projected DF changes amongst three drought indices (especially between SPI and 444 

PDSI/SPEI). The SPI tends to underestimate the projected changes in DF compared 445 

with PDSI and SPEI in the West River basin. 446 

 447 

Fig.6a also reveals the increased DF indicated by the PDSI (SPEI3) is projected for all 448 

drought events (extreme, severe, moderate and mild) in the West River basin, 449 

especially for extreme drought, with the mean increases up to 15% (13.7%), 13% 450 

(12.3%) and 13.3% (13%) under RCP2.6, RCP4.5 and RCP8.5, respectively. In 451 

comparison, the SPI3 detects an increase in extreme drought, with average increase of 452 

10.4%, 10% and 9.1% under RCP2.6, RCP4.5 and RCP8.5, respectively, and a 453 

decrease in severe (moderate) drought, with average decrease of -5.3% (-12%), -5.3% 454 

(-12%) and -4.9% (-11.6%) under RCP2.6, RCP4.5 and RCP8.5, respectively. 455 

 456 

For the North River basin (Fig.6b), the DF of extreme and mild droughts indicated by 457 

three drought indices (PDSI, SPI3 and SPEI3) shows an overall increase under three 458 

RCP scenarios. Particularly, SPI3 detects large mean increase in extreme drought (up 459 

to 10.1%, and 9.1% and 11.7% under RCP2.6, RCP4.5 and RCP8.5, respectively), 460 

whereas SPEI3 detects large mean increase in mild drought (up to 18.3%, and 18.6% 461 

and 17.9% under RCP2.6, RCP4.5 and RCP8.5, respectively). In contrast, the DF of 462 

severe drought indicated by three indices is projected to decrease under all 3 RCP 463 

scenarios, and SPEI3 shows large mean decrease compared with other indices (up to 464 

-11.4%, -12.3% and -10.7% under RCP2.6, RCP4.5 and RCP8.5, respectively). For 465 

moderate drought, the projected increases in DF are indicted by PDSI (SPEI3), with 466 

mean increase of 8.4% (1.6%), 8.7% (2.0%) and 8.3% (1.5%) under RCP2.6, RCP4.5 467 

and RCP8.5, respectively. 468 

 469 

4.4 Spatial distributions of the projected DF changes 470 

The spatial distribution of the multi-GCM ensemble mean changes in DF (indicated by 471 

the PDSI, SPI3 and SPEI3) with extreme, severe, moderate and mild drought events 472 
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for the future period 2021-2050 (relative to the baseline period 1971-2000) under 473 

three RCP scenarios are displayed in Figs. 7 and 8 for the West River and North River 474 

basins, respectively. Figs. 7 and 8 highlight the sign and magnitude of DF changes, 475 

which are dependent on the index definition, particularly for the North River basin. 476 

For a certain drought index, there are significant spatial variation in model projection 477 

for both basins.  478 

 479 

For the West River basin (Figs.7a~c), there are large spatial difference in the projected 480 

DF changes between SPI and PDSI (SPEI), while similar spatial pattern can be found 481 

between PDSI and SPEI3. The projected DF changes in extreme drought indicated by 482 

the PDSI and SPEI3 tend to be more significant than other drought events. The largest 483 

DF changes in extreme drought indicated by the PDSI (15.9%) and SPEI3 (16.4%) are 484 

concentrated in the downstream reaches of the West basin, while the decreases are 485 

projected mainly in the upstream areas (up to -23.7% and -15.7%, respectively). For 486 

SPI3, the projected DF changes are unevenly distributed in the West River basin, with 487 

the largest increase of 9.5% in extreme DF under RCP8.5 (Fig. 7b). In contrast, the DF 488 

of moderate and mild droughts is projected to decrease in the majority of the West 489 

River basin, particularly under RCP4.5 and RCP8.5 (up to -16.7%). 490 

 491 

For the North River basin (Figs.8a~c), the projected DF changes indicated by three 492 

drought indices are unevenly distributed at the spatial scale. For PDSI, the DF of 493 

moderate and mild droughts shows larger increase compared with other drought 494 

events in major North River basin under three RCP scenarios (Fig. 8a). The DF of 495 

mild drought is increased by 11.3% under RCP2.6, while that of extreme and severe 496 

droughts is decreased, especially for severe drought (up to -7.8%). For SPI3, the DF of 497 

extreme drought is projected to increase in the majority of the North River basin 498 

under RCP2.6 and RCP4.5 (up to 8.2%), and decrease in the northern parts of the 499 

North River basin under RCP8.5 (up to -8.2%). For SPEI3, the projected DF changes 500 

are spatially heterogeneous in the North River basin, with the largest increase of 501 

11.8% in DF of extreme drought under RCP8.5 (Fig. 8c). In contrast, the DF of severe 502 
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drought is projected to decrease in most of the North River basin, especially in the 503 

northern regions under RCP2.6 and RCP4.5 (up to -16%). 504 

 505 

4.5 Sensitivity indices for the uncertainty contributions to the 506 

drought indices projections 507 

The sensitivity indices for the uncertainty contribution of GCM and RCP to the 508 

projection of three drought indices (PDSI, SPI and SPEI) were calculated at both 509 

spatial (basin) and temporal (interannual) scales using the variance-based sensitivity 510 

analysis approach. Fig.9 shows the temporal evolution (2021-2050) of uncertainty 511 

contribution (i.e., sensitivity indices) of GCM and RCP to three drought indices (PDSI, 512 

SPI and SPEI) projections during the period 2021-2050. From the Figure, GCM plays 513 

a dominant role (> 90%) in the projection uncertainty of three drought indices over 514 

the entire period for both basins, whereas the uncertainty of RCP is relatively limited 515 

compared with GCM. The GCM (RCP) uncertainty tends to be larger (smaller) in the 516 

West River basin than the North River basin, while the interannual variability of GCM 517 

(RCP) uncertainty is larger in the North River basin than in the West River basin. 518 

Overall, the GCM (RCP) uncertainty presents similar pattern amongst three drought 519 

indices, but tends to be smaller (larger) in SPI3 than PDSI and SPEI3 projections for 520 

both basins. 521 

 522 

Fig.10 demonstrates the spatial distribution of GCMs’ uncertainty contribution to the 523 

projection of PDSI, SPI3 and SPEI3 in the two basins during future three decades (i.e., 524 

2030, 2040 and 2050). As shown in Fig.10, GCM is the leading uncertainty source (> 525 

90%) for the projection of three drought indices for both basins. The uncertainty of 526 

GCM is unevenly distributed but with similar spatial patterns among three drought 527 

indices in the West River basin (Fig.10a). In addition, the uncertainty of GCM tends 528 

to increase (decrease) in the eastern (southwest) regions from 2030 to 2050, while in 529 

the southern regions it decreases first and then increases. For the North River basin 530 

(Fig.10b), the uncertainty of GCM is unevenly distributed and shows large spatial 531 
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discrepancies among three drought indices. Overall, the uncertainty of GCM 532 

(particularly for the projection of PDSI and SPEI3) tends to decrease in the majority 533 

of the North River basin from 2030 to 2050, especially in northeast and southern 534 

regions (Fig. 10b). 535 

 536 

Fig.11 reveals the overall uncertainty contributions of GCM and RCP to the projection 537 

of three drought indices (PDSI, SPI3, and SPEI3) for the two basins. Overall, GCM 538 

contributes more than 96% of total uncertainty to the PDSI projection for both basins, 539 

while for the projection of SPI3 and SPEI3, the uncertainty contribution of GCM 540 

takes over 95% for both basins. Compared with GCM, the uncertainty of RCP is 541 

rather limited and can be omitted in the future period (2021-2050) for both basins. 542 

 543 

5. Discussion  544 

In this research, we present an assessment of projection and uncertainty of DF and Da 545 

in the Pearl River basin during the period 2021-2050 based on downscaling 546 

simulations (a total of 90 samples) of 13 CMIP5 GCMs under three RCP scenarios. 547 

Three different drought indices (i.e., PDSI, SPI3 and SPEI3) are employed to explore 548 

the spatio-temporal changes in DF and Da with different (extreme, severe, moderate 549 

and mild) drought events. The uncertainty in the projection of three drought indices 550 

derived from GCMs and RCPs is quantified using variance-based sensitivity analysis 551 

approach. 552 

 553 

The results show that the sign and magnitude of the projected changes in drought 554 

characteristics (e.g., DF and Da) are highly dependent on the index definition at both 555 

spatial and temporal scales, generally consistent with the findings from previous 556 

studies (e.g., Burke and Brown, 2008; Mishra and Singh, 2010; Touma et al., 2015; 557 

Lee et al., 2019; Yang et al., 2019). This suggests that any single index may suffer 558 

from limitations in considering the different aspects of droughts comprehensively. In 559 

particular, the SPI tends to underestimate the projected changes in DF in both basins 560 
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compared with PDSI and SPEI, which might be due to that the SPI considers P deficit 561 

alone without taking into account the impact of ET in the context of climate warming 562 

(Jeong et al., 2014; Rhee and Cho, 2016; Yoo et al., 2016; Ahmadalipour et al., 2017; 563 

Huang et al., 2018; Lee et al., 2019; Haile et al., 2020; Wu et al., 2020).  564 

 565 

The results also highlight a large discrepancy in the projected DF and Da changes 566 

amongst different GCM ensembles (Figs. 4-6), and larger model spread is found in the 567 

projected DF and Da changes of extreme drought than other drought events (Fig.6). 568 

This is in consistency with previous studies showing a large uncertainty among GCMs 569 

when projecting drought events in 21st century using CMIP3 and CMIP5 ensemble 570 

(Sheffield and Wood, 2008; Dai, 2013; Orlowsky and Seneviratne, 2013). The 571 

uncertainty analysis suggests that the GCM uncertainty, as expected, plays an 572 

important role (contribution > 90%) in the projections of drought indices in both 573 

basins, while the uncertainty of RCP is generally limited compared with GCM (Figs. 574 

9 and 11). This is supported by Figs. 5 and 6, showing that there are larger 575 

discrepancies in projected Da and DF among GCM ensembles than RCPs. Such 576 

finding is also generally consistent with the previous studies on the projection of 577 

meteorological droughts (Wu et al., 2021), extreme temperatures (Wilby and Harris 578 

2006; Woldemeskel et al., 2016; Xu et al., 2019c), precipitation (Zhou et al, 2014; 579 

Woldemeskel et al., 2016; Hosseinzadehtalaei et al, 2017; Zarekarizi et al., 2018;Xu et 580 

al., 2019b; Kim et al., 2020), and floods (Graham et al., 2007; Kay et al., 2009; Jung 581 

et al., 2011; Addor et al, 2014; Giuntoli et al., 2015; Vetter et al., 2017). All these 582 

literatures indicated that the uncertainty caused by GCM is larger than that of RCP.  583 

 584 

This study also highlights a large spatio-temporal variability of uncertainty in the 585 

regional projection of drought characteristics. At the spatial scale, the uncertainty of 586 

GCM is unevenly distributed and show similar spatial patterns amongst three drought 587 

indices in the West River basin, while in the North River basin the uncertainty of 588 

GCM shows large spatial discrepancies amongst three drought indices (Fig.10). At the 589 

interannual scale, the uncertainty of GCM shows a large variability, and the variability 590 
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tends to be larger in the North River basin than in the West River basin (Fig.9). This is 591 

generally consistent with the previous studies (Xu et al., 2019b; Wu et al., 2021), 592 

which indicated that the uncertainty of GCM and RCP in drought prediction has large 593 

temporal and spatial variations at the regional scale. Spatially, GCM has relatively 594 

larger uncertainty in the Southern Hemisphere than the Northern Hemisphere, 595 

whereas RCP has relatively larger uncertainty in the Northern Hemisphere than the 596 

Southern Hemisphere (Wu et al., 2021). At the temporal scale, the GCM uncertainty 597 

shows overall decreasing trends with time (Xu et al., 2019b; Wu et al., 2021). In 598 

contrast, the RCP uncertainty is expected to increase over time until the end of this 599 

century, but remains less than that of GCM at the regional (Xu et al., 2019b) and 600 

global (Wu et al., 2021) scales. The spatio-temporal variability of the uncertainties in 601 

GCM-based drought projection, might be due to the results of disagreement on the 602 

magnitude of warming, as well as the magnitude and sign of P changes at the regional 603 

scale (Trenberth et al., 2014).  604 

 605 

Within this study, we did not consider some other potential sources of uncertainty that 606 

arise not only from the methods but also from the simulations themselves. First, 607 

although the bias-corrected method shows significant improvement in the simulations 608 

of T and P, there are still relatively large errors (especially for P) in few months (see 609 

Fig. 2), which may lead to potential uncertainty. Particularly, the GCM simulations 610 

fail to capture some extreme events in wet/dry years, particularly in the West River 611 

basin (Fig. 4). This means that the bias-corrected method may reduce the variability 612 

range of the GCM simulations, leading to an underestimation of GCM uncertainty in 613 

the projections of drought indices (SPI, PDSI, SPEI) during extreme wet and dry 614 

years. This is supported by Wu et al. (2021), which indicated that the bias-corrected 615 

method can be an important uncertainty source in explaining the model difference in 616 

the projection of meteorological droughts. Second, the definitions of DF and Da are 617 

based only on the threshold of (-1 for PDSI and -0.5 for SPI and SPEI) of drought 618 

indices, without quantifying the drought events statistically. The choice of methods to 619 

define drought characteristics can also lead to model discrepancies in drought 620 
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projection (Mo, 2008; Sheffield and Wood, 2008; Dai, 2011b). In addition, we only 621 

consider one hydrological model (VIC) in the hydrological simulations. Hydrological 622 

models themselves may be biased due to inadequacies in the modeled physical 623 

processes and parameterizations and because of processes that are not include in the 624 

modeling, the structure of hydrological model can be an important source of 625 

uncertainty in climate change assessment (Graham et al., 2007; Kay et al., 2009; 626 

Addor et al, 2014; Eisner et al., 2017; Su et al., 2017; Vetter et al., 2017; Ju et al., 627 

2021). The PDSI and SPEI were partly calculated based on hydrological simulations. 628 

This means that the uncertainty of hydrological model is included in the uncertainty of 629 

GCM and RCP, which may lead to the overestimation of the uncertainty of GCM and 630 

RCP in the projections of PDSI and SPEI. In future research, it would be interesting to 631 

explore more sources of uncertainty (e.g., hydrological model, bias-corrected method, 632 

and the definition of drought) with the consideration of multiple-model ensembles, 633 

which are essential for assessing drought projection reliably in response to climate 634 

warming at both regional and basin scales. 635 

 636 

6. Conclusions 637 

This research assesses the projection and uncertainty of drought characteristics (DF 638 

and Da) in the Pearl River basin during the period 2021-2050 using three different 639 

drought indices (PDSI, SPI and SPEI) based on 13 CMIP5 GCMs under three RCP 640 

scenarios. The SPI is calculated based on the P simulations of 13 GCMs, while the 641 

PDSI and SPEI are computed based on the simulations of the VIC model forced by 13 642 

GCMs. The uncertainty of projected drought indices (PDSI, SPI and SPEI) due to 643 

various GCMs and RCPs is quantified by the variance-based sensitivity analysis 644 

approach.  645 

 646 

The results show that there are large discrepancies in the sign and magnitude of DF 647 

and Da changes amongst three drought indices, and the SPI tends to underestimate the 648 

projected changes in DF in both basins compared with PDSI and SPEI. In terms of a 649 
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particular drought index, there are significant spatial variation in the model projection 650 

of DF. There is also a large model spread in the projected DF and Da changes among 651 

different GCM ensembles, and larger model spread is found in the projected extreme 652 

drought than other drought events. Overall, the DF of extreme drought is projected to 653 

increase in the future period (2021-2050) in both basins, especially for the North 654 

River basin.  655 

 656 

The uncertainty analysis results show that GCM is the dominant uncertainty 657 

(contribution > 90%) in the projections of three drought indices, while the uncertainty 658 

of RCP is relatively limited compared with GCM. The uncertainty of GCM and RCP 659 

shows a large interannual variability during the future period, with larger variability in 660 

the North River basin than Wet River basin. At the spatial scale, the uncertainty of 661 

GCM is unevenly distributed and show similar spatial patterns among three drought 662 

indices in the West River basin, while the uncertainty of GCM in the North River 663 

basin shows large spatial discrepancies amongst three drought indices. By the end of 664 

2050, the uncertainty of GCM tends to increase in the Eastern regions of the Wet 665 

River basin and decrease in the Northeast and Southern regions of the North River 666 

basin. This study highlights the sensitivity of drought projection to the index 667 

definition as well as the large spatial-temporal variability of general uncertainty 668 

sources in drought projections. 669 
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 1032 
Fig.1. Geographical location map of the Pearl River Basin (PRB) as well as the 1033 
distributions of 0.25° grid points and meteorological stations.  1034 
  1035 
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 1036 
Fig.2. Comparisons of the observed (red dotted line) and bias-corrected (grey shadow) 1037 
monthly T and P of 13 CMIP5 GCMs in the West River (a, c) and North River (b, d) 1038 
basins for the baseline period 1971-2000. The grey shadow represents the range of 30 1039 
samples of bias-corrected simulations of the 13 CMIP5 GCMs. R and MARE indicate 1040 
correlation coefficient and mean absolute relatively error, respectively. 1041 
  1042 
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 1043 

 1044 
Fig.3. Comparisons of the simulated and observed daily discharges at the Gaoyao 1045 
(Wet River basin) and Hengshi (North River basin) stations for the calibration and 1046 
validation periods. 1047 
  1048 
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 1049 

 1050 
Fig.4. Comparisons of the simulated PDSI, SPI3 and SPEI3 (grey shadow) with the 1051 
observed ones (red dotted line) in the West River (a) and North River (b) basins 1052 
during the baseline period 1971-2000. The grey shadow indicates the range of 30 1053 
simulation samples of PDSI, SPI3 and SPEI3, and the red dotted lines denotes the 1054 
observed ones. 1055 
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 1058 
Fig.5. Monthly time series of Da (%) indicated by PDSI (≤-1), SPI3 (≤-0.5) and 1059 
SPEI3 (≤-0.5) under RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios for 1060 
the future period 2021-2050 (relative to the baseline period 1971-2000) in the West 1061 
River (a) and North River (b) basins. The shadow denotes the range of 30 simulation 1062 
of 13 CMIP5 models, and the black lines denotes the ensemble mean of model 1063 
simulations. 1064 
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 1066 

 1067 

Fig.6. Box plots of relative change (%) in DF indicated by PDSI (≤-1), SPI3 (≤-0.5) 1068 
and SPEI3 (≤-0.5) under 3 RCP (RCP2.6, RCP4.5 and RCP8.5) scenarios for the 1069 
future period 2021-2050 (relative to the baseline period 1971-2000) in the West River 1070 
(a) and North River (b) basins. Boxes indicate the interquartile model spread (25th 1071 
and 75th quantiles) with the red horizontal line indicating the ensemble median and 1072 
the whiskers showing the extreme range of the 30 simulation samples of the 13 1073 
CMIP5 GCMs. Black circles denote the average of the multi-model ensembles. 1074 
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 1078 
Fig.7. Spatial distributions of DF (%) indicated by PDSI (a), SPI3 (b) and SPEI3 (c) 1079 
with extreme, severe, moderate and mild droughts in the future period 2021-2050 1080 
(relative to baseline period 1971-2000) under RCP2.6, RCP4.5 and RCP8.5 scenarios 1081 
in the West River basin. 1082 
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 1086 
Fig.8. Same as Fig. 7 but for the North River basin. 1087 
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 1089 
Fig.9. Time series of relative contribution of GCM (blue) and RCP (yellow) to the 1090 
projection uncertainty of PDSI, SPI3 and SPEI3 in the West and North River basins in 1091 
the future period 2021-2050. The blue solid line indicates the linear trend of GCM 1092 
uncertainty. 1093 
  1094 



46 
 

 1095 

 1096 
Fig.10. Spatial distributions of the uncertainty contribution GCM to the projections of 1097 
PDSI, SPI3 and SPEI3 in the West River (a) and North River (b) basins in 2030, 2040 1098 
and 2050. 1099 
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 1101 
Fig.11. Relative contribution rate (%) of GCM and RCP to the projection 1102 
uncertainty of PDSI, SPI3 and SPEI3 in the West and North River basins. 1103 
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Table 1 Information on the 13 general circulation models used in the present analysis 1105 

Model Institution Country Resolutio
n 

BCC-CSM1.1 Beijing Climate Center (BCC), China Meteorology 
Administration, China China 128×64 

BNU-ESM Beijing Climate Center College of Global Change and 
Earth System Science,Beijing Normal University, China China 128×64 

CNRM-CM5 
Centre National de Recherches Meteorologiques and 

Centre Europeen de Recherches et de Formation Avancee 
en Calcul Scientifique 

France 256×128 

GFDL-CM3 National Oceanic and Atmospheric Administration 
(NOAA) Geophysical Fluid Dynamics Laboratory America 144×90 

GFDL-ESM2G National Oceanic and Atmospheric Administration 
(NOAA) Geophysical Fluid Dynamics Laboratory America 144×90 

GISS-E2-R NASA Goddard Institure for Space Studies America 144×90 

HadGEM2-ES Met Office Hadley Centre United 
Kingdom 192×145 

MIROC5 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for Environment 
Studies, and Japan Agency for Marine-Earth Science and 

Technology 

Japan 256×128 

MIROC-ESM-CH
EM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 

Environment Studies 

Japan 128×64 

MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 

Environment Studies 

Japan 128×64 

MPI-ESM-LR Max Planck Institute for Meteorology Germany 192×96 
MRI-CGCM3 Meteorological Research Institute Japan 320×160 
NorESM1-M Norwegian Climate Centre Norway 144×96 
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Table 2 Drought Classification based on PDSI, SPI and SPEI 1107 

Categories PDSI 
classifications 

SPI  
classifications 

SPEI classifications 

Extremely Drought (Ex_D) PDSI≤-4.00 SPI≤-2.0 SPEI≤-2.0 

Severely Drought (Se_D) -3.99≤PDSI≤-3.00 -1.99≤SPI≤-1.5 -2.0＜SPEI≤-1.5 

Moderately Drought (Mo_D) -2.99≤PDSI≤-2.00 -1.49≤SPI≤-1.0 -1.5＜SPEI≤-1.0 

Mild Drought (Mi_D) -1.99≤PDSI≤-1.00 -0.99≤SPI≤-0.5 -1.0＜SPEI≤-0.5 
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