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Consumers and Artificial Intelligence: An Experiential Perspective 

 

 

 

Abstract 

 

Artificial intelligence (AI) helps companies offer important benefits to consumers, such as health 

monitoring with wearable devices, advice with recommender systems, peace of mind with smart 

household products, and convenience with voice-activated virtual assistants. However, while AI 

can be seen as a neutral tool to be evaluated on efficiency and accuracy, this approach does not 

consider the social and individual challenges that can occur when AI is deployed. This research 

aims to bridge these two perspectives: on one side, we acknowledge the value that embedding AI 

technology into products and services can provide to consumers; on the other side, we build on 

and integrate sociological and psychological scholarship to examine some of the costs consumers 

experience in their interactions with AI. In doing so, we identify four types of consumer 

experiences with AI: (1) data-capture, (2) classification, (3) delegation, and (4) social. This 

approach allows us to discuss policy and managerial avenues to address the ways in which 

consumers may fail to experience value in organizations’ investments into AI and to lay out an 

agenda for future research.  

 

Keywords: artificial intelligence, AI, customer experience, technology marketing, Internet of 

Things, privacy, discrimination, replacement, alienation 
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Not long ago, Artificial Intelligence (AI) was the stuff of science fiction. Now it is 

changing how consumers eat, sleep, work, play, and even date. Consider the diversity of 

interactions consumers might have with AI throughout the day, from Fitbit’s fitness tracker and 

Alibaba’s Tmall Genie smart speaker to Google Photo’s editing suggestions and Spotify’s music 

playlists. Given the growing ubiquity of AI in consumers’ lives, marketers operate in 

organizations with a culture increasingly shaped by computer science. Software developers’ 

objective of creating technical excellence, however, may not naturally align with marketers’ 

objective of creating valued consumer experiences. For example, computer scientists often 

characterize algorithms as neutral tools evaluated on efficiency and accuracy (Green and Viljoen 

2020), an approach that may overlook the social and individual complexities of the contexts in 

which AI is increasingly deployed. Thus, whereas AI can improve consumers’ lives in very 

concrete and relevant ways, a failure to incorporate behavioral insight into technological 

developments may undermine consumers’ experiences with AI.   

This paper aims to bridge these two perspectives: on one side, we acknowledge the 

benefits that AI can provide to consumers; on the other side, we build on and integrate 

sociological and psychological scholarship to examine the costs consumers can experience in 

their interactions with AI. Exposing the tension between these benefits and costs, we offer 

recommendations to guide managers and scholars investigating these challenges. In so doing, we 

respond to the call from the Marketing Science Institute to examine “the role of the human/tech 

interface in marketing strategy” and to offer more scholarly attention to situations where 

“customers face an array of new devices with which to interact with firms, fundamentally 

altering the purchase experience” (Marketing Science Institute 2018). 
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We begin by offering a framework that conceptualizes AI as an ecosystem with four 

capabilities. We focus on the consumer experience of these capabilities, including the tensions 

felt. We then offer more insights into the experience of these tensions at a macro level, by 

exposing relevant and often explosive narratives in the sociological context, and at the micro 

level, by illustrating them with real-life examples grounded in relevant psychological literature. 

Using these insights, we provide marketers with recommendations regarding how to learn about 

and manage the tensions. Paralleling the joint emphasis on social and individual responses, we 

make recommendations outlining both the organizational learning in which firms should engage 

to lead the deployment of consumer AI and the concrete steps they should take to design 

improved consumer AI experiences. We close with a research agenda that cuts across the four 

consumer experiences and suggests ideas for how researchers might contribute new knowledge 

on this important topic. 

Understanding the Consumer AI Experience 

We conceptualize AI as an ecosystem comprising three fundamental elements—data 

collection and storage, statistical and computational techniques, and output systems—that enable 

products and services to perform tasks on behalf of humans typically understood as requiring 

intelligence and autonomous decision making (Agrawal, Gans, and Goldfarb 2018). These 

elements are associated with capabilities. Data collection devices listen, in the broad sense of 

gathering information from different sources; for example, product sensors scan the environment 

and wearable devices record physical activity. Algorithms leverage this information to predict; 

for example, Spotify serves music suggestions via personalized playlists. Finally, output systems 

produce a response or communicate with consumers, for example by directing a vehicle or 

responding through consumer interfaces like Baidu’s Duer.  
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To articulate a customer-centric view of AI, we move attention away from the technology 

toward how the AI capabilities are experienced by consumers. Consumer experience relates to 

the interactions between the consumer and the company during the customer journey and 

encompasses multiple dimensions: emotional, cognitive, behavioral, sensorial, and social 

(Brakus, Schmitt, and Zarantonello 2009; Lemon and Verhoef 2016). Our framework is built on 

four experiences that reflect how consumers interact with the four AI capabilities (Figure 1). 

This experiential perspective helps shed light on the affective and symbolic aspects of 

technology consumption in addition to the utilitarian and functional ones (Mick and Fournier 

1998). Data-capture is the experience of endowing individual data to AI; classification is the 

experience of receiving AI’s personalized predictions; delegation is the experience of engaging 

in production processes where the AI performs some tasks on behalf of the consumer; social is 

the experience of interactive communication with an AI partner.  

--- Figure 1 about here --- 

For each experience we identify benefits and costs from a consumer perspective and 

propose that managers qualify their focus on the former by paying attention to the latter. A data-

capture experience may serve or exploit consumers; a classification experience may understand 

or misunderstand them; a delegation experience may empower or replace consumers; a social 

experience may connect or alienate them. Each of these experiences, their social science 

connections, managerial implications, and future research directions are now examined.  

The AI Data-Capture Experience 

The listening capability enables AI systems to collect data about consumers and the 

environment in which they live. We conceptualize the resulting experience as data-capture, 

which includes different ways in which data are transferred to the AI. Data can be intentionally 
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provided by consumers, although with different degrees of understanding of the process: data are 

shared when there is little or no uncertainty about how they will be used and by whom, or they 

are surrendered when this uncertainty is high (Walker 2016). Data can also be obtained by AI 

from the “shadows” consumers leave behind when they engage in daily activities, as in the case 

of a shopper perusing a store equipped with facial recognition technology or of an iRobot 

Roomba creating a map of a residential space (Kuniavsky 2010).  

The data-capture experience provides benefits to consumers because it can make them 

feel as if they are served by the AI: the provision of personal data allows consumers access to 

customized services, information, and entertainment, often for free. For example, consumers who 

install the Google Photos app let Google capture their memories but in return get an AI-powered 

assistant that suggests context-sensitive actions when viewing photos. Access to customized 

services also implies that consumers can enjoy the outcome of decisions made by digital 

assistants, which effectively match personal preferences with available options, without having 

to endure the cognitive and affective fatigue that decision-making can entail (André et al. 2018). 

Finally, access to customized services offer unprecedented opportunities for self-improvement; 

consider one of the projects within Alphabet, where data from smartphones, genomes, wearables, 

and ambient sensors are combined to drive personalized healthcare (https://on.ft.com/3euohbB). 

Despite AI’s ability to predict and satisfy preferences, consumers can feel exploited in 

data-capture experiences, mainly because they do not understand AI’s operating criteria. This 

can be attributed to several features of AI. First, the modalities of data acquisition are becoming 

increasingly intrusive and difficult to avoid. Second, even when consumers intentionally share 

information, they are not aware of how this information is aggregated over time and across 

contexts. Finally, data brokers are largely unregulated and often lack transparency and 

https://on.ft.com/3euohbB
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accountability (Grafanaki 2017). As a result, data-capture experiences may threaten consumers’ 

ownership of personal data and challenge personal control, that is, the feeling that events are 

determined by the self, rather than by others or by external forces and can be stirred towards 

desired outcomes (DeCharms 1968). The consequences of this loss of control are examined next 

from both a sociological and psychological perspective.  

Sociological Context: The Surveillance Society Narrative 

In popular culture, lack of ownership over personal data has been frequently associated 

with a loss of personal control stemming from technology’s threatening potential to enable 

monitoring of human behavior. Stories such as George Orwell’s 1984 or Philip K. Dick’s 

Minority Report envision systems of oppression where, due to lack of privacy and constant 

surveillance, people can no longer control their destiny. This dystopian imagination is echoed in 

sociological scholarship that associates data capture with the rise of a capitalist marketplace where 

private information becomes the central form of capital (Zuboff 2019). 

Such dystopian concerns strike a resonant chord when considering Google’s move in the 

early-2000s to transform consumer data from a by-product into an economic asset that formed the 

basis of a new type of commerce driven by the ability to colonize the consumer’s private experience. 

This commerce contributes to a surveillance marketplace, in which data surplus is “fed into 

advanced manufacturing processes known as ‘machine intelligence,’ and fabricated into 

prediction products that anticipate what you will do now, soon, and later” (Zuboff 2019, 14). 

To illustrate the power of this commerce, targeted ads based on personality characteristics 

inferred from the analysis of Facebook likes in combination with online survey questions can 

increase conversion rates by about 50% (Matz et al. 2017); in 2018, Facebook’s revenues from 

the sales of such tailored ads was close to $56 billion (https://on.ft.com/2UZ8Ykv). 

https://on.ft.com/2UZ8Ykv
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From the perspective of this narrative, technology companies are not only required to find 

ever new ways to make monitoring and surveillance palatable to consumers by linking it to 

convenience, productivity, safety, or health and wellbeing (Bettany and Kerrane 2016); they must 

also constantly push the boundaries of what private information should be shared (Giesler and 

Humphreys 2007) through a complex landscape of notifications, reminders, and nudges intended 

to initiate behavioral change. Thus, as consumer behavior becomes increasingly retailored to the 

exigencies of behavioral futures, AI can transform consumers into subjects who are complicit in 

the commercial exploitation of their own private experience, thereby undermining personal 

control and promoting the concentration of knowledge and power in the hands of those who own 

their information.  

Psychological Perspective: The Exploited Consumer 

Data-capture experiences are characterized by an underlying tension: consumers 

recognize that data-capture allows AI to serve them through customization, but its inherent lack 

of transparency makes them feel exploited. These feelings of exploitation are fuelled by actual 

and perceived loss of personal control, with important psychological consequences (Botti and 

Iyengar 2006). The first of such consequences is negative affect, which can turn into 

demotivation and helplessness. Consider the case of Leila, a sex worker who shielded her 

identity on her Facebook account and reported being shocked to see some of her regular clients 

recommended by the “People You May Know” function. According to Leila: “the worst 

nightmare of sex workers is to have your real name out there, and Facebook connecting people 

like this is the harbinger of that nightmare.” For Leila, like for domestic violence victims or 

political activists, privacy invasion is not only frightening, it may become a matter of life, death, 

or time in jail (https://bit.ly/2CtU0g5).  

https://bit.ly/2CtU0g5
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As being in control is a basic need and a pre-condition of psychological welfare (Leotti, 

Iyengar, and Ochsner 2010), the second consequence of loss of personal control may be moral 

outrage. Consider the case of a German consumer who requested his own data from Amazon and 

received transcripts of Alexa’s interpretations of voice commands, even though he did not own 

any Alexa devices. The consumer relayed his story to a local magazine, which attempted to 

identify the consumer whose privacy had been compromised. The magazine staff involved in this 

experience described it as follows: “[we were able to] navigate around a complete stranger’s 

private life without his knowledge, and the immoral, almost voyeuristic nature of what we were 

doing got our hair standing on end” (https://bit.ly/3ek2rsg). 

The third consequence of loss of personal control relevant in data-capture experiences is 

psychological reactance, a motivational state directed to restore control after a restriction (Brehm 

1966), which causes more negative evaluations of and hostile behaviors toward the source of the 

restriction; in marketing, reactance can decrease the likelihood to repurchase and follow 

recommendations (Fitzsimons and Lehmann 2004). Illustrating reactance in AI data-capture 

experience is Danielle, a U.S. consumer who installed Echo devices throughout her home, 

believing Amazon’s claims that they would not invade her privacy. When one of her Alexas 

recorded a private conversation and sent it to a random number in her address book, Danielle 

said “I felt invaded,” and concluded: “I’m never plugging that device in again, because I can’t 

trust it” (https://bit.ly/3ey0Sag). 

In sum, consumers may experience data-capture as a form of exploitation: whereas 

technology companies, firms, and governmental agencies gain financial and political power, 

consumers lose ownership of their data and feel a loss of control over their lives. As we discuss 

next, managers should gain a better understanding of feelings of exploitation, as they prevent 

https://bit.ly/3ek2rsg
https://bit.ly/3ey0Sag
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consumers from seeing the value firms can provide through data-capture. This understanding 

starts at the organizational level and is then translated into decisions about experience design.  

Managerial Recommendations: Understanding the Exploited Consumer 

Organizational Learning. A central programmatic task in addressing the issue of 

consumer exploitation in AI data-capture experiences involves determining and enhancing the 

organization’s level of awareness around the sociological and psychological costs raised in the 

previous sections. Companies should strive towards greater organizational sensitivity around 

consumer privacy and the current asymmetry in the level of control over personal data. For 

instance, they should use netnographic observation or sentiment analysis to listen empathetically 

and at scale to consumers who have experienced exploitation in AI data-capture experiences. 

Further, rather than accepting the surveillance society narrative at face value, firms can use these 

tools to understand when, how, and whether their own data-capture experiences play into versus 

subvert this narrative. Likewise, companies should draw on insights by privacy scholars and 

activist movements to question their taken-for-granted beliefs. In doing so, for instance, 

companies could realize that their own view on privacy default settings might differ markedly 

from that of a vulnerable consumer group and adjust their processes accordingly (Martin and 

Murphy 2017).  

Organizational learning can also extend beyond the boundaries of the individual firm to 

encompass other institutions. First, companies could sponsor research aimed at understanding the 

influence of surveillance-society-style thinking on their culture and practice, as well as its 

negative impact on marketing activities and consumers. Second, companies could adopt a more 

communal approach to sharing individual organizational learning with other firms, industry 

associations, educators, and the media. Third, industry groups could collaborate with scholars to 
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create and adopt an algorithm bill of rights for individuals (Hosanagar 2019), which some AI 

experts have proposed should include a right to transparency, for example, “the right to know 

when an algorithm is making a decision about us, which factors are being considered by the 

algorithm, and how those factors are being weighted” (https://bit.ly/39A6EWY).  

Experience Design. Based on this organizational learning, organizations should design 

improved AI data-capture experiences. Recent regulations, such as the European Union’s 

General Data Protection Regulation, aim to limit exploitation by making organizations 

responsible for giving consumers the possibility to opt into specific data-collection processes 

(e.g., cookies) and to ask for greater clarity on how these data are used.  

As AI becomes more pervasive and ubiquitous, however, ensuring consumer consent at 

all steps of the customer journey may result in an overload of choice and information that 

decreases, instead of increases, personal control (Iyengar and Lepper 2000) and exacerbates the 

negative affective and behavioral reactions illustrated above. Interventions related to the way in 

which options are presented—the choice architecture—can reduce the cognitive and affective 

costs associated with excessive information and choice (Chernev, Böckenholt, and Goodman 

2015) and therefore give consumers greater control over their data without overloading them. 

Among such interventions, including default options has proven especially effective in 

facilitating decision-making, but also in influencing specific behaviors (Thaler and Benartzi 

2004). Because individuals tend to passively accept defaults instead of exercising their right to 

opt out, the selection of defaults by the choice architects may lead to suboptimal outcomes when 

it does not properly consider preference heterogeneity. The personalization of defaults could 

mitigate this issue (Sunstein 2015), and AI itself could assist consumers in the automatic 

implementation of preferences about how their data are captured and analyzed.  

https://bit.ly/39A6EWY
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More broadly, organizations can limit consumer exploitation by playing an active role in 

educating consumers about the costs and benefits entailed in AI data-capture experiences; for 

example, the recently overhauled Google Home app clearly communicates what user data has 

been stored and why. Understanding the potential for exploitation in data-capture experiences is 

useful not only for managers interested in maximizing the value provided to consumers who are 

served by the AI, but also for researchers interested in uncovering the sociological and 

psychological underpinnings of the tension that accompanies this experience.   

Future Research on the AI Data-Capture Experience 

Sociological research questions. Future research should investigate how sociocultural 

forces affect feelings of exploitation in data-capture experiences. People from poorer childhood 

backgrounds have a lower sense of control than those from wealthier ones (Mittal and 

Griskevicius 2014), and collective self-construal is associated with a lower desire for choice 

freedom and control (Bernthal, Crockett, and Rose 2005; Markus and Schwartz 2010). Thus, 

both consumers’ socio-economic status (Research Question 1A, or RQA1, see table 1) and 

prevailing cultural norms (RQA2) could influence consumers’ propensity to feel and be 

exploited by AI. Other factors, such as education, political orientation, gender, and race (RQA3) 

could be examined using an intersectionality lens (Crenshaw 1989). 

Future research should also explore how the cultural-cognitive, normative, or regulatory 

legitimacy of AI changes over time to influence consumer reactions to data-capture (Acquisti, 

John, and Loewenstein 2012; Humphreys 2010), particularly in light of AI’s rapid diffusion in 

the marketplace. For example, researchers could study how and when increasing levels of 

familiarity with AI may reduce consumer sensitivity toward exploitation (RQA4). 
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Psychological research questions. An interesting avenue for future research consists of 

exploring the role that psychological processes play in interpreting AI data-capture experiences 

as exploitative. For example, researchers could study the role of motivated reasoning (Kunda 

1990) in shaping consumer affective reactions to data-capture experiences (RQA5): strongly held 

goals may motivate consumers to accept greater risk of exploitation when the AI is seen as a 

conduit to goal completion, mitigating negative emotional responses.  

Other important open questions concern how the source and type of data used by the AI 

affect its potential to exploit. For example, an AI-enabled device that is constantly listening to 

biometric data could, over time, become paradoxically less invasive than one that listens only 

when activated (Turkle 2008). Complementing recent scholarship on the consequences of 

personal quantification (Etkin 2016), future research should address how the frequency of data-

capture (e.g., intermittent versus continuous) affects perceived exploitation (RQA6). As another 

example, information about the physical environment, such as that acquired by a smart 

refrigerator, may be less likely to generate feelings of exploitation than information about the 

self, such as that collected by a fitness tracker (RQA7).  

Feelings of exploitation may also differ based on the physical context of consumption 

(RQA8). Current attempts by companies like Amazon or Google to redefine the family home as 

a space accessible to corporations, rather than a private space may attenuate or exacerbate these 

feelings. Similarly, physical features of the environment where data collection takes place may 

differently trigger concerns about exploitation; for example, crowded environments lead to a loss 

of perceived control, perhaps decreasing willingness to provide data. Concerns about 

exploitation may also differ based on the device used to interact with AI (RQA9), as research has 
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shown that consumers are more likely to self-disclose when using smartphones versus PCs 

(Melumad and Meyer 2020).  

Finally, when consumers cannot or do not want to forego the benefits of data-capture, 

psychological reactance towards AI may manifest in adversarial user behaviors, as suggested by 

the experience of Danielle relayed above. Future research can explore the factors that lead 

consumers to respond to feelings of exploitation with behaviors like sabotaging AI by disabling 

sensors’ inputs, intentionally providing false data by creating fake user profiles, or adopting anti-

surveillance outerwear to confuse the algorithms controlling facial recognition systems (RQA9).  

The AI Classification Experience 

Firms leverage the predicting capability of AI to create ultra-customized offerings and 

maximize engagement, relevance, and satisfaction (Kumar et al. 2019). Sophisticated algorithms 

consider a wide variety of information, including the characteristics of both current and past 

consumers. For example, Netflix uses AI to offer personalized movie recommendations based 

not only on individuals’ past viewing history and that of other viewers, but also contextual 

information such as day of the week, time of day, device, and location (https://bit.ly/2YXrvia); 

Netflix even uses AI to select videoframe thumbnails that can increase subscribers’ likelihood to 

click on a specific show (https://bit.ly/3dl7TtB). Even though prediction interfaces use individual 

and contextual information, they often refer to information related to other users either explicitly, 

by mentioning others when framing recommendations—Amazon noting “customers who bought 

this also bought”—or implicitly, by organizing recommendations in terms of communities of 

users or taste niches—Amazon Prime drawing attention to movies for “period drama fans.” As 

consumers are often unaware of the workings of algorithms, they may infer that these 

recommendations are based on being classified as a certain type of person. Such inferences are 

https://bit.ly/2YXrvia
https://bit.ly/3dl7TtB
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amplified by the human tendency for categorical thinking in person- and self-perception (Turner 

and Reynolds 2011). For example, consumers engage in categorical inference making when they 

are served behaviorally targeted ads: they attribute the ads they receive to the advertiser labelling 

them as a person with specific tastes (Summers, Smith, and Reczek 2016). We conceptualize the 

classification experience as one in which AI-enabled personalized predictions are perceived as 

the result of being classified as a certain consumer type.  

Classification experiences can be positive because they lead consumers to feel deeply 

understood, either objectively or subjectively. For example, consumer categorizations can be 

valuable to affirm the self: personalized offers that indicate membership in an aspirational group 

may help consumers satisfy identity motives when they are perceived as social labels (Summers 

et al. 2016). Framings based on other users, such as “People who like this also like,” makes 

recommendations more persuasive than those based on the product, such as “Similar to this 

item” (Gai and Klesse 2019), further suggesting that the experience of feeling classified by AI as 

a certain type of person is often positive. These findings resonate with research demonstrating 

the psychological benefits of group membership (Reed et al. 2012; Turner and Reynolds 2011). 

However, classification experiences may also lead consumers to feel misunderstood when they 

perceive AI as having inaccurately assigned them to a group or as having made biased 

predictions based on group assignment. At the societal level, classification by AI is linked to a 

dystopic narrative in which access to resources and freedom is restricted for some groups.  

Sociological Context: The Unequal Worlds Narrative 

Classification experiences do not exist in a sociological vacuum but are shaped by 

popular myths. Science-fiction stories such as Neill Blomkamp’s Elysium have routinely 

imagined deeply divided police states in which the ruling class draws on algorithms to sustain a 
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regime of inequality and fear. Sociological scholarship on the politics of algorithms (Seaver 

2019) has also drawn on this popular imagination to theorize AI in the context of rationalization 

and quantification (Porter 1996), automated inequality (https://bit.ly/37N2Wsk), uneven 

information landscapes (Eubanks 2018), and the historical rise of “algorithms of oppression” 

(Noble 2018) or “weapons of math destruction” (O’Neil 2016). Emphasizing the intersectionality 

of race and gender with antisemitism, poverty, unemployment, and social class (Crenshaw 1989), 

these investigations of AI’s potential for social classification are particularly insightful. AI is 

feared to privilege whiteness and undermine the identity projects of minorities 

(https://bit.ly/2NtKVWz). This contention is consistent with research on the market (bio)politics 

of race, which has consistently shown the inherently discriminatory potential of marketized 

representations of culture and ethnicity; it is also supported by economic critiques that warn 

against the monopolization of information by a centralized system (Hayek 1945; Polanyi 1948). 

Consider Google’s corporate mission to “organize the world’s information.” From an 

unequal-worlds perspective, such a statement is far from politically neutral but exemplifies the 

operation of seemingly benign appeals to data automation and quantification in a market that 

sanctions the production of biased information. In such an ideological system, the designers of an 

AI-enabled college application software, for instance, may be convinced that AI can help combat 

human selection bias. Yet, because “algorithms that rank and prioritize for profits compromise 

our ability to engage with complicated ideas” (Noble 2018, 118), the resulting AI experience 

may not only reduce the complex experiences of targeted marginalized populations to a set of 

more simplified sociodemographic attributes or stereotypes; when admissions officers use such 

system, they may also unintentionally expose marginalized applicants to experiences of racial 

profiling, misrepresentation, and economic redlining. Likewise, problems can arise when AI is 

https://bit.ly/37N2Wsk
https://bit.ly/2NtKVWz
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used to decide whether a consumer is worthy of borrowing money from a bank. Although 

algorithms may make the selection process more efficient, they can also systematically exclude 

consumers who live in a neighborhood with higher credit defaults (https://bit.ly/2YSyfhd). The 

realization that AI can result in racial and social groups experiencing discrimination is an 

important backdrop for a psychological analysis of consumers’ feelings of being misunderstood.  

Psychological Perspective: The Misunderstood Consumer 

Classification experiences are characterized by an underlying tension between feeling 

understood and misunderstood. Consumers can feel misunderstood because of perceived 

incorrect classification, discriminatory use of classification, or a combination of the two. First, 

consumers are likely to feel misunderstood when they perceive the identity implied by the AI’s 

output as incorrect, either because it is factually inaccurate or because it is based only on one 

identity, whereas most individuals identify with a host of personal and social selves (Oyserman 

2009). Identity-based consumer behavior is often the result of a negotiation between belonging 

and uniqueness motives playing out across this constellation of identities (Chan, Berger, and Van 

Boven 2012). In situations where AI predictions are perceived to be driven by the consumer’s 

membership in a group, uniqueness motives may become relatively more salient. When this 

happens, group identity appeals may backfire if they are believed to threaten individual agency 

(Bhattacharjee, Berger, and Menon 2014). This negative response is especially likely when the 

consumer perceives the identity assigned to them by the AI as non-central or dated, as in this 

excerpt from a post (Spotify Community 2019, https://bit.ly/2Yg2oIq):  

“The recommendations s*ck: 

- Listened to a few anime covers, now all my “Discover Weekly” is filled with 

disgusting covers. I’m trying to “not like” all of them, but it doesn’t work (…). 

I’ve stopped listening to rock years ago and still get rock recommendations”.  

 

https://bit.ly/2YSyfhd
https://bit.ly/2Yg2oIq
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 From this consumer’s perspective, AI seems to have decided that they like anime covers 

and rock, putting them in a category that they reject or do not see as capturing their multi-faceted 

and evolving self. The consumer is frustrated not only with being misunderstood by the AI, but 

also with their perceived inability to alter such misunderstanding.  

Second, consumers may also feel misunderstood when they fear AI is using a social 

category in a discriminatory way to make biased predictions about them. This is particularly 

problematic in contexts where these predictions may enhance consumers’ vulnerability because 

they restrict access to marketplace resources (Hill and Sharma 2020); for example, easily 

accessible digital information such as registering on a webpage is increasingly used by fintech 

companies to predict individuals’ payment behavior and defaults, and therefore judge their 

creditworthiness (Berg, Burg, Gombović, and Puri 2020). Consider this tweet by a software 

developer, David Heinemeier Hansson (https://cnb.cx/2CsTtuJ):  

“The @AppleCard is such a f*ing sexist program. My wife and I filed joint tax 

returns, live in a community-property state, and have been married for a long 

time. Yet Apple’s black box algorithm thinks I deserve 20x the credit limit she 

does…”  

 

This consumer is frustrated because of the AI’s inability to understand the reality of his 

household’s finances, but he is also morally outraged because he thinks that his wife’s denial of 

credit was based on her gender. Perception of vulnerability such as this can have negative effects 

on the self-concept. This can occur, for example, when minorities whose financial choices are 

systemically restricted then frame the self as “fettered, alone, discriminated, and subservient” 

and experience reductions in self-esteem and self-efficacy (Bone, Christensen, and Williams 

2014).  

Consumers can also experience a combination of the two ways of feeling misunderstood 

mentioned above: they can be incorrectly assigned to a category and this incorrect assignment 

https://cnb.cx/2CsTtuJ
https://twitter.com/AppleCard
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can exacerbate existing limitations to choice and freedom for vulnerable consumers. Facial 

recognition software, for instance, uses AI to identify a person by comparing a target facial 

signature to databases of known images. The range of applications of such software includes 

mobile devices (e.g., Apple’s Face ID), social media (e.g., Facebook’s tagging feature), and 

physical spaces (e.g., airport customs officials). Whereas a failure of Apple’s Face ID to start 

one’s own device may result in frustration, incorrect identification in other applications may 

result in ethical violations. Consider the open letter to Amazon CEO Jeff Bezos written by the 

Congressional Black Caucus on the potential danger caused by Amazon’s facial recognition tool, 

Rekognition (https://bit.ly/2BaSkHL):  

“communities of color are more heavily and aggressively policed than white 

communities (…) We are seriously concerned that wrong decisions will be made 

due to the skewed data set produced by what we view as unfair and, at times, 

unconstitutional policing practices” (Congressional Black Caucus 2018). 

 

In a subsequent test, Rekognition indeed incorrectly matched 28 current members of the U.S. 

Congress with people who had committed a crime, and the false matches were disproportionately 

for people of color (https://bit.ly/3fIPY1t). In June 2020, Amazon suspended police use of this 

technology (https://on.wsj.com/2AVqj72). We next examine how managers can understand and 

address the risk of consumers feeling misunderstood.  

Managerial Recommendations: Understanding the Misunderstood Consumer  

Organizational Learning. How does an organization best surface and address accounts of 

biased treatment? Unlike data capture errors, which may be very lagged and hard to correct in 

real-time, classification errors produce signals soon after they occur. They also happen in very 

different parts of an organization. For instance, if an AI system has rejected a college applicant 

due to a biased algorithm, it is likely to assume that such a classification error will almost 

https://bit.ly/2BaSkHL
https://bit.ly/3fIPY1t
https://on.wsj.com/2AVqj72
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immediately surface in the college’s admissions department and data – data which, in turn, might 

be used to structure the next round of applications.  

Owing to this data dependency, organizations may not even be aware that a given 

distribution or algorithm is the result of a classification error. In the case of a college, for 

instance, classification might be regarded as a natural outcome of the competitive process by 

those in charge of managing the admissions process. Hence, unlike data-capture failings which 

require the specific attention of software programmers and data scientists, addressing 

classification errors requires organizations to focus on marketing and consumer-facing 

departments and to examine whether these departments’ databases or, even more abstractly, the 

organizations’ taken-for-granted understanding about whom they have served and should serve 

and why, carry entrenched social and racial biases. 

Organizations must thus focus on learning about the specific biases that might be present 

in their own algorithms and processes in order to root them out. In the U.S., the Algorithmic 

Accountability Act of 2019 would require companies to assess their AI systems for “risks of 

‘inaccurate, unfair, biased, or discriminatory decisions’ and to ‘reasonably address’ the results of 

their assessments” (MacCarthy 2019). Rather than reacting to a changing regulatory landscape, 

firms should proactively collaborate with technology experts and thought leaders in computer 

science, sociology, and psychology to develop and conduct such audits. Firms can then share 

both their audit processes and outcomes, for example, by engaging in lobbying efforts to ensure 

that regulations passed in the name of consumer welfare include meaningful and technologically 

appropriate provisions to protect consumers from discrimination.  

Experience Design. Organizational learning should be leveraged in the design phase to 

develop AI classification experiences where consumers’ likelihood of feeling misunderstood is 
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minimized. Managers could build on the insights gained from listening to consumers who felt 

they were classified based on narrowly defined identities to experiment with diversifying and 

broadening the content they provide and to propose products that are dissimilar from the user’s 

preference profile. Indeed, Spotify has launched Taste Breakers, a function that introduces 

customers to music to which they normally do not listen. Similar attempts at “bursting the 

bubble” are especially important in light of the possibility that, by optimizing information 

provision based on past choices, AI both ignores long-term goals that do not reflect short-term 

behaviors (André et al. 2018) and increases attitude extremity and polarization (Flaxman, Goel, 

and Gao 2016). Firms could also address feelings of being misunderstood by asking consumers 

to validate AI-based inferences. As greater user participation in the implementation of algorithms 

increases satisfaction in decision support systems (Wierenga and Oude Ophuis 1997), 

periodically offering consumers the opportunity to update the AI’s view of the self could 

similarly reduce potential frustration.  

Managers can build on the insights gained from listening to discriminated consumers to 

design both de-biased and anti-bias AI experiences that foster an inclusive society rather than 

perpetuate inequality (Green and Viljoen 2020). To do so, managers should institute protocols 

that swiftly react to any bias uncovered in regular audits of the AI systems for the presence of 

discrimination (Zou and Schiebinger 2018). Organizations should also diversify their hiring to 

include more members of social minority groups and ensure that their culture and processes 

represent diverse viewpoints at all stages of the design of AI classification experiences. For 

example, advocates for reducing bias in AI have suggested that technology companies must 

employ more individuals with disabilities to learn how to eliminate disability bias from AI 

(https://on.ft.com/2P0iws9). The tension between feeling understood and misunderstood in 

https://on.ft.com/2P0iws9


22 
 

classification experiences represents a learning opportunity not only for managers but also for 

researchers.  

Future Research on the AI Classification Experience 

Sociological research questions. Researchers can unpack the influence of sociocultural 

factors on classification experiences. Values and ideology may change consumers’ interpretation 

of personalized predictions, as those who are more aware of the sociohistorical context of 

discrimination by algorithm (Noble 2018) and belong to marginalized groups should also feel 

more vulnerable to AI’s potential to restrict access to resources and freedom (RQB1). 

Drawing on research that examines the ways in which powerful institutions define the 

consumer (Borgerson 2005), future work should also explore the social classifications that firms 

routinely inscribe into their AI solutions, such as certain consumers’ habits, norms, and 

preferences. This lens can usefully unearth the existence of ideological blind spots in the models 

employed by firms and examine the uneven landscapes of experiences and choices that these 

models produce once consumers are subjected to them (RQB2). 

Psychological research questions. Future research should explore how psychological 

processes affect the extent to which consumers feel misunderstood in classification experiences. 

Open questions concern lay beliefs about how AI classifications are made (RQB3) and whether 

certain inferred categorizations are especially likely to induce feelings of being misunderstood 

(RQB4). For example, research on attributional ambiguity suggests that stigmatized consumers 

may attribute AI classifications to bias towards their group identity on the part of the algorithm 

rather than to other causes (Crocker and Major 1989).  

More generally, feeling misunderstood may be more likely in contexts where consumers 

value uniqueness over belongingness (RQB5). For example, patients are reluctant to use medical 



23 
 

AI due to a sense that it cannot account for their unique characteristics and circumstances as well 

as human doctors can (Longoni, Bonezzi, and Morewedge 2019). The nature of the task may also 

have an influence (RQB6): consumers tend to exhibit greater aversion towards algorithms for 

subjective tasks, which are based on personal opinions or intuitions, than for objective ones, 

which are based on quantifiable and measurable facts (Castelo, Bos, and Lehman 2019). Given 

that many AI systems learn and predict subjective taste, negative reactions to inferred 

classification might be especially common.  

The AI Delegation Experience 

A delegation experience is one in which consumers involve an AI solution in a 

production process to perform tasks they would have otherwise performed themselves. These 

tasks can be decisions, such as when Google Assistant, at the consumer’s request, calls a 

hairdresser, matches the consumer and the hairdresser’s calendars, and uses a human-like voice 

to book an appointment. They can also be actions in the digital world, like those performed by 

Smart Compose, a writing tool that uses AI to help consumers write emails. Finally, they can be 

actions in the physical world, as when the Nest Thermostat learns the consumer’s temperature 

preferences and programs itself to fit them. 

By not having to engage in the tasks the AI performs on their behalf, consumers in 

delegation experiences can feel empowered in two distinct ways. First, consumers can spend 

their time and effort on activities they find more satisfactory and meaningful: they can work less 

and enjoy the positive effects of leisure (Fishbach and Choi 2012), or they can work better and 

enjoy greater happiness by delegating extrinsically motivated tasks to AI, keeping intrinsically 

motivating tasks for themselves (Botti and McGill 2011). Second, consumers can focus on 

activities that are more suitable to their skills and leave to AI those on which they underperform; 
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this way, they can enhance self-efficacy, or the perceived ability to master the environment in 

order to produce a desired outcome (Bandura 1977). 

Given the empowering benefits of delegation experiences, managers may be tempted to 

offer consumers increasingly more opportunities to delegate tasks to AI. However, like the case 

in which the mere presence of too many choice options can reduce consumers’ satisfaction 

(Iyengar and Lepper 2000), the mere presence of too many delegation opportunities may lead to 

aversive consequences. We next examine this tension between the possibility of AI to empower 

and replace consumers both at the societal and individual level. 

Sociological Context: The Transhumanist Narrative 

To analyze the negative aspects of delegation brought about by the possibility of being 

replaced from a sociological perspective, it is helpful to examine how the heuristics that have 

guided consumers’ interactions with AI tools have been historically understood in popular culture. 

We draw on widespread science-fiction and social science literature that falls into the so-called 

transhumanist genre. From Fritz Lang’s Metropolis to Isaac Asimov’s I, Robot, and from Mary 

Shelley’s Gothic monster Frankenstein to James Cameron’s Terminator, countless cautionary 

tales have profiled the dangers of reimagining human capabilities and characteristics through a 

technological mirror. Specifically, these stories fuel the view that, by transcending human 

limitations, technology eventually molds into an omnipotent super-human and subsequently 

unfolds under the ideal of technological perfection—implying new standards. 

Critics of this transhumanist perspective (Sassen 2014, 23) have linked AI to “new logics 

of expulsion” and economic redundancy that arise as AI approaches aging, health, productivity, 

and other domains through the transhumanist lens of limitless performance rather than standard 

levels of wellbeing or productivity. These observers fear that AI solutions will result in 
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significant unemployment, leading to a rapid increase in surplus populations whose AI 

experience will be their de-facto removal from the productive aspects of the social world.  

In the social science literature, this super-human narrative is paralleled in the Computers 

Are Social Actors (CASA) and Human Computer Interactions (HCI) paradigms, according to 

which the same heuristics used for human interactions are mindlessly applied to computers 

(Grudin 2017; Nass and Moon 2000). Since the 1960s, technology companies have periodically 

imbued the productive aspects of AI technology and machine prototypes with mythic narratives 

emphasizing that science and technology will eventually accomplish human immortality. 

These transhumanist ideas, which emphasize technological progress as an unstoppable 

force that alters human experience (Hayles 1999), have been deeply inscribed in contemporary 

AI experiences, from the promise that the Roomba vacuum cleaner could perform tasks more 

effectively than humans to the promise that 23andMe could help in the creation of genetically 

optimized offspring. Yet, the transhumanist preoccupation with Promethean aims underlying 

many contemporary AI experiences also leads to systemic dehumanization (Fukuyama 2002; 

Habermas 2003). For instance, human perception of mastery over the environment depends on 

not being subject to unilaterally imposed specifications. A world in which our interactions with 

machines are fueled by transhumanist ideals will endorse a glorification of capitalism’s endless 

creativity while treating destructiveness and human replacement as normal costs of doing 

business (Schumpeter 1942). Further, an economic obsession with “perfection,” “progress,” and 

“efficiency,” will promote the rise of the “useless class” (Harari 2017), individuals whose skills 

are no longer developed or demanded, and fundamentally erode democracy and social justice. 

Psychological Perspective: The Replaced Consumer  
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Delegation experiences can help consumers feel empowered but can also raise concerns 

about being replaced. The mere recognition of the capability of AI to substitute for human labor 

can be psychologically threatening for three main reasons. First, people have a strong desire to 

attribute consumption outcomes to one’s own skills and effort (Bandura 1977; Leung, Paolacci, 

and Puntoni 2018). Research on human-computer interaction has shown that humans often see 

computers as disempowering because they deprive humans of the sense of accomplishment 

related to an activity, so much so that they tend to credit themselves for positive outcomes and 

blame computers for negative ones (Moon and Nass 1998). In contexts where products are 

crucial to the experience of having an identity as a certain type of person (Reed et al. 2012), 

delegation experiences may feel tantamount to cheating. In the fishing industry, for example, AI 

can help anglers be more effective in location and bait decisions. However, in the words of 

biologist Culum Brown (https://econ.st/2ALoOZf):  

“It is really getting kind of unfair. If you are going to use GPS to take you to a location, 

sonar to identify the fish and a lure which reflects light that humans can’t even see, you 

may as well just go to McDonald’s and order a fish sandwich.”  

 

Second, outsourcing labor to machines prevents consumers from practicing and 

improving their skills, which can negatively influence self-worth and contribute to a satisficing 

tendency by which individuals settle for a level of engagement that is just good enough. Consider 

the experience of journalist John Seabrook. While composing an email to his son, Seabrook 

started the sentence “I am p…”, intending to write “I am pleased,” but resolved to instead accept 

the suggestion of Google’s Smart Compose “I am proud of you.” After hitting Tab to accept the 

suggestion, Seabrook muses (https://bit.ly/3fX7YFE):  

“What have I done? Had my computer become my co-writer? That’s one small step 

forward for artificial intelligence, but was it also one step backward for my own? (…) I’d 

always finished my thought by typing the sentence to a full stop, as though I were 

defending humanity’s exclusive right to writing, an ability unique to our species. I will 

https://econ.st/2ALoOZf
https://bit.ly/3fX7YFE
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gladly let Google predict the fastest route from Brooklyn to Boston, but if I allowed its 

algorithms to navigate to the end of my sentences how long would it be before the 

machine started thinking for me?”  

 

Finally, outsourcing tasks to AI can lead consumers to experience a loss of self-efficacy. 

Self-efficacy is an antecedent of personal control (Bandura 1977), and it is heightened when 

individuals are actively engaged in creative tasks (Dahl and Moreau 2007; Norton, Mochon, and 

Ariely 2012). The notion that being productive is a way to feel in control is consistent with 

findings showing that consumers who experience low control attempt to re-establish it by 

choosing products that require higher, versus lower, effort to achieve a desired outcome 

(Cutright and Samper 2014). In line with this view that delegation can lead to loss of control, 

drivers involved in GPS-related accidents tend to describe their experience in terms of 

surrendering control to the machine. Take for instance the tourists who drove their car into the 

ocean trying to reach an Australian island and recounted that the GPS “told us we could drive 

down there (…) It kept saying it would navigate us to a road” (https://bit.ly/3dprF7q).  

The tension between being empowered and replaced is relevant from a managerial 

perspective because AI designers need to decide how delegation experiences should be designed 

to protect self-efficacy and self-identity. We next discuss potential recommendations emerging 

from the sociological and psychological analysis of this tension.   

Managerial Recommendations: Understanding the Replaced Consumer 

Organizational Learning. Companies can start by learning how to include the human 

desire for self-efficacy into the corporate discourse in two main ways. First, they can collaborate 

with family scholars, workplace psychologists, and health sociologists to understand the 

consequences of human replacement by AI. Second, they can engage in conversations with 

consumers to gain greater insight into which activities they prefer to reserve for themselves 

https://bit.ly/3dprF7q
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versus delegate to AI, and how these preferences shift across consumer, identity, and task. 

Organizational design and personnel policies can facilitate this learning by ensuring that the 

insights gained through external collaborations and consumer listening permeate the firm’s 

culture, especially in the more technical functions. For instance, technology firms could hire 

experts in creativity such as artists, artisans, or chefs into AI-focused experience design roles. 

Firms could also learn from organizations that protect, support, and enhance abilities that 

are conceived as intrinsically “human” and on which individuals remain superior to machines, 

such as performing complex tasks, adapting to changes, using emotional intelligence, and 

offering nuanced judgments in unstructured environments (https://bit.ly/382Yh5J). Thus, 

collaborations with museums, theatres, and universities’ humanities departments can inspire 

managers to understand how AI can preserve, rather than subvert, traditional human values such 

as creativity, collaboration, and community (Brunk, Giesler, and Hartmann 2017). 

Experience Design. The learning achieved in the previous phase should serve as the 

bedrock on which AI designers decide how to model delegation experiences in order to protect 

self-efficacy and self-identity (Leung et al. 2018). Division of labor in production processes can 

have positive effects on demand if consumers feel they have the competence to make sound 

decisions about the tasks they decide to engage in (Fuchs, Prandelli, and Schreier et al. 2010). 

Thus, AI can be conceived as a platform to enhance intrinsically human skills and values. In the 

medical domain, for example, the benefits of AI-powered surgical robots for consumers depend 

on the way in which the surgeon’s input and supervision is designed. Surgical robots are more 

precise than humans, can make quicker and more reliable diagnosis, and are more democratic 

and cost-efficient than current systems because they can intervene outside of hospitals. Still, the 

structure of surgeons’ supervision of the robots is central to the success of this technology, both 

https://bit.ly/382Yh5J
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because patients are afraid of being operated on by a machine and because the AI cannot yet 

outperform human doctors in some critical technical and social skills (https://bit.ly/2AVtHyM). 

Given the link between self-efficacy and control, the design of delegation experiences 

could also consider the extent to which consumers make choices and initiate actions (Carmon et 

al. 2020; Schmitt 2019). For example, autonomous vehicles should allow for the customization 

of peripheral features to avoid perception of lack of control (André et al. 2018), and digital 

assistants in computer games should not be anthropomorphized to preserve the players’ sense of 

autonomy (Kim, Chen, and Zhang 2016). The classic finding that cracking fresh eggs into a pre-

made Betty Crocker cake mix might be enough to re-establish consumers’ self-worth and 

improve adoption (Marks 2005) still resonates in the context of AI, as the amount of control 

needed by consumers to reduce a self-efficacy threat can be quite small. For instance, offering 

users the possibility to correct an algorithm’s output, even if only slightly, is sufficient to 

increase their likelihood of using the superior, although imperfect algorithm, rather than the 

preferred, inferior human forecast (Dietvorst, Simmons, and Massey 2016).  

Future Research on the AI Delegation Experience  

Sociological research questions. The extent to which consumers feel replaced by AI is 

likely shaped by cultural narratives about AI and by the shared understanding of what it means to 

be productive. Activities that tend to be perceived as if they ought to fall to human skills and 

competence (Castelo et al. 2019) should be more likely to spur feelings of being replaced 

(RQC1). Consider a self-driving car choosing between stopping and crossing at an intersection 

versus choosing between swerving and killing one pedestrian or not swerving and killing several 

pedestrians (Bonnefon, Shariff, and Rahwan 2016): the car’s passenger may feel more replaced 

in the latter case, which involves a moral dilemma, than in the former case, which involves a 

https://bit.ly/2AVtHyM
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mechanical decision. Further, feeling replaced by AI may alter the social or moral acceptability 

of behavior and its likelihood of occurrence (RQC2); for example, self-protective behaviors 

appear more moral when adopted by autonomous vehicles than by humans (Gill 2020). 

Perceptions of what ought to fall to human competence may, however, shift rapidly as AI 

technology advances (RQC3).  

Negative reactions to feeling replaced by AI are likely to differ across consumption 

contexts (RQC4). Future research can explore whether delegation to AI is less threatening in 

categories where consumers are already familiar with recommendation agents (e.g., 

entertainment), are less confident in their own preferences (e.g., finance), are open to 

experimentation (e.g., food), and can trust the AI brand (JWT Intelligence Wunderman 

Thompson 2016). As AI encroaches on an ever-expanding set of human activities, researchers 

could also explore whether feelings of replacement in one domain could motivate consumers to 

seek control in others (RQC5); for example, will consumers engaged in daily delegation 

experiences become more controlling in non-consumption domains, such as politics? 

Psychological research questions. Future research should examine when the 

psychological processes that lead to the experience of feeling replaced by AI are activated, as 

well as the consequences of such feelings. For example, is the extent to which delegation 

experiences are perceived as a threat to the self a function of whether consumption is motivated 

by instrumental or symbolic motives (RQC6)? Preferences for human over robotic labor tend to 

be stronger in symbolic consumption contexts (Granulo, Fuchs, and Puntoni 2020), and the same 

might apply in the case of one’s own labor: whereas for most consumers being replaced by Nest 

in setting their home’s temperature is likely perceived as desirable, for those whose identity is 

tightly linked to house-keeping, this replacement may be seen as aversive (Leung et al. 2018). A 
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related topic pertains to how a focus on the outcome or on the process differently influences 

perceptions of delegation experiences (RQC7). Products are means to ends, but the process of 

consumption, as well as the performative display of skill and knowledge, can often be 

intrinsically valuable to consumers (Reed et al., 2012). For example, for a person who is 

nurturing an angler’s image, the extent to which AI-driven fishing tools are seen as self-

threatening may depend on the reference group’s norms about task delegation and the relative 

importance placed on the outcome (e.g., a bigger catch) or the process (e.g., finding a good 

location for fishing).  

When self-efficacy and control are threatened in delegation experiences, consumers may 

employ different strategies to restore them, including increasing agency and seeking structure 

and boundaries (Landau et al. 2015). Thus, future research can explore whether and when 

consumers who feel replaced opt to constrain the involvement of the AI in production processes 

(RQC8) to both reaffirm self-efficacy by increasing their own role in these processes and to seek 

structure by physically and/or mentally bounding AI features. This deliberate limitation of the AI 

is similar to situations where consumers restrict the usage experience with smart objects to the 

most basic and least innovative forms of interaction (Hoffman and Novak 2018).  

The AI Social Experience 

AI’s capability for engaging in reciprocal communication produces what we term a social 

experience. We focus on two types of social experiences: when consumers know at the outset 

that the interaction partner is an AI, such as when using a voice assistant like Apple’s Siri, and 

when they interact with an AI representing an organization without necessarily knowing initially 

that it is non-human, such as when receiving customer service from an automated chatbot. In 

both cases, consumers have a social interaction with AI as part of a consumption experience 
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where the end goal is not the AI interaction. We do not focus on two other types of interactions: 

when consumers are never aware that the interaction partner is a simulated person (because the 

experience would be perceived as a normal social interaction) and when consumers interact with 

the AI as an end in itself, as in the case of a robotic pet.  

Social experiences are beneficial when consumers can find in AI a vehicle for 

information exchange that connects them with the firm in a natural way. This often happens 

when anthropomorphic features are incorporated in AI-enabled products: anthropomorphic cues 

increase trust towards self-driving cars (Waytz, Heafner, and Epley 2014) and reduce perceived 

risk when consumers are in a position of power (Kim and McGill 2011), as when they interact 

with a virtual assistant. More generally, developments in social robotics are making it possible to 

create comfortable and even emotionally meaningful AI-powered service interactions (van 

Doorn et al. 2017). Social AI experiences are beneficial also because they can be more efficient, 

especially in situations where the alternative to AI is not a human interaction but the absence of 

any interaction: AI provides consumers access to firms through “conversational commerce.”  

Despite these advantages, social experiences may also alienate consumers. Negative 

consumer reactions to simulated social interactions can go well beyond the occasional 

disappointment as these interactions emerge in a rich cultural context where they can easily 

trigger societal and individual concerns with unbalanced intergroup relations and discrimination.  

Sociological Context: Humanized AI Narrative 

The sociological starting point for social experiences is the widespread cultural 

fascination with humanized machines (Adam 1998; Haraway 1985; Suchman, Roberts, and Hird 

2011)specifically, the preference for machines that emulate the human body and traits. For instance, 

a well-noted trope in science-fiction is the pursuit of the perfect artificial woman 
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(https://bit.ly/3eiPA9P), a male fantasy of a beguiling, seductive, and sexually obliging object 

(https://bit.ly/3fFJnF6). These female robots or “gynoids” are routinely imagined as “basic pleasure 

models” in Philip K. Dick’s Blade Runner and sex workers in Michael Crichton’s Westworld, or they 

are traded like used cars in Steve de Jarnatt’s Cherry 2000. 

This cultural preference for humanized AI is amplified by the widespread use of 

anthropomorphized chatbots and voice assistants in contemporary AI markets. Humans are less 

open, agreeable, conscientious and self-disclosing when they interact with AI versus humans 

(Mou and Xu 2017); however, these perceptual barriers can be overcome, and intimate 

experiences can be accomplished, when AI products feature human characteristics, behaviors, 

and language, thus ultimately becoming “artificial besties.” 

Nevertheless, in this narrative, AI companies that strive for greater human touch cannot 

ignore that AI products and services modelled as “obliging, docile and eager-to-please [human] 

helpers” often contribute to the social alienation of particular groups in society (West, Kraut, and 

Chew 2019, 104). Consistent with this finding, from the iconic robot character Maria in 

Metropolis to Apple’s Siri, patriarchal norms and preferences embedded in seemingly benign AI 

experiences have the potential to engage only certain types of users, such as white men, while 

alienating others, such as women and racial minorities (Adam 1998; Hayles 1999; Haraway 

1985). 

From this perspective, an instance such as Siri’s earlier programming to answer to users 

who say, “You’re a slut” with “I’d blush if I could” (https://bit.ly/2YU5OQa) would not just be 

evidence of biases within the male-centric technology sectors and of the fact that AI mirrors the 

misogyny concealed in language patterns; it is also diagnostic of the tendency to undermine AI’s 

social and inclusive possibilities. By collapsing dualistic categories such as male versus female, 

https://bit.ly/3eiPA9P
https://bit.ly/3fFJnF6
https://bit.ly/2YU5OQa
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for instance, social experiences could at least partially ease the social isolation brought about by 

misogynous and racial stereotyping. Yet, because anthropomorphized AI typically reproduces 

such dualistic categories to maximize consumer engagement (e.g., men who treat women as 

assistants, women who are more assistant-like), social experiences have the potential to exclude 

rather than include and to alienate, rather than connect, certain groups of consumers.  

Psychological Perspective: The Alienated Consumer 

AI social experiences have the power to bolster consumer-firm relationships but also to 

alienate consumers. We identify two main types of alienation engendered by AI social 

experiences. The first type can occur with any failed automated customer service, as exemplified 

in this exchange between a customer and chatbot UX Bear (https://bit.ly/2YuYAD1):  

Bot: “how would you describe the term “bot” to your grandma?”  

User: “My grandma is dead”.  

Bot: “Alright! Thanks for your feedback (Thumbs up emoji)”.  

 

This type of alienation may explain consumers’ widespread resistance to replacing 

humans with machines (Castelo et al. 2019; Leung et al. 2018). For example, consumers report 

feelings of discomfort when interacting with “social robots” in service contexts (Mende et al. 

2019), and customers’ responses in a field study became markedly more negative when they 

were informed in advance that their interaction partner would not be a human (Luo et al. 2019). 

The potential of AI to trigger alienation is also evident in the resurgent interest in social 

connections that are unmediated by technology, such as authentic consumption experiences 

(Beverland and Farrely 2010) and more personal marketing exchanges (van Osselaer et al. 2020). 

The second type of alienation results from AI’s failure to interact successfully with 

specific groups of consumers. For example, the UK government’s reliance on AI to handle 

claims to its social security program led to experiences like that of Danny Brice, who has 

https://bit.ly/2YuYAD1
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learning disabilities and dyslexia, and describes his attempts to use the automated Universal 

Credit program as follows (https://bit.ly/3dEhUCt):  

“I call it the black hole (…) I feel shaky. I get stressed about it. This is the worst system 

in my lifetime. They assess you as a number not a person. Talking is the way forward, not 

a bloody computer. I feel like the computer is controlling me instead of a person. It’s 

terrifying.” 

 

Thus, AI can exacerbate existing barriers that prevent specific social groups from 

accessing essential social services, reinforcing societal inequity. Another example of how 

alienating social experiences can feed inequality is chatbots programmed without considering 

how existing discrimination in society may affect their operation, such as when Tay, a Twitter 

bot by Microsoft, began offering white supremacist answers to users soon after its launch, with 

exchanges like the following (https://bit.ly/2Nw0ZHu):  

User: “What race is the most evil to you?”  

Bot: “Mexican and black”.  

 

The cultural narratives of oppression and discrimination underlying this example are even 

more apparent in the context of personal virtual assistants. Journalist Sigal Samuel recounts 

working on a piece about sexist AI (https://bit.ly/3fFs7zM):  

“I said into my phone: “Siri, you’re ugly.” She replied, “I am?” I said, “Siri, you’re fat.” 

She replied, “It must be all the chocolate.” I felt mortified for both of us. Even though I 

know Siri has no feelings, I couldn’t help apologizing: “Don’t worry, Siri. This is just 

research for an article I’m writing!” She replied, “What, me, worry?”  

 

Alienating social experiences such as the one above, in which women face societal 

pressures around their appearance, may lead consumers to denigrate and belittle the AI, similar 

to situations where individuals derogate outgroup members in order to re-affirm self-esteem 

following an identity threat (Branscombe and Wann 1994). Dissatisfaction with a voice-enabled 

device might produce verbal responses that emphasize its artificial and worthless nature. The 

tendency to objectify others, and women in particular, is well-known (Fredrickson and Robert 

https://bit.ly/3dEhUCt
https://bit.ly/2Nw0ZHu
https://bit.ly/3fFs7zM
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1997), and it should be stronger when the interaction partner is, in fact, an inanimate entity, 

however human-like its communication; indeed, conversational failures lead consumers to 

express more frustration with AI when it has a female rather than a male voice (Hadi et al. 2020). 

This denigration of AI risks translating into behaviors that reinforce inequality.  

As technology enables companies to create automated interactions that are more and 

more like real human interactions, a new set of ethical issues confront both organizations and 

marketing researchers, as we discuss in the next sections. 

Managerial Recommendations: Understanding the Alienated Consumer  

Organizational learning. To effectively manage AI social experiences, companies should 

learn how to acknowledge and accommodate the heterogeneity of human interaction styles and 

needs. To this aim, firms should collect information directly from consumers who have 

experienced alienation in their interactions with AI. In addition, firms can leverage technology to 

gauge and measure alienation (operationalized using measures like amount of stress in the 

customer’s voice) in chats with AI service providers in order to develop generalizable insights 

about when alienation is most likely to occur. Firms should also interact with psychologists, 

sociologists, gerontologists, and other experts to learn about both causes and consequences of 

alienation.  

Organizational learning should also ensure that definitions of anthropomorphism do not 

draw on and calcify harmful stereotypes about social categories and the way they interact. One 

way to do so is breaking with organizational cultural conventions that idealize AI as a passive 

and subservient humanized other by involving experts like linguists, critical theorists, and social 

psychologists who study the subtle ways in which stereotyping affects communication. For 

example, disseminating information throughout an organization about the potential societal 
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consequences of exposure to subservient female AIs may shift AI designers away from using 

female names and voices as defaults (https://bit.ly/331YGEZ).  

Experience Design. Based on the greater sensitivity emerging from organizational 

learning activities, firms can improve the design of AI social experiences. As timely and 

appropriate firm responses can do much to mitigate the harmful consequences of service failure 

(Hart, Heskett, and Sasser 1990), firms should work to increase the effectiveness of interactive 

AI applications to minimize the likelihood of alienation. Research shows that consumers respond 

positively when AI service providers personalize the interactions, for example by using the 

customer’s name and explaining the reasons for malfunctions (Carmon et al. 2020). Relatedly, 

firms should also ensure easy and swift transitions from AI to human representatives when the 

interaction becomes difficult or aversive.  

To avoid the perpetuation of harmful stereotypes, companies could also strive to develop 

AI that is less, rather than more, humanlike (Hadi et al. 2020); indeed, software developers have 

begun investigating the creation of gender-neutral voices (https://n.pr/2NibE8t). This requires a 

radical change in the mindset of many AI designers (and marketing academics), who often take it 

for granted that anthropomorphism fosters better relationships with customers (Kim et al. 2016). 

Organizations should also evaluate the potential consequences of using AI for access to basic 

social services for consumers like Danny. When AI is deployed to provide important welfare 

services, designers need to recognize the barriers that they can create for specific user groups, 

even when the technology has satisfied standard performance benchmarks. 

Finally, instead of worrying solely about designing to improve human-AI interaction, 

firms could address alienation by considering how AI design can improve human-human 

interaction. Firms can design social experiences that help support what Epp and Velagaleti 

https://bit.ly/331YGEZ
https://n.pr/2NibE8t
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(2014) call “care assemblages” by connecting individuals to dear ones in ways that are 

reminiscent of popular social media strategies designed to foster and satisfy consumers’ social 

goals (Epp, Schau, and Price 2014). Thus, companies could actively shift from understanding AI 

as a substitute for humans towards understanding AI as an interface that facilitates social 

connection (Farooq and Grudin 2016).  

Future Research on the AI Social Experience 

Sociological research questions. Consumers vary in the extent to which they hold anti-

bias beliefs and are willing to take action to address bias in society (Ivarsflaten, Blinder, and 

Ford 2010). Those who are more concerned about AI fostering alienation may be particularly 

likely to reject the idea that AI can be a true social partner (RQD1). Cultural differences are also 

likely to influence the extent to which social experiences are perceived as alienating (RQD2). 

Asian consumers feel a stronger connection to both people and things than Western consumers, 

and, as a result, have shaped their social interactions with AI in more personal ways: AI social 

experiences in the West are mainly utilitarian and involve disembodied personal assistants, 

whereas those in the East involve human and animal-appearing robots that are assumed to serve 

and improve society (Belk, Humayun, and Gopaldas 2020). 

If, over time, AI social experiences become commonplace, future research should explore 

their broader interpersonal and societal consequences (RQD3). Just as the synthetic and 

unrealistic nature of pornography has been accused of distorting the sexual expectations of teens 

(Owens et al. 2012), AI social experiences might increase the prevalence of sexist language if 

they trigger female objectification (Hadi et al. 2020). Researchers could also build on literature 

on intergroup relations, such as Haslam’s (2006) theory of dehumanization, to investigate the 

conditions under which objectification of AI is more likely to occur (RQD4). 
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Psychological research questions. An information processing perspective could shed 

light on how AI social experiences are interpreted and evaluated. The timing of disclosure that 

the interaction partner is, in fact, an algorithm may influence consumer response to social 

experiences (Luo et al. 2019), similar to the “change of meaning” that occurs when consumers 

realize that a message is meant to influence their behavior (Friestad and Wright 1994). Thus, 

alienation might be more likely to emerge if consumers question the company’s intention to 

disclose the nature of the interaction partner (RQD5). Moreover, research on the effects of 

disclosure in word-of-mouth (Tuk et al. 2009) and product placement (Campbell, Mohr, and 

Verlegh 2012) shows that situational factors may influence consumer reactions via an effect on 

cognitive capacity; researchers can examine how these factors also affects alienation (RQD6).  

Future research could also explore the role of brand equity (RQD7). As brand attachment 

influences consumer expectations and can shield companies from negative appraisals in 

ambiguous situations (Lee, Frederick, and Ariely 2006), stronger consumer-brand relationships 

may also insulate consumers from experiencing interactions with AI as alienating.  

Agenda for Future Research on Consumers and AI  

We developed a framework to structure our understanding of consumers’ interaction with 

AI by defining and contextualizing the AI data-capture, classification, delegation, and social 

experiences using both sociological and psychological lenses. In this final section we go beyond 

these four experiences to identify additional future research questions in two areas: 

interrelationships between the four experiences and new AI experiences that may emerge along 

with new capabilities. These additional research questions are also included in Table 1. 

---Table 1 about here--- 

Interrelationships Between Experiences 
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Although we discussed the four consumer AI experiences separately, our framework is 

not intended to suggest that they exist independently; on the contrary, these experiences could be 

seen as different aspects of the same customer journey and, as such, influence each other (Lemon 

and Verhoef 2016). An important avenue for future research is to explore where and how 

consumers’ experience with one AI capability directly affects their experience with another AI 

capability (Giesler and Fischer 2018). For example, whether consumers feel served versus 

exploited in an AI data-capture experience is likely to impact a subsequent AI classification 

experience. Consumers who feel exploited may be more likely to worry about AI inappropriately 

using their personal data to regulate access to valued resources (RQE1). Similarly, intrusive data-

capture requests might foster consumer alienation (RQE2); for instance, students who view an 

AI-enabled teaching assistant such as Packback.co as overly inquisitive might feel less included 

in the virtual classroom and less likely to participate in communal activities such as online 

discussion boards. Future research can also explore whether consumers are more likely to 

perceive an AI classification as benefiting them when they are asked to validate inferences made 

by the AI, turning a classification experience into a delegation one (RQE3).  

Another avenue for research is related to the identification of additional ways in which AI 

experiences influence each other by uncovering shared theoretical foundations. For instance, the 

data-capture and delegation experiences share an emphasis on concerns about personal control as 

interacting with AI often involves giving up at least some control over personal data and 

production processes (RQE4). Similarly, classification and social experiences share an emphasis 

on concerns about self-identity, as interacting with AI often influences inferences about how AI 

understands the self and feelings of belonging (RQE5). Confirming the relevance of these 

theoretical perspectives, personal control and self-identity have been recognized as key concerns 
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in the nascent literature on consumer AI (André et al. 2018; Belk et al. 2020; Carmon et al. 2020; 

Schmitt 2019). A search for shared theoretical foundations may stimulate academic research and 

help AI designers form a more holistic understanding of consumers’ interaction with AI. For 

example, as consumers come to understand AI as an independent intelligence operating in the 

marketplace to whom they can delegate tasks and with whom they can interact, marketplace 

metacognition and social intelligence (Wright 2002) theory can be leveraged to better understand 

the theories consumers have about how AI “thinks” (its intentions, strategies, etc.) and how these 

lay theories influence how consumers respond to AI.  

An integrated view of the four experiences will also maximize the value consumers see in 

organizations’ investments into AI. Some companies find themselves in a “Catch 22” situation, 

where users need to reveal personally sensitive information for the company to provide valuable 

benefits but are unwilling to do so unless they can first experience such benefits (Grafanaki 

2017). Based on an integrated understanding of AI consumer experiences, it may be possible to 

articulate and structure alternative customer journeys. For example, companies could provide an 

initial basic service requiring limited disclosure of personal information and later on offer the 

possibility to access an upgraded version that requires additional individual data. Thus, demands 

for data-capture could ramp up as the company is able to demonstrate the benefits that delegation 

brings to consumers (RQE6).   

Unchartered AI Experiences 

Our framework offers a parsimonious template to conceptualize how consumers navigate 

the disparate consumption contexts powered by AI, including social media, online shopping, and 

personal virtual assistants. In doing so, the framework identifies experiences relevant to a large 

variety of industries and products. However, additional consumer experiences that we did not 
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examine are on the rise in specific industry sectors, and future research can examine both 

industry-specific experiences stemming from existing capabilities and new experiences 

stemming from emerging capabilities (Figure 1). 

Although we theorized the production capability as leading to a delegation experience, 

this capability can also be used to develop an AI learning experience in the education industry. 

Knowledge and skill acquisition can be facilitated by letting AI personalize aspects of the 

learning process, such as producing tailored content and testing materials. Future research can 

examine how different aspects of the learning experience impact subjective and objective 

assessments of educational outcomes (RQF1). For example, the risk of engendering negative 

feelings of being replaced in delegation experiences may have a parallel in learning experiences: 

if an AI application makes it more challenging to internalize the outcome of the learning process, 

learning experiences might decrease satisfaction and motivation. This may be especially likely to 

occur when the learning content is relevant to one’s identity: just like consumers tend to resist 

automation in identity-relevant consumption domains when it prevents the internal attribution of 

consumption outcomes (Leung et al. 2018), students may show reactance to AI applications that 

prevent them from attributing learning to their own talent and effort (RQF2).  

Another avenue for future research is to relax some of our definitional boundaries to 

include a larger set of consumption contexts. For example, in our discussion of social 

experiences we explicitly excluded contexts where the interaction with AI is the end in itself, 

such as sex robots and robotic pets, which are increasingly important in the entertainment and 

healthcare industries. Such applications of AI’s communication capability give rise to an AI 

companionship experience (RQF3). On the one hand, AI companionship experiences are positive 

because they can provide both cognitive and socioemotional benefits (Broadbent 2017); on the 
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other hand, they can deceive vulnerable consumers such as the elderly and toddlers into 

believing the AI has feelings and may be used as substitutes for real human connections (Van 

Oost and Reed 2010). While the goal of the creation of robot companions is to simulate an 

interaction with a real living being, future research could explore at what point the potential for 

deception and substitution becomes damaging (RQF4). 

Finally, emerging AI capabilities may create new consumer AI experiences. In the 

healthcare sector, nanorobots are being developed to bring AI solutions directly inside the body, 

and smartphones, fitness trackers, and smart watches provide essential extensions of cognitive 

and perceptual capabilities. These products give rise to what researchers have called an AI 

cyborg experience (Giesler and Venkatesh 2005). A cyborg is “a cybernetic organism, a fusion 

of the organic and the technical forged in particular, historical, cultural practices” (Haraway 

1985, p. 51). Thus, cyborg experiences emphasize hybridity, self-enhancement, and often radical 

self-modification, requiring future research to re-examine longstanding epistemic boundaries 

between human and machine (Belk 2019). On the one hand, cyborg experiences destabilize 

human autonomy and control and might fundamentally undermine consumer freedom 

(Wertenbroch et al. 2020); on the other hand, they collapse dualistic categories like man and 

machine and might promote consumer empowerment and the circumvention of structural 

inequalities (RQF5). Lastly, cyborg experiences also raise mind-bending but nonetheless 

intriguing questions about the kinds of consumption experiences that an AI itself might have 

(Hoffman and Novak 2018). Consider, in this context, that many firms selling on Amazon today 

no longer market their offerings directly to consumers but to Amazon-controlled algorithms that 

act on behalf of these consumers. Future research could explore what marketing strategies are 

most effective when AI is marketing to AI (RQF6). 



44 
 

Conclusions 

AI-enabled products promise to make consumers happier, healthier, and more efficient. 

Consumer-facing AI products and services such as college application software, chatbots, and 

knowledge aggregators have been heralded as forces for good that can make important 

contributions to problems such as poverty, lack of education, chronic illness, and racial 

discrimination. For instance, a World Economic Forum discussion on the future of AI argued 

that “no one will be left behind” (https://bit.ly/3fHRqBi). A key problem with these optimistic 

celebrations that view AI’s alleged accuracy and efficiency as automatic promoters of democracy 

and human inclusion is their tendency to efface intersectional complexities.  

Instead of considering algorithms as neutral tools, AI designers should recognize that 

their interventions are “inherently political” and interrogate themselves on “the relationship 

between their design choices, their professional role, and their vision of the good” (Green and 

Viljoen 2020, 26). We hope that our formulation serves as an antidote to the temptation of 

“technological solutionism” (Morozov 2013) and a useful guide to contrast cases where targeted 

consumer segments are subjected to biased outcomes as a result of uncritical firm reliance on AI. 

We therefore end by noting a key role for the American Marketing Association in shaping the 

way marketers think about using AI ethically. Although some organizations are beginning to 

create ethical guidelines around AI, such as the Organization for Economic Co-operation and 

Development’s “Principles for AI” (https://bit.ly/3eykxqH) and the European Commission’s 

“Ethics Guidelines for Trustworthy AI” (https://bit.ly/37Zqmeh), they are not specifically for 

marketers. The code of conduct of the American Marketing Association currently includes no 

mention of AI. We recommend the formation of a taskforce of practitioners and academics from 

https://bit.ly/3fHRqBi
https://bit.ly/3eykxqH
https://bit.ly/37Zqmeh
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different disciplines to evaluate how professional guidelines could acknowledge the new ethical 

challenges raised for marketers by the growth of AI. 
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TABLE 1: 

CONSUMERS AND AI EXPERIENCE: EMERGING RESEARCH QUESTIONS (RQ) 

 

 

A: The AI Data-Capture Experience 

RQA1: How does socio-economic status influence the likelihood of feeling exploited? 

RQA2: How do cultural norms influence the likelihood of feeling exploited? 

RQA3: How does intersectionality normalize or problematize exploitation? 

RQA4: How does the diffusion of AI affect feelings of exploitation over time? 

RQA5: How does motivated reasoning shape consumer affective reactions in data-capture experiences? 

RQA6: How does the frequency of data-capture affect perceived exploitation over time? 

RQA7: How are feelings of exploitation influenced by the nature of the data collected (e.g., environmental, behavioral, physiological)? 

RQA8: How does the physical context of data collection affect the likelihood of feeling exploited? 

RQA9: Does the experience of data-capture depend on the device the consumer is using? 

RQA10: When and how will consumer sabotage data collection by AI in response to feelings of exploitation?  

 

B: The AI Classification Experience 

RQB1: How do individual differences in awareness of discrimination affect whether a consumer feels misunderstood by the AI? 

RQB2: How do the social classifications inscribed into AI solutions shape consumer behavior and choices? 

RQB3: How do consumers infer which variables the AI is using to make personalized predictions? 

RQB4: Which types of inferred classifications are more likely to make consumers feel misunderstood? 

RQB5: How do uniqueness versus belonging motives affect the likelihood of feeling misunderstood? 

RQB6: How does the nature of the task influence the likelihood of feeling misunderstood? 

 

C: The AI Delegation Experience 

RQC1: How do feelings of being replaced depend on the perceived “humanness” of an activity?  

RQC2: How does feeling replaced by AI affect the perceived acceptability of various behaviors designed to protect or promote the self? 

RQC3: As the range of tasks that AI can perform increases over time, how do normative task boundaries around humans versus algorithms shift?  

RQC4: What specific consumption contexts make delegation to AI more psychologically aversive? 

RQC5: Do consumers compensate for feelings of being replaced by AI in non-consumption domains? 

RQC6: How do instrumental versus symbolic consumption motives determine perceptions of being replaced?  

RQC7: Is the likelihood of feeling replaced affected by whether consumers focus on consumption outcomes versus process?  

RQC8: When and how do consumers respond to threats of replacement by AI by fencing off the AI?  
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D: The AI Social Experience 

RQD1: How anti-bias beliefs affect alienation in social experiences? 

RQD2: How do cultural differences influence consumer perceptions of social experiences? 

RQD3: What are the consequences of AI-enabled social experiences for important societal processes such as children’s socialization and gender 

relations? 

RQD4: When are customers more likely to objectify the AI in responses to alienation? 

RQD5: How does the timing of disclosure influence the likelihood of consumer alienation?  

RQD6: What is the influence of situational characteristics on alienation? 

RQD7: What is the role of brand equity in reducing or facilitating alienation? 

 

E: Interrelationship Between AI Experiences 

RQE1: How do the ways in which consumers experience data-capture influence perceived resource accessibility in a classification experience?  

RQE2: Does aggressive data-capture strengthen or weaken social inclusion? 

RQE3: Does involving consumers in the validation of assumptions about their preferences shift a classification experience to feel more like a 

delegation experience? 

RQE4: Do changes in feelings of control lead to parallel shifts in data-capture and delegation experiences? 

RQE5: Do changes in consumer self-identity concerns lead to parallel shifts in classification and social experiences? 

RQE6: Are data-capture experiences less aversive when demands for data increase together with feelings of empowerment from delegation 

experiences? 

 

F: Unchartered AI Experiences 

RQF1: How does the learner-AI interaction shape learning experiences and impact student satisfaction, motivation, and learning? 

RQF2: How does the valence of learning experiences depend on identity relevance and internal attribution of learning outcomes? 

RQF3: What motivates consumers to have AI-enabled companionship experiences?  

RQF4: What factors determine whether consumers perceive companionship experiences as deceptive or alienating? 

RQF5: How do AI solutions that permeate epistemic boundaries between human and machine impact consumer autonomy? 

RQF6: How does AI perceive and experience the world and marketplace, and how can firms design these experiences effectively? 

 


