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Abstract We propose a Bayesian approach for inference in the stochastic ray
production frontier (SRPF), which can model multiple-input–multiple-output
production technologies even in case of zero output quantities, i.e., if some
outputs are not produced by some of the firms. However, the econometric es-
timation of the SRPF—as the estimation of distance functions in general—is
susceptible to endogeneity problems. To address these problems, we apply a
profit-maximizing framework to derive a system of equations after incorpo-
rating technical inefficiency. As the latter enters non-trivially into the system
of equations and as the Jacobian is highly complicated, we use Monte Carlo
methods of inference. Using US banking data to illustrate our innovative ap-
proach, we also address the problems of missing prices and the dependence on
the ordering of the outputs via model averaging.
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1 Introduction

The stochastic frontier production model, originally introduced by Meeusen
and van den Broeck (1977), Aigner et al. (1977), and Battese and Corra (1977),
incorporates a composed error term consisting of a symmetric error with zero
mean representing statistical noise and a non-negative error expressing tech-
nical inefficiency. A significant limitation of the original stochastic production
frontier model is that it cannot adequately handle the case of multiple out-
puts. In the case of multiple-input, multiple-output technologies, the standard
approach has been to take advantage of the dual approach and estimate in-
stead either the cost frontier function (e.g., Ferrier and Lovell 1990; Koop et al.
1997; Rosko 2001; Filippini and Farsi 2004; Orea and Kumbhakar 2004; Huang
and Wang 2004) or the profit frontier function (e.g., Kumbhakar and Bhat-
tacharyya 1992; Vivas 1997; Berger and Mester 1997; Humphrey and Pulley
1997; Akhavein et al. 1997; Kumbhakar and Lovell 2000; Kumbhakar 2001).1
However, this requires the availability of input and output prices as well as
data on cost or profits and the behavioral postulate of either cost minimization
or profit maximization, which may not be appropriate assumptions for many
empirical analyses. If any of the above requirements fails, duality cannot be
exploited and a primal approach would need to be adopted.

The framework of a primal approach based on stochastic distance func-
tions was developed in the literature to address those criticisms. Originally,
Färe et al. (1993) used the concept of an output distance function, originally
introduced by Shephard (1970), to model multiple-output technologies. Lovell
et al. (1994) developed a multiple-output generalization of the primal approach
and proposed a transformation of the data, while making use of the linear ho-
mogeneity property of the distance function to overcome the problem of the
unobserved distance measure. The main contribution of distance functions is
that they allow the specification of multiple-input, multiple-output technolo-
gies when information about prices may not be available or when the cost or
profit representations do not present a preferable alternative due to violation
of the related behavioral assumptions (Coelli and Perelman 1999, 2000; Sick-
les et al. 2002; Atkinson and Dorfman 2005). A considerable disadvantage of
the distance function approach is that the regressors are possibly endogenous
and, thus, the estimates are possibly inconsistent due to aspects of inherent
simultaneous equations as discussed in Grosskopf et al. (1997) and Cuesta and
Orea (2002).

Löthgren (1997) developed a multiple-output generalization of the single-
output stochastic frontier production model, called the stochastic ray produc-
tion frontier (SRPF) model, which defines the Euclidean norm of the vector of
output quantities as a function of input quantities and polar-coordinate angles
of the output quantities. The SRPF—which describes the maximum level of
the Euclidean norm of the output vector that can be achieved for a given level

1 For a presentation of multiple-output production and duality theory, see Färe and Pri-
mont (1995, 1996).
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of inputs and a given output mix under the technology—offers an alternative
primal approach of estimation for stochastic multiple-output frontier func-
tions (e.g., Gerdtham et al. 1999; Löthgren 2000; Niquidet and Nelson 2010;
Bhattacharyya and Pal 2013). The issues of endogeneity and inconsistency,
prevalent in stochastic distance functions, are less profound in the SRPF as
the error terms affect outputs radially given the exogenous output mix.

As it is commonly the case with distance functions, the explanatory vari-
ables of the SRPF—consisting of input quantities and angles between the out-
put quantities—can be correlated with the inefficiency term and/or the noise
term. Thus, estimation of the SRPF via classical econometric techniques (e.g.,
Aigner et al. 1977; Pitt and Lee 1981; Jondrow et al. 1982; Schmidt and Sickles
1984; Kumbhakar 1990; Battese and Coelli 1992; Kumbhakar and Heshmati
1995; Greene 2005) may give inconsistent estimates (Kumbhakar and Lovell
2000). In addressing the susceptibility to endogeneity problems, we contribute
to the Bayesian efficiency analysis of stochastic frontier models (e.g., van den
Broeck et al. 1994; Koop et al. 1994, 1995; Tsionas 2000, 2002, 2006; Koop and
Steel 2001) by combining the SRPF with the first-order conditions of the re-
lated profit-maximizing framework to address potential endogeneity problems.
In addition, we propose a Bayesian procedure of inference for the parameters
of the SRPF and technical inefficiency using model averaging to address the
dependence of the SRPF upon the ordering of the outputs.2

2 Microeconomic specification and first-order conditions

The SRPF, originally proposed by Löthgren (1997) and recently improved by
Henningsen, Bělín, and Henningsen (2017), is a non-standard representation of
an output distance function (Henningsen et al. 2015). Suppose x ∈ <K denotes
a vector of inputs and y ∈ <M represents a vector of outputs, Henningsen et al.
(2017) have shown that a Shephard (radial) output distance function (ODF),
i.e., D(x, y) = min

{
λ > 0 : (yλ−1, x) can be produced

}
with 0 < D(x, y) ≤ 1,

2 Our approach invokes the same assumption as dual approaches, i.e., availability of input
(and output) prices and the assumption of profit maximization (or at least cost minimiza-
tion). However, in certain empirical applications, our approach has the following advantages:
(a) Dual approaches require notable variation in input (and output) prices between obser-
vations. However, if transaction costs are low and markets are working well, the “law of one
price” approximately holds, which leaves too little variation between observations for esti-
mating a dual approach. By our alternative approach, there is no requirement for variation
in input (and output) prices. (b) To obtain estimates of output-oriented technical efficiency,
a dual approach is (at best) very complicated to implement. (c) Although, in theory, primal
and dual approaches should give the same result, in practice this is not assured. Hence, the
preference is for a primal approach, as presented in this paper.
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can be transformed to a SPRF specified as:3

lnD(x, y) = ln ||y|| − F (ln x, ϑ(y)) (1)
ln ||y|| = F (ln x, ϑ(y))− u, (2)

using the polar-coordinate representation of the output vector y = ||y|| ·m(ϑ),

where ||y|| =
√∑M

m=1 y
2
m, ϑ(y) with ϑm(y) = arccos

(
ym

/√∑M
j=m y

2
j

)
∀m = 1, ...,M − 1, and m(ϑ) : [0, π/2]M−1 → [0, 1]M represent the Eu-
clidean norm (length), the polar-coordinate angles, and the transformation
function of the angles to the mix, respectively, of the output vector y, and
u = − lnD (x, y) ≥ 0 represents output-oriented technical inefficiency. Adding
a time trend t to take into account technical change, assuming a quadratic
functional form of F (·), and finally adding a two-sided error term v to take
into account statistical noise, we get a Translog SRPF:4

ln ||y|| =α0 +
M−1∑
m=1

αmϑm + 1
2

M−1∑
m=1

M−1∑
m′=1

αmm′ϑmϑm′ (3)

+
K∑
k=1

βk ln xk + 1
2

K∑
k=1

K∑
k′=1

βkk′ ln xk ln xk′

+
M−1∑
m=1

K∑
k=1

γmk ln xkϑm + ζTt+ 1
2ζTTt

2

+
M−1∑
m=1

ζyTmt ϑm +
K∑
k=1

ζxTkt ln xk + v − u,

which can be estimated as a stochastic frontier model.
Similarly to Tsionas et al. (2015) who take into account endogeneity by

estimating an input distance function along with cost-minimizing first-order
conditions (FOC), we estimate an SRPF (3) along with the corresponding
profit-maximizing FOC. We derive the FOC from the profit maximization
problem:

max
x∈<+

K
,y∈<+

M

p′y − w′x, s.t. D(x, y) = e−u, (4)

3 We refer the reader to Löthgren (1997), Gerdtham et al. (1999) and Löthgren (2000)
for more details on the SRPF. The traditional specification of a Translog Shephard output
distance function that corresponds to the stochastic-ray output distance function specified
in equation (1) is ln D(x, y) = ln ym + F (ln x, ln(y/ym)), where F (·) denotes a quadratic
functional form and m with 1 ≤ m ≤M indicates an arbitrarily chosen output that is used as
numéraire to impose linear homogeneity in output quantities. Hence, the traditional Translog
specification fulfils linear homogeneity through an arbitrarily chosen output and implicitly
assumes that ln(D(x, y)) is a quadratic function of the logarithms of the input quantities
and the logarithms of the normalised output quantities, while the Translog SRPF functional
form fulfils linear homogeneity through the length of the vector of output quantities and
implicitly assumes that ln(D(x, y)) is a quadratic function of the logarithms of the input
quantities and the angles of the vector of output quantities.

4 An advantage of not taking logarithms of the angles (unlike the specification in Löthgren
1997) is that this specification can handle zero output quantities (Henningsen et al. 2017).
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where technical inefficiency u is taken as given to the producer. If λ denotes
the Lagrange multiplier, the FOC are:

wk = −λ∂D(x, y)
∂xk

= −λ∂ lnD(x, y)
∂ ln xk

D(x, y)
xk

∀ k = 1, ...,K, (5)

pm = λ
∂D(x, y)
∂ym

= λ
∂ lnD(x, y)
∂ ln ym

D(x, y)
ym

∀m = 1, ...,M, (6)

where wk; k = 1, ...,K denotes the price of the kth input and pm;m = 1, ...,M
denotes the price of the mth output. As the Lagrange multiplier λ is equal
to total revenue at full efficiency (Brümmer et al. 2002), i.e., λ = p′y for
D(x, y) = 1 and, thus, λ = p′ (y/D(x, y)) for 0 < D(x, y) ≤ 1, we can eliminate
λ from the FOC and re-arrange them to get:

wkxk
p′y

= −∂ lnD(x, y)
∂ ln xk

∀ k = 1, ...,K, (7)

pmym
p′y

= ∂ lnD(x, y)
∂ ln ym

∀m = 1, ...,M. (8)

The right-hand sides of equations (7) and (8) are the distance elasticities of
the inputs and outputs, respectively, that can be calculated as:5

∂ lnD(ln x, ϑ)
∂ ln xk

= − ∂F (ln x, ϑ)
∂ ln xk

(9)

= − βk −
K∑
k′=1

βkk′ ln xk′ −
M−1∑
m=1

γmkϑm − ζxTkt (10)

∀ k = 1, ...,K,
∂ lnD(ln x, ϑ)

∂ ln ym
= ∂ ln ||y||
∂ ln ym

− ∂F (ln x, ϑ)
∂ ln ym

(11)

= y2
m

||y||2
−

min(m,M−1)∑
m′=1

∂F (ln x, ϑ)
∂ϑm′

· ∂ϑm
′

∂ ln ym
(12)

= y2
m

||y||2
+

min(m,M−1)∑
m′=1

{
(13)(

αm′ +
M−1∑
m∗=1

αm′m∗ϑm∗ +
K∑
k=1

γm′k ln xk + ζyTm′t

)
ymSm′

(
δmm′ − ymym′S2

m′

)√
1− y2

m′S
2
m′

}
∀m = 1, ...,M,

where Sm′ = 1
/√∑M

m∗=m′ y
2
m∗ and δmm′ = 1 if m = m′ and zero otherwise.

The monotonicity conditions are: ∂ lnD(x, y)/∂ ln xk ≤ 0 ∀ k = 1, ...,K and
5 Note that ∂ϑm′/∂ ln ym = (∂ϑm′/∂ym) ym, ∂ϑm′/∂ ln ym = 0 ∀ m < m′, and

∂arccos(z)/∂z = −1/
√

1− z2.
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∂ lnD(x, y)/∂ ln ym ≥ 0 ∀ m = 1, ...,M (see Kumbhakar and Lovell 2000,
p. 32).

Based on the estimated parameters, we can calculate the elasticity of
scale RTSit = −

∑K
k=1 ∂ lnDit/∂ ln xk,it (Färe and Grosskopf 1994, p. 103),

the annual rate of technical change TCit = ζT + ζTTt +
∑M−1
m=1 ζ

y
Tmϑm,it +∑K

k=1 ζ
x
Tk ln xk,it, the annual efficiency change ECit = e−uit − e−uit−1 , the an-

nual scale efficiency change SECit = − (RTSit − 1)
∑K
k=1 (∂ lnDit/∂ ln xk,it)

(ln xk,it − ln xk,it−1) /RTSit, and the annual rate of productivity growth PGit
= TCit + ECit + SECit.

3 Econometric specification and estimation procedure

In the above formulation, we have K + M endogenous variables (x1, . . . , xK ,
y1, . . . , yM or x1, . . . , xK , ||y||, ϑ1, . . . , ϑM−1) but K + M + 1 equations (2, 7,
8). However, given that the revenue shares (pmym/p′y) and—due to the lin-
ear homogeneity of output distance functions—the distance elasticities of the
outputs (∂ lnD(x, y)/∂ ln ym) both sum up to one, i.e.,

∑M
m=1 (pmym) / (p′y)

=
∑M
m=1 ∂ lnD(x, y)/∂ ln ym = 1, one of the FOC regarding the outputs (8)

is redundant and, thus, needs to be dropped from the estimation to avoid
singularity. Given that the removal of one of these equations does not remove
any information, the estimation results are invariant to the equation that is
removed (Barten 1969). Hence, the system of equations that we estimate con-
tainsK+M equations in total: the SRPF (2),K FOC with respect to the input
quantities (7), and (M − 1) FOC with respect to the output quantities (8).

The system of equations used in the estimation, obtained after adding error
terms to the FOC, for the case of panel data (i = 1, ..., n, t = 1, ..., T ) is:

vit = ln ||yit|| − α0 −
M−1∑
m=1

αmϑm,it − 1
2

M−1∑
m=1

M−1∑
m′=1

αmm′ϑm,itϑm′,it (14)

−
K∑
k=1

βk ln xk,it − 1
2

K∑
k=1

K∑
k′=1

βkk′ ln xk,it ln xk′,it

−
M−1∑
m=1

K∑
k=1

γmk ln xk,itϑm,it − ζTt+ 1
2ζTTt

2

−
M−1∑
m=1

ζyTmt ϑm,it −
K∑
k=1

ζxTkt ln xk,it + uit,

vxk,it = wk,itxk,it
p′ityit

− βk −
K∑
k′=1

βkk′ ln xk′ −
M−1∑
m=1

γmkϑm − ζxTkt (15)

∀ k = 1, ...,K,

vym,it = pm,itym,it
p′ityit

−
y2
m,it

||yit||2
(16)
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−
min(m,M−1)∑

m′=1

(
αm′ +

M−1∑
m∗=1

αm′m∗ϑm∗,it +
K∑
k=1

γm′k ln xk,it + ζyTm′t

)
ym,itSm′,it (δmm′ − ym,itym′,itS2

m′,it

)√
1− y2

m′,itS
2
m′,it

 ∀ m = 1, ...,M − 1.

We denote the vector of error terms by vit ≡
[
vit, v

x
1,it, ..., v

x
K,it, v

y
1,it, . . . , v

y
M−1,it

]′
and assume that it follows a (K +M)-variate normal distribution, i.e., vit ∼
NK+M (0,Σ) ∀ i = 1, ..., n; t = 1, ..., T , where Σ = diag

(
σ2
υ, σ

2
υx

1
, ..., σ2

υx
K
,

σ2
υy

1
, ..., σ2

υy
M−1

)
. For technical inefficiency, we make the standard assumption

that uit ∼ N+ (0, σ2
u

)
independently of all error terms in vit and all regressors.

If we denote the vector of unknown parameters (α, β, γ,ζ) by θ ∈ Θ ⊂ <D, the
system can be written compactly as follows:

vit = F(θ, uit;Yit), (17)

where F is a (K + M)-dimensional function and Yit ≡ (y′it, ln x′it, w′it, p′it, t)
′

denotes the values of all variables at observation (i, t).6
Let Y = {Yit} denote the entire data set, the likelihood function of the

system can be written in the form:

L(θ, σu,Σ;Y) = 2−nT (K+M−1)/2π−nT (K+M+1)/2σ−nTu σ−nTυ (18)
K∏
k=1

σ−nTυx
k

M−1∏
m=1

σ−nT
υy

m

n∏
i=1

T∏
t=1
|| Jit (θ;Yit) ||

n∏
i=1

T∏
t=1

∫ ∞
0

exp
{
− 1

2

(
υit (θ, uit;Yit)2

σ2
υ

+
K∑
k=1

υxk,it (θ;Yit)2

σ2
υx

k

+
M−1∑
m=1

υym,it (θ;Yit)2

σ2
υy

m

+ u2
it

σ2
u

)}
duit,

where

Jit (θ;Yit) = ∂F(θ, uit;Yit)
∂ (ln xit, ln yit)

(19)

is the Jacobian matrix of the error terms with respect to all logarithmic input
and output quantities, which we compute numerically. Notice that the latent
uit has to be integrated out of the likelihood function.7 As the likelihood

6 Similar stochastic specifications can be found in Malikov et al. (2015) and Tsionas et al.
(2015).

7 While this model specification does not assume that error terms vit are independent of
the input and output quantities, it assumes that the inefficiency term uit is independent of
the input and output quantities. This assumption is typical in the literature.
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function (18) is complex and depends on latent inefficiency, we use a Bayesian
approach with the following prior:

p(θ, σu,Σ) ∝IM(Y)(θ)σ
−(n+1)
u exp

{
− a

2σ2
u

}
σ
−(n∗+1)
υ exp

{
− a∗

2σ2
υ

}
(20)

K∏
k=1

σ
−(n∗+1)
υx

k
exp

{
− a∗

2σ2
υx

k

}
M−1∏
m=1

σ
−(n∗+1)
υy

m
exp

{
− a∗

2σ2
υy

m

}
,

where IM(Y)(θ) denotes an indicator function that is one if the set of pa-
rameters θ satisfies the monotonicity restrictions and zero otherwise and n,
a, n∗ and a∗ are scalars to be set by the analyst. We set n = n∗ = 0 and
a = a∗ = 10−5, which are non-informative choices (relative to the likelihood).
By Bayes’ theorem, the posterior distribution is:

p(θ, σu,Σ|Y) ∝ L(θ, σu,Σ;Y) · p(θ, σu,Σ). (21)

We integrate the posterior analytically with respect to parameters συx
1
, ..., συx

K
,

συy
1
, ..., συy

M−1
using properties of the Inverted Gamma distribution and we

use Metropolis within Gibbs sampling to draw from the conditional posterior
distributions u|θ, σu, συ,Y, σu|θ,u, συ,Y, συ|θ,u, σu,Y and θ|u, σu, συ,Y in
the augmented posterior:

p (θ, σu, συ,u | Y) ∝ σ−(nT+n+1)
u exp

{
−
a+

∑n
i=1
∑T
t=1 u

2
it

2σ2
u

}
(22)

n∏
i=1

T∏
t=1
|| Jit (θ;Yit) || σ

−(nT+n∗+1)
υ

exp
{
−
α∗ +

∑n
i=1
∑T
t=1 υit (θ, uit;Yit)2

2σ2
υ

}
K∏
k=1

(
α∗ +

n∑
i=1

T∑
t=1

υxk,it (θ;Yit)2

)−nT +n∗

2

M−1∏
m=1

(
α∗ +

n∑
i=1

T∑
t=1

υym,it (θ;Yit)2

)−nT +n∗

2

.

For the conditional posterior densities p (u|θ, σu, συ,Y), p (σu|θ, συ,u,Y)
and p (συ|θ, σu,u,Y), we use Gibbs sampling and for p (θ|σu, συ,u,Y) we use
the random walk Metropolis-Hastings algorithm. Given the importance of
monotonicity in efficiency analysis (Henningsen and Henning 2009), we use
rejection sampling to impose the monotonicity conditions at all data points
(O’Donnell and Coelli 2005; Terrell 1996).
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4 Empirical application

We provide an empirical application to data analysed in Malikov, Kumbhakar,
and Tsionas (2015). Our sample is an unbalanced panel of US banks with
395 bank–year observations of the 50 banks with the highest volume of assets
contained in the data set. We have the following outputs: consumer loans (y1),
real estate loans (y2), commercial and industrial loans (y3), securities (y4),
and off-balance-sheet items (y5). In order to make our analysis invariant to
the units of measurement of the outputs, we normalise them by their arith-
metic means. The inputs are labour (number of full-time equivalent employees,
x1), physical capital (x2), purchased funds (x3), interest-bearing transaction
accounts (x4), and non-transaction accounts (x5).8

In our application, we do not observe output prices. As we need output
prices to calculate the left-hand sides of equations (7) and (8), which are part of
the estimated equations (15) and (16), we approximate them by a parametric
model of the form:

ln
(
pm,it
w1,it

)
= η(1)

m + η(2)
m t+ 1

2η
(3)
m t2 (23)

∀m = 1, ...,M ; ∀ i = 1, ..., n; t = 1, ..., T,

in which log output prices relative to the first input price are quadratic func-
tions of the time trend.9

Our prior for these parameters is as follows:

η = [η(1)
m , η(2)

m , η(3)
m , m = 1, ...,M ]′ ∼ N3M (0, hI). (24)

We set parameter h = 10 so that the prior is loose but proper. Based on the
price model (23), we replace the unobserved output prices in equations (15)
and (16) by:

pm,it =w1,it exp
(
η(1)
m + η(2)

m t+ 1
2η

(3)
m t2

)
(25)

∀m = 1, ...,M ; ∀ i = 1, ..., n; t = 1, ..., T.

Pseudocode of the Metropolis within Gibbs algorithm is as follows:

Pseudocode of the Metropolis within Gibbs algorithm

Step 1. Specify initial values θ(0), η(0), σ(0)
u , σ(0)

υ and u(0).
Step 2. Repeat the following steps for j = 1, 2, . . . , R.

8 Our model specification assumes that the input prices w are exogenous, which is a
typical assumption in many empirical analyses, e.g., in analyses based on cost minimisation.
However, under certain circumstances, the input prices w could be endogenous, e.g., if
differences in input prices between banks reflect heterogeneous inputs rather than ‘true’
differences in input prices (see, e.g., Quiggin and Bui-Lan 1984).

9 The use of parametric assumptions to approximate unavailable output prices may intro-
duce approximation errors. The absence of output prices (or even input prices) is common
in the literature. In deciding to proceed, we demonstrate that our method is applicable even
if output prices are unavailable.
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Step 2.1. Sample u(j)
it | θ(j−1), σ

(j−1)
u , σ

(j−1)
υ , η(j−1),Yit from the density

of the Half-Normal distribution:

N+

(
− σ

2(j−1)
u

σ
2(j−1)
υ + σ

2(j−1)
u

(log || yit || −F (log (xit (Yit)) , ϑ (Yit) , θ)) ,

σ
2(j−1)
υ σ

2(j−1)
u

σ
2(j−1)
υ + σ

2(j−1)
u

)
∀ i = 1, 2, . . . , n; t = 1, 2, . . . , T.

Step 2.2. Sample σ(j)
u | θ(j−1), σ

(j−1)
υ , η(j−1),u(j),Y from the density of

the Inverse Gamma (IG) distribution:

IG

(
nT + n

2 ,
a+

∑n
i=1
∑T
t=1 u

2(j)
it

2

)

Step 2.3. Sample σ(j)
υ | θ(j−1), σ

(j)
u , η(j−1),u(j),Y from the density of the

Inverse Gamma (IG) distribution:

IG

nT + n∗

2 ,
a∗ +

∑n
i=1
∑T
t=1 υit

(
θ(j−1), u

(j)
it ;Yit

)2

2


Step 2.4. Sample η(j) | θ(j−1), σ

(j)
u , σ

(j)
υ ,u(j),Y from kernel:

exp
{
− 1

2h2 η
′η

} n∏
i=1

T∏
t=1
|| Jit

(
θ(j−1), η;Yit

)
||

K∏
k=1

(
α∗ +

n∑
i=1

T∑
t=1

υkit

(
θ(j−1), η;Yit

)2
)−nT +n∗

2

M−1∏
m=1

(
α∗ +

n∑
i=1

T∑
t=1

υmit

(
θ(j−1), η;Yit

)2
)−nT +n∗

2

Step 2.5. Sample θ(j) | σ(j)
u , σ

(j)
υ , η(j),u(j),Y applying rejection sampling

from kernel:

exp

−
∑n
i=1
∑T
t=1 υit

(
θ, u

(j)
it ;Yit

)2

2σ2
υ


n∏
i=1

T∏
t=1
|| Jit

(
θ, η(j);Yit

)
||

K∏
k=1

(
α∗ +

n∑
i=1

T∑
t=1

υkit

(
θ, η(j);Yit

)2
)−nT +n∗

2

M−1∏
m=1

(
α∗ +

n∑
i=1

T∑
t=1

υmit

(
θ, η(j);Yit

)2
)−nT +n∗

2
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There is a potential problem with the present and other similar models in
that (i) we arbitrarily selected w1 as numeraire in the price model (23) and
(ii) the results depend on the ordering of outputs. We address these concerns
by considering different input prices as numeraire and allM ! possible orderings
of outputs as different models. With 5 outputs, there exist 5! = 120 different
orderings of the outputs. As the SRPF is invariant to the ordering of the last
two outputs (see Henningsen et al. 2017), there are 5!/2 = 60 different model
specifications regarding the ordering of outputs. To take up the issue of select-
ing a particular ordering or combining the results from different orderings, we
repeat the inference procedure for all 60 different model specifications and we
use the marginal likelihood to weight the results obtained from each ordering
of outputs using model averaging.

Following Gelfand and Dey (1994) and DiCiccio et al. (1997), the reciprocal
of marginal likelihoodMc (Y) =

∫
ω∈Ω pc (ω | Y) dω for each model c ∈ C can

be obtained by:

Mc (Y)−1 = Epc(ω|Y)

[
gc (ω)

pc (ω | Y) | Y
]
, (26)

where ω = (θ, η, σu, συ)′ and g (.) is a proper density that plays the role of an
importance sampling density that closely approximates the posterior distribu-
tion:

p (ω | Y) ∝
(
σ2
υ + σ2

u

)−nT
2 σ
−(n+1)
u exp

{
− a

2σ2
u

}
exp

{
− 1

2h2 η
′η

}
(27)

exp
{
− 1

2 (σ2
υ + σ2

u)

n∑
i=1

T∑
t=1

(log || yit || −F (log (xit) , θ (Yit)))2

}

σ
−(n∗+1)
υ exp

{
− α∗

2σ2
υ

} n∏
i=1

T∏
t=1
|| Jit (θ, η;Yit) ||

K∏
k=1

(
α∗ +

n∑
i=1

T∑
t=1

υkit (θ, η;Yit)2

)−nT +n∗

2

M−1∏
m=1

(
α∗ +

n∑
i=1

T∑
t=1

υmit (θ, η;Yit)2

)−nT +n∗

2

To compute an estimate of the marginal likelihood, we use the following
expression:

M̂c (Y)−1 = 1
R

R∑
j=1

φ
(
ω

(j)
c ; ω̂c, V̂c

)
pc

(
ω

(j)
c | Y

) ∀c ∈ C, (28)

where φ (.;m,S) denotes the density function of a multivariate normal distri-
bution with mean vector m and variance matrix S and ω̂c and V̂c denote the
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sample average and sample covariance matrix, respectively, computed using
the MCMC draws

{
ω

(j)
c

}R
j=1

. Different models are weighted using the poste-
rior model probabilities:

π̂c (Y) = M̂c (Y)∑
c′∈C M̂c′ (Y)

∀c ∈ C. (29)

For a given technological metric that is a function of the parameters and the
data, say f (ω,Y), the related estimate of this metric corresponding to model c
is computed as f̂c (Y) = 1

R

∑R
j=1 f

(
ω

(j)
c ,Y

)
∀ c ∈ C and the model-averaged

estimate of this metric is computed as:∑
c∈C

π̂c (Y) f̂c (Y) . (30)

For each of the 60 model specifications, we have repeated the estimation
procedure using 25,000 preliminary draws which were discarded followed by
another 50,000 draws used to produce estimates of the technological met-
rics for each model. Despite the high dimensionality, the application of the
Metropolis-Hastings algorithm resulted in approximately 30% of all proposals
being eventually accepted. Instead of examining the parameter estimates, we
focus our attention on more informative technological metrics given by tech-
nical efficiency10, elasticity of scale, technical change, efficiency change, scale
efficiency change, and productivity growth. Figures 1 and 2 present scatter
plots depicting the average values of the above technological metrics and av-
erage values of the distance elasticities against the logarithm of the marginal
likelihood for all 60 alternative model specifications.11 Our results were not
sensitive to which input price was used as numeraire (up to Monte Carlo
errors).

Once the results corresponding to the 60 different output orderings were
obtained, model-averaged estimates for the technological metrics were com-
puted as specified in equation (30). Summary statistics of the technological
metrics of interest, as obtained through the model averaging procedure, are
reported in Table 1. Technical efficiency levels are quite high presenting an
average (and median) value of 0.979 with the corresponding 5%–95% interval
ranging from 0.976 to 0.982. Elasticities of scale are close to unity presenting
a mean value of 0.967, a 5% percentile value of 0.724 and a 95% percentile
value of 1.187. The (annual rate of) productivity growth holds most of its mass
concentrated around 0.016 with a 5% percentile value of −0.040 and a 95%

10 To measure observation-specific technical efficiency, we use 1
R

∑R

j=1 exp
(
−u

(j)
it

)
∀ i =

1, ..., n; t = 1, ..., T , where
{

u
(j)
it

}R

j=1
is a MCMC sample drawn from the posterior.

11 More information on the sensitivity of our results to the ordering of the outputs can be
found in the Online Supplement to this Article, where we present detailed statistics of the
technological metrics for all 60 different orderings of the outputs.
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Fig. 1 Scatter plots between posterior model probabilities and technological metrics for all
different model specifications (part 1)
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percentile value of 0.065. Technical change presents an average value of 0.019,
a 5% percentile value of −0.039 and a 95% percentile value of 0.058, while
scale efficiency change averages at −0.001 and its 5%–95% interval ranges
from −0.027 to 0.035. Efficiency change averages approximately to zero and
its 5% and 95% percentiles are given by −0.001 and 0.001, respectively. As
constrained by the imposition of rejection sampling, distance elasticities of in-
puts (IDE) are negative and those of outputs (ODE) are positive at all data
points. In Figure 3, we present kernel density plots that illustrate the distri-
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Fig. 2 Scatter plots between posterior model probabilities and technological metrics for all
different model specifications (part 2)
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butions of model-averaged technological metrics over all observations in our
data set.

The results we obtained are in accordance with those reported in other sim-
ilar efficiency studies of the banking sector. Malikov, Kumbhakar, and Tsionas
(2015) use a stochastic directional technology distance function formulation
to estimate banking technology in the presence of undesirable outputs, apply-
ing Bayesian methods to an extended version of the data set that we use in
the present analysis. Their results suggest a mean technical efficiency at the
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Table 1 Statistics of model-averaged technological metrics

Technological metrics Mean St. Dev. Median 5% Perc. 95% Perc.
Efficiency 0.9787 0.0016 0.9786 0.9763 0.9816
Elasticity of scale 0.9666 0.1434 0.9776 0.7242 1.1874
Technical change 0.0187 0.0279 0.0225 -0.0391 0.0576
Efficiency change 9 · 10−6 0.0007 -3 · 10−5 -0.0009 0.0011
Scale efficiency change -0.0011 0.0704 0.0002 -0.0272 0.0349
Productivity growth 0.0160 0.0706 0.0205 -0.0396 0.0653
IDE: Labour -0.2790 0.0682 -0.2759 -0.3990 -0.1800
IDE: Capital -0.0762 0.0199 -0.0763 -0.1082 -0.0432
IDE: Purchased funds -0.1968 0.0625 -0.2009 -0.2861 -0.0910
IDE: Interest bearing accounts -0.2158 0.1066 -0.1973 -0.4669 -0.0722
IDE: Non-transaction accounts -0.1990 0.0739 -0.1957 -0.3317 -0.0740
ODE: Consumer loans 0.0629 0.0424 0.0638 0.0070 0.1082
ODE: Real estate loans 0.4367 0.1801 0.4492 0.1141 0.6997
ODE: Comm. and ind. loans 0.1273 0.0590 0.1203 0.0463 0.2437
ODE: Securities 0.2834 0.1335 0.2723 0.1168 0.5561
ODE: Off-balance-sheet income 0.0897 0.0696 0.0715 0.0143 0.2299

0.943 − 0.964 level, mean desirable scale elasticity at the 0.899 − 1.021 level,
mean productivity growth at the 0.011−0.018 level, mean technical change at
the 0.011−0.018 level, and zero mean efficiency change. The technical efficiency
results that we present are also in line with those reported in Tsionas (2006),
where technical efficiency inferences are obtained for the case of a dynamic
stochastic frontier model applied to a panel of large US commercial banks us-
ing Gibbs sampling. The mean and median of technical efficiency reported are
0.955 and 0.990, respectively.

5 Concluding remarks

In this paper, we apply Bayesian methods to provide inference for the SRPF
and for technological metrics such as technical inefficiency that avoid possi-
ble endogeneity problems which may arise under classical econometric tech-
niques. We address these concerns by estimating the SRPF together with
additional equations derived from profit maximization. Despite the simplicity
of the functional form, the first-order conditions from profit maximization are
complicated and technical inefficiency enters in a non-trivial way throughout
the system. Relatively straightforward MCMC techniques have been shown to
work well in a substantive application to US banking.
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Fig. 3 Kernel density plots of model-averaged technological metrics
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