
Proceedings of the Edinburgh Mathematical Society Submitted Paper

Paper 19 October 2019

CRYSTAL FLEX BASES AND THE RUM SPECTRUM

G. Badri1, D. Kitson2, and S. C. Power2

1Dept. of Mathematical Sciences. Umm Al-Qura University Saudi Arabia
2Dept. Math. Stats. Lancaster University Lancaster LA1 4YF U.K.

(Received )

Abstract A theory of infinite spanning sets and bases is developed for the first order flex space of an
infinite bar-joint framework, together with space group symmetric versions for a crystallographic bar-joint

framework C. The existence of crystal flex basis for C is shown to be closely related to the spectral analysis

of the rigid unit mode (RUM) spectrum of C and an associated geometric flex spectrum. Additionally,
infinite spanning sets and bases are computed for a range of fundamental crystallographic bar-joint

frameworks, including the honeycomb (graphene) framework, the octahedron (perovskite) framework
and the 2D and 3D kagome frameworks.
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1. Introduction

The analysis of the rigidity and flexibility of periodic infinite bond-node structures is an

ongoing endeavour in materials science and pure mathematics (Connelly, Ivić and White-

ley [2], Guest, Fowler and Power [7]). In this connection it is well known in crystallography

and engineering that many crystals and periodic structures which are critically coordi-

nated exhibit a rich set of localised zero energy crystal vibrations (phonons) (Giddy et-al

[5], Dove et-al [3], [4], Wegner [15]) and localised infinitesimal mechanisms (Hutchinson

and Fleck [8]). Inspired by this we wish to understand for which crystal frameworks there

exists a finite or countable set of localised modes u1, u2, . . . which tells the whole story, so

to speak, by providing a complete set in the sense that every first order (i.e. infinitesimal)

flex may be expressed as an infinite linear combination

u =

∞
∑

n=1

αnun, αn ∈ R.

In the dynamical theory of a crystal framework C it is common to limit attention to

first order motions with some form of periodicity, or periodicity up to a phase factor for
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a Bloch wave vector. However, one of our motivations is to determine the structure of the

space F(C;R) of all first order flexes, including unbounded ones, as well as the structure

of the space F∞(C;R) of all bounded first order flexes.

To approach these problems we formalise, in Section 2, the notions of a free spanning

set and a free basis for a space of velocity fields for an arbitrary countable bar-joint

framework, with no periodicity assumptions, while in Section 4 we define their space

group symmetric counterparts in the case of crystal frameworks. Also, in Section 5 we

determine such spanning sets and bases for a range of fundamental examples, including

the honeycomb (graphene) framework, the octahedron (perovskite) framework and the

2D and 3D kagome frameworks. Our main result, Theorem 4.4, shows that if the infinites-

imal flex space of a crystallographic bar-joint framework is infinite dimensional then in

any space group symmetric free spanning set there necessarily exists a band-limited flex,

that is, one whose support lies uniformly close to a proper linear subspace. We show

that this requirement implies that there can be obstacles to the existence of crystal flex

bases which arise from nonlinearity in the RUM spectrum Ω(C), or nonlinearity in a

more general geometric flex spectrum Γ(C) which we introduce here. These obstacles are

expressed in Theorems 4.9 and 4.11.

The rigid unit modes, or RUMs, of a material crystal are the zero energy oscillation

modes observed in the long wavelength limit [5], [4], [15]. These vibration modes are

bounded and periodic modulo a multiphase factor and in fact they correspond precisely

to nonzero infinitesimal flexes with the corresponding boundedness and periodicity prop-

erties. See [1], [12], [13]. The spectrum of multiphase factors for such modes is a subset

of the d-torus known as the RUM spectrum and it corresponds to the points of rank

degeneracy of a matrix function ΦC(z) computable from a building block unit for C. In
this way the study of RUM modes is reduced to the spectral analysis of function matrices

and their associated eigenspaces.

The determination of the space of all real or complex infinitesimal flexes requires

an understanding of unbounded flexes, possibly localised to a hyperplane, and in this

connection we introduce the transfer function ΨC(z) associated with C and a building

block unit. This is an analytic matrix-valued function on the d-fold product Cd
∗ of the

punctured complex plane C∗ = C\{0} defined as the unique extension of ΦC(z). The

points z = ω of rank degeneracy of the transfer function indicate the presence of nonzero

geometrically periodic flexes. Such periodicity is characterised by a set of equations of

the form

u(pk) = ωku(p0) = ωk1

1 · · ·ωkd

d u(p0)

which relate the velocity u(p0) of a node p0 in the base unit cell to the velocity u(pk) of

the corresponding node pk in the cell with label k ∈ Zd. In particular if the multifactor

ω = (ω1, . . . , ωd) has |ωi| > 1 for some i then the local velocities u(pk) are unbounded

(or zero) as ki → +∞, with kj fixed for j 6= i, and are geometrically decaying as

ki → −∞. The geometrically periodic flexes are also referred to as factor periodic flexes

with multifactor ω. The novel geometric spectrum Γ(C) referred to above is the set of

such multifactors, that is, the set of points of rank degeneracy of the transfer function.
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The development is organised as follows. In Section 2 we show, using an abstract non-

constructive argument, that for any countable bar-joint framework, periodic or not, every

infinite dimensional linear subspace of the space of velocity fields has a free basis in the

sense of Definition 2.3. In Section 3 we consider group actions on free spanning sets;

proving several key results which are then applied in Section 4 to crystal flex spanning

sets for periodic frameworks. Our first main result, Theorem 4.4, shows that a crystal

flex spanning set for an infinite dimensional space of flexes necessarily contains localised

velocity fields which moreover have geometric periodicity relative to their support. We

also show that the existence of a natural crystal flex basis can lead to a simple description

of the bounded flexes as those whose infinite expansion in the basis have bounded coef-

ficients. Following this, the RUM spectrum and the geometric flex spectrum, associated

with a periodic structure for C, are introduced and we obtain necessary spectral condi-

tions for the existence of various crystal spanning sets. We also pose here the intriguing

problem of determining sufficient conditions, including spectral conditions, which ensure

the existence of a crystal flex basis. In the final section, which is largely independent of

earlier results, we compute crystal flex bases and spanning sets for several fundamental

examples.

2. Free spanning sets and free bases

Let A be a non-empty set and let X be a finite dimensional vector space over a field

K, where K = R or C. Endow X with a norm and the norm topology. Let XA denote

the topological vector space of maps f : A → X with the usual pointwise vector space

operations and the topology of pointwise convergence (i.e. the product topology). The

support of a map f is denoted supp(f).

Definition 2.1. A sequence (fn) in XA\{0} tends to zero strictly if, for each a ∈ A,

the sequence (fn(a)) in X has at most finitely many nonzero terms.

Lemma 2.2. Let (fn) be a sequence in XA\{0}. The following conditions are equiv-

alent.

(i) (fn) tends to zero strictly.

(ii)
∑∞

n=1 αnfn(a) converges in X for every sequence of scalars (αn) in K and every

a ∈ A.

Proof. If (i) holds and (αn) is an arbitrary sequence of scalars then, for each a ∈ A,

the series
∑∞

n=1 αnfn(a) has finitely many non-zero terms and hence converges in X .

This establishes (ii). If (i) does not hold, then there exists a ∈ A and a subsequence

(fnj
) such that fnj

(a) is non-zero for each j. Choose a norm ‖ · ‖ on X and for each

n ∈ N define,

αn =

{

1
‖fnj

(a)‖ if n = nj for some j ∈ N,

0 otherwise.

Then the series
∑∞

n=1 αnfn(a) fails to converge in X and so (ii) is not satisfied. �
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If a sequence (fn) in XA\{0} tends to zero strictly then, by Lemma 2.2, for every

sequence of scalars (αn) in K the sum
∑∞

n=1 αnfn represents an element of XA. Note

that the partial sums, sN =
∑N

n=1 αnfn, converge to s =
∑∞

n=1 αnfn in the strict

sense that the sequence (s − sN ) tends to zero strictly in XA. Also note that, setting

S = {fn : n ∈ N}, the setM(S) = {∑∞
n=1 αnfn : αn ∈ K} is a vector subspace of XA.

In the next definition the term free for a countable set of vectors is used in the sense that

there are no coefficient restrictions needed to ensure that an infinite linear combination

of the vectors is pointwise convergent.

Definition 2.3. Let W be an infinite dimensional vector subspace of XA.

(a) A free spanning set for W is a countable subset S = {f1, f2, . . . } of W\{0} for which
the sequence (fn) tends to zero strictly and satisfies W ⊆M(S).

(b) A free basis for W is a free spanning set S = {f1, f2, . . .} for W such that each

w ∈W has a unique representation,

w =

∞
∑

n=1

αnfn, αn ∈ K.

Example 2.4. Let A = {ak : k ∈ N} be a countable set and let x1, . . . , xd be a basis

for X . For each n ∈ N and each σ ∈ {1, . . . , d} define,

en,σ(ak) =

{

xσ if n = k,

0 otherwise.

Then {en,σ : n ∈ N, σ ∈ {1, . . . , d}} is a free basis for XA.

(a) Existence of free bases

Let A be a countably infinite set and let α = (Ai) be an increasing sequence of finite

subsets of A which cover A (i.e. Ai ⊂ Ai+1 for all i ∈ N and A = ∪i∈N Ai). For each i ∈ N,

let πi : X
A → XAi denote the natural restriction map. Let W be an infinite dimensional

vector subspace of XA and let Wi = πi(W ) for each i ∈ N. For all i, j ∈ N with j ≥ i,

let πj,i : Wj →Wi be the natural restriction maps. Note that the pair ((Wi), (πj,i)) is an

inverse sequence of finite dimensional vector spaces.

Lemma 2.5. There exists a sequence (Bj) of disjoint finite sets inW with the following

properties.

(i) πi(Bj) = {0} for all i < j.

(ii) πj(B1 ∪ · · · ∪Bj) is a basis for Wj .

(iii) |B1 ∪ · · · ∪Bj | = dimWj for each j ∈ N.
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Proof. Choose a minimal finite subset B1 ⊂ W with the property that π1(B1) is a

basis for W1. Note that π1(w) = π2,1 ◦ π2(w) for all w ∈W and so it follows that π2(B1)

is a linearly independent set in W2. Let Y2 be the linear span of π2(B1) in W2. Since

the restriction map π2,1 : W2 → W1 is linear and surjective we have W2 = Y2 ⊕ kerπ2,1

and dim Y2 = dimW1. Now choose a minimal finite subset B2 ⊂ W with the property

that π2(B2) is a basis for kerπ2,1. Note that B1 and B2 are disjoint. Then π1(B2) =

π2,1 ◦π2(B2) = 0, π2(B1∪B2) is a basis for W2 and |B1∪B2| = dimW2. Repeating these

arguments the sequence (Bj) can now be constructed inductively. �

Theorem 2.6. If A is a countably infinite set then every infinite dimensional vector

subspace of XA has a free basis.

Proof. Let W be a subspace of XA and let α = (Ai) be an increasing sequence of

finite subsets which cover A. There exists a sequence (Bj) of disjoint finite sets in W

with properties (i)-(iii) as in the statement of Lemma 2.5. It remains only to show that

the countable set ∪j∈N Bj = {fn : n ∈ N} is a free basis for W . By property (i), the

sequence (fn) tends to zero strictly. Suppose w ∈W . By properties (i)-(iii), there exists

a unique sequence (hj) in W such that hj ∈ span(Bj) and πj(w) = πj(h1 + · · ·+ hj) for

each j ∈ N. Define h =
∑∞

j=1 hj . Then w = h ∈ M(S), where S = {fn : n ∈ N}, and so

W ⊆M(S). �

Remark 2.7. Note that the proof of Theorem 2.6 is nonconstructive in the sense that

the resulting free basis depends both on a choice of covering sequence α = (Ai) and a

process of selection for the sequence (Bj).

Given W and α as above, denote by lim←−Wi the inverse limit of the inverse sequence

((Wi), (πj,i)). Thus lim←−Wi is the vector space of all (fi) in the Cartesian product Πi∈NWi

with the property that πj,i(fj) = fi whenever j ≥ i. In the following, we consider the

linear map Φα : XA → Πi∈NWi, f 7→ (πi(f)).

Lemma 2.8. The following statements are equivalent.

(i) W is closed, with respect to the product topology on XA.

(ii) Φα(W ) = lim←−Wi.

Proof. To show (i)⇒ (ii), suppose W is closed in XA. Let (πi(wi)) ∈ lim←−Wi, where

wi ∈ W for each i ∈ N, and define w ∈ XA by setting w(a) = wj(a) for all a ∈ Aj ,

and all j ∈ N. Note that the sequence (wj) converges pointwise to w. Thus w ∈ W and

Φα(w) = (πi(wi)).

To show (ii)⇒ (i), suppose Φα(W ) = lim←−Wi and let (wn) be a sequence in W which

converges pointwise to h ∈ XA. For each i ∈ N, the sequence (πi(wn)) in Wi converges

pointwise to πi(h) ∈ XAi . SinceXAi is finite dimensional,Wi is closed and so πi(h) ∈ Wi.

Thus the sequence (πi(h)) lies in the inverse limit lim←−Wi and so there exists w ∈W such

that Φα(w) = (πi(h)). Note that πi(h) = πi(w) for all i ∈ N and so h = w ∈W . �

Theorem 2.9. If A is a countably infinite set then every infinite dimensional closed

vector subspace W of XA has a free basis S = {fn : n ∈ N} with W =M(S).
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Proof. Let W be a closed subspace of XA and let S = {fn : n ∈ N} be the free basis

for W obtained from a sequence (Bj) as in the proof of Theorem 2.6. Then W ⊆M(S)

and so it only remains to show the reverse inclusion holds. Let h ∈M(S). By properties

(i) and (ii) of the sequence (Bj), πi(h) ∈ Wi for each i ∈ N and so (πi(h)) ∈ lim←−Wi.

Since W is closed, by Lemma 2.8 there exists w ∈ W such that Φα(w) = (πi(h)). Now

h = w ∈ W and soM(S) ⊆W . �

Given f ∈ XA we write ‖f‖∞ = supa∈A ‖f(a)‖. A mapping f ∈ XA is bounded if

‖f‖∞ <∞. Otherwise, f is said to be unbounded.

Corollary 2.10. Let A be a countably infinite set. If W is an infinite dimensional

closed subspace ofXA thenW contains a countable linearly independent set of unbounded

elements.

Proof. By Theorem 2.9, there exists a free basis S for W with the property that

W = M(S). Since S is countably infinite we may choose a sequence (hk) in S and a

sequence (ak) in A so that

hk(ak) 6= 0 and hk(aj) = 0, for 1 ≤ j ≤ k − 1.

Replacing hk by a scalar multiple of hk we may assume for convenience that ‖hk(ak)‖ = 1

for all k. Choose non-zero scalars (α1,n) successively such that α1,1 = 1 and |α1,n| ≥
n + ‖∑n−1

k=1 α1,khk(an)‖ for each n ≥ 2. Let g1 =
∑∞

k=1 α1,khk ∈ W and note that for

each n ∈ N,

‖g1(an)‖ = ‖
n
∑

k=1

α1,khk(an)‖ ≥ ‖α1,nhn(an)‖ − ‖
n−1
∑

k=1

α1,khk(an)‖ ≥ n.

Thus g1 is unbounded. For m ≥ 2, similarly define gm =
∑∞

k=m αm,khk with non-zero

scalars (αm,k) chosen so that gm is unbounded. To see that the set {gm : m ∈ N}
is linearly independent note that if

∑d
m=1 λmgm = 0 for some λ1, . . . , λd ∈ K then

λ1α1,1h1(a1) =
∑d

m=1 λmgm(a1) = 0 and so λ1 = 0. By similar arguments it follows that

λj = 0 for each j = 2, . . . , d. �

(b) Application to bar-joint frameworks

The results of the previous section apply to the infinitesimal flex spaces of countable

bar-joint frameworks (and in particular, to crystallographic bar-joint frameworks). Let

G = (V,E) be a simple graph with vertex set V and edge set E. A bar-joint framework

for G in Rd is a pair G = (G, p) where p : V → Rd, v 7→ pv, is an injective map. The

points pv are referred to as joints of G and the line segments (pv, pw), where vw ∈ E,

are referred to as bars. Let V(G;K) = XA where A = p(V ) and X = Kd (for K = R or

C). The elements of V(G;K) are referred to as velocity fields for G over K. If u ∈ V(G;K)

then u(pv) is referred to as the velocity vector for u at pv. An infinitesimal flex (or

first order flex ) for G over K is a velocity field u ∈ V(G;K) with the property that

〈pv − pw, u(pv)〉 = 〈pv − pw, u(pw)〉 for each edge vw ∈ E. The set of infinitesimal flexes
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for G is a closed vector subspace of V(G;K), denoted F(G;K). The vector subspace of

bounded infinitesimal flexes for G is denoted F∞(G;K).

a1

a2

Figure 1. A motif for the bar-joint framework Ckite together with four velocity vectors from the

unbounded infinitesimal flex akite.

Example 2.11. Consider the crystallographic bar-joint framework Ckite in the Euclidean

plane which is defined by the kite-shaped motif indicated in Figure 1 consisting of two

joints and five bars. We assume that the vertical crossbar is closer to the apex joint,

positioned to the left, than it is to the tail joint on the right. The figure also indicates

a pair of periodicity vectors {a1, a2} and 4 velocity vectors at the 4 joints of a kite sub-

framework of Ckite. These velocity vectors are indicative of an infinitesimal rotational flex

of this subframework about the centre of the crossbar.

Let ~x, ~y be a choice of nonzero infinitesimal translation flexes of Ckite, for the x and y

directions respectively, and let ~r be a nonzero infinitesimal rotation flex of Ckite. Addition-
ally, note that there is an unbounded infinitesimal flex akite in F(Ckite;R) which restricts

to alternating rotations of the 5-bar kite framework and its translates, each of these

restriction flexes being rotational about the centre of the crossbar. The magnitude of

these rotations tend to infinity exponentially in the positive x-direction and are constant

in magnitude in the y-direction.

It is straightforward to show that the finite set {~x, ~y, ~r, akite} is a vector space basis for

F(Ckite;R). Indeed, let G be a finite subframework of Ckite formed by 2 kite subframeworks

which meet at a common joint. The infinitesimal flex space of G is 4-dimensional and is

spanned by the restrictions of the quartet ~x, ~y, ~r, akite. Thus if u is an infinitesimal flex

of Ckite then we may subtract from u a linear combination of this quartet to obtain a

flex u1 whose restriction to G is 0. One can readily from the geometry of Ckite and the

rigidity of the kite subframeworks that this implies that u1 = 0.

Let G = (G, p) be a finite or countable bar-joint framework whose joints do not lie in a

hyperplane. The space Frig(G;R) of trivial infinitesimal flexes, or rigid motion infinites-

imal flexes, is the vector subspace of F(G;R) consisting of real infinitesimal flexes of

the complete graph bar-joint framework (KV , p). Here KV is the complete graph on the
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vertex set V . The bar-joint framework G is infinitesimally rigid if F(G;R) = Frig(G;R)
and boundedly infinitesimally rigid if F∞(G;R) ⊂ Frig(G;R).
Example 2.12. The three velocity fields ~x, ~y, ~r in Example 2.11 span Frig(Ckite;R).

Also akite is not a bounded infinitesimal flex. It follows that Ckite is boundedly infinites-

imally rigid, but not infinitesimally rigid.

In contrast to this consider the semi-crystallographic framework Cx≤0
kite which is formed

by removing from Ckite all the 5-bar kite frameworks not lying in the half-plane x ≤ 0.

This is not boundedly infinitesimally rigid. Indeed it can be shown, as in the consider-

ation of Ckite, that the flex space is 4-dimensional with basis given by the restrictions

to Cx≤0
kite of the quartet ~x, ~y, ~r, akite. Since the restriction of akite to Cx≤0

kite is bounded the

semi-crystallographic framework is not boundedly rigid. One may view this restriction

infinitesimal flex (and its associated zero energy mechanical mode) as a bounded surface

flex (or surface mode), of the bulk crystal Ckite, which is associated with the domain wall

x = 0.

Theorem 2.13. Let G = (G, p) be a bar-joint framework in R
d with a countable set

of joints. If the space of infinitesimal flexes F(G;K) is infinite dimensional then,

(i) F(G;K) has a free basis, and,

(ii) F(G;K) contains a countable linearly independent set of unbounded infinitesimal

flexes.

Proof. The statements follow from Theorem 2.9 and Corollary 2.10 since F(G,K) is

closed in V(G;K). �

Several examples of free bases for the infinitesimal flex spaces of crystallographic bar-

joint frameworks are presented in Section 5.

3. Group actions on free spanning sets

Once again let A be a countably infinite set and X a finite dimensional normed space over

K. Throughout this section, Γ denotes a multiplicative free abelian group with identity

element 1, θ : Γ × A → A is a free group action on A and π : Γ × XA → XA is the

induced faithful group action on XA given by π(γ, f)(a) = f(γ−1a) for all a ∈ A. To

simplify notation, θ(γ, a) will be written as γa for all γ ∈ Γ and a ∈ A. Similarly, π(γ, f)

will be written as γf for all γ ∈ Γ and f ∈ XA. The orbit of an element a ∈ A under the

group action θ is the set Γa = {γa : γ ∈ Γ} and the quotient set A/Γ = {Γa : a ∈ A} is
the set of all such orbits.

Definition 3.1. A geometric direction for f ∈ XA\{0} is an element γ ∈ Γ such that

γf is a non-zero scalar multiple of f .

The set of all geometric directions for f is denoted Γf .

Lemma 3.2. Let f ∈ XA\{0}.

(i) Γf is a subgroup of Γ.
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(ii) Γf = Γλ(γf) for all non-zero scalars λ ∈ K and all γ ∈ Γ.

(iii) If f has finite support then Γf = {1}.

Proof. The proofs of parts (i) and (ii) are elementary and left to the reader. To

show (iii), suppose γ ∈ Γ is a geometric direction for f and choose a ∈ supp(f). Then

γka ∈ supp(f) for each k ∈ Z. Since θ is a free group action, the elements γka, k ∈ Z,

are distinct unless γ = 1. �

Definition 3.3. Let S ⊂ XA\{0}. A group action π : Γ×XA → XA acts on S (up to

scalar multiples) if for each f ∈ S and each γ ∈ Γ there exists a scalar λ ∈ K and g ∈ S

such that γf = λg.

Lemma 3.4. Let S be a free spanning set for an infinite dimensional vector subspace

of XA and let f ∈ S. If the quotient set A/Γ under the action θ is finite and the induced

action π acts on S up to scalar multiples then the following statements are equivalent.

(i) f has finite support.

(ii) Γf = {1}.

Proof. The implication (i) ⇒ (ii) is Lemma 3.2(iii). To show (ii) ⇒ (i), suppose

Γf = {1}. Let S = {fn : n ∈ N} and let a1, . . . , ar be a set of representatives for the

finitely many orbits in A/Γ. For i ∈ {1, . . . , r}, define Ci = {γf : γ ∈ Γ, (γf)(ai) 6= 0}.
Note that, since the sequence (fn) tends to zero strictly, the set Si = {g ∈ S : g(ai) 6= 0}
is finite and, since π acts on S, each element of Ci is a scalar multiple of an element of Si.

If Ci is not finite, for some i ∈ {1, . . . , r}, then there exist distinct elements γ1f, γ2f ∈ Ci

and a non-zero scalar λ ∈ K such that γ1f = λ(γ2f). Thus (γ1γ
−1
2 )f = λf and so γ1γ

−1
2

is a geometric direction for f , which contradicts Γf = {1}. Thus Ci must be finite for

each i ∈ {1, . . . , r}. Now for each Ci, either γ1f = γ2f for some distinct γ1, γ2 ∈ Γ or

there are only finitely many γ ∈ Γ with (γf)(ai) 6= 0. If the former case holds for some

Ci, then f = (γ1γ
−1
2 )f and so γ1γ

−1
2 is a geometric direction for f , which contradicts

Γf = {1}. Thus the latter case holds for each Ci. Since f(γ
−1ai) = (γf)(ai) for all γ ∈ Γ

and i ∈ {1, . . . , r}, and since A = {γai : γ ∈ Γ, i ∈ {1, . . . , r}}, it follows that f has finite

support. �

Definition 3.5. A set S ⊂ XA\{0} is finitely generated by a group action π : Γ ×
XA → XA (up to scalar multiples) if π acts on S, and, there is a finite subset S0 ⊂ S such

that for every f ∈ S there exists γ ∈ Γ, f0 ∈ S0, and a scalar λ ∈ K, with f = λ(γf0).

Lemma 3.6. Let S be a free spanning set for an infinite dimensional vector subspace

of XA. If S is finitely generated by a group action π then there exists f ∈ S such that

the quotient group Γ/Γf has infinite order.

Proof. Let I = {Kf : f ∈ S} where Kf denotes the one-dimensional subspace of

XA spanned by f . If I is a finite set, then there exists a sequence (fn) in S for which

the one-dimensional spaces Kfn are equal. In particular, the support sets supp(fn) are

equal for all n ∈ N. This is a contradiction since (fn) tends to zero strictly and so I is
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countably infinite. Since S is finitely generated by π, there exists a finite subset S0 ⊂ S

such that I = {K(γf) : γ ∈ Γ, f ∈ S0}. Note that, for each f0 ∈ S0, the cardinality of

{K(γf0) : γ ∈ Γ} is bounded by the order of Γ/Γf0 . Thus Γ/Γf0 has infinite order for

some f0 ∈ S0. �

(a) Lattice group actions

Let L = {∑m
i=1 nibi : ni ∈ Z} be a rank m lattice in Rd determined by linearly

independent vectors b1, . . . , bm ∈ Rd. For each b ∈ L, let Tb : Rd → Rd denote the

translation Tb(x) = x + b. The translation group associated to L is the multiplicative

abelian group T = {Tb : b ∈ L}. A multilattice on L is a set A = A1 ∪ . . . ∪ As where

A1, . . . , As are pairwise disjoint translates of L. Define a free group action θL : T ×A→ A

by setting θL(T, ai) = T (ai) for ai ∈ Ai, 1 ≤ i ≤ s. The lattice group action on XA

induced by θL is the group action πL : T ×XA → XA with πL(T, f) = f ◦ T−1. Note

that the quotient set A/T is finite and a translation Tb ∈ T is a geometric direction for

f ∈ XA if and only if there exists a nonzero scalar λ such that f(a− b) = λf(a) for all

a ∈ A. If Γf 6= {1} then the sublattice Lf = {b ∈ L : Tb ∈ Γf} is referred to as the lattice

of geometric directions for f .

Definition 3.7. Let L′ be a rank n sublattice of L with basis b1, . . . , bn ∈ Rd. A

mapping f ∈ XA is factor periodic on L′ if there exists ω = (ω1, . . . , ωn) ∈ Kn
∗ such

that Tbf = ωk1

1 · · ·ωkn
n f for all b =

∑n
j=1 kjbj ∈ L′. In this case, ω is referred to as the

periodicity multifactor for f determined by the basis b1, . . . , bn ∈ Rd.

Lemma 3.8. Let A be a multilattice on L and let f ∈ XA\{0}.

(i) If Γf 6= {1} then f is factor periodic on Lf .

(ii) If f is bounded and factor periodic, with periodicity multifactor ω, then the com-

ponents of ω are unimodular.

Proof. (i) If Γf 6= {1} then Lf is a lattice of rank n say. Let b1, . . . , bn ∈ Rd be a set of

generators for the lattice Lf . For each i = 1, . . . , n, Tbi is a geometric direction for f and

so Tbif = ωif for some non-zero scalar ωi ∈ K. Thus Tbf = T k1

b1
· · ·T kn

bn
f = ωk1

1 · · ·ωkn
n f

for all b =
∑n

j=1 kjbj ∈ Lf .

(ii) Suppose f is factor periodic on the lattice L′ and let ω = (ω1, . . . , ωn) ∈ Kn
∗ be the

periodicity factor for f determined by a basis b1, . . . , bn for L′. Let a ∈ supp(f). Note

that, for each j = 1, . . . , n, ‖f(a− kbj)‖ = ‖T k
bj
(a)‖ = |ωj |k‖f(a)‖ for all k ∈ Z. Thus, if

|ωj | 6= 1 for some j then f is clearly unbounded. �

If S ⊂ XA then, for each a ∈ A, let Sa = {f ∈ S : f(a) 6= 0}.

Lemma 3.9. Let A be a multilattice on L and let S be a free spanning set for an

infinite dimensional subspace of XA. If the lattice group action πL acts on S then each

f ∈ S satisfies one of the following conditions.

(i) f is finitely supported.
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(ii) f is factor periodic on Lf and the support of f is a multilattice on Lf .

Proof. Suppose f ∈ S is not finitely supported. By Lemma 3.4, Γf 6= {1}. Thus, by
Lemma 3.8, f is factor periodic on Lf . Choose a1, . . . , as ∈ A such that A = ∪si=1(ai+L).

Since S is a free spanning set, Sai
is finite and so Sai

= {gai,1, . . . , gai,si} say. By Lemma

3.4, the subgroup Lf is a non-zero sublattice of L. Let Lai,k = {b ∈ L : T−1
b f =

λgai,k, for some λ 6= 0} for k = 1, . . . , si. Note that (T−1
b f)(ai) = f(a) 6= 0 for each

a ∈ supp(f) with a = ai + b and b ∈ L. Thus, since πL acts on S, it follows that

supp(f) = ∪si=1 ∪sik=1 (ai + Lai,k). If b, b
′ ∈ Lai,k then Tbf = λ(Tb′f) for some non-zero

scalar λ ∈ K and so Tb−b′ is a geometric direction for f . In particular, b− b′ ∈ Lf . Thus

if bai,k ∈ Lai,k then it follows that Lai,k = bai,k +Lf , and so supp(f) is a finite union of

translates of the lattice Lf . �

In the following, Rd is endowed with a norm and dist(a,E) = infx∈E ‖a− x‖ denotes
the distance between a point a ∈ Rd and a subset E ⊂ Rd.

Definition 3.10. Let A be a multilattice in Rd. A mapping f ∈ XA is band-limited

with respect to a proper linear subspace K of Rd if there exists C > 0 such that the

support of f is contained in the “band” {x ∈ Rd : dist(x,K) ≤ C}.

Theorem 3.11. Let A be a multilattice and let S be a free spanning set for an infinite

dimensional vector subspace of XA. If S is finitely generated by the lattice group action

πL, and contains no finitely supported elements, then there exists f ∈ S such that the

linear span K of Lf is a proper subspace of Rd and f is band-limited with respect to K.

Proof. Suppose no element of S has finite support. By Lemma 3.6, there exists f ∈ S

such that the quotient group Γ/Γf has infinite order. Recall that a quotient of two free

abelian groups with equal rank has finite order. Thus Γf has rank k strictly less than d.

Let K be the proper linear subspace in Rd spanned by Lf . By Lemma 3.9, the support

of f is a multilattice on Lf and hence is contained in a band {x ∈ Rd : d(x,K) ≤ C} for
some C > 0. �

A subset S of XA is bounded if each element of S is bounded and supf∈S ‖f‖∞ <∞.

Lemma 3.12. Let A be a multilattice on L and let S = {fn : n ∈ N} be a bounded

free spanning set for an infinite dimensional subspace of XA. If the lattice group action

πL acts on S and (αn) ∈ ℓ∞(N) is a bounded sequence of scalars then
∑∞

n=1 αnfn is

bounded.

Proof. Suppose f =
∑∞

n=1 αnfn for some α = (αn) ∈ ℓ∞(N). Since (fn) tends to zero

strictly, Sa is a finite set for each a ∈ A. Note that for each b ∈ L, f(a + b) 6= 0 if and

only if (T−1
b f)(a) 6= 0. Thus, since πL acts on S, the set Sa+b has the same cardinality

as Sa. Choose a1, . . . , as ∈ A such that A = ∪si=1(ai + L). Let N = supa∈A |Sa| =
maxi=1,...,s |Sai

| and let M = supn ‖fn‖∞. Then ‖f‖∞ = supa∈A ‖f(a)‖ ≤ NM‖α‖∞
and so f is bounded. �
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In the following, a set S ⊂ XA\{0} has the local basis property if, for each a ∈ A, the

set {f(a) : f ∈ Sa} is a basis for X . Also, W∞ denotes the set of bounded elements in a

subspace W of XA.

Theorem 3.13. Let A be a multilattice on L and let S = {fn : n ∈ N} be a free

spanning set for an infinite dimensional subspace W of XA with the following properties.

(i) The lattice group action πL acts on S.

(ii) S is bounded and has the local basis property.

(iii) No element of S is finitely supported.

(iv) inf{‖g(a)‖ : a ∈ A, g ∈ Sa} > 0.

Then,

W∞ = {f ∈W : f =

∞
∑

n=1

αnfn and (αn) ∈ ℓ∞(N)}.

Proof. Let f ∈ W∞. Then f =
∑∞

n=1 αnfn for some sequence of scalars (αn) and

‖f‖∞ <∞. Since S has the local basis property, given any a ∈ A, the set {g(a) : g ∈ Sa}
is a basis for X and so we may consider the norm on X given by ‖x‖a = maxg∈Sa

|λg|
where x =

∑

g∈Sa
λgg(a). Moreover, since X is finite dimensional, there exists ca >

0 such that ca‖x‖a ≤ ‖x‖ for all x ∈ X . Suppose αm 6= 0 and choose a ∈ A with

fm(a) 6= 0. Since the lattice group action πL acts on S and no element of S is finitely

supported, it follows from Lemma 3.4 and Lemma 3.8(i) that each g ∈ Sa is factor

periodic on Lg. Moreover, since each element of S is bounded, it follows from Lemma

3.8(ii) that the components of the periodicity factors for each g ∈ Sa are unimodular.

Choose a1, . . . , as ∈ A such that A = ∪si=1(ai + L). Then a = aj + b for some j and

some b ∈ L. Thus, since the lattice group action πL acts on S, there exist scalars µg

such that Sa = {µgg : g ∈ Saj
}. It follows that ‖x‖a ≤ 1

M
‖x‖aj

where M > 0 is a lower

bound for {‖g(a)‖ : a ∈ A, g ∈ Sa}. Thus caj
‖x‖a ≤ caj

( 1
M
)‖x‖aj

≤ 1
M
‖x‖ for each

x ∈ X . Note that |αm| ≤ ‖f(a)‖a ≤ 1
cM
‖f(a)‖ ≤ 1

cM
‖f‖∞ where c = mini=1,...,s cai

.

Thus (αn) ∈ ℓ∞(N).

For the reverse inclusion apply Lemma 3.12. �

4. Crystal flex bases and the RUM spectrum

An automorphism of a graph G = (V,E) is a bijection β : V → V with the property

that vw ∈ E if and only if β(v)β(w) ∈ E. The space group for a bar-joint framework

G = (G, p) in Rd is the group S(G) of Euclidean isometries T : Rd → Rd with the

property that T (p(V )) = p(V ) and the induced map β : V → V , v 7→ p−1(T (pv)) is an

automorphism of G. The subgroup of S(G) consisting of translations is denoted T (G).

Definition 4.1. A bar-joint framework C = (G, p) in Rd is referred to as a crystal

framework if there exists a rank d lattice L in Rd with the following properties.
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(a) The translation group T = {Tb : b ∈ L} is a subgroup of T (C).

(b) C has only finitely many distinct vertex orbits and edge orbits under T .

In this case, the lattice L (or equivalently, the translation group T ) is referred to as a

periodic structure for C.

Let C be a crystal framework in Rd. The space group action on V(C;R) is the faithful

group action πS(C) : S(C) × V(C;R) → V(C;R) with πS(C)(T, f) = T2 ◦ f ◦ T−1 where

T = T1T2 is the unique factorisation of the Euclidean isometry T with T1 a translation

and T2 an orthogonal linear transformation. Also we define the space group action on

V(C;C) as the natural induced action. Alternatively, for f ∈ V(C;C) we may define

πS(C)(T, f) = T̃2 ◦ f ◦ T−1 where T̃2 has the diagonal action T2 ⊕ T2 on the direct sum

Cd = Rd⊕ iRd. The lattice group action on V(C;K) determined by a periodic structure L

with translation group T = {Tb : b ∈ L} is the group action πT : T ×V(C;K)→ V(C;K),

πT (T, f) = f ◦ T−1.

Lemma 4.2. Let C = (G, p) be a crystal framework in Rd and let S ⊂ V(C;K). If S

is finitely generated by the space group action πS(C) then S is finitely generated by the

lattice group action πT for any choice of periodic structure T .

Proof. Suppose S is finitely generated by πS(C) and let T be a periodic structure for C.
Then given any f ∈ S and any T ∈ S(C) there exists λ ∈ K and g ∈ S such that Tf = λg.

In particular, this holds for all T ∈ T and so πT acts on S. Also, there exists a finite

subset S0 ⊂ S such that every member of S can be expressed as a scalar multiple of Tf

for some T ∈ S(C) and some f ∈ S0. Note that the set of joints of C is a multilattice and

the quotient group S(C)/T acts faithfully on the finite set of translation orbits. It follows

that the quotient group S(C)/T is finite. Let R1, . . . , Rm be a set of representatives for

the finitely many elements in S(C)/T and let S′
0 = {Rjf : f ∈ S0, j = 1, . . . ,m}. Then

every member of S is a scalar multiple of Tf for some T ∈ T and some f ∈ S′
0 and so S

is finitely generated over T . �

A geometric flex for a crystal framework C is an infinitesimal flex which is factor

periodic with respect to a sublattice of a periodic structure for C. A local geometric

flex for C is an infinitesimal flex which is factor periodic with respect to a lower rank

sublattice of a periodic structure for C. A band-limited flex for C is an infinitesimal flex

which is also a band-limited vector field in V(C;K). For crystal frameworks it is of interest

to determine free bases for F(C,K) which incorporate localised or band-limited flexes,

should such flexes exist, and which, moreover, incorporate the crystallographic symmetry

group. Accordingly we make the following definitions.

Definition 4.3. Let C be a crystal framework and let W be an infinite dimensional

vector subspace of V(C;K).

(a) A crystal spanning set (respectively, crystal basis) for W is a free spanning set

(respectively, free basis) which is finitely generated by the space group action πS(C).
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(b) A crystal spanning set (resp. crystal basis) for W = F(C;K) is also referred to as a

crystal flex spanning set (resp. crystal flex basis) for C.

In the next section we identify a number of crystal frameworks, such as the grid

frameworks and the kagome frameworks which possess a crystal flex basis in the sense

above. In several cases these bases consist entirely of local geometric flexes. Also we see

that the flex space of the octahedron framework has a free basis which is an essential

crystal flex basis in the sense that there is a subset which is a crystal flex basis for a vector

subspace of F(C;R) which is complementary to the 3-dimensional space of infinitesimal

rotation flexes.

Theorem 4.4. Let C = (G, p) be a crystal framework in Rd and suppose F(C;K) is

infinite dimensional. Let S be a crystal flex spanning set for C.

(i) If f ∈ S then f is either finitely supported or a geometric flex for C.

(ii) S must contain a band-limited flex. Moreover, f ∈ S is a band-limited flex if and

only if it is either finitely supported, or, a local geometric flex which, for any periodic

structure L, is band-limited with respect to the linear span of Lf .

(iii) If S is bounded, has the local basis property, has no finitely supported elements,

and inf{‖f(p(v))‖ : v ∈ V, f ∈ Sp(v)} > 0, then,

F∞(C;K) = {f ∈ F(C;K) : f =
∞
∑

n=1

αnfn and (αn) ∈ ℓ∞(N)}.

Proof. By Lemma 4.2, S is finitely generated by the lattice group action πT for any

choice of periodic structure T . The set of joints of C is a multilattice in Rd and so the

results of Section 3 may be applied with A = p(V ) and X = Kd. Statement (i) follows

from Lemma 3.4, Lemma 3.8 and Lemma 3.9. In particular, given any periodic structure

L for C, if f ∈ S and f is not finitely supported then f is factor periodic for the sublattice

Lf of L. Statement (ii) now follows since, by Lemma 3.9, the support of f is a multilattice

on Lf . Thus, if f is band-limited then Lf must have rank t, where t < d, and so f is

band-limited with respect to the linear span of Lf . Statement (iii) follows from Theorem

3.13. �

We now define a transfer function ΨC(z) associated with a crystal framework C, a
choice of periodic structure L with translation group T and a choice of basis b1, . . . , bd
for the lattice L. Let Fv = {pκ : 1 ≤ κ ≤ |Fv|} be a finite set of joints representing the

T -translation classes of the joints of C. Then we may conveniently label the joints of C
as,

{pκ,k : 1 ≤ κ ≤ |Fv|, k ∈ Z
d},

where pκ,k = Tkpκ. Also let Fe be a finite set of representative bars for the translation

classes of the bars. The pair (Fv, Fe), referred to as a motif for C, together with the

periodic structure T carry the essential geometric information which defines C [12, 13].
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Definition 4.5. Let C be a crystal framework in R
d with motif (Fv , Fe) and for

e = vw ∈ Fe let p(e) = p(v) − p(w). The transfer function ΨC(z) is a matrix-valued

function on Cd
∗ whose rows are labelled by the edges of Fe and whose columns are labelled

by the vertex-coordinate pairs in Fv × {1, . . . , d}. The row for an edge e = (v, k)(w, l)

with v 6= w takes the form,

[

v w

e 0 · · · 0 p(e)z−k 0 · · · 0 −p(e)z−l 0 · · · 0
]

,

while if v = w it takes the form,

[

v

e 0 · · · 0 p(e)(z−k − z−l) 0 · · · 0
]

.

The restriction of ΨC(z) to the d-torus T
d gives the symbol function ΦC(z) considered in

[1, 12, 13]. With the labelling of the joints of C given above, note that a complex velocity

field u ∈ V(C,C) is a map u : Fv×Z
d → C

d where u(pκ, k) is the velocity vector assigned

to the joint pκ,k. Note that u is factor periodic, with periodicity multifactor ω ∈ Cd
∗, if

u(pκ, k) = ωku(pκ, 0) for all pκ ∈ Fv, k ∈ Zd. Here ωk is the product ωk1

1 . . . ωkd

d . We a

write u = b ⊗ eω for this vector field, where b is the vector (u(pκ, 0))κ∈Fv
in Cd|Fv| and

eω is the multi-sequence (ωk)k∈Zd .

Theorem 4.6. Let C be a crystal framework in Rd with motif (Fv, Fe) and let u =

b⊗ eω where ω ∈ Cd
∗ and b ∈ Cd|Fv|. The following conditions are equivalent.

(i) u ∈ F(C,C).

(ii) Ψ(ω−1)b = 0.

Proof. The proof is similar to the unimodular case given in Power [13]. �

Definition 4.7. Let C be a crystal framework in Rd with a transfer function ΨC(z).

(a) The geometric flex spectrum Γ(C) of C is defined to be the set,

Γ(C) := {ω ∈ C
d
∗ : kerΨC(ω

−1) 6= {0}}.

(b) The rigid unit mode spectrum, or RUM spectrum, of C is the set,

Ω(C) := {ω ∈ T
d : kerΦC(ω) 6= {0}},

where ΦC(z) is the restriction of ΨC(z) to the d-torus.

Note that Γ(C) is the set of points ω ∈ C
d
∗ for which there exists a nonzero factor

periodic infinitesimal flex with periodicity multifactor ω. This set depends both on the

choice of periodic structure L for C and the choice of basis b1, . . . , bd for L. The RUM

spectrum is the subset Ω(C) = Γ(C)∩Td of multifactors ω with unimodular coordinates.
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Such multifactors are also referred to as multi-phases, or simply phases. Note also that

for a critically coordinated crystal framework, in the elementary sense that |Fe| = d|Fv|,
the transfer function is a square matrix-valued analytic function on its domain. It follows

in this case that the determinant provides a multivariable analytic function and that the

geometric spectrum is given by its set of zeros.

A small gallery of crystal frameworks and their transfer functions is given in Badri,

Kitson and Power [1] and their RUM spectra are determined. See also in Power [13]

where the connection with mode vibrations in materials science is discussed. In Section

5 we examine the geometric flex spectrum and the RUM spectrum of a novel bipyramid

framework. In close analogy with the semi-crystallographic kite framework of Example

2.12 we see that there are geometrically decaying surface flexes associated with directions

with no half-turn symmetry.

Definition 4.8. Let C be a crystal framework in Rd with a transfer function ΨC(z).

The RUM spectrum Ω(C) is said to contain linear structure if the logarithmic represen-

tation of Ω(C) in [0, 2π)d contains a t-dimensional set of the form [0, 2π)d ∩H where H

is an affine subspace of Rd and 1 ≤ t ≤ d.

If the RUM spectrum for a particular periodic structure contains linear structure then

the same is true for the RUM spectrum for any periodic structure. This follows from the

fact that the RUM spectrum for a periodic structure arises as the image of the primitive

RUM spectrum under a natural surjective map [13].

Theorem 4.9. Let C be a crystal framework in Rd and let S be a crystal flex spanning

set for C. If S contains a bounded band-limited flex then Ω(C) contains linear structure.

Proof. Let u ∈ S be a bounded band-limited flex for C. If u is finitely supported then,

by [13, Theorem 5.6], Ω(C) = Td and so Ω(C) contains linear structure. Suppose u is not

finitely supported. By Theorem 4.4(ii) and its proof, given a periodic structure L for C,
the sublattice Lu has rank t, where 1 ≤ t ≤ d − 1, and u is factor periodic with respect

Lu. Moreover, u is band-limited with respect to the proper subspace K of Rd spanned

by Lu.

Let Tu = {Tb ∈ T : b ∈ Lu} be the subgroup of the translation group T determined by

this sublattice. Also, let ω0 = (ω1, . . . , ωt) be the periodicity multifactor. By Lemma 3.8,

since u is bounded, ω0 ∈ Tt. Assume that Tu has generators Tg(1), . . . , Tg(t) and choose

translations Tg(t+1) . . . , Tg(d) such that Tg(1), . . . , Tg(d) is a set of generators for a full

rank subgroup T ′ of T . Let ω∗ = (ωt+1, . . . , ωd) be an arbitrary point in Td−t and define

w =
∑

k′∈Zd−t

ωk′

∗ Xk′u,

where Xk′ = k′1Tg(t+1) + . . . + k′d−tTg(d). This velocity field is well-defined, since u is

band-limited relative to K, and is an infinitesimal flex since F(C;K) is invariant under

the lattice group action πT . Also, w is factor periodic for ω = (ω0, ω∗) and the periodic

structure T ′. It follows that Ω(C) contains (ω0, ω∗) for every point ω∗ and so the RUM

spectrum contains linear structure of dimension d− t. �



Crystal flex bases and the RUM spectrum 17

Corollary 4.10. Let C be a crystal framework in R
2 whose RUM spectrum in [0, 2π)2

is a proper infinite subset which contains no line segments. Then C does not possess a

crystal flex spanning set which includes a bounded band-limited flex.

This corollary applies in particular to the 2D zeolite framework Coct whose motif has

bars belonging to a regular octagonal ring of equilateral triangles. Indeed the RUM

spectrum of Coct has been shown to be an curve containing no line segments [1, 13].

The same argument in the proof of Theorem 4.9 gives a parallel corollary for the

geometric flex spectrum. Indeed, let us say that the geometric flex spectrum Γ(C) contains
linear structure if there exists a point ω = (r1e

iη1 , . . . , rde
iηd) in Γ(C) such that the

intersection of Γ(C) with the torus

T
d
ω := {(r1eiθ1 , . . . , rdeiθd) : θ1, . . . , θd ∈ [0, 2π)}

contains t-dimensional linear structure in the sense above for Td. Then if there is a

crystal spanning set for C which contains a band-limited flex it follows, as in the proof

of Theorem 4.9, that Γ(C) contains linear structure.
We can use this observation together with Theorem 4.4 to obtain the following neces-

sary condition for the existence of a crystal flex spanning set or basis.

Theorem 4.11. Let C be a crystal framework in Rd whose geometric flex spectrum

is a proper infinite subset which contains no linear structure. Then C does not possess a

crystal flex spanning set.

Proof. A finite set of geometric flexes u1, . . . , ur with distinct periodicity multifactors

ω1, . . . , ωr is linearly independent and so, by the hypotheses, the infinitesimal flex space

of C is infinite dimensional. By Theorem 4.4, any crystal flex spanning set for C contains

a band-limited flex. By the discussion above it follows that the geometric flex spectrum

contains linear structure, a contradiction. �

Remark 4.12. We recall that early experimental and computational studies of rigid

unit modes in silicates typically revealed linear structure in the RUM spectrum for their

high temperature phases. See, for example, Dove et al [3] where studies of curved RUM

surfaces, occurring in tridymite for example, are also indicated.

It is natural to pose the following questions regarding converse implications to the

statements in the results above. If the geometric flex spectrum (resp. RUM spectrum)

has linear structure does it follow that there exists a band-limited flex (resp. bounded

band-limited flex)? More generally, it would be of interest to obtain sufficient conditions,

including linear structure conditions on the geometric flex spectrum, for the existence

of a crystal flex basis or an essential crystal flex basis. Such sufficient conditions would

explain more fully the nature of the experimental phenomenon in terms of the existence

and nonexistence of flexes which are band-limited with respect to lines and planes in the

crystal structure.

Remark 4.13. We remark that while unbounded flexes do not correspond to physical

modes for the bulk crystal their consideration is nevertheless important for the identifica-

tion of surface modes associated with a boundary wall or free surface. Indeed, such modes
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can be identified with bounded restrictions of unbounded flexes of the bulk crystal. In

particular, in 3 dimensions a point ω = (ω1, ω2, ω3) in Γ(C) with |ωi| 6= 1 for a single value

of i indicates the existence of a first order surface mode associated with a hyperplane

boundary wall which is normal to the period vector of the bulk crystal corresponding to

i. Thus, a further motivation for the introduction of the geometric flex spectrum and the

identification of crystal flex spanning sets lies in their connections with surface modes

and isolated Weyl modes (Rocklin et al [14]), and their analogies with boundary modes

for topological insulators (Graf and Porter [6], Lubensky et al [11]).

5. Examples

We now determine crystal flex spanning sets and bases for a number of elementary crystal

frameworks. In these examples the spanning sets are finitely generated by a small number

of band-limited flexes. To quantify this we introduce the following associated measure of

flex complexity for any crystal framework C.

Definition 5.1. The flex complexity cpx(C) is the minimum of the cardinalities of the

generating sets for a crystal spanning set for F(C;R). Moreover, cpx(C) = ∞ if there is

no such generating set.

(a) The frameworks CZ2 and Chex.

Let CZ2 be the grid framework in two dimensions, that is, the framework with joints

located on the Z2 lattice and bars between nearest neighbours. Let Sgrid = {un, vn : n ∈
Z} be a set of velocity fields with un (resp. vm) supported by the joints on the line y = n

(resp. x = m) and with unit velocities in the direction of the support line. Then it is

elementary to check, by an exhaustion argument in the style of the proofs below, that

Sgrid is a crystal basis for the space F(CZ2 ;R).

Let Chex be the honeycomb framework associated with the regular hexagonal tiling

of the plane. Note that any hexagon ring subframework, H say, is the support of a

(normalised) local infinitesimal flex, uH say, which acts as infinitesimal rotation of H.
Let Shex be a set of identical non-zero flexes of this type for all the honeycomb cells. We

claim this is a crystal flex spanning set. We give the argument for this since it is typical

of the simple exhaustion argument needed to show that a given set is a free spanning

set or a free basis. Note also that
∑

H uH is the zero infinitesimal flex of Chex so Shex is

not a free basis. On the other hand, as the proof below shows, it has a curious minimal

redundancy property, in the sense that the removal of any flex from Shex gives a free

basis, although not a crystal basis.

From these observations and Proposition 5.2 it follows that cpx(CZ2) = cpx(Chex) = 1.

Proposition 5.2. Shex is a crystal spanning set for the space F(Chex;R) of real

infinitesimal flexes of Chex.
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Figure 2. Part of Chex.

Proof. Let z be an infinitesimal flex of Chex. Subtracting a linear combination of the

local flexes for the cells A and B indicated in Figure 2, we may assume that the velocity

field for z at the origin is 0. Consider the infinite path of framework points to the right of

the origin, lying on cells 1, 2, 3, . . . , as indicated in Figure 2. We may subtract a multiple

of the local flex for cell 1 to “fix” the first joint, that is, to create a flex with zero velocities

at O and at the first joint of the path. We may continue similarly to see that there is an

infinite linear combination w of the local flexes for cells 1, 2, 3, . . . such that z − w has

zero velocity at each joint of the infinite path.

In the same manner we can subtract an infinite linear combination of the local flexes

to the left of cells A and B to obtain a new flex which fixes all the framework points on

the two-way infinite horizontal path, π say, through O. This may be achieved without

making use of the local flex uC for the other hexagon incident to the origin. We may

assume then that z has zero velocities on the joints on π. The line of joints on y = 1 may

be now be “fixed” by subtraction of a unique infinite linear combination of the local flexes

for the next horizontal line of cells, a, b, c, . . . etc. At this point the next horizontal line of

joints is necessarily fixed by z, in view of the flex condition. Continuing this process with

the horizontal hexagonal strips above and below π we see that there is an infinite linear

combination of the local flexes which is equal to the original flex. Also the coefficients of

this infinite linear combination are determined uniquely, with the proviso that the local

flex uC is not used in the representation. It follows that Shex is a crystal flex spanning

set. �

(b) The 2D kagome framework

We next consider the kagome framework in two dimensions, part of which is indicated

in Figure 3. Let a, b, c be the vertices of a triangular subframework of Ckag, with horizontal

base edge [pa, pb], and let L0u be the (infinite) linear subframework which contains this

edge. Note that there is an evident one-dimensional subspace of infinitesimal flexes of

Ckag that are supported on this linear subframework. Consider the nonzero element u0

in this space which acts on alternate joints of L0u with unit norm velocity fields, with

u0(pa) = (cos π/6,− sinπ/6), u0(pb) = (cosπ/6, sinπ/6).

Let un, where n ∈ Z, be the parallel translates of u, naturally labelled, with u1 supported

by the first linear subframework L1u above L0u. Also, let {vn : n ∈ Z} (resp. {wn : n ∈ Z})
be obtained from {un : n ∈ Z} by rotation about the centroid of the triangle abc by 2π/3

(resp. by 4π/3).
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Figure 3. The horizontal band limited flexes un for n ∈ Z.

The next theorem is due to A. Sait [9] from which it follows that cpx(Ckag) = 1.

Theorem 5.3. The set Bkag = {un, vn, wn : n ∈ Z} is a crystal basis for F(Ckag;R).

Proof. Since the space group acts on the set it will be sufficient to show that Bkag is

a free basis. Write Lnu (resp. Lnv ,Lnw), for n ∈ Z, for the supporting linear subframeworks

for un (resp. vn, wn). Let z be an infinitesimal flex of Ckag. By subtracting an appropriate

linear combination of the three infinitesimal flexes u0, v0, w0 we may assume that the

three velocity vectors za, zb, zc for the joints pa, pb, pc of a central triangle subframework

are zero. Subtracting an appropriate multiple of w1 we may then arrange zd = 0, where d

is the next vertex in the direction from a to b. Following this, subtracting an appropriate

multiple of v−1, we may arrange ze = 0 for the next vertex. Continuing in this way we

obtain an infinite linear combination

z′ =
∑

n∈Z

βnvn + γnwn

such that the infinitesimal flex z′′ = z − z′ imparts only zero velocities to the joints

of L0u. From the flex condition and the rigidity of triangles we deduce that the flex

velocities are also zero on the apex vertices for the triangle subframeworks, such as def ,

which are horixontal translates of abc. Now subtract an appropriate multiple of u1 so

that the resulting flex is zero on L1u. Continuing upwards in this manner, and similarly

downwards, we obtain an infinite sum representation for z′′ in terms of the infinitesimal

flexes un, n ∈ Z. Thus the original flex z is an infinite sum of the basis vectors. Also the

representation is unique and so the proof is complete. �
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Combining this result with Theorem 4.4(iii) we obtain the following description of the

space of bounded infinitesimal flexes.

Corollary 5.4. With Bkag = {un, vn, wn : n ∈ Z} as above,

F∞(Ckag;R) = {u ∈ F(Ckag;R) : u =
∑

n∈Z

(αnun+βnvn+γnwn) : (αn), (βn), (γn) ∈ ℓ∞(Z)}.

(c) The octahedron crystal framework COct.

We now consider some crystal frameworks in three dimensions.

Write COct for the crystal framework of corner-connected regular octahedra, in the

symmetric placement for which there is one translation class for them. The construction

of a crystal flex basis for COct may be determined by viewing COct as the union of

countably many copies of the 2D grid framework whose orientations and joint connections

are consistent with Figure 4.

x

y

z

p1 p2
p3

p4

p5

p6

Figure 4. A motif of 3 joints and 12 bars for the framework COct.

To be precise, assume that the period vectors for COct are (2, 0, 0), (0, 2, 0), (0, 0, 2)

and let Cz denote the grid framework in the xy-plane which contains the adjacent joints

p1 = (0,−1, 0), p2 = (1, 0, 0), p3 = (0, 1, 0) and p4 = (−1, 0, 0). These joints lie on a

4-cycle of bars in the xy-plane. Similarly, let Cx denote the 2D grid framework in the

yz-plane which contains the adjacent joints p1, p5 = (0, 0,−1), p3 and p6 = (0, 0, 1), and

let Cy denote the 2D grid framework parallel to the zx-plane which contains the adjacent

joints p2, p5, p4 and p6.
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Let Cnx be the translated bar-joint frameworks Cx + (2n, 0, 0), for n ∈ Z, and similarly

define Cny and Cnz . Then COct is the union of all of these frameworks, that is, it is the

bar-joint framework whose joint set is the union of the joints (without multiplicity) and

whose set of bars is the union of all the bars.

Let us also define C+Oct as the augmented framework in which each regular octahedron

is augmented by 3 bars parallel to the coordinate axes. In view of the infinitesimal rigidity

of a convex octahedron it follows that the vector spaces F(COct;R) and F(C+Oct;R) are

equal.

Let us write Csq for a 2D bar-joint framework composed of corner connected rigid

squares. This is obtained from the 2D grid framework by adding an edge to each alternate

square. Let C+sq be the related framework which has both cross diagonals added to the

rigid squares. We may thus view C+Oct as the union of copies of C+sq, where these copies

are augmentation frameworks, C̃nx , C̃ny and C̃nz say, of the frameworks Cnx , Cny and Cnz . It
follows immediately that the alternation flex a of C̃nx extends to a flex axn of C+Oct which

has zero velocities on all the other vertices. Let us similarly define the “local alternation

flexes” ayn and azn for n ∈ Z.

Let rx, ry , rz be infinitesimal flexes for axial rotations of COct about the principal axes

of the central octahedron. These infinitesimal flexes act on the entire framework and are

unbounded flexes. Also we assume the normalisation such that for σ = x, y or z the

restrictions of aσn to the octahedron meeting the σ-axis agrees with the restriction of rσ.

Finally, let ~x be the velocity field in F(COct;R) with joint velocities (1, 0, 0) and let ~y

and ~z be analogous velocity fields for the y and z directions.

In the next proof we use the following elementary flex projection principle. If the bar

[pa, pb] lies in a plane P of R3 and if the joint velocities va, vb in R3 give an infinitesimal

flex of the bar [pa, pb] then the P components v′a, v
′
b of va, vb also give an infinitesimal

flex of the bar. We say that such a flex is an in-plane flex when the plane in question is

understood.

Theorem 5.5. The set S of velocity fields

{rx, ry , rz} ∪ {~x, ~y, ~z} ∪ {axn, ayn, azn : n ∈ Z}

is an essential crystal flex basis for F(COct;R).

Proof. The subset S0 ⊆ S of non-rotational flexes has the crystallographic group

action property and so it will suffice to show that S is a free basis for COct. Equivalently,

we show that S is a free basis for C+Oct.

Let z be an infinitesimal flex in F(C+Oct;R). There is a linear combination zrig of

~x, ~y, ~z, rx, ry, rz which agrees with z on the joints p1, . . . , p6. Replacing z by z − zrig, for

some rigid motion infinitesimal flex zrig, we may assume that these velocities for z are

zero.

We now make use of the flex projection principle. Note that the velocity field zxy given

by the xy-plane projection of the joint velocities z(p), for joints in C̃0z , is an infinitesimal

flex of C̃0z . Since z has zero velocity vectors on the central octahedron it follows that the

xy-plane projection of z also has zero velocities on the central square of C̃0z . It follows
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that this in-plane flex is equal to the restriction of a scalar multiple of az0 − rz . In this

way we obtain scalar multiples α0(a
z
0 − rz), β0(a

x
0 − rx) and γ0(a

y
0 − ry) which provide

the in-plane flexes of z for the planes z = 0, x = 0 and y = 0.

Consider now the tower subframework given by the tower of octahedra whose con-

necting joints lie on the z-axis. Since z is zero on the central octahedron supported by

p1, . . . , p6, denoted O(0,0,0), it follows that the z component of the joint velocity for a joint

on this line is zero. It also follows that there is an infinitesimal flex β0(a
x
0−rx)+γ0(a

y
0−ry)

with joint velocities agreeing with those of z for the joints on the axial line. It follows

similarly that there is a flex of the form

w = α(az0 − rz) + β0(a
x
0 − rx) + γ0(a

y
0 − ry)

with this agreement property for the three axial lines through O(0,0,0).

Replacing z by z − w we may assume that z is zero on O(0,0,0) and on the joints of

the three axial lines of O(0,0,0). Note that the restriction of such a flex z to any other

octahedron O with an axis on the coordinate axes must be an infinitesimal rotation flex

of the octahedron about this axis. Also each such flex of an individual octahedron O, on

the σ-axis say, agrees with the restriction of a scalar multiple of the local alternation flex

aσn, for some n 6= 0. Evidently these infinitesimal flexes act on distinct octahedra on the

axial lines.

It follows that there is an infinite linear combination of these flexes, w2 say, whose

restriction to any octahedron on a coordinate axis is equal to the restriction of z. Replac-

ing z by z − w2 we may assume that z is zero on this triple tower, TOct say. We now

observe that any infinitesimal flex which is zero on TOct is the zero flex. This follows from

the fact that the entire framework may be built up from TOct by attaching octahedra in

groups of four such that at each stage every flex which is zero on TOct is the zero flex.

It follows that z must be identically zero. Thus every velocity field z in F(COct;R) is an

infinite linear combination of the vectors in the set S.
Note that S is a countable set of velocity fields which tend to zero strictly and is a free

spanning set for a vector space of infinitesimal flexes. Also the scalar coefficients in the

identifications above are determined uniquely by the joint velocities of the flex z. Thus,

S is a free infinitesimal flex basis, as required. �

Remark 5.6. From a simple adaptation of the above proof it follows that the space

F∞(COct;R) of bounded infinitesimal flexes is the space of infinitesimal flexes of the form

u = α~x+ β~y + γ~z +
∑

n∈Z

αna
x
n + βna

y
n + γna

z
n, (αn), (βn), (γn) ∈ ℓ∞(Z)

The octahedral framework serves to model the rigid unit atomic structure of the crystal

perovskite. Its zero mode (or RUM mode) phonon spectrum was among early examples to

be computed by experiment and simulation. Other examples were quartz and cristobalite.

See Giddy et al [5]. The RUM spectrum for crystobalite has complete linear structure

in [0, 2π)3, being the union of the three line segments (t, 0, 0), (0, t, 0), (0, 0, t), for 0 ≤
t < 2π. The existence of this linear structure in the RUM spectrum also follows from the

band-limited flexes in S.
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(d) The 3D kagome framework

The kagome framework in 3 dimensions, CKag, has the structure of the kagome net,

a network of regular tetrahedral units connected pairwise at their vertices. It may be

constructed from the 2D kagome net by first completing its triangles to tetrahedra with

alternating up and down orientations to create a horizontal layer framework, and then

joining translational copies of such layers. The period vectors determine a parallelepiped

unit which is occupied by a single tetrahedron and one can determine a motif for CKag with

a corresponding 12-by-12 matrix-valued symbol function on the 3-torus [12]. However the

simple layer structure description, together with the symmetry of CKag, are sufficient to

determine a crystal basis by an exhaustion argument, as before, as we now sketch.

For m ∈ Z, let {um
n , vmn , wm

n : n ∈ Z} be the crystal flex bases for the in-plane infinites-

imal flex space of the mth layer and note that the infinitesimal flexes in these sets extend

(by zero velocity specifications) to infinitesimal flexes of CKag. If w is an arbitrary infinites-

imal flex of CKag we may subtract an appropriate infinite linear combination of these flexes

to replace w by a flex w1 with the property that the velocity vectors at each joint in the

horizontal layers is in the vertical direction. Let us make a distinction between the “thick”

horizontal layer frameworks and their “thin” kagome subframeworks (which support the

added tetrahedra). For layer m = 0, fix a triangle subframework in the thin layer to be

a base triangle. Its tetrahedron has 3 additional bars. Each of these bars indicates the

direction of a linearly localised flex, each of which is a space group element image of u0
0.

We may choose a linear combination of these flexes and subtract them from w1 to obtain

a flex w2 so that the tetrahedron has zero velocities (under w2) at all 4 of its joints.

Continuing in this way we see that, as in the 2D kagome, there is a crystal flex basis

with a single generator and it consists of the space group element images of u0
0. In

particular, cpx(CKag) = 1.

(e) The bipyramid framework CBipyr

We next define the bipyramid crystal framework CBipyr and compute the transfer func-

tion associated with the natural primitive periodic structure. An appropriate basis of

period vectors takes the form

(1, 0, 0), (1/2,
√
3/2, 0), (0, 0, 2h)

and we consider a motif (Fv, Fe) where Fv consists of the two joints p1 = (0, 0, 0), p2 =

(1/2, α,−h) and Fe consists of the 9 bars pipj associated with the 9 directed bars indi-

cated in Figure 5. Here h =
√

2/3 is the height of a regular tetrahedron of unit sidelength

and α =
√
3/6 is the distance from B to C, that is, the distance of the centroid of a unit

sidelength equilateral triangle to the triangle boundary.

The following data for the motif edges will suffice for the computation of the associated

transfer function ΨBipyr(z).
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Figure 5.

i p(ei) k = (k1, k2, k3) l = (l1, l2, l3)

1 (−1, 0, 0) (0, 0, 0) (1, 0, 0)

2 (1/2,−
√
3/2, 0) (1, 0, 0) (0, 1, 0)

3 (−1/2,−
√
3/2, 0) (0, 0, 0) (0, 1, 0)

4 (−1/2,−α, h) (0, 0, 0) (0, 0, 0)

5 (1/2,−α, h) (1, 0, 0) (0, 0, 0)

6 (0, 2α, h) (0, 1, 0) (0, 0, 0)

7 (−1/2,−α,−h) (0, 0, 0) (0, 0, 1)

8 (1/2,−α,−h) (1, 0, 0) (0, 0, 1)

9 (0, 2α,−h) (0, 1, 0) (0, 0, 1)

A factor-periodic infinitesimal flex, with factor ω = (ω1, ω2, ω3) ∈ C
3
∗
, has the form

u = (uκ,k) = (ωka) = (ωk1

1 ωk2

2 ωk3

3 a), k ∈ Z
3,

where a = (u1,x, u1,y , u1,z, u2,x, u2,y , u2,z) ∈ R
6 is the velocity field for the motif joints, being
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the list of the coordinate velocities of u at the joints p1 and p2. We have,

ΨBipyr(z
−1) =

































v1,x v1,y v1,z v2,x v2,y v2,z

e1 −(1− z1) 0 0 0 0 0

e2 (z1 − z2)/2 −(z1 − z2)
√
3/2 0 0 0 0

e3 (1− z2)/2 −(1− z2)
√
3/2 0 0 0 0

e4 −1/2 −α h 1/2 α −h

e5 z1/2 −αz1 z1h −1/2 α −h

e6 0 2z2α z2h 0 −2α −h

e7 −1/2 −α −h z3/2 z3α z3h

e8 z1/2 −z1α −z1h −z3/2 z3α z3h

e9 0 2z2α −z2h 0 −2z3α z3h

































The submatrix of ΨBipyr(z
−1) for columns 3, 4, 5 is a 9 × 3 function matrix. We note that

the first three rows are zero. Indeed, the three edges e1 = (v1, (0, 0, 0))(v1, (1, 0, 0)), e2 =

(v1, (1, 0, 0))(v1, (0, 1, 0)) and e3 = (v1, (0, 0, 0))(v1, (0, 0, 1)) are of v = w type and so the entries

for columns 4, 5, 6 are zero. Also the entries for column 3 are zero since the z-component is zero

for the vectors p(ei), for i = 1, 2, 3.

We next determine the set of factors ω ∈ C
3
∗
for which ΨBipyr(ω

−1)a = 0 for some nonzero

vector of the form a = (0, 0, u1,z , u2,x, u2,y , 0). In doing so we shall determine the factor periodic

infinitesimal flexes u with the property that their velocity fields impart only vertical velocities

to the joints that lie in the horizontal copies of the fully triangulated framework Ctri and impart

only horizontal velocities to the other joints, the polar joints of the constituent bipyramids. In

view of the latter condition we refer to these infinitesimal flexes simply as sheering flexes. The

required solutions for ω are the values of z = (z1, z2, z3) for which the submatrix Ψsub(z
−1) has

nonzero kernel, where

Ψsub(z
−1) =



















v1,z v2,x v2,y

e4 h 1/2 α

e5 z1h −1/2 α

e6 z2h 0 −2α

e7 −h z3/2 z3α

e8 −z1h −z3/2 z3α

e9 −z2h 0 −2z3α



















Noting the similarity between the rows for e6 and e9 it follows that if z3 is not equal to −1 then

the kernel is trivial. On the other hand if z3 = −1 then the rows for e7, e8, e9 are the negatives

of the rows for e4, e5, e6. We conclude that (ω1, ω2, ω3) is a periodicity multifactor for a sheering

flex u if and only if ω3 = −1 and the determinant of the 3 × 3 submatrix for the first 3 rows

is zero at ω1, ω2. This determinant is αh(1 + z1 + z2). We conclude that when z1 and z2 are

unimodular then there are exactly two solutions and so the RUM spectrum Ω(CBipyr) contains

the set

{(1, 1, 1), (e2πi/3, e4πi/3, eπi), (e4πi/3, e2πi/3, eπi)}.
We also note that there are unbounded geometric flexes associated with the solutions (ω1, ω2)

of the equation of 1+z1+z2 = 0, where ω1 = r, ω2 = −(1+r), and 0 < r < 1. These infinitesimal

flexes bear some analogy with the unbounded flex of the kite framework considered in Example

2.11. Since there are uncountably many linearly independent unbounded flexes of this type the

infinitesimal flex space F(CBipyr;R) is infinite dimensional.
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(f ) Two crystal extensions of CBipyr

Consider the crystal framework Ce
Bipyr which is obtained from CBipyr by adding bonds of

length 1 between polar joints whenever this is possible. It is straightforward to see that Ce
Bipyr

is sequentially infinitesimally rigid ([10], [12]) and so is infinitesimally rigid in the strongest

possible sense. Note that every 2D subframework parallel to the xy-plane is a copy of the fully

triangulated framework Ctri. Let C+
Bipyr be obtained from CBipyr by adding edges and vertices so

that every triangle in the horizontal copies of Ctri in CBipyr is the equator of a bipyramid. This

framework may be described as having horizontal layers of maximally packed bipyramids. The

joints are once again of two types, with polar joints having degree 6, as before, and equatorial

joints having degree 18. One can observe that in fact the two sheering RUMs of CBipyr extend

to this framework and so, despite the edge rich structure, C+
Bipyr is not infinitesimally rigid.
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