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Summary

A novel control variate technique is proposed for post-processing of Markov chain
Monte Carlo output, based both on Stein’s method and an approach to numerical inte-
gration due to Sard. The resulting estimators of posterior expected quantities of interest
are proven to be polynomially exact in the Gaussian context, while empirical results 25

suggest the estimators approximate a Gaussian cubature method near the Bernstein-
von-Mises limit. The main theoretical result establishes a bias-correction property in
settings where the Markov chain does not leave the posterior invariant. Empirical results
are presented across a selection of Bayesian inference tasks. All methods used in this
paper are available in the R package ZVCV. 30

Some key words: Control Variate; Stein Operator; Variance Reduction.

C© 2020 Biometrika Trust



2 L. South et al.

1. Introduction

This paper focuses on the numerical approximation of integrals of the form

I(f) =

∫
f(x)p(x)dx,

where f is a function of interest and p is a positive and continuously differentiable
probability density on Rd, under the restriction that p and its gradient can only be
evaluated pointwise up to an intractable normalisation constant. The standard approach35

to computing I(f) in this context is to simulate the first n steps of a p-invariant Markov
chain (x(i))∞i=1, possibly after an initial burn-in period, and to take the average along the
sample path as an approximation to the integral:

I(f) ≈ IMC(f) =
1

n

n∑
i=1

f(x(i)). (1)

See Chapters 6–10 of Robert & Casella (2013) for background. In this paper E, V and C
respectively denote expectation, variance and covariance with respect to the law P of the40

Markov chain. Under regularity conditions on p that ensure the Markov chain (x(i))∞i=1
is aperiodic, irreducible and reversible, the convergence of IMC(f) to I(f) as n→∞ is
described by a central limit theorem

√
n(IMC(f)− I(f))→ N (0, σ(f)2) (2)

where convergence occurs in distribution and, if the chain starts in stationarity,

σ(f)2 = V[f(x(1))] + 2
∞∑
i=2

C[f(x(1)), f(x(i))]

is the asymptotic variance of f along the sample path. See Theorem 4.7.7 of Robert &45

Casella (2013) and more generally Meyn & Tweedie (2012) for theoretical background.
Note that for all but the most trivial function f we have σ(f)2 > 0 and hence, to achieve
an approximation error of OP (ε), a potentially large number O(ε−2) of calls to f and p
are required.

One approach to reduce the computational cost is to employ control variates (Ham-50

mersley & Handscomb, 1964; Ripley, 1987), which involves finding an approximation fn
to f that can be exactly integrated under p, such that σ(f − fn)2 � σ(f)2. Given a
choice of fn, the standard estimator (1) is replaced with

ICV(f) =
1

n

n∑
i=1

{f(x(i))− fn(x(i))}+

∫
fn(x)p(x)dx︸ ︷︷ ︸

(∗)

, (3)

where (∗) is exactly computed. This last requirement makes it challenging to develop
control variates for general use, particularly in Bayesian statistics where often the den-55

sity p can only be accessed in a form that is un-normalised. In the Bayesian context,
Assaraf & Caffarel (1999); Mira et al. (2013) and Oates et al. (2017) addressed this
challenge by using fn = cn + Lgn where cn ∈ R, gn is a user-chosen parametric or non-
parametric function and L is an operator, for example the Langevin Stein operator
(Stein, 1972; Gorham & Mackey, 2015), that depends on p through its gradient and sat-60

isfies
∫

(Lgn)(x)p(x)dx = 0 under regularity conditions (see Lemma 1). Convergence of
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ICV(f) to I(f) has been studied under (strong) regularity conditions and, in particular
(i) if gn is chosen parametrically, then in general lim inf σ(f − fn)2 > 0 so that, even if
asymptotic variance is reduced, convergence rates are unaffected; (ii) if gn is chosen in an
appropriate non-parametric manner then lim supσ(f − fn)2 = 0 and a smaller number 65

O(ε−2+δ), 0 < δ < 2, of calls to f , p and its gradient are required to achieve an approxi-
mation error of OP (ε) for the integral (see Oates et al., 2019; Mijatović & Vogrinc, 2018;
Barp et al., 2018; Belomestny et al., 2017, 2019, 2020). In the parametric case Lgn is
called a control variate while in the non-parametric case it is called a control functional.

Practical parametric approaches to the choice of gn have been well-studied in the 70

Bayesian context, typically based on polynomial regression models (Assaraf & Caffarel,
1999; Mira et al., 2013; Papamarkou et al., 2014; Oates et al., 2016; Brosse et al., 2019),
but neural networks have also been proposed recently (Wan et al., 2019; Si et al., 2020).
In particular, existing control variates based on polynomial regression have the attractive
property of being semi-exact, meaning that there is a well-characterized set of functions 75

f ∈ F for which fn can be shown to exactly equal f after a finite number of samples
n have been obtained. For the control variates of Assaraf & Caffarel (1999) and Mira
et al. (2013) the set F contains certain low order polynomials when p is a Gaussian
distribution on Rd. Those authors term their control variates zero variance, but we prefer
the term semi-exact since a general integrand f will not be an element of F . Regardless 80

of terminology, semi-exactness of the control variate is an appealing property because it
implies that the approximation ICV(f) to I(f) is exact on F . Intuitively, the performance
of the control variate method is related to the richness of the set F on which it is exact.
For example, polynomial exactness of cubature rules is used to establish their high order
convergence rates using a Taylor expansion argument (e.g. Hildebrand, 1987, Chapter 8). 85

The development of non-parametric approaches to the choice of gn has to-date focused
on kernel methods (Oates et al., 2017; Barp et al., 2018), piecewise constant approxi-
mations (Mijatović & Vogrinc, 2018) and non-linear approximations based on selecting
basis functions from a dictionary (Belomestny et al., 2017; South et al., 2019). Theoretical
analysis of non-parametric control variates was provided in the papers cited above, but 90

compared to parametric methods, practical implementations of non-parametric methods
are less well-developed.

In this paper we propose a semi-exact control functional method. This constitutes the
best of both worlds, where at small n the semi-exactness property promotes stability
and robustness of the estimator ICV(f), while at large n the non-parametric regression 95

component can be used to accelerate the convergence of ICV(f) to I(f). In particular
we argue that, in the Bernstein-von-Mises limit, the set F on which our method is exact
is precisely the set of low order polynomials, so that our method can be considered as
an approximately polynomially-exact cubature rule developed for the Bayesian context.
Furthermore, we establish a bias-correcting property, which guarantees the approxima- 100

tions produced using our method are consistent in certain settings where the Markov
chain is not p-invariant.

Our motivation comes from the approach to numerical integration due to Sard (1949).
Many numerical integration methods are based on constructing an approximation fn to
the integrand f that can be exactly integrated. In this case the integral I(f) is approxi- 105

mated using (∗) in (3). In Gaussian and related cubatures, the function fn is chosen in
such a way that polynomial exactness is guaranteed (Gautschi, 2004, Section 1.4). On the
other hand, in kernel cubature and related approaches, fn is an element of a reproduc-
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ing kernel Hilbert space chosen such that an error criterion is minimised (Larkin, 1970).
The contribution of Sard was to combine these two concepts in numerical integration by110

choosing fn to enforce exactness on a low-dimensional space F of functions and use the
remaining degrees of freedom to find a minimum-norm interpolant to the integrand.

2. Methods

2.1. Sard’s Method

Many popular methods for numerical integration are based on either (i) enforcing115

exactness of the integral estimator on a finite-dimensional set of functions F , typically a
linear space of polynomials, or on (ii) integration of a minimum-norm interpolant selected
from an infinite-dimensional set of functions H. In each case, the result is a cubature
method of the form

INI(f) =

n∑
i=1

wif(x(i)) (4)

for weights {wi}ni=1 ⊂ R and points {x(i)}ni=1 ⊂ Rd. Classical examples of methods in120

the former category include univariate Gaussian quadrature rules (Gautschi, 2004,
Section 1.4), which are determined by the unique {(wi,x(i))}ni=1 ⊂ R× Rd such that
INI(f) = I(f) whenever f is a polynomial of order at most 2n− 1, and Clenshaw–Curtis
rules (Clenshaw & Curtis, 1960). Methods in the minimum-norm interpolant category
specify a suitable normed space (H, ‖ · ‖H) of functions, construct an interpolant fn ∈ H125

such that

fn ∈ arg min
h∈H

{
‖h‖H : h(x(i)) = f(x(i)) for i = 1, . . . , n

}
(5)

and use the integral of fn to approximate the true integral. Specific examples include
splines (Wahba, 1990) and kernel or Gaussian process based methods (Larkin, 1970;
O’Hagan, 1991; Briol et al., 2019).

If the set of points {x(i)}ni=1 is fixed, the cubature method in (4) has n degrees of130

freedom corresponding to the choice of the weights {wi}ni=1. The approach proposed by
Sard (1949) is a hybrid of the two classical approaches just described, calling for m ≤ n
of these degrees of freedom to be used to ensure that INI(f) is exact for f in a given
m-dimensional linear function space F and, if m < n, allocating the remaining n−m
degrees of freedom to select a minimal norm interpolant from a large class of functions H.135

The approach of Sard is therefore exact for functions in the finite-dimensional set F and,
at the same time, suitable for the integration of functions in the infinite-dimensional set
H. Further background on Sard’s method can be found in Larkin (1974) and Karvonen
et al. (2018).

However, it is difficult to implement Sard’s method, or indeed any of the classical140

approaches just discussed, in the Bayesian context, since

1. the density p can be evaluated pointwise only up to an intractable normalization
constant;

2. to construct weights one needs to evaluate the integrals of basis functions of F and
of the interpolant fn, which can be as difficult as evaluating the original integral.145
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To circumvent these issues, in this paper we propose to combine Sard’s approach to
integration with Stein operators (Stein, 1972; Gorham & Mackey, 2015), thus eliminating
the need to access normalization constants and to exactly evaluate integrals.

2.2. Stein Operators

Let · denote the dot product a · b = a>b, ∇x denote the gradient ∇x = [∂x1 , . . . , ∂xd ]> 150

and ∆x denote the Laplacian ∆x = ∇x · ∇x. Let ‖x‖ = (x · x)1/2 denote the Euclidean
norm on Rd. The construction that enables us to realize Sard’s method in the Bayesian
context is the Langevin Stein operator L (Gorham & Mackey, 2015) on Rd, defined for
sufficiently regular g and p as

(Lg)(x) = ∆xg(x) +∇xg(x) · ∇x log p(x). (6) 155

We refer to L as a Stein operator due to the use of equations of the form (6) (up to a simple
substitution) in the method of Stein (1972) for assessing convergence in distribution and
due to its property of producing functions whose integrals with respect to p are zero
under suitable conditions such as those described in Lemma 1.

Lemma 1. If g : Rd → R is twice continuously differentiable, log p : Rd → R is contin- 160

uously differentiable and ‖∇xg(x)‖ ≤ C‖x‖−δp(x)−1 is satisfied for some C ∈ R and
δ > d− 1, then ∫

(Lg)(x)p(x)dx = 0,

where L is the Stein operator in (6).

The proof is provided in Appendix 1. Although our attention is limited to (6), the choice
of Stein operator is not unique and other Stein operators can be derived using the gener- 165

ator method of Barbour (1988) or using Schrödinger Hamiltonians (Assaraf & Caffarel,
1999). Contrary to the standard requirements for a Stein operator, the operator L in con-
trol functionals does not need to fully characterize convergence and, as a consequence,
a broader class of functions g can be considered than in more traditional applications of
Stein’s method (Stein, 1972). 170

It follows that, if the conditions of Lemma 1 are satisfied by gn : Rd → R, the integral
of a function of the form fn = cn + Lgn is simply cn, the constant. The main challenge
in developing control variates, or functionals, based on Stein operators is therefore to
find a function gn such that the asymptotic variance σ(f − fn)2 is small. To explicitly
minimize asymptotic variance, Mijatović & Vogrinc (2018); Belomestny et al. (2020) and 175

Brosse et al. (2019) restricted attention to particular Metropolis–Hastings or Langevin
samplers for which asymptotic variance can be explicitly characterized. The minimization
of empirical variance has also been proposed and studied in the case where samples are
independent (Belomestny et al., 2017) and dependent (Belomestny et al., 2020, 2019).
For an approach that is not tied to a particular Markov kernel, authors such as Assaraf 180

& Caffarel (1999) and Mira et al. (2013) proposed to minimize mean squared error along
the sample path, which corresponds to the case of an independent sampling method. In
a similar spirit, the constructions in Oates et al. (2017, 2019) and Barp et al. (2018) were
based on a minimum-norm interpolant, where the choice of norm is decoupled from the
mechanism from where the points are sampled. 185
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2.3. The Proposed Method

In this section we first construct an infinite-dimensional space H and a finite-
dimensional space F of functions; these will underpin the proposed semi-exact control
functional method.

For the infinite-dimensional component, let k : Rd × Rd → R be a positive-definite190

kernel, meaning that (i) k is symmetric, with k(x,y) = k(y,x) for all x,y ∈ Rd, and
(ii) the kernel matrix [K]i,j = k(x(i),x(j)) is positive-definite for any distinct points

{x(i)}ni=1 ⊂ Rd and any n ∈ N. Recall that such a k induces a unique reproducing kernel
Hilbert space H(k). This is a Hilbert space that consists of functions g : Rd → R and is
equipped with an inner product 〈·, ·〉H(k). The kernel k is such that k(·,x) ∈ H(k) for all195

x ∈ Rd and it is reproducing in the sense that 〈g, k(·,x)〉H(k) = g(x) for any g ∈ H(k) and

x ∈ Rd. For α ∈ Nd0 the multi-index notation xα := xα1
1 · · ·xαd

d and |α| = α1 + · · ·+ αd
will be used. If k is twice continuously differentiable in the sense of Steinwart & Christ-
mann (2008, Definition 4.35), meaning that the derivatives

∂αx ∂
α
y k(x,y) =

∂2|α|

∂xα∂yα
k(x,y)

exist and are continuous for every multi-index α ∈ Nd0 with |α| ≤ 2, then200

k0(x,y) = LxLyk(x,y), (7)

where Lx stands for application of the Stein operator defined in (6) with respect to
variable x, is a well-defined and positive-definite kernel (Steinwart & Christmann, 2008,
Lemma 4.34). The kernel in (7) can be written as

k0(x,y) = ∆x∆yk(x,y) + u(x)>∇x∆yk(x,y)

+ u(y)>∇y∆xk(x,y) + u(x)>
{
∇x∇>y k(x,y)

}
u(y),

(8)

where ∇x∇>y k(x,y) is the d× d matrix with entries [∇x∇>y k(x,y)]i,j = ∂xi∂yjk(x,y)
and u(x) = ∇x log p(x). If k is radial then (8) can be simplified; see Appendix 2.205

Lemma 2 establishes conditions under which the functions x 7→ k0(x,y), y ∈ Rd, and
hence elements of the Hilbert space H(k0) reproduced by k0, have zero integral. Let
‖M‖OP = sup‖x‖=1 ‖Mx‖ denote the operator norm of a matrix M ∈ Rd×d.

Lemma 2. If k : Rd × Rd → R is twice continuously differentiable in each argument,
log p : Rd → R is continuously differentiable, ‖∇x∇>y k(x,y)‖OP ≤ C(y)‖x‖−δp(x)−1210

and ‖∇x∆yk(x,y)‖ ≤ C(y)‖x‖−δp(x)−1 are satisfied for some C : Rd → (0,∞), and
δ > d− 1, then ∫

k0(x,y)p(x) dx = 0 (9)

for every y ∈ Rd, where k0 is defined in (7).

The proof is provided in Appendix 4. The infinite-dimensional space H used in this work
is exactly the reproducing kernel Hilbert space H(k0). The basic mathematical properties215

of k0 and the Hilbert space it reproduces are contained in Appendix 3 and these can be
used to inform the selection of an appropriate kernel.

For the finite-dimensional component, let Φ be a linear space of twice-continuously
differentiable functions with dimension m− 1, m ∈ N, and a basis {φi}m−1i=1 . Define
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then the space obtained by applying the differential operator (6) to Φ as LΦ = 220

span{Lφ1, . . . ,Lφm−1}. If the pre-conditions of Lemma 1 are satisfied for each basis func-
tion g = φi then linearity of the Stein operator implies that

∫
(Lφ)dp = 0 for every φ ∈ Φ.

Typically we will select Φ = Pr as the polynomial space Pr = span{xα : α ∈ Nd0, 0 <
|α| ≤ r} for some non-negative integer r. Note that constant functions are excluded from
Pr since they are in the null space of L; when required we let Pr0 = span{1} ⊕ Pr denote 225

the larger space with the constant functions included. The finite-dimensional space F is
then taken to be F = span{1} ⊕ LΦ = span{1,Lφ1, . . .Lφm−1}.

It is now possible to state the proposed method. Following Sard, we approximate the
integrand f with a function fn that interpolates f at the locations x(i), is exact on the
m-dimensional linear space F , and minimises a particular (semi-)norm subject to the 230

first two constraints. It will occasionally be useful to emphasise the dependence of fn on
f using the notation fn(·) = fn(·; f). The proposed interpolant takes the form

fn(x) = b1 +
m−1∑
i=1

bi+1(Lφi)(x) +
n∑
i=1

aik0(x,x
(i)), (10)

where the coefficients a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bm) ∈ Rm are selected such
that the following two conditions hold:

1. fn(x(i); f) = f(x(i)) for i = 1, . . . , n (interpolation); 235

2. fn(·; f) = f(·) whenever f ∈ F (semi-exactness).

Since F is m-dimensional, these requirements correspond to the total of n+m con-
straints. Under weak conditions, discussed in Section 2.5, the total number of degrees
of freedom due to selection of a and b is equal to n+m and the above constraints can
be satisfied. Furthermore, the corresponding function fn can be shown to minimise a 240

particular (semi-)norm on a larger space of functions, subject to the interpolation and
exactness constraints (to limit scope, we do not discuss this characterisation further but
the semi-norm is defined in (17) and the reader can find full details in Wendland, 2004,
Theorem 13.1). Figure 1 illustrates one such interpolant. The proposed estimator of the
integral is then 245

ISECF(f) =

∫
fn(x)p(x) dx, (11)

a special case of (3) (the interpolation condition causes the first term in (3) to vanish)
that we call a semi-exact control functional. The following is immediate from (10) and
(11):

Corollary 1. Under the hypotheses of Lemma 1 for each g = φi, i = 1, . . . ,m− 1,
and Lemma 2, it holds that, whenever the estimator ISECF(f) is well-defined, ISECF(f) = 250

b1, where b1 is the constant term in (10).

The earlier work of Assaraf & Caffarel (1999) and Mira et al. (2013) corresponds to
a = 0 and b 6= 0, while setting b = 0 in (10) and ignoring the semi-exactness requirement
recovers the unique minimum-norm interpolant in the Hilbert space H(k0) where k0 is
reproducing, in the sense of (5). The work of Oates et al. (2017) corresponds to bi = 0 for 255

i = 2, . . . ,m. It is therefore clear that the proposed approach is a strict generalization of
existing work and can be seen as a compromise between semi-exactness and minimum-
norm interpolation.
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Interpolation

f(x)

f5(x)

f(x(i))

−3 0 3

−3

0

3

k0(·, 0)
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0

3
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Fig. 1: Left : The interpolant fn from (10) at n = 5 points to the function f(x) =
sin{0.5π(x− 1)}+ exp{−(x− 0.5)2} for the Gaussian density p(x) = N (x; 0, 1). The in-
terpolant uses the Gaussian kernel k(x, y) = exp{−(x− y)2} and a polynomial paramet-
ric basis with r = 2. Center & right : Two translates k0(·, y), y ∈ {0, 1}, of the kernel (7).

2.4. Polynomial Exactness in the Bernstein-von-Mises Limit

A central motivation for our approach is the prototypical case where p is the density of a260

posterior distribution Px|y1,...,yN for a latent variable x given independent and identically
distributed data y1, . . . , yN ∼ Py1,...,yN |x. Under regularity conditions discussed in Section
10.2 of van der Vaart (1998), the Bernstein-von-Mises theorem states that∥∥∥Px|y1,...,yN −N (x̂N , N−1I(x̂N )−1

)∥∥∥
TV
→ 0

where x̂N is a maximum likelihood estimate for x, I(x) is the Fisher information matrix
evaluated at x, ‖ · ‖TV is the total variation norm and convergence is in probability265

as N →∞ with respect to the law Py1,...,yN |x of the dataset. In this limit, polynomial
exactness of the proposed method can be established. Indeed, for a Gaussian density p
with mean x̂N ∈ Rd and precision NI(x̂N ), if φ(x) = xα for a multi-index α ∈ Nd0, then

(Lφ)(x) =

d∑
i=1

αi

{
(αi − 1)xαi−2

i − N

2
Pi(x)xαi−1

i

}∏
j 6=i

x
αj

j ,

where Pi(x) = 2e>i I(x̂N )(x− x̂N ) and ei is the ith coordinate vector in Rd. This allows
us to obtain the following result, whose proof is provided in Appendix 5:270

Lemma 3. Consider the Bernstein-von-Mises limit and suppose that the Fisher infor-
mation matrix I(x̂N ) is non-singular. Then, for the choice Φ = Pr, r ∈ N, the estimator
ISECF is exact on F = Pr0 .

Thus the proposed estimator is polynomially exact up to order r in the Bernstein-von-
Mises limit. We believe this property can confer robustness of the estimator in a broad275

range of applied contexts. At finite N , when the limit has not been reached, the above
argument can only be expected to approximately hold.
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2.5. Computation for the Proposed Method

Define the n×m matrix

P =


1 Lφ1(x(1)) · · · Lφm−1(x(1))
...

...
. . .

...

1 Lφ1(x(n)) · · · Lφm−1(x(n))

 , (12)

which is sometimes called a Vandermonde (or alternant) matrix corresponding to the 280

linear space F . Let K0 be the n× n matrix with entries [K0]i,j = k0(x
(i),x(j)) and let

f be the n-dimensional column vector with entries [f ]i = f(x(i)).

Lemma 4. Let the n ≥ m points x(i) be distinct and F-unisolvent, meaning that the
matrix P in (12) has full rank. Let k0 be a positive-definite kernel for which (9) is
satisfied. Then ISECF(f) is well-defined and the coefficients a and b are given by the 285

solution of the linear system [
K0 P
P> 0

] [
a
b

]
=

[
f
0

]
. (13)

In particular,

ISECF(f) = e>1 (P>K−10 P )−1P>K−10 f . (14)

The proof is provided in Appendix 6. Notice that (14) is a linear combination of the
values in f and therefore the proposed estimator is recognized as a cubature method of
the form (4) with weights 290

w = K−10 P (P>K−10 P )−1e1. (15)

The requirement in Lemma 4 for the x(i) to be distinct precludes, for example, the
direct use of Metropolis–Hastings output. However, as emphasized in Oates et al. (2017)
for control functionals and studied further in Liu & Lee (2017); Hodgkinson et al. (2020),
the consistency of ISECF does not require that the Markov chain is p-invariant. It is
therefore trivial to, for example, filter out duplicate states from Metropolis–Hastings 295

output.
The solution of linear systems of equations defined by an n× n matrix K0 and an m×

m matrix P>K−10 P entails a computational cost of O(n3 +m3). In some situations this
cost may yet be smaller than the cost associated with evaluation of f and p, but in general
this computational requirement limits the applicability of the method just described. In 300

Appendix 7 we therefore propose a computationally efficient approximation, IASECF, to
the full method, based on a combination of the Nyström approximation (Williams &
Seeger, 2001) and the well-known conjugate gradient method, inspired by the recent
work of Rudi et al. (2017). All proposed methods are implemented in the R package ZVCV

(South, 2020). 305

3. Empirical Assessment

3.1. Experiment Setup

A detailed comparison of existing and proposed control variate and control functional
techniques was performed. Three examples were considered; Section 3.2 considers a Gaus-
sian target, representing the Bernstein-von-Mises limit; Section 3.3 considers a setting 310
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where non-parametric control functional methods perform well; Section 3.4 considers a
setting where parametric control variate methods are known to be successful. In each
case we determine whether or not the proposed semi-exact control functional method is
competitive with the state-of-the-art.

Specifically, we compared the following estimators, which are all instances of ICV in315

(3) for a particular choice of fn, which may or may not be an interpolant:r Standard Monte Carlo integration, (1), based on Markov chain output.r The control functional estimator recommended in Oates et al. (2017), ICF(f) =
(1>K−10 1)−11>K−10 f .r The zero variance polynomial control variate method of Assaraf & Caffarel (1999) and320

Mira et al. (2013), IZV(f) = e>1 (P>P )−1P>f .r The auto zero variance approach of South et al. (2019), which uses 5-fold cross valida-
tion to automatically select (a) between the ordinary least squares solution IZV and an
`1-penalised alternative (where the penalisation strength is itself selected using 10-fold
cross-validation within the test dataset), and (b) the polynomial order.325 r The proposed semi-exact control functional estimator, (14).r An approximation, IASECF, of (14) based on the Nyström approximation and the
conjugate gradient method, described in Appendix 7.

Open-source software for implementing all of the above methods is available in the R

package ZVCV (South, 2020). The same sets of n samples were used for all estimators,330

in both the construction of fn and the evaluation of ICV. For methods where there
is a fixed polynomial basis we considered only orders r = 1 and r = 2, following the
recommendation of Mira et al. (2013). For kernel-based methods, duplicate values of xi
were removed (as discussed in Section 2.5) and Frobenius regularization was employed
whenever the condition number of the kernel matrix K0 was close to machine precision335

(Higham, 1988). Several choices of kernel were considered, but for brevity in the main text
we focus on the rational quadratic kernel k(x,y;λ) = {1 + λ−2‖x− y‖2}−1. This kernel
was found to provide the best performance across a range of experiments; a comparison
to the Matérn and Gaussian kernels is provided in Appendix 8. The parameter λ was
selected using 5-fold cross-validation, based again on performance across a spectrum of340

experiments; a comparison to the median heuristic (Garreau et al., 2017) is presented in
Appendix 8.

To ensure that our assessment is practically relevant, the estimators were compared on
the basis of both statistical and computational efficiency relative to the standard Monte
Carlo estimator. Statistical efficiency E(ICV) and computational efficiency C(ICV) of an345

estimator ICV of the integral I are defined as

E(ICV) =
E
[
(IMC − I)2

]
E
[
(ICV − I)2

] , C(ICV) = E(ICV)
TMC

TCV

where TCV denotes the combined wall time for sampling the x(i) and computing the
estimator ICV. For the results reported below, E and C were approximated using averages
Ê and Ĉ over 100 realizations of the Markov chain output.

3.2. Gaussian Illustration350

Here we consider a Gaussian integral that serves as an analytically tractable cari-
cature of a posterior near to the Bernstein-von-Mises limit. This enables us to assess
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Fig. 2: Gaussian example (a) estimated statistical efficiency with d = 4 and (b) estimated
statistical efficiency with n = 1000 for integrand (16).

the effect of the sample size n and dimension d on each estimator, in a setting that is
not confounded by the idiosyncrasies of any particular MCMC method. Specifically, we
set p(x) = (2π)−d/2 exp(−‖x‖2/2) where x ∈ Rd. For the parametric component we set 355

Φ = Pr, so that (from Lemma 3) ISECF is exact on polynomials of order at most r; this
holds also for IZV. For the integrand f : Rd → R, d ≥ 3, we took

f(x) = 1 + x2 + 0.1x1x2x3 + sin(x1) exp{−(x2x3)
2} (16)

in order that the integral is analytically tractable (I(f) = 1) and that no method will be
exact.

Figure 2 displays the statistical efficiency of each estimator for 10 ≤ n ≤ 1000 and 360

3 ≤ d ≤ 100. Computational efficiency is not shown since exact sampling from p in this
example is trivial. The proposed semi-exact control functional method performs consis-
tently well compared to its competitors for this non-polynomial integrand. Unsurpris-
ingly, the best improvements are for high n and small d, where the proposed method
results in a statistical efficiency over 100 times better than the baseline estimator and 365

up to 5 times better than the next best method.

3.3. Capture-Recapture Example

The two remaining examples, here and in Section 3.4, are applications of Bayesian
statistics described in South et al. (2019). In each case the aim is to estimate expecta-
tions with respect to a posterior distribution Px|y of the parameters x of a statistical 370

model based on y, an observed dataset. Samples x(i) were obtained using the Metropolis-
adjusted Langevin algorithm (Roberts & Tweedie, 1996), which is a Metropolis-Hastings
algorithm with proposal N (x(i−1) + h2 12Σ∇x logPx|y(x(i−1) | y), h2Σ). Step sizes of
h = 0.72 for the capture-recapture example and h = 0.3 for the sonar example (see Sec-
tion 3.4) were selected and an empirical approximation of the posterior covariance matrix 375

was used as the pre-conditioner Σ ∈ Rd×d. Since the proposed method does not rely on
the Markov chain being Px|y-invariant we also repeated these experiments using the un-
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Fig. 3: Capture-recapture example (a) estimated statistical efficiency and (b) estimated
computational efficiency. Efficiency here is reported as an average over the 11 expecta-
tions of interest.

adjusted Langevin algorithm (Parisi, 1981; Ermak, 1975), with similar results reported
in Appendix 9.

In this first example, a Cormack–Jolly–Seber capture-recapture model (Lebreton et al.,380

1992) is used to model data on the capture and recapture of the bird species Cinclus
Cinclus (Marzolin, 1988). The integrands of interest are the marginal posterior means
fi(x) = xi for i = 1, . . . , 11, where x = (φ1, . . . , φ5, p2, . . . , p6, φ6p7), φj is the probability
of survival from year j to j + 1 and pj is the probability of being captured in year j. The
likelihood is385

`(y|x) ∝
6∏
i=1

χdii

7∏
k=i+1

φipk
k−1∏

m=i+1

φm(1− pm)


yik

,

where di = Di −
∑7

k=i+1 yik, χi = 1−∑7
k=i+1 φipk

∏k−1
m=i+1 φm(1− pm) and the data y

consists of Di, the number of birds released in year i, and yik, the number of animals
caught in year k out of the number released in year i, for i = 1, . . . , 6 and k = 2, . . . , 7.
Following South et al. (2019), parameters are transformed to the real line using x̃j =390

log{xj/(1− xj)} and the adjusted prior density for x̃j is exp(x̃j)/{1 + exp(x̃j)}2, for
j = 1, . . . , 11.

South et al. (2019) found that non-parametric methods outperform standard paramet-
ric methods for this 11-dimensional example. The estimator ISECF combines elements of
both approaches, so there is interest in determining how the method performs. It is clear395

from Figure 3 that all variance reduction approaches are helpful in improving upon the
vanilla Monte Carlo estimator in this example. The best improvement in terms of statis-
tical and computational efficiency is offered by ISECF, which also has similar performance
to ICF.
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Fig. 4: Sonar example (a) estimated statistical efficiency and (b) estimated computational
efficiency.

3.4. Sonar Example 400

Our final application is a 61-dimensional logistic regression example using data from
Gorman & Sejnowski (1988) and Dheeru & Karra Taniskidou (2017). To use standard
regression notation, the parameters are denoted β ∈ R61, the matrix of covariates in the
logistic regression model is denoted X ∈ R208×61 where the first column is all 1’s to
fit an intercept and the response is denoted y ∈ R208. In this application, X contains 405

information related to energy frequencies reflected from either a metal cylinder (y = 1)
or a rock (y = 0). The log likelihood for this model is

log `(y,X|β) =

208∑
i=1

[
yiXi,·β − log{1 + exp(Xi,·β)}

]
.

We use a N (0, 52) prior for the predictors (after standardising to have standard deviation
of 0.5) and N (0, 202) prior for the intercept, following South et al. (2019); Chopin &
Ridgway (2017), but we focus on estimating the more challenging integrand f(β) = 410

{1 + exp(−X̃β)}−1, which can be interpreted as the probability that observed covariates
X̃ emanate from a metal cylinder. The gold standard of I ≈ 0.4971 was obtained from a
10 million iteration Metropolis-Hastings (Hastings, 1970) run with multivariate normal
random walk proposal.

Figure 4 illustrates the statistical and computational efficiency of estimators for various 415

n in this example. It is interesting to note that ISECF and IASECF offer similar statistical
efficiency to IZV, especially given the poor relative performance of ICF. Since it is inex-
pensive to obtain the m samples using the Metropolis-adjusted Langevin algorithm in
this example, IZV and IASECF are the only approaches which offer improvements in com-
putational efficiency over the baseline estimator for the majority of n values considered, 420

and even in these instances the improvements are marginal.
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4. Theoretical Properties and Convergence Assessment

4.1. Finite Sample Error and a Practical Diagnostic

The performance of the proposed method can be monitored using the finite sample
error bound provided in Proposition 1. Proposition 1 makes use of the semi-norm425

|f |k0,F = inf
f=h+g

h∈F , g∈H(k0)

‖g‖H(k0), (17)

which is well-defined when the infimum is taken over a non-empty set, otherwise |f |k0,F :=
∞.

Proposition 1. Let the hypotheses of Corollary 1 hold. Then the integration error
satisfies the bound430

|I(f)− ISECF(f)| ≤ |f |k0,F (w>K0w)1/2 (18)

where the weights w, defined in (15), satisfy

w = arg min
v∈Rn

(v>K0v)1/2 s.t.
n∑
i=1

vih(x(i)) =

∫
h(x)p(x) dx for every h ∈ F .

The proof is provided in Appendix 11. The first quantity |f |k0,F in (18) can be approx-
imated by |fn|k0,F when fn is a reasonable approximation for f and this can in turn can

be bounded as |fn|k0,F ≤ (a>K0a)1/2. The finiteness of |f |k0,F ensures the existence of
a solution to the Stein equation, sufficient conditions for which are discussed in Mackey435

& Gorham (2016); Si et al. (2020). The second quantity (w>K0w)1/2 in (18) is com-
putable and is recognized as a kernel Stein discrepancy between the empirical measure∑n

i=1wiδ(x
(i)) and the distribution whose density is p, based on the Stein operator L

(Chwialkowski et al., 2016; Liu et al., 2016). Note that our choice of Stein operator differs
to that in Chwialkowski et al. (2016) and Liu et al. (2016). There has been substantial440

recent research into the use of kernel Stein discrepancies for assessing algorithm perfor-
mance in the Bayesian computational context (Gorham & Mackey, 2017; Chen et al.,
2018, 2019; Singhal et al., 2019; Hodgkinson et al., 2020) and one can also exploit this
discrepancy as a diagnostic for the performance of the semi-exact control functional.
The diagnostic that we propose to monitor is the product (w>K0w)1/2(a>K0a)1/2.445

This approach to error estimation was also suggested (outside the Bayesian context) in
Section 5.1 of Fasshauer (2011).

Empirical results in Figure 5 suggest that this diagnostic provides a conservative ap-
proximation of the actual error. Further work is required to establish whether this diag-
nostic detects convergence and non-convergence in general.450

4.2. Consistency of the Estimator

In what follows we consider an increasing number n of samples x(i) whilst the finite-
dimensional space Φ, with basis {φ1, . . . , φm−1}, is held fixed. The samples x(i) will
be assumed to arise from a V -uniformly ergodic Markov chain; the reader is referred to
Chapter 16 of Meyn & Tweedie (2012) for the relevant background. Recall that the points455

(x(i))ni=1 are called F-unisolvent if the matrix in (12) has full rank. It will be convenient

to introduce an inner product 〈u,v〉n = u>K−10 v and associated norm ‖u‖n = 〈u,u〉1/2n .

Let Π be the matrix that projects orthogonally onto the columns of [Ψ]i,j := Lφj(x(i))
with respect to the 〈·, ·〉n inner product.
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Fig. 5: The mean absolute error and mean of the approximate upper bound
(w>K0w)1/2(a>K0a)1/2, for different values of n in the sonar example of Section 3.4.
Both are based on the semi-exact control functional method with Φ = P1.

Theorem 1. Let the hypotheses of Corollary 1 hold and let f be any function for which 460

|f |k0,F <∞. Let q be a probability density with p/q > 0 on Rd and consider a q-invariant

Markov chain (x(i))ni=1, assumed to be V -uniformly ergodic for some V : Rd → [1,∞),
such that

A1. supx∈Rd V (x)−r {p(x)/q(x)}4 k0(x,x)2 <∞ for some 0 < r < 1;

A2. the points (x(i))ni=1 are almost surely distinct and F-unisolvent; 465

A3. lim supn→∞ ‖Π1‖n/‖1‖n < 1 almost surely.

Then |ISECF(f)− I(f)| = OP (n1/2).

This demonstrates that, even in the biased sampling setting, the proposed estimator
is consistent. The proof is provided in Appendix 12 and exploits a recent theoretical
contribution in Hodgkinson et al. (2020). Assumption A1 serves to ensure that q is sim- 470

ilar enough to p that a q-invariant Markov chain will also explore the high probability
regions of p, as discussed in Hodgkinson et al. (2020). Sufficient conditions for V -uniform
ergodicity are necessarily Markov chain dependent. The case of the Metropolis-adjusted
Langevin algorithm is discussed in Roberts & Tweedie (1996); Chen et al. (2019) and, in
particular, Theorem 9 of Chen et al. (2019) provides sufficient conditions for V -uniform 475

ergodicity with V (x) = exp(s‖x‖) for all s > 0. Under these conditions, and with the ra-
tional quadratic kernel k considered in Section 3, we have k0(x,x) = O(‖∇x log p(x)‖2)
and therefore A1 is satisfied whenever {p(x)/q(x)}‖∇x log p(x)‖ = O(exp(t‖x‖)) for
some t > 0; a weak requirement. Assumption A2 ensures that the finite sample size
bound (18) is almost surely well-defined. Assumption A3 ensures the points in the se- 480

quence (x(i))ni=1 distinguish (asymptotically) the constant function from the functions
{φi}m−1i=1 , which is a weak technical requirement.
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5. Discussion

Several possible extensions of the proposed method can be considered. For example,
the parametric component Φ could be adapted to the particular f and p using a di-485

mensionality reduction method. Likewise, extending cross-validation to encompass the
choice of kernel and even the choice of control variate or control functional estimator
may be useful. The potential for alternatives to the Nyström approximation to further
improve scalability of the method can also be explored. In terms of the points x(i) on
which the estimator is defined, these could be optimally selected to minimize the error490

bound in (18), for example following the approaches of Chen et al. (2018, 2019). Finally,
we highlight a possible extension to the case where only stochastic gradient information
is available, following Friel et al. (2016) in the parametric context.
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Brosse, N., Durmus, A., Meyn, S., Moulines, É. & Radhakrishnan, A. (2019). Diffusion approxi-

mations and control variates for MCMC. arXiv preprint arXiv:1808.01665 .
Chen, W. Y., Barp, A., Briol, F.-X., Gorham, J., Girolami, M., Mackey, L. & Oates, C. (2019).

Stein point Markov chain Monte Carlo. In Proceedings of the 36th International Conference on Machine525

Learning, K. Chaudhuri & R. Salakhutdinov, eds., vol. 97 of Proceedings of Machine Learning Research.
PMLR.



Semi-Exact Control Functionals 17

Chen, W. Y., Mackey, L., Gorham, J., Briol, F.-X. & Oates, C. J. (2018). Stein points. In
Proceedings of the 35th International Conference on Machine Learning, J. Dy & A. Krause, eds.,
vol. 80 of Proceedings of Machine Learning Research. PMLR. 530

Chopin, N. & Ridgway, J. (2017). Leave Pima Indians alone: binary regression as a benchmark for
Bayesian computation. Statistical Science 32, 64–87.

Chwialkowski, K., Strathmann, H. & Gretton, A. (2016). A kernel test of goodness of fit. In
Proceedings of The 33rd International Conference on Machine Learning, M. F. Balcan & K. Q. Wein-
berger, eds., vol. 48 of Proceedings of Machine Learning Research. New York, New York, USA: PMLR. 535

Clenshaw, C. W. & Curtis, A. R. (1960). A method for numerical integration on an automatic
computer. Numerische Mathematik 2, 197–205.

Dheeru, D. & Karra Taniskidou, E. (2017). UCI machine learning repository.
Ermak, D. L. (1975). A computer simulation of charged particles in solution. I. Technique and equilib-

rium properties. The Journal of Chemical Physics 62, 4189–4196. 540

Fasshauer, G. E. (2011). Positive-definite kernels: Past, present and future. Dolomites Research Notes
on Approximation 4, 21–63.

Friel, N., Mira, A. & Oates, C. J. (2016). Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis 11, 215–245.

Garreau, D., Jitkrittum, W. & Kanagawa, M. (2017). Large sample analysis of the median heuristic. 545

arXiv preprint arXiv:1707.07269 .
Gautschi, W. (2004). Orthogonal Polynomials: Computation and Approximation. Numerical Mathe-

matics and Scientific Computation. Oxford University Press.
Gorham, J. & Mackey, L. (2015). Measuring sample quality with Stein’s method. In Proceedings of

the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: 550

MIT Press.
Gorham, J. & Mackey, L. (2017). Measuring sample quality with kernels. In Proceedings of the 34th

International Conference on Machine Learning, D. Precup & Y. W. Teh, eds., vol. 70 of Proceedings
of Machine Learning Research. PMLR.

Gorman, R. P. & Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to 555

classify sonar targets. Neural Networks 1, 75–89.
Hammersley, J. M. & Handscomb, D. C. (1964). Monte Carlo Methods. Chapman & Hall.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57, 97–109.
Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and 560

Its Applications 103, 103–118.
Hildebrand, F. B. (1987). Introduction to Numerical Analysis. Courier Corporation.
Hodgkinson, L., Salomone, R. & Roosta, F. (2020). The reproducing Stein kernel approach for

post-hoc corrected sampling. arXiv preprint arXiv:2001.09266 .
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