
The Case for Adaptive Security Interventions

Despite the availability of various methods and tools to facilitate secure coding, developers continue to write code that contains
common vulnerabilities. It is important to understand why technological advances do not sufficiently facilitate developers in writing
secure code. In order to widen our understanding of developers’ behaviour, we considered the complexity of the security decision space
of developers using theory from cognitive and social psychology. Our interdisciplinary study reported in this paper (1) draws on the
psychology literature to provide conceptual underpinnings for three categories of impediments to achieving security goals, (2) reports
on an in-depth meta-analysis of existing software security literature which identified a catalogue of factors that influence developers’
security decisions, and (3) characterises the landscape of existing security interventions that are available to the developer during
coding and identifies gaps. Collectively, these show that different forms of impediments to achieving security goals arise from different
contributing factors. Interventions will be more effective where they reflect psychological factors more sensitively and marry technical
sophistication, psychological frameworks, and usability. Our analysis suggests ‘adaptive security interventions’ as a solution that
responds to the changing security needs of individual developers and a present a proof-of-concept tool to substantiate our suggestion.

CCS Concepts: • Security and privacy→Human and societal aspects of security and privacy; • Software and its engineering;
• Human-centered computing→ Empirical studies in collaborative and social computing;

Additional Key Words and Phrases: Security Decisions, Developers, Security goals, Security interventions, cognitive psychology,
social psychology, Adaptive software engineering

ACM Reference Format:
. 2020. The Case for Adaptive Security Interventions. 1, 1 (June 2020), 56 pages.

1 INTRODUCTION

‘Secure coding’ is a coding practice that ensures that the software does not contain known vulnerabilities. With the
efforts of security and open-source communities, security practices and tools [76], security testing tools [64], security
checklists [119], and vulnerability databases [54] are available to developers to facilitate secure coding. However,
common code vulnerabilities continue to threaten the security of applications [54]. According to a 2018 Veracode report
on software security [4], 70% of applications reviewed were not OWASP (Open Web Application Security Project)
compliant, i.e. they did not address the most critical security concerns outlined in the security awareness document by
OWASP, which is readily available to the developer community.

Common vulnerabilities, such as injection attacks and cross-site scripting attacks, also continue to appear in the
Common Vulnerabilities and Exposures (CVE) list [54]. Thus, despite the efforts of the security community to provide
security knowledge to developers, many developers continue to write code that is not secure.

Researchers have conducted various studies in recent years of developers’ practices in producing secure software.
We observe a division in the types of such studies. The first type identifies developers as end-users of security tools,
and studies what makes it hard for developers to use them. Examples include studies on misuse of cryptographic

Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Anonymised for review

APIs by developers [60], insufficient advice given by the security tools to developers [69], and difficulties faced by
developers in understanding security APIs [78]. The second type of research study investigates how developers act to
improve security in software (security behaviour) and how they think and feel about security (attitudes). Examples of
this second type include studies on how developers talk about security in the software development life cycle [23],
how they use security tools in their workflow [149], how they socialize with other developers and adopt security
practices [183], how they perceive security in code [179], and how they communicate about security in social fora [100].
While the first type investigates usability issues with security tools, and the second type studies developers’ behaviour
and attitudes with respect to security, these are not sufficient to explain why developers continue to write code with
common vulnerabilities. The impact of cognitive processes is acknowledged within the literature at one level, for
example with a recognition that developers are subject to heuristics and biases when considering security [67][115].
The influence of social psychology literature is, however, under-explored. There is a need to widen this scope to explore
the lessons learnt in the cognitive and social sciences and to translate relevant insights to inform developer-centered
security research.

This interdisciplinary research explores the security decision space of developers, using theories from cognitive and
social psychology. We widen the scope beyond developers’ usability problems with security tools and their behaviour
toward security, and we build a case for identifying the particular needs of individual developers in order to help
them to meet security goals. Security goals prescribe the intention to protect the assets of a system against harm
– such as confidentiality, integrity, availability, and non-repudiation [71] . While ensuring complete protection of a
system’s assets against all kinds of attack may not be achievable, meeting security goals is often translated as avoiding
known bugs that can lead to specific security breaches [125]. In doing so, we identify and answer two research questions.

RQ1: How can cognitive and social psychology explain the impediments to developers’ efforts to meet security goals?

In answering this question, we look at two distinct areas of literature: the developer-centered security literature,
and the cognitive and social science literature. Developer-centered security (DCS) is a term recently coined in security
literature [124, 153]. DCS focuses on understanding how developers write secure code and facilitates the development of
tools and techniques for the production of secure code by the developers [153]. Psychologists have conducted in-depth
studies on the pursuit of goals by individuals [57], gaps between their knowledge and behaviour [59], and gaps between
their intention and behaviour [154]. We attempt to map this multi-dimensional psychological account onto existing
empirical work on security.

We first study some key psychological theories on why individuals do not meet their goals and identify key elements
that influence behaviour. The key psychological theories are used as a lens on the security literature, to seek explanations
for behavioural challenges, such as why developers do not achieve security goals, and why developers do not apply
their security knowledge.

This is followed by a review of developer-centered security literature. This identifies, from the reported empirical
studies, different factors that negatively influence developers’ security behavior. We distil a catalogue of factors that
negatively influence a developer’s security behaviour and attitudes, by combining the knowledge from our analysis
of developer-focused research studies and from the psychological explanations of human behaviour. This catalogue
is built on the mapping between key cognitive elements that hinder behavioural goals, and factors that influence a
developer’s security behaviour and attitudes.

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 3

RQ2: How can we design interventions to help developers reduce the obstacles in operationalising security goals?

To answer this question, we study the existing landscape of security interventions available to developers and analyse
the needs of developers (investigated in RQ1) that these interventions address. We reviewed authoritative resources
(detailed in Section 5.1) that reflect the ‘state of the art’ of security interventions. In the context of this work, ‘security
interventions’ refers to those actions and events, triggered either manually or autonomously, that occur during the
code development process in order to promote the developer’s security behaviour. Analysis shows that the design
of current security interventions tends not to take sufficient account of the social and individual context that shapes
developers’ development decisions – and hence the interventions tend not to address the different security needs of
different developers in different contexts. We suggest adaptive security interventions as a solution to address this gap.

This work highlights that, while the research community strives to provide better technical solutions to developers
to identify vulnerabilities in code in an efficient manner, more effort is needed to provide interventions that fit the
developer’s immediate context, both social and technical, informed by behavioral science theories.

The paper is organized as follows. Section 2 discusses security goals in light of the psychology literature and provides
underpinning concepts for characterising different categories of impediments to secure coding. Section 3 presents these
categories in detail, based on an in-depth analysis of the existing security literature on developers’ security behaviour.
Section 4 answers RQ1. Section 5 discusses the existing landscape of security interventions available to the developer
and highlights some ways in which these security interventions do not meet the security needs of developers. Section 6
answers RQ2 and builds the case for so-called adaptive security interventions by presenting a proof-of-concept tool.
Section 7 concludes the paper.

2 DEVELOPERS AND SECURITY GOALS

A developer can produce secure code by implementing security requirements and by avoiding, removing, or miti-
gating known vulnerabilities in the code. The security requirements of software may be explicit, i.e. part of system
specification [71], or implicit, i.e. embedded in developers’ heuristics or mindset [82].

Software security goals have been defined by Haley et al. [71] as the desire of stakeholders to protect assets of
the system from harm. Such harm can negate security properties - such as confidentiality, integrity, availability, and
non-repudiation. The security goals are then operationalised as security requirements, which, when implemented,
constrain the system’s behaviour.

From the psychology perspective, goals are defined as “mental representations of behaviours or behavioural outcomes
that are desirable or rewarding to engage in or to attain” (p. 470)[57]. Goals guide human actions and involve the
willingness of individuals to act toward setting and attaining goals [57]. Looking through the lens of psychology, the
desire to protect the system is a security goal, and the security requirements which operationalize security goals are
seen as means to achieving security goals. Thus, the Haley et al. definition above can be interpreted as a specific
instance of the more general psychological definition, as it identifies the mental representation (protection of assets -
expressed as requirements) of the developer’s behaviour (writing code using security requirements) and behavioural
outcomes (code that preserves confidentiality, integrity, availability of assets, and not-repudiation) that are associated
with positive affect (e.g., satisfaction or reward associated with the protection of assets).

Jones and Rastogi [82] argue that developers often fail to recognise or internalise security goals. In the Haley et
al. definition, security goals belong to the software owner and are given as explicit security requirements (e.g., to
penetration testers in the case study of Poller et al. [126]). When goals are operationalised as requirements, they are

Manuscript submitted to ACM

4 Anonymised for review

assigned as responsibilities to different agents such as humans, devices, and software [167]. However, Jones and Rastogi
argue that, even if security goals are not assigned to the developer in the form of requirements, security goals should be
a standard part of the developer’s mindset and practice: “the basic tenets of coding secure applications ... should always
be in the minds of the developers and should be reflected in the code that they write” ([82], p. 36).

Regardless of where the security goals originate, whether through operationalisation as a requirement [71] or as
part of the developer’s heuristics or mindset [82], ultimately, the developer must act to achieve them in the code. Goals
are achieved by performing tasks, that is, sequences of actions that are executed by actors [98]. It is the transformation
of the security goal into a personal goal that can be met through action [65] ‘at the desk’ that results in goal attainment.
Whenever a developer ignores a particular vulnerability, refuses to handle it, or is not able to secure the code against
it, the developer is unsuccessful in achieving the security goal (i.e. in protecting the system from harm). Similarly, if
the transformation of the goals into actions is not obvious, or is obstructed by other things, then the goals may not
be achieved. For example, a developer’s failure to handle an SQL injection vulnerability might not be a simple failure
to take action (i.e. might not be that the developer did not prioritise the security goal and so did not act), but may
instead be associated with the difficulty of identifying and taking appropriate action (e.g., the vulnerability is more
complicated than the developer realises, the developer may not have the necessary resources, the developer may have
outdated information – for example, algorithms change continually, and the developer may not be familiar with the
latest algorithms). Thus, ‘at the desk’, the security goals become behavioural goals of the developer who must take
required actions to satisfy the security goal. In this work, we focus on studying the reasons why developers do not
meet security goals with the assumption that developers have internalised these security goals, i.e. they have become
their own goals, regardless of their origin.

Van Lamsweerde and Letier [167] discuss obstacles (in the context of specifying and elaborating requirements) as
conditions that prevent the achievement of functional goals; van Lamsweerde [166] later extends this to the discovery
of obstacles to application-specific security requirements. Although van Lamsweerde and colleagues’ focus is on the
discovery of obstacles to the required function of the system to be developed, by analogy, in software development ‘at
the desk’, there are obstacles to developers’ actions in pursuit of security goals. Hence, we shall call these impediments,
to acknowledge that van Lamsweerde and Letier are referring to technical obstacles in software systems to be developed,
and we are referring to cognitive and social obstacles for the developer in the development of software.

Van Lanweerde and Letier argue that, when we expect stakeholders (human or software agent) to satisfy a goal,
without taking into consideration the obstacles that obstruct the required action, we over-idealize the goal. This
over-idealization results in unrealistic (and hence unsatisfied) requirements. Poller et al. [127] carried a longitudinal
study with developers in an organization to study how security fits into their routine. They observed that despite the
security audits and security workshops delivered to the developers, developers tend to focus on daily tasks that take
most of their attention. Although managers considered security as an implicit part of their working pattern, developers
did not get time to work on it in detail. A Hewlett Packard white paper on studying security behaviour in the software
engineering community [61] also highlights this point. In this whitepaper, authors provide an authoritative argument
to encourage organizations into engaging employees in security behaviour. It stresses that asking employees for too
much attention and effort will reduce the impact of organisational efforts to communicate the importance of security,
and developers will ‘tune out’ and focus on their primary work.

The focus of this paper is to understand the impediments to developers meeting security goals in their personal,
social, and technical context (and hence to consider what interventions might be introduced to help). The next section

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 5

draws on literature from psychology (particularly the literature on why people fail to meet their goals) in order to
characterise impediments to achieving security goals in a useful way.

2.1 Why do individuals not meet their goals? A psychological perspective

Despite knowledge of code vulnerabilities and how to avoid them, developers often write code with common vulnerabil-
ities. For example, Oliveria et al. [115] showed that 53% of participants could not correlate their knowledge of relevant
code vulnerabilities to their task-in-hand. Xiao et al. [183] also showed that many developers did not use security tools,
despite realizing the importance of security in code. Studies by Naiakshina et al. reinforce the view that professional and
student developers won’t do security unless they are told to [107]. Tahaei and Vainiea reviewed the developer-centred
security literature and observed that existing developer-centred research does not fully examine the issue of security as
a “secondary” requirement [153].

Secure code development requires cognitive effort [115], and under constraints of time and resources developers
struggle to keep security at the top of their priority list. Security is a secondary, rather than a primary, task for most
workers [123]. Secure behaviour is an investment that protects organisations and individual from harm, but is not
necessary to complete most production tasks. Because of this, it is important that security ‘fits’ within the workday [87],
or it will be set aside [127]. In the context of software engineering, other concerns in the developer’s environment, such
as poor fit to the developer’s job, other competing goals, or overload may conflict with security goals and override an
organisational culture that prioritises secure behaviour [61].

These findings are consistent with the findings of psychologists: that awareness and knowledge alone do not suffice
to trigger behaviour [57]. Both cognitive and social psychologists have considered discrepancies between an individual’s
knowledge and behaviour using different theories and in different application areas, and so we sought insight from that
literature about factors that may influence secure coding behaviour.

This review was shaped by: 1) our motivation to study how individual developers code ‘at the desk’; 2) emergence of
developers as a community that values social interactions [129]; and 3) our familiarity with literature on developer-
centered security, which includes both studies of developers’ security behaviour with cognitive tasks [116] and studies to
investigate social influences on developers’ security choices [183]. Hence, we wanted to be informed by both individual
and social perspectives on factors that influence behaviour. Acknowledging that the field of psychology is mature and
rich in theories, we were guided by the psychologists in the team in our selection of literature with a focus on the gap
between goals and actions, in order to better understand inaction. Three key concepts emerged from our reading as key
elements that influence behaviour: knowledge, attention and intention. These are discussed in turn.

2.1.1 Knowledge. Cognitive psychologists work on the assumption that a person’s existing knowledge and mental
skills influence how the person perceives things [21]. Siergist and Cvetkovich [143] observed that when the individuals
have personal knowledge, social trust does not significantly influence their judgements and risk perceptions. On the
other hand, when individuals lack personal knowledge, they rely on social trust and managing authorities in perceiving
risks of potential hazards. Similarly we see that people who consider themselves to have required skills to protect
themselves on the Internet exhibit safer cyber-security behaviours [33].

However, research suggests that despite knowledge of a task, individuals may not exhibit desired behaviour. Duncan et
al. [59] suggests that activation of a goal can be hindered by the novelty of the required behaviour, lack of environmental
cues, and multiple concurrent requirements. They define this as goal neglect behavior: “disregard of a task requirement
even though it has been understood and remembered” (p.265, [59]). The work of Kollmuss and Agyeman [90] and of

Manuscript submitted to ACM

6 Anonymised for review

Kennedy et al. [86] highlights the gap between people’s knowledge and behaviour in different domains. Kollmuss and
Agyeman [90] investigated the barriers to pro-environmental behaviours in order to understand the gap between people’s
behaviour and knowledge. Based on the analysis of some of the most influential frameworks for pro-environmental
behaviour, they present a model for pro-environmental behaviour identifying internal, external, and demographic
factors. Internal factors include motivation, knowledge, values, awareness, attitudes, and responsibilities. External
factors include social and cultural factors, and institutional and economic infrastructure. Demographic factors include
gender and years of education. Kennedy et al. [86] studied the knowledge-behaviour gap among clinicians, based on
a qualitative study of the gap between what individual clinicians know, and how they behave. While they observed
that the level of certainty and a sense of urgency promoted action, they also observed that clinicians used similar
rationalizations to justify opposite behaviours. They also point out that the removal of barriers to actions may not
always produce expected results, and may produce different results in different contexts. Therefore, it is essential
to understand the impact of different factors in different contexts. These works highlight that the gap between an
individual’s knowledge and actions often exists, and that the interplay of different factors may result in such a gap.

2.1.2 Attention. The limited capacity of the mind to process information is an accepted assumption in cognitive
psychology [21]. While knowledge (related to the task-in-hand) plays a key role in goal attainment, mistakes and
inaccuracies can arise from temporary lapses of attention [121]. Attention is “the extent to which incoming information
is processed” ([57], (p. 469) and is “a state in which cognitive resources are focused on certain aspects of the environment
rather than on others”1. However, “attention is not a unitary concept” [120]. Although James [79] claimed that “everyone
knows what attention is”, the modern reality is far less simple but also considerably more exciting. Scientific theory
and data overlap only partially with everyday usage of the term, but we now have a hugely sophisticated and detailed
set of laboratory data and models on which to draw, as well as applications of theories across a range of real-world
environments. The ‘commonsense’ understanding of attention is amplified by concepts of selective attention and divided
attention. Selective attention ranges from, on one hand, processing particular sources of input at the deliberate expense
of others (e.g., thinking about one stream of events without distraction from others [168]), and, on the other hand, failing
to notice salient events or stimuli in plain sight, illustrated by the phenomenon of inattention blindness [145]). Divided
attention refers to multitasking, i.e. attending to multiple stimuli simultaneously [145]. Attention modulates human
behavior toward goal attainment [57]. Building on a literature review in social psychology, cognitive psychology, and
neuroscience, Dijksterhuis and Aarts ([57] suggest that an individual’s attention is a strong influence on goal attainment,
and that consciouness, i.e. “the ability to be aware of things" ([57], p. 468), is not. Norman also suggests need for attention
at “critical action points” in order to avoid errors [114]. These ’critical action points’ are particularly important when
people are confronted with novel problems that require conscious attention [114]. Attention and working memory are
“closely interwined” ([26], p.201) and both the processes are important to access relevant information required for a
given task [26].

2.1.3 Intention. Another strand of work in psychology looks at the significance of intention in producing the desired
behaviour [70]. Intention defines how hard an individual is willing to try and amount of effort an individual is willing to
exert to perform a behaviour [14]. Ajzen’s [14] theory of planned behaviour suggests that intention is a strong influence
to behave in a specific way and has been widely adopted in research [13]. Ajzen’s theory is still relevant after decades
and is being extended and used in different behaviour domains [38]. The role of intention is also being actively explored

1https://dictionary.apa.org/attention

Manuscript submitted to ACM

https://dictionary.apa.org/attention

The Case for Adaptive Security Interventions 7

in secure code development reported in the next sub-section. Research also suggests that an intention-behaviour gap
may exist. Tanner [154] notes that several factors constrain the behaviour of individuals even if they have the intention
to act. Tanner identifies two classes of constraints that inhibit the actions of individuals: subjective factors and objective
factors. Subjective factors, such as sense of responsibility and perceived behavioural barriers, define the individual’s
preference among alternative options. Objective factors, such as income level and place of residence, prevent the
performance of particular behaviour alternatives. Blake [36] emphasizes the importance of identifying the constraints
that limit an individual’s desired behaviour. He identifies three obstacles to actions: individuality, responsibility, and
practicality. Individuality includes barriers that are related to an individual’s attitude and personality; responsibility
refers to factors that limit individuals’ understanding of how their actions may influence others and individuals’ taking
responsibility for an action; and practicality refers to social and institutional constraints that prevent people’s action –
in contrast to the previous two that affect people’s intention to act.

2.1.4 The impact of social processes on goals. It has long been recognised that software development is a collective
and coordinated process (e.g., [52]). This means that, in addition to influence of cognitive psychological factors, the
goal orientation of individuals can also be shaped by social processes. How developers acquire knowledge, what
they pay attention to, and how they intend to act, are all subject to social psychological dynamics. The literature on
these social processes is extensive and too large to be comprehensively reviewed in this paper. We focus therefore
on a brief review of three key social psychological dimensions that shape developer orientations toward security practice.

Social Influence: Because developers, and the code they produce, are embedded in a complex set of social relations, they
are constantly exposed to the potential influence of others. This becomes particularly important under conditions of
uncertainty, when we all become more likely to look to others for guidance on how to make sense of the situation we
are in. This is what Cialdini [46] calls ‘social proof’. The influence of others has a number of important dimensions. The
first is informational influence, in which information seeking is often shaped by interpersonal ties. However, Turner
and colleagues [161] have extended the analysis of informational influence beyond interpersonal relations to exploring
the role of group memberships using the concept of referent informational influence (RII) . These influence concepts
are useful for analysing the impact of repositories like Stack Overflow on the behaviour of individual developers. In
addition, we need to be able to consider the impact of social norms on developer behaviour. Normative influence is
usually understood as referring to the unwritten rules that govern behaviour for a group, society or culture. Social
norms tend to work in an implicit manner, where individuals’ perceptions of normative behaviours are used to guide
behavioural patterns and intentions. Social norms are particularly useful when thinking about promoting a greater
emphasis on security in coding practice as they have been used extensively in behaviour change work in other fields –
for example in health behaviour [131], environmental behaviour [113] and violence [111] . One of the key discoveries
in this area has been the importance of the distinction between descriptive norms and injunctive norms ([47]; [147]).
This is the difference between what we think people should do and what people actually do. In other words, injunctive
norms reflect perceptions of what we think most others approve or disapprove of. We should be motivated to behave in
ways that are normatively approved, and avoid behaviours that are socially sanctioned. Descriptive norms reflect the
perception of whether other people actually perform the behaviour – irrespective of whether it conforms to the ideal.
This is the idea that ‘If everybody else is doing it, (or in the case of security behaviours, perhaps not doing it) then it
must be a good/sensible thing to do’. Evidence shows that the predictive utility of norms as determinants of behaviour
can be improved by taking into account the distinction between the descriptive and injunctive norms [48].

Manuscript submitted to ACM

8 Anonymised for review

Social Identities: A second way in which group processes shape security orientation is through the impact they
have on how developers see themselves and act in the world. There is an extensive body of literature on the ways in
which psychological identities shape behaviour, and how those identities are shaped by the social processes in which
we are embedded. For example, the Social Identity Approach (SIA) [130] argues that, rather than having a single, fixed,
identity, the way in which we see ourselves can be different at different times, with consequences for the way we
behave. SIA suggests that individuals who develop code can sometimes define themselves in terms of a personal identity
(an idiosyncratic or individually distinctive identity) and sometimes define themselves in terms of a membership of
a social group (as a software engineer for example). In fact, each individual has multiple social identities (including
gender, national, cultural, political, religious, family, age, regional identities etc) which can become salient to them at
different times.

There is now an extensive body of research that shows how social identity dynamics can affect decision making
and behaviour in organisations [74], in health [80], in politics [163] , in sustainability [39] and so on. This suggests
that, when it comes to software development, the same individual can think about themselves in different ways at
different times (during the code development process) and this is likely to affect the norms and the values that they
draw on when setting or enacting (security related) goals [8]. Understanding the dynamics of social identification in
the collective and coordinated process of software development is therefore a key challenge for those interested in
understanding why developers might not meet their goals.

Social Context: A third way in which social psychology can illuminate the study of secure code production is through
its analysis of the role of social context. The importance of recognising the interaction between cognition and social
context is well established [146]. However, social psychological research offers several important insights about how
social context might impact on the goal orientations of developers. As we have already seen in our discussion of the
role of social identities, social context is key to understanding which identities might be salient, and also why identities
might change. As we move from physical location to physical location, so identities might change – and as the social
composition of the people that we interact with changes, so identification may change also [162]. This dynamic model
of identity change – based on changes in the immediate social context – helps to explain why the same individual
might exhibit changes in their goal orientation over a very short time frame.

In addition, there are more general insights into the impact of social context on behaviour that are helpful. For
example, Pettigrew shows how context can impact on behaviour at three different levels: micro, meso and macro [122].
The micro level refers to the impact of individual-level factors such as personality. The meso level allows for the impact
of face-to-face or situational factors. The macro level explores how thinking and behaviour is shaped by structural or
cultural factors. Taken together, this approach orients us to the importance of conducting multi-level analyses on our
examination of goal-orientated thinking and behaviour.

2.1.5 Cognitive and social psychology insights: The field of psychology related to individuals’ behaviour is vast and has
applications in different domains. A comprehensive study of the many perspectives exceeds the scope of our work.
With direction from our psychologist co-authors, we collect key insights from the cognitive and social psychology
literature on factors that impede individuals from meeting their goals, and observe that the gaps between an individual’s
goals and actions are a common concern in different domains and not a novelty in developer-centered security (DCS).
We postulate that lessons learned from relevant research in other disciplines can be applied to DCS. Thus, we have
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 9

discussed here only a few of the key studies, enough to distil a framework to help us understand why developers do not
meet security goals. Our review of psychology literature above identifies three key elements – knowledge, attention,
and intention – which play a role in goal-attainment, but are not sufficient per se to ensure that individuals meet desired
goals. These literature studies stress explicitly the need to identify reasons for inactions instead of actions. This is the
focus adopted in this paper: to investigate factors that impede the security behaviour of developers. Based on these
three key psychological elements, the next section outlines categories of (security) goal impediments.

2.2 Categories of Security Goal Impediments

This section discusses knowledge, attention, and intention more specifically in the context of secure code development
– showing how they provide insight both into what contributes to the achievement of secure coding goals, and into
characterising and understanding impediments to secure coding.

2.2.1 Knowledge and Knowledge Deficit. Knowledge is an important determinant to completing a task correctly and
influences the individual’s behaviour positively toward a desired goal [177]. Security knowledge – the information,
understanding, and skills required to achieve a security goal – lead to security awareness. Security knowledge can be
acquired from various sources via various means, including education and practice. Security-aware organizations often
provide training for software developers, testers, and architects to increase their security knowledge [95, 103]. Software
security concepts and practices are taught to students in a variety of ways, for example: integrating secure coding
practices into the curriculum [155], security clinics [34], security tools for education [175], and specialized security lab
set-ups [58].

The absence of, or insufficient, security knowledge can result in code with known vulnerabilities. We refer to this
as Knowledge Deficit. Developers may not meet their security goals if they are using insecure information sources
for help [10], have insufficient security knowledge [109], or are not sufficiently experienced with security tools [27].
If a developer does not have the right security knowledge, then even with security intention, attention, and action,
security goals are not met. In such a case, either the developer does not write secure code because (a) the developer
does not have the right knowledge to detect, identify, or mitigate the vulnerability, or (b) the developer uses incorrect
or inappropriate security knowledge.

2.2.2 Attention and Attention Deficit. The previous sub-section discussed that attention has a strong influence on goal
attainment. Although “attention” has manifold implications depending on the context [120], for our current purposes,
attention refers to how developers actively focus on and process specific information while coding.

Programming requires a high level of concentration [18]. Realizing the significance of developers’ attention on the
quality of developers’ work, recently different mechanisms have been used to track the variation in developer’s attention
during programming. For example, EEG devices [18] are being used to track developers’ concentration, keystroke
dynamics are studied to detect stress among developers [89], and pupillography is used to collect information about
developers’ cognitive and emotional state [51]. Pair programming is also considered as an effective practice to eliminate
distractions during programming and keep programmers focused on the programming task [144].

Lapses of attention caused by interruptions are detrimental to desired behaviour [177]. We refer to lapses of attention
as Attention Deficit. Evidence from the literature shows that individuals are more likely to exhibit insecure cyber-
behaviour involving phishing emails, exposing sensitive information, or downloading vulnerable applications when
they are multitasking. Williams et al. [177] interviewed university employees who dealt with sensitive information to
investigate what kind of computer-based tasks were perceived to be more disruptive. Their work suggests that, although

Manuscript submitted to ACM

10 Anonymised for review

multitasking is considered to be part of the job, interruptions like email, phone-calls, and face-to-face interruptions
influenced their performance negatively.

In the context of secure coding, attention deficits occur when the developer has the intention to code securely but
does not maintain focus on security in code as the coding task progresses. Developers must maintain their focus on
secure coding, and relevant security knowledge must be part of their working memory, in order to achieve security
goals. These may be longer term psychological objectives, but they must be represented and applied in-the-moment
when decision forks with security ramifications are encountered in software. Developers process a large amount
of information while coding; of all the information that the developer receives, only a limited amount is retained
in working memory (which also draws on long-term declarative knowledge). Hence, some information ‘falls by the
wayside’. Limitations in the capacity of human working memory can lead to poor decision making [84]. Such poor
decision making can exhibit itself when multitasking (divided attention), e.g., implementing logic of adding a new
product by the user simultaneously – not just contiguously – with writing injection-safe queries. In such a case, when
striving to add functionality and security at the same time, the developer must maintain a focus on secure coding, and
relevant security knowledge must be part of the developer’s working memory, in order to achieve security goals.

At another time, instead of working on two tasks at the same time, a developer may defer one task, releasing pressure
on the working memory – but may later forget to recall it. This is consistent with work from psychology that suggests
that compromise of an individual’s attention, due either to unexpected interruptions or switching between tasks, results
in either a time-cost to activate the primary task or in forgetting of the task [97]. A developer’s mind may ‘wander’
between the security goal and some other code goal, or some non-coding thought (divided attention). For example,
to facilitate testing, developers may add information temporarily to the user interface; this may introduce security
vulnerabilities if these changes are forgotten and not removed [85].

A developer may also experience attention deficit with respect to security goals if other objectives ‘muscle their way
in’ to decision making (selective attention). For example, a developer may push security down the priority list – despite
having sufficient security knowledge – if there are functional features to implement, and the deadline is near [183].
Developers continuously process and represent information which is a crucial activity [75], and as such attention plays
an essential role in keeping relevant information at the forefront of thinking, and hence reaching cognitive goals [28].

2.2.3 Intention and Intention Deficit. Intention indicates “people’s self-instructions to achieve desired outcomes”
(p.1)[142] and “perform particular actions to attaining these outcomes” (p.1)[142]. Woon and Kankanhalli [182] use
a theory of reasoned action [70] and a theory of planned behaviour [14] to investigate the factors that influence the
intention of professionals to develop secure applications. Their findings confirm that subjective norms and attitudes
have a significant impact on the intention to develop secure applications. In recent work, Sallinen [136] uses a protection
motivation theory (PMT) to instigate secure programming intention among developers, with positive results. Natural
language processing techniques are also being used to understand and classifying developers’ intentions by inspecting
source code – distinguishing between benign and malicious source code [43].

While intention to code securely is a strong influence on developers’ security behaviour, many factors may weaken
the intention to practice secure coding. We refer to this as Intention Deficit. Intention deficit occurs when the developer
is not steadfast in the intention to write secure code or make an extra effort to avoid vulnerabilities. There can be many
reasons why a developer’s intention to code securely is weakened, other than a ‘not-my-responsibility’ or ‘do-not-care’
attitude. Developers are often constrained by limitations in available resources, e.g., time and budget. When product
owners do not consider security an important product feature [126], or customers do not understand its significance [92],
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 11

developers often choose not to code securely. Secure coding practices require extra effort from developers on various
fronts, for example, extra time to run security tools to detect/mitigate vulnerabilities in code [157] or extra effort to
convince the client to pay for implementing security [126]. Developers may make a pragmatic decision to defer secure
coding, with the intention of addressing security during refactoring; but then other factors may prevent refactoring, and
hence the deferred secure coding is not undertaken. Intention deficit can result in technical debt. In (security) intention
deficit, the security knowledge of the developer is not the key, as both developers who know how to code securely, and
those who do not, choose not to code securely.

Knowledge Attention Intention Action Security Outcome
Knowledge Deficit ✗ ✓ ✓ ✓? ✗

Attention Deficit ✓? ✗ ✓ ✗ ✗

Intention Deficit ✓? ✗ ✗ ✗ ✗

Table 1. Conceptual underpinning of impediments to security goal categories: This table illustrates how different configu-
rations of cognitive elements (on the horizontal axis - knowledge, attention, intention) distinguish categories of impediments to
achieving security goals (on the vertical axis - knowledge deficit, attention deficit, intention deficit). Key: ✓? = somewhat / sometimes
present, ✓= present, ✗= absent/not sufficient

Table 1 presents the conceptual underpinning of the categories of impediments to security goals that are discussed
above. While the security goal is an abstract concept and not directly measurable, security outcome is more specific and
measurable, i.e. secure code that does not contain known vulnerabilities. Table 1 shows that a deficit of knowledge,
attention, or intention will often result in insecure outcome. Developers perform security actions when they write
secure code to avoid, detect, or mitigate a known vulnerability. These actions determine whether or not they meet
security goals. The knowledge deficit row shows that if (security) knowledge is absent or insufficient (i.e., ✗), then even
with intention and attention to code securely (i.e., ✓), developers may either not take security actions or if they do the
actions might be faulty (i.e., ✓?), thus leading to an insecure outcome (i.e., ✗). The intention deficit row shows that even
if security knowledge may be somewhat present (i.e., ✓?), the attention to security will not be present (i.e., ✗) if the
intention to code securely is not present (i.e., ✗). Consequently, the developer does not perform security actions (i.e., ✗)
resulting in an insecure outcome (i.e., ✗). The last row, attention deficit, suggests that although security knowledge
may be somewhat present (i.e., ✓?), and the developer may intend to code securely (i.e., ✓), lapses of attention will
prevent developer from taking security actions, leading to an insecure outcome (i.e., ✗). Thus, whenever any of these
cognitive elements is absent or is not sufficient, the necessary actions will not be performed, and the resulting code will
be insecure.

This section has discussed the relevance of these cognitive elements in the context of developer-centered security. The
discussion so far has focused on what impedes developers from taking appropriate actions despite security awareness,
and hence writing code with common vulnerabilities. The next section applies this taxonomy in a literature review of
published research on the security behaviour of developers.

3 FACTORS THAT INFLUENCE DEVELOPERS’ SECURITY DECISIONS

One of our research aims was to map between the psychology literature on impediments to behavioural goals, and the
software engineering literature on security behaviour of developers. This section describes and presents the results of
an in-depth analysis of research on key elements that influence the security decisions of developers – we refer to these

Manuscript submitted to ACM

12 Anonymised for review

key elements ‘factors’. The analysis produced a detailed catalogue of such factors (Appendix B: Tables 6-8) which is
presented succinctly in Tables 2 and 3.

We studied the existing literature covering empirical studies of developers’ security behaviours, in order to conduct
an overarching analysis of the ‘state-of-art’ in this domain. The review was conducted using the guidelines suggested by
Kitchenham et al. [88] to cover the relevant literature rigorously. Forward and backward snowballing approaches [180]
were used to cover, as comprehensively as possible, the studies conducted in this domain in the last ten years, i.e. 2009 to
2019. We consider this time interval reasonable, because research in this area is relatively recent. A narrative synthesis
was conducted to answer our research question from primary studies [88]. Narrative synthesis was used due to the
heterogeneity of different empirical methods used in the studies, their data analysis approaches, and variation in target
audience [37]. Additionally, since we were interested primarily in identifying different factors that influence developers’
security behaviour – and not in ranking them – we do not report on the quality assessment of individual articles. These
limitations of the review are discussed in section 3.2.

3.1 Methodology to gather primary studies

A research question that drives this research is:What factors influence the security behaviour of developers?

In order to find relevant studies that can help us answer this research question, the following inclusion and exclusion
criteria were defined.
Inclusion and exclusion criteria:

The inclusion criteria for primary studies are:

• papers published in last 10 years, i.e. 2009 to 2019
• papers that studied developers with respect to secure coding behaviour

The exclusion criteria include:

• papers not written in English
• papers that were previous work of a more recent and mature work by the same authors. For example, [150] was
not selected in favour of [149], the more recent and mature work of the same authors.

• non-peer-reviewed papers, books, dissertations, and position papers
• papers that studied problems that security practitioners face in development teams and not the problems that
developers face when developing software applications, e.g., [72, 174]

• papers that studied the effect of a particular security intervention on developers’ behaviour, e.g., the work of
Nguyen et al. [112] and Gorski et al. [69]. Such works are discussed under security interventions in subsequent
sections of this paper.

Search String and Database
We first identified major keywords: developers, code, and security. We then identified alternative words for them as

synonyms, and finally combined them using Boolean operators. The final search string was:
{((developer OR programmer) AND (secur*

OR vulnerabilit*) AND/OR

(cod* OR program* OR tool))

< in abstract, keywords, and title > }

The selected search repositories are: IEEE Xplore, ACM Digital Library, SpringerLink (SL), and ScienceDirect (SD),
as they cover almost all important workshops, conferences, and journal papers that are published. Table 2 shows the
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 13

IEEE
Xplore

ACM DL SpringerLink ScienceDirect InternetSociety Total

Search Results 413 2193 5,875 1,717 - 9320
After Reviewing titles/ key-
words

20 300 40 30 - 390

After Manual Search 10 18 23 10 - 61
Snowballing 14 20 23 12 2 69
After reading abstracts and
removing duplicates

12 16 10 5 2 43

Final Papers: 9 15 3 0 2 29
after skimming/ reviewing

Table 2. Summary of the selection process

results generated by the search string in different databases. IEEE Xplore and ACM Digital library search is conducted
on all metadata. The search results of Springer Link are refined for the following categories: English, Computer Science,
Software Engineering, Articles - resulting in 4,997 papers. The search results of ScienceDirect are refined for Computer
Science, focusing on the following publication titles: Procedia Computer Science, Information and Software Technology,

Journal of Systems and Software, Future Generation Computer Systems, Computers & Security, Computers in Human

behaviour – resulting in 1,717 publications. All the available publication titles that could encompass research related to
developer-centered security were selected.

The search results were filtered to find relevance to the inclusion and exclusion criteria by reviewing their titles
and keywords. The first author read the abstracts of the shortlisted articles to select candidate studies. These studies
were read in full, and using forward and backward snowballing [180] a few more articles were identified; i.e. we looked
into the references of the articles that looked relevant (forward snowballing) and also looked at the papers that cited
the selected studies (backward snowballing). We shortlisted 10 new studies of which 2 were published by the Internet
Society2, which was not previously in the list of publishers. The resulting studies were further shortlisted by reading
their abstracts and removing duplicates. The results of each step are listed in Table 2.

We also used Google Scholar, because it indexes a collection of databases [181]. However, as the Google Scholar
search was run post-hoc, it produced studies already picked up from different databases and snowballing.

For the last step, another author of the study reviewed the selection of the articles by the first author for inclusion
after skimming. There were no conflicts of opinions on the studies included in the review.

Results
The final corpus comprises 29 research papers (Appendix A, Table 4). Although we did not specifically look for

studies in this area before 2009, our forward and backward snowballing did not yield any relevant work (i.e. empirical
studies of factors that influence the security behaviour of developers) in this area before 2009. We consider it essential
to provide an analysis of the existing body of knowledge at this point, in order to harness the momentum of this decade
of research and provide a better focus for future efforts to facilitate developers in writing secure code.

All 29 studies involved some empirical evidence, i.e. their findings were based either on direct observation of
developers or the online resources they use, or on analysis of data available in online repositories such as Stack Overflow

2https://www.internetsociety.org/

Manuscript submitted to ACM

14 Anonymised for review

and app stores. Chen et al. [45], Fischer et al. [63], Egele et al. [60], and Yang et al. [187] studied online evidence of
developers’ interaction on online fora, and/or analysed software in online repositories for vulnerabilities. Acar et
al. [12] studied online advice resources that developers typically use. The rest of the studies collected data directly from
developers, using surveys, interviews, user studies, and controlled experiments.

The analysis was conducted using both inductive and deductive analysis [156]. Inductive methods were used to
compile and collate the factors identified by different research studies. We gathered a raw list of 101 factors identified by
the authors of the 29 studies. After consolidating the factors by the same author that had similar meanings, we reduced
the list to 82 factors. After combining factors implying the same meaning by different authors and from different articles,
we had a final list of 28 factors. Each of the consolidation steps had an element of independent coding, with each of
two researchers reviewing the factors and looking for overlaps; then the two independently-produced groupings were
compared, and any discrepancies (of which there were few) were resolved through discussion.

We then employed deductive analysis in two stages to categorize the factors:
Categories of Security Goal Impediments: First, each of the 28 factors was categorized into at least one of the three

categories of security goal impediments: knowledge deficit (KD), attention deficit (AD), or intention deficit (ID). Tables
2 and 3 list these 28 factors and also show to which of the categories of security goal impediments they belong. We
considered the implications of factors based on how the author(s) of the respective study discussed it or its meanings.
(N.B. This categorisation, and dichotomising the world into extreme states (goal failure, and goal achievement) is a
simplification, for the purpose of mapping out the relevant problem space.)

Internal/external: Second, we distinguished between internal and external factors within each category, inspired
by the work of Kollmuss and Agyeman [90] (discussed in Section 2.1). This approach takes a high-level perspective,
and identifies whether the factors arise primarily from the developer’s internal world, or from the outside world.
Drawing on Kollmuss and Agyeman, we define internal factors as those that stem from an individual’s knowledge
base, personality traits, beliefs and attitudes, value systems and habits. External factors are those that surface in the
environment with which a developer interacts. These may stem from social, technical, economic, institutional, and/or
cultural infrastructure surrounding the developer.

Table 2 lists all the internal factors and Table 3 lists all the external factors.
Our understanding is that the factors influencing the decision space of developers is quite complex, and providing a

high level view with this categorisation illuminates this decision space. As pointed out by Kollmuss and Agyeman,
making a distinction between internal and external factors is “to some extent arbitrary” (p. 248), because different
factors influencing human behaviour are broadly defined, do not have clear boundaries, and can be interrelated. Thus, we
see that some of the factors in Tables 2 and 3 appear in more than one category (i.e. I13, E5, E6 and E11) and are shown
as such in the tables. Consider, for example, the loss of focus on security (I13 in Table 2); this was categorized as primarily
an internal factor, because the developer drifts from an intended focus on security because of other things demanding
attention or taking priority in the moment. For example, the developer may lose focus on secure coding while ‘in a
flow’ to achieve functional correctness. However, the loss of focus may also be influenced by other factors, such as
limited time and budget, i.e. limited resources [23] (E6 in Table 3). These implicit connections between internal and
external factors may blur the distinction between internal and external factors when we reason closely about them. Our
purpose is not to provide an exact categorisation of individual instances, but rather to draw out the different factors,
and to draw attention to both internal and external influences, so that they can be addressed collectively. This can help
researchers and tool designers to address the challenges faced by the developers.

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 15

The detailed categorisation, giving the instances for each factor, is in Appendix B, in Tables 6-8. Tables 6, 7, and 8
list internal and external factors of knowledge deficit, attention deficit, and intention deficit, respectively, with their
instances found in the existing security literature.

To illustrate the categorisation, we consider the following three factors, each associated with a different security
goal impediment.

Outdated information is first categorised under knowledge deficit, as it occurs because the developer’s knowledge is
not current and is hence incomplete (e.g., developers using methods that are outdated [109]). Second, this is identified
as an internal factor, because the impediment arises from limitations of the developer’s own knowledge base [149].

Inability to recognize security blind spots in task is first categorized under attention deficit, because security blind spots
may occur due to an oversight by the developer (i.e. lack of attention on corner cases [115]). Second, this is identified as
an internal factor, because it occurs when a developer is not able to recognize a security vulnerability in code (e.g., a
developer’s inability to correlate the learned vulnerability to the working task [116]).

Lack of prioritization of security features by stakeholders is first categorized under intention deficit, as it influences
the developer’s intention to code securely, because the effort is not valued by the stakeholders [126]. Second, this is
identified as an external factor because it is caused by external stakeholders.

Some factors may influence more than one of the cognitive elements that characterise our taxonomy of security goal
impediments. For example, the absence of explicit expectations of secure coding (E5) results in insecure code, as it does not
direct developer’s attention to secure coding, i.e. attention deficit. On the other hand, the absence of explicit expectations
of secure coding may cause the developer to think that secure coding is not required in the given work, leading to
intention deficit. In the former example, security thinking is not part of the developer’s heuristics until reminded [115];
in the latter, developers expect security as an explicit requirement [108]. Similarly, limited resources (E6) appears under
both attention deficit and intention deficit. In the former, overload combined with limited resources leads to loss of
attention; in the latter, limited resources influence a decision not to prioritise security. We discuss the outcome of the
categorisation in detail below.

3.2 Limitations of the review

This review was intended to mine existing empirical research for factors that influence developers’ security behaviour.
The literature was gathered and analysed systematically. One potential limitation is the completeness of the collected
literature; however, based on the systematic approach taken, we consider the literature representative, if not com-
prehensive. The analysis provides a well-grounded basis for further work that may extend or refine the collection of
factors.

We drew evidence from studies that varied in methods and participants, and we compiled and interpreted that
evidence in a way that exceeded the scope of the primary studies:

Different study designs: Some studies only report evidence collected directly from developers using empirical methods
such as observations, interviews, surveys, user studies, and experiments (e.g., Naiakshina et al. reported an online study
with freelance developers [108]). Some reported analyses of online resources in combination with interviews or surveys
with developers (e.g., Nadi et al. analysed stack overflow posts and Github projects along with survey results from
developers [106]). And some studies analysed only online repositories for evidence of how developers work (e.g., Chen
et al. [45] analysed security-related Stack Overflow posts). Some conducted lab studies (e.g., the qualitative user study
reported in the work of Naiakshina et al. [109], while others report their findings from studying developers in real
environments (e.g., the case study reported by Poller et. al [126]).

Manuscript submitted to ACM

16 Anonymised for review

Different study participants: As developers come from a range of programming, educational, and professional
backgrounds, we report findings from different studies that study a range of developers. Some studies report findings
of studies conducted with students [109], some study professional developers [25], and some study both professional
developers and students [10].

Our intention was to be as inclusive as possible, and so we considered the variety of studies to be an advantage for
our purposes. We did not undertake a quality assessment of the primary articles, because it was not necessary for our
purpose; rather our focus was on breadth. In reporting these different studies with a range of developers, we aimed
to address how developers from different backgrounds are influenced by different factors – and to identify as many
factors that influence secure coding behaviour as possible from the literature. However, each of the empirical studies on
which we drew had its own threats to validity, which might in turn affect the reliability of this review. The analysis
compiled and compared evidence between studies, which provided some mitigation of the impact of potential threats.
However, as our goal was to map contributing factors as broadly as possible, and so the validity of an individual factor
is less crucial. Nevertheless, the results should be viewed as informative, rather than definitive.

The review might be biased by our interpretation of the psychology literature, and hence by the categorization in
terms of the three impediments to security goals (knowledge, attention, and intention deficit). We have tried to make
the categorization reasoning explicit, and to acknowledge the complexity of the factors with multiple categories where
appropriate. Further, the categorization as internal and external factors, was, as discussed previously, “to some extent
arbitrary”. As discussed, our purpose was not to provide an exact categorisation, but rather to draw out the different
factors, and to draw attention to both internal and external influences, so that they can be considered, discussed, and
addressed collectively.

3.3 Knowledge Deficit

The security knowledge of developers varies [108], and some security topics are considered more difficult than others
by developers [186]. As discussed earlier, insufficient, erroneous, or mis-applied knowledge – whether drawn from
a developer’s own knowledge base or from external resources – can prevent developers from taking proper action
to handle a security vulnerability, regardless of their intention to code securely or their attention to it. This section
discusses the internal and external factors categorised as contributing to knowledge deficit.

3.3.1 Internal Factors – Knowledge Deficit. Eight internal factors (rows I1-I8 in Table 2) were categorised as knowledge
deficit and are discussed in turn.

Misconception (I1): Developers may have a false sense of security in code although the code may have some obvious
vulnerabilities. In such cases, developers may have misconceived notions of security. For example, some developers think
of encryption and hashing as synonyms and some may reduce secure storage of password to a visual representation
using Base64 [108]. Likewise, some developers do not have right mental models of security. These developers consider
security as something that only comes with the use of secure functions like use of secure communication protocols and
hence, do not consider vulnerabilities that come with implementation mistakes [23].

Use of outdated information (I2): Some developers rely on their existing knowledge to avoid security vulnerabilities.
The problem with this approach is that at times either their knowledge of the vulnerabilities is outdated [108] or the
code has been changed without their knowledge [149].

False assumption / inferences (I3): Some developers have incorrect assumptions that a certain vulnerability has
been already handled securely [149]. In some cases developers may make assumptions about method names that are
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 17

No. Internal Factors Impediments to Citations
Security Goal

I1 Misconceptions KD [108][23]
I2 Use of outdated information KD [108], [149], [109]
I3 False assumptions / Inferences KD [149], [23]
I4 Misplaced trust on frameworks / third-party API KD [108],[23]
I5 Lack of clarity about regulation KD [30]
I6 Lack of domain knowledge KD [106], [173]
I7 Lack of experience (with tools, especially KD [27],[11], [78]

security tools, APIs, programming languages)
I8 Lack of awareness of security tools/ KD [149] [92]

vulnerability
I9 Not identifying security blind-spots in tasks AD [116], [115], [149],[92], [173]
I10 Not handling cognitive load AD [149], [115],[85], [92]
I11 Developer’s non-secure routines AD [149], [23]
I12 Lack of curiosity AD [116], [179], [178]
I13 Loss of focus on security AD/ID [23],[92], [126], [185]

[108],[183], [115], [109]
I14 Requires extra effort ID [23], [29],[92]
I15 Not perceiving usefulness of secure practices ID [25], [179], [170], [178], [30]

[183],[157],[92]
I16 Perceived lack of own security knowledge ID [25][179][108]
I17 Attitude of ‘someone else’s responsibility’ ID [23],[92],[101],[185], [173]

Table 3. Internal Factors, where, KD= Knowledge Deficit, AD= Attention Deficit, ID= Intention Deficit

No. External Factors Impediments to Citations
Security Goal

E1 Inadequate information sources KD [10], [45], [149]
[63] [109], [108]
[178], [173]

E2 Lack of information sharing among teams KD [173]
E3 Task complexity AD [108], [92]
E4 Lack of division of labour AD [173], [126]
E5 Absence of explicit expectation of secure coding AD/ ID [23], [108] [115],

[92], [185], [109]
E6 Limited resources AD/ ID [23], [157], [178],[173],

[92], [185], [78]
E7 Security tools not reachable ID [179], [183], [25],
E8 Lack of security culture in teams / ID [126], [179], [25],

companies [23], [183], [78]
E9 Lack of prioritization of security features ID [126], [78],

by stakeholders [157],[92] , [78]
E10 Lack of social influence ID [179], [108],[183],

[157],[101], [183], [185]
E11 Usability issues with security tools and APIs KD/ ID [178],[157], [149], [30],

[106]
Table 4. External Factors, where, KD= Knowledge Deficit, AD= Attention Deficit, ID= Intention Deficit

Manuscript submitted to ACM

18 Anonymised for review

overloaded, for instance, in the study conducted by Smith et al. [149], developers failed to recognize a potential source
of tainted data because its name confused the with a JUnit test case.

(Mis)trust of frameworks / third-party APIs (I4): Developer may have incomplete or wrong information about the
framework they are using. For example, some developers fully trust the frameworks that they are using to handle
security [23] or blindly trust code from a reputable source [115].

Lack of clarity about security regulations (I5): The security regulations, in place at different app publishing stores,
serve as a check on security violations. Developers who are less aware of security regulations are more likely to make
accidental errors that violate security regulations [11]

Lack of domain knowledge (I6): Developers often fail to identify vulnerabilities in code due to lack of sufficient domain
knowledge [106]. In addition, developers often need to have a good understanding of attacker profiles and descriptions
to tackle security vulnerabilities which developers often do not have [173].

Lack of experience with tools (especially security tools, APIs, programming languages) (I7): Lack of experience with the
technology in hand [11] (I7) can hinder developers’ efforts to write secure code. Baca et al. [27] reported that the number
of security questions answered tripled with a combination of the developer’s security experience and experience with
the security analysis tool [27]. Acar et al. also found a significant effect of Python experience on functional and secure
results for Python-based tasks [11].

Lack of awareness of security tools and new vulnerabilities (I8): Although several security tools are available to handle
different types of vulnerabilities, developers often struggle to find the right security tool to support their tasks [149] [178],
while some developers are unaware of the vulnerabilities in their software [92] (I8). Conversely, many developers often
find themselves struggling with keeping themselves up-to-date about a growing number of vulnerabilities [30].

3.3.2 External Factors – Knowledge Deficit. Three external factors (E1, E2, and E11 in Table 3) were categorised as
knowledge deficit. Developers often use external resources that exist ’in the world’ and are part of the developer’s
broader development ecosystem, including information sources (both online and offline), other developers, and security
tools. Knowledge issues that exist in these resources are beyond developers’ control and responsibility, but they impede
developers’ efforts to meet their security goals.

Inadequate information sources (E1): Developers often seek advice from different information sources while working
on a piece of code [10]; when these resources are inadequate, they contribute to knowledge deficit. These information
sources may not always contain up-to-date security information [12] as new security threats and tools are emerging
fast. Also, several of these information sources contain conflicting advice [109]. The influence of on-line social fora like
Stack Overflow on the developer’s community is highlighted by a number of researchers (e.g. [63], [45],[10]). These
works suggest that developers often follow insecure advice available in them or copy-paste insecure code snippets from
them and publish them [63]. Official documentation and corporate guidelines address security concerns, but the level
of detail presented in them is often insufficient for developers [12]. Interestingly, studies also showed that law and
regulations regarding security were mentioned only in two on-line guides [12].

Lack of information sharing among teams (E2): Security in code is often affected by lack of knowledge sharing among
different teams in an organization (E2), which makes it difficult to address vulnerabilities in code appropriately and
in-time [173]. Developers may also be limited in their knowledge of how their mobile apps are being used (E1). This can
prevent them from knowing actual exploits of their apps and from identifying usage patterns to provide on-the-spot
updates for security [173].
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 19

Usability issues with security tools and APIs (E11): Security tools developed to facilitate developers in handling
vulnerabilities may negatively affect developers’ security knowledge instead of aiding it. This arises as a result of
usability issues with these security tools (E11), for example, poor documentation, misleading defaults, and bad API
designs [106].

3.4 Attention Deficit

(Security) attention deficit occurs when developers lose attention to secure coding (e.g., when they don’t attend to it,
don’t attend to it fully, or lose attention to it), despite them being aware of security goals and having the intention to
code securely. Different internal and external factors that are a part of a developer’s personality, habits, security skills,
and environment challenge the developer’s attention to security.

3.4.1 Internal Factors – Attention Deficit. Internal factors that limit developers attention to secure coding include
factors originating from developers’ inability to identify security blind-spots in tasks, their personality traits and habits,
and the challenge of keeping security in working memory in the presence of other competing factors.

Not identifying security blind spots (I9): Developers often find it cognitively challenging to detect security blind-
spots in programming tasks (I9). Developers may have difficulty in correlating the vulnerabilities they know with the
task-in-hand [115]. Some developers overlook certain program paths to true attacks while focusing on another subset
of possible attacks [149], while some developers may fail to spot their own security errors due to a single point of
view [173].

Not handling cognitive load (I10): “Security thinking requires cognitive effort” ([115], p.1). Developers often find
it difficult to remember which security vulnerabilities they have addressed and which they have ruled out [149].
Sometimes, to facilitate usability – especially when testing – developers may add security vulnerabilities that they later
forget to remove and hence release their software with them in. Likewise, developers consider the practice of updating
their dependencies as an extra effort and defer the task until they have more time [92].

Lack of curiosity (I12) and non-secure routines (I11): Developers’ lack of curiosity as a personality trait (I12) and their
non-secure routines (I11) can also encourage non-secure behaviour when they are developing ‘in a flow’. Developers
who take pleasure in leaving their comfort zone and exploring new security tools and practices are more likely to adopt
security tools [179]. The lack of curiosity by developers [179], and their comfort with error-prone strategies even in the
presence of reliable tools and strategies, [149] can lead to common vulnerabilities in code.

Loss of focus on security (I13): Attention provides a selective process to filter out irrelevant aspects of incoming
information [57]. Developers’ attention may be focused on other aspects of programming, and security may be added
as an afterthought even when developers are asked to program securely [109]. Functional features compete for the
developer’s attention, and the developer may be tempted to overlook or postpone security considerations [115]. Even
after realizing the importance of making security decisions, developers may concentrate on functionality to the neglect
of security[172].

3.4.2 External Factors – Attention Deficit. Four external factors were categorised as attention deficit and are discussed
in turn.

Absence of explicit expectations of security (E5): Developers often add security as an afterthought [109]. In the absence
of explicit expectations from the stakeholders to code securely, developers often forget to give attention to secure
coding practices. However, some developers are quick to add security when prompted for it [115].

Manuscript submitted to ACM

20 Anonymised for review

Limited resources (E6): The limited availability of resources such as time and budget push security out of developers’
working memory, even if developers have sufficient security-related skills [30].

Task complexity (E3): The complexity of the task-in-hand can also make it difficult for developers to identify security
blind-spots in tasks [116]. Developers may find it difficult to give enough attention to security when working on
complex applications. This resonates with the factor ‘not identifying security blind-spots’ (I9) as the complexity of the
task-in-hand may introduce security blind-spots that developers fail to notice.

Lack of division of labour (E4): Security is considered as an intrinsic requirement by some developers or/and their
teams, and as an extrinsic requirement by others [126]. When responsibilities are not clearly defined due to lack of
communication, security may be neglected in team environments.

3.5 Intention Deficit

Intention Deficit occurs when developers lack the intention to develop applications securely, for example not prioritising
secure coding, or deferring it, or deciding that it is not their task. Intention is a strong influence on behaviour of an
individual in a specific way [14]. Sometimes developers may decide to develop their applications without consciously
following secure practices for reasons that may or may not be in their control.

3.5.1 Internal Factors – Intention Deficit. Five internal factors that influence developers’ intention to code securely
were identified.

Requires extra effort (I14): The landscape of software security may change when new vulnerabilities surface. Balebako
et al. observe that developers may find it daunting to keep up-to-date with the latest vulnerabilities and the sheer
amount of security knowledge scattered over the Internet. Doing so requires extra effort [30]. Assal and Chiasson
report that sometimes developers may avoid the extra effort to rewrite existing code and in doing so end up accidentally
misusing frameworks and introducing vulnerabilities in code [23]. Some developers do not find any benefit in investing
their time and effort in using security tools [178]. The extra effort required to code securely may preclude intention and
hence action.

Perceived lack of own security knowledge (I16): Developers’ lack of confidence in their security knowledge also impedes
their efforts to achieve their security goals [25]. Security knowledge requires continuous learning, as more and more
attacks and vulnerabilities surface over time. Developers who are provided means to continue updating their security
knowledge are more likely to adopt secure practices [179], whereas developers who perceive their security knowledge
to be insufficient are least likely to adopt them [25].

Not perceiving usefulness of secure practices (I15): Developers may have a number of reasons for not considering
security practices useful or important. They may not realize the negative consequence of writing insecure code [157],
may not value protecting their users [25], or may simply not consider security practices useful or having any tangible
benefits [179]. Since security is often not part of coding standards, developers usually do not find them important [23].
Some do not find security to be a “short-to-market” feature [126] and hence do not prioritise it (p. 1293). Developers may
also consider security practices unnecessary if they perceive their user bases to be only authenticated users [178], [183].
Since secure coding practices require extra effort and cost, developers and team managers often struggle with evaluating
their usefulness against their cost, and the developers using security tools find them expensive to use [178] [30].

Attitude of ‘someone else’s responsibility’ (I17):When working in team environments, especially when security experts
or teams are present, developers often do not consider security as their responsibility [23]. Some who are not required

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 21

to code securely do not consider security as their responsibility [23]. Developers who do not use security tools may feel
that they can depend on code reviews [183].

Loss of focus on security (I13): Just as competing demands may influence attention (as discussed above in Section
3.4.1), they may also influence intention, causing a similar loss of focus on security. Developers get overwhelmed with
many false positive warnings produced by security tools which discourages them to use security tools [157]. Also,
when sufficient time and budget is not available, developers sometimes explicitly overlook security [184].

3.5.2 External Factors – Intention Deficit. The security culture of a team is an essential determinant of security in
code[25]. In companies where security practices are not encouraged, and security plans do not exist, developers ignore
security in code [23]. On the other hand, in organizations where developers often talk about security in informal
settings, developers are more likely to adopt secure practices [183]. Companies that are willing to change their software
development processes and integrate secure practices into them have a positive influence on developers’ secure coding
behaviour [127]. Eight factors that lead to intention deficit were identified.

Absence of explicit expectation of secure coding (E5): Developers may avoid secure practices if they are not required to
code securely [23, 108, 115], whereas developers are willing to write secure code if they required to do so [179, 183]. In
the absence of explicit expectation of secure coding, developers often do not make secure decisions when coding.

Limited resources (E6): Lack of resources such as time, budget, and expertise also often lead to intention deficit.
Adopting secure practices incurs additional cost on the project. Development teams may decide to avoid secure practices
altogether if they do not have security expertise in their team and are limited in time or budget to meet security
challenges [23, 157].

Security tools not reachable (E7): Developers are also deterred from writing securing code if the security tools are not
reachable to them, as determined by the tools’ accessibility and availability. In companies where accessing security
tools requires formal procedures, developers avoid investigating and using them [183]. Similarly, if required security
tools are not available, developers tend to avoid security practices [25].

Lack of prioritization of security features by stakeholders (E9): Just as not all developers prioritise security, not all
stakeholders prioritize security, which then influences developer behaviour. Customers often do not accept security as
a product feature [126]. Team managers and development teams often find it challenging to make security a product
feature and adopt secure practices[126].

Lack of security culture in teams / companies (E8) and Lack of social influence (E10): Social influence plays a strong role
in developers’ decisions to develop securely. Developers who observe their peers using security tools are more likely
to adopt them [183]. Developers feel encouraged to adopt security practices if they feel prestige in using them [179].
When developers interact more often with security teams, they feel a greater sense of social responsibility to secure
their code [183]. However, without those social and cultural influences, developers may not decide to code securely.

Usability issues with security tools and APIs (E11): Developers readily abandon tools and APIs with which they are not
comfortable [128]. Usability issues with security tools are an important deterrent from using security tools. If developers
find security tools complex [106]; find it difficult to interpret results [157] or to set up the environment [106]; or struggle
with finding right security tools or a combination of them [149], they may give up the use of security tools altogether.

The next section looks at the different factors that influence developer’s security decisions, elicited in this section,
through the lens of cognitive and social psychology.

Manuscript submitted to ACM

22 Anonymised for review

4 ANSWERING RQ1: CAN COGNITIVE AND SOCIAL PSYCHOLOGY HELP TO EXPLAIN THE
IMPEDIMENTS TO DEVELOPERS’ EFFORTS TO MEET SECURITY GOALS?

4.1 Knowledge Deficit

Section 2.1 discussed that people’s perception of their knowledge and skills influences their likelihood of meeting
their goals [21]. Developers who feel that they have insufficient security knowledge lack motivation to build secure
software [25]. It is also an important determinant of social acceptance among peers. Developers often reach out to other
developers who are more knowledgeable if they are working on an unfamiliar task [134] or if they need help in dealing
with a confusing API [129]. This type of information seeking behavior is noted by social pscyhologists as informational

influence, where developers seek information from others as a way to resolve uncertainty – what Ciadini calls ‘social
proof’ [46] (discussed earlier in section 2.1.4).

Developers come from a range of programming backgrounds, work in diverse environments, and have different
knowledge models [7] that shape their perception. The analysis of knowledge deficit suggests that security goals may
be impeded by several internal factors which stem either from developers’ lack of sufficient knowledge and skills, or
from their unhealthy reliance on their own heuristics. Although internal factors are linked implicitly, we look at the
subtle differences between them in the way they are acknowledged by the developers and researchers in the reported
studies.

Half of the internal factors that lead to knowledge deficit are concerned with a developer’s lack of sufficient knowledge
and skills. This is a natural consequence of the growing spectrum of developers and technological advancements.
Developers are challenged with continuous streams of knowledge with which they must keep pace. New security
threats keep emerging, and programming languages and APIs are evolving continuously – e.g., making older versions
out-of-date, providing new features, fixing bugs, replacing old methods with new more efficient and secure methods.
Developers are expected increasingly to gain a basic understanding of a large number of new technologies to face market
competition and meet time pressures [124]. Although developers build their understanding of different technologies,
not all the information is stored or processed equally. Cognitive psychology considers several types of memory [159],
of which episodic and semantic memory systems are of particular importance in the context of this discussion. Both
episodic and semantic memory systems are considered part of the long-term memory system [159]. While semantic
memory “stores knowledge about the world in broadest sense” (p.1, [159]) commonly referred as general knowledge,
episodic memory “enables a person to remember personally experienced events” (p.1, [159]). Episodic memory lasts
longer than semantic memory, as it is associated with emotions and images that make it more resistant to forgetting.
This explains why developers who have had negative experiences with security vulnerabilities have stronger intention
toward secure coding [25] (discussed later in section 4.3, Intention Deficit), and why recall of general knowledge from
semantic memory may require more cognitive effort during coding than developers are able to expend in the presence
of higher-priority competing demands.

Under increasing demands on cognitive resources, individuals often retreat to heuristics [141]. Smith et al. [149]
observed that, despite the availability of alternate strategies, developers continued with their old practices. This explains
why half of the internal factors of knowledge deficits relate to unhealthy reliance on heuristics. Heuristics allow decision
makers “to process information in a less effortful manner than one would expect from an optimal decision rule” ([141],
p.1). Developers’ reliance on heuristics may lead to outdated practices [108] and misconceptions [149] often borrowed
from working with different frameworks and APIs [23]. Developers may also assume common cases of vulnerabilities,
ignoring the corner cases [116], again relying on their existing knowledge of where vulnerabilities may lie. Though

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 23

various security tools and awareness documents are available to supplement developer’s security knowledge, under the
time constraints and false perception of their own security knowledge, developers often tend to rely on their existing
knowledge and heuristics [67].

Many external resources, though available to help developers write secure code by providing information, communi-
cation, and tools, may at times impede the achievement of security goals, for example if they are inadequate, erroneous,
misleading, difficult, or demanding to use. The concept of referent informational influence extends the analysis of
informational influence beyond the interpersonal relations to the role of group membership, which we see in studies of
the impact of fora like StackOverflow on individuals’ behavior. Several studies on StackOverflow show how developers
security perceptions are shaped by conversations in StackOverflow [99] and how security is effected in their code by
copy-pasting code from StackOverflow [63]. Our study on how developers use social fora as a knowledge base also
shows that developers are influenced by cognitive biases when choosing which advice to follow, e.g., favouring advice
based on how it looks regardless of whether the advice works or is secure [165]. The limitations of these awareness
documents are discussed in more detail in section 5.2.

This psychological analysis of knowledge deficit suggests that different developers have different knowledge bases.
Tools and techniques are required that provide security knowledge to developers that map to their knowledge base in a
personalized manner, and use techniques to embed correct security knowledge into their mental models. Developers
should be provided with a personalised infrastructure of support that can share the responsibility and ease the pressure
upon them. In most of the development scenarios, developers often consult different information sources, and rely on
information about the tools they use provided to them by their team members – which may vary and may be inadequate.
The existing limitations of information sources and the increase in expectations on developers call for more focused
efforts by researchers to better equip developers in writing secure code while requiring less cognitive effort.

4.2 Attention Deficit

The internal factors that account for attention deficit surface due to developers’ limited capacity to handle cognitive
load and to familiar routines that may be insecure. Cognitive psychologists understand the mind as an “information
processing system” with a limited capacity to process information [21]; this explains why, under cognitive burden,
individuals often revert to practices that require less effort [141].

It is important to recognise that software developers differ from each other in their cognitive makeup. For example, it
is now widely recognised that working memory is an important source of variation between individuals [49]. Working
memory has been described loosely as the workbench of cognition, the system that combines current mental processing
with retention and transformation of thoughts and ideas [28]. Working memory capacity, used for simultaneous
memory and processing operations [55], is a stable mental ability and is linked to intelligence [93], distraction [104],
and inhibitory control [133]. Developers attend to security in code differently depending on their cognitive makeup.
Where software developers need to develop code to reflect multiple constraints, functions, and code interactions,
internal mental representations and mental models [81] are going to be strained, and some developers – those with
better-chunked working memories – are better positioned to juggle and resolve complex mental dynamics. Of course,
software failures are not some ineluctable consequence of smaller working memory capacity per se; developers can
draw on external props, aids, and strategies to check their work and augment their working memory. However, the
fundamental message is that one should not assume that all developers achieve the same end point through the same
psychological processes.

Manuscript submitted to ACM

24 Anonymised for review

The external factors that result in attention deficit relate to competing demands coming from the environment or
the task-in-hand. These competing demands direct developers’ attention away from security. In order to understand
attention and its role in programming activities, psychologists have refined the concept of ‘attention investment’ [35],
the notion that people manage the ‘investment’ of a scarce resource (attention), based on what they value and on
perceived risk of failure. Developers’ attention to security matters is often compromised in favor of other competing
aspects, such as functionality, that provide an apparent better return on investment to developers, especially in the
presence of limited resources. A quote from one of the participants in the study of Balebako et al. [30] illustrates this:
“Even self-described privacy advocates and security experts grappled with implementing privacy and security protection with

limited time and resources”. Researchers need to provide novel approaches that can help developers in understanding
the ‘return on investment’ that security brings to their applications, and hence prioritise it (rather than relegate it
as a secondary concern). Researchers can learn from models such as ‘attention investment’ models [35] to capture
developers’ attention to security in the face competing calls on their attention.

Developers’ shifting attention with respect to security can also be explained in terms of the taxonomy. Other
factors that vary from one person to another (e.g., habits and personality traits, security skills) and from one situation
to another (e.g., task complexity, security expectations, stakeholder priorities, and lack of division of labour) affect
developers’ attention. Tanner [154] suggests that objective constraints emerging from the environment may prevent
the performance of the desired behaviour – i.e., that not all factors are within developers’ control. Security researchers
need to develop novel methods and techniques to monitor such internal and external factors that affect developers’
attention, in order to inform how developers’ attention can be directed toward security.

4.3 Intention Deficit

Goals are achieved when actions are executed by actors [98]; when developers do not intend to code securely, they do
not execute all the actions necessary to meet the security goal.

Although many research studies identify that developers at times do not intend to develop securely, recent studies
show that developers do engage with other developers in meaningful discourse about security problems [99], showing
their interest in secure behaviour. Our analysis also suggests that external factors play a crucial role in influencing
developers’ intention to code securely; it is not just a matter of a ‘disinterested attitude’. Developers often work under
tight constraints. Limited budget [23], tight deadlines [157], and the customers’ lack of interest in prioritizing security
often limit developers’ intention to put extra effort and time into coding securely [78]. Lack of security culture may
also limit management’s willingness to facilitate secure coding [126] and may reduce peer influence on developers to
exhibit security behaviour [183]. Nevertheless, managers are able to make changes that support secure development, for
example by promoting a development culture that values security, investing in tools, including security in specifications,
and budgeting for secure coding [73].

While we outline factors that negatively influence a developer’s intention to code securely, we also note contrasting
observations in recent research that developers may exhibit secure coding behaviour in the absence of a clear security
rationale [164] (i.e., may exhibit secure coding behaviour without specific intention to do so). That research also
observed that social considerations affect developers’ coding decisions, resulting in developers exhibiting secure coding
behaviour for reasons other than security goals [129]. We find evidence that suggests that developers shift from secure
choices to insecure choices if they do not consider themselves part of the team any more [129], which also aligns with
what social psychologists suggest about changes in the immediate social context and its effect on goal orientation [162].

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 25

While coding is a cognitively-engaging activity, it is increasingly becoming a social affair. Developers who use
security tools feel more appreciated for their secure behaviour [179], and developers who lack security culture in their
organizations [23] do not exhibit secure practices. Developers are likely to adopt security tools under influence of their
peers [183], use code-snippets written by others [63], and actively engage with and “tend to security problems” in
their conversations with other developers on social platforms (p.1, [99]). Coming from a social psychology perspective,
Smith and Louis [148], show that the attitude-behaviour relationship is mediated by group processes. Attitudes and
behaviour tend to be more consistent when the norms that guide behaviour come from salient and important reference
groups. More importantly, Smith and Louis show that different kinds of group norms can have different consequences
for behaviour. They draw an important distinction between descriptive norms (what group members do) and injunctive
norms (what group members approve of). These different kinds of norms — derived from seeing behaviour through a
more dynamic, inter-group lens – are important concepts for helping to explain why the intention to develop securely
might not be reflected in practice.

The key takeaway message from this discussion is that impediments to security goals come from a spectrum of deficits
that stem from the cognitive and social makeup of developers. We have presented evidence of a multi-dimensional set
of psychological limits that can explain security vulnerabilities reported in the research literature. The next section
investigates security interventions available to developers during coding. In addressing RQ2 in section 6, we postulate
that security interventions should respond to a spectrum of deficits and help the developer overcome these psychological
limitations.

5 WHY AREN’T SECURITY INTERVENTIONS MORE EFFECTIVE?

This section presents an overarching analysis of the ‘state of the art’ in security interventions. First it discusses the
role of security interventions in addressing vulnerabilities in code, and sketches out a landscape of different types
of security interventions for developers. Then it considers how these security interventions address different factors
influencing security goals. The analysis shows that current security interventions fall short of taking a holistic view of
socio-technical systems; i.e. they fall short of considering “the human in the loop” 3, which can be a critical vulnerability
in software applications.

We postulate that security interventions ‘at the desk’ of developers need to be based on a broad socio-technical
perspective, one that considers the interdependence between different factors in the design of a system which include
humans, human interactions, context, and the system itself [31]. Socio-technical systems require a holistic view
of security requirements with an integrated view of different layers of the system, such as social, application, and
infrastructure layers [98]. Pieczul et al. [124] also suggest the need for new thinking to support a continuum of developers
with varying skills and expertise. We suggest ‘adaptive security interventions’ that take the socio-technical context into
account, and therefore respond to the different security needs of the developer.

The next section uses the impediments taxonomy – and the compilation of factors impeding the efforts to meet
security goals – to shed light on security interventions.

5.1 Overview of Security Interventions

Security interventions play a vital role in improving code security. For example, Gorski et al. [69] showed that placing
secure programming hints closer to the programmer as API-integrated advice, can improve code security significantly.

3We’ve borrowed this term from Falcone et al. [62], who use it in a different context.

Manuscript submitted to ACM

26 Anonymised for review

Acar et al. [10] also showed that the use of different information sources during coding affected code security. In their
study with developers, they observed that the developers who used Stack Overflow produced significantly less secure
code than those who used official documentation or books to get help during coding.

Security interventions were defined earlier as those events that occur in between the developer and the coding activity
in order to promote the developer’s secure coding behaviour. In this context, security interventions are an active event,
rather than a passive resource. So, for example, a static analysis tool or an OWASP list of common vulnerabilities [152]
is a resource available for developers to use. However, when a developer uses one of them actively while coding to
avoid vulnerabilities, the same resources are referred to as security interventions.

Developers use security interventions at different phases of development. For example, a developer may use the
OWASP top 10 list during coding to know how to mitigate specific vulnerabilities and implement the right mitigation
strategy. A developer who is interested in detecting vulnerabilities in existing code might use a static analysis tool
to review the code [76], e.g., static application security testing (SAST) [27] tools integrated into the development
environment as IDE plugins. These examples also indicate that the broad range of ‘interventions’ have different
‘presentation styles’: they may take different forms (e.g., information sources for developers that developers can consult
during coding, tools to analyse code that are triggered through IDE), may have a different focus (e.g., improving
developer awareness on how to improve their code, identifying vulnerabilities in code), and may be invoked and
controlled in different ways (e.g., manually by the developer, or automatically within an IDE).

This section presents the results of our high-level thematic analysis of current security interventions to understand
the patterns in their ‘presentation styles’ and how those patterns may influence the usage of the interventions. The
review targeted authoritative resources that would reflect the current ‘state of the art’ of security interventions:

• We reviewed key security resources available in popular and well-established online resources. These include
Cybersecurity resources available online by MITRE [50] and list of different security tools available online by
OWASP ([2], [5], [3]). We visited these resources as they are considered authoritative sources and are visited
frequently by developers.

• We also reviewed other authoritative online resources that are visited frequently by developers for security
information. The work of Acar et al. [12] lists and studies 19 authoritative websites that developers trust and
use frequently for security advice. (While their work studies such resources in detail for the kind of advice they
present and identifies open issues in these sources of advice, our aim was to look at these sources of security
information from the viewpoint of their presentation styles.)

• Our earlier research on developer’s security behaviour (mentioned in section 3.1) included search strings such as
‘developer security tools’. We reviewed that literature for any sources not covered by the previous lists.

This analysis of existing security interventions identified three broad ‘presentation styles’: awareness interventions
(that just provide security information to the developer), automated interventions (that developers can run on code
to detect and sometimes mitigate vulnerabilities), and interactive interventions, (that ‘interact’ with the developer to
provide task-specific advice and assistance with processes such as refactoring and auto-completion).

All the security tools and resources presented in the MITRE cybersecurity resources [50], and in the OWASP list
of security tools ([2], [5], [3]) can be categorized either as awareness interventions or automated interventions. The
19 information resources studied by Acar et al. [12], can be categorised as awareness interventions. While many of
the research papers presented tools that can be categorised as awareness or automated interventions, we also came

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 27

Security
Interventions

Awareness
Interventions

Vulnerability Databases, e.g. [54]

Checklist, e.g. [119]

e.t.c.

Interactive
Interventions

Interactive security tools with
better usability e.g. [91]

interactive SAT plug ins e.g. [112],[138]

etc

Automated
Interventions

SAST/SAT, e.g. [152] etc

DAST/DAT, e.g. [22][16]

Vulnerability Prediction tools, e.g. [188]

Automated Theorem Provers, e.g. [140]

Fig. 1. Landscape of Security Interventions for Software Applications

across literature which offers research prototypes of an interactive nature. These interactive security interventions
incorporate both awareness and automated interventions to provide on-the-spot advice to developers when coding.

Figure 1 shows the existing landscape of security interventions discussed here. Interactive interventions are a more
recent development, that builds on the other two presentations styles. Hence, Figure 1 shows awareness and automated
interventions as a ‘first slice’ and interactive interventions as a ‘second slice’ emerging from them. Each of these
presentation styles is discussed briefly below, and examples are given.

5.1.1 Awareness Interventions . Awareness interventions are security information resources, such as check-lists,
vulnerability databases and FAQs, used by the developer during coding to improve security in the code. These security
information resources are disseminated to provide secure coding information to developers. These interventions make
developers aware of code security, but leave it to the developers to take action. For example, the Common Vulnerability
and Exposures (CVE) [54] system provides a list of publicly-known cybersecurity vulnerabilities with reference IDs. The
CVE list makes it easy to share knowledge about vulnerabilities across networks. While the CVE gives a reference list
of vulnerabilities, the Seven Pernicious Kingdoms taxonomy [6] provides a categorization of vulnerabilities to provide a
high-level understanding of them. The OWASP Top 10 [119] is another awareness document often used by developers. It
is updated regularly by the Open Web Application Security Project (OWASP), an international, non-profit organization
that is working on improving the security of software through various projects [118]. It provides information on the
most critical security concerns, along with suggestions on how to address them. Awareness resources are often used by
tool-smiths to design and evaluate the effectiveness of tools. For example, Nguyen et al.[112] and Sampaio et al. [138]
use a subset of vulnerabilities from the OWASP list of common vulnerabilities to evaluate the effectiveness of their
security tool prototypes.

5.1.2 Automated Interventions. Automated interventions provide fully-automated methods and are typically run on
code or software applications to detect and sometimes mitigate vulnerabilities in them. These include, but are not limited
to, Static Application Security Testing (SAST) [152] (also known as Static Application Testing (SAT)) and Dynamic
Application Security Testing (DAST) (also known as DAT) [44] tools, automated theorem provers[44], and vulnerability
prediction tools [188].

Manuscript submitted to ACM

28 Anonymised for review

SAST tools analyse source code and detect potential vulnerabilities without executing it [152]. The area of static
analysis for security has matured over time, and static analysis is used widely in industry. It is also an active area of
research that focuses on improving the efficiency and accuracy of the results [96].

DAST tools scan the applications from the outside, examining their behaviour and looking for security vulnerabili-
ties [44]. DAST does not require source code to analyse the software for security and produces false-positive rates close
to zero [138]. Examples include penetration testing [16, 22], fuzz testing [68], and source code fault injection [77].

Automated theorem provers (ATP) are programs that use formal reasoning to evaluate if a given formula is universally
valid or not [140]. Many works use ATP to analyse code security; for example, Jurjens [83] applies ATP to an industrial-
strength biometric authentication protocol for determining security goals.

Vulnerability prediction tools [188] are used in large projects to predict vulnerable parts of software before releasing
it, in order to focus efforts on those parts that need more attention. These tools use software metrics [188] or machine
learning, and mining techniques [110] to predict vulnerabilities in different parts of the software.

All these different types of interventions deploy automation to analyse and/or fix vulnerabilities in code. The
automated interventions generally work as a black-box. The role of developers is limited to initiating the tools and
receiving the output generated by the tool. It may be that developers use these tools iteratively in their practice, in a way
that may seem ‘interactive’ to them (e.g., running the tool to find potential vulnerabilities (perhaps ranked by severity)
and then applying patches if the developer agrees with the warning). However, the tool itself is not ‘interactive’.

5.1.3 Interactive Interventions. Interactive interventions, the ‘second slice’ of security interventions, include semi-
automated systems for providing task-specific advice and support for processes such as refactoring and auto-completion.
Such tools are invoked by the developer, or are run in the environment. They provide analytics to address specific
vulnerabilities in code and require developers’ involvement in making a secure decision, e.g., providing notifications to
developers on vulnerabilities in their code while they are working on it [138], highlighting vulnerable parts of code
and offering secure defaults [112], providing integrated security advice to developers on how to deal with security
warnings [69], and aiding code refactoring by providing secure solutions to developer while coding [185].

Developer responses may then prompt re-analysis and further interaction. Interactive interventions include a degree
of automation, but they are typically not autonomous: the developer must engage and agree before code is changed.

Fixdroid by Nguyen et al. [112], ASIDE by Xie et al. [184], Eclipse plugin by Sampaio et al. [138] for continuous
detection of vulnerabilities, and implementation of a security patch for PyCrypto API by Gorski et al. [69] are all
examples of such interactive security interventions. We only found a few examples of interactive security interventions
in the last decade, but with more efforts in the last few years suggesting that researchers realize the importance of
involving developers in security decisions in the secure coding process.

5.2 Security Interventions and Goal Impediment Categories

This section presents an analysis of how different styles of security interventions may – or may not – help to avoid or
address different security goal impediments. The discussion draws on both the conceptual underpinning of the goal
impediment categories, and the specific factors identified in Section 3. It examines both why interventions may help,
and why they may not be effective.

5.2.1 Awareness Interventions. Awareness interventions, as their name suggests, are typically used by the developers
to foster their security knowledge during coding.
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 29

Awareness interventions address knowledge deficit among developers. However, Tables 2 and 3 show that knowledge
deficit occurs due to number of factors, but awareness interventions largely address inadequate information sources (E1).
While factors like misconceptions (I1) and outdated knowledge of developers (I2) can be addressed effectively by using
these awareness interventions, studies show that these factors emerge when developers rely on their existing incorrect
knowledge base instead of using reliable information sources.

Awareness interventions can also effectively propagate knowledge about security tools to mitigate the internal
factor lack of awareness of security tools and new vulnerabilities (I8). Many authoritative online resources provide a
list of security tools for different programming languages. However, these community resources often do not endorse
any particular tool, and the responsibility of selecting the ‘right’ tool often falls on the shoulders of developer (or
development team). Developers also often feel overwhelmed by the influx of security information over the Internet,
which can impede their efforts to achieve security goals.

In team environments, different types of information sources have been used effectively in improving security
culture in teams. Weir et al. [171] use intervention techniques such as security games, on-the-job training, and threat
assessment in a lightweight approach that influences developers’ security thinking positively. Although the use of an
intervention package with awareness techniques can improve the security culture in teams, without the presence of an
external authority pressing the need for security, awareness documents may not effectively address knowledge deficit
among developers.

Awareness interventions may not be an effective tool to address attention deficit and intention deficit. In fact, the
additional cognitive effort that some awareness interventions require (for example, because they provide a great deal of
information [149]) may contribute to information overload leading to attention or intention deficit. Developers may find
it hard to remember all the information available in awareness documents or to track which of the vulnerabilities they
have already addressed [149]. Lack of contextualization of security awareness documents to a developer’s skills and
task-in-hand may impede the effectiveness of these interventions [149]. Also, developers often struggle with finding
required information about security tools in awareness documents: some developers do not find the right security tool
for their task-in-hand [149], and some find the great amount of information in these resources too overwhelming [29].

5.2.2 Automated Interventions. Automated interventions are popular in industry and academia, and security tools
are often recommended by security experts to developers to improve security in their code (e.g., [117]). The main
strength of automated interventions is their efficiency in detecting vulnerabilities in code without much human effort.
In addition, these tools have matured over time, due to the large body of work underpinning them and continuous
efforts by the security community to improve their effectiveness.

At the heart of these interventions is the idea of reducing the amount of effort that developers need to invest by
automating manual tasks such as code reviews. While automated interventions ease the task of code reviews, other
human factors that require extra effort surface. Developers find it difficult to stay up-to-date with the volume of new
vulnerabilities and security tools, and to know which security tools address which vulnerability. Doing so is a challenge
that requires extra effort.

Security tools can help developers in finding security blind-spots in code. Recent advances in algorithms, such as
analysing context-sensitive data-flow [138], can be effective in identifying vulnerabilities that might be difficult to
detect otherwise. Oliveria et al. [116] also suggest the use of on-the-spot programming as an effective mechanism for
addressing security blind-spots; however, empirical evidence is needed.

Manuscript submitted to ACM

30 Anonymised for review

In spite of their wide popularity, automated interventions may also contribute to a number of factors that lead to
knowledge deficit and intention deficit. Developers may introduce vulnerabilities in code if they do not use security
tools correctly and have less development experience [78]. Developers who find security tools hard to use do not adopt
them [178].

Usability issues with security tools also impede developers’ intention to code securely. Recent advances in usable
security aim to address this problem [10]. For example, Assal et al. [24] propose use of a visual analysis environment to
help developers better identify vulnerabilities in code.

5.2.3 Interactive Interventions. By involving developers in security decisions, interactive interventions take a step
further (than awareness or automated interventions) to address impediments to developers’ efforts to code securely.
Interactive interventions can address a developer’s misconceptions by providing ‘quick fixes’ to security issues in
code [69, 112] and generating alerts if misuse occurs [91]. They provide recommendations for secure code snippets
in developers’ IDEs [69]. Integrated security advice in APIs informs a developer of the consequences of particular
misuse [69], which can alert the developer to the negative consequences of insecure programming practice; i.e. the
advice is contextualised to the task-in-hand.

On-the-spot, contextualised warnings highlighting the vulnerabilities in code [69, 112, 184] compensate for the
absence of explicit expectations of secure coding (E5). If the impediment is attention deficit, this on-the-spot warning
can encourage security behaviour at the cost of interruption flow.

In team environments, interactive interventions can share knowledge by generating logs that provide information
on how different team members address security during development. [184]. This can help in sharing the cognitive load
of remembering which vulnerabilities have been addressed and by whom.

The effectiveness of interactive interventions has been reported by a number of researchers. Gorski et al. [69]
reported 73% improvement in code security among participants who used an API that provided security advice. Ngyuen
et al. [112] also reported a significant difference in security solutions for developers using FixDroid, that provided
on-the-spot security alerts. Researchers should also investigate the role of interactive interventions in addressing other
factors that influence security decisions.

The field of interactive interventions is relatively new, with only a few studies published in the last decade. Further
research in this field can address various other factors that make it challenging to meet the security goal. Researchers
and tool-smiths can identify better approaches and techniques by working with cognitive and social psychologists who
have long studied impediments to behaviour goals [105].

Interactive interventions provide code-context information to encourage secure coding practices combined with
the lessons from human computer interaction and human factors in computing. However, developers work in a rich
cognitive and social environment, which may differ from one developer to another. Section 6 looks at interactive
security interventions through the lens of psychological theories and makes a case for adaptive security interventions
that are cognisant of the developer’s complex socio-technical environment.

5.3 Discussion

This section has discussed how different types of security interventions map to different impediments to efforts to
achieve security goals. With the efforts of the security community and advancements in security technology, security
interventions have also matured. Authoritative awareness interventions have developed, and several centralized
repositories exist that provide rich information to developers at different stages of development – if a developer
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 31

knows where to look. Automated security tools have matured over time and have automated several review- and
testing-intensive tasks in a more efficient and effective manner – if a developer knows which tool to use and for which
task. Interactive interventions have recently come to the fore, and aim to increase developers’ involvement in making
secure decisions while coding – if the developer does not find them intrusive.

While these interventions address critical issues that needed attention, several open issues remain. Most ‘state-of-
the-art’ interventions are each able to address effectively one or a few of the factors contributing to impediments to
security goals. However, issues such as individual differences, stakeholder priorities, information overload, interrupting
notifications, and competing demands present significant challenges to addressing a wider range of factors and the
impediments to which they contribute.

6 TOWARD ADAPTIVE SECURITY INTERVENTIONS

The previous sections discussed literature from cognitive and social psychology about elements that influence human
behaviour with respect to meeting – or failing to meet – goals, investigated developer-centered security literature
focusing on studies of developers’ security behaviour, and sketched the current landscape of security interventions that
are available to the developer during coding. The analysis identified: 1) three categories of security goal impediments, 2)
a list of factors that lead to security goal impediments, and 3) three types of ‘presentation styles’ of security interventions.
The last section discussed how different types of security interventions address (or lead to) different types of security
goal impediments.

This section makes a case for adaptive security interventions. Section 6.1 explicitly discusses our answer to RQ2
and argues that the security interventions produced for developers should be informed by theories from psychology
in a socio-technical context. We suggest adaptive security interventions to address the gap between developer needs
and existing solutions. Section 6.2 outlines an architecture that responds to this proposition, the proof-of-concept
implementation of it, and a number of open research questions and challenges.

Early works on dealing with information security in computer systems emphasised the role of behavioural sciences
in designing and developing secure systems [137]. Despite such emphasis, advances in software security and research
surrounding it have revolved mainly around the technical aspects of security, involving the developer as one of
the components whose behaviour can be specified and controlled [139]. While studying the landscape of security
interventions available to the developer ‘at the desk’, recent years have seen more focused efforts to bridge technical
security tools with human decision making through interactive tools. Prior to that, efforts to enhance security in software
were less oriented to the developers’ reasoning and behaviour: awareness documents provided human-readable technical
knowledge to avoid or mitigate vulnerabilities in code, while the security tools such as SAST and DAST had little
consideration of the usability of tools [10].

The systematic literature review (SLR) on human aspects of software engineering [94] establishes behavioural
software engineering as a recognized area in software engineering. In a similar line of research, SLRs on motivation [32]
and personalities [53] also shed light on how software engineers work. A recent SLR by Tahaei and Vaniea [153] on
developer-centered security also reports on security studies with software developers, providing an overview of the
methodologies being used in the DCS literature. However, despite recent advances in studying human aspects of secure
software development, the overarching analysis on understanding software developers with particular focus on security
is scarce – which is what we try to address with this work.

Manuscript submitted to ACM

32 Anonymised for review

6.1 Answering RQ2: How can we design interventions to help developers reduce the obstacles in
operationalizing security goals?

The answer to RQ1 presented in Section 4 succinctly summarises the psychological limits of developers in addressing
security vulnerabilities and the need to address a spectrum of deficits with security interventions. This section first
outlines the lack of psychological underpinning in current research on security interventions and its drawbacks. It then
suggests that security interventions should be adaptive and should take the socio-technical context into account. It lays
out how adaptive security interventions can be designed and developed, informed by psychological theories, to address
a spectrum of deficits.

Recent efforts to deliver interactive interventions (e.g., [112], [69])) to support developers in writing secure code are
built on lessons learnt from research on usable security tools. This research suggests capturing developers’ attention
toward security issues in code through the user interface (e.g., [109], [10], [9]). Developers process varying amounts
of information during coding. Advances in user interface design strategies have focused on aggregating relevant
information for the task-in-hand and displaying it at the user interface using indicators that grab the developer’s
attention. These indicators also serve as external memory and provide easy access to required information. The
advantage of this approach is that it improves developers’ productivity and efficiency in producing secure code – as
evaluated through usability studies and controlled experiments in laboratory settings. Despite this positive effect,
psychologists suggest that the main drawback of ‘display-based strategies’ is that they lack involvement of cognitive
processes to commit information to memory [20], and they will negatively affect activation of memory traces in
future [169]. Security researchers have not yet studied how developers’ cognition is affected by ease-of-access to
information.

Programming requires a high level of concentration [18], which is vital to developers’ productivity [177]. The
provision of various prompts to security practices and of continual tips to handle security misuses may interrupt
the code-flow, especially for developers whose ‘attention-investment’ model [35] does not align with security. The
attention-investment model (discussed earlier in Section 4.2) postulates that people manage the ‘investment’ of a scarce
resource (attention), based on what they value and on the perceived risk of failure [35]. Cognitive psychology literature
suggests that individuals are more prone to making unintentional mistakes and producing inaccuracies due to temporary
lapses of attention caused by interruptions [17]. Research is needed to study how continual interruption and the ease-
of-access to relevant security information affects developers’ (security) learning – with negative consequences on
developer’s (security) behavior in the absence of these external memory resources [20]. Research on interactive security
interventions needs to go beyond the ‘on the spot’ display of relevant information to capture developers’ attention,
and should be informed by psychology theories on improving human knowledge and behaviour to complement these
efforts.

Further, we found little research into the long-term effect on developers’ cognition of ‘display-based’ security
interventions. Some security intervention studies suggest improvement in developer productivity for the task-in-
hand [112], while some others discuss a rise in the security awareness of developers in teams [127]. Poller et al. observed
security behaviour of developers in an organizational setting after security audits and workshops. They noticed that,
although these interventions were effective in raising developers’ security awareness and behaviour for a short period
of time, developers did not continue with their security practices over a longer time (one year). Weir et al. [170] showed
that a series of lightweight interventions over a three-month period was effective in changing security culture in teams,
even without the involvement of a security expert. Their evaluation was based on a series of interviews conducted

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 33

before and shortly after the interventions, and then twelve months after the intervention. These examples study security
culture within organizations. However, research is lacking in the study of how the security interventions that developers
use during coding develop long-term change in their security behavior, and how different types of developers’ needs are
fulfilled by a given security intervention.

As discussed earlier, theories from social psychology and evidence from developer-centered security suggest that
we need to leverage social influences on developers to encourage security behavior during coding. Different factors
influence how developers approach security in code, and can cause knowledge deficit, attention deficit, or intention
deficit. Further, a developer can experience any of these deficits at different points in time, depending on changes in the
developer’s socio-technical context. Our analysis suggests that different deficits require different forms of intervention
to help developers achieve security goals. We therefore suggest that such (interactive) security interventions need to be
adaptive, recognizing the different individual and development contexts and the security-relevant factors that arise
within them, and tailoring the interventions in response to changing circumstances.

Adaptation is seen increasingly as an effective approach to addressing uncertainty and change in the environments
in which software systems are created and used [56]. We suggest adaptive security interventions that intercede between
developers and their code during software development to address the needs implied by knowledge deficit, attention
deficit, and intent deficit. Information concerning the developer’s coding behaviour is collected and analysed to identify
the developer’s approach to security, such as how and when the developer attends to security in code, the types of
vulnerabilities the developer addresses, and types of information sources the developer uses. For example, to address
knowledge deficit, the developer can be notified of the security vulnerability and the developer’s response observed. If
the response is absent or incomplete, suggestions may be offered (in terms of possible actions, or relevant information
sources). Attention deficit can also be addressed through notifications, but frequent interruption of the developer’s code
flow in the IDE (which might place competing demands on attention) can be reduced by using diverse communication
channels, such as Slack, that developers use often beside the IDE. To address intention deficit, the vulnerabilities in
code can be made explicit before code commits to highlight security issues to developers and clients. Developers are
able to make conscious decisions to attend to vulnerabilities in code, or leave them if they are not critical. In the case
of critical vulnerabilities that require extra resources, developers are able to make decisions in consultation with the
clients instead of ignoring security in project discussions. This helps dealing with intention deficit where developers
compromise security goals due to limited resources and offers them a platform to negotiate security with clients.

Such adaptive security interventions are to be designed with an aim to trigger long-term behaviour change in
developers and avoid the negative effects of frequent interruptions (that may contribute to attention deficit). For
example, memory-based-strategies [169] may be incorporated in the design of security interventions. Memory-based
strategies suggest increasing information access cost in order to improve the user’s information recall [169]; hence, by
making some information less-readily available at the interface, (e.g., by adding a delay of a few seconds in displaying
relevant information) the user is encouraged to commit relevant information to memory. Similarly, interventions can
can be informed by psychological theories of human decision making, in terms of which information to prioritise
(e.g. [20], [19]).

6.2 Operationalizing Adaptive Security Interventions

Our operationalization of adaptation in the context of security interventions is based on the well-known architectural
pattern, the MAPE-K loop, also called the adaptation loop, used to support adaptation in software systems [135]. The

Manuscript submitted to ACM

34 Anonymised for review

adaptation loop iterates through the activities of monitoring (M), analysis (A), planning (P) and execution (E) activities
over a knowledge base (K) in order to vary the response of a system following changes in its operational environment.

Conceptually, information about developers’ behaviour is monitored and then analysed to identify impediments to
achieving security goals, and a plan is developed to determine what interventions to execute based on knowledge of
appropriate strategies to address such impediments. The aim of adaptation in our work is to diversify the channels by
which security interventions are delivered (not just via IDEs, but also via other communication and collaboration tools),
by varying the timing of intervention (not just instantly inside IDEs, but also delayed interventions), and by escalating
the interventions when some are not effective (not just directly to the developer, but to the wider social context such as
the development team or even publicly). Furthermore, adaptive intervention is non-transactional, as it is a learning
process that accumulates knowledge after each iteration and thus can improve over time. The proof-of-concept tool
we have built is available online 4. The tool is a useful lens through which to explore adaptive security interventions
further.

In order to operationalize adaptive security interventions, we first make the development context concrete (Fig. 2).
This involves making a few operational choices about programming language (Python 5), the development envi-
ronment L (Visual Studio Code6), security tools for Python
 (Bandit7), local repository management � (git8),
communication tools�7 (Slack9 and Twitter10), and collaboration tool� (github11). These choices represent a typical
development context of a developer according to a recent industry survey [1].

Knowledge

Monitor

Analyze Plan

Execute

g
DeveloperB

� 7 � L�local

security tools

Fig. 2. Developer and work context

The Monitor component intercepts
(red dotted lines in Fig. 2) and logs a)
the program texts the developer has
written in Visual Studio Code when
they are saved on the local disk, b) all
the security warnings provided by the
security tools that are shown to the
developer, and c) online searches the
developer performs. These events are
stored chronologically in a database.
Using prior knowledge about patterns
of deficits and how they manifest in de-
veloper behaviour, the Analyse com-
ponent identifies the impediments to
security goals. This is done using pat-
tern matching. The Plan component identifies actions that are most likely to produce a positive response from the
developer, based on prior knowledge of developer’s behavior. The Analyse and Plan components are partially im-
plemented to demonstrate the example below. The Execute component performs the action identified by the Plan

4https://github.com/open-university-rse/johnny-django-docker
5https://www.python.org/
6https://code.visualstudio.com/
7https://pypi.org/project/bandit/
8https://git-scm.com//
9https://slack.com/
10https://twitter.com/
11https://github.com/

Manuscript submitted to ACM

 https://github.com/open-university-rse/johnny-django-docker
https://www.python.org/
https://code.visualstudio.com/
https://pypi.org/project/bandit/
https://git-scm.com//
https://slack.com/
https://twitter.com/
https://github.com/

The Case for Adaptive Security Interventions 35

component. A history of how the developer has responded to interventions, known deficits and associated behaviours,
and available actions are part of the Knowledge component, which is also partially implemented.

Consider a scenario in which the developer enters some program text that contains a security vulnerability identified
by Bandit. Visual Studio Code would highlight the vulnerable part of the code, which is a form of security intervention
but without adaptation. That intervention is static: the editor can only continue to highlight the vulnerability until it is
fixed or the relevant code is removed. With adaptation, factors that influence the developer behaviour can (start to)
be leveraged dynamically. For example, we have implemented a rule that, if the developer did not react to a Bandit
warning more than three times (that is, the same vulnerability is present in the code after the code has been modified
and saved three times), the behavior is recognized as attention deficit. This is because developers often lose focus on
security and attend to functionality only, if they are limited in time and resources [30]). As more information about the
developer behaviour is gathered over time, better predictions can be made of the developer’s salient deficit. The plan
generated in this case leverages peer esteem by sending the vulnerability information to a group channel on Slack to
which the developer is subscribed (so the developer is made accountable for not addressing the vulnerability). If the
developer is working alone, then the Slack channel serves as another intervention to get developers’ attention (green
dotted lines in Fig. 2). If the vulnerability is still not addressed, this can be escalated further by creating a pull request
on github.com when commiting code. The pull request makes an explicit case to consider security. If the developer (and
the developer’s team) makes a conscious decision to leave the vulnerability in the code because it does not impact the
project, the conscious decision is noted with merge. The pull request also makes them publicly accountable. These
adaptive interventions bring social and team dynamics into play, so that the developer can be influenced through the
pressure of peer esteem both within a group and publicly (e.g., through public recognition on github.com for fixing
security vulnerability).

The implementation has raised a number of open research questions and challenges. ForMonitoring, research is
needed to scope which variables in a developer’s environment are worth monitoring, and how to monitor them in order

understand a developer’s secure coding and related behaviours. A developer’s interactions with the interface of a coding
environment can help, and research on adaptive user interfaces [15] has suggested ways in which interfaces can
serve as a means of flexible engagement with users (in this case developers) and their environment. For example,
adaptive interfaces have been studied to address accessibility needs [66], cultural needs [132], mental workload [42],
and cognitive processes [151]. We can learn from such work to understand the diverse needs of users from the data they
generate. Indeed, developers can generate considerable data while coding [41], which can be used to make informed
decisions or interventions. For example, Bruch et al. [41] advise collection of usage data from developers’ IDEs to
improve recommendation systems, and Matsumoto et al. [102] suggest the use of developer metrics to predict faults in
software.

For Analysis and Planning, research is need to identify and evaluate analysis and planning mechanisms that can

provide an effective strategy to address impediments to security goals. Different types of adaptive mechanisms have
been used to analyse data collected from the operating environment and plan adaptive responses to changes in that
environment. In addition to methods in statistical machine learning, argumentation approaches have been used in
requirements engineering for deriving adaptive security controls [160], and self-adaptive reporting algorithms have
been used to analyse and plan self-adaptive forensic activities. This and related work on developing adaptive systems
can provide a solution space for deploying analysis and planning for effective adaptive interventions.

For Execution, research is need to identify the full range of actions that are effective in addressing impediments to

security goals in different contexts.We have so far identified a few actions that can achieve certain goals, such as: visibility
Manuscript submitted to ACM

36 Anonymised for review

(private vs group messaging), timing (instant vs delayed messaging) and affect (positive vs negative messaging). The
delivery of interventions is very much dependent on the socio-technical context [31] in which it takes place. It may not
always take the form of an explicit security ‘fix’, but may instead be a more implicit and nuanced intervention that
provides background support to the developer, or even defers interceding until some later time when the monitoring,
analysis, and planning steps determine that intervention is a priority (e.g., when a security vulnerability has been
neglected repeatedly).

This proof-of-concept tool based on the MAPE-K loop affords an opportunity to conceive security interventions as
contextually-sensitive, dynamic, and more engaging forms of support to software developers. Developers are often
engaged in challenging trade offs between the many demands on their time and cognition, and the plethora of options
for engaging developers exhibiting insecure coding behaviours and practices. It remains an open challenge to fully
implement and evaluate such automated tools that extend and enrich developers’ coding environments. Our future
work will investigate this challenge.

7 CONCLUSION

Writing secure code requires not only technical knowledge of the programming language and the domain, but also a
security mindset to think critically about how a system can be exploited to cause harm to its assets [176]. Developers
often work under significant cognitive load, with multiple issues demanding their attention – including (but not limited
to) functional requirements, performance and usability issues, deadlines, and lack of resources [185]. In addition,
the social context in which developers work encourages (or constrains) their security behavior [183]. The combined
influence of developers’ cognitive load and social-technical context often leads to software bugs that can cause security
breaches [185]. It is but natural then that even the security experts often grapple to keep their focus on implementing
security under the cognitive burden [29].

This work has striven to provide a psychological account of the different factors that prevent developers from
producing secure code. The analyses presented exposed the importance of the rich context in which software is
developed, and how individual and contextual differences can either support or impede the achievement of security
goals. Although this review has focused more on the individual, we have noted the value of addressing more fully a
richer social perspective as well. Software development can benefit from insights provided by social psychological
research, arguing for example for a more dynamic model of psychological processes which underlie behaviour [158].
This review has highlighted some example instances of social influence on developer behaviour with respect to secure
coding. The social identity approach [40, 74] argues that the way in which we think about ourselves (our identity)
shapes the way we act – and is sensitive to contextual variation; further empirical work is needed to capture that
interplay more fully, and to adapt security interventions accordingly.

The paper has made a case for adaptive interventions to promote and improve secure coding that can respond to a
developer’s particular context, both in the broad socio-technical setting, and in response to the needs in-the-moment
for the task-in-hand. In making this case, the paper presented the following:

• Informed by the psychology literature, it considered the interplay of key cognitive elements (knowledge, atten-
tion, intention) within the developer’s rich socio-technical context, and how these elements characterise key
impediments to meeting security goals (knowledge deficit, attention deficit, intention deficit).

• It reviewed the software engineering literature to identify what other researchers have identified as factors
impeding secure coding.

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 37

• It reviewed existing security interventions, mapping that landscape in terms of the ‘presentation style’ of the
interventions (awareness, automated, interactive), and it discussed the broad styles in terms of the impediments
framework.

This provided a perspective on why existing interventions can be effective in addressing some impediments – but not
all. It thus made the argument for adaptive interventions that are contextually aware. The MAPE-K adaptive systems
architectural pattern was used to operationalize adaptive security interventions and present a proof-of-concept tool to
unpick questions and challenges associated with generating such adaptive interventions.

8 ACKNOWLEDGEMENTS

[Omitted for review purposes.]

REFERENCES
[1] “Developer survey results,” https://insights.stackoverflow.com/survey/2019, accessed: 2021-04-12.
[2] “Free for open source application security tools | owasp,” https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools,

(Accessed on 04/16/2020).
[3] “Source code analysis tools | owasp,” https://owasp.org/www-community/Source_Code_Analysis_Tools, (Accessed on 04/16/2020).
[4] “State Of Software Security,” https://tinyurl.com/uaa4ock, (Accessed April-2019).
[5] “Vulnerability scanning tools | owasp,” https://owasp.org/www-community/Vulnerability_Scanning_Tools, (Accessed on 04/16/2020).
[6] A Taxonomy of Coding Errors that Affect Security, https://vulncat.fortify.com/en, [Accessed June-2018].
[7] M. S. Abdullah, I. Benest, A. Evans, and C. Kimble, “Knowledge modelling techniques for developing knowledge management systems,” in Third

European Conference on Knowledge Management: Trinity College Dublin, Ireland, 2002, p. 17.
[8] D. Abrams, M. Wetherell, S. Cochrane, M. A. Hogg, and J. C. Turner, “Knowing what to think by knowing who you are: Self-categorization and the

nature of norm formation, conformity and group polarization,” British journal of social psychology, vol. 29, no. 2, pp. 97–119, 1990.
[9] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky, “Comparing the usability of cryptographic apis,” in 2017 IEEE

Symposium on Security and Privacy (SP). IEEE, 2017, pp. 154–171.
[10] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You get where you’re looking for: The impact of information sources on code

security,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 289–305.
[11] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security developer studies with github users: Exploring a convenience sample,” in

Thirteenth Symposium on Usable Privacy and Security ({SOUPS} 2017), 2017, pp. 81–95.
[12] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Developers need support, too: A survey of security advice for software

developers,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE, 2017, pp. 22–26.
[13] I. Ajzen, “The theory of planned behavior: A bibliography: 1985–2015,” Retrieved from, 2015.
[14] ——, “The theory of planned behavior,” Organizational behavior and human decision processes, vol. 50, no. 2, pp. 179–211, 1991.
[15] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive model-driven user interface development systems,” ACM Computing Surveys (CSUR), vol. 47, no. 1,

p. 9, 2014.
[16] A. Al-Ahmad, B. A. Ata, and A. Wahbeh, “Pen testing for web applications,” International Journal of Information Technology and Web Engineering

(IJITWE), vol. 7, no. 3, pp. 1–13, 2012.
[17] E. M. Altmann, J. G. Trafton, and D. Z. Hambrick, “Momentary interruptions can derail the train of thought.” Journal of Experimental Psychology:

General, vol. 143, no. 1, p. 215, 2014.
[18] R. Amirova, “Attention tracking for developers,” in ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020, pp.
1690–1692. [Online]. Available: https://doi.org/10.1145/3368089.3418778

[19] J. R. Anderson and C. J. Lebiere, The atomic components of thought. Psychology Press, 2014.
[20] J. R. Anderson, The adaptive character of thought. Psychology Press, 1990.
[21] J. Andrade and J. May, BIOS instant notes in cognitive psychology. Taylor & Francis, 2004.
[22] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,” IEEE Security & Privacy, vol. 3, no. 1, pp. 84–87, 2005.
[23] H. Assal and S. Chiasson, “Security in the Software Development Lifecycle,” in Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018).

USENIX Association, 2018, pp. 281–296.
[24] H. Assal, S. Chiasson, and R. Biddle, “Cesar: Visual representation of source code vulnerabilities,” in 2016 IEEE Symposium on Visualization for

Cyber Security (VizSec). IEEE, 2016, pp. 1–8.

Manuscript submitted to ACM

https://insights.stackoverflow.com/survey/2019
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://tinyurl.com/uaa4ock
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://vulncat.fortify.com/en
https://doi.org/10.1145/3368089.3418778

38 Anonymised for review

[25] H. Assal and S. Chiasson, “’Think secure from the beginning’: A Survey with Software Developers,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. ACM, 2019, p. 289.

[26] E. Awh, E. K. Vogel, and S.-H. Oh, “Interactions between attention and working memory,” Neuroscience, vol. 139, no. 1, pp. 201–208, 2006.
[27] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code analysis to detect software security vulnerabilities-does experience matter?” in

International Conference on Availability, Reliability and Security. IEEE, 2009, pp. 804–810.
[28] A. Baddeley, Working memory, thought, and action. OuP Oxford, 2007, vol. 45.
[29] R. Balebako and L. Cranor, “Improving app privacy: Nudging app developers to protect user privacy,” IEEE Security & Privacy, vol. 12, no. 4, pp.

55–58, 2014.
[30] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. Cranor, “The privacy and security behaviors of smartphone app developers,” Proceedings of Workshop

on Usable Security (USEC), 2014.
[31] G. Baxter and I. Sommerville, “Socio-technical systems: From design methods to systems engineering,” Interacting with computers, vol. 23, no. 1, pp.

4–17, 2011.
[32] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation in software engineering: A systematic literature review,” Information and

software technology, vol. 50, no. 9-10, pp. 860–878, 2008.
[33] L. M. Bishop, P. L. Morgan, P. M. Asquith, G. Raywood-Burke, A. Wedgbury, and K. Jones, “Examining human individual differences in cyber

security and possible implications for human-machine interface design,” in International Conference on Human-Computer Interaction. Springer,
2020, pp. 51–66.

[34] M. Bishop, “A clinic for" secure" programming,” IEEE Security & Privacy, vol. 8, no. 2, pp. 54–56, 2010.
[35] A. F. Blackwell, “First steps in programming: A rationale for attention investment models,” in Proceedings IEEE 2002 Symposia on Human Centric

Computing Languages and Environments. IEEE, 2002, pp. 2–10.
[36] J. Blake, “Overcoming the ’value-action gap’ in environmental policy: Tensions between national policy and local experience,” Local environment,

vol. 4, no. 3, pp. 257–278, 1999.
[37] A. Booth, A. Sutton, and D. Papaioannou, “Systematic approaches to a successful literature review,” 2016.
[38] M. Bosnjak, I. Ajzen, and P. Schmidt, “The theory of planned behavior: selected recent advances and applications,” Europe’s Journal of Psychology,

vol. 16, no. 3, pp. 352–356, 2020.
[39] S. A. Brieger, “Social identity and environmental concern: The importance of contextual effects,” Environment and Behavior, vol. 51, no. 7, pp.

828–855, 2019.
[40] R. Brown, “The social identity approach: Appraising the tajfellian legacy,” British Journal of Social Psychology, vol. 59, no. 1, pp. 5–25, 2020.
[41] M. Bruch, E. Bodden, M. Monperrus, and M. Mezini, “Ide 2.0: collective intelligence in software development,” in Proceedings of the FSE/SDP

workshop on Future of software engineering research. ACM, 2010, pp. 53–58.
[42] E. A. Byrne and R. Parasuraman, “Psychophysiology and adaptive automation,” Biological psychology, vol. 42, no. 3, pp. 249–268, 1996.
[43] G. S. Camps, N. B. Agostini, and D. Kaeli, “Discovering programmer intention behind written source code,” in 2019 18th IEEE International Conference

On Machine Learning And Applications (ICMLA). IEEE, 2019, pp. 432–437.
[44] Category:Vulnerability Scanning Tools - OWASP, https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools, [Accessed Sept-2019].
[45] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How reliable is the crowdsourced knowledge of security implementation?” in Proceedings

of the 41st International Conference on Software Engineering. IEEE Press, 2019, pp. 536–547.
[46] R. B. Cialdini, Influence. Glenview, IL: Scott, Foresman and Company, 1985.
[47] R. B. Cialdini, C. A. Kallgren, and R. R. Reno, “A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms

in human behavior,” in Advances in experimental social psychology. San Diego, CA Academic Press, 1991, vol. 24, pp. 201–234.
[48] R. B. Cialdini and M. R. Trost, “Social influence: Social norms, conformity and compliance,” in In D. T. Gilbert, S. T. Fiske, G. Lindzey (Eds.), Handbook

of social psychology. Boston, MA: McGraw-Hill, 1998, vol. 2, pp. 151—-192).
[49] A. Conway, C. Jarrold, M. Kane, A. Miyake, and J. Towse, Variation in working memory. Oxford University Press, 2008.
[50] T. M. Corporation, “Cybersecurity resources,” https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-resources, (Accessed on

04/16/2020).
[51] R. Couceiro, G. Duarte, J. Durães, J. Castelhano, C. Duarte, C. Teixeira, M. C. Branco, P. Carvalho, and H. Madeira, “Pupillography as indicator of

programmers’ mental effort and cognitive overload,” in 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 2019, pp. 638–644.

[52] K. Crowston and E. E. Kammerer, “Coordination and collective mind in software requirements development,” IBM Systems Journal, vol. 37, no. 2, pp.
227–245, 1998.

[53] S. Cruz, F. Q. da Silva, and L. F. Capretz, “Forty years of research on personality in software engineering: A mapping study,” Computers in Human
Behavior, vol. 46, pp. 94–113, 2015.

[54] CVE - Common Vulnerabilities and Exposures (CVE), https://cve.mitre.org/, [Accessed Sep-2018].
[55] M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” Journal of Memory and Language, vol. 19, no. 4, p. 450,

1980.
[56] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. J. Desmarais, S. Dustdar,

G. Engels, K. Geihs, K. M. Göschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
Manuscript submitted to ACM

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-resources

The Case for Adaptive Security Interventions 39

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. D. Schlichting, B. R. Schmerl, D. B. Smith, J. P. Sousa,
G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns, K. Wong, and J. Wuttke, “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-Adaptive Systems, 24.10. - 29.10.2010, ser. Dagstuhl Seminar Proceedings, R. de Lemos,
H. Giese, H. A. Müller, and M. Shaw, Eds., vol. 10431. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2011/3156/

[57] A. Dijksterhuis and H. Aarts, “Goals, attention, and (un) consciousness,” Annual review of psychology, vol. 61, pp. 467–490, 2010.
[58] W. Du and R. Wang, “Seed: A suite of instructional laboratories for computer security education,” Journal on Educational Resources in Computing

(JERIC), vol. 8, no. 1, p. 3, 2008.
[59] J. Duncan, H. Emslie, P. Williams, R. Johnson, and C. Freer, “Intelligence and the frontal lobe: The organization of goal-directed behavior,” Cognitive

psychology, vol. 30, no. 3, pp. 257–303, 1996.
[60] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographic misuse in android applications,” in Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security. ACM, 2013, pp. 73–84.
[61] H. P. Enterprise, “Awareness is only the first step :a framework for progressive engagement of staff in cyber security,” https://www.riscs.org.uk/wp-

content/uploads/2015/12/Awareness-is-Only-the-First-Step.pdf, (Accessed on 07/09/2020).
[62] R. Falcone and C. Castelfranchi, “The human in the loop of a delegated agent: The theory of adjustable social autonomy,” IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 31, no. 5, pp. 406–418, 2001.
[63] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl, “Stack overflow considered harmful? the impact of copy&paste on

android application security,” in Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 121–136.
[64] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web vulnerability scanning tools for sql injection and xss attacks,” in 13th Pacific

Rim international symposium on dependable computing (PRDC 2007). IEEE, 2007, pp. 365–372.
[65] M. Frese and D. Zapf, “Action as the core of work psychology: A german approach,” Handbook of industrial and organizational psychology, vol. 4,

no. 2, pp. 271–340, 1994.
[66] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically generating personalized user interfaces with supple,” Artificial Intelligence, vol. 174, no.

12-13, pp. 910–950, 2010.
[67] V. Garg and J. Camp, “Heuristics and biases: implications for security design,” IEEE Technology and Society Magazine, vol. 32, no. 1, pp. 73–79, 2013.
[68] P. Godefroid, “Random testing for security: blackbox vs. whitebox fuzzing,” in Proceedings of the 2nd international workshop on Random testing:

co-located with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007). ACM, 2007, pp. 1–1.
[69] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller, Y. Acar, and S. Fahl, “Developers deserve security warnings, too: On the effect of

integrated security advice on cryptographic {API} misuse,” in Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018), 2018, pp.
265–281.

[70] J. L. Hale, B. J. Householder, and K. L. Greene, “The theory of reasoned action,” The persuasion handbook: Developments in theory and practice,
vol. 14, pp. 259–286, 2002.

[71] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements engineering: A framework for representation and analysis,” IEEE Transactions
on Software Engineering, vol. 34, no. 1, pp. 133–153, 2008.

[72] J. M. Haney and W. G. Lutters, “Skills and characteristics of successful cybersecurity advocates.” in SOUPS, 2017.
[73] J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, “" we make it a big deal in the company": Security mindsets in organizations that develop

cryptographic products,” in Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018), 2018, pp. 357–373.
[74] S. A. Haslam, Psychology in organizations: The Social Identity Approach. London: Sage, 2001.
[75] J.-M. Hoc, Psychology of programming. Academic Press, 2014.
[76] T. Hofer, “Evaluating static source code analysis tools,” Tech. Rep., 2010.
[77] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application security assessment by fault injection and behavior monitoring,” in Proceedings

of the 12th international conference on World Wide Web. ACM, 2003, pp. 148–159.
[78] L. L. Iacono and P. L. Gorski, “I do and i understand. not yet true for security apis. so sad,” in Proceedings 2nd European Workshop on Usable Security.

Internet Society. https://doi. org/10.14722/eurousec, 2017.
[79] W. James, “The principles of psychology,” 1890.
[80] J. Jetten, C. Haslam, and S. H. Alexander, The social cure: Identity, health and well-being. Psychology press, 2012.
[81] P. N. Johnson-Laird and R. M. Byrne, “Precis of deduction,” Behavioral and brain sciences, vol. 16, no. 2, pp. 323–333, 1993.
[82] R. L. Jones and A. Rastogi, “Secure coding: building security into the software development life cycle,” Information Systems Security, vol. 13, no. 5,

pp. 29–39, 2004.
[83] J. Jurjens, “Security analysis of crypto-based java programs using automated theorem provers,” in 21st IEEE/ACM International Conference on

Automated Software Engineering (ASE’06). IEEE, 2006, pp. 167–176.
[84] D. Kahneman and A. Tversky, “On the reality of cognitive illusions,” Psychological Review, vol. 103, no. 3, pp. 582–591, 1996.
[85] K. Karppinen, L. Yonkwa, and M. Lindvall, “Why developers insert security vulnerabilities into their code,” in 2009 Second International Conferences

on Advances in Computer-Human Interactions. IEEE, 2009, pp. 289–294.
[86] T. Kennedy, G. Regehr, J. Rosenfield, S. W. Roberts, and L. Lingard, “Exploring the gap between knowledge and behavior: a qualitative study of

clinician action following an educational intervention,” Academic Medicine, vol. 79, no. 5, pp. 386–393, 2004.
Manuscript submitted to ACM

http://drops.dagstuhl.de/opus/volltexte/2011/3156/
https://www.riscs.org.uk/wp-content/uploads/2015/12/Awareness-is-Only-the-First-Step.pdf
https://www.riscs.org.uk/wp-content/uploads/2015/12/Awareness-is-Only-the-First-Step.pdf

40 Anonymised for review

[87] I. Kirlappos, S. Parkin, and M. A. Sasse, “Learning from ”shadow security”: Why understanding non-compliance provides the basis for effective
security,” 2014.

[88] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software engineering,” 2007.
[89] A. Kołakowska, “Towards detecting programmers’ stress on the basis of keystroke dynamics,” in 2016 Federated Conference on Computer Science and

Information Systems (FedCSIS). IEEE, 2016, pp. 1621–1626.
[90] A. Kollmuss and J. Agyeman, “Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior?”

Environmental education research, vol. 8, no. 3, pp. 239–260, 2002.
[91] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert, F. Günther, C. Weinert, D. Demmler et al., “Cognicrypt: supporting developers

in using cryptography,” in Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE Press, 2017, pp.
931–936.

[92] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[93] P. C. Kyllonen and R. E. Christal, “Reasoning ability is (little more than) working-memory capacity?!” Intelligence, vol. 14, no. 4, pp. 389–433, 1990.
[94] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineering: A definition and systematic literature review,” Journal of Systems and

software, vol. 107, pp. 15–37, 2015.
[95] T. C. Lethbridge, “Priorities for the education and training of software engineers,” Journal of Systems and Software, vol. 53, no. 1, pp. 53–71, 2000.
[96] P. Li and B. Cui, “A comparative study on software vulnerability static analysis techniques and tools,” in Information Theory and Information

Security (ICITIS), 2010 IEEE International Conference on. IEEE, 2010, pp. 521–524.
[97] S. Y. Li, A. Blandford, P. Cairns, and R. M. Young, “The effect of interruptions on postcompletion and other procedural errors: an account based on

the activation-based goal memory model.” Journal of Experimental Psychology: Applied, vol. 14, no. 4, p. 314, 2008.
[98] T. Li, J. Horkoff, and J. Mylopoulos, “Holistic security requirements analysis for socio-technical systems,” Software & Systems Modeling, vol. 17,

no. 4, pp. 1253–1285, 2018.
[99] T. Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh, and H. Sharp, “An anatomy of security conversations in stack overflow,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 2019, pp. 31–40.
[100] T. Lopez, T. T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and H. Sharp, “An investigation of security conversations in stack overflow: perceptions of

security and community involvement,” in Proceedings of the 1st International Workshop on Security Awareness from Design to Deployment. ACM,
2018, pp. 26–32.

[101] K.-U. Loser and M. Degeling, “Security and privacy as hygiene factors of developer behavior in small and agile teams,” in IFIP International
Conference on Human Choice and Computers. Springer, 2014, pp. 255–265.

[102] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Nakamura, “An analysis of developer metrics for fault prediction,” in Proceedings of
the 6th International Conference on Predictive Models in Software Engineering. ACM, 2010, p. 18.

[103] G. McGraw, Software security: building security in. Addison-Wesley Professional, 2006, vol. 1.
[104] J. C. McVay and M. J. Kane, “Conducting the train of thought: working memory capacity, goal neglect, and mind wandering in an executive-control

task.” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 35, no. 1, p. 196, 2009.
[105] S. Michie, M. M. Van Stralen, and R. West, “The behaviour change wheel: a new method for characterising and designing behaviour change

interventions,” Implementation science, vol. 6, no. 1, p. 42, 2011.
[106] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops: why do java developers struggle with cryptography apis?” in Proceedings of

the 38th International Conference on Software Engineering. ACM, 2016, pp. 935–946.
[107] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On conducting security developer studies with cs students: Examining a password-storage

study with cs students, freelancers, and company developers,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–13.

[108] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and M. Smith, “" If you want, I can store the encrypted password": A Password-Storage
Field Study with Freelance Developers,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 2019, p. 140.

[109] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand, and M. Smith, “Why do developers get password storage wrong?: A qualitative
usability study,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017, pp. 311–328.

[110] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable software components,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 529–540.

[111] F. G. Neville, “Preventing violence through changing social norms,” P., Donnelly, C. Ward,(Eds.), Oxford textbook of violence prevention: Epidemiology,
evidence and policy, pp. 239–244, 2015.

[112] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A stitch in time: Supporting android developers in writingsecure code,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017, pp. 1065–1077.

[113] D. Nigbur, E. Lyons, and D. Uzzell, “Attitudes, norms, identity and environmental behaviour: Using an expanded theory of planned behaviour to
predict participation in a kerbside recycling programme,” British Journal of Social Psychology, vol. 49, no. 2, pp. 259–284, 2010.

[114] D. A. Norman, “Categorization of action slips.” Psychological review, vol. 88, no. 1, p. 1, 1981.
[115] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang, “It’s the psychology stupid: how heuristics explain software vulnerabilities

and how priming can illuminate developer’s blind spots,” in Proceedings of the 30th Annual Computer Security Applications Conference. ACM, 2014,
Manuscript submitted to ACM

The Case for Adaptive Security Interventions 41

pp. 296–305.
[116] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez, R. Bobhate, L. A. DeLong, J. Cappos, and Y. Brun, “{API} blindspots: Why

experienced developers write vulnerable code,” in Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018), 2018, pp. 315–328.
[117] OWASP, “Source code analysis tools,” https://owasp.org/www-community/Source_Code_Analysis_Tools, (Accessed on 01/24/2020).
[118] OWASP Foundation, the Open Source Foundation for Application Security, https://owasp.org/, (Accessed on 03/06/2020).
[119] OWASP Secure Coding Practices - Quick Reference Guide, https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_

Reference_Guide, [Accessed July-2019].
[120] H. E. Pashler, The psychology of attention. MIT press, 1999.
[121] S. Pemberton, “Programmers are humans too,” ACM SIGCHI Bulletin, vol. 28, no. 1, p. 96, 1996.
[122] T. F. Pettigrew, “The emergence of contextual social psychology,” Personality and Social Psychology Bulletin, vol. 44, no. 7, pp. 963–971, 2018.
[123] S. L. Pfleeger, M. A. Sasse, and A. Furnham, “From weakest link to security hero: Transforming staff security behavior,” Journal of Homeland

Security and Emergency Management, vol. 11, no. 4, pp. 489–510, 2014.
[124] O. Pieczul, S. Foley, and M. E. Zurko, “Developer-centered security and the symmetry of ignorance,” in Proceedings of the 2017 New Security

Paradigms Workshop, 2017, pp. 46–56.
[125] F. Piessens, “The cyber security body of knowledge, software security knowledge area issue 1.0,” 2019.
[126] A. Poller, L. Kocksch, K. Kinder-Kurlanda, and F. A. Epp, “First-time security audits as a turning point?: Challenges for security practices in an

industry software development team,” in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM,
2016, pp. 1288–1294.

[127] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda, “Can security become a routine? a study of organizational change in an agile
software development group,” in Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing, 2017, pp.
2489–2503.

[128] I. Rauf, E. Troubitsyna, and I. Porres, “A systematic mapping study of api usability evaluation methods,” Computer Science Review, vol. 33, pp. 49–68,
2019.

[129] I. Rauf, D. van der Linden, M. Levine, J. Towse, B. Nuseibeh, and A. Rashid, “The impact of social considerations on app developers’ choices,” in
Proceedings of the 42nd International Conference on Software Engineering Workshops (ICSEW’20), 2020.

[130] S. Reicher, R. Spears, and S. A. Haslam, “The social identity approach in social psychology,” Sage identities handbook, pp. 45–62, 2010.
[131] A. E. Reid, R. B. Cialdini, and L. S. Aiken, “Social norms and health behavior,” in Handbook of behavioral medicine. Springer, New York, NY, 2010.
[132] K. Reinecke and A. Bernstein, “Improving performance, perceived usability, and aesthetics with culturally adaptive user interfaces,”ACMTransactions

on Computer-Human Interaction (TOCHI), vol. 18, no. 2, p. 8, 2011.
[133] C. Robert, E. Borella, D. Fagot, T. Lecerf, and A. De Ribaupierre, “Working memory and inhibitory control across the life span: Intrusion errors in

the reading span test,” Memory & cognition, vol. 37, no. 3, pp. 336–345, 2009.
[134] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers comprehend software?” in 2012 34th International Conference on

Software Engineering (ICSE). IEEE, 2012, pp. 255–265.
[135] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research challenges,” ACM transactions on autonomous and adaptive systems

(TAAS), vol. 4, no. 2, p. 14, 2009.
[136] T. Sallinen, “Secure coding intention via protection motivation theory based survey,” 2020.
[137] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.
[138] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow analysis for early vulnerability detection,” Journal of Systems and Software, vol.

113, pp. 337–361, 2016.
[139] M. A. Sasse and A. Rashid, “Human factors knowledge area, software security knowledge area issue 1.0,” 2019.
[140] J. M. Schumann, Automated theorem proving in software engineering. Springer Science & Business Media, 2001.
[141] A. K. Shah and D. M. Oppenheimer, “Heuristics made easy: an effort-reduction framework.” Psychological bulletin, vol. 134, no. 2, p. 207, 2008.
[142] P. Sheeran and T. L. Webb, “The intention–behavior gap,” Social and personality psychology compass, vol. 10, no. 9, pp. 503–518, 2016.
[143] M. Siegrist and G. Cvetkovich, “Perception of hazards: The role of social trust and knowledge,” Risk analysis, vol. 20, no. 5, pp. 713–720, 2000.
[144] A. Sillitti, G. Succi, and J. Vlasenko, “Understanding the impact of pair programming on developers attention: A case study on a large industrial

experimentation,” in 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, M. Glinz, G. C. Murphy,
and M. Pezzè, Eds. IEEE Computer Society, 2012, pp. 1094–1101. [Online]. Available: https://doi.org/10.1109/ICSE.2012.6227110

[145] D. J. Simons and C. F. Chabris, “Gorillas in our midst: Sustained inattentional blindness for dynamic events,” perception, vol. 28, no. 9, pp. 1059–1074,
1999.

[146] E. R. Smith and G. R. Semin, “Socially situated cognition: cognition in its social context.” 2004.
[147] J. R. Smith and W. R. Louis, “Do as we say and as we do: The interplay of descriptive and injunctive group norms in the attitude–behaviour

relationship,” British Journal of Social Psychology, vol. 47, no. 4, pp. 647–666, 2008.
[148] ——, “Group norms and the attitude–behaviour relationship,” Social and Personality Psychology Compass, vol. 3, no. 1, pp. 19–35, 2009.
[149] J. Smith, B. Johnson, E. Murphy-Hill, B.-T. Chu, and H. Richter, “How developers diagnose potential security vulnerabilities with a static analysis

tool,” IEEE Transactions on Software Engineering, 2018.

Manuscript submitted to ACM

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://doi.org/10.1109/ICSE.2012.6227110

42 Anonymised for review

[150] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Questions developers ask while diagnosing potential security vulnerabilities with
static analysis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 248–259.

[151] E. T. Solovey, F. Lalooses, K. Chauncey, D. Weaver, M. Parasi, M. Scheutz, A. Sassaroli, S. Fantini, P. Schermerhorn, A. Girouard et al., “Sensing
cognitive multitasking for a brain-based adaptive user interface,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2011, pp. 383–392.

[152] Source Code Analysis Tools - OWASP, https://www.owasp.org/index.php/Source_Code_Analysis_Tools, [Accessed Sept-2019].
[153] M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in 2019 IEEE European Symposium on Security and PrivacyWorkshops (EuroS&PW).

IEEE, 2019, pp. 129–138.
[154] C. Tanner, “Constraints on environmental behaviour,” Journal of environmental psychology, vol. 19, no. 2, pp. 145–157, 1999.
[155] B. Taylor and S. Azadegan, “Moving beyond security tracks: integrating security in cs0 and cs1,” in ACM SIGCSE Bulletin, vol. 40, no. 1. ACM,

2008, pp. 320–324.
[156] D. R. Thomas, “A general inductive approach for analyzing qualitative evaluation data,” American journal of evaluation, vol. 27, no. 2, pp. 237–246,

2006.
[157] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during application development: an application security expert perspective,” in

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 2018, p. 262.
[158] J. Towse, M. Levine, M. Petre, A. Bandara, T. Lopez, A. Rashid, I. Rauf, H. Sharp, T. Tun, D. van der Linden, and B. Nuseibeh, “The case for

understanding secure coding as a psychological enterprise,” 2020, Manuscript submitted for publication.
[159] E. Tulving, “What is episodic memory?” Current directions in psychological science, vol. 2, no. 3, pp. 67–70, 1993.
[160] T. T. Tun, M. Yang, A. K. Bandara, Y. Yu, A. Nhlabatsi, N. Khan, K. M. Khan, and B. Nuseibeh, “Requirements and specifications for adaptive security:

concepts and analysis,” in 2018 IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE, 2018, pp. 161–171.

[161] J. C. Turner, M. A. Hogg, P. J. Oakes, S. D. Reicher, and M. S. Wetherell, Rediscovering the social group: A self-categorization theory. Oxford New
York Blackwell, 1987.

[162] J. C. Turner, P. J. Oakes, S. A. Haslam, and C. McGarty, “Self and collective: Cognition and social context,” Personality and social psychology bulletin,
vol. 20, no. 5, pp. 454–463, 1994.

[163] J. J. Van Bavel and A. Pereira, “The partisan brain: An identity-based model of political belief,” Trends in cognitive sciences, vol. 22, no. 3, pp. 213–224,
2018.

[164] D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre, M. Levine, J. Towse, and A. Rashid, “Schrödinger’s security: Opening the box
on app developers’ security rationale,” in Proceedings of the 42nd International Conference on Software Engineering (ICSE), 2020.

[165] D. van der Linden, E. Williams, J. Hallett, and A. Rashid, “The impact of surface features on choice of (in) secure answers by stackoverflow readers,”
IEEE Transactions on Software Engineering, 2020.

[166] A. Van Lamsweerde, “Elaborating security requirements by construction of intentional anti-models,” in Proceedings. 26th International Conference
on Software Engineering. IEEE, 2004, pp. 148–157.

[167] A. Van Lamsweerde and E. Letier, “Integrating obstacles in goal-driven requirements engineering,” in Proceedings of the 20th international conference
on Software engineering. IEEE, 1998, pp. 53–62.

[168] D. van Moorselaar and H. A. Slagter, “Inhibition in selective attention,” Annals of the New York Academy of Sciences, vol. 1464, no. 1, p. 204, 2020.
[169] S. M. Waldron, J. Patrick, P. L. Morgan, and S. King, “Influencing cognitive strategy by manipulating information access,” The Computer Journal,

vol. 50, no. 6, pp. 694–702, 2007.
[170] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse, and A. Rashid, “Interventions for software security: Creating a lightweight program of assurance

techniques for developers,” Software: Practice and Experience, vol. 50, no. 3, pp. 275–298, 2020.
[171] C. Weir, L. Blair, I. Becker, J. Noble, A. Sasse, and A. Rashid, “Interventions for software security: Creating a lightweight program of assurance

techniques for developers,” in Proceedings of the 41st International Conference on Software Engineering, H. Sharpe and M. Whalen, Eds. IEEE, 2 2019.
[172] C. Weir, A. Rashid, and J. Noble, “How to improve the security skills of mobile app developers: Comparing and contrasting expert views,” 2016.
[173] ——, “I’d like to have an argument, please: Using dialectic for effective app security,” 2017.
[174] R. Werlinger, K. Hawkey, D. Botta, and K. Beznosov, “Security practitioners in context: Their activities and interactions with other stakeholders

within organizations,” International Journal of Human-Computer Studies, vol. 67, no. 7, pp. 584–606, 2009.
[175] M. Whitney, H. Lipford-Richter, B. Chu, and J. Zhu, “Embedding secure coding instruction into the ide: A field study in an advanced cs course,” in

Proceedings of the 46th ACM Technical Symposium on Computer Science Education, 2015, pp. 60–65.
[176] J. A. Whittaker and R. Ford, “How to think about security,” IEEE security & privacy, vol. 4, no. 2, pp. 68–71, 2006.
[177] C. Williams, H. M. Hodgetts, C. Morey, B. Macken, D. M. Jones, Q. Zhang, and P. L. Morgan, “Human error in information security: Exploring the

role of interruptions and multitasking in action slips,” in International Conference on Human-Computer Interaction. Springer, 2020, pp. 622–629.
[178] J. Witschey, S. Xiao, and E. Murphy-Hill, “Technical and personal factors influencing developers’ adoption of security tools,” in Proceedings of the

2014 ACM Workshop on Security Information Workers. ACM, 2014, pp. 23–26.
[179] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and T. Zimmermann, “Quantifying developers’ adoption of security tools,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 260–271.

Manuscript submitted to ACM

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

The Case for Adaptive Security Interventions 43

[180] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software engineering, 2014, pp. 1–10.

[181] C. Wohlin and R. Prikladniki, “Systematic literature reviews in software engineering,” Information and Software Technology, vol. 55, no. 6, pp.
919–920, 2013.

[182] I. M. Woon and A. Kankanhalli, “Investigation of is professionals’ intention to practise secure development of applications,” International Journal of
Human-Computer Studies, vol. 65, no. 1, pp. 29–41, 2007.

[183] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on secure development tool adoption: why security tools spread,” in Proceedings of the
17th ACM conference on Computer supported cooperative work & social computing. ACM, 2014, pp. 1095–1106.

[184] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside: Ide support for web application security,” in Proceedings of the 27th Annual Computer Security
Applications Conference. ACM, 2011, pp. 267–276.

[185] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security errors?” in IEEE symposium on visual languages and human-centric computing
(VL/HCC). IEEE, 2011, pp. 161–164.

[186] L. Yang, X. Li, and Y. Yu, “Vuldigger: A just-in-time and cost-aware tool for digging vulnerability-contributing changes,” in GLOBECOM 2017-2017
IEEE Global Communications Conference. IEEE, 2017, pp. 1–7.

[187] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security questions do developers ask? a large-scale study of stack overflow posts,” Journal
of Computer Science and Technology, vol. 31, no. 5, pp. 910–924, 2016.

[188] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle in a haystack: Predicting security vulnerabilities for windows vista,” in
Software Testing, Verification and Validation (ICST), 2010 Third International Conference on. IEEE, 2010, pp. 421–428.

Manuscript submitted to ACM

44 Anonymised for review

A APPENDIX: INCLUDED STUDIES

Tables 5 lists the 29 primary studies included in the review.

B APPENDIX: DETAILED CATALOGUE OF FACTORS INFLUENCING DEVELOPER’S SECURITY
BEHAVIOUR

Tables 6 - 8 show the detailed catalogue of factors that influence security behaviour of the developers.

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 45

Table 5. Selected Papers

Authors Title Year Reference
Weir et al. "Interventions for software security: Creating a light-

weight program of assurance techniques for developers"
2019 [170]

Naiakshina et al. " If you want, I can store the encrypted password": A
Password-Storage Field Study with Freelance Develop-
ers

2019 [108]

Assal and Chiasson "Think secure from the beginning": A Survey with Soft-
ware Developers

2019 [25]

Chen et al. How Reliable is the Crowdsourced Knowledge of Secu-
rity Implementation?

2019 [45]

Kula et al. Do developers update their library dependencies?-An
empirical study on the impact of security advisories on
library migration

2018 [92]

Thomas et al. Security during application development: an application
security expert perspective

2018 [157]

Assal and Chiasson Security in the Software Development Lifecycle 2018 [23]
Smith et al. How developers diagnose potential security vulnerabil-

ities with a static analysis tool
2018 [149]

Oliveira et al. API Blindspots: Why Experienced Developers Write
Vulnerable Code

2018 [116]

Naiakshina et al. Why do developers get password storage wrong?: A
qualitative usability study

2017 [109]

Acar et al. Developers need support, too: A survey of security ad-
vice for software developers

2017 [12]

Acar et al. Security developer studies with github users: Exploring
a convenience sample

2017 [11]

Fischer et al. Stack overflow considered harmful? the impact of
copy&paste on android application security

2017 [63]

Lo Iacono and Gorski I do and i understand. not yet true for security apis. so
sad

2017 [78]

Weir et al. I’d Like to Have an Argument, Please: Using Dialectic
for Effective App Security

2017 [173]

Nadi et al. Jumping through hoops: Why do Java developers strug-
gle with cryptography APIs?

2016 [106]

Acar et al. You get where you’re looking for: The impact of infor-
mation sources on code security

2016 [10]

Yang et al. What security questions do developers ask? a large-
scale study of stack overflow posts

2016 [187]

Poller et al. First-time Security Audits As a Turning Point?: Chal-
lenges for Security Practices in an Industry Software
Development Team

2016 [126]

Manuscript submitted to ACM

46 Anonymised for review

Table 5. Selected Papers

Authors Title Year Reference
Witschey et al. Quantifying developers’ adoption of security tools 2015 [179]
Witschey et al. Technical and Personal Factors Influencing Developers’

Adoption of Security Tools
2014 [178]

Loser and Degeling Security and privacy as hygiene factors of developer
behavior in small and agile teams

2014 [101]

Balebako et al. The Privacy and Security Behaviors of Smartphone App
Developers

2014 [30]

Oliveira et al. It’s the psychology stupid: how heuristics explain soft-
ware vulnerabilities and how priming can illuminate
developer’s blind spots

2014 [115]

Xiao et al. Social influences on secure development tool adoption:
why security tools spread

2014 [183]

Egele et al. An Empirical Study of CryptographicMisuse in Android
Applications

2013 [60]

Xie et al. Why do programmers make security errors? 2011 [185]
Karppinen et al. Why developers insert security vulnerabilities into their

code
2009 [85]

Dejan et al. Static code analysis to detect software security vulnera-
bilities – does experience matter?

2009 [27]

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 47

Table 6. Factors associated with Knowledge Deficit

Knowledge Deficit
Internal Factors Instances
Misconceptions (I1) "We found a number of freelancers were reducing password storage security to a

visual representation and thus using Base64 as their preferred method to ensure
security. Additionally, encryption and hashing were used as synonyms, which was
often reflected by the freelancers’ programming code" [108]
"some developers’ mental model of security revolves mainly around security func-
tions, such as using the proper client-server communication protocol..However, the
developer did not discuss vulnerabilities due to implementation mistakes that are
not necessarily preventable by security requirements."[23]

Use of outdated infor-
mation (I2)

" Even participants who attempted to store passwords securely often did so inse-
curely because the methods they learnt are now outdated" [109]
"A number of freelancers used outdated methods to store user passwords securely."
[108]
"a common strategy for participants was to rely on their existing knowledge of
sensitive operations and data sources in the application. ... such reliance may be
failure-prone whenever the code has been changed without their knowledge."[149]

False assumptions/ in-
ferences (I3)

"during some tasks, participants incorrectly assumed input validation had been
handled securely" [149]
" For instance, any class that started with Test participants assumed was as JUnit
test case, and thus was not user-facing, and therefore not a potential source of
tainted data...this strategy fails in situations where the word “Test” is overloaded;
this happens in iTrust where “Test” can also refer to a medical laboratory test."
[149]
" P-T7 said, “I think they kind of assume that if you’re a developer, you’re not
necessarily responsible for the security of the system, and you [do] not necessarily
have to have the knowledge to deal with it.” [23]

Misplaced Trust on
frameworks/ third-
party APIs (I4)

"Developers assume that frameworks will handle security developers fully trust
existing frameworks with their applications’ security and thus take security for
granted "[23]
A fair number of our freelancers argued that they trust standards and third party
APIs to do the right thing and store passwords securely... However, this trust is
sometimes misplaced. "[108]
"...developers tend to blindly trust code from a reputable source, e.g., API code."[115]
"...developers fully trust existing frameworks with their applications’ security and
thus take security for granted."[23]

Lack of clarity about
regulations (I5)

"When asked about current and upcoming privacy and security regulations, par-
ticipants showed little knowledge" [30]
" developers who have some knowledge of legal requirements are less likely to
make accidental errors that violate regulations."[11], hence, developers are likely
to make accidental errors if they have more knowledge of legal requirements

Manuscript submitted to ACM

48 Anonymised for review

Table 6. Factors associated with Knowledge Deficit

Knowledge Deficit
Internal Factors Instances
Lack of domain knowl-
edge (I6)

"S1 showed that another obstacle faced by developers is lack of domain knowledge"
[106]
..it becomes a question of which defenses to implement: where one should spend
the time and effort defending the system to deter the largest and most damag-
ing potential exploits. Making those choices requires an understanding of the
potential attackers...Neither attacker profiles not attack descriptions, however, are
conventional knowledge for a software developer.[173]

Lack of experience
(with tools, especially
security tools, APIs and
programming

"Specific SAT experience more than doubled the number of correct answers and a
combination of security experience and SAT experience almost tripled the number
of correct security answers"[27], hence the number of security solutions can be
affected by the lack of security and SAT experience.

languages) (I7) Developers think that they are not able to implement correct security mecha-
nisms as they have less development experience. [78]
"We did, however, find a significant effect for Python experience"[11]

Lack of awareness of Se-
curity Tools and

" participants wanted to determine whether certain input parameters were ever
validated, but were not aware of any tools to assist in this process [149]

vulnerabilities" (I8) Table 7 shows that many of the affected projects were unaware of the vulnerability
to their software[92]
"Three interviewees who used dynamic programming languages did not use se-
curity tools because they did not believe good security tools existed for these
languages." [178]

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 49

Table 6. Factors associated with Knowledge Deficit

Knowledge Deficit
External Factors Instances
Inadequate information Insecure advice on online social forums , [45], [63]
sources (E1) "web search engines were not fully aware of participants’ programming contexts,

they returned information about a superset of the relevant attacks" [149] and the
developer may be distracted by irrelevant information. [149]
"official and book participants said they would have liked to access Stack Overflow
or search engines such as Google, so that they could search for their specific
problems rather than reading background information. " [10]
"Different standards and security recommendations make it difficult for developers
to decide what is the right course of action, which creates frustration."[109]
" Similar to students’ solutions from the lab study, we identified freelancers’ security
code on the Internet."[108]
"One book user mentioned the “danger that books could be outdated.”" [10]
Variance in coverage of different topics. [10]
Laws and regulations are mentioned in only two guides. [12]
"Despite years of intensive research and commercial development creating and
improving program-analysis tools, these tools are also only mentioned in seven
guides"[12]
Lack of continuous feedback "To keep apps secure requires continuous feedback,
both to detect actual exploits, and to detect trends of use that may represent
longer-term threats. Getting such feedback is much more difficult with mobile
apps than with servers....changes to the supporting environment often have security
implications requiring changes to apps to support them" [173]

Lack of information
sharing among teams
(E2)

Sometimes " organizational politics" can make security issues worse as one
teams do not share "all the facts" with others.[173]

Usability issues with se-
curity tools and APIs
(E11)

"Participants’ main obstacles are lack of high-level APIs, poor documentation, and
bad API design (e.g., misleading defaults and difficult debugging)"[106]

"another obstacle faced by developers is lack of domain knowledge "[106]
"...respondents generally state they had problems just “doing it right”. Eleven others
explained in more detail that they have struggled to understand or use an API"[78]
"When participants navigated through chains of method invocations, they were
forced to choose between different tools, where each tool had specific advantages
and disadvantages."[149]
"..the default behavior in crypto-graphic libraries is often not a recommended
practice." [60]
Insufficient documentation "..the default behavior in crypto-graphic libraries is
often not a recommended practice." [60]
Defaults are not recommended practice ".. the default behavior in crypto- graphic
libraries is often not a recommended practice." [60]

Manuscript submitted to ACM

50 Anonymised for review

Table 7. Factors associated with Attention Deficit

Attention Deficit
Internal Instances
Not identifying security
blindspots in tasks (I9)

"... some participants erroneously considered only a subset of the possible attacks
... By failing to consider cross site scripting attacks, participants overlooked the
program path that exposed a true attack." [149]
"I knew about it because I happen to work on another project where we had to fix
this very problem, but I didn’t connect two dots." [92]
"Developers assume common cases..as software vulnerabilities of-
ten lie in the corner cases and unusual information flows, they
tend to be left out from developers’ heuristics."[115]
"...security education helps, but developers can have difficulties correlating partic-
ular learned vulnerability or security information with their working task"[115]
"The presence of blindspots correlated negatively with the developers’ accuracy
in answering implicit security questions and the developers’ ability to identify
potential security concerns in the code."[116]
"...a team will always suffer to some extent from ‘groupthink’; the
need to generate a shared understanding brings with it the danger
that...[it] may include misunderstandings and blind spots." [173]
"It is notoriously difficult to spot one’s own errors... especially true when the
errors are faults in complex reasoning, or are due to misunderstandings. Thus,
a programmer working solo is likely to create avoidable security problems, just
because they can naturally have only one point of view." [173]

Not handling cognitive
load (I10)

"Regardless of the strategies and tools participants used, they had to manually
track their progress on each task ... Participants had to reason about each of those
attacks individually and remember which attacks they had ruled out."[149]
"security thinking requires cognitive effort"[115]
"... to facilitate remembering details, and to understand what the system is doing
in different situations, developers bypass security features and add information to
the user interface. This increase in usability facilitates testing but also introduces
security vulnerabilities because there is a risk that these “improvements” are
forgotten and later fielded. " [85]
".. developers perceive the practice of updating their dependencies as added effort
and responsibilities that should be performed in their ‘spare time’. [92]

Developer’s non-secure
routines (I11)

"Participants used error-prone strategies even when more reliable tools and strate-
gies were available"[149]

Lack of curiosity (I12) "Developers exhibiting greater openness as a personality trait were more likely to
detect API blind spots" [116]
"We found security tool adopters were more likely than non-adopters to say they
actively sought out information about security tools"[179]
"...a developer’s inquisitiveness about security tools affects the likelihood she will
adopt a security tool.[178]

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 51

Table 7. Factors associated with Attention Deficit

Attention Deficit
Internal Factors Instances
Loss of focus on secu-
rity (I13)

"most of our participants focused on the functionality and only added security as
an afterthought - even those who were primed for security." [108]
"security is not part of developer’s mindset while coding" [115]
"...most of our participants focused on the functionality and only added security
as an afterthought"[109]
"..so even if I might have heard of the current vulnerability, I simply forgot to
address it." [92]
"So as the time or budget is limited, software security is one of the concerns that
get overlooked, either explicitly or implicitly."[185]

External Factors Instances
Task complexity (E3) "The complexity of the application... were named as reasons for this. (insecure

storage) [108]
"responses... also provide evidence that the complex nature of these inter-
dependencies (colloquially termed as ‘dependency hell’) is an influencing factor
on whether or not a dependency will be migrated" [92]

Lack of division of
labour (E4)

"This caused a first gap between the individual groups
and the management: teams enjoyed autonomy but
as a consequence management attributed security to them as an intrinsic quality
requirement" [126]
"...there is a frequent danger that security problems can ‘fall between two stools’,
remaining ignored because two teams each think the other is
responsible for the problem. The problem is exacerbated
if the developers are not natural communicators" [173]

Absence of explicit ex-
pectation of secure cod-
ing

"This study showed how priming security information when developers need it, on
the spot, changed their approach towards security and adapted them to include
security thinking in their repertoire of heuristics..." [115]

(E5) "freelancers do not store passwords securely unless prompted [108]
Through the feedback, we find that out of the 16 responses, 11 (69%) immediately
thanked us for the notification and proceeded to update their dependencies to the
safer dependency versions."[92]

Limited Resources (E6) "Even self-described privacy advocates and security experts grappled with imple-
menting privacy and security protection with limited time and resources." [30]

Manuscript submitted to ACM

52 Anonymised for review

Table 8. Factors associated with Intent Deficit

Intent Deficit
Internal Instances
Loss of focus on
security (I13)

" As shown both by existing research ... and our results, analysis tools produce many false positives,
and is one reason that developers are discouraged from using such tools." [157]
"So as the time or budget is limited, software security is one of the concerns that get overlooked,
either explicitly or implicitly."[185]

Requires extra
effort (I14)

"...[developers] intentionally introduce complexity to avoid rewriting existing code, and misuse
frameworks to fit their existing codebase without worrying about introducing vulnerabilities.
" [23]
"One developer described keeping up with privacy and security practices as a daunting task, say-
ing, “Unfortunately, I very rarely have time to actually sift through it and try to digest every-
thing that’s going on. I primarily rely on other people to let me know.”" [30]
"...we find developers perceive the practice of updating their dependencies as added effort...[quoting
a developer] ’Just that it’s not very easy to keep track of it. ’ [92]

Not perceiving "Participants are motivated by the challenge or by their own values (e.g., to protect their users."[25]
usefulness of "Most implied security motivation as a fundamental requirement"[170]
secure practices
(I15)

"...interviewees who interacted frequently with security teams were more likely to use security
tools, out of a greater sense of personal responsibility for security." [183]
"Security auditors in our study struggled with convincing developers or other stakeholders that a
security issue was real and in need of remediation. Many...participants mentioned that developers
had difficulty in seeing a harmless example exploit and understanding that the vulnerability was
serious."[157]
"Most developers may not have a concrete understanding of the consequences of deploying insecure
software..."[183]
"perceived negative consequences" is among the key software security motivators, hence, without
that perception, developers are not motivated to code securely [25]
"respondents (had) little belief that privacy policies were useful"[30]
"...in general, adopters think security tools have a positive impact on their work.", hence those who
did not consider it positive were less likely to adopt security tools[179]
"developers from the security inattentive group prioritize functionality and coding standards over
security." [23]
"...the remaining two projects stated that the update was unnecessary as the affected component
had little impact on the project"[92]
Both parties focused on short-to-market feature development; security could not (yet) serve this
purpose. [126]
"...interviewees said security tools generated many false positives, and one noted that this greatly
increased the time “cost” of tool use without increasing its benefits." [178]
"...some developers reported that the software they developed was only used by authenticated,
trusted users, so they thought security was not important. As a result, these developers did not use
security tools." [178]
"Perceived user base of the applications developed by software developers had an influence on
participants’ security tool adoption decisions as well" [183]

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 53

Table 8. Factors associated with Intent Deficit

Intent Deficit
Internal Instances
Perceived lack of own
security (I16)

"most frequent deterrents to software security were ... being unequipped for security because
of a perceived lack of security knowledge"[25]

knowledge "Security tool adopters were more likely to report they were educated or had opportunities to
continue their education in security" [179], hence developers without security education
and opportunity were less likely to adopt security tools
"Several freelancers stated that they were unsure about the security of their solutions. "
[108]

Attitude of someone
else’s Responsibility
(I17)

"..some developers have security background, but do not apply their knowledge in practice,
as it is neither considered their responsibility nor a priority" [23]

"another developer from the latter project deferred the responsibility to another project"[92]
"If a requirement is important enough, somebody else can implement that" [101]
"...there is a frequent danger that security problems can ’fall between two stools’, remain-
ing ignored because two teams each think the other is responsible for the problem. The
problem is exacerbated if the developers are not natural communicators" [173]
"Non-users (of security tools) felt they could depend on code reviews"[183]
"...key inhibitor toward secure software development practices is a
it’s not my responsibility attitude"[185]
"...many stated that they are not responsible for security and they are not required to secure
their applications."[23]
"we find developers perceive the practice of updating their dependencies as added.. respon-
sibilities that should be performed in their ’spare time’ " [92]
"...while security teams can make developers feel social pressure to code securely, as dis-
cussed previously, they also can make developers feel that security is not their responsibil-
ity."[183]

Manuscript submitted to ACM

54 Anonymised for review

Table 8. Factors associated with Intent Deficit

Intent Deficit
External Instances
Absence of explicit ex-
pectation for secure

"...expectation of security knowledge directly affects the degree of security integra-
tion in developers’ tasks"[23]

coding (E5) We found that security prompting had a statistically significant effect on whether
the participants stored the passwords in a secure way. "[108]
".... our participants relied on client requirements when deciding whether they
wanted to store the passwords securely. Therefore, task description is a main
motivator when deciding to deal with security." [108]
"Despite the fact that storage of passwords should self-evidently be a security
sensitive task, participants who were not explicitly told to employ secure storage
stored the passwords in plain text."[109]
"The second strongest effect in the survey was that adopters were more likely to
report their superiors expect them to use security tools ", hence if not expected
developers are less likely to adopt security tools [179]

Limited Resources (E6) "Some participants said their team decides their security practices based on the
available budget and/or employees who can perform security tasks" [23]
"balancing risk against resource limitations is a key security challenge"[157]
"Many discussed privacy and security as being part of the development process
but not a top priority, and concerns like monetizing the app or limited resources
often trump the desire to follow rigorous privacy and security standards." [30]
"Implied in every decision about software security is a trade-off of the cost of
the security against the benefit received. Every security enhancement needs to be
weighed against other uses of the investment (financial, time, usability) required
"[173]
"Five chose not to use security tools because the ones they had used were too slow
or used too many resources ... Seven said mature security tools were too expensive
to be cost-effective and chose not to use security tools at all ..." [178]
" we find developers perceive the practice of updating their dependencies as added
effort...that should be performed in their ’spare time’"[92]
" ... lack of time ... were named as reasons for this."(i.e. to concentrate on func-
tionality first) [92]
"Business deadlines, planned budget, customer demands, and developer knowledge
all impact the priorities for the limited resources of a project"[185]
"The organizational environment, as it is responsible for a tight timescale ... and
not counting security to business priorities.. " [78]
"So as the time or budget is limited, software security is one of the concerns that
get overlooked, either explicitly or implicitly." [185]
..the lack of a viable replacement dependency are some of the possible reasons why
affected maintainers show no response to the security advisory. [92]

Manuscript submitted to ACM

The Case for Adaptive Security Interventions 55

Table 8. Factors associated with Intent Deficit

Intent Deficit
External Instances
Security Tools not
reachable (E7)

"Security tool adopters ... were permitted to try security tools to adequately see what
they do" [178, 179], hence developers who were not permitted to try security
tools enough were not security tools adopters
"using a new tool requires written authorization which may take weeks so partici-
pant rarely investigated new tools" [183]
"most frequent deterrents to software security were ... being unequipped for security
because of ... the unavailability of necessary tools" [25]

Lack of security cul-
ture in teams/ compa-
nies (E8)

"Organizational changes towards security influence adoption of security practices"
[126]

" We revealed organizational and communication challenges to show that adopting
secure development practices is not just a simple developer awareness problem,
but requires dealing with complex organizational and social factors in software
developing companies."[126]
"developers who use security tools were more prestigious than those who do not"
[179]
"...frequency of interaction with security experts..maybe a more important influ-
ence...the strongest of all the relationships we found was with the statement “I
have seen what others do using security tools" [179]
"lack of security can stem from systemic causes within the company or team, such
as whether there are consequences for the lack of security, whether security is a
priority, and if specific security plans exist"[25]
"security was ignored or dismissed by developers’ supervisors, despite the devel-
oper’s expertise and interest"[23]
"...interviews with managers confirmed that managerial involvement affected
company culture around security"[183]
"The organizational environment, as it is responsible for a tight timescale ... and
not counting security to business priorities.. " [78]

Lack of prioritization of
security features by

"Product management perceived security as invisible to customers hence not mar-
ketable"[126]

stakeholders (E9) "The organizational environment, as it is responsible for a tight timescale ... and
not counting security to business priorities.."[78]
"Development management did not highlight security as something that could
serve as a product feature" [126]
"...security was not an important feature for small or immature applications" [157]
"..and I’m willing to improve this, but sometimes it is difficult to explain our
customers that it is a main point to consider in the development process."[92]

Manuscript submitted to ACM

56 Anonymised for review

Table 8. Factors associated with Intent Deficit

Intent Deficit
External Instances
Lack of social influence
(E10)

"... developers who use security tools were more prestigious than those who do not
[S9], to relatively large effect ..., and that using security tools improved their image
within their organizations ", hence those who did not feel prestige were less
likely to adopt security tools [179]
"...the strongest of all the relationships we found was with the statement “I have
seen what others do using security tools”", hence developers who did no observe
peers were less likely to adopt security tools [179]
"Twenty-two of thirty participants reported that they had recommended security
tools to other developers.", hence developers recommend security tools to each
other [183]
"We also had some instances of what is likely to be a manifestation of the
social desirability bias while answering survey questions. Several freelancers
stated that they store passwords securely even if not explicitly instructed to...
However, these participants sent insecure solutions as their first submissions."[108]
"One developer described keeping up with privacy and security practices as a
daunting task, saying, ”... I primarily rely on other people to let me know.”[29]
"...interviewees who interacted frequently with security teams were more likely
to use security tools, out of a greater sense of personal responsibility for security."
[183]
"Especially in cases where ordinary developers interacted often with the security
team, participants reported that they felt social pressure from the security team
by having them audit the code and review the new features from a security
perspective. This ultimately made developers feel personally responsible for their
code’s security"[183]

Usability issues with se-
curity tools and APIs
(E11)

Some interviewees did not adopt security tools because of the tools’ complexity.
[178]

"Several participants ... mentioned that it was very difficult for developers to
interpret the results of dynamic analysis scans, locate the problem in the code, and
then apply the correct fix." [157]
"APIs are too complex to use"[106]
"developers seem to have problems in correctly setting up their environments to
use the APIs, "[106]
Difficulty in choosing the right tool or combination of tools [149]

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Developers and Security Goals
	2.1 Why do individuals not meet their goals? A psychological perspective
	2.2 Categories of Security Goal Impediments

	3 Factors That Influence Developers' Security Decisions
	3.1 Methodology to gather primary studies
	3.2 Limitations of the review
	3.3 Knowledge Deficit
	3.4 Attention Deficit
	3.5 Intention Deficit

	4 Answering RQ1: Can cognitive and social psychology help to explain the impediments to developers' efforts to meet security goals?
	4.1 Knowledge Deficit
	4.2 Attention Deficit
	4.3 Intention Deficit

	5 Why Aren't Security Interventions More Effective?
	5.1 Overview of Security Interventions
	5.2 Security Interventions and Goal Impediment Categories
	5.3 Discussion

	6 Toward Adaptive Security Interventions
	6.1 Answering RQ2: How can we design interventions to help developers reduce the obstacles in operationalizing security goals?
	6.2 Operationalizing Adaptive Security Interventions

	7 Conclusion
	8 Acknowledgements
	References
	A Appendix: Included Studies
	B Appendix: Detailed catalogue of factors influencing developer's security behaviour

