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Abstract

Newsvendor problems (NVP) form a classical and important fam-
ily of stochastic optimisation problems. In this paper, we consider a
data-driven solution method proposed recently by Ban and Rudin. We
first examine it from a statistical viewpoint, and establish a connection
with quantile regression. We then extend the approach to nonlinear
NVP. Finally, we give extensive experimental results, on both simu-
lated and real data. The results indicate that the approach performs
as well as conventional ones when applied to linear NVP, but performs
better when applied to nonlinear NVP. There is also evidence that the
approach is more robust with respect to model misspecification.

Keywords: inventory, forecasting, newsvendor problems, data-driven
optimisation, sales and operations planning

1 Introduction

Inventory control is an important topic in Operations Research and Opera-
tions Management (see, e.g. Porteus, 2002; Silver et al., 1998; Zipkin, 2000).
In this paper, we focus on Newsvendor Problems (NVPs), by which we mean
single-period inventory control problems with stochastic demand.

In early work on NVPs (Arrow et al., 1951; Morse and Kimball, 1951),
it is assumed that the demand in each time period comes from a known
probability distribution. Of course, in practice, this is not the case — a
fact already noted by Scarf (1958). Assuming that historical demand data
is available, one can attempt to address this issue by decomposing the prob-
lem into an estimation/forecasting phase and an optimisation phase. In the
first phase, one makes some assumptions (i.e. specific model form and dis-
tributional assumptions) regarding the underlying data generating process,
and uses the past data to estimate the parameters of the model. In the
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second phase, one determines the order quantity (or quantities) based on
the estimated parameter values. Throughout this paper, we will call this
two-phase approach the disjoint approach.

An advantage of the disjoint approach is that forecasting and optimisa-
tion experts can operate independently within an organisation. This makes
things easier to manage. On the other hand, as noticed by several authors
(Bertsimas and Thiele, 2005; Beutel and Minner, 2012; Karmarkar, 1994;
Korpela and Tuominen, 1996), there are two disadvantages:

• The two phases use different objective functions. Indeed, in the first
phase, the objective is to minimise a function of the forecasting errors,
such as the root mean square error or mean absolute error. In the
second phase, however, the goal is usually to maximise expected profit.

• If the forecasting model is misspecified, and/or there is substantial
noise in the data, then this might impact the optimisation phase in
an unexpected way, possibly leading to sub-optimal solutions. In par-
ticular, upside and downside errors may have very different effects on
expected profit, due to different costs associated with over- and under-
stocking.

An alternative to the disjoint approach is to use a single, integrated ap-
proach, in which the order quantities are determined directly from the data
based on an assumed model or filter. In this case, an adjusted loss function
is used, as in quantile regression (Bruzda, 2016; Huber et al., 2019) and SPO
loss (Elmachtoub and Grigas, 2017). The advantages of these approaches are
that they do not make assumptions about the demand distribution, while
remaining explainable. Unfortunately, they can only be applied to relatively
simple NVPs, for which the objective function is linear.

Another example of integrated approach involves machine learning al-
gorithms (Liyanage and Shanthikumar, 2005; Bertsimas and Thiele, 2005;
Bertsimas and Kallus, 2020). With sufficient data, they can build relation-
ships between the optimal order quantity and exogenous variables, sidestep-
ping the need to have two phases. This approach is called Feature-Based
NVP in He et al. (2012).

Most Feature-Based NVP approaches are “black box” approaches, which
are hard to interpret or explain. A more transparent Feature-Based NVP
approach was proposed recently by Ban and Rudin (2019). In their ap-
proach, statistical parameters are selected in a way that directly attempts
to minimise the expected opportunity costs.

In this paper, we consider the approach in Ban and Rudin (2019) in more
detail. We begin by examining it from a statistical viewpoint, and establish
a connection with quantile regression. We then extend the approach to non-
linear NVP, leading to what we call an Integrated Method for Estimation and
Optimisation (IMEO). We also provide extensive simulation experiments to
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examine the performance of IMEO in different settings, including the sit-
uations when the true model is known and when the underlying model is
mis-specified.

The rest of the paper is organised as follows. Section 2 is a literature
review. Section 3 presents the IMEO framework and the theoretical analysis.
Section 4 reports experimental results on simulated demand data. In Section
5, we apply our approach to some real-life data. Some concluding remarks
are made in in Section 6.

2 Literature Review

Since the literature on NVPs is vast, we mention here only works of direct
relevance. In Subsections 2.1 and 2.2, we review the classical NVP and its
extensions, respectively. Subsection 2.3 and 2.4 review quantile regression
and the Ban and Rudin method, respectively.

2.1 The classical newsvendor problem

In the simplest NVP, as defined, for example, by Choi (2012), a company
purchases goods at the beginning of a time period at a cost of v per unit,
and aims to sell them by the end of the period at a price p per unit. The
demand during the period is a random variable Y with known probability
density function f and cumulative distribution function F . At the end of
the period, any surplus goods will lead to a holding cost of ch per unit. On
the other hand, shortage of goods during the period will lead to a shortage
cost of cs per unit. The goal is to determine an order quantity Q, prior to
the period, that maximises the expected profit.

For a given Q and a given realisation y of Y , the profit over the period
is:

π(Q, y) =

{
py − vQ− ch(Q− y), if Q ≥ y
pQ− vQ− cs(y −Q), if Q < y.

(1)

The expected value of π(Q, y) is:

Π(Q) =

∫ Q

0

[
py−vQ−ch(Q−y)

]
f(y)dy+

∫ ∞
Q

[
pQ−vQ−cs(y−Q)

]
f(y)dy.

(2)
It is common to call cu = p− v + cs the ‘underage’ cost and co = v + ch

the ‘overage’ cost. Some calculus then shows that the order quantity that
maximises Π(Q) is (Choi, 2012):

Q∗ = F−1
(

cu
co + cu

)
, (3)

where F−1 is the inverse function of F . Thus, Q∗ is the τ th quantile of f , with
τ = cu/(co+cu). One can think of the quantity τ as a “target service level”,
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since aiming for this target will bring the company maximised expected
profit.

2.2 More complex newsvendor problems

Since the introduction of the NVP by Arrow et al. (1951), researchers have
considered several extensions of the problem, including variants with mul-
tiple product types (Hadley and Whitin, 1963; Lau and Lau, 1996; Moon
and Silver, 2000), quantity discounts (Khouja, 1995), different risk measures
(Eeckhoudt et al., 1995), product substitution (Bassok et al., 1999), nonlin-
ear cost functions (Halman et al., 2012), non-stationary demand (Kim et al.,
2015), and price setting (Karlin and Carr, 1962; Mills, 1959; Petruzzi and
Dada, 1999).

For the purpose of what follows, we now explain one variant, the ‘Nonlin-
ear Newsvendor Problem’ (NNVP), which can be found in works of Halman
et al. (2012); Khouja (1995); Kyparisis and Koulamas (2018); Pal et al.
(2015) and many others. In the general NNVP, the profit function takes the
form:

π(Q, y) =

{
P (Q, y)− V (Q)− Ch(Q, y), for Q ≥ y
P (Q, y)− V (Q)− Cs(Q, y), for Q < y,

(4)

where V , P , Ch and Cs are now functions rather than constants.
Using the NNVP enables one to model more real-life problems. Indeed,

as noticed by Pantumsinchai and Knowles (1991), Khouja (1995), non-linear
costs arise frequently in practice. For example, in real life, a minor shortage
may not cause large costs, but a major shortage could damage the reputation
of the company. As another example, a small amount of excess stock can
often be sold at a discount, but this may not be possible for a large amount,
not to mention the loss of goodwill. Moreover, as a product stays on the
shelf longer, the opportunity cost of the shelf space may increase over time.
All these examples show that overage and underage costs can be non-linear
in real life situations.

If π(Q, y) has a particularly simple form (e.g., if it is piecewise-linear as
in the classical NVP), then it may be possible to use calculus to express the
optimal order quantity as a quantile (Choi, 2012). In general, however, a
closed-form expression as a quantile is unlikely to exist (Halman et al., 2012;
Porteus, 2002). In such cases, one must resort to numerical integration and
search techniques to solve the NVP (Solis and Wets, 1981).

We now recall one specific NNVP, taken from Kyparisis and Koulamas
(2018), that we are going to use in our experiments later in this paper. As
second-round sales in salvage markets and proportional shortage penalties
are very common in real life (Kashefi, 2016; Liberopoulos et al., 2010), it is
particular necessary to check the performance of the proposed method on
this NNVP. The purchase cost v and selling price p are constants, but Ch
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and Cs are functions. Overstock items incur a constant unit penalty α > 0,
but they can be sold in a salvage market with fixed unit sales price β, with
0 < β < v. The demand in the salvage market is itself a random variable,
with known distribution, which we denote by u. That is, we have:

Ch(Q, y) = α[Q− y]+ − β E
[

min
{

[Q− y]+, u
}]
. (5)

Moreover, the shortage penalty is proportional to the shortage quantity.
That is:

Cs(Q, y) = ζ
(
[y −Q]+

)2
(6)

for some constant ζ > 0. This problem cannot be solved analytically, but
there are known approximation methods that give adequate solutions (Ky-
parisis and Koulamas, 2018).

2.3 Quantile regression

Returning to the classical NVP, we now consider the (more realistic) case in
which the demand distribution is unknown, but we have historical demands
y1, y2, . . . , ys. For this case, quantile regression has proven to perform well,
and the basic idea is as follows (Bertsimas and Thiele, 2005):

1. Compute the value of τ that maximises expected profit;

2. Use quantile regression to compute an estimate of the τ th quantile of

the demand in the next time period, which we denote by ŷ
(τ)
s+1;

3. Set the order quantity Q̂s+1 equal to ŷ
(τ)
s+1.

The biggest advantage of quantile regression is that it does not assume
a specific demand distribution (Huber et al., 2019). However, it is efficient
only on large samples (Ban and Rudin, 2019; Huber et al., 2019). Another
drawback is that its performance depends crucially on the underlying target
service level. Ban and Rudin (2019) demonstrated that the benefit of using
quantile regression is limited to target service levels smaller than 0.8. If
the target service level is higher, then much more data is needed in order
to correctly estimate a specific quantile. Moreover, as mentioned in the
previous subsection, for the more complex NVPs, there is no easy way to
express the optimal order quantity as a quantile.

2.4 The Ban and Rudin approach

In the approach of Ban and Rudin (2019), a statistical model is built, in
which exogenous variables are regressed against the order quantity. In more
detail, we have historical data [(x1, y1), . . . , (xs, ys)], where xt = [x1t , . . . , x

p
t ]
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represents features related to the demand, such as seasonality, price, pro-
motions and so on. The problem now becomes that of finding the opti-
mal function q(·) that maps the observed features xs+1 ∈ X to an order
q(xs+1) ∈ R. Ban and Rudin propose to select q(·) from a pre-specified
family of functions, in a way that minimises the empirical opportunity cost:

min
s∑
t=1

(
cu[yt − q(xt)]+ + co[q(xt)− yt]+

)
, (7)

The simplest version of their method uses linear functions, of the form:

q(xt) = xT
t β =

p∑
j=1

xjtβ
j , (8)

With this choice, one can determine the βj easily with linear programming.
Ban and Rudin also mention more complex variants, that use polynomials
of the original features, and/or a quadratic regularisation term.

3 Analysing and Extending the Ban and Rudin
Method

In this section, we analyse the approach of Ban and Rudin in more depth,
and extend it to a more general family of problems.

3.1 Analysis

To begin, we attempt to provide an intuition behind the method. Suppose
that, for each historical period t ∈ [1, s], the observed demand yt is a re-
alisation of a random variable Yt. Then, in principle, there exists an order
quantity, say Q∗t , that maximises the expected profit given Yt and the func-
tion Π. Thus, if we had set Qt to Q∗t prior to observing the true demand yt,
we would have maximised our expected profit in period t. Putting it another
way, if we could somehow uncover the structure of the unobservable time
series of orders

{
Q∗1, . . . , Q

∗
s

}
, we would be able to estimate Q∗s+1 directly.

Of course, in practice, the distribution of demand Yt is unknown, and the
values Q∗t are not observable. So the method approximates the Q∗t values
with the q(xt) values. One therefore solves an optimisation problem to
find the choice of q(·) that minimises the expected opportunity cost. Once
that is done, the order quantity for the next time period can be set to
Q̂s+1 = q(xs+1).

Ban and Rudin did not give a statistical analysis of the behaviour of
the estimates of the model parameters that arise from their method. A
partial answer is that, in the case of a linear profit function, their method is
equivalent to quantile regression (see A for a proof). Therefore, in the linear
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case, their method immediately inherits all of the desirable properties of
quantile regression, such as consistency (Koenker, 2005), efficiency (Koenker
and Machado, 1999) and asymptotic normality (Kocherginsky et al., 2005)
of the estimates of parameters.

3.2 Extension to the nonlinear case

We now consider how to extend the approach in Ban and Rudin (2019) to
the NNVP. The key issue here is that there is no simple formula for the
opportunity cost in the nonlinear case. Indeed, in the literature on the
NNVP, authors work directly with the function (4), rather than attempting
to derive explicit functions for co and cu.

To get around this difficulty, we propose to maximise the expected profit
instead of minimising the expected opportunity cost (7). More precisely, we
propose to compute the function q(·) that maximises the function

max
s∑
t=1

π(q(xt), yt), (9)

where π can be a profit function of any level of complexity.
Maximising (9) is a continuous nonlinear optimisation problem. Under

reasonable assumptions on the functions P , V , Ch and Cs in (4), and the
function q(·) itself, the profit function (9) will be concave. Unfortunately,
it is unlikely to be everywhere differentiable. As a result, general-purpose
algorithms for nonlinear optimisation are not guaranteed to converge to
global maxima. Fortunately, the experiments in the next section indicate
that this does not cause serious problems.

In what follows, we call our approach an Integrated Method for Estima-
tion and Optimisation or IMEO. We remark that, in the case of a linear
profit function, IMEO is equivalent to the method of Ban and Rudin (see B
for a proof). Thus, in that case, it is again equivalent to quantile regression.

4 Computational Experiments

In order to assess the performance of IMEO and to understand its strengths
and weakness, we conduct a simulation experiment. We start the discus-
sion with Subsection 4.2.1, where the simplest case is studied, in which the
profit function is linear and the underlying data generation process (DGP)
is known. The case in which the profit function is nonlinear is discussed
in Subsection 4.2.2. Finally, we discuss more complicated scenarios, with
misspecified models, in Subsections 4.3.1 and 4.3.2. Given the discussion in
Section 3, the analysis in Subsections 4.2.1 and 4.3.1 will also tell us how the
“Feature-based NVP” approach by Ban and Rudin (2019) compares with
the conventional approaches in different situations.
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4.1 Experimental setup

In our experiments, we consider NVPs with quarterly demand data, and we
generate data from a seasonal ARIMA(1, 0, 0)(1, 0, 0)4 process with θ = 0.3,
Θ = 0.5, and constant level 500. We also assume that the error term of
the DGP follows the normal distribution N (0, 2002). We choose a seasonal
ARIMA model since it is one of the most popular statistical models in the
literature (for example, see the review paper on supply chain forecasting
by Syntetos et al. (2016)). We have also experimented with other models
and parameters for the DGP. The scripts of extended experiments have been
made available on Github (Congzheng, 2020). The proposed method showed
strong robustness and the results were very similar to the ones presented
below.

For each of the cases, we simulate 20,000 sets of demand data, each
consisting of 4800 observations. From each set, we extract sub-sequences of
lengths 40, 120, 480 and 1200. These are used to explore how the amount
of available data affects the performance of each method. The first three
data lengths can help us to simulate real-life circumstances, while the data
lengths of 1200 and 4800 allow us to explore the asymptotic behaviour of
the approach. For each set of demand data and each method, we compute
Q̂s+1, the 1-step ahead forecast of orders. We then compute the following
three quantities (and aggregate them using mean over 20,000 sets):

1. Percentage Profit Loss: PPL = π(ys+1,ys+1)−π(Q̂s+1,ys+1)
π(ys+1,ys+1)

, which shows
the percentage of profit that would be lost due to using each method
instead of knowing the true demand. In the ideal situation MPPL
(mean PPL) should be equal to zero.

2. Service Level: SL =
∑

I(Q̂s+1>ys+1)
20,000 , where I(·) is the indicator func-

tion, equal to 1 if the condition inside it is satisfied. This measure
shows the achieved service level. In the ideal situation, SL should
correspond to the target service level.

3. Fill Rate: FR = min{Q̂s+1,ys+1}
ys+1

, which shows how the demand is ser-

viced. In the ideal situation, MFR (mean FR) should be equal to
one.

In the proposed method (“IMEO”), we use the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS) for the estimation of param-
eters of the model. The L-BFGS algorithm is very popular in the nonlinear
programming community (see Liu and Nocedal, 1989), and is commonly
used for ARIMA fitting in software packages, for example in R (R Core
Team, 2020).

Besides the proposed method, three benchmark methods are also con-
sidered:
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• A disjoint method (“DJ”) that estimates the parameters of the model
in the first phase, and then determines the optimal order quantity in
the second phase.

• An integrated method that uses Quantile Regression (“QR”) in order
to determine the order quantity. We choose it as a rival since it is one
of the most widely used statistical approaches, which has proved to
work well for the NVP.

• Finally, for the purposes of benchmarking, we use DJ with the exact
model and parameters from the DGP to perform a forecast, and deter-
mine the order quantity. This last method is “idealised”, since, in real
life, one would not know the true model or true parameters of demand.
But it allows us to see, how far approaches are from the ideal one. We
call this last method “DGP”.

4.2 When the true model is known

In this scenario, we assume that it is known that the true model is ARIMA
(1, 0, 0)(1, 0, 0)4 with constant, but its parameters need to be estimated.
In all the methods, it is also assumed that the error term follows normal
distribution with unknown variance.

4.2.1 Linear case

We conduct several experiments with combination of costs that give service
levels of 0.3, 0.5, 0.63 and 0.9. It is important to recall that the optimal
service level is a critical solution of the optimisation problem. In most
case, the most profitable service level is not a “high” stocking level. Other
levels can also be considered, but in additional experiments that we have
conducted, we have not found any significant changes in performance of the
approaches.

Initially, we choose the following parameters for our (linear) profit func-
tion:

• p = 20, v = 10, ch = −3, cs = −7.

One can check that the corresponding pair
(
cu, co

)
is (3, 7), and the target

service level evaluates to 0.3. Applying the methods to this scenario, we get
values of PPL, SL and FR.

Figure 1 shows the mean percentage profit loss obtained when the target
service level was set to 0.3. As one would hope, the losses for all methods
converge as the sample size increases. It is also apparent that IMEO and
QR have very similar performance. This is to be expected, given that IMEO
can be considered equivalent to QR in the linear NVP case. (The small gap
between those two methods may due to different optimisation algorithms
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Figure 1: Mean percentage profit loss vs. data size at 0.3 target service level
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that applied, as mentioned in Section 3.) Another thing to note is that the
integrated approaches perform very similar to the disjoint one, which is also
expected, given the knowledge of the true model and the simplicity of the
NVP.

Figure 2: Service level vs. sample size at 0.3 target service level
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Figure 2 represents the service level, i.e., the proportion of iterations
in which the demand was satisfied in the simulation. We see that all four
methods converge to the desired target of 0.3 as the sample size grows.
Interestingly, DJ approaches the target from below, while IMEO and QR
slightly over estimate the level on small samples. A possible explanation of
this phenomenon is that in the first phase of DJ, the estimated parameters
tend to be closer to zero when the sample size is small. This causes the
estimated order quantities to be further away from the mean than they
should be, and leads to lower than needed SL. On the other hand, the
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integrated methods take the underage and overage costs into account. For
the given cost parameters, over-stocking is less costly than under-stocking,
which leads to a higher SL than needed.

Figure 3: Mean fill rate vs. sample size at 0.3 target service level

data length

fil
l r

at
e

40 120 480 1200 4800

88.5%

89%

89.5%

90%

90.5%

91% DGP
DJ
QR
IMEO

Figure 3 shows the mean fill rate. As one might expect, the performance
of all methods improves with the growth of the sample size. The thing
to note is that the DJ requires a much larger sample size than the other
methods in order to achieve the same MFR, although the differences between
the DJ and other methods are not very big (only a couple of percent points).
The possible explanation of this behaviour of DJ is probably similar to the
situation with the service levels.

Next, we explore whether the target service level has a significant effect
on the performance of the methods. Specifically, we consider the following
three alternative parameter settings:

• p = 20, v = 8, ch = −3, cs = −7

• p = 20, v = 8, ch = 3, cs = 7

• p = 20, v = 8, ch = −7, cs = −3.

These correspond to pairs
(
cu, co

)
are (5, 5), (19, 11) and (9, 1), respectively,

leading to the target service levels of 0.5, 0.63 and 0.9, respectively. It is
important to recall that the target service level refers to the most profitable
service level for given parameters.

The relevant data is given in Tables 1 and 2, for the cases of sample sizes
s = 40 and s = 4800, respectively. The best cases (excluding DGP, which
is expected to be the best by construct) are marked in boldface for each of
the error measures and each of the service levels.

We can see from Table 1 that IMEO performs consistently better than
the other approaches on the small sample, regardless of the target service
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Table 1: Target service level effect with s = 40

Mean percentage profit loss Service level Mean fill rate

Target service level DGP DJ QR IMEO DGP DJ QR IMEO DGP DJ QR IMEO

0.3 5.2% 5.6% 5.7% 5.6% 0.30 0.26 0.32 0.32 91.1% 88.2% 90.6% 90.8%
0.5 4.9% 5.3% 5.3% 5.2% 0.50 0.44 0.50 0.50 95.2% 93.4% 94.7% 94.8%
0.63 13.8% 15.1% 15.0% 14.8% 0.63 0.58 0.62 0.62 97.1% 95.8% 96.6% 96.6%
0.9 2.1% 2.4% 2.4% 2.3% 0.90 0.91 0.91 0.90 99.6% 99.1% 99.2% 99.4%

level, although the difference in performance between the methods is not
substantial. QR is the second best approach in this scenario.

Table 2: Target service level effect with s = 4800

Mean percentage profit loss Service level Mean fill rate

Target service level DGP DJ QR IMEO DGP DJ QR IMEO DGP DJ QR IMEO

0.3 5.1% 5.1% 5.2% 5.2% 0.30 0.30 0.30 0.30 91.1% 91.0% 91.0% 91.1%
0.5 4.9% 4.9% 5.0% 5.0% 0.50 0.50 0.50 0.50 95.3% 95.2% 95.2% 95.2%
0.63 13.8% 13.8% 14.0% 14.0% 0.63 0.63 0.63 0.63 97.0% 97.0% 97.0% 96.9%
0.9 2.1% 2.1% 2.2% 2.1% 0.90 0.90 0.90 0.90 99.5% 99.2% 99.1% 99.4%

When it comes to large samples (Table 2), IMEO and QR perform
slightly worse than DJ, although the difference between the methods is not
substantial. This holds for all target service levels, irrespective of the error
measures. A thing to note is that the MPPL is particularly high for all
methods when the target service level is 0.63. This is probably due to the
relatively large overage and underage costs in that case. In addition, note
that, asymptotically, all methods approach the target service level. This
makes IMEO and QR more desirable than DJ, because they do at least as
well as DJ both on small and large samples.

Summarising, we can see that IMEO does at least as well as the classical
disjoint method and quantile regression in different scenarios of the linear
NVP, when the model is correctly specified.

4.2.2 Nonlinear profit function

In this subsection, we examine the relative performance of the methods when
applied to the NNVP. As before, we assume that the true model for the
demand is known. We use the following nonlinear profit function (Kyparisis
and Koulamas, 2018):

π(Q, y) =

{
20y − 8Q− 4(Q− y) + 5E[min{(Q− y), u}], if Q ≥ y
20Q− 8Q− 0.01(y −Q)2, if Q < y,

(10)

where u ∼ N (30, 52). Given that the target service level does not have a
closed form in the NNVP, one can use the technique proposed by Kyparisis
and Koulamas (2018), or other numerical approaches, to verify that it is
approximately equal to 0.56.
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Since the nonlinearity makes it impossible to apply QR (as discussed in
Subsection 2.3), we present results only for DJ and IMEO, together with the
“idealised” method based on the DGP. Moreover, we found that the MFR
plots were similar in all scenarios and did not give any additional important
information. Therefore, we do not present them in what follows.

Figure 4 shows the MPPL and SL of each method, for each sample size.
It is apparent that both DJ and IMEO perform well in terms of MPPL,
with very similar values for all sample sizes. IMEO is slightly better on
small samples (similar to what we have seen in Subsection 4.2.1), but the
differences in performance between the methods are not substantial. When
it comes to SL, the picture is similar to what we have observed in Subsection
4.2.1: the SL of IMEO is very close to the the target service level even when
the sample size is small, while the disjoint method needs more data to reach
the target service level, and it approaches it from below. The reason for
such performance is similar to the one discussed in Subsection 4.2.1. As
expected, both methods converge to the DGP values in both MPPL and SL
with the increase of the sample size.

Figure 4: Performance vs. sample size with nonlinear profit function
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(b) service level vs. data size

We would like to stress that, unlike disjoint method, IMEO does not need
any complicated numerical optimisation or simulation methods to estimate
the optimal order quantity – it does that directly. In addition, we have
found in our experiments that it typically required less computational time
than the disjoint method: approximately only one-tenth of the time spent
on DJ was needed for IMEO, when s = 40.

Overall, we see that IMEO performs at least as good as DJ when the
true model is known. However, the true model is typically not known in
practice, so next we investigate situations, when the model is misspecified.

4.3 When the true model is not known

We examine the effect of model misspecification on the relative performance
of the various methods. We consider three scenarios:
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1. Model omits important variable, which typically leads to biased esti-
mates of parameters;

2. Model has redundant variables, which usually leads to ineficient esti-
mates of parameters;

3. The assumed distribution of error term is wrong.

While in reality there can be other scenarios, the proposed three scenarios
cover the main possible issues with the model misspecification.

We don’t include the QR method in further discussions, because it per-
forms similarly to IMEO in the linear case, and cannot be used in the non-
linear case.

4.3.1 Linear case

We first consider the situation in which the model omits important
variables (i.e., is under-parameterised): the seasonal order of ARIMA is
dropped in the estimation and the solution of the NVP. In other words,
when estimating the optimal order quantity, we apply the AR(1) model
with constant.

Figure 5: Performance vs. sample size with under-parameterised linear
model
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(b) service level vs. data size

The MPPL and SL for this case are shown in Figure 5. By comparing
with Figure 1, we see that the use of an under-parameterised model causes
both DJ and IMEO to incur small additional losses in MPPL, irrespective
of the sample size. This is expected, as the seasonal pattern in the data
is ignored by the models. These losses do not significantly improve as the
number of data points increases, because seasonality plays a key role when
making one-step ahead forecasts. When it comes to the SL, both approaches
perform similarly, reaching the target on larger samples. But when it comes
to small samples, they both reach higher than needed levels. Interestingly,
the performance of DJ and IMEO is similar, even though they are very
different approaches.
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Next, we consider the situation in which the model contains redun-
dant variables (i.e., is over-parameterised): an unnecessary lag term is
included. Specifically, we apply an ARIMA(2, 0, 0)(1, 0, 0)4 model to the
data.

Figure 6: Performance vs. sample size with over-paramaterised linear model
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(b) service level vs. data size

The MPPL and SL for this case can be seen in Figure 6. Both DJ
and IMEO incur a loss in profit, as before. Now, however, the profit loss
decreases with the increase of the sample size. This can be explained by a
well-known statistical phenomenon when estimating models with redundant
variables (Farrar and Glauber, 1967): they tend to lead to less efficient
estimates of parameters on small samples but do not lead to systematic bias
(as omitted variables typically do). As for the service level, it can be seen
that both methods asymptotically converge to the target, but tend to be less
precise on small samples, with IMEO reaching higher levels than needed and
DJ leading to lower values. The performance is similar to what we saw in
Subsection 4.2.1.

We do not present results for other target service levels in this part, since
they were very similar to what we observed above.

Finally, we explore the effect on performance of different methods, when
the assumed distribution is incorrect. In particular, we generate data
using a modified version of our seasonal ARIMA(1, 0, 0)(1, 0, 0)4 model, in
which the error term follows the Laplace distribution with mean 0 and
scale 141 (which will have standard deviation of 200). We remark that the
Laplace distribution has “fatter tails”, or, more formally, a higher kurtosis
than the normal distribution. When estimating the optimal order quantity,
however, we use the incorrect assumption that the error term follows the
normal distribution.

The results for this scenario are presented in Figure 7. We can see that
the incorrect distributional assumption leads only to a very small loss in
profit for both DJ and IMEO. They both converge to DGP as the sample
size increases. However, the analysis of SL shows that while IMEO rapidly
converges to the target service level from above, the DJ achieves a lower
than needed service level, producing a biased value – and this drawback is
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not remedied by an increase of the sample size. A possible explanation is
that the integrated approach works directly with the data, and does not rely
on the assumption of normality, being in this sense “non-parametric”, while
the DJ relies on normality and consistently underestimates the uncertainty
in the data. This example suggests that IMEO my be more robust.

Figure 7: Performance vs. sample size with Laplace distributed error term
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4.3.2 Nonlinear case

Finally, we explore the case in which there is a nonlinear profit function and
misspecification simultaneously. The same three scenarios of misspecifica-
tion are considered.

Figure 8: Performance vs. sample size with under-parameterised nonlinear
model
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(b) service level vs. data size

Figure 8 represents the scenario in which the applied models are under-
parameterised. We can see that the performance of the methods in terms of
MPPL and SL are similar to the case of linear NVP discussed in Subsection
4.3.1. The percentage profit loss for both DJ and IMEO stabilises around
14.75% and never converges to the level of DGP, due to the absence of the
important variable in the model. This is compensated by SL, for which DJ
performs similar to DGP, with IMEO reaching a slightly higher than needed
level.
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Figure 9: Performance vs. sample size with over-parameterised nonlinear
model

data length

pe
rc

et
ag

e 
pr

of
it 

lo
ss

40 120 480 1200 4800

12.5%

13%

13.5%

14% DGP
DJ
IMEO

(a) percentage profit loss vs. data size

0.
52

0.
54

0.
56

data length

se
rv

ic
e 

le
ve

l

40 120 480 1200 4800

DGP
DJ
IMEO

(b) service level vs. data size

Figure 9 demonstrates the over-parameterised scenario. We can see that
IMEO has lower MPPL than DJ on small samples. With an increase in
sample size, the latter method converges to the DGP, while IMEO still has
a slight bias, producing around 0.1% higher loss than the DGP. The good
performance of IMEO on small samples could be because it does not need
to estimate the variance of the error term. As for the SL, IMEO reaches
the target level much faster than DJ, performing especially well on small
samples, where the latter method reaches much lower service level than
needed. As the sample size increases, both methods converge to the target
level.

Finally, we consider the scenario in which an incorrect distribution of
error term is assumed. The results are presented in Figure 10. It becomes
apparent that IMEO outperform DJ in terms of MPPL on small samples
and converges to DGP together with DJ. IMEO also seems more stable than
DJ in terms of SL across all sample sizes. While IMEO does not converge to
the target level on larger samples, it is consistent and less biased than DJ,
which converges to a value much higher than needed. One interesting thing
we can see from both Figure 10 and Figure 7 is that DJ always gives a very
low SL when the sample size is small, and converges to a higher than needed
target as the sample size grows. This “wrong” target is obtained in both
situations, not surprisingly, because DJ cannot overcome the incorrectness
in the distributional assumption.

Summarising this subsection, we see that IMEO is robust and does not
fail as badly as the classical disjoint method does in severe cases of misspec-
ification. At worst, IMEO performs similarly to DJ. In addition, it looks
like IMEO does consistently better than the DJ in terms of service level,
so if this is more important for a company than profit loss, then we would
recommended using IMEO.
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Figure 10: Performance vs. sample size with Laplace distributed error term,
nonlinear model
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5 Real-life Case

In this section, we examine the performance of IMEO on a real-life nurse
staffing problem in a hospital, which must determine the next-day staffing
level Q. The hospital incurs an underage cost (unexpected high death rate,
reputation damage, etc.) if there are not enough nurses, and an overage
cost (unnecessary exposure risk, big salary payment, etc.) if there are too
many nurses. Both types of costs are considered to be nonlinear in this case
(Fernandez et al., 2020; Al Thobaity and Alshammari, 2020). The objective
is to minimise the expected daily cost.

The data we use comes from the NHS open data-set (NHS England,
2020). It includes the total bed occupancies for a large UK general hospital
from April to October 2020 on a daily basis.

We assume a fixed 1 to 3 nurse-to-bed ratio (similar to how it was done
in Ban and Rudin, 2019), hence the demand y is the total number of beds
occupied divided by 3. In addition, we do not require the number of nurses
to be integer, due to possibility of them working part-time. Based on the
study of Chen et al. (2020) and Liu et al. (2020), we can approximate this
problem as:

π(Q, y) = α[Q− y]+ − β E
[

min
{

[Q− y]+, u
}]

+ ζ
(
[y −Q]+

)2
. (11)

Here, we assume that each over-scheduled nurse incurs a fixed cost α > 0,
but can be reassigned to help other departments and reduce the cost by the
amount β; whereas demand of other under-staffed departments can be seen
as a random variable u. Moreover, we assume that the shortage penalty of
nurse staffing is proportional to the shortage quantity with rate ζ, since that
shortage may be covered by reassignment or overcharging, but significant
shortage could be lethal to patients. The parameter values are chosen based
on the studies of Chen et al. (2020), Liu et al. (2020) and Coronini-Cronberg
et al. (2020):
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• α = 10, β = 4, ζ = 1, and u ∼ U(0, 15).

To get some sense of the data, we provide a time-series plot in Figure 11.
It can be seen that from mid-April to October, the number of beds occupied
exhibits seasonality, and that from late-August, the number becomes stable.
According to the public information in the NHS data set, the hospital nearly
reaches the maximum capacity.

Figure 11: Time-series plot of bed occupancy
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To perform a fair comparison, we apply both the disjoint method (“DJ”)
and the proposed method (“IMEO”) to this NNVP, with several ARIMA
models with orders p = 1, 2 and P = 0, 1. We use the ARIMA model here
to maintain consistency with previous sections. It is, of course, possible
that other models would fit better than the chosen ARIMA. However, our
intention here is not to find the best-fitting model, but to compare the
performance of IMEO and the disjoint method fairly. After all, it is more
interesting to see how the two approaches compare, when the applied model
is wrong.

For the purpose of generality, we include four pairs of orders in ARIMA
(p = 1, P = 0; p = 2, P = 0; p = 1, P = 1 and p = 2, P = 1). To compare
the performance of the methods, we obtain their 1-step ahead forecasts
with rolling horizon (Tashman, 2000), where origin length is s = 100 and
the origin is shifted n = 80 times. For each forecasted value, we compute
the over-scheduled/under-scheduled nurse number, the service level, and the
daily cost.

The boxplots are shown in Figures 12a and 12b. The black lines in
the boxes represent mean values rather than medians. From the plots, we
can see that IMEO outperforms DJ with all ARIMA models, in terms of
both the mean cost and the mean scheduling error. Moreover, DJ produces
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larger variance of both errors and costs than IMEO. Thus, IMEO not only
has lower mean costs, but also works more efficiently overall. This finding
is in line with the MPPL result at data length 120 in Subsection 4.2.2.

Figure 12: Boxplot of the out-of-sample performance. The black lines in the
boxes represent mean values
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We also used the auto.arima() function from forecast package (Hyn-
dman et al., 2020) for R in order to select the most appropriate ARIMA
model for the DJ method and then we used the same model for the IMEO
(Figures 13a and 13b). In this case we are favouring DJ approach, producing
the model closer to the true one based on Akaike’s information criterion. At
the same time, the appropriate order selection mechanism for IMEO is not
yet developed, so the same model will not be optimal for it. Still, analysing
the plots on Figure 13, we can see that the difference between the two meth-
ods is not substantial, with boxplots being very close to each other. This
additional experiment shows that even when the DJ approach is done prop-
erly, using the state of the art forecasting techniques, IMEO does not fail
substantially and can be considered as a decent alternative to DJ. Together
with the results from Figures 12, this experiment shows that IMEO works
well in a wide variety of cases.

The service level achieved by each method is summarised in Table 3. One
can check by simulation or numerical methods that the “target service level”
that minimises cost for the given parameters is around 0.8. In that case,
IMEO achieves a much closer service level to the target than the disjoint
method, no matter what ARIMA model is used, while the disjoint method
provides a higher than needed service level in all four cases.

This example shows that IMEO is a robust approach that results in lower
costs and a service level closer to the target, even when the model is specified
incorrectly. The disjoint method is much more sensitive to the specification
of the model, performing poorly when the model is misspecified.
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Figure 13: Boxplot of the out-of-sample performance with auto-fitting. The
black lines in the boxes represent mean values
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Table 3: Service level of each methods for real-life case

Order p = 1, P = 0 p = 2, P = 0 p = 1, P = 1 p = 2, P = 1

DJ 0.950 0.950 0.975 0.975
IMEO 0.750 0.750 0.825 0.850

Note: The service level achieved by auto-fitting algorithm is 0.950.

6 Concluding Remarks

In this paper, we extended the method of Ban and Rudin (2019) to a broader
framework, called “Integrated Method for Estimation and Optimisation” or
IMEO. IMEO attempts to maximise the expected profit instead of min-
imising the expected opportunity cost, which turns out to be an important
distinction in the nonlinear case. We showed that IMEO reduces to the
method of Ban and Rudin in the linear case, when both methods turn out
to be equivalent to quantile regression. Our experiments indicate that IMEO
performs at least as well as the benchmark methods, in terms of both mean
percentage profit loss and service level. It also appears that IMEO is more
robust with regards to model misspecification. It also does well in terms of
service level, which could be attractive in real-life applications.

While the focus of the experiments in this paper was on ARIMA models,
the proposed approach could be applied to other models as well, such as
linear regression with explanatory variables, nonlinear regression and ETS.

There are several interesting topics for further research. First, it would
be interesting to study the performance of IMEO with other demand models,
such as ETS. Second, it would be desirable to develop a variable selection
mechanism in IMEO. The conventional disjoint method allows one to do
this in the first phase, for example by using cross-validation or a stepwise
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technique based on information criteria, while Ban and Rudin (2019) use
regularisation for the selection and estimation. While these are good ap-
proaches, they require large samples and are computationally expensive.
Our hope is that a more efficient feature selection method can be developed.
Third, we focused our research on NVP, but IMEO could be potentially ex-
tended to multi-period inventory problems. Finally, it would be interesting
to extend IMEO to multi-item problems, either with or without substitution
effects between products.

A Proof of Equivalence to Quantile Regression

Proof. In quantile regression, the objective function is defined as (Koenker
and Hallock, 2001):

min

s∑
t=1

ρτ (yt − q(xt)),

where ρτ (u) = u(τ − I(u<0)), and I is an indicator function. Thus, simply
by setting τ = cu/(co+cu), we have:

min
s∑
t=1

(
cu[yt − q(xt)]+ + co[q(xt)− yt]+

)
= min(co + cu)

s∑
t=1

( cu
co + cu

[yt − q(xt)]+ +
co

co + cu
[q(xt)− yt]+

)
= min

s∑
t=1

(
τ [yt − q(xt)]+ + (1− τ)[q(xt)− yt]+

)
= min

s∑
t=1

ρτ (yt − q(xt)).

�

B Proof of Maximising-Minimising Transformation

Proof. We have:
min[a, b] = a− [a− b]+,

and
a− b = [a− b]+ − [b− a]+.

We can transform:

π(q(xt), yt)

= pmin[q(xt), yt]− vq(xt)− ch[q(xt)− yt]+ − cs[yt − q(xt)]+

= p{q(xt)− [q(xt)− yt]+} − vq(xt)− ch[q(xt)− yt]+ − cs[yt − q(xt)]+

= (p− v)q(xt)− (ch + p)[q(xt)− yt]+ − cs[yt − q(xt)]+.
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Therefore, we have (since yt is fixed):

max
s∑
t=1

π(q(xt), yt)

= max
s∑
t=1

{(p− v)q(xt)− (ch + p)[q(xt)− yt]+ − cs[yt − q(xt)]+}

= max

s∑
t=1

{(p− v)[q(xt)− yt]− (ch + p)[q(xt)− yt]+ − cs[yt − q(xt)]+}

= max
s∑
t=1

{(p− v)[q(xt)− yt]+ − (p− v)[yt − q(xt)]+

− (ch + p)[q(xt)− yt]+ − cs[yt − q(xt)]+}

= min

s∑
t=1

{(v + ch)[q(xt)− yt]+ + (p− v + cs)[yt − q(xt)]+}

= min
s∑
t=1

{co[q(xt)− yt]+ + cu[yt − q(xt)]+}.

�
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