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Abstract

Widespread flood events have heavy consequences on society and the environment. Gaining

insight into the occurrence and impact of these rare flood events is thus of interest to many

parties such as governments, environmental organisations and insurance companies. To assess

flood risk, past events are studied and used to fit statistical models from which plausible flood

events are simulated over large areas and large periods of time. These simulated extreme

events then drive other models, such as models of loss for insurance purposes, to provide

insight into the possible impact of future flood events.

This thesis addresses problems in the analysis of extreme river flows which cause flooding,

and the inefficiency of simulation of yearly loss due to flooding.

Firstly, many extreme value analyses are conducted in reaction to the occurrence of a large

flooding event. This timing of the analysis introduces bias and poor coverage probabilities

into the associated risk assessments subsequently leading to over-designed flood protection

schemes. These problems are explored through studying stochastic stopping criteria and new

likelihood-based inferences are proposed that mitigate against these difficulties.

Simulated extreme events are used along with geographical knowledge and property in-

formation to simulate losses at each property for each flood event over many years. These

simulations are then aggregated to obtain total yearly losses and to estimate return levels

of yearly loss. The large number of simulations needed makes this process computationally

expensive. A new method is proposed, using novel concentration inequalities, which reduces

the number of years that need to be simulated.

Finally, modelling extreme flood events is complicated due to temporal dependence and

the spatial dependencies of river flows between multiple locations with the presence of time

lags between locations. The theory of multivariate temporally dependent extremes is ex-

plored, with focus on measures of dependence, and areas of further research are highlighted.
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Chapter 1

Introduction

1.1 Motivation

Flooding can have a severe impact on society causing huge disruptions to life and great

loss to homes and businesses. The December 2015 floods across Cumbria, Lancashire and

Yorkshire caused widespread damage and tens of thousands of properties were left without

power. Governments, environmental agencies and insurance companies are keen to know

more about the causes and the probabilities of the re-occurrence of such events to prepare

for future events. Therefore we wish to better understand the flood risk and the magnitude

of losses that can be incurred. This PhD project with JBA Risk Management focuses on

modelling such extreme events and estimating the total impact (in terms of financial losses).

JBA is a group of companies concerned with environment, engineering and risk. This

project is with part of this group, JBA Risk Management, which specialises in consulting for

flood risk and other natural extreme events. Their clients range from reinsurance companies

to utility companies to local authorities and they provide a range of services such as flood

risk assessments and portfolio analysis. In order to assess the risk from flooding one needs to

simulate extreme flood events, identifying and tackling problems in extreme value simulation

of river flow is one main focus of the project. The second topic of the project is concerned

with studying the tail of the loss distribution and improving the efficiency of estimation of

the quantiles of this distribution.

1.1.1 Problems in statistical inference for extreme river flows

The simulation of flood events is important in understanding the flood risk and determining

the loss distribution. Typically there is little loss history available and so extrapolation purely

from this data would be unreliable. Thus, we instead consider the mechanism that leads to

these losses, i.e. the extreme weather events. This part of the project is based on extreme

1
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value theory since we are interested in the events that create the greatest losses of which there

may be little or no past data to extrapolate from. Extreme value theory is the development

of statistical models and techniques for describing rare events. In other words, concern lies

in fitting the tails of a distribution correctly unlike much statistical theory which is generally

more focussed on the body of the distribution of interest. An introduction to and overview

of classical univariate extreme value theory is provided in Chapter 2.

JBA currently use the Heffernan and Tawn model (a conditional approach to modelling

extremes developed by Heffernan and Tawn (2004), see Appendix E) to obtain river flows at

a set of points, corresponding to gauge sites, for events simulated over a long period, typically

10000 years. As part of the PhD project we aim to address some of the current issues with

the extreme value analysis underlying this model.

Firstly, the point in time at which we decide to analyse the data can have an effect on

inference. Renewed analyses of river flow data are usually performed as a consequence of the

occurrence of a major flood event, i.e., the timing of the analysis depends on observing a large

river flow and so the size of the data set of river flows is random. Such analysis is generally

performed in order to assess the efficiency of existing and proposed defence schemes. The

UK currently spends £400-500M per year on flood defence infrastructure. It is important

that the flood risk analysis is as accurate as possible to make decisions on future investments;

underestimation of flood risk may lead to inadequate flood defences whereas overestimation

of risk may lead to money spent unnecessarily on flood defences which could be put to better

use elsewhere. Performing an analysis after a major flood event introduces a positive bias

in the estimated flood risk using the standard inference methods. In this thesis we focus on

inference in the univariate setting (for river flows at one gauge site) with two threshold-based

rules to decide on when to perform a statistical analysis.

Secondly, modelling flood events can be quite complicated since we need to model in both

space and time due to the presence of different locations and lags between events at different

locations. On one hand the occurrence and intensity of extreme values are likely to be similar

at nearby locations. For example, rainfall will generally be similar at neighbouring locations

as it is likely to be part of the same weather system and also the geography of the area may

affect the rainfall-runoff process. On the other hand, there is some dependence within the

time series as river flows on consecutive days are likely to be similar. So when extreme values

are observed they often occur in clusters with similar clusters at nearby locations and/or
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further along the same river network. This complex dependence structure complicates the

classical extreme value methods. For loss calculations JBA need to aggregate losses, caused

by extreme river flows, across a region and over some period of time so having techniques and

understanding of multivariate temporally dependent extremes is important. In this thesis we

explore the theory of multivariate temporally dependent extremes with focus on measures of

dependence.

1.1.2 Loss simulation and return level estimation

The second aim of the project is to improve the efficiency of the estimation of total loss

incurred from the modelled flooding information. In the following we consider clients to be

insurance or reinsurance companies. JBA’s clients have portfolios containing a number of

insured properties/locations called risks. Each risk can be associated with multiple insurance

coverage types: contents, buildings and business interruption. A standard procedure to esti-

mate the loss distribution is to simulate extreme events, use these to model the water depths

(essentially) everywhere, and use these water depths combined with portfolio information to

create a loss distribution for each event, risk and coverage type. Losses are then simulated

for all the risks in a portfolio and all the simulated events in a year then summed to give a

simulation of the total loss for one year. JBA have 10000 years of simulated extreme events,

referred to as the event set, and so can simulate the total loss for each of these hypothetical

years.

JBA’s clients are interested in the distribution of total loss per year from flood events,

in particular the mean, variance and t-year return levels, for a range of return periods from

t = 2 to t = 5000. The t-year return level is the value which is exceeded in any given

year with probability 1
t . JBA find estimates of the return levels by simulating the yearly

losses over a portfolio for each of 10000 years multiple times (typically 100 times). For each

simulation they use all the ordered losses over all years to estimate the 1
t th quantile. The

quantile estimates over all simulations can then be used to obtain both a t-year return level

estimate by taking the mean or median, and rough confidence intervals by taking quantiles

of these estimates. Chapter 5 provides more detail of this standard procedure. JBA’s end

product is a ‘curve’ of return-level estimates and their approximate 95% confidence intervals

plotted for a range of return periods. This is referred to in the insurance industry as a loss

estimation curve and is used by clients to compare against their own historical data. The
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200-year return level (the loss exceeded with probability 0.005 = 1/200) is of special interest

since it is specifically required by the UK Government’s 2015 solvency regulation (Swain and

Swallow, 2015).

The method currently used to estimate the return levels is computationally expensive

since it involves simulating from all risk and coverage combinations in all 10000 years of the

event set multiple times. Portfolios can be extremely large (for example, covering Western

Europe) and so can contain up to 107 risks. Clearly the large number of risks and events

involved in this process has a huge burden on computation. In 2016 JBA’s software took 20

hours to analyse approximately 2 million risks. We aim to find a more efficient method to

estimate the return levels of yearly loss especially for high return periods.

This problem of efficient estimation of losses is faced across the flood/windstorm insur-

ance sector where generally losses over large portfolios are determined via computationally

expensive simulation.

1.2 Thesis overview

We begin in Chapter 2 with a review of classical univariate extreme value theory and rare

event simulation. The thesis is then split into three parts covering our topics of interest: I

– extreme values under stopping rules; II – efficient loss estimation; and III – extremes of

multivariate temporally dependent sequences.

In Part I Chapter 3 we explore the effect on inference of extreme values when the timing

of an analysis is dependent on the observation of an extreme event. In particular we find that

this timing of the analysis introduces bias and poor coverage probabilities into the associated

risk assessments and leads subsequently to inefficient flood protection schemes. We explore

these problems through studying stochastic stopping criteria and propose new likelihood-

based inferences that mitigate against these difficulties. Our methods are illustrated through

the analysis of the river Lune, following it experiencing the UK’s largest ever measured flow

event in 2015. We show that without accounting for this stopping feature there would be

substantial over-design in response to the event.

In Chapter 4 we continue our study of Chapter 3 by exploring in depth the features

of profile-likelihood based confidence intervals and a variety of bootstrap-based confidence

intervals for estimators under the stopping criteria of Chapter 3. We concentrate on the
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Lune river flow data and create data sets of the same size to compare confidence interval

methods and discuss the advantages and disadvantages of each method particularly when

we have a small data set. We find that the profile-likelihood based confidence intervals are

the best choice in terms of coverage, however, there is promise that the bootstrap methods

could be improved to provide similarly well performing confidence intervals. We also discuss

the problems which can arise using the likelihoods developed in Chapter 3 when the final

observation is just large enough to triggered the analysis.

In Part II we discuss the estimation of the return levels of the loss distribution and our

approaches to increase the computational efficiency of this estimation process. In Chapter 5

we describe in detail JBA’s standard procedure to estimate quantiles of the loss distribution

for a given portfolio from simulated events. A review of classic concentration inequalities is

given and novel, tighter, bounds are developed for sums of bounded random variables with

emphasis on random variables that are 0 with large probability but have large upper bounds.

In Chapter 6 we introduce a novel approach to reduce simulations using concentration

inequalities and evaluate this procedure with a test portfolio and event set provided by JBA.

We also discuss a possible method to estimate the return levels with low return periods.

In Part III we discuss the extension of classical extreme value theory to sequences with

serial dependence and multiple dimensions. In Chapter 7 we focus on these two extensions

separately then in Chapter 8 we bring both extensions together. In particular we investigate

the multivariate extremal index, a measure of average cluster size of extreme events over

locations and times, and we extend a measure of extremal dependence to describe structures

with two sets of components over different time lags. We derive these measures for two

multivariate stationary processes, the MARMAX process and the M4 process, and discuss

estimation of the multivariate extremal index through simulations of these processes.

Finally, in Chapter 9 we conclude the thesis with a summary of the results of each part

and discuss possible future research directions in each topic. In the appendices we provide

details of various investigations in the main thesis text including proofs, figures and tables.



Chapter 2

Literature Review

This literature review focuses on two main areas of interest for our work: extreme value

theory (§2.1) and rare event sampling (§2.2).

2.1 Extreme Value Theory

Often it is of interest to estimate the probability of events rarer (more extreme) than those

observed and so some kind of extrapolation is required. Extreme value theory is concerned

with modelling the tails of a distribution (the rare events) and is based on an asymptotic

argument in a similar vein to the central limit theorem. In this literature review we focus

on univariate extreme value theory for independent sequences – extensions to dependent

and multivariate sequences are considered later in Chapters 7 and 8. We describe the block

maxima and threshold approaches to modelling extremes for sequences of independent ran-

dom variables and the associated distributions. The point process representation is briefly

described in §2.1.3. A good introduction to the subject can be found in Coles (2001).

We are interested in the extreme values of a particular process represented by the sequence

of random variables, {Xt}t≥1. For example, this process could be daily rainfall at a site, in

which case Xt would be the rainfall on day t. In the simplest case we consider each Xt to be

independent and identically distributed over an observation period of length n. We consider

the sequences of random variables with serial dependence later in §7.1. Then, if the common

distribution, F , were known we could easily find the distribution of the maximum over the

observation period, since:

P (Mn ≤ z) = P (X1 ≤ z) . . .P (Xn ≤ z) = Fn(z),

where Mn = max{X1, . . . , Xn}.

Of course in reality the distribution F is unknown and simply estimating F can lead to

6
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Figure 2.1.1: The Fréchet (left), Gumbel (middle) and Weibull (right) probability densities.

large error in the estimate of Fn, so instead we adopt a limiting distribution for the maxima

as n→∞. However, the distribution of Fn reduces to a point mass at the upper end point

of F with zero mass elsewhere as n→∞. To circumvent this we normalise using a sequence

of constants (an > 0, bn) and consider the limiting distribution of

Zn =
Mn − bn

an
. (2.1.1)

If such a sequence of normalising constants, bn and an > 0, exists such that the distribution

of Zn in the limit as n→∞ is non-degenerate then the limit distribution of Zn is a member

of the family of Generalized Extreme Value (GEV) distributions with cdf:

G(x) = e−τ(x) with τ(x) =


[
1 + ξ

(x−µ
σ

)]− 1
ξ

+
ξ 6= 0

e−
(x−µ)
σ ξ = 0

(2.1.2)

where µ, σ and ξ are the location, scale and shape parameters respectively and [y]+ is 0

for y < 0. This distribution consists of three classes of distribution: Fréchet (when ξ > 0),

Gumbel (when ξ = 0) and Weibull (when ξ < 0). The shape parameter controls the rate of

decay of the tails of F as illustrated in Figure 2.1.1. When ξ = 0 the rate of decay in the

upper tail is exponential whereas when ξ > 0 the upper tail is heavier and for ξ < 0 the

distribution has a finite upper point so the maximum value possible is constrained by this

upper bound.

The key to the proof of the limit distribution lies in the concept of max stability. For Zn
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to have a non-degenerate limit the distribution G must be max-stable, that is there exists

constants Ak > 0 and Bk such that

Gk(Akz +Bk) = G(z) ∀k ∈ N. (2.1.3)

It then arises that a distribution is max-stable if and only if it belongs to the family of

generalised extreme value distributions.

A distribution function, F , is said to belong to the domain of attraction of its limiting

distribution, G, if and only if there exists sequences an > 0 and bn such that Fn(anx+ bn)→

G(x) as n → ∞. For example, the distribution functions in the domain of attraction of the

Gumbel distribution are the distribution functions for which

lim
n→∞

P (Zn ≤ z) = G(z) = e−e
(z−µ)
σ ,

i.e., G is the Gumbel distribution function.

2.1.1 Block maxima approach

In practice to use the GEV distribution the data are split into blocks of equal length and the

maxima of each of these blocks is modelled by the GEV distribution. This method is natural

for some types of data, for example when only the annual maxima are recorded. The limiting

distribution, (2.1.2), applies with block size tending to infinity, therefore taking block sizes

too small will result in bias due to poor approximation in the limit. On the other hand,

if blocks are taken to be too large there will be fewer data points available to fit the GEV

distribution and hence large variance in the parameter estimates.

One can easily obtain estimates for the parameters and combinations thereof by maximiz-

ing the likelihood. Of particular interest is the return level - the return level corresponding to

the tth return period is the value which is exceeded on average once every t periods. In most

settings the relevant period is a year. It is informative to plot the estimated return levels

along with confidence intervals against log(− log(1− 1
t )) or log(1

t ) in a return level plot ; the

two choices for the x-axis are approximately equal for large t. With this choice of x-axis we

obtain a linear return level plot when the shape parameter, ξ, is 0, convexity when ξ > 0 and

concavity with a finite bound on the return level when ξ < 0. Confidence intervals can then

be found using the delta method or, the more accurate, profile likelihood method.
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Figure 2.1.2: The block maxima approach with block size 20 (left) and the threshold approach with
threshold, u = 90 (right) applied to a test data set.

2.1.2 Threshold approach and the Generalised Pareto distribution

The block maxima approach is wasteful if we have more data available on the extreme values.

This extra information can be included and further analysis improved by adopting a threshold

approach. For suitably large u the exceedances of this threshold are typically assumed to be

exactly modelled by their limiting distribution as the threshold tends to the upper end point

of the distribution. This limiting distribution is the Generalised Pareto distribution (GPD)

which has distribution function for y > 0:

H(y) = P (X ≤ u+ y|X > u) =

 1−
(

1 + ξy
σu

)− 1
ξ

+
ξ 6= 0

1− exp
(
− y
σu

)
ξ = 0,

(2.1.4)

where ξ and σu > 0 are the shape and scale parameter respectively. Note that if ξ is

zero then the GPD is equivalent to the exponential distribution with rate parameter σ−1
u .

The shape parameter ξ is the same as that under the GEV distribution whereas the scale

parameter changes with threshold with σu = σ + ξ(u − µ) where (µ, σ, ξ) are the associated

GEV parameters. For modelling using the GPD we also need to model the rate at which the

threshold u is exceeded.

There are similar issues with threshold choice as with block length choice for the first

approach. The limit distribution of Equation (2.1.4) will only hold if the threshold, u, is

large enough whereas, taking a threshold too high reduces the amount of data we can use to
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fit the GPD. One way to check whether the threshold is large enough is to inspect the mean

residual life plot. This is the plot of the threshold u against

1

nu

nu∑
i=1

(x(i) − u) for u < max
t
Xt,

where x(1), . . . , x(nu) are the nu observations that exceed u. The expected exceedance for a

given threshold, i.e., the mean residual, is a linear function of the threshold where the GPD is

valid. Therefore, above a particular threshold, ũ, the return-level plot will be approximately

linear suggesting that the approximation in the limit is valid for higher thresholds, u > ũ.

The estimates for both the shape parameter, ξ, and σu − ξu are constant for high enough

thresholds so plotting the estimates of these for increasing threshold, along with confidence

intervals, can give another indication as to which threshold the GPD is valid above.

Additionally one can assess the model fit in the ‘usual way’ by checking histograms,

probability plots and quantile plots and also by plotting the empirical estimates for the

return level on the return level plot to see if they are in agreement with those predicted by

the model.

The methods of modelling checking and threshold selection described above are quite

subjective and can be time consuming. Scarrott and Macdonald (2012) provide a review of

threshold selection methods including more recent approaches. More recently Wadsworth

(2016) presented an automated procedure to select the threshold using a likelihood ratio test.

The issue of threshold selection remains an area of considerable focus still.

All of the above theory and methods were presented after assuming we have a sequence of

independent and identically distributed random variables. However, in many cases we may

have data which are non-stationary (i.e., the underlying distribution of the data is changing

through time) or dependent. The case of dependent data is explored in §7.1. Non-stationarity

of a series could be seasonal (e.g., temperature) and/or be due to some other, possibly latent,

processes. Such factors can be incorporated into the model by writing the parameters as a

function of time and/or some covariate(s) (see, for example, Eastoe and Tawn 2009; Eastoe

2019; Turkman et al. 2010).
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2.1.3 Point process representation

The point process representation unifies the GP and GEV models. With {Xt}t≥1, Mn and

G(z) defined as in §2.1, consider the collection of points:

Pn =

{
Xt+i − bn

an

}
i=1,...,n

,

for sequences bn, an > 0 such that

lim
n→∞

P
(
Mn − bn

an
< z

)
= G(z).

Let z− and z+ be the upper and lower points of G(z) respectively and define the point process,

Nn, counting the points Pn above z as

Nn([z, z+)) =
n∑
i=1

1

{
Xt+i − bn

an
∈ [z, z+)

}
where z > z−.

Then Nn → N as n→∞ where N has a Poisson distribution with mean

Λ[z, z+) =

[
1 + ξ

(
z − µ
σ

)]− 1
ξ

+

. (2.1.5)

This is instantly recognisable as the exponent part of the GEV distribution function (2.1.2).

We say that the process that distributes the points, Pn, converges on the set [z, z+) with

z > z− to a non-homogeneous Poisson point process, P , with intensity, on [z, z+), given by

Λ[z, z+).

The probability of the normalised maximum being less than a certain value is equivalent

to there being no points above this value in the point process, thus the limit distribution of

Z is the GEV distribution as before. Mathematically,

P (Z ≤ z) = lim
n→∞

P (No points of Pn in [z,∞))

= lim
n→∞

P (Nn([z,∞)) = 0)

= P (N([z,∞)) = 0)

= exp(−Λ[z,∞)).

For regions (u,∞), with u suitably large, we assume Nn = N and we absorb the norming
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sequences, an and bn into µ and σ. Then the Poisson point process likelihood is

L(µ, σ, ξ) = exp {−Λ(u,∞)}
nu∏
i=1

λ(xi), (2.1.6)

where λ(x) = d
dzΛ[z, z+)|z=x, {xi} are the points above u and nu is the number of points in

the region. This likelihood can be maximised to find estimates for the parameters µ, σ, ξ.

Alternatively, the threshold excess likelihood can be found by including information on

the probability, pu, of a point xi exceeding u. Let fX|X>u denote the density of X given

X > u. Then we arrive at the likelihood:

L(pu, σ̃, ξ) = P (Xi ≤ u)n−nu
nu∏
i=1

fX|X>u(xi)P (Xi > u)

= (1− pu)n−nu
nu∏
i=1

pu h(xi − u)

= (1− pu)n−nupnuu

nu∏
i=1

h(xi − u),

where h(y) is the derivative of the generalised Pareto distribution function (2.1.4).

2.2 Sampling from rare events

To improve the efficiency of the estimation of the return levels of yearly loss due to flooding we

draw on ideas from a range of sampling techniques. We make extensive use of concentration

inequalities in particular; we provide a brief description and literature review of these in

§2.2.1 but leave the mathematical details to §5.2 of Chapter 5. We also consider variance

reduction methods (§2.2.2) and splitting methods (§2.2.3).

2.2.1 Concentration inequalities

Concentration inequalities provide bounds on the probability of a random variable deviating

from a particular value, such as its expectation, by at least some margin, and so are espe-

cially helpful in finding bounds for tail probabilities. An advantage to finding bounds on

probabilities using concentration inequalities is that these bounds are absolute, unlike the

approximate bounds obtained from the central limit theorem.

A wide range of concentration inequalities has been developed, requiring varying amounts

of information about the random variable of interest. The most basic concentration inequality,
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the Markov inequality, requires knowledge of the expectation of the random variable only.

The tighter Chebyshev and Cantelli inequalities are acquired by also using the variance of

the random variable.

When the random variable of interest is a sum of independent random variables then

tighter concentration inequalities can be developed; these inequalities are generally derived

from the Chernoff inequality (Boucheron, 2013) which requires knowledge of the moment

generating function of the random variables. However, the moment generating function may

be unknown or difficult to compute so looser but tractable concentration inequalities have

been developed for specific cases such as the sum of independent bounded random variables

(e.g., Bernstein’s inequality (Bernstein, 1946)). Bennett’s inequality (Bennett, 1962), which

uses information on the maximum deviation of the random variables in the sum from their

expectations, is one of the tightest inequalities known for sums of bounded random variables.

Refinements to the classic concentration inequalities including Bennett’s inequality have

been considered in the literature (e.g., Jebara (2018); Zheng (2017); From and Swift (2013))

but these variations tend to be intractable and/or difficult to compute so the classic inequal-

ities are more commonly used in practice. Hertz (2020) presents an improved version of

Hoeffding’s inequality (§5.3.4) based on an improvement of Hoeffding’s Lemma when the dis-

tribution is skewed to the left and Kutin (2002) proves an extension of Bernstein’s inequality

with an upper bound on the probability of each independent random variable exceeding some

value.

A range of concentration inequalities including those mentioned above is presented in

detail in Chapter 5. In addition, examples and more details of the inequalities outlined above

can be found in Ross (1996) and a detailed overview of concentration inequalities is given by

Boucheron et al. (2004).

Gollini and Rougier (2015) apply the Markov, Cantelli and Chernoff inequalities in the

insurance setting to estimate the tail probabilities of the total loss. They assume a general

form for the loss distribution corresponding to a particular event and assume events arrive as

a Poisson process. This results in a compound Poisson distribution for the total loss over a

period of time. Gollini and Rougier (2015) also apply the generalised Markov inequality to the

kth power of the random variable of interest, Sk, to obtain the so-called moment inequality,

which requires knowledge of E
[
Sk
]
. Gollini and Rougier (2015)’s overall conclusion was that

the moment bound was the best bound to use however E
[
Sk
]

is not easily calculated in
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general and so calculation of the bound can become challenging.

2.2.2 Variance Reduction methods

A standard procedure to estimate the quantities of interest from the yearly loss distribution

is to use simulation and Monte Carlo methods. As we are especially interested the tails of

this distribution this method is inefficient since many of the simulations do not contribute

to these tails, which by definition consist of rare values. It would be more efficient to find

an estimator for the quantiles of interest which has a lower variance than the Monte Carlo

estimator, so we obtain more accurate estimates. Methods that seek to accomplish this are

called variance reduction methods.

Before exploring variance reduction methods we first consider the Monte Carlo estimator

for comparison. In Monte Carlo estimation the aim is to estimate an expectation (i.e. an

integral), which we write as I = E [g(X)] where X has a distribution F and a density f . The

simple (or naive) Monte Carlo estimate is then:

ÎMC =
1

n

n∑
i=1

g(xi),

where (x1, . . . , xn) are independently simulated from the target distribution. Note that esti-

mates of probabilities, P (X ∈ A), can be found this way by replacing g(x) by the indicator

function, 1{X∈A}. The naive Monte Carlo estimate is unbiased (E[ÎMC ] = I) and its variance

is:

Var
(
ÎMC

)
=

1

n2

n∑
i=1

Var (g(Xi)) =
1

n
Var (g(X)) =

1

n

(
Ef
[
g(X)2

]
− Ef [g(X)]2

)
.

JBA’s main goal is to estimate the t-year return level (or (1− 1
t )-quantile) of total yearly loss

for multiple return periods t ≥ 2. Quantile estimation via simulation is usually done by first

estimating the cumulative distribution function of the random variable of interest and then

inverting this estimate to get a quantile estimate. Using the simple Monte Carlo method we

have the following estimate of the true distribution function, F , of the random variable X:

F̂MC =
1

n

n∑
i=1

1{Xi≤x}, (2.2.1)

which has variance, Var
(
F̂MC

)
= p(1−p)/n where p = P (X ≤ x). Then the (1− 1

t )-quantile
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estimate is q̂MC = F̂−1
MC

(
1
t

)
. The empirical distribution function, F̂MC , is a step-function

so the inverse F̂−1
MC is not well defined. One convention is to take F̂−1

MC(p) to be the dnpeth

smallest simulated value, we detail and use another convention in §5.1.6.

Conditional Monte Carlo and Latin Hypercube Sampling

The conditional Monte Carlo (CMC) method (Hammersley, 1956) reduces the variance of the

Monte Carlo estimator of F by replacing the terms in the sum of (2.2.1) by the probability

of X ≤ x conditional on some auxiliary random variable, Y , which is easily observed and

provides information on X:

F̂CMC =
1

n

n∑
i=1

g(x, Yi),

where g(x, Y ) = P (X ≤ x|Y ) and {Yi}ni=1 are n independent and identically distributed (iid)

random variables. By variance decomposition we have

Var
(
1{X≤x}

)
= Var

(
E
[
1{X≤x}|Y

])
+ E

[
Var

(
1{X≤x}|Y

)]
≥ Var

(
E
[
1{X≤x}|Y

])
= Var (P (X ≤ x|Y )) ,

so Var
(
F̂CMC

)
= 1

n Var (g(x, Y )) ≤ 1
n Var

(
1{X≤x}

)
= Var

(
F̂MC

)
. Asmussen (2018) dis-

cuss CMC in insurance setting for the distribution of the sum of iid random variables with

conditioning on the random variables forming the partial sums. Nakayama (2007) discusses

the conditional Monte Carlo method for quantile estimation of the sum of iid random variables

with conditioning on some Y where the joint distribution of (X,Y ) is bivariate normal.

Dong and Nakayama (2017) improve upon the CMC method by combining it with Latin

Hypercube Sampling (of the auxiliary random variable) rather than simple random sampling.

Latin Hypercube sampling is a variance reduction method which extends stratified sampling

to high dimensions so the sample space is better explored in some sense. This is easiest to

visualise if we assume that the random variable of interest, X (Y for CMC), can be written as

a function of standard uniform random variables, U . Then in Latin Hypercube sampling we

essentially split the sample space of U into a finite grid and the realisations of U are spread

such that (in two dimensions for ease of explanation) there is one realisation in each row

and column of the grid. Avramidis and Wilson (1998) show that Latin Hypercube Sampling

reduces the variance of the Monte Carlo estimator compared to simple random sampling and
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in a similar manner Dong and Nakayama (2017) show the combination of Latin Hypercube

sampling and CMC reduces the variance of the CMC estimator.

Importance sampling

An important example of a variance reduction method is Importance Sampling. This involves

sampling from a different distribution, q(x), to the distribution of interest (the target distri-

bution), f(x), specifically from one which generates samples more frequently in the region of

interest (the importance region). That is, rather than simply using the brute force of Monte

Carlo simulation, the simulation is designed such that there is more concentration on the

values we are more interested in. Therefore, less computational time is needed to reach the

same level of accuracy of the estimate as compared to the Monte Carlo estimate.

In the importance sampling method the distribution from which we sample is termed the

proposal distribution and denoted by q(x). Observe that:

Ef [g(X)] =

∫
g(x)f(x)dx =

∫
g(x)f(x)

q(x)
q(x)dx = Eq

[
g(X)

f(X)

q(X)

]
.

This gives rise to the following unbiased estimator:

ÎIS =
1

n

n∑
i=1

g(xi)w(xi), (2.2.2)

where (x1, . . . , xn) are independent samples from q(x) and we define w(x) = f(x)
q(x) to be the

importance weight. A good choice of proposal, q(x), would be one which is easy to sample

from and preferably have some nice density form so any subsequent calculations are not too

difficult. More desirable properties of q(x) are discussed later.

Here we also note that sometimes it is more convenient to use an alternative estimator

using normalised weights:

ĨIS =

∑n
i=1 g(xi)w(xi)∑n

i=1w(xi)
.

This estimator is biased; however, this bias decreases with increasing sample size.

The variance of the unbiased estimator (2.2.2) is:

Var
(
ÎIS

)
= Var

(
1

n

n∑
i=1

g(Xi)w(Xi)

)
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=
1

n2

n∑
i=1

Var (g(X)w(X))

=
1

n

(
Eq
[
g(X)2w(X)2

]
− Eq [g(X)w(X)]2

)
=

1

n

(
Ef
[
g(X)2w(X)

]
− Ef [g(X)]2

)
=

1

n

(∫
g(x)2f(x)

q(x)
f(x)− I2q(x)dx

)
=

1

n

∫
g(x)2f(x)2 − q2(x)I2

q(x)
dx. (2.2.3)

So the variance of the estimator compared to the Monte Carlo estimate is reduced if:

Var
(
ÎMC

)
− Var

(
ÎIS

)
=

1

n

(
Ef
[
g(X)2

]
− Ef

[
g(X)2w(X)

])
=

1

n

∫
g(x)2(1− w(x))f(x)dx > 0.

Logically, the proposal must ‘cover’ the target distribution, that is, any point which can be

sampled from the target can be sampled from the proposal. This necessity is also clear since

the proposal distribution appears on the denominator of the estimator (and the variance of

the estimator) thus, for all x, q(x) > 0 if f(x) 6= 0. By considering the right hand side of

equation (2.2.3) we see that the variance of the estimate can become large when q(x) is close

to zero and cause problems in the tails. To handle this we need to ensure the tails of the

proposal are heavier than the tails of the target distribution, f(x). We also note that the

variance of ÎIS is small when the numerator is close to 0. This occurs when q(x) ∝ g(x)f(x)

and, moreover, if

q(x) =
g(x)f(x)

I
,

then q(x) is the optimal proposal since then the variance of the estimate would be zero. Of

course, this optimal proposal cannot be used in practice since when inserted into Equation

2.2.2 the importance sampling estimate, ÎIS , becomes the true unknown value, I. Nonetheless

this knowledge is useful in determining ‘good’ proposals.

Finally we remark that the importance weights can provide us with information about

the efficiency of the sampling procedure. For example, if one weight is much larger than the

others then the sample is essentially equivalent to just one independent sample. A measure
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of the efficiency of the scheme is the effective sample size (Robert and Casella, 2004):

ESS =
(
∑n

i=1wi)
2∑n

i=1w
2
i

.

Beck and Zuev (2005) apply and compare Monte Carlo simulation and importance sampling

with a range of proposals. Much like ourselves they were concerned with rare events, in

particular estimating the probability of rare events. They consider discrete-time models of

dynamic systems which have some stochastic input and define rare events as the set of inputs

for which a function of the outputs exceeds some quantity. They find that the choice of

proposal distribution can greatly affect the estimate and that the variance of the estimator

becomes worse as the dimension of the problem increases. They also describe and apply a

splitting method, which is the focus of the next section.

One strategy for choosing the proposal distribution is exponential tilting or exponential twist-

ing – this was first used in the importance sampling context by Siegmund (1976). For

exponential tilting, proposals are of the form:

qθ(x) =
exp(θTx)

E [exp(θTX)]
f(x), (2.2.4)

for some θ ∈ Rd where f(x) is the true (target) distribution. The ‘best’ proposal is (2.2.4)

with θ chosen such that the variance of the estimator, ÎθIS , is reduced. Exponential tilt-

ing/twisting has been extensively explored in the area of rare-event probability estimation

(e.g., Sadowsky (1993); Ridder and Rubinstein (2007); Dieker and Mandjes (2005)). This

method is particular ‘nice’ when f(x) is a member of the exponential family since then the

proposal is also a member of the exponential family and the weights and resulting impor-

tance sampling estimate have a simple form. Asmussen et al. (2016) develop an exponential-

tilting importance-sampling estimator for the left tail probability of the sum of iid lognormals

through consideration of the exponential family. However in general the proposal qθ(x) may

not be straight-forward and θ often needs to be numerically optimised. These issues were

raised by Ben Rached et al. (2021) in the context of estimation of the left tail of the sum

of iid random variables. They propose an alternative estimator, using the Gamma distri-

bution with suitably chosen parameters as the proposal distribution, which was shown to

have similarly ‘good’ performance compared to Exponential twisting while circumventing the

issues above. McLeish and Men (2015) argue and demonstrate that a proposal distribution
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from the family of generalised extreme value distributions is advantageous (at least in the

1-dimensional setting) over exponential tilting.

2.2.3 Splitting

The notion of exploring the region of interest more in order to improve efficiency is also the

basis of so-called splitting methods. The idea is that if one has multiple simulations of a

stochastic process over time the trajectories of some simulations are more likely to enter the

region of interest than others. These more promising simulations are replicated at a particular

time and this process is repeated many times. An estimate of the rare event probability is

similar to that for importance sampling in that it is a weighted version of the Monte Carlo

estimate.

The occurrence of the rare event of interest is equivalent to the process entering some set

A before a more likely set, B. We consider a nested sequence of subsets corresponding to

increasingly likely events:

A1 ⊃ A2 ⊃ . . . ⊃ AN = A.

The probability of the rare event, A, then becomes:

pA ··= P (A) = P (AN |AN−1) . . .P (A2|A1)P (A1) ,

which should be easier to calculate since larger probabilities are easier to estimate.

In the simplest one-dimensional case we consider the rare event occurring when the process

exceeds some threshold, M . We define a range of increasing thresholds, M1 < M2 < . . . <

MN = M , where exceedance of Mi corresponds to event Ai. Cérou and Guyader (2007) work

in this setting and give a description of classical multilevel splitting. Consider n simulations

of the process, X(t), for t = 0, . . . , T , starting at some initial value x0. All those simulations

that reach the first threshold before entering the more likely set B split - that is the process is

replicated some chosen r times up to the point the threshold was reached and from that point

onwards is simulated with the threshold as it’s initial value. This method is then repeated for

a higher threshold and so on until the threshold of interest, M , is reached (after N iterations).

In this way we are creating more processes that are likely to reach the rare threshold we are

interested in. The resulting estimate of pA is:
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p̂A =
nM
n
r−N , (2.2.5)

where r is the number of replicas at each iteration, nM is the number of simulations which

have exceeded the final threshold M and N is the number of iterations. This estimate is

simply the usual Monte Carlo estimate (nM/n) with a weight to account for the way the

processes are sampled to be more likely to exceed M before entering set B. For example, if

N = 2 and r = 2, the processes with high trajectories are duplicated at the first iteration

and so we would expect the probability of processes exceeding M2 = M to be doubled – this

is accounted for in the estimate be dividing by 2.

As noted by Glasserman et al. (1999) the issues with the classical approach are the choice

of thresholds and the number of replicas at each iteration. Glasserman et al. (1999) focus

on the second issue whereas Cérou and Guyader (2007) present an algorithm which chooses

thresholds adaptively. Such algorithms are called Adaptive Multilevel Splitting (AMS) algo-

rithms. Cérou and Guyader’s method is to sort the sample by the largest value attained by

each simulation before entering set B and keep the k largest of these. The kth largest value

attained is then taken to be the initial value for n− k new simulations. This process is then

repeated with the kept and new simulations (k+(n−k) = n simulations) until the kth largest

value is greater than the threshold of interest, M . The estimate of pA is then:

p̂A =
nM
n

(
k

n

)N
. (2.2.6)

Similar to the classical splitting estimator (2.2.5) this estimator is a weighted version of the

Monte Carlo estimator; the weights here are determined by the proportion of processes kept

at each iteration.

AMS was also used by Beck and Zuev (2005) in a similar manner to Cérou and Guyader

(2007), specifying the probability of reaching the next subset, p0, rather than the number

of simulations kept at each iteration, k. They confirm that the splitting strategy is much

more efficient at estimating the probabilities of rare events than the standard Monte Carlo

method and note that, unlike an importance sampling estimator, the splitting estimator does

not deteriorate with increasing dimension.



Part I

Investigating Extreme Values under

Stopping Rules
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Chapter 3

Inference for extreme values under

threshold-based stopping rules

3.1 Introduction

The UK currently spends £400-500M per year on coastal and river flood defence infrastruc-

ture, with 2 million properties exposed to the risk of flooding (Environmental Agency, 2020).

The agencies responsible for this spend monitor the effectiveness of their investment at giving

the level of protection expected. After major flooding events renewed analysis is performed

to assess both existing flood defences and the cost benefit of potential new schemes, proposed

in response to the flooding.

Statistical extreme value methods, with likelihood-based inference, have proved a core

component of the required analysis in terms of minimising the costs without jeopardising the

level of accepted risk, and hence have financial and societal benefits. However, there is a

problem with using these methods when the statistical analysis has been prompted by the

occurrence of a recent large event, since in this case the data-set size itself is also random.

This can lead to substantially biased inference and poor coverage properties and so result in

inefficient flood-defence designs. Omitting the new extreme data value from the data set also

seems unsuitable, as intuition suggests that flood risk will then be underestimated; moreover

it would appear perverse to flood management agencies to ignore events of the type most

relevant to the design specification.

In this chapter we aim to identify the extent of the inference problems when an analysis

has been triggered by a large event and to develop new conditional-likelihood methods which

appear to overcome these problems. We do not suggest when the timing of the data analysis

should take place but study the analysis given that its timing has been determined by a

data-dependent decision making process.

22
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We consider modelling the extreme events of a time series of independent and identically

distributed (iid) random variables X1, X2, . . .. The classical approach to do this is to split

the time series into blocks of equal size (often a year) and to model the maxima of these

blocks. Normalisation is necessary since as the block size tends to infinity the distribution

of the maxima degenerates to a point mass at the upper end point of the distribution of X.

The generalised extreme value (GEV) distribution (Coles, 2001) is the only non-degenerate

limiting distribution of the normalised maxima as the block size tends to infinity. The GEV

has distribution function:

G(x) = exp

(
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

)
, (3.1.1)

where µ, σ > 0 and ξ are the location, scale and shape parameters respectively and [z]+ =

max(z, 0). The shape parameter determines the behaviour of the upper tail of the distribu-

tion: for ξ < 0 the distribution has an upper end point, for ξ = 0 the tail is exponential

and for ξ > 0 the distribution has a power-decaying tail. There is particular interest in the

occurrence of extreme events and so an important part of the analysis is the estimation of

return levels (quantiles). Under stationarity, the y-year return-level, xy, is the value which is

exceeded on average once every y years. For the GEV distribution this can be calculated as:

xy = G−1

(
1− 1

y

)
=

 µ− σ
ξ

{
1− [− log (1− 1/y)]−ξ

}
ξ 6= 0

µ− σ log [− log (1− 1/y)] ξ = 0.
(3.1.2)

One can also consider modelling daily observations above some high threshold (rather than

just modelling the block maxima) by the asymptotically justified generalised Pareto distri-

bution (GPD) (Davison and Smith, 1990). Threshold methods typically benefit from using

more extreme-value data and hence are more efficient in their inferences than block maxima

methods (Coles, 2001). We focus most of our analysis and developments on the GEV case, as

similar benefits are found for both GEV and GPD inference, but with the GPD also sensitive

to threshold choice. We illustrate some GPD results in the supplementary material to Barlow

et al. (2020).

We consider the analysis of annual maxima of daily peak river flow data obtained from

UK CEH (2018) for the Lune at Caton, just outside Lancaster, from 1968 to 2015 (Fig-

ure 3.1.1, left panel) and illustrate the inference issues due to the timing of analysis being

determined by the occurrence of a flood event. Under the assumption that the annual maxima
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Figure 3.1.1: Left: The annual maxima of daily peak river flow data for the Lune at Caton with
return level estimates before (black) and after (red) the 2015 flood. Right: 200-year return-level

estimates based on all the data up to and including the current year for the Lune at Caton with 95%
profile likelihood-based confidence intervals. The four 200-year return-level estimates and associated

95% confidence intervals to the right of the vertical dotted line are our new estimates that aim to
address a fixed-threshold stopping rule of ck = 1568 based on the all the data up to and including

2015: standard likelihood (red), excluding the final observation (black), full conditioning (green) and
partial conditioning (blue).

are independent and identically distributed (i.i.d.) we can fit the GEV distribution to the

annual maxima using likelihood-based inference (the likelihood is
∏n
i=1 g(xi; (µ, σ, ξ)) where

n is the sample size and g is the density, g = dG/dx), and estimate return levels using (3.1.2).

The estimated 10, 100 and 1000-year return levels are shown in Figure 3.1.1 (left panel) for

the data up to 2014 (black) and including 2015 (red). The December 2015 floods resulted

in the river Lune recording the highest peak river flow (1740 m3/s) of all UK rivers over

all years of records. This value is higher than the 1000-year return-level estimate based on

the observations up to 2014. However, once the 2015 event is included in the analysis the

return-level estimates become much higher. If we were to take these 2015 point estimates

as the truth we would expect to observe an event as extreme as that in 2015 approximately

once every 200 years. For design purposes this level of sensitivity is highly undesirable, as the

costs for flood protection would change dramatically.

Figure 3.1.1 (right panel) shows a reanalysis of all data available at each year between

1978 and 2015. It provides the point estimate and profile likelihood-based 95% confidence

interval of the 200-year return-level, as it would have been produced in that year. The four

additional point estimates and confidence intervals to the right of the vertical dotted line

correspond to estimators introduced in §3.3 and their corresponding profile likelihood-based

confidence intervals. At the beginning of the data collection the return-level estimates vary
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considerably, but they become more stable as the number of years increases, with the width

of the confidence intervals generally decreasing over time. However, even after many years of

data collection, the largest events can be seen to cause sharp increases in the estimates and

their associated uncertainty. For example, the return-level estimate following the January

1995 floods and the 2015 floods are larger than those of previous years.

This illustrative example is typical of when an analysis is performed immediately after

a large event. Unless further analysis is undertaken it is unclear whether by analysing the

data with the final extreme event we are introducing a positive bias into the inference. For

example, the lower bound of the 95% confidence interval of the 200 year return-level after

the 1995 event is larger than almost all previous point estimates - directly after the event

(without the knowledge of later years) this could have been seen as an indication of positive

bias in the standard estimator. However, after the 1995 event the return-level estimates

were fairly stable and larger than those before 1995, so it would seem the standard estimator

for 1995 may not have been overestimating and before the event the shape parameter was

estimated too low.

An alternative approach is to simply ignore the most recent year of data when an analysis

has been requested because we have large observations in that year, in which case the return-

level estimate is lower and the confidence interval is narrower - in particular the upper bound

is lower. However, we speculate (see also §3.2.3) that this estimator is now negatively biased

due to the loss of information about the extreme event. Moreover the estimator is inefficient

since the larger data values are the most informative about the upper tail (Davison and Smith,

1990). Finally, it would be hard to convince practitioners to exclude the largest events; for

example, an event may be observed which is larger than the upper end point estimated from

previous data, in which case it would be perverse not to make some update to the previously

estimated return levels.

The key issue that the Lune example illustrates is that when meeting the flood man-

agement agencies’ needs, the time to undertake the extreme value analysis is stochastic and

triggered by a large event. Thus, there is effectively some form of unwritten stopping rule,

determined by the flood management agencies, which determines the timing of the analysis.

In contrast with a standard iid sample of fixed size, when we use a stopping rule the time at

which we stop (the sample size) is variable, we denote this by N .

One can attempt to mathematically formulate the characteristics of the stopping rule,
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though in reality a precise mathematical rule does not exist. The stopping decision may

depend on (i) some absolute threshold, such as the height of existing flood defences or a

critical level which when exceeded leads to severe flooding, or (ii) an assessment, based upon

all observations to date, of what might constitute an ‘exceptional’ event. We consider two

simple stopping rules based on a series of iid random variables, X1, X2, . . . which, in a sense,

bracket this range of possibilities and we discuss other possibilities in §3.6.

1. Fixed-threshold stopping rule

Stop when an observation exceeds a specified value, ck, i.e.:

N = inf{n ∈ N : Xn > ck} , (3.1.3)

where k is the true (but unknown) return period of ck.

2. Variable-threshold stopping rule

Stop when an observation exceeds the return-level estimate, x̂k, corresponding to a

chosen fixed return period of k years, calculated using previous observed values, i.e.,

when:

N = inf{n ∈ N : Xn > x̂k(X1, . . . , Xn−1)} . (3.1.4)

We do not suggest the stopping rule to use but study the analysis given that its timing has

been determined by a stopping rule. As far as we are aware, there has been no study of

stopping rules and their effects on likelihood estimation in the extreme-value setting.

Using a stopping rule to determine the sample size can lead to estimators, such as the

maximum likelihood estimator (MLE), having different sampling properties to the fixed-

sample case. To illustrate this feature consider an iid sequence of Bernoulli random variables,

Y1, Y2, . . ., each with probability of success of θ. If one fixes the number of trials, n, the number

of successes, R, in these trials is binomially distributed and θ̂ = R/n =: θ̂1; whereas if the

number of successes is fixed as r, the number of trials, N , is negative-binomially distributed

and θ̂ = r/N =: θ̂2. In both cases the MLE of the probability of success is the proportion

of successes, however, E
[
θ̂1

]
= θ whereas E

[
θ̂2

]
= rE [1/N ] ≥ r/E [N ] = θ by Jensen’s

inequality. The presence of a stopping rule affects the performance of the estimator which

motivates an investigation into the performance of return-level estimation under stopping
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rules.

Testing the data against some ‘stopping criterion’ at regular intervals falls into the setting

of sequential analysis, which has a rich literature covering applications from quality control

(Wald, 2004), to clinical trials (Todd et al., 1996) and abundance modelling (Barry and Cog-

gan, 2010). Many studies have considered the influence of such stopping rules on likelihood

inference, e.g., Barndorff-Nielsen and Cox (1984) consider the distribution of the likelihood-

ratio statistic under different stopping rules for systems with Brownian motion and Poisson

processes, and in the clinical trial setting Whitehead (1986) derives an expression for the bias

of the MLE of the treatment effect tested under a sequential probability ratio test. Some

papers compare the bias under different experimental designs or stopping criteria (e.g., Bauer

et al. (2010)). Cox (1952), Whitehead (1986) and Stallard and Todd (2005) propose bias-

reduced estimators by approximating the bias and subtracting this from the usual estimate.

One such approach uses an iterative method corresponding to a bootstrap bias correction

(Efron, 1990).

Kenward and Molenberghs (1998) consider iid sampling from a Normal distribution using

a deterministic stopping rule and study the estimation of the mean parameter of this Normal

distribution. Molenberghs et al. (2014) extend this setting to the use of a probabilistic

stopping rule. They note that an unbiased estimator of the mean parameter can be obtained

from the conditional likelihood (we derive such estimators in §3.3) however, at the cost of an

increased mean squared error (MSE) in comparison to the MSE of the sample average (the

standard estimator if the sample size was fixed). The increased variance of a bias-reduced

estimator appears to be an issue for many of the proposed bias-reduction methods. For

example, bias reduction using Rao-Blackwellisation (Bowden and Glimm, 2008) and shrinkage

estimators (Carreras and Brannath, 2013) often have a worse MSE than the standard MLEs.

In §3.2 we introduce the notation used throughout the chapter and discuss likelihood

inference under stopping rules. In §3.2.3 and §3.2.4 we discuss the bias under the fixed-

threshold and variable-threshold stopping rules respectively and derive expressions for the

bias when sampling from some simple distributions. We introduce two conditioning-based

likelihood estimators in §3.3. In §3.4 we perform a simulation study for sampling from the

GEV distribution using the two stopping rules and discuss the properties of the estimators

in this setting. We apply our estimators to the Lune river flow data in §3.5 and discuss our

conclusions, the practical usage of the methods and extensions in §3.6.
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3.2 Inference under stopping rules

3.2.1 Introduction

Throughout this chapter we restrict our attention to sequences of iid observations arising

from some distribution with a density of f(x; θ), where θ is the parameter vector for the

distribution. When a fixed number, n, of observations, x1, . . . , xn, is analysed, the likelihood

and log-likelihood for the data are

Lfixed(θ;x1:n) =

n∏
i=1

f(xi; θ) and `fixed(θ;x1:n) =

n∑
i=1

log f(xi; θ),

where x1:n denotes the vector of observations (x1, . . . , xn). In practice it is usual to assume

the sample size, n, is fixed however, for us, n, is not fixed; we sample consecutively until

some stopping criterion is met and denote the (random) time at which it is met by N . In

this chapter we consider both the full data and excluding the last data point, for which the

log-likelihoods are, up to an additive constant:

`std(θ;n,x1:n) = `fixed(θ;x1:n) (3.2.1)

`ex(θ;n,x1:n) = `std(θ;n,x1:n)− log f(xn; θ) . (3.2.2)

In §3.2.2 we reproduce the proof that the likelihood for the data (n,x1:n) is Lfixed(θ;n,x1:n) ∝

Lstd(θ;x1:n). Given data (n,x1:n) an estimate of the parameter vector is obtained by max-

imising the log likelihood: θ̂(n,x1:n) = arg maxθ `(θ). When the nature of the data is clear

we abbreviate this to θ̂, and depending on the likelihood used we have estimators θ̂std or θ̂ex.

In practice we would not consider estimating return levels (particularly for large return

periods) from a sample of only a very small number of observations. However, the fixed-

threshold stopping rules can result in samples of size 1, and this can lead to parameter iden-

tifiability issues for data sets simulated from the hypothesised data-generating mechanism.

In reality, if an analysis has been requested then sufficient information would be available to

derive a meaningful estimate. This information could be historical information, hydrological

knowledge, data from other sites, or data at the current site collected before the instigation

of a stopping rule. We call this the historical data and, for simplicity in this article, code the

historical data as some number, n0 of data values collected before the stopping rule could be
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invoked. Real decisions will incorporate this information, and our analysis should allow for

this.

We are interested in a set of y-year return-levels, xy(θ) (y ∈ Y), for some set Y, such

as {50, 200, 1000}. In particular, we wish to understand the behaviour of the estimators

xy(θ̂(N,X1:N )) (with xy given by expression (3.1.2) for GEV sampling) when the dataset

arises from a stopping rule. In this section we focus on the relative bias, and in §3.4 we look

at other properties including the relative root-mean-squared error, given respectively by:

RelBias(x̂y) =
1

xy(θ)
E
[
xy(θ̂(N,X1:N ))

]
− 1 (3.2.3)

RRMSE(x̂y) =
1

xy(θ)

√
E
[
{xy(θ̂(N,X1:N ))− xy(θ)}2

]
, (3.2.4)

where xy(θ) is the true y-year return-level.

In §3.2.2 we detail a well-known result that the likelihood for the data (n,x1:n) with a

random stopping time is the same as for data x1:n with n fixed. However, the properties of

the estimator, such as its bias and variance as well as the coverage of any confidence interval,

may be influenced by the different data-generating mechanism.

The properties of likelihood-based estimators of tail quantiles under our stopping rules are

intractable for data arising from the GEV or GPD distributions. However, for a particular

special case of the GPD, the exponential distribution, certain properties are tractable and this

provides insight into the behaviour observed in the simulation studies of §3.4 for the GEV.

Specifically, in §3.2.3 we derive the bias in quantile estimates for exponential data under the

fixed-threshold stopping rule, and in §3.2.4 show that, under the variable-threshold stopping

rule, quantile estimates for gamma data (including the exponential as a special case) with a

known shape parameter are unbiased.

3.2.2 Likelihood in presence of a stopping rule

Now, following Pawitan (2013), we derive the true likelihood for the data sampled using a

general stopping rule which is a function of the data and not the unknown parameter vector.

We define a stopping region Sn = Sn(x1:n−1) such that we stop sampling if Xn ∈ Sn and

continue to sample otherwise. We abbreviate P (Xi ∈ Si) by pi and we let fXi|Si and fXi|Sci

denote the densities of Xi conditional on Xi ∈ Si and Xi ∈ Sci . The likelihood for the full

data is
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Lstd(θ;n,x1:n) = P (N = n,X1:n = x1:n|θ)

= P (N = n)P (X1:n = x1:n|N = n, θ)

= pn1Sn(xn)
n−1∏
i=1

(1− pi)1Sci (xi)× fXn|Sn(xn|Sn)
n−1∏
i=1

fXi|Sci (xi|Si) (3.2.5)

= Lfixed(θ;x1:n)× 1Sn(xn)
n−1∏
i=1

1Sci (xi)

∝ Lfixed(θ;x1:n).

The logic here is that to have a sample of size n the final observation must be in the stopping

region and all other observations outside their respective stopping regions, hence P (N = n)

includes indicator functions of the observations being in the correct sets. The last step

follows since the indicator functions do not depend on the unknown parameter, θ, and so are

absorbed into the proportionality constant. Thus inference purely from the likelihood leads

to the same conclusions whether we have a random sample size according to some stopping

rule or a fixed sample size. In particular, the MLE, θ̂, and the observed Fisher information

are the same in both cases. However, the properties of the estimators are different since

the distribution of {N,X1, . . . , XN} is different to the distribution of {X1, . . . , Xn} for some

fixed n. In particular, estimators obtained from Lstd can be biased even when estimators

from Lfixed are unbiased, as seen in §3.1 for Bernoulli sampling.

3.2.3 Fixed-threshold stopping rule with exponential observations

Let Xi have an exponential distribution with an unknown rate parameter of β, which is a

special case of the GPD used to model the tails of a distribution and is given by expression

(2.1.4) with ξ = 0 and σ = β−1. The y-observation return level is xy = (log y)/β and, since

this is proportional to 1/β, the relative bias is β/β̂ − 1 whatever the value of y. The MLE of

β−1 for a sample of size n, whether fixed or random is simply x, where x is the sample mean.

When n is fixed, the MLE, (β̂fixed)
−1 = Xn, is an unbiased estimator of 1/β; however with the

fixed-threshold stopping rule N follows a geometric distribution where 1/k is the probability

of a ‘success’ i.e., an exceedance. The geometric distribution is a special case of the negative-

binomial distribution and so we know the estimator of the probability of exceedance of a

fixed threshold is positively biased (§3.1 under (3.1.4)). Now (β̂std)
−1 = XN and, similarly,
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the MLE when excluding the final observation is (β̂ex)−1 = X̄N−1 =
∑N−1

i=1 Xi/(N − 1). It is

straightforward to show (see Appendix A.1) the following.

Proposition 3.2.3.1. Let X1, X2, . . . be a sequence of iid random variables with Xi ∼

Exp(β). Let N arise from the fixed-threshold stopping rule (3.1.3) giving data (N ;X1:N ).

Let x̂stdy = xy(β̂std(N ;X1:N )) be the estimator of the
(

1− 1
y

)
th quantile (equivalently the

y-observation return-level) obtained from the MLE for β from the full likelihood and let

x̂exy = xy(β̂ex(N ;X1:N )) be the estimator from the likelihood excluding the final observation.

Then the relative biases of the return-level estimators are

1

xy
E
[
x̂stdy

]
− 1 =

βck
eβck − 1

(
βck

1− e−βck
− 1

)
1

xy
E
[
x̂exy |N > 1

]
− 1 = − βck

eβck − 1
.

In Proposition 3.2.3.1, when excluding both the final observation (and the fact that it is the

final observation), when N = 1 the MLE is undefined since there are no data; x1 is unknown

and the fact that N would be greater than zero was known before the data-collection process

began; we therefore condition on N > 1.

Proposition 3.2.3.1 shows that the estimator of any return level using the full likelihood

is always positively biased, whereas if the final observation is omitted the estimator of any

return level is always negatively biased. The final data observation is the largest and has

been shown by Davison and Smith (1990) to be the most influential on the MLE fit so

when this value, together with the information that it exceeded the threshold, is omitted

from the dataset this changes the bias and, potentially, also the variance of the return-

level estimator and risks being inefficient. Nevertheless, for thresholds with only a small

chance of exceedance, i.e., large values of βck, RelBias(x̂stdy ) ∼ (βck)
2 exp(−βck), whereas

RelBias(x̂exy ) ∼ −βck exp(−βck), that is, the bias is a factor (βck)
−1 smaller for estimates

where the final observation is ignored. The higher the threshold, the larger the typical data

set that is generated before the stopping criterion is met and the less biased the estimate of

any return level.

In Figure 3.2.1 we compare the relative bias of the estimates of β−1 (and hence also for the

return-level estimates) both when including and excluding the final observation when varying

k, the true return period of the stopping threshold, ck. The two additional curves correspond

to estimators that will be introduced in §3.3. The maximum relative bias in the standard
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Figure 3.2.1: Relative bias of the return-level estimates against the return period, k, of the
fixed-threshold stopping rule ck when sampling from the Exponential distribution with the

fixed-threshold stopping rule using: standard likelihood (red), excluding the final observation (black),
full conditioning (green) and partial conditioning (blue). The latter two methods are introduced in

§3.3.1

return-level estimator is 0.4; i.e., the estimator is around 1.4 times the true value. This occurs

for a threshold corresponding to k ≈ 7, i.e., when we stop sampling if an observation exceeds

the 7-observation return level. Clearly this will generally result in a very small sample so we

would expect return-level estimates to also be highly variable in this case.

3.2.4 Variable-threshold stopping rule with gamma observations

The positive bias in return-level estimates that arises from the fixed stopping rule is partly

a result of the geometric distribution of N (see §3.2.3). For the variable-threshold rule N no

longer has a geometric distribution and we find empirically for the GEV (see §3.4.3) that the

bias is typically reduced; as we now show, at least for one parametric family of distributions,

the bias disappears entirely.

Let Xi ∼ Exp(β), with unknown rate parameter, β > 0. In §3.2.1 we noted the need for

a historical sample in practice; here, to reflect this, we suppose that the stopping rule is only

implemented after an initial sample of independent Exp(β) variables, X−n0 , . . . , X−1, whose

mean is denoted by X̄0, with X̄0 ∼ Gamma(n0, n0β).

As noted earlier, the return level is proportional to β−1 and the MLE for β−1, from the

full likelihood, is x. Thus, for some constant of proportionality γ (depending on the return
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period, y), the variable-threshold stopping rule is equivalent to

N = inf{n ≥ 1 : Xn > γXn−1}, (3.2.6)

where
Xk =

n0X0 +X1 + . . .+Xk

n0 + k
k ≥ 1 . (3.2.7)

Theorem 3.2.4.1. With N , X1:N and Xk as defined in (3.2.6) and (3.2.7), for all n ∈ N:

XN |N = n
d
= Xn ∼ Gamma((n+ n0), β(n+ n0)) .

From Theorem 3.2.4.1 we see that E
[
Xn|N = n

]
= 1/β, and hence:

Corollary 3.2.4.2. For a sample obtained as in Theorem 3.2.4.1, the sample mean and

y-year return-level estimate are unbiased:

E
[
XN

]
=

1

β
.

E
[
xy(β̂

std(N,X1:N ))
]

= xy(β).

Contrasting Corollary 3.2.4.2 with Proposition 3.2.3.1, both of which apply to the exponential

distribution, we see that the standard estimator can be unbiased for the variable-threshold

stopping rule even though it is strongly positively biased for the fixed-threshold stopping

rule.

Theorem 3.2.4.1 and Corollary 3.2.4.2 can be extended to Xi ∼ Gamma(α, β) random

variables, where the shape parameter, α > 0, is known and the the rate parameter, β > 0,

is unknown (and must be estimated). As with the exponential distribution, the return levels

of the gamma distribution are proportional to β−1, with the constant of proportionality

depending on α. Furthermore the MLE from the full likelihood satisfies β̂−1 = x/α. So, the

variable-threshold stopping rule is (3.2.6) with the constant of proportionality γ depending

on α as well as the return period, y. Theorem 3.2.4.1 and Corollary 3.2.4.2 are retrieved by

setting α = 1.

A proof for Theorem 3.2.4.1 in this more general case is provided in Appendix A.1.2.
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3.3 Alternative Methods for Parameter Inference

3.3.1 New conditional likelihoods

Motivated by the lack of bias in the stopping rule of Molenberghs et al. (2014), we propose a

similar estimator for our scenarios by conditioning on the fact that only the final observation

met the stopping criterion. The likelihood, therefore, consists of the conditional densities of

the data values given that each of the first n− 1 is outside its stopping region and the nth is

inside its stopping region. Using the same notation as §3.2.2 the full-conditioning likelihood

is, from (3.2.5),

Lfc(θ;n,x1:n) =
P (N = n,X1:n = x1:n|θ)

P (Xn ∈ Sn)
∏n−1
i=1 P (Xi ∈ Sci )

= fXn|Sn(xn|Sn)
n−1∏
i=1

fXi|Sci (xi|Si)× 1Sn(xn)
n−1∏
i=1

1Sci (xi).

The log likelihood, `fc, is as given in (3.3.1) and the corresponding estimate is denoted θ̂fc.

For the fixed-threshold stopping rule this effectively conditions out the geometric distribution

for N (§3.2.3); it might be hoped, therefore, that it might remove that part of the positive

bias that is due to the randomness of N .

By conditioning on the final observation exceeding its stopping threshold and all other

observations not exceeding theirs we are effectively losing all of this information which will

lead to larger uncertainty in the estimates, e.g., giving wider confidence intervals. Hence,

we consider a further likelihood which conditions only on the fact that the final observation

exceeds its threshold:

P (N = n,X1:n = x1:n|N = n, θ)

P (Xn ∈ Sn)
= fXn|Sn(xn|Sn)

n−1∏
i=1

fXi(xi)× 1Sn(xn)
n−1∏
i=1

1Sci (xi).

As with full conditioning, this results in the stochasticity of N being less influential. We refer

to this method as partial conditioning with log likelihood, denoted by `pc, given in (3.3.2).

The corresponding estimate is denoted by θ̂pc.

In summary, the two new log likelihoods we consider are:

`fc(θ;n,x1:n) = `std(θ;n,x1:n)− log F̄ (sk,n; θ)−
n−1∑
i=1

logF (sk,i; θ) (3.3.1)

`pc(θ;n,x1:n) = `std(θ;n,x1:n)− log F̄ (sk,n; θ) (3.3.2)
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where sk,i is the lower boundary of the stopping set for the ith observation; then for the

variable-threshold stopping rule sk,i = x̂stdk (x1:i−1), i.e., it is the standard estimate of the

k-year return-level using all the data up to and including the previous observation, and for

the fixed-threshold stopping rule sk,i = ck for all i.

The examples of §3.2 have exponential tails with an unknown scale parameter. When data

values are modelled using the GEV, uncertainty in the shape parameter, ξ, has a much larger

impact on estimates of high quantiles than the uncertainty in the other two parameters,

µ and σ (Coles, 2001). So we now consider estimation of the shape parameter and high

quantiles using the standard and partial-conditioning likelihoods. For simplicity we focus on

an idealised scenario where we take µ = 0 and σ = 1 as known, so X has a distribution

function of F (x; ξ) = exp
(
−[1 + ξx]

−1/ξ
+

)
and a survival function of F̄ = 1− F .

For quantile estimation the standard likelihood estimator of ξ, i.e., ξ̂std, leads to a positive

bias for high quantiles. This can be seen as follows. The y-year return level can be written

as F̄−1(1/y; ξ) = [exp(ayξ) − 1]/ξ, with ay = − log[− log(1 − 1/y)], where ay ≥ 0 provided

y ≥ e/(e − 1) ≈ 1.6. Return levels as low as 1.6 years are of no practical interest in our

setting. When ay > 0, F̄−1 is an increasing, convex function of ξ ∈ R, so, whatever the

likelihood, Jensen’s inequality gives Eξ
[
F̄−1(1/y; ξ)

]
≥ F̄−1(1/y;Eξ [ξ]). The monotonicity

of F̄−1 implies that even if ξ̂std is unbiased, we should expect a positive bias in all quantile

estimates, and this will only be exaggerated if (as we find in our stopping-rule simulations)

ξ is positively biased.

This bias in the estimator for high quantiles is guaranteed to be less positive when using

the partial-conditioning likelihood rather than the standard likelihood. To see this first note

that `pc(ξ) = `std(ξ) − log[F̄ (c; ξ)] where c, the stopping threshold, has been standardised.

The resulting MLE, ξ̂pc, satisfies `(ξ̂pc)− log[F̄ (c; ξ̂pc)] > `(ξ)− log[F̄ (c; ξ)] ∀ ξ. Also, F̄ is an

increasing function of ξ since

∂

∂ξ
log {− logF (x; ξ)} =

1

ξ2

{
log[1 + ξx]− ξx

1 + ξx

}
≥ 0, ∀ξx > −1 .

So, as `(ξ̂std) > `(ξ) ∀ ξ, it follows that

`(ξ̂std)− log[F̄ (c; ξ̂pc)] > `(ξ̂pc)− log[F̄ (c; ξ̂pc)] > `(ξ̂std)− log[F̄ (c; ξ̂std)]

⇒ − log[F̄ (c; ξ̂pc)] > − log[F̄ (c; ξ̂std)]

⇒ ξ̂pc < ξ̂std.
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Thus, if the standard estimator is positively biased the partial-conditioning method will

be less positively biased. Given that this effect is magnified for return levels, as shown

above, we should expect improvements in return-level estimates using the partial-conditioning

likelihood. An analogous argument to the above also applies to data modelled using the GPD,

except that there is no restriction on y, and ay = log y.

3.3.2 Application to exponential observations

Consider iid sampling from the exponential distribution with rate parameter, β, using the

fixed-threshold stopping rule. The relative bias for return-level estimators using the log-

likelihoods (3.2.1) and (3.2.2), are detailed in Proposition 3.2.3.1 and plotted in Figure 3.2.1.

Figure 3.2.1 also plots the relative bias for the likelihoods in (3.3.1) and (3.3.2), the latter

has the form

RelBias(x̂pcy ) = RelBias(x̂stdy )−
β2c2

k

eβck − 1
=

βck
eβck − 1

[
βck

1− e−βck
− 1− βck

]
. (3.3.3)

Estimator x̂pcy is negatively biased but the bias is smaller than that for x̂exy . The bias of x̂pcy

tends to 0 as ck tends to infinity at the same fast rate as for x̂exy (§3.2.3).

We were unable to obtain a tractable expression for the bias of the full-conditional esti-

mator. In Figure 3.2.1 this bias was found using Monte Carlo methods. The bias is very low

and tends towards 0 much faster than any of the other estimators considered. This finding is

similar to that of Molenberghs et al. (2014) for the mean of normally distributed observations

with a probabilistic stopping rule; however, the MSE of the unbiased estimator was found to

be poor compared to that of the standard estimator. In §3.4 we show that in our ‘extremes’

setting, the full-conditional MSE for a return level is often lower relative to the MSE of the

standard estimator since the high variance of return-level estimators using the standard like-

lihood is in part due to the final observation being large. Furthermore in §3.4 we show that

the partial-conditioning approach results in estimators with much reduced variance and that

this leads to lower MSE compared to the standard likelihood approach.

3.4 Simulation results

In this section we focus on the return-level inference when sampling from the GEV distribution

with the two stopping rules of §3.1. In §3.4.2 we calculate the fixed stopping-threshold, ck,
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for a range of return periods, k, using (3.1.2) and our knowledge of the true parameters µ, σ

and ξ. In §3.4.3 we consider the variable-threshold stopping rule over a range of k. Similar

simulation results are given in the supplementary material to Barlow et al. (2020) for the

GPD.

3.4.1 Simulation design

We investigate true return-periods, k, between 20 and 2000. When generating the data, for

each k, for the fixed-threshold stopping rule, we set ck to be the true (1− 1/k)th quantile of

the data-generating distribution (i.e., the k-yr return level) whereas for the variable-threshold

rule the threshold is the estimated (1− 1/k)th quantile; with both rules we stop at the first

exceedance. In the simulation study, for each combination of θ, stopping rule and k, a large

number of data sets were simulated to evaluate the RMSE, bias and variance of the estimators.

Given the likelihood `M for M ∈ {std, ex, fc, pc}, detailed in equations (3.2.1), (3.2.2), (3.3.1)

and (3.3.2), profile-likelihood confidence intervals for a return level are studied in terms of

their coverage and width.

One major issue with simulating data sets with stopping rules is parameter identifiability.

For observation i, the stopping decision of the variable-threshold rule is based on the parame-

ter MLEs using observations 1, . . . , i−1. However, with N ≤ 2 observations contributing to a

likelihood the GEV parameters are strictly not identifiable, and for larger but low values of N

the parameters are still not practically estimable. As discussed in §3.2.1, in practice there is

typically additional information which is incorporated into decisions, and our analysis should

allow for this also. Such historical information is treated as fixed and introduces a fixed extra

penalty term, Phist(θ), into the log-likelihood; in a Bayesian analysis it would constitute prior

information about the parameter vector. As our simulation studies are conducted without

such evidence we treat the first n0 simulated values as providing historical information on θ;

we call x̃ := (x1, . . . , xn0) the historical data. Thus each simulated data set has the penalty

contribution to the likelihood:

Phist(θ) =

n0∑
j=1

`(θ;xj), (3.4.1)

a contribution that does not depend on the stopping rule since we imagine that these data

were available before decisions to stop and analyse the data were being made.
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Figure 3.4.1: 200 year return-level estimates when sampling from the GEV distribution with
(µ, σ, ξ) = (0, 1, 0.2) using the fixed-threshold stopping rule over a range of thresholds. From left to

right. Top: relative bias and relative RMSE. Bottom: coverage and average CI width. Colour scheme
is the same as in Figure 3.2.1. Based on 105 replicated samples with the historical data created using

approach (3.4.2). Coverage is based on 5000 replicated samples.

We fix the historical data, x̃, using an even spread of values:

xj = G−1(j/(n0 + 1); θ) for j = 1, ..., n0 (3.4.2)

where G is the distribution function of the data-generating GEV distribution. In addition

to providing a natural spread of values and stabilising the likelihood, for the fixed-threshold

rule, provided ck is greater than the 1/(n0 + 1) return level, no historical value exceeds the

stopping threshold. The stopping threshold, x̂k(x1:i−1) is now, implicitly, also a function of

x̃. We take n0 = 10, the smallest value that gave reliable numerical estimates for x̂k(x1:i)

with i ≥ n0, across the set of different true values for θ that were used in the simulation

study.



CHAPTER 3. EXTREME VALUE INFERENCE UNDER STOPPING RULES 39

3.4.2 Fixed-threshold stopping rule

In the appendix §A.2 we describe in detail the behaviour of the shape parameter estimates

in our simulations. In particular we found the shape parameter estimator using `std has

both large positive bias and large variance. The formulae in §3.3.1 show that return-level

estimates are exponential in the shape parameter. For high return periods moderately large

ξ estimates can lead to unrealistically high return-level estimates which exert unwarranted

influence on statistics based on empirical averages, such as estimated bias. Hence, we use

trimmed averages here.

Figure 3.4.1 shows the relative bias and RMSE of the 200 year return-level estimators when

sampling using the fixed-threshold stopping rule from the GEV distribution with ξ = 0.2.

Similar sets of plots for the 50 and 1000 year return-level estimator and ξ = −0.2 can be

found in the supplementary material to Barlow et al. (2020). The main driver of RRMSE in

all cases is found to be the variance of the estimators, so changes in bias are not too important

in this regard. Overall, the return-level estimator which results in the lowest RRMSE most

consistently is x̂pcy , mostly due to the low variance of these estimates whereas x̂fcy has the

lowest bias. Both conditioning estimators, x̂pcy and x̂fcy , improve upon the x̂stdy especially when

we are estimating very high return levels (i.e., for larger y) and/or the underlying distribution

is heavy tailed. Although x̂ex200 has somewhat similar properties to x̂pc200 for ξ = 0.2 it has

larger RRMSE for ξ = −0.2. The fitted distribution using `ex typically has a lighter tail and

can even have an upper end point which is less than the excluded observation.

The coverage for all likelihoods gets closer to the correct value (here 95%) as k increases

for any return period, y. For `std we have overcoverage and the widest confidence intervals

on average and using `fc we have good coverage, particularly when the distribution is heavy

tailed. For the other likelihoods there is mostly undercoverage (coverage ranging from 80-

95%) due to upper bounds being too low. The exclusion of upper tail information results

in relatively narrow confidence intervals from `ex. In contrast, `fc produces a higher upper

confidence limit and hence a wider confidence interval than `pc and `ex because the likelihood

essentially neglects the distribution of N , i.e., the threshold exceedance counts, which contain

some information about the upper tail of the distribution. The confidence intervals produced

using `fc vary greatly in width across our simulations with a larger median width than those

using `std.
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Figure 3.4.2: 200 year return-level estimates when sampling from the GEV distribution with
(µ, σ, ξ) = (0, 1, 0.2) using the variable-threshold stopping rule over a range of k. See Figure 3.4.1 for

associated detail. Based on 10000 replicated samples with the historical data created using
approach (3.4.2). Coverage is based on 3000 replicated samples.

3.4.3 Variable-threshold stopping rule

Within the samples simulated we find the stopping thresholds, x̂k(x1:m), over m < N are

generally less than the true k-year return level, xk. As a result the samples are both smaller

in size and consist of smaller values than when using the fixed-threshold stopping rule. So

return-level estimates calculated using `std have a small positive bias and those calculated

using the other three likelihoods have a larger negative bias than observed for the fixed-

threshold stopping rule.

The properties of the 200-year return-level estimators for ξ = 0.2 are shown in Figure 3.4.2,

the 50 and 1000-year return levels and ξ = −0.2 are considered in the supplementary material

to Barlow et al. (2020). For ξ = 0.2 the conditioning methods provide the best return-

level estimators in terms of RMSE despite the estimators having a larger squared bias than

x̂stdy . The reason for this is that for heavy tailed distributions the variances of return-level

estimators are generally larger than the bias. However, for lighter tailed distributions the
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bias plays a larger role as the relative variances of the different estimators are much closer

together. As a result x̂pc200 and x̂fc200 can perform marginally worse than x̂std200 in terms of

RRMSE when the distribution has a light tail.

The coverage for `std is high (96-98%), decreasing only slightly as k increases but it has

the widest confidence intervals generally. Using either `pc or `ex leads to undercoverage, as k

increases ranging from approximately 95% to 83-87% for `ex and from 93% to 78-85% for `pc

with coverage higher when the distribution is heavy tailed. The coverage for `fc also reduces

with increasing k from 99− 100% for k = 20 to approximately 90% for larger k. On average

the confidence intervals using `fc are narrower than using `std but generally wider than those

using `ex or `pc.

Overall, `fc provides the ‘best’ results when using the variable-threshold stopping rule.

The RRMSE of x̂fc200 is generally lower than that of x̂std200, coverage is above 90% and the

confidence intervals are narrower on average than those using the `std. Although `pc provides

estimators with a lower RRMSE than `fc, particularly when the distribution is heavy tailed,

it has more severe undercoverage.

3.4.4 Use in Practice

In practice, for the analysis of data that we believe has been obtained by the flood man-

agement agencies using the fixed-threshold rule we must set a threshold, c, and if they use

a variable-threshold rule we must set a return period, k, neither of which may be known.

This is important since the behaviour of the estimators can vary depending on the return

period, k, associated with the stopping threshold (as we have seen in §3.4.2 and 3.4.3). For

the fixed-threshold rule, c should lie between maxi<n xi and xn. For the variable-threshold

rule k should be such that xi ≤ x̂k(x1:i−1) for all i < n, but xn > x̂k(x1:n−1). To use the

simulation study results to understand the properties of the estimators it is useful to narrow

down a range of feasible k. For the variable rule, a range of possible k can be determined

from the data. However, for the fixed-threshold stopping rule k is unknown. Nevertheless,

we are likely to have some idea of the range of k which corresponds to c, i.e., we have a prior

belief for k.

The ‘historical data’ also needs to be determined, maybe incorporating prior knowledge

in some way. The simplest approach is to start using the stopping rule after the first n0

observations of the data set and use these n0 values as the historical data. The choice of
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n0 only affects the point estimates and confidence intervals using `fc. However n0 and the

historical data itself can have a large impact on the properties of the estimators, particularly

when the sample size is small. In the simulation study, out of necessity, we have restricted

ourselves to a particular fixed historical sample, so for low k the properties of the estimators

will differ slightly in practice.

3.5 Case Study - Lune at Caton

We now consider the analysis of the 48 annual maximum river flow observations from the

Lune at Caton introduced in §3.1. Figure 3.1.1, right panel, shows the inference for the

200-year return level of the data, at yearly intervals as new data are observed, with the

analysis not accounting for any stopping rule. We now estimate this return level using the

four inference methods (standard, exclude, and our full- and partial-conditional) for both

fixed- and variable-threshold stopping rules for a range of levels (c and k respectively), where

we drop the subscript of c as the return period of the stopping threshold is unknown. The

following discussion assumes that the sampling procedure is well approximated by these

respective stopping rules for the selected c and k. In all cases we take the historical data

to be the first n0 = 10 observations as in practice no estimates of long period return levels

would be attempted from smaller samples. We also consider the implications if a trend in

the annual maxima is also simultaneously estimated.

3.5.1 Fixed-threshold stopping rule

First we discuss the inference using the fixed-threshold stopping rule with c = 1568m3/s,

where, for illustration purposes, c is taken to be the mid-point between the 1995 and 2015

levels and the realised value of N is 38, i.e., we stop after 2015. Figure 3.1.1, right panel, to

the right of the vertical dotted line, shows the estimates and the associated 95% confidence

intervals for the four inference methods. The estimates x̂std200 and x̂ex200 are identical to the

estimates in the right panel of the figure for years 2015 and 2014 respectively. Both x̂fc200

and x̂pc200 (evaluated at 2015) are only slightly larger than the x̂std200 estimates for the years

before 2015 and x̂ex200, despite the inclusion of the 2015 value. From §3.4.2 we know that,

when employing the fixed-threshold stopping rule, x̂std200 is positively biased, x̂fc200 is close to

being unbiased and both x̂ex200 and x̂pc200 have some negative bias, therefore it is reassuring to
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see that x̂std200 >> x̂fc200 > x̂pc200 > x̂ex200.

The confidence interval for 2015 using `std is wider than the intervals of the previous 15

years, especially the 2014 interval (i.e., using `ex), and both the lower and upper bounds are

much larger. In this case study, the confidence interval of x200 using `pc is similar but slightly

narrower than when using `ex. However using `fc the interval is wider (since the upper bound

increases) than if we just ignored the 2015 event (using `ex) so we are capturing some of the

increased uncertainty in the heaviness of the tail that this event has caused. Nevertheless,

the upper confidence bound of x200 is lower than that using `std.

The behaviour of the confidence intervals of these methods appears to be in line with

our coverage and width results in §3.4.2. Indeed, here the shape parameter estimates,

(ξ̂std, ξ̂ex, ξ̂fc, ξ̂pc), are (0.04,−0.07,−0.04,−0.05) so we expect coverage to be between the

coverage values found in the simulation study for ξ = 0.2 and ξ = −0.2. In the study we

found that using `std with the fixed-threshold stopping rule leads to overcoverage (95-98% for

ξ = 0.2, 97.5-99.5% for ξ = −0.2) and the upper bound of the confidence interval found using

`std is lower than x200 only 1-2% of the time, so it is likely that for the Lune data the upper

bound of the confidence interval using `std is too high. This is further emphasised for the

Lune estimates by the upper bound for 2015 exceeding the associated values for the previous

30 years (Figure 3.1.1). In §3.4.2 we found that x̂ex200 and x̂pc200 exhibited narrow confidence

intervals which together with their negative bias led to undercoverage, with the upper bounds

being too low, especially when ξ = −0.2 and k is low. For our chosen c = 1568 we can obtain

estimates of the corresponding return period, k, of c; in particular k̂std = 90 and k̂ex = 550

and we expect k to lie between these two values. Thus, using the simulation study results,

we expect that the coverage of the `pc and `ex confidence intervals to lie between 85 and 95%.

However the lower bounds of these confidence intervals were found to be less than x200 for

almost 100% of simulated samples so it is highly likely that the true 200-year return level

for the Lune data is above the lower bounds given by the `pc and `ex confidence intervals.

For `fc and 90 < k < 550, the coverage is 94-95% with the percentage of upper bounds too

low being 3-6% suggesting that with the Lune data the upper bound of the `fc confidence

interval is likely to be higher than the true 200-year return level, x200.

The above discussion assumed that c was known. In some cases this may be true as c

could represent a known physical limit linked to flooding. This is not the case for the Lune

at Caton, with our value chosen subjectively for illustrative purposes although it could be
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argued that lower c values in this range would be more reasonable since the 1995 river flow

observation was considered high as it led to flooding. To assess the impact of c we consider

a range of values for c between the 1995 and 2015 observations, with the inference for the

four methods presented in Figure 3.5.1, left panel (when c = 1568 the estimates are those

shown in Figure 3.1.1 right panel). Now, x̂std200 and x̂ex200 and the corresponding confidence

intervals are invariant to c but as c increases x̂fc200 and x̂pc200 both decrease. As noted earlier,

x̂fc200 > x̂pc200 but they become closer as c tends to the 2015 event level because the information

that `fc discards, i.e., the probability of the event that c was not exceeded on the first

n−1 observations, becomes less informative. The confidence intervals using the conditioning

likelihoods notably narrow with increasing c; the lower bounds slightly decrease but the

largest reduction is in the upper bounds. For lower c values the `fc intervals are wider than

for `std, in contrast for the largest possible c values the interval is very narrow (a reduction in

size of factor 14 over the range of c possible). For `pc the upper bounds are smaller than those

using the `std for all values of c and are slightly larger than those for `ex for low c. However,

for large c the upper bounds of both conditioning confidence intervals are much lower than

that using `ex since the information that c was exceeded on this observation becomes more

informative about the tail of the distribution as c approaches the 2015 observation. Thus if

we stop after the first minor exceedance of c we can be reasonably sure the tail is short. This

is an unexpected but helpful finding. Further investigation into the confidence intervals can

be found in Chapter 4.

3.5.2 Variable-threshold stopping rule

Now we consider the variable-threshold stopping rule and first determine a range of k from

the data. In the Lune data the maximum river level in 2015 corresponds to k̂ = 2561 given

the data up to 2015 and to k̂ = 188 using all the data. However, the river level in 1995

corresponds to k̂ =∞ (i.e., it is larger than the point estimate of the upper end point of the

GEV fitted to the data up to 1995) so the variable-threshold rule as given in (3.1.4) cannot

have been applied for any k <∞. Furthermore, the river level in 1980 corresponds to k̂ = 111.

If the variable-threshold stopping rule had motivated a request for an analysis of the data up

to and including 2015, the request must have been triggered by the second such exceedance.

In our analysis we explore values of k between 200 and 2500 and simply amend `fc slightly

by replacing the `fc contribution of the 1995 observation (i = 28), g(x28; θ)/G(x̂stdk (x1:27); θ),
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Figure 3.5.1: 200-year return-level estimates based on all the data up to and including 2015 for the
Lune at Caton with 95% profile likelihood-based confidence intervals: left with the fixed-threshold

stopping rule over a range of c and right with the variable-threshold stopping rule over a range of k:
standard likelihood (red), excluding the final observation (black), full conditioning (green) and partial
conditioning (blue). Each group of 4 estimates applies for the same c/k as for the standard estimate

in each group and have been horizontally shifted for clarity.

by g(x28; θ).

Figure 3.5.1, right panel, shows the same inferences as the left panel, but for the variable-

threshold over a range of return periods k ∈ [200, 2500]. Given the rarity of all events in this

range we would expect a ‘true’ k to be towards the lower end of this range. The estimates

x̂std200 and x̂ex200 and the corresponding confidence intervals are invariant to k (and independent

of the stopping rule used) but as k increases x̂fc200 and x̂pc200 both decrease. For small k,

x̂fc200 > x̂pc200, as we would expect from our bias results in the simulation study. However, the

inequality reverses for large k perhaps as a result of there being more than one exceedance

of the threshold. This is hinted at by the bias results and also since if one omits the 1995

observation from the data set then x̂fc200 > x̂pc200 for all k. More investigation into the estimators

when there are multiple exceedances would be useful.

The intervals using the conditioning likelihoods and variable-threshold stopping rule be-

have similarly to those using the fixed-threshold stopping rule. Again the `fc intervals are

highly influenced by the ‘extremeness’ of the stopping threshold. With the lowest possible k

for this data set (ignoring the 1995 exceedance) the `fc interval is more than double the width

of the confidence interval using `std whereas for a large k value it is less than half the width.

The `pc confidence intervals also reduce in width with increasing k but not as dramatically.
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Figure 3.5.2: Fitting a GEV to all the data up to and including the current year for the Lune at
Caton. Left: 200yr return-level estimates for 2015 using progressively more data over the years with

and without a trend in the location parameter (pink and black respectively). Each group of 2
estimates applies for the same year and have been horizontally shifted for clarity. Right: Slope

parameter, β̂, and it’s 95% confidence interval.

3.5.3 Non-stationarity

The implications of using stopping rules on the estimation of trends in extreme levels is also

a concern, as stopping with the final observation being large is likely to have a similar biasing

effect as found in §3.2 and §3.4 for return levels. This is particularly important given the

interest in whether trends in extreme values differ from trends in mean levels (Eastoe and

Tawn, 2009; Hannaford and Marsh, 2008). In Figure 3.5.2 we illustrate the analysis of the

Lune data with a GEV distribution including a linear trend µt = α0 + βt, showing both the

resulting estimates of the 200-year return level for 2015, i.e., the estimates of the 0.995 quantile

of the annual maximum in 2015, and the associated trend estimate β̂ using progressively more

data over time. With few data used the trend is estimated to be unrealistically large, with

huge uncertainty, and this results in very different point estimates of return levels relative to

the analysis with no trend. As more data are observed we can see that the trend estimates

generally decrease, with reduced uncertainty, with positive jumps in β̂ estimates after the

large 1995 and 2015 events. Although the 2015 river flow is more extreme than that of 1995

its impact on β̂ is much less. Furthermore, we see that β̂ is not larger than β = 0 at the

2.5% significance level. Thus here the effect of including the estimated trend is small on the

200-year return-level estimate and the stopping rule seems to have almost no effect on the

trend estimate.
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3.6 Discussion

In this chapter and the supplementary material associated with Barlow et al. (2020) we have

shown that return-level estimators based on the standard likelihood are positively biased when

sampling from the GEV or GP distributions using certain stopping rules. The extent of the

stopping bias is lower for lighter tailed distributions and when estimating low return levels.

We have proposed conditioning upon the stopping threshold in the likelihood. In most cases

we have found that conditioning on the final observation exceeding the stopping threshold

(partial conditioning) results in return-level estimates with the lowest RMSE despite the

estimator being negatively biased.

A balance must be struck between low RMSE and good coverage, however. Partial

conditioning results in undercoverage despite the low RMSE of x̂pcy . The full-conditional

likelihood, which also conditions on the non-exceedance of all previous observations, gives

the closest to 95% coverage and though the intervals are wide, they are typically narrower

than the confidence intervals obtained from the standard likelihood. The interval widths

using the full and partial conditional likelihoods are smaller the closer the stopping threshold

is to the final observation as the occurrence of the final exceedance becomes more informative

on the tail of the distribution (see §3.5.1).

Overall, the conditioning estimators presented here outperform the standard estimator

when the decision to analyse data at a particular time was triggered by what was perceived

to be a large observation. For the fixed-threshold stopping rule, partial conditioning has the

best combination of RMSE and coverage for a range of ξ with moderate k and particularly

when the distribution is heavy tailed, as is the case for most UK rivers (CEH, 1999). For

the variable-threshold stopping rule, full conditioning provides the best balance of coverage

and low RMSE. To apply the conditioning estimators in practice if the rule of the flood

management agency is unknown the statistician needs to choose a suitable stopping threshold,

c, for the fixed-threshold stopping rule and a suitable stopping ‘period’, k, for the variable-

threshold stopping rule if the values are unknown. A range of c and k can be considered

provided that the observed data are below the resulting stopping threshold(s) up to the final

observation.

The decision to analyse data will likely be based on a confluence of many factors. Our work

attempts to simplify the true decision making procedure by using stopping rules based on the
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occurrence of a single large observation exceeding some threshold. An analysis may instead

be prompted by a prolonged period of quite large (but not necessarily ‘extreme’) observations

or the observation of large values at many locations simultaneously, requiring more complex

multivariate analysis since the observations at nearby locations will be dependent in some

way (Keef et al., 2009; Asadi et al., 2015).

In practice if the stopping rule is unknown and the analysis is triggered by a large event,

we suggest using the full conditional return-level estimator. However if k is thought to be

less than 50, or the full-conditional estimate and/or confidence interval are clearly too large

then partial conditioning should be used instead. We argue that the decision to ‘stop’ and

analyse data would in part be based on both past return-level estimates and thresholds set

due to current infrastructure and so the ‘true’ stopping rule is a mixture of the two rules

considered here. Hence the ‘true’ bias, RMSE and coverage of the estimators can be expected

to lie between those which we found under the two stopping rules. It should be noted that

this work does not address the question of when the data should be analysed, but rather how

we can reduce the bias given the use of a particular stopping rule. Nevertheless, if we are at

a point in time where a stopping criterion has been met and triggered an analysis, this study

can give guidance on the behaviour of return-level estimators calculated at the current time

whether based on the full likelihood, partial or full conditioning, or even excluding the most

recent, ‘triggering’ event.

In our theoretical and simulation studies we have not accounted for the possibility of a

trend in the data, such as river flows gradually increasing over the years. We saw in §3.5.3 that

the Lune data has a slight positive trend in the location parameter and fitting such a model

at an earlier point in time resulted in a very large positive trend. This could cause problems

for the fixed-threshold stopping rule, in particular it might become necessary to change c

after a certain number of years. Nonetheless, doing this is probably not too unrealistic since,

for example, the height of a flood defence might be increased if there has been evidence of

higher flow in recent years. On the other hand the variable-threshold stopping rule is more

robust to data with an underlying trend as it is directly a function of the observed data.



Chapter 4

Investigating confidence intervals for

return-level estimators on data gen-

erated by threshold-based stopping

rules

4.1 Introduction

In Chapter 3 we discussed two stopping rules based on the exceedance of some large value and

proposed two estimators based on conditioning on the occurrence of such an exceedance. We

compared the coverage of the different estimators using profile-likelihood based confidence

intervals. However there was some concern that in many cases the profile-likelihood based

confidence intervals appeared to be very wide. Here we investigate these intervals in more

depth and compare to a variety of bootstrap-based confidence intervals, concentrating on

data sets similar to the Lune data set.

First, in §4.2, we consider the profile-likelihood based confidence intervals when sampling

using the fixed-threshold stopping rule from the GEV with the parameters set to the stan-

dard MLEs for the Lune data, θ̂
Lune
std , and explore the relationship between sample size and

confidence interval width for the different estimators. Then, we create samples with the same

procedure but such that all samples are of the same size as the Lune data (48 observations)

in order to investigate the properties of the confidence intervals we would expect in the Lune

setting and with similar data (in general, peak river flow data are unlikely to consist of more

than 50 years of observations).

In §4.3 we consider the standard bootstrap confidence intervals and bias reducing vari-

49
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ations thereof. We compare the coverage and confidence intervals of profile-likelihood and

bootstrap-based methods when the primary data sets are of size 48 and are sampled from the

GEV with parameters set to θ̂
Lune
std using the fixed-threshold stopping rule. We find that there

is a trade-off between reducing the confidence interval widths and increasing coverage with

the standard bootstrap method resulting in narrow intervals and poor coverage. The boot-

strap variations generally increase coverage but the confidence interval widths are comparable

to the profile-likelihood based interval widths; the latter is much faster computationally so

remains the preferred confidence interval method. Nevertheless it appears reasonable that

some reduction in width should be possible without drastically reducing the coverage; more

investigation into confidence intervals in the stopping rule setting could be useful.

When using the variable-threshold stopping rule the creation of bootstrap confidence

intervals requires more thought. In §4.4 we describe an importance-weighted bootstrap to

create confidence intervals when using the variable-threshold stopping rule and also when

there are multiple exceedances. We find these importance sampling confidence intervals are

narrower than the profile-likelihood based intervals (like the standard bootstrap method for

the fixed-threshold stopping rule) and are highly negatively biased due to the negative bias

in the return-level estimators and the resulting bootstrap samples.

Finally, in §4.5 we step back to the profile-likelihood based confidence intervals for a more

detailed investigation into the effect of the choice of the fixed stopping threshold, ck, on the

confidence intervals of the conditioning estimators (this was briefly discussed in §3.5 for the

Lune case study) and discuss the issues that arise for very low and high ck.

4.2 Profile likelihood in Lune setting

Consider using the fixed-threshold based stopping rule to sample from the GEV with the

parameters set to θ̂
Lune
std (the MLE for the Lune data when using the standard likelihood,

`std). In §4.2.1, we explore the relationship between sample size and confidence interval

width in such a setting for the four return level estimators (based on the standard, exclude,

full-conditioning and partial-conditioning likelihood as defined in §3.2 and §3.3 of Chapter 3).

To further explore the behaviour of the estimators for data sets similar to the Lune data set,

in §4.2.2 we consider the properties of the confidence intervals when the sample created

using the fixed-threshold stopping rule is of size 48, the same size as the Lune data. Indeed,
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Figure 4.2.1: Log CI width vs log sample size for the 50-year (top) and 1000-year (bottom) return
level estimates. Profile-likelihood confidence intervals found using the standard likelihood (red),

excluding the final observation (black), full conditioning (green) and partial conditioning (blue) based
on 5000 samples from the GEV distribution with parameters equal to the standard MLEs for the

Lune data and sample size determined by the fixed-threshold stopping rule with stopping threshold c50
(left) and c500 (right).

maximum river flow data are unlikely to have been collected for more than 50 years so such

a sample size is of particular interest.

In the following we concentrate on the 95% confidence interval and denote the true y-

year return level by xy and estimates x̂Ly with return period y ∈ {50, 200, 1000} and L ∈

{std, ex, fc, pc} indicating the likelihood used.

4.2.1 Relationship between confidence interval widths and sample size

Figures 4.2.1 and B.1.1 show the log confidence interval widths against log sample size, log(n),

for each of the four 50-year and 1000-yr return-level estimators with the random sample size

determined by the fixed-threshold stopping rule where the return period of the stopping

threshold is k ∈ {50, 100, 500}. The confidence interval width is proportional to 1√
n

i.e.,
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we expect the points to be concentrated around the line with gradient −1
2 (as a guide the

dashed lines in Figures 4.2.1 and B.1.1 have such a gradient with y-intercept equal to the

median of the standard confidence interval widths for mid sample sizes.). For medium to

large samples the points are clustered around a line with such a gradient whereas for small

samples confidence intervals are larger than expected on average, particularly when using

`std. Full conditioning generally leads to wider confidence intervals than the other likelihoods

considered but also has a wider spread of confidence interval widths. The confidence interval

widths using the other likelihoods are more similar but, for small sample sizes in particular,

the standard confidence intervals are wider than for those excluding the final observation

which in turn are wider than the partial conditioning intervals.

Reassuringly, the coverage results (Figure 4.2.2 left) lie between those for the simulation

study of §3.4.2 with ξ−0.2 and ξ = 0.2 (recall we are sampling from the GEV shape parameter

ξ̂Lunestd = 0.04 as found in Chapter 3 §3.5). Using `std leads to overcoverage whereas for all

other likelihoods the coverage is less than 95% (but increases with k), largely due to the

upper bounds of the confidence interval for x̂y being lower than xy for several simulations.

The small upper bounds are a particular problem when using `ex or `pc, with coverage ranging

between 85% and 93%, whereas `fc fares better with coverage (∼94%) close to 95%. For all

likelihoods the percentage of lower bounds below xy was often much higher than the desired

97.5% and reduced slightly with increasing k.

Overall full conditioning appears to do quite well in terms of coverage, however, this can

be at the cost of wide confidence intervals. In Figure 4.2.1 the vertical dashed line is at

sample size 48, the same size as the Lune data set. For all the proposed methods there is

quite some spread in confidence interval widths for samples of this size, especially when using

`fc. As we expect annual maxima data sets to be of such size in practice we now concentrate

on the confidence intervals for samples size 48.

4.2.2 Similar data sets to the Lune data set

We continue our analysis sampling from the GEV with θ̂
Lune
std using the fixed-threshold stop-

ping rule but in such a way that the sample is of the same size as the Lune data, i.e., n = 48;

this is achieved by sampling n−n0−1 times (recall, §3.4, n0 is the size of the ‘historical data’)

from the GEV truncated above by ck and once from the GEV truncated below by ck to obtain

the final observation. From our knowledge of the bias of the different likelihood estimators
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Figure 4.2.2: Coverage, % of lower bounds below xy, % of upper bounds xy of the profile-likelihood
confidence intervals for the y-year return level, xy, found using `std (red), `ex (black), `fc (green)
and `pc (blue). There are 5000 samples from the GEV distribution with parameters equal to the

standard MLEs for the Lune data and sample size determined by the fixed-threshold stopping rule
(left) and equal to 48 (right) with stopping threshold ck.
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(§3.5) we expect k̂std < k = (1 − G(ck; θ̂
Lune
std ))−1, in other words, a value of ck or higher is

estimated to be more likely using the standard estimator than it actually is according to the

true distribution (k̂−1
std > k−1). Thus samples created from the GEV with θ̂

Lune
std will generally

consist of larger values than the Lune data set.

We will consider the coverage, percentage of lower bounds below the truth and percentage

of upper bounds greater than the truth as in Figure 4.2.2; compare the confidence interval

widths using the different likelihoods (Figures B.1.2-B.1.3); and compare the confidence in-

tervals themselves (Figures 4.2.4 and B.1.4) by plotting, for each integer in the range of the

confidence intervals, the percentage of the 5000 confidence intervals that contain the integer.

We also consider in Figures 4.2.3, B.1.2-B.1.3 the ‘CI width to MLE ratio’ which is the confi-

dence interval width divided by the return-level estimate for a given sample. This ratio gives

an indication of the usefulness of the confidence interval; we take a value of less than 1 to

indicate reasonably sized confidence intervals.

The coverage results when the sample size is constrained to be 48 are similar to that

when the sample size is determined by the stopping rule (see Figure 4.2.2 for comparison).

The largest difference is in the confidence intervals using `std; they perform worse when the

random sample size is n = 48 and have undesirable properties. Firstly, the interval widths

are very large (worse the larger the return period of interest is); the widths are rarely less

than x̂stdy /2 and can be more than 6x̂stdy when the return period of interest, k, is large (e.g.,

Figure 4.2.3). Secondly, it can be seen in Figures 4.2.4 and B.1.4 that the intervals using `std

are skewed towards larger values than the true return level, xy, (given by the vertical dashed

line). This is particularly the case when k is large; with k = 500 all 5000 data sets generated

resulted in such confidence intervals covering values above xy (the 100% peak occurs at values

higher than xy). The upper confidence interval bounds using `std were greater than xy for

more than 99.94% of data sets and when k = 500 the lower confidence interval bounds are

too high in 6-10% of simulated data sets (see Figure 4.2.2) thus leading to poorer coverage

than the random sample size case.

More desirable confidence interval properties are obtained when using `ex or `pc. The

confidence intervals have much smaller widths than those using `std (the mean and median

widths are 40-70% of those using `std) and are mostly centred around or just below the truth,

xy, with this value being close to the most ‘covered’ value when k is large and/or the return

period of interest is high (the peaks in Figure 4.2.4 are close to xy, the dashed line). The



CHAPTER 4. CONFIDENCE INTERVALS UNDER STOPPING RULES 55

50 −year return level, k= 50 , n=48

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

F
re

qu
en

cy

CI width/MLE

1000 −year return level, k= 50 , n=48

0 1 2 3 4 5 6

0
50

10
0

15
0

20
0

F
re

qu
en

cy

CI width/MLE50 −year return level, k= 500 , n=48

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

F
re

qu
en

cy

CI width/MLE

1000 −year return level, k= 500 , n=48

0 1 2 3 4 5 6

0
50

10
0

15
0

20
0

F
re

qu
en

cy

CI width/MLE

Figure 4.2.3: Profile-likelihood confidence interval widths over MLE for the 50 (top) and 1000
(bottom) -year return level found using `std (red), `ex (black), `fc (green) and `pc (blue). There are
5000 samples of size 48 from the GEV distribution with parameters equal to the standard MLEs for

the Lune data and using stopping threshold ck with k = 50/500 (left/right).
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Figure 4.2.4: Percentage of confidence intervals covering each integer x. Further details in
Figure 4.2.3 caption.
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interval widths are reasonable in relation to the MLE, however, this comes at the price of

a upper bound which is lower than xy 5-12% of the time giving coverage from 88-93% for

`pc and 90-95% for `ex. Nevertheless, this coverage is an improvement on that found with

random sample size, N .

For all three likelihoods discussed above, the confidence intervals generally become wider

with increasing k. In fact, their upper bounds are larger (e.g., Figure 4.2.4), since for larger

k the values in the sample are larger, and so there is higher coverage with larger k. In

contrast, the upper bounds of the confidence intervals using `fc are smaller. This leads to the

opposite coverage pattern in Figure 4.2.2. Most of the intervals using `fc cover similar values

to the intervals using `ex or `pc, however, a large percentage include extremely large values,

especially when k is low. For example, with k = 50 approximately 50% of the confidence

intervals for x̂fc50 include the value 2500, whereas less than 20/10% of confidence intervals

for x̂std50 /x̂
ex
50 or x̂pc50 contain 2500 (Figure 4.2.4). The confidence interval widths are much

wider spread than those using the aforementioned likelihoods and they can be extremely

large (much worse than using `std). Nevertheless, for large k the median of CI width to MLE

is smaller than that using `std.

Without knowledge of the use of a stopping rule, the small sample size (particularly

compared to k) would suggest that the observations in the sample, particularly the last

observation, are more likely than they actually are. In practice there will be a relatively low

number of annual river flow observations and so return-level estimators and, as investigated

here, confidence intervals based on the standard likelihood will be positively biased if applied

after a large flood event. We have found that partial conditioning provides a better profile-

likelihood based confidence interval for such a small data set with only slight undercoverage.

In many cases full conditioning also provides ‘good’ confidence intervals with better coverage

but it is sensitive to the particular features of a sample and can result in unreasonably

large intervals. As the full-conditioning return-level estimator was found to have low bias

(Chapter 3) we recommend using this estimator and it’s corresponding confidence intervals

unless those intervals are unreasonably large (for example, larger than the standard intervals).
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4.3 Bootstrap methods with fixed-threshold stopping rule

We now consider, when using the fixed-threshold stopping rule, a variety of bootstrap-based

confidence intervals and compare with intervals using the profile-likelihood method. We

describe the standard parametric bootstrap in our setting, the bias-correction method of

Efron (1981) and two further bias correcting amendments based on this. First we briefly

discuss the profile-likelihood confidence intervals which were used in Chapter 3 and §4.2, and

the Wald confidence intervals.

4.3.1 Methods

Profile-likelihood (deviance-based) confidence intervals

The y-year return level, xy, can be written in terms of θ = (µ, σ, ξ) so we can instead work

with the reparametrised likelihood with parameters θ̃ = (xy, σ, ξ). The classic deviance-

based method we have used is to find the likelihood-ratio test statistic and use its asymptotic

properties to create a confidence interval. In our setting the likelihood-ratio test statistic

(i.e., deviance) is

D(xy) = 2

{
`(x̂y, σ̂, ξ̂)−max

σ,ξ
`(xy, σ, ξ)

}
(4.3.1)

= 2 {Pl(x̂y)− Pl(xy)} , (4.3.2)

where Pl(xy) denotes the profile likelihood of xy. The likelihood-ratio test statistic (4.3.1)

is asymptotically χ2
1 distributed under some consistency and regularity conditions (see, e.g.,

Pawitan (2013) §9.4, 9.5). One of these regularity conditions is that the MLE, θ̂, is an interior

point of the parameter space; this can cause problems in some extreme cases and is explored

in §4.5. An approximate 100(1− α)% profile-likelihood (deviance-based) confidence interval

for xy is formed by finding the two points for which the deviance, D(xy), is equal to the

(1− α) percentile of χ2
1:

[xy : D(xy) = χ2
1,(1−α)].

The resulting interval can be asymmetric since it captures the possible asymmetry of the

profile likelihood.
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Wald confidence intervals

The commonly used Wald confidence intervals are based on the asymptotic normality of the

MLE, θ̂. In practice one assumes

√
I(θ̂)(θ̂ − θ) ∼ N(0, 1),

where I(θ) is the observed Fisher information calculated as −∇∇T `(θ).

To obtain a Wald confidence interval for one parameter, xy, one assumes

W =
x̂y − xy
se(x̂y)

∼̇ N(0, 1),

where the standard error of x̂y, se(x̂y) = ([I(θ̂)−1]11)
1
2 , the squareroot of the 1st diagonal

term of the inverse matrix of the observed Fisher information (Pawitan (2013) §9.7, 9.9). The

resulting approximate 100(1−α)% confidence interval is [x̂y±zα/2se(x̂y)], where zα = Φ−1(α)

and x̂y is the ML estimate.

The Wald method uses similar distribution approximations to the deviance-based method;

W 2 is a quadratic approximation to the deviance D(xy) so if D(xy) ∼ χ2
1 then W 2 ∼ χ2

1

approximately and it follows that W ∼̇N(0, 1). To obtain the approximation use the Taylor

approximation around x̂y (assuming we can differentiate the profile likelihood, Pl(xy)):

D(xy) = 2 {Pl(x̂y)− Pl(xy)}

= 2

{
Pl(x̂y)−

[
Pl(x̂y) +

d

dxy
Pl(xy)

∣∣∣∣
xy=x̂y

(xy − x̂y) +
1

2

d2

dx2
y

Pl(xy)

∣∣∣∣
xy=x̂y

(xy − x̂y)2 + . . .

]}

≈ − d2

dx2
y

Pl(xy)

∣∣∣∣
xy=x̂y

(xy − x̂y)2. (4.3.3)

It can be shown (e.g., Pawitan (2013) §9.11) that the curvature of the profile likelihood is

([I(θ̂)−1]11)−1, i.e., it is equal to se(x̂y)
−2, so (4.3.3) = W 2.

The Wald confidence intervals are symmetric about the MLE; this is often undesirable

since if the (profile) likelihood is asymmetrical the Wald confidence intervals will cover val-

ues with a lower likelihood than some not in the interval. Furthermore, if the MLE is not

normally distributed the Wald confidence interval will not be correct, however, there may

be some transformation of the MLE which is normally distributed. The profile-likelihood

method essentially finds this transformation (if it exists) automatically and provides an in-
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terval without needing to know the transformation. For the bootstrap methods described in

the next sections we also use a normal assumption on the MLE transformed in some way.

Standard (parametric) bootstrap

The data set generated from the true distribution and from which the MLEs are calculated

is referred to as the primary data set. For the bootstrap methods multiple new datasets

must be simulated, these new datasets should arise from the same sampling distribution as

the original (primary) data set. Here the primary data set is simulated as in §4.2.2 with

historical data given by (3.4.2) in Chapter 3 with n0 = 10. The same historical data are

used for all bootstrap samples associated with that primary data set since it represents the

historical knowledge for that particular data set. The remainder of the bootstrap sample is

generated using the fixed-threshold stopping rule from the GEV distribution with parameters

estimated from the primary data set, θ̂
prim

. Let the number of bootstrap samples be nB; then

we have bootstrap samples xj j = 1, . . . , nB (each xj being a vector of length n?j determined

by the stopping rule) and for each sample we find the maximum likelihood estimate, θ̂
?

j .

We assume there is some transformation, g, such that:

g(x̂y)− g(xy) ∼ N (0, σ2) , (4.3.4)

for some fixed σ2, where xy is the true y-year return level and x̂y := xy(θ̂) is the y-year

return-level estimator based on the primary data set. Then an exact 100(1−α)% confidence

interval for xy is [g−1(g(x̂y) ± zα/2σ)] - this is the percentile interval lemma in Efron and

Tibshirani (1993) §13.3. However, σ, is unknown so we use the bootstrap samples to find an

approximate 100(1− α)% confidence interval.

Since the bootstrap samples are sampled in the same way as the primary sample we

assume that g(x̂?y), where x̂?y := xy(θ̂
?
) is the bootstrap y-year return-level estimator of

g(xy), is similarly normally distributed but centred around the estimate g(x̂primy ) rather than

the true g(xy). That is, we assume

g(x̂?y)− g(x̂primy ) ∼ N (0, σ2) , (4.3.5)

where x̂primy = xy(θ̂
prim

) is the fixed y-year return-level estimate based on the primary data

set. We can also use the bootstrap samples to estimate the distribution of g(x̂?y) by its
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empirical distribution:

F ?g (x) =
1

nB

nB∑
j=1

1{g(x̂?(j)y ) ≤ x};

the larger nB the better this approximation will be. So by assumption (4.3.5) we have that

F ?g (x) ≈ Φ

(
x−g(x̂primy )

σ

)
as a function of x.

Consider F ?g (x) = α
2 then

α

2
≈ Φ

(
F ?−1
g

(
α
2

)
− g(x̂primy )

σ

)

⇒ g(x̂primy ) + Φ−1
(α

2

)
σ ≈ F ?−1

g

(α
2

)
⇒ g(x̂primy ) + zα

2
σ ≈ g(x̂?y)α2 ,

where g(x̂?y)α/2 is the 100α2 percentile of g(x̂?y) = {g(x̂
?(1)
y ), . . . , g(x̂

?(nB)
y )}. In other words

the lower bound of the confidence interval for g(xy), g(x̂primy ) + zα/2σ, is approximately the

100α2 percentile of the bootstrap estimates for g(xy). A similar argument follows for the

upper bound and so we arrive at the following approximate 100(1− α)% confidence interval

for g(xy): [g(x̂?y)α2 , g(x̂?y)1−α
2
].

For a monotone function, g, a percentile-based confidence interval is transform respecting

and so the standard parametric bootstrap approximate 100(1 − α)% confidence interval for

xy is:

[x̂?y(α
2

), x̂
?
y(1−α

2
)], (4.3.6)

where x̂?y(a) is the 100a percentile of the bootstrap estimates x̂?y = {x̂?(1)
y , . . . , x̂

?(nB)
y }. There-

fore, just like the profile likelihood, we do not need to know the transform, g, in order to

obtain a confidence interval for xy, rather we just assume that there exists a function g for

the which g(x̂y) is normally distributed.

Efron’s bias correction

Above we assumed that not only is the transformed MLE, g(x̂y), normally distributed but

also that it is an unbiased estimator of g(xy). In many cases it may be that such a function

g that satisfies (4.3.4) and (4.3.5) does not exist and this false assumption will be reflected in

large coverage error. Efron (1981) considers an extension of the standard bootstrap confidence
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intervals, namely Efron’s bias-corrected (BC) intervals, which allows bias in the normal as-

sumption. In our setting, to use Efron’s BC method, we assume there is some transformation,

g, such that:

g(x̂y)− g(xy) ∼ N (−b, σ2), (4.3.7)

for some fixed σ, where b is the bias term and xy and x̂y are defined as in (4.3.4).

Similarly, we assume:

g(x̂?y)− g(x̂primy ) ∼ N (−b, σ2), (4.3.8)

with x̂primy and x̂?y defined as in (4.3.5). Then an exact 100(1−α)% confidence interval for xy

is simply:

g−1(g(x̂y) + b± σzα
2
). (4.3.9)

A transformation which satisfies (4.3.8) approximately is g = Φ−1F̂ ?, where F̂ ? is the empir-

ical cdf of x̂?y: F̂
?(x) = 1

nB

∑nB
j=1 1{x̂

?(j)
y ≤ x}. For the remainder of this section we continue

with g = Φ−1F̂ ?. We have g(x̂?y) = Φ−1F̂ ?(x̂?y) ∼̇ N (0, 1) (with the approximation being

better for larger nB, the number of bootstrap samples). The expectation and variance of

g(x̂?y) − g(x̂primy ) is equal to −g(x̂primy ) = −Φ−1F̂ ?(x̂primy ) and 1 respectively since g(x̂primy ) is

fixed; so under assumption (4.3.8) we obtain the following bias and variance:

b = Φ−1F̂ ?(x̂primy ) and σ2 = 1.

Substituting this into (4.3.9) we obtain Efron’s BC approximate 100(1 − α)% confidence

interval for xy:

F̂ ?−1Φ(2b± zα
2
). (4.3.10)

Note that F̂ ?−1 is not well defined since F̂ ? is a step function. One convention is to take

F̂ ?−1(x) to be the dnBxeth smallest of the bootstrap estimates x̂?y = {x̂?(1)
y , . . . , x̂

?(nB)
y }.

Notice that interval (4.3.10) is formed from percentiles of the bootstrap xy estimates like the

standard bootstrap CI; in particular, when the bias is 0 (corresponding to the MLE, x̂primy ,

being the median of the bootstrap MLEs) we recover the standard CI (4.3.6).

Similar to the standard bootstrap there may be cases for which a function g that satisfies

(4.3.7) and (4.3.8) does not exist. The function g = Φ−1F̂ ? satisfies (4.3.8) approximately
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but then the assumption (4.3.7) becomes

Φ−1F̂ ?(x̂y) ∼ N (Φ−1F̂ ?(xy)− b, 1), (4.3.11)

and this may not be satisfied. We now considered generalising the assumption further by

allowing the standard error of g(x̂y) to vary with xy.

Variations on Efron’s BC interval

Efron (1987) introduce the more general BCa confidence interval which corrects for the stan-

dard error of g(θ̂) varying with θ by introducing an acceleration quantity, a, which is the

fixed rate of change in the standard error of g(θ̂) with respect to g(θ). Efron describes ways

to estimate this quantity using derivatives of the likelihood for one parameter models and also

by using ‘jackknife values’ of g(x̂y)
1. However, the estimation of a can be difficult, particu-

larly for multi-parameter models. We attempt instead to use our knowledge of the stopping

rule to estimate the standard error and obtain simpler confidence intervals. For clarity and

simplicity from here onwards we refer to the ML parameter estimate based on the primary

data set, θ̂
prim

, as θ̂ and denote the ML estimator by Θ̂ so x̂y = xy(Θ̂).

Assuming that the standard error of g(x̂y) depends on θ we now have the following normal

assumption:

g(x̂y)− g(xy) ∼ N (−b, σ2(θ)), (4.3.12)

where b is the bias term and xy is defined as in (4.3.4). The variance of g(x̂y), σ
2(θ), is an

unknown function of θ. The bootstrap assumption follows with the standard error of g(x̂?y)

depending on θ̂:

g(x̂?y)− g(x̂primy ) ∼ N (−b, σ2(θ̂)), (4.3.13)

with x̂primy and x̂?y defined as in (4.3.5).

As for Efron’s BC method we use g = Φ−1F̂ ?, so g(x̂?y) = Φ−1F̂ ?(x̂?y) ∼̇ N (0, 1). So

the expectation and variance of g(x̂?y) − g(x̂primy ) is approximately equal to −g(x̂primy ) =

−Φ−1F̂ ?(x̂primy ) and 1 respectively since g(x̂primy ) is fixed. Then under assumption (4.3.13)

1The jackknife value θ̂(i) is the MLE based on deleting the ith observation. To calculate â one needs to

calculate many jackknife values: θ̂(i) i = 1, . . . , n.
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we obtain the following approximate bias and variance:

b = Φ−1F̂ ?(x̂primy ) and σ2(θ̂) = 1.

From (4.3.12) an approximate confidence interval for g(xy) is

g−1(2b± σ(θ)zα), (4.3.14)

where b = Φ−1F̂ ?(x̂primy ) and σ(θ) is unknown.

Let N(θ) and N(θ̂) be the sample sizes when sampling using the fixed-threshold stopping

rule from the GEV with parameters θ and θ̂ respectively. The variance of a function of the

MLE is inversely proportional to the known sample size:

Var (g(x̂y)|N(θ) = n) =
C(θ)

n
and Var

(
g(x̂?y)|N(θ̂) = n?

)
=
C(θ̂)

n?
, (4.3.15)

where n is the primary sample size, n? is the sample size of a particular bootstrap sample and

C(θ) and C(θ̂) are constants depending on θ and θ̂ respectively. Here we ignore the effect of

the historical sample as that is fixed over all bootstrap samples and is equal to the historical

sample of the primary data set. Recall that the sample size, N , under the fixed-threshold

stopping rule is geometric with expectation equal to the inverse probability of exceeding c and

let k(θ) := E [N(θ)] = (P (X > c|θ))−1 and k(θ̂) := E
[
N(θ̂)

]
=
(
P
(
X > c|θ̂

))−1
. Using

the law of total variance we have for known θ̂ (and so fixed known x̂primy ):

σ2(θ̂) = Var
(
g(x̂?y)

)
= E

[
Var

(
g(x̂?y)|N(θ̂)

)]
+ Var

(
E
[
g(x̂?y)|N(θ̂)

])
= C(θ̂)E

[
1

N(θ̂)

]
+ Var

(
g(x̂primy )− b

)
(by (4.3.13))

= C(θ̂)

∞∑
n=1

1

k(θ̂)

(1− 1/k(θ̂))n−1

n
(from Geometric distribution)

= C(θ̂)
log k(θ̂)

k(θ̂)− 1
.

In the second step Var
(
g(x̂primy )− b

)
= 0 since g(x̂primy ) is fixed given θ̂ is known. Similarly,

for fixed θ and unknown random variable Θ̂:

σ2(θ) = Var (g(x̂y)) = C(θ)
log k(θ)

k(θ)− 1
.
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We assume that the variance of g(x̂y) based on a sample of size n is approximately the same

as the variance of g(x̂?y) based on a bootstrap sample also of size n. Then C(θ) ≈ C(θ̂) and,

since σ2(θ̂) = 1,

σ2(θ) =
log k(θ)

k(θ)− 1
× k(θ̂)− 1

log k(θ̂)
≈ k(θ̂)

k(θ)
,

since k(θ)� 1 and k(θ̂)� 1 in practice and log k(θ)/ log k(θ̂) ≈ 1 as θ̂ is close to θ.

Now k(θ) is unknown so we use the bootstrap assumption that the bias of the MLE is

approximately the same as the bias in the bootstrap estimates:

E
[
log k(Θ̂)

]
− log k(θ) ≈ E

[
log k(θ̂

?
)
]
− log k(θ̂), (4.3.16)

where Θ̂ is the ML estimator and θ̂ is the fixed known ML estimate. We further approximate

(4.3.16) by approximating the expectations:

log k(θ̂)− log k(θ) ≈ log k̂? − log k(θ̂), (4.3.17)

where θ̂ is the ML estimate and k̂? is the median of the bootstrap estimates of the inverse

probability of exceedance. The usual Monte Carlo approximation of E
[
log k(θ̂

?
)
]

would be

the empirical mean: 1
nB

∑nB
j=1 log k(θ̂

?
j ). We instead use the median of the estimates as it

is robust and invariant to monotonic transformations, however we note in our setting that

1
nB

∑nB
j=1 log k(θ̂

?
j ) > med(log k(θ̂

?
j )).

Then (4.3.17) leads to the following approximation:

σ2(θ) ≈ k(θ̂)

k(θ)
≈ k̂?

k(θ̂)
. (4.3.18)

This approximation is expected to be an underestimation of the true standard error of θ̂ due

to the median approximation.

Substituting (4.3.18) into (4.3.14) we obtain the following confidence interval which we

refer to as the bias and variance-corrected (BVC) interval:

g−1

(
2b±

√
k̂?

k(θ̂)
zα

)
. (4.3.19)

We also consider the case where k(θ̂) is replaced by the size of the primary sample, n, which
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is a direct estimate of k(θ̂) resulting in the following confidence interval:

g−1

2b±

√
k̂?

n
zα

 . (4.3.20)

We call this the bias and variance-corrected interval with the estimate n (BVCn).

4.3.2 Comparison of confidence interval methods

In the following we concentrate on primary data sets of size n = 48 simulated from the

GEV(θ̂
Lune

std ) with the fixed-threshold stopping rule. In a similar manner to §4.2 we compare

coverages (Figure 4.3.1), confidence interval widths using boxplots (Figures 4.3.2, B.2.3-

B.2.6) and the interval values (Figures 4.3.3, B.2.7-B.2.10). The latter figures are obtained

by counting the percentage of times each x-value is contained within the confidence interval,

essentially providing the coverage for each value on the x-axis. The dashed line is the true

return level, xy, for the return period, y, stated in the plot captions so reading the percentages

on the y axis where the dashed lines cross the curves gives the coverage as in Figure 4.3.1.

Before discussing the results we highlight the problem with naively ignoring the final

observation. The fact that this value has been observed needs to be included in the analysis

in some way to ensure one does not arrive at impossible estimates since when using the

exclude likelihood k(θ̂) can be estimated to be infinite (i.e., c is larger than the estimated

upper bound). In our simulations k(θ̂) was infinite in 3(11)% of cases on average when

k = 50(500); these cases were omitted when using the BVC (4.3.19) and BVCn (4.3.20)

confidence interval method. Care must also be taken when maximising the likelihood to find

the bootstrap MLEs, θ̂?, when the final observation is close to c. This occurs particularly

when ξ̂ is very small, e.g., −0.2 and k(θ̂) is large; such ξ̂ and k(θ̂) values are more likely when

using the exclude likelihood to find θ̂ since ξ̂ex is negatively biased (Chapter 3). Bootstrap

samples with parameters based on the exclude likelihood are then mostly large in size and

have a very light tail with upper bound close to c. Optimising the likelihood with such

bootstrap samples can be difficult since the MLE is near the boundary of the parameter

space; this issue is explored further in §4.5 with the partial and full conditioning likelihoods.

In terms of coverage the profile-likelihood confidence intervals outperform the bootstrap

confidence intervals considered, especially when k is large compared to n. The standard

bootstrap performs badly since it is highly influenced by the bias of the MLE of the primary
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Figure 4.3.1: Coverage of the y-year return level, xy, found using different confidence interval
methods with `std (red), `ex (black), `fc (green) and `pc (blue). Primary data sets simulated from

GEV(θ̂
Lune

std ) with sample size, n, determined by the fixed-threshold stopping rule with stopping
threshold c50 (left) and c500 (right) such that n = 48. Bootstrap samples are created from the same

sampling process as the primary data set with no restriction on sample size.

data set. As expected the bias-reducing bootstrap variations improve upon the standard

bootstrap, with BVCn having the best coverage properties of these, however the coverage is

still very poor when k is large (e.g., Figure 4.3.1 right panel).

The properties of the confidence intervals can be quite different when using the standard

likelihood (`std) compared to using one of the other three likelihoods (`ex, `fc, `pc) so we now

consider these cases separately.

Firstly, using the standard likelihood results in undesirable confidence interval properties

with all methods considered. The upper confidence interval bounds for xstdy are almost always

much larger than xy (Figure B.2.2 bottom row) whereas coverage is low when k >> n due

to the lower bounds being too large (Figure B.2.2 middle); these behaviours indicate positive

bias in the confidence intervals using `std. This bias can also be clearly seen in the interval

plots (Figures 4.3.3, B.2.7-B.2.10 top left); using `std all of the confidence intervals have a

similar lower bound and cover approximately the same values which are around and larger

than xy (resulting in the ‘square-shaped’ curves centred around or above the dashed vertical

line). When k is large compared to n, the primary data set used includes an observation which

is expected to be seen in a much larger sample. This leads to a negative bias in k(θ̂) and

positive bias in ξ̂std which is then used to generate bootstrap samples. Hence the bootstrap

samples will be smaller and contain larger values generally than there would be using the

true θ and k. As a result many bootstrap confidence intervals do not cover xy but values
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Figure 4.3.2: Box plots of confidence interval widths for x200, the 200-year return level, using the 5
confidence interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 50. Crosses indicate the mean confidence interval width for each method.

Lstd

1000 2000 3000 4000 5000 6000 7000 8000

0
20

40
60

80
10

0
%

 o
f C

Is
 c

on
ta

in
in

g 
x 

va
lu

e

x

Std bs
Efron BC
BVC
BVCn
Profile

Lex

1000 2000 3000 4000 5000 6000 7000 8000

0
20

40
60

80
10

0
%

 o
f C

Is
 c

on
ta

in
in

g 
x 

va
lu

e

x

Std bs
Efron BC
BVC
BVCn
Profile

Lfc

1000 2000 3000 4000 5000 6000 7000 8000

0
20

40
60

80
10

0
%

 o
f C

Is
 c

on
ta

in
in

g 
x 

va
lu

e

x

Std bs
Efron BC
BVC
BVCn
Profile

Lpc

1000 2000 3000 4000 5000 6000 7000 8000

0
20

40
60

80
10

0
%

 o
f C

Is
 c

on
ta

in
in

g 
x 

va
lu

e

x

Std bs
Efron BC
BVC
BVCn
Profile

Figure 4.3.3: Confidence intervals for x200, the 200-year return level, using the 5 confidence
interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 50.
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larger than xy as seen by the peaks for the bootstrap methods in Figures B.2.9-B.2.10 being

shifted to the right of the true y-year return level.

From the top left panels of Figures 4.3.2, B.2.3-B.2.4 we can see that the confidence

interval widths when using `std and k = 50 are mostly similar across all methods (the lower

and upper quartiles are around similar values), however, the profile likelihood method results

in a higher percentage of large widths than the bootstrap methods. The BVCn method

generally results in the smallest confidence intervals with k = 50 whereas for larger k the

method produces the largest confidence intervals (Figures B.2.5-B.2.6) since n = 48 is a poor

estimate of k(θ̂) when the true k is 500. When k is large the Efron BC and BVC confidence

intervals are generally narrower than the standard bootstrap intervals, particularly when

estimating xy with large return period, y.

In contrast using `ex, `fc or `pc the standard bootstrap confidence interval widths have the

smallest mean and variation; Figures 4.3.3, B.2.7-B.2.10 show that the standard bootstrap

intervals cover a much smaller set of values than the other intervals, in particular less high

values. The intervals of the other bootstrap methods are more variable and larger in width,

however, they also mostly cover values lower than the truth (the corresponding peaks in the

figures are left of the dashed line). This results in undercoverage as the upper bounds are

lower than the truth more often than in the desired 2.5% of cases.

Overall out of all the methods considered here the profile-likelihood based confidence

intervals appear to have the best performance. There is a clear trade off between coverage

and confidence interval width; the bootstrap-based methods often result in narrower intervals

but poorer coverage compared to the profile-likelihood method. These intervals tend to be too

high when using the standard likelihood and too low when using the exclude, full or partial

conditioning likelihoods due to the positive/negative bias of the parameter estimates using

these likelihoods. However it may be possible to improve upon these bootstrap methods to

obtain narrower intervals than the profile-likelihood based intervals while retaining the good

coverage properties of the latter. For example, it would be desirable to have a confidence

interval for the y-year return level with the widths and tails similar to the standard bootstrap

intervals but shifted such that xy is more frequently covered.

If one instead considers a random sample size, N , for the primary data set as in §4.2.1

the bootstrap methods perform much better for large k (Figure B.2.1). In particular the

lower bounds when using `std are reduced and the upper bounds for the other likelihoods are
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higher so that xy is within the confidence intervals more often. In this case, the coverage

of BVCn confidence intervals are similar to that of the profile method. However, the BVCn

confidence intervals can be very wide (and are wider than the profile likelihood intervals when

k = 500) and they also take more computational power to produce compared to the profile

likelihood method. Therefore, the profile-likelihood method is the preferred method to obtain

confidence intervals for xy, especially when the sample size of the primary data set is small.

4.4 Bootstrap CIs with variable-threshold stopping rule

In the previous section we concentrated on bootstrap samples of random size as determined

by the fixed-threshold stopping rule. Generating bootstrap samples with different sizes seems

sensible as the sample size is variable for the data-generating mechanism of the primary data

sets. The confidence intervals produced in this way are answering the question ‘Given that

we’ve stopped at a random time and estimated the parameters, what is the uncertainty in

the x̂y? ’. Creating bootstrap samples in this setting is simple as it just requires sequential

sampling from GEV with the parameters estimated from the primary data set until the

threshold (fixed c or the k-year return level estimated using the bootstrap sample up to that

point) is exceeded.

Alternatively we could consider generating bootstrap samples of the same size as the

primary data set. Then the question of interest would be ‘What is the uncertainty in x̂y given

that the random stopping time according to the stopping rule is n? ’. By conditioning on n we

are removing some of the uncertainty and the resulting confidence intervals are smaller than

when we allow the bootstrap sample size to be random. With the fixed-threshold stopping

rule, this results in smaller coverage for the standard likelihood as the upper confidence

interval bounds are lower than those for random bootstrap sample sizes and the opposite

effect occurs for the other likelihoods. For the variable-threshold stopping rule the bootstrap

sampling procedure is more complex; the rest of this section is dedicated to developing an

efficient way to do this bootstrap sampling.

Generating bootstrap samples with the same size, n, as the primary data set is more

complex than allowing for variable sample sizes; one cannot simply sample sequentially from

the GEV with parameters θ̂ truncated at x̂k(x1:i−1) for n0 + 1 < i < n. A correct, but

inefficient, procedure would be to use rejection sampling; sampling n − n0 times from the
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GEV distribution with θ̂ and accepting the bootstrap data set if the only exceedance occurs

on the final sample, i.e., 1{xn > x̂k(x1:n−1) = 1 and
∑n

i=n0+1 1{xi > x̂k(x1:i−1)} = 1. There

is likely to be a very large number of rejected samples using such a procedure since it requires

exactly the nth sampled point to be an exceedance and also that all previous sampled points

are non-exceedances.

We now suggest an importance-weighted (recall §2.2.2) bootstrap sampling procedure

using our knowledge of the stopping rule. As in §3.2.2, we define a stopping region Sn =

Sn(x1:n−1) such that we stop sampling if Xn ∈ Sn and continue to sample otherwise. We refer

to the true data-generating distribution, where f(·;θ) is the density of the GEV distribution

with parameters θ, as

h(x;θ) =

(
n∏

i=n0+1

f(xi;θ)

)
1Sn(xn)

n−1∏
i=n0+1

1Sci (xi)

=

(
n∏

i=n0+1

f(xi;θ)

)
1{xn > x̂k(x1:n−1)}

n−1∏
i=n0+1

1{xi ≤ x̂k(x1:i−1)}.

The inefficient rejection sampling method above simulates from the distribution h(x; θ̂) to

obtain bootstrap samples.

Instead of sampling from the true data-generating distribution, h(x;θ), to simulate boot-

strap samples we sample from some proposal distribution, q(x) and obtain a weighted sample

of bootstrap return-level estimates. Consider sampling sequentially from the GEV, fitted with

the primary data set, right-truncated at x̂k(x1:i−1) for i < n and left-truncated for i = n.

The density of this proposal would be

q(x; θ̂) =

(
n∏

i=n0+1

f(xi; θ̂)

F (x̂k(x1:i−1); θ̂)1{i 6=n}F̄ (x̂k(x1:i−1); θ̂)1{i=n}

)
1Sn(xn)

n−1∏
i=n0+1

1Sci (xi).

(4.4.1)

The corresponding weights are

ω(x) =
h(x; θ̂)

q(x; θ̂)
=

n∏
i=n0+1

F (x̂k(x1:i−1); θ̂)1{i 6=n}F̄ (x̂k(x1:i−1); θ̂)1{i=n}. (4.4.2)

For each bootstrap sample, x(j) j = 1, . . . , nB, generated from q(x; θ̂) we calculate the y-

year return-level estimate x̂
?(j)
y = xy(θ̂

?
). Then we can take {x̂?(j)y , ω̃(j)}mj=1, with normalised

weights ω̃(j) = ω(x(j))/
∑m

l=1 ω(x(l)), as a weighted sample of y-year return-level estimates
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from the true data-generating mechanism.

Recall the approximate 100(1 − α)% standard bootstrap confidence interval for x̂y is

[F̂ ?−1(α/2), F̂ ?−1(1 − α/2)] where F̂ ? is the empirical CDF of the bootstrap y-year return-

level estimator:

F̂ ?(x) =
1

nB

nB∑
j=1

1{x̂?(j)y ≤ x}.

In practice we find the interval [x̂Ly , x̂
U
y ] by solving

1

nB

nB∑
j=1

1{x̂(j)
y ≤ x̂Ly } =

α

2
and

1

nB

nB∑
j=1

1{x̂(j)
y ≤ x̂Uy } = 1− α

2
.

The bootstrap confidence interval with our importance sampling method outlined above is

[x̂Ly , x̂
U
y ] with

nB∑
j=1

ω̃(j)
1{x̂(j)

y ≤ x̂Ly } =
α

2
and

nB∑
j=1

ω̃(j)
1{x̂(j)

y ≤ x̂Uy } = 1− α

2
.

Using the variable-threshold stopping rule with the Lune data there were at least two ex-

ceedances (depending on the chosen k) and multiple exceedances could be common in prac-

tice. The procedure when the bootstrap sample has random sample size is easily extended to

multiple exceedances but the fixed bootstrap sample procedure requires more thought. We

outline the importance-weighted bootstrap sampling procedure when there are exactly r ex-

ceedances with the final exceedance being the final sampled point. The true data-generating

distribution in this setting is

h(x;θ) =

(
n∏

i=n0+1

f(xi;θ)

)
1{xn > x̂k(x1:n−1)}1

{
n−1∑

i=n0+1

1{xi > x̂k(x1:i−1)} = r − 1

}
.

Let I∗ be the set of all subsets i∗ of size r − 1 such that i∗ ⊂ {1, . . . , n− 1}. Every i∗ ∈ I∗

is a possible set of the r − 1 exceedance ‘times’ before the final exceedance at ‘time n’. We

denote the region corresponding to these exceedances and non-exceedances by Ri∗ , i.e., we

let

Ri∗ = {xn > x̂k(x1:n−1)}
⋃
i∈i∗
{xi > x̂k(x1:i−1)}

⋃
i∈{1,...,n−1}\i∗

{xi < x̂k(x1:i−1)}.
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Then we can rewrite h(x;θ) as a sum over the possible exceedance times:

h(x;θ) =
∑
i∗∈ I∗

h∗(x, i∗;θ) =
∑
i∗∈ I∗

(
n∏
i=1

f(xi;θ)1{Ri∗}

)
.

Consider the following proposal: Let the times of exceedance, i∗, be randomly sampled from

{1, 2, . . . , n − 1} without replacement; then sequentially simulate from the GEV(θ̂) (with

parameters estimated from the primary data set) left-truncated at the k-year return-level

estimate, x̂k(x1:i−1), for the exceedances i ∈ i∗ ∪ {n} and right-truncated otherwise. This

proposal has the joint density function,

q(x, i∗; θ̂) = q(x|i∗) · q(i∗), (4.4.3)

where q(i∗) = (r − 1)!(n− r)!/(n− 1)! is the distribution of possible r − 1 exceedance times

and

q(x|i∗) =

(
n∏

i=n0+1

f(xi; θ̂)

F (x̂k(x1:i−1); θ̂)1−1{i∈i∗}F̄ (x̂k(x1:i−1); θ̂)1{i∈i
∗}F̄ (x̂k(x1:i−1); θ̂)1{i=n}

)
1{Ri∗} .

(4.4.4)

Proposal distribution (4.4.3) is an extension of (4.4.1) to multiple exceedances. The product

in (4.4.4) is the likelihood conditioning on exceedances at times i∗ and n and non-exceedance

at other times. The factor 1{Ri∗} is needed such that q(x|i∗) = 0 if x is outside the stopping

region formed by exceedance times i∗ and n.

For each bootstrap sample, x(j) j = 1, . . . , nB, we sample a new set of r− 1 exceedances:

i∗(j). Then we generate bootstrap samples from q(x, i∗(j); θ̂), calculate the y-year return level

estimates x̂
?(j)
y = xy(θ̂

?(j)
) and calculate corresponding weights;

ω(x(j), i∗(j)) =
h(x(j), i∗(j); θ̂)

q(x(j), i∗(j); θ̂)
(4.4.5)

= C

n∏
i=n0+1

F (x̂k(x
(j)
1:i−1); θ̂)1−1{i∈i∗(j)}F̄ (x̂k(x

(j)
1:i−1); θ̂)1{i∈i

∗(j)}F̄ (x̂k(x
(j)
1:i−1); θ̂)1{i=n},

where C = (n− 1)!/((n− r)!(r − 1)!).
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Figure 4.4.1: 200-year return-level estimates (crosses) based on all the data up to and including
2015 for the Lune at Caton with 95% bootstrap confidence intervals with the variable-threshold

stopping rule over a range of k. Left: assuming one exceedance, right: with two exceedances. The
means of the 500 bootstrap return-level estimates for each k and likelihood are shown as circles. Each
group of 4 estimates applies for the same k as for the standard estimate in each group and have been

horizontally shifted for clarity.

As above we normalise the weights,

ω̃(j) :=
ω(x(j), i∗(j))∑nB
l=1 ω(x(l), i∗(l))

,

to obtain a weighted sample of y-year return level estimates, {x̂(j)
y , ω̃(j)}nBj=1.

A useful measure of the benefit of the importance-weighted bootstrap method is the

effective sample size (ESS):

ESS =
(
∑nB

j=1 ω(x(j), i∗(j)))2∑nB
j=1(ω(x(j), i∗(j)))2

=
1∑nB

j=1(ω̃(j))2
.

An efficient sampling scheme would be one with an effective sample size close to nB and so

occurs when we have approximately equal importance weights. In contrast, if one weight is

much larger than the others then the sample is essentially equivalent to just one independent

sample.

We tested the above importance sampling methods with the Lune data set with 500 <

k < 2000 for estimating the 200-year return level. Using the variable-threshold stopping rule

with this range of k results in two exceedances, one in 1995 and the other final exceedance

in 2015. First we ignore the knowledge that there was an exceedance in 1995 and use the
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proposal (4.4.1) and weights (4.4.2) as if the only exceedance is the final exceedance. Then

we consider the importance sampling method with two exceedances, i.e., proposal (4.4.3)

and weights (4.4.5) with r = 2. We compare the MLEs based on the primary data set

and the mean bootstrap y-year return-level estimates and confidence intervals using the four

likelihoods `std, `ex, `fc and `pc in Figure 4.4.1. For the two exceedance method we amend

`fc slightly by replacing the `fc contribution of the i∗th observation (the first exceedance) by

f(xi∗ ;θ)/F̄ (x̂k(x1:i∗−1);θ).

The most striking observation is the strong negative bias in the bootstrap return-level

estimator, x̂?L200, when using the likelihoods L = `ex, `fc or `pc or using `std assuming only one

exceedance. We saw in Chapter 3 that for variable-threshold stopping rule the return-level

estimators are negatively biased, except the standard estimator which has slight positive bias

for low return periods and large ξ, so we expect negative bias when using `ex, `fc or `pc.

Bootstrapping amplifies this negative bias since the bootstrap samples are from the GEV

with a shape parameter which is likely to be smaller than the true shape parameter. This

bias is also apparent in how far the MLEs are to the confidence interval upper bounds. For

the standard likelihood the MLE lies comfortably within the bound, with `fc it is further

into the upper tail as the full-conditional estimator has negative bias, x̂?pcy is more negatively

biased and the MLE x̂pcy is outside the confidence interval in some cases, and x̂?exy is the most

negatively biased with corresponding intervals far below the MLE x̂exy .

The bias in the bootstrap estimates is reduced when the two exceedance method is em-

ployed since the resulting bootstrap samples correctly have two exceedances and so are more

similar to the primary data set than the bootstrap samples under the one exceedance method.

Using the one exceedance method the bootstrap samples are likely to have less ‘large’ values

than the primary data set and so, for any likelihood, there is a negative bias in the bootstrap

shape parameter estimator due to this false sampling. Thus, in particular, assuming one

exceedance leads to a negative bias in the standard bootstrap return-level estimator whereas

the bias is small when bootstrapping two exceedances (the crosses and circles are closer in

Figure 4.4.1 right panel). Moreover, for `std, `ex and `pc the confidence intervals are narrower

when including a second exceedance as the extra exceedance information reduces the uncer-

tainty. However, when assuming one exceedance we found the ESS as a percentage of total

bootstraps, nB, ranged from 40-54% whereas using two exceedances it was only 16.8-34.8%.

For both the one and two exceedance methods the effective sample sizes are smaller when k
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is larger.

Finally we note that, similar to the findings of §4.3.2, the confidence intervals for both

methods are narrower than those obtained using the profile-likelihood deviance method

(cf. Chapter 3 Figure 3.5.1 right panel).

In conclusion, the bootstrap intervals obtained using the correct (multiple exceedance)

procedure are reasonable when using `std and are narrower than the profile-likelihood based

intervals. However, for other likelihoods the intervals are too heavily influenced by the

negative bias in the estimators and so some sort of bias correction is needed, perhaps in-

corporating Efron’s BC confidence intervals. More exploration into these intervals in the

variable-threshold stopping rule setting would be useful, including a simulation study to look

at coverage properties etc.

4.5 Influence of c on conditional CIs

In Chapter 3 we saw that the profile-likelihood based confidence intervals from the two

conditioning methods decrease in width with increasing stopping threshold c/return period of

stopping threshold k. Here we concentrate on the fixed-threshold stopping rule and investigate

the impact of the threshold, c, in more depth. Recall that c must lie between the largest and

second largest observed value; for c close to the largest value, xn, maximising the likelihood

can be difficult and so care must be taken in the calculation of confidence intervals.

The full-conditional and partial-conditional likelihoods (recall §3.3.1) are:

Lfc(θ) =

(
n−1∏
i=1

f(xi)

F (c)

)
f(xn)

F (c)
Lpc(θ) =

(
n−1∏
i=1

f(xi)

)
f(xn)

F (c)
,

where f and F are the pdf and cdf respectively of the GEV distribution with parameters

θ = (µ, σ, ξ). Now, for c >> µ, using the Taylor expansion on the denominator we have

f(xn)

F (c)
=

F (xn)
[
1 + ξ

(xn−µ
σ

)]−(1/ξ+1)

σ
(

1− exp {−
[
1 + ξ

( c−µ
σ

)]−1/ξ}
) ≈ F (xn)

[
1 + ξ

(xn−µ
σ

)]−(1/ξ+1)

σ
[
1 + ξ

( c−µ
σ

)]−1/ξ
. (4.5.1)

When c is very close to xn,

F (xn)
[
1 + ξ

(xn−µ
σ

)]−(1/ξ+1)

σ
[
1 + ξ

( c−µ
σ

)]−1/ξ
≈ F (xn)

σ
[
1 + ξ

(xn−µ
σ

)] =
exp {−

[
1 + ξ

(xn−µ
σ

)]−1/ξ}
σ + ξ(xn − µ)

(4.5.2)
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which is monotonically decreasing in ξ for all possible ξ values, thus (4.5.2) is maximised by

setting ξ = − σ
xn−µ . The upper end point of the GEV distribution when ξ < 0 is xU = µ− σ

ξ

so setting ξ = − σ
xn−µ is the same as making the upper end point, xU , equal to xn. The

parameter space is constrained by the upper end point being larger than xn, so when c

is close to xn the MLE, θ̂, is close to this boundary. This can cause problems both with

numerical maximisation of the likelihood (discussed below) and makes the theoretical basis

of the confidence intervals more complex.

Recall (§4.3.1) to create confidence intervals for the y-year return level we use the profile

likelihood, Pl(xy), and the asymptotic distribution of the deviance under certain regularity

conditions. One of these regularity conditions is that the MLE is an interior point of the

parameter space. Here, when c is close to the largest observation, xn, (x̂y, σ̂, ξ̂) lies close to/on

a boundary of the parameter space. There is much literature on estimation and asymptotic

properties when the parameter is on the boundary of the parameter space, e.g., Andrews

(1999). We do not explore this theoretical issue further but concentrate on the practical

numerical optimisation of the likelihood for such parameters.

The second issue raised is the numerical maximisation of the likelihood, `(xy, σ, ξ), to

obtain the profile likelihood, Pl(xy). Consider fixing the y-year return level, xy, and searching

over a grid of possible ξ and σ values for the largest likelihood. This is a rather slow but

effective way to approximate Pl(xy) (the finer the grid chosen the better the approximation

but also slower computationally) and the likelihoods at each grid point can be plotted to

show the parameter space for a particular xy value. Since the full and partial-conditioning

likelihoods are almost identical for large c we present results for full conditioning only. In

Figures 4.5.1/B.3.1 we fixed the 200-year return level at values between 1100 and 1800 with

c = 1735/1739 respectively (recall xn = 1740) and searched over a grid of ξ values from −0.3

to 0.3 and σ up to 400. Figure B.3.1 uses the standard likelihood with c = 1739 to illustrate

the case where the MLE is in the interior of the parameter space. The colour scale indicates

the magnitude of the likelihood at each of these grid points, blue being low likelihood and

yellow high likelihood. Grey signifies combinations of ξ and σ which are (very close to)

impossible for the chosen x200 and c.

From the shape of the contours on the parameter space plots we can see that σ and

ξ are negatively ‘correlated’. This behaviour is expected since increasing the scale of the

GEV distribution will have a similar effect on the model to increasing the shape parameter.
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Figure 4.5.1: Full conditioning likelihood for each combination of σ and ξ given fixed x200 and
c = 1735 over a range of x200 values. Low/high likelihood regions are coloured in blue/yellow with

grey being outside the parameter space. The black/red crosses are the MLEs using the
optimisation/grid method respectively.
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However the lighter the upper tail is, the wider the range of σ which will result in the same

likelihood. We also see the larger we fix the value of the 200-yr return level the more elliptical

and tighter the high likelihood contours become.

The boundaries of the parameter space are shown in black. The upper boundary curve

is the consequence of the exponent in the likelihood being positive, this ensures that the

smallest observation is larger than the lower end point when the shape parameter is positive.

The lower boundary curve signifies when the largest observation is less than the upper end

point when ξ is negative. Rearranging F̄ (xy) = 1/y we have

µ = xy −
σ

ξ

[
(− log(1− 1/y))−ξ − 1

]
.

So when xy is fixed and ξ < 0 the upper end point constraint is:

µ− σ

ξ
> xn ⇒ xy − xn −

σ

ξ
(− log(1− 1/y))−ξ > 0

⇒ σ > |ξ|(xn − xy)(− log(1− 1/y))ξ, (4.5.3)

which is smaller the larger xy is and negative when xy > xn, hence the lower bound on the

plots reduces and disappears as xy increases. Similarly, when ξ > 0, the lower end point

constraint is:

σ > ξ(xy −min(x))(− log(1− 1/y))ξ.

When x200 is fixed to lower values the upper end point boundary (4.5.3) moves towards the

high likelihood region and in particular the MLE (σ̂, ξ̂) given x200. For the full and partial

conditioning methods when c > 1734 these MLEs suddenly become very close to the boundary

when x200 is less than some critical value which increases with increasing c. For example, see

Figure B.3.2, when c = 1735 this jump to the boundary occurs when x200 is less than 1389

which is is close to the second largest observation in the data set (1395.22). It would seem

the jump here is due to the change in the restriction on the probability of exceedance of the

second largest observation, that is the exceedance probability is less than 1/200 whereas for

x200 > 1395.22 it is greater than 1/200. For very high c (in our investigation for c > 1738)

there is a small range of x200 for which the MLE jumped between to and away from the

boundary (for c = 1738 this was from 1415 to 1426) indicating instability in the estimates

near the boundary.
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Figure 4.5.2: Top: MLE of shape(left) and scale(right) parameters given the x200 value on the
x-axis. Bottom: Estimated upper end point (left) and profile likelihood (right) over different x200

values. The black/red points refer to the optimisation/grid method respectively with the full
conditional likelihood with c = 1735. The blue crosses are at the MLE using the grid method and the
red vertical line on the profile likelihood plot is the estimated upper end point at the MLE. The lowest
upper end point (uep) estimate for the range of 200-yr return level considered is given in the corner
of the bottom left panel. The blue dotted and dashed lines are the thresholds to obtain the 99% and

95% confidence intervals respectively.

Figures 4.5.2, B.3.3-B.3.5 show the maximum likelihood shape and scale parameter esti-

mates (top), upper end point estimates (bottom left) and profile likelihood (bottom right)

over a range of fixed 200 year return level values for c = 1730, 1735 and 1739. The black

circles are the results of what we will refer to as the optimisation method. For this method

we consider a fine grid of x200 values and for each fixed x200 obtain Pl(x200) by using the

optim function in R to maximise the resulting likelihood with respect to ξ and σ. For the

optim input we use initial parameters set to the MLE found for the previous x200 value.

The red crosses are the results when searching over a grid of ξ and σ values as described for

the parameter space plots. This latter method is much more computationally demanding as

the likelihood is calculated at every point in the (σ, ξ) grid and for every x200 value. The
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blue crosses are at the MLE using the grid method and the red vertical line on some of the

profile-likelihood plots is the estimated upper end point at the MLE. The blue dotted and

dashed lines are the thresholds to obtain the 99% and 95% confidence intervals respectively.

There is instability in both the optimisation and grid methods when c is extremely close

to xn (e.g., c = 1739, Figure B.3.3). As expected for the conditioning methods the closer

c is to xn the closer the maximum likelihood upper end point estimate is to xn = 1740,

i.e., the closer (x̂200, σ̂, ξ̂) are to the boundary of the parameter space (Figures 4.5.2, B.3.3-

B.3.5 bottom left). The most striking feature of the optimisation method is the discontinuity

when c is large (Figures B.3.3 and 4.5.2). On the parameter space plots this is where the

MLE suddenly shifts towards the boundary. For lower c (e.g., Figure B.3.5) there is no

discontinuity, however, a suddenly change in the shape of the profile likelihood can still be

seen as the estimated upper end point estimate moves away from xn. For comparison the

corresponding plots with the standard likelihood and c = 1735 are shown in Figure B.3.6, the

profile likelihood is much smoother with the standard likelihood and has no discontinuities.

In contrast to the optimisation method, the grid method does not result in a discontinuity

in the profile likelihood (this is seen clearly for c = 1735 in Figure B.3.7 top left). Nevertheless,

for large c, there is still a discontinuity in MLEs given x200 as they jump away from the upper

end point boundary, this discontinuity occurs at a lower x200 value than for the optimisation

method (red crosses jump before the black circles). When x200 is fixed to some low value and

is gradually increased the shape parameter becomes more negative and the scale parameter

more positive to ensure the upper end point remains approximately equal to xn (since, as

discussed after (4.5.2), for xn ≈ c the likelihood is large when xU ≈ xn). However, if the upper

bound of the fitted distribution is restricted to be approximately the largest observation, xn,

then F̄ (c) ≈ F̄ (xn) ≈ 0. There will be some critical value of x200 above which it will not be

possible to keep the probability of exceeding c so small and also have F̄ (x200) = 1
200 . (This

critical value will be greater the closer c is to xn as the probability of exceeding c is then

lower.) At this critical point the upper end point has to increase, thus the shape and scale

parameter are no longer restricted to be close to the boundary - this is reflected in the sudden

increase of the shape parameter and decrease in the scale parameter. This behaviour can be

seen in the maximum likelihood parameter plots in the top row of Figures 4.5.2, B.3.3-B.3.5.

In Figure B.3.2 we show the parameter space as in Figure 4.5.1 but concentrating on

200-year return levels around the discontinuity and including the optimisation-based MLEs
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Figure 4.5.3: As Figure 4.5.2 but with with initial parameters shifted away from the boundary in the
optimisation method.

(black crosses). It appears that when using the optimisation method the MLE ‘gets stuck’

on the boundary (since the initial parameter is on or close to the boundary) then moves

inside to agree with the grid based MLE (red crosses) for larger x200 values - this sudden

jump is causing the discontinuity. For example, in Figure B.3.7 the profile likelihood for

1400 < x200 < 1420 is estimated to be smaller than it truly is as the MLE is stuck on the

boundary. This can cause the calculated deviance (4.3.1) to be much larger than it actually

is, thus leading to too narrow confidence intervals.

One attempt to improve the optimisation near the critical x200 value is to shift the initial

parameters (ξ, σ) (entered into optim) away from the boundary by increasing ξ and decreasing

σ slightly. With such a shift the optimisation moves away from the boundary slightly too

early (depending on the extent of the shift in initial parameters), so the discontinuity is

shifted to earlier x200 values but is also reduced (see Figures 4.5.3, B.3.7, B.3.8).

Other attempts were made to improve upon the optimisation of the profile likelihood when

c is close to xn. We discuss one such improvement and its (in)effectiveness now. Consider
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(4.5.1), when the estimated upper end point is close to xn, then F (xn) ≈ 1 and so

(4.5.2) ≈ 1

σ(1 + ξ(c− µ)/σ)

[
σ + ξ(xn − µ)

σ + ξ(c− µ)

]−(1+ 1
ξ

)

=
1

σc

[
σc − ξ(c− µ) + ξ(xn − µ)

σc − ξ(c− µ) + ξ(c− µ)

]−(1+ 1
ξ

)
where σc = σ + ξ(c− µ)

=
1

σc

[
1 + ξ

(
xn − c
σc

)]−( 1
ξ

+1
)
.

Therefore, when F (c) is close to 1 we can approximate the term f(xn)
F̄ (c)

in the likelihood by

g(xn|X > c), the GPD density of xn given that it is greater than c with parameters (ξ, σc).

In practice the approximation makes little practical difference for the Lune data. It does

improve the stability of the estimates for low 200 year return levels with extremely large c

(Figure B.3.10) but doesn’t change the resulting confidence intervals for the 200 year return

level.

4.6 Summary

Overall, the conditioning estimators we presented in Chapter 3 outperform the standard

estimator when the decision to analyse data at a particular time was triggered by what was

perceived to be a large observation. However, we have seen that full-conditioning can lead

to unrealistically large deviance-based confidence intervals, particularly when the sample size

is small, and there are potential numerical issues which occur when the largest observation

(which triggered the analysis) is close to the stopping threshold. In practice the second issue

will be rare since an analysis is likely undertaken when there is an observation substantially

greater than a large threshold rather than just surpassing it.

We also compared the deviance-based confidence intervals to the standard bootstrap

confidence interval and bias-reducing variations thereof including our own version based on

Efron’s bias correction. The standard bootstrap method results in narrow intervals and poor

coverage whereas the bootstrap variations generally increase coverage but with confidence

interval widths comparable to the profile likelihood based interval widths; the latter is much

faster computationally so remains the preferred confidence interval method. For the variable-

threshold stopping rule we developed an importance-weighted bootstrap to create confidence

intervals including an extension to multiple exceedances of the stopping threshold, however,
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these intervals also suffer from negative bias similar to their fixed-threshold counterparts.



Part II

Efficient Loss Estimation
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Chapter 5

Loss Estimation and Concentration

Inequalities

JBA are interested in calculating the total loss incurred over time due to flooding events.

Their clients are interested in the distribution of this total loss from flood events per year

for a portfolio, in particular the mean, variance and t-year return levels, qt. The 200-year

return level (the loss expected to be exceeded with probability 0.005 = 1/200) is of special

interest since it is specifically required by the government’s 2015 solvency regulation (Swain

and Swallow, 2015). JBA’s end product is a set of return-level estimates for a range of

return periods, t ∈ {2, 5, 10, 20, 50, 75, 100, 150, 200, 250, 500, 1000, 1500...} (referred to in the

insurance industry as a loss curve) and their corresponding 95% confidence intervals. We are

mostly interested in calculating high return periods; however, clients will compare the low

quantiles of this curve with their historical data and so it is important that low quantiles are

well estimated also.

In this chapter we discuss the estimation of the return levels of the loss distribution and

explore and develop concentration inequalities for our approach to increase the computational

efficiency of this estimation process (Chapter 6). In §5.1 we describe what we refer to as

JBA’s standard procedure to estimate quantiles of the loss distribution for a given portfolio

from simulated events; this is the procedure used by JBA when this line of research was

started. Since we are interested in estimating the tail probabilities of the total loss and

thereby summing over events and risks (and subrisks), concentration inequalities for sums

of independent random variables are useful; our approach to improving the computational

efficiency (§6.1) uses concentration inequalities. In §5.2 we first review known concentration

inequalities and then develop some novel, tighter, bounds in §5.4 and connect notation with

the loss simulation setting in §5.5.

85
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Term Notation Definition

Risk r Depending on the detail of a portfolio, a risk is
either an insured property/location or a collection of
insured properties in a certain postcode.

Value of risk r vr Total insured value of risk.
Subrisk s Insured property/location.
Portfolio R A set of risks and their locations.
Coverage type c Insurance coverage types (B = building,

C = contents, BI = business interruption).
Peril type p Type of flooding (river, surface water or coastal).
Set of subrisks of risk r Sr The collection of subrisks forming risk r.
Event set - Set of simulated flood events and the year in

which they occurred.
Events in year y Ey Set of events in the year y simulation.
Hazard map - A fine grid of simulated water depths for an event

and peril type covering all locations in the
portfolio, for example, the whole of the UK.

Hazard distribution fH(h; e, r, p) Distribution of water depths greater than 0 at
risk r for event e and peril p.

Damage ratio - Loss as a fraction of total insured value.
Vulnerability function - Relates water depth to the mean and standard

deviation of the damage ratio. Depends on
particular aspects of a property such as building
type.

Vulnerability distribution fV|H(x|h; r, c) Distribution of damage ratio for risk r and

coverage type c given water depth h at the
property. Assumed to be a Beta distribution.

Wet distribution fX(x; e, r, p, c) Distribution of damage ratio for risk r with
coverage c given that there is flooding of type p
during event e.

Effective damage distribution - Distribution of damage ratio for risk r with
coverage c due to flooding of type p during event e.

Loss at risk r in event e Le,r
Total loss in year y Sy
Proportion of area affected pe,r,p Probability of flood of type p at risk r during

event e.

Table 5.1.1: Loss simulation definitions and notation.

5.1 Notation and standard procedure

JBA’s standard estimation procedure is detailed in this section; it involves many components

combining flood and property data. Table 5.1.1 provides a list of definitions and notations

for various terms used in the flood loss simulation setting. First, we give a brief overview of

the procedure, with details in the following subsections.

Flood events are simulated for ny = 10000 years and the water level across the landscape

is modelled (see §5.1.1) for each event for different types of flooding (river, coastal and surface

water) known as perils. The distribution of water depths greater than 0 at a certain risk is
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derived from this model and is referred to as the hazard distribution1. From the property

information a vulnerability distribution is ‘found’ (see §5.1.4); this provides a distribution on

the percentage of insured value loss for each risk, coverage and peril type (e.g., contents loss at

a particular property due to river flooding) given a certain water depth at the property. The

vulnerability distribution and hazard distribution are then combined to form an effective

damage distribution on the percentage loss of the insured value for each risk and event

combination (§5.1.5). Finally, yearly losses are simulated by sampling from the effective

damage distribution many times for each event and risk and accumulating the losses over a

year, for each of the 104 years (§5.1.6). We aim to improve the efficiency of this final sampling

and accumulation stage.

5.1.1 Simulating flood events

To determine the tails of the loss distribution we need to model the events which could

contribute to the greatest losses. JBA incorporate the spatial structure of, e.g., rainfall,

by using the methodology in Heffernan and Tawn (2004) to model the extremes in an area

conditional on the largest observation in the area. This neighbourhood is determined by the

tail dependence, i.e. using χ̄, or equivalently η (§7.3.4). Keef et al. (2013) present a practical

implementation of this method using all gauges rather than the localised version currently

used.

This spatial extreme value model is then used to simulate extreme events over a 10000

year period on a network of rainfall, river and tidal gauges. Each event is given a unique

ID and the set of event IDs and the year in which they occurred is called the event set. We

denote the events in year y by Ey.

5.1.2 Portfolio information

The portfolio provides an ID and location for each risk in terms of postcode and sometimes

also latitude and longitude. Some risks may in fact be a collection of multiple insured

properties, referred to as subrisks, all assigned to the same location and ID. There is no

information on individual subrisks only the whole collection, such as the total value of the

subrisks, and the number of subrisks. We let each subrisk have a unique identifier, s ∈ Sr
1Not to be confused with the statistical definition of hazard in survival analysis. In the insurance industry

a hazard is something that can cause loss, such as flooding.
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where Sr denotes the set of subrisks of risk r. For each subrisk, s, there is a mapping to the

risk it is part of: r = r(s). The number of subrisks of risk r is |Sr|.

5.1.3 Water depths and distribution

The simulated water levels are inputted into JBA’s software, JFLOW (Crossley et al., 2010)

, to simulate where the water will flow accounting for features of the landscape which cause

blockages or water build up. From this they obtain a fine grid of water depths, h, for each

event and peril type called the hazard map. This grid is so fine (each pixel is 5 square metres)

that they essentially have the water depths resulting from the event everywhere in the UK.

In the 2015 UK model these pixels are grouped into cells of 30 x 30m for river and coastal

perils and 120 x 120m for surface water peril.

Using the location information in the portfolio each risk can be assigned to a model cell

(or collection of cells if the postcode covers an area larger than one cell). Within this assigned

area there will be multiple pixels, so multiple water depths given by the hazard map, which

are used to obtain the hazard distribution. The hazard distribution is typically a parametric

distribution e.g., the Weibull distribution for which the parameters can be calculated from

the 5th and 95th percentile of the (non-zero) water depths by solving an equation for these

quantiles.

If a risk is flooded (non-zero water depth), the ‘true’ water depth is taken to be drawn

from the hazard distribution corresponding to that risk. We denote the density of the hazard

distribution by fH(h; e, r, p) for event e, risk r and peril type p.

The proportion of area affected, pe,r,p, is also deduced for each risk, event and peril type,

as the percentage of pixels with non-zero water depth in the area corresponding to the risk.

For example, if a postcode is on a steep slope with one end near a river then p will be

small (since flood water does not reach most of the hill) but the water depths near the river

will be high, whereas for a postcode in a flat area near a river p will be close to 1 and the

water depths will be similar across the postcode area.

The true distribution of water depth is 0 w.p. 1 − pe,r,p and H w.p. pe,r,p, where H has

density fH(h; e, r, p).
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5.1.4 Vulnerability function and distribution

In order to translate the water depths into a loss some measure of how different water depths

affect the resulting loss is needed. The vulnerability function gives a mean and standard

deviation of the relative loss (fraction of the value of a risk that will be lost, termed the

damage ratio) for each of a discrete number of depths. Each risk and coverage type (buildings,

contents or business interruption) will have a different set of expectations and variances of

the relative loss, this is due to particular aspects of the property such as the height of the

doorstep or the type of building. In all cases, of course, the expected loss will be zero when

the water depth is zero.

The vulnerability distribution of the damage caused relative to the value of the risk given a

certain water depth, h, for risk r and coverage type c is assumed to follow a Beta distribution

with parameters αr,h,c and βr,h,c such that the expectation and standard deviation matching

those given by the vulnerability function: Vr,h,c ∼ Beta(αr,h,c, βr,h,c). We denote the density

of the vulnerability distribution as fV|H(x|h; r, c). The uncertainty here is due, in part, to

variations in the state of the property, for example, if the owner is in the property at the

time of flooding there may be less damage. There is no peril in the above formula since it is

captured in the water depth.

5.1.5 Effective damage distribution

For each risk, coverage, peril and event combination, an effective damage distribution is built

by combining hazard distributions with damage distributions.

If we knew the relative loss distribution for every possible water depth for a particular

risk we could obtain the distribution for the damage ratio, x, by integrating the product of

the vulnerability function and the depth distribution over the water depths:

fX(x; e, r, p, c) =

∫
h
fV(x|h; r, c)fH(h; e, r, p)dh

However, we only have hazard and vulnerability information for a discrete number of water

depths. We partition the depth space into bins around the depths we have information for,

so the marginal distribution becomes the sum of the product of the fitted beta distributions

(vulnerability) and the probability of the water depth falling in a certain bin (from the hazard

distributions):
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fX(x; e, r, p, c) =

nB∑
i=1

P
(
H ∈ [hloi , h

hi
i ); e, r, p

)
fV(x|hi; r, c),

where nB is the number of bins, hloi and hhii , i = 1, . . . , nB with hhii = hloi+1, i = 1, . . . , nB − 1

are the boundaries of the bin for the ith water depth and hi = (hloi + hhii )/2. Hence, the

relative loss distribution for a given risk and event is a mixture of Beta distributions where the

weights are determined by the distribution of water depths. The distribution, fX(x; e, r, p, c),

is called the wet distribution and is itself approximated by a Beta distribution with parameters

determined by moment matching.

The final effective damage distribution is a mixture distribution such that the damage

ratio is 0 with probability 1−p and follows the wet distribution, X, with probability p, where

p is the proportion of area affected. Since there is no information on individual subrisks the

hazard and vulnerability distribution for each subrisk is taken to be the same as that for the

entire risk and the damage ratios for the subrisks are considered to be independent of each

other. The effective damage distribution for every event, e, peril, p, and coverage type, c and

subrisk, s, of risk r = r(s) is:

DRe,s,p,c = Ze,s,pXe,s,p,c,

where Ze,s,p ∼ Bernoulli(pe,r,p)

and Xe,s,p,c ∼ Beta(αe,r,p,c, βe,r,p,c).

The loss, Le,r,p,c, for a particular event, peril, risk and coverage type is the sum over the

subrisks of the relative loss multiplied by the average subrisk value:

Le,r,p,c =
vr,c
|Sr|

∑
s∈Sr

DRe,s,p,c, (5.1.1)

where Sr is the set of subrisks of risk r and vr,c is the total insured value of the risk with

coverage c.

5.1.6 Sampling and aggregation

The final stage of the process is to simulate from the effective damage distributions many

times for each event, (sub)risk, peril and coverage combination. Then we aggregate the losses

over the portfolio in each of the 10000 years. However, portfolios can be extremely large (for

example, Western Europe) and so can contain up to 107 risks. Clearly the large number of
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risks and events involved in this process has a huge burden on computation. In 2016 JBA’s

software took 20 hours to analyse approximately 2 million risks. Hence we wish to find ways

to improve the efficiency of this process by reducing the number of simulations necessary.

Important: In what we do we are not trying to get to as close to the ‘truth’ as possible,

rather produce results very close to those which would have been obtained using the standard

procedure, whilst reducing computational cost.

Three data sets are used within the simulation procedure: the event set, the portfolio data

and the damage distribution data. The event set lists the unique IDs of each simulated event

and the year (1, . . . , 104) in which it occurred. A portfolio consists of risks, their location and

their insured values for each coverage type; each risk has a unique ID and consists of a number

of subrisks. For each event and each of the 3 coverage types (building, contents and business

interruption) and 3 peril types (river, coastal and surface water), the damage distribution

table provides the mean and standard deviation of the wet distribution, the proportion of

area affected and corresponding risk and event IDs.

For the rest of the chapter we consider the simplified setting where we have one coverage

and peril type. We denote the set of events in year y by Ey, and the portfolio by R. The loss

in year y is:

Sy =
∑
e∈Ey

∑
r∈R

Le,r =
∑
e∈Ey

∑
r∈R

vr
|Sr|

∑
s∈Sr

DRe,s =
∑
e∈Ey

∑
r∈R

vr
|Sr|

∑
s∈Sr

Ze,sXe,s ,

where Le,r, DRe,s and pe,r are the loss, damage ratio and proportion of area affected for event

e and risk r, subrisk s and vr is the value of risk r. We now give the standard procedure,

simulating the total loss in each of ny years, to find return level estimates and confidence

intervals of the yearly loss.

Standard procedure

Input: m (the number of times the loss of each event and subrisk combination is simulated,

typically m = 100)

Step 1: For each event and subrisk combination simulate DRe,s m times from the corre-

sponding damage ratio distribution, and apply (5.1.1) to obtain realisations of the loss for
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that event and risk, l
(i)
e,r for i = 1, . . . ,m:

l(i)e,r =
vr
|Sr|

∑
s∈Sr

Z(i)
e,sX

(i)
e,s.

Step 2: For each simulation, i:

a) For each year, y, sum over all the risks in the portfolio, R, and events in year y, Ey, to

produce a simulation of the loss for year y:

s(i)
y =

∑
r∈R

∑
e∈Ey

l(i)e,r (5.1.2)

b) To obtain q
(i)
t , the t-year return level estimate for simulation i, estimate the (1 − 1

t )

quantile using the simulations {s(i)
y }y=1,...,ny . We use the following estimate (see below

for details):

q
(i)
t = (1− ω)s

(i)
(ny+1−dke) + ωs

(i)
(ny+1−(dke−1)),

where k =
ny+1
t , ω = dke − k, and s

(i)
(j) is the jth order statistic (jth smallest loss

simulated) of simulation i.

Step 3: We then have m t-year return level estimates, (q
(1)
t , . . . , q

(m)
t ), from which we calcu-

late the mean, median and variance and take the 2.5th and 97.5th quantiles for an approxi-

mate 95% confidence interval.

Quantile estimation in Step 2b of standard procedure

We estimate the CDF of the yearly loss by F̃ , the empirical CDF slightly adapted so that

F̃ (maxy(sy)) < 1:

F̃ (q) =
1

ny + 1

ny∑
y=1

1{s(i)y ≤q}
. (5.1.3)

Setting (5.1.3) equal to 1 − 1
t and solving for q gives us an estimate of the (1 − 1

t ) quantile

which we denote by qt. The equation to solve for qt can be written as:

ny∑
y=1

1{sy>qt} =
ny + 1

t
− 1 (5.1.4)

When
ny+1
t ∈ N, (5.1.4) is solved by any qt ∈

[
s(
ny+1−ny+1

t

), s(
ny+1−

(
ny+1

t
−1
))), i.e., qt
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can be any value between the
(
ny+1
t − 1

)
th and

(
ny+1
t

)
th largest simulated loss, including

the lower endpoint but not the upper endpoint. We take q̂
(i)
t = s

(i)(
ny+1−ny+1

t

) to be the

return-level estimate for the ith simulation when
ny+1
t ∈ N.

When
ny+1
t /∈ N (5.1.4) cannot be solved, however, we know that qt must lie between the

solutions to (5.1.4) with the right-hand side is rounded to the nearest integer up and down.

So, using our estimate for
ny+1
t ∈ N, we have

s(
ny+1−

⌈
ny+1

t

⌉) < qt < s(
ny+1−

(⌈
ny+1

t

⌉
−1
)).

We make the quantile estimate a continuous function of t by taking qt to be a weighted sum

of these bounds with weights, ω given by the ‘distance’ from
ny+1
t to the next integer:

q
(i)
t = (1− ω)s

(i)
(ny+1−dke) + ωs

(i)
(ny+1−(dke−1)),

where k =
ny+1
t , ω = dke−k, and s

(i)
(j) is the jth order statistic (jth smallest loss simulated) of

simulation i. This quantile estimate is equivalent to definition 6 in the paper of Hyndman and

Fan (1996) which compares many quantile estimates; it is the default for some programming

languages (Python, for example) and is highly recommended by Makkonen and Pajari (2014).

5.1.7 Test data

For this work JBA have provided a small portfolio, 1000-year event set, and damage distri-

bution information for event and risk combinations in this portfolio and event set which have

pe,r > 0. Unless stated otherwise, all the examples presented in this chapter use these data

or subsets thereof, particularly focusing on buildings insurance coverage and river flooding.

5.2 Concentration inequalities

Concentration inequalities provide bounds on the probability of a random variable deviating

from a particular value, such as its expectation, by at least some margin, and so are especially

helpful in finding bounds for tail probabilities. A wide range of concentration inequalities

has been developed, requiring varying amounts of information about the random variable of

interest. In this section we outline some basic inequalities and in §5.3 we discuss inequalities

for the sum of independent random variables. More details on the concentration inequalities
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presented here can be found in Boucheron et al. (2004). In §5.4 we present some new, tighter

bounds building on the more complex inequalities of §5.3.

An advantage to finding bounds on probabilities using concentration inequalities is that

these bounds are absolute – unlike the approximate bounds obtained from the central limit

theorem. However, whether or not these bounds are useful will depend on the trade off

between computational efficiency and the tightness of the bound. A loss estimation procedure

using concentration inequalities is discussed in §6.1. In what follows we denote the random

variable of interest by S.

5.2.1 Basic inequalities

The most basic concentration inequality, the Markov inequality, requires knowledge of the

expectation of S only. For t > 0 and S taking only non-negative values, the Markov inequality

arises by taking expectations of both sides of the inequality t1{S≥t} ≤ S:

P (S ≥ t) ≤ E [S]

t
. (5.2.1)

From this we can derive the Chebyshev inequality by replacing S in (5.2.1) by (S − E [S])2;

for a > 0:

P
(

(S − E [S])2 ≥ a
)
≤

E
[
(S − E [S])2

]
a

=
Var (S)

a
.

Thus, letting t =
√
a we obtain the Chebyshev inequality:

P (|S − E [S]| ≥ t) ≤ Var (S)

t2
.

The Cantelli inequality is a generalisation of the Chebyshev inequality in that the bound is

on the probability in a single tail rather than both tails, but the bound on that tail is slightly

tighter than the bound obtained from Chebyshev’s inequality and is particularly tighter in

the body where t2 < Var (S):

P (S − E [S] ≥ t) ≤ Var (S)

t2 + Var (S)
. (5.2.2)
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To obtain this inequality, note the following is true for all x ∈ R:

P (S − E [S] + x ≥ t+ x) ≤ P (|S − E [S] + x| ≥ t+ x) = P
(
(S − E [S] + x)2 ≥ (t+ x)2

)
≤

E
[
(S − E [S] + x)2

]
(t+ x)2

=
Var (S) + x2

(t+ x)2
,

where the final inequality arises from Markov’s inequality. Since this is true for all x ≥ 0 we

can choose x such that the right-hand-side bound is as small as possible. Differentiating we

find this value of x to be Var(S)
t , which – substituted into the above – gives the desired result

(5.2.2).

We can achieve stronger bounds by including more information about the random variable,

S. For example, the Markov inequality can be generalised by replacing S in (5.2.1) by g(S)

where g is a non-negative monotonically increasing function; the Chebyshev inequality is a

special case of this. Another important special case is when the Markov inequality is applied

with g(S) = eλS for some λ > 0:

P (S ≥ t) ≤ inf
λ≥0

E
[
eλS
]

eλt
= inf

λ≥0

MS(λ)

eλt
, (5.2.3)

where MS(λ) is the moment generating function of S. This bound is known as the Chernoff

inequality and plays an important role in the proofs of many more complicated concentration

inequalities.

Examples and more details of the inequalities outlined above can be found in Ross (1996)

and a detailed overview of concentration inequalities is given by Boucheron et al. (2004). In

the next section we will detail some of these inequalities, specifically for sums of independent,

bounded random variables.

5.3 Concentration inequalities for sums of bounded random

variables

In this section we consider inequalities that apply specifically to the tail probability of a sum

of random variables. First, we state our assumptions and introduce useful results for the

derivation of the concentration inequalities in later subsections.
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5.3.1 Assumptions, definitions and notation

We are interested in concentration inequalities of the sum of independent, bounded random

variables, Xi (i = 1, . . . , n), i.e., Xi satisfying the following assumption:

Assumption 1. Xi (i = 1, . . . , n) are independent random variables with bi ≤ Xi ≤ ci where

bi and ci are constants.

We present many of the concentration inequalities with the following further assumption on

the lower bounds of the random variables:

Assumption 2. The random variables, Xi, satisfy Assumption 1 with bi = 0 ∀i.

We denote the sum Sn =
∑n

i=1Xi, define pi = (E [Xi] − bi)/(ci − bi) and let p̄ = 1
n

∑n
i=1 pi.

We also denote Yi = Xi − E [Xi], mi = bi − E [Xi] and ai = ci − E [Xi]. Then under

Assumption 1, Yi are independent random variables with mi ≤ Yi ≤ ai for each i. Under

Assumption 2, pi = E [Xi] /ci so E [Sn] =
∑n

i=1 E [Xi] =
∑n

i=1 cipi = ncp where we have

defined cp = 1
n

∑n
i=1 cipi. Furthermore, mi = −cipi and ai = ci(1− pi).

Further we define:

cmin ··= min
i=1,...,n

ci bmin ··= min
i=1,...,n

bi amin ··= min
i=1,...,n

ai mmin ··= min
i=1,...,n

mi

cmax ··= max
i=1,...,n

ci bmax ··= max
i=1,...,n

bi amax ··= max
i=1,...,n

ai mmax ··= max
i=1,...,n

mi

5.3.2 Preliminaries

All of the inequalities we will examine derive from Chernoff’s inequality (5.2.3) applied to Sn

(see 5.3.3). Many of the derivations also involve the following bound for a convex function,

f(x):

f(x) ≤ c− x
c− b

f(b) +
x− b
c− b

f(c), b ≤ x ≤ c (5.3.1)

In particular, setting f(x) = eλx and taking expectations, this leads to

E
[
eλX

]
≤ c− E [X]

c− b
eλb +

E [X]− b
c− b

eλc. (5.3.2)
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In the following sections we often make use of the arithmetic-geometric mean inequality which

states for non-negative real numbers ν1, . . . , νn:

(
n∏
i=1

νi

) 1
n

≤ 1

n

n∑
i=1

νi (5.3.3)

It will also be useful to introduce here the Kullback-Leibler divergence, a measure of the

‘difference’ between two probability distributions:

Definition 5.3.2.1. For two discrete distributions, Q and P , defined on the same countable

probability set X , the Kullback-Leibler divergence is

DKL(Q||P ) =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
.

For Q ∼ Bernoulli(q) and P ∼ Bernoulli(p) the Kullback-Leibler divergence is

DKL(Q||P ) = q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
, (5.3.4)

which we will refer to as DKL(q||p) for simplicity.

Proposition 5.3.2.2. An expression in the form below can be written in terms of K-L di-

vergence:

q log

(
(1− p)q
p(1− q)

)
− log

(
1− p+

(1− p)q
1− q

)
= DKL(q||p).

Proof Let A denote the quantity on the left hand side of the above equation. Then

A = q log

(
q

p

)
+ q log

(
1− p
1− q

)
− log

(
(1− p)(1− q) + (1− p)q

1− q

)
= q log

(
q

p

)
− q log

(
1− q
1− p

)
− log

(
(1− p)
1− q

)
,

and DKL(q||p) = q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
= q log

(
q

p

)
− q log

(
1− q
1− p

)
− log

(
(1− p)
1− q

)
.

Finally, for proving some of the more complex concentration inequalities the Lambert W
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function will be useful. The Lambert W function, W (x), is the solution to W (x)eW (x) = x.

The Lambert W function is only defined on the real line for x ≥ −e−1, and for −e−1 < x < 0

the function is double-valued (on the reals). So for x < 0 the Lambert W function is split into

two branches; the lower branch, W−1(x) = W (x) : W (x) ≤ −1, ranges from −1 at x = −e−1

to −∞ at x = 0 whereas the upper branch, W0(x) = W (x) : W (x) > −1, ranges from −1 at

x = −e−1 to 0 at x = 0. It is important to be aware of which branch (if any) is the one of

interest when using this function.

General expressions of the form, eλa = λb + d, for some fixed constants a, b, d, λ can be

rearranged into the form wew = x and, hence, solved for λ in terms of a, b, d by use of the

Lambert W function:

eλa = λb+ d⇔ e−λa(λb+ d) = 1

⇔ e−λa
(
−λa− ad

b

)
= −a

b

⇔ e−(λa+ad
b )
(
−λa− ad

b

)
= −a

b
e−

ad
b ⇒ wew = x, (5.3.5)

where x = −a
b e
−ad

b and w = −
(
λa+ ad

b

)
. Since the Lambert W function is defined as the

solution, w, to the equation (5.3.5) we can say W (−a
b e
−ad

b ) = −
(
λa+ ad

b

)
. Thus,

λ = −1

a

[
W
(
−a
b
e−

ad
b

)
+
ad

b

]
. (5.3.6)

In practice it is useful to be able to approximate or bound Lambert’s W. The Taylor series

of the upper branch is:

W0(x) =
∞∑
n=1

(−n)n−1

n!
xn

For large values of x, W0 = log(x) − log(log(x)) + o(1) asymptotically. Similarly, when x

approaches 0 the lower branch, W−1 = log(−x)− log(− log(−x))+o(1). Hoorfar and Hassani

(2008) derive the following bounds on W0 for x ≥ e:

log(x)− log(log(x)) +
log(log(x))

2 log(x)
≤W0(x) ≤ log(x)− log(log(x)) +

e

e− 1

log(log(x))

log(x)
.

In the remainder of this section and §5.4 we present the proofs for the upper bounds on

P (Sn − E [Sn] ≥ nt) only. To obtain the upper bounds on P (Sn ≤ E [Sn]− nt) we notice

that P (Sn − E [Sn] ≤ −nt) = P (−Sn − E [−Sn] ≥ nt). Thus, unless otherwise stated, the
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same logic as used in the proofs for P (Sn ≥ E [Sn] + nt) can be applied but with Xi replaced

by −Xi.

5.3.3 Chernoff’s inequality for the sum of independent variables

Applying the Chernoff inequality (5.2.3) to Sn but with t replaced by E [Sn] + nt, we have

the following bounds:

P (Sn ≥ E [Sn] + nt) ≤ inf
λ≥0

e−λ(E[Sn]+nt)
n∏
i=1

E
[
eλXi

]
(5.3.7)

P (Sn ≤ E [Sn]− nt) ≤ inf
λ≥0

eλ(E[Sn]−nt)
n∏
i=1

E
[
e−λXi

]
(5.3.8)

If the moment generating function, E
[
eλX

]
is tractable the bound can be optimised numer-

ically. However, for every iteration of the optimisation scheme there is an O(n) operation

so numerical optimisation can be computationally expensive. All of the concentration in-

equalities presented henceforth derive from (5.3.7) and are therefore looser than numerically

optimising (5.3.7) but avoid many repeated O(n) calculations.

5.3.4 Hoeffding’s inequality for sums of bounded random variables

Theorem 5.3.4.1 (Hoeffding (1963), Theorem 2). Under assumption 1, for any t > 0,

P (Sn ≥ E [Sn] + nt) ≤ exp

(
− 2(nt)2∑n

i=1(ci − bi)2

)
(5.3.9)

P (Sn ≤ E [Sn]− nt) ≤ exp

(
− 2(nt)2∑n

i=1(ci − bi)2

)
.

The proof of Theorem 5.3.4.1 can be found in Appendix C.1.

The Hoeffding bound has two desirable properties: it has Gaussian tails, that is it behaves

as e−nt
2
; it also takes into account the different ranges of each random variable, Xi, in the

sum. However it does not make use of any information on the variance of the individual Xi.

Tighter bounds can be found by including this information, in particular we obtain Bennett’s

inequality (§5.3.7).

5.3.5 Chernoff-Hoeffding inequality

First we present another bound from Hoeffding (1963) which uses more information on the

individual pi (in the Hoeffding bound this information is only in E [Sn] =
∑n

i=1(bi + (ci −
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bi)pi)) and so provides tighter bounds than Hoeffding’s inequality in some cases. Theorem

1 of Hoeffding (1963) presents a bound on the probability of deviations from the mean

of independent random variables, Xi, with 0 ≤ Xi ≤ 1. This is often referred to as the

additive form of the Chernoff-Hoeffding Theorem and in literature it is simply referred to

as a Chernoff bound referencing one or both Hoeffding and Chernoff (e.g., Impagliazzo and

Kabanets (2010), Mulzer (2018)).

Zheng (2017) and From and Swift (2013) build on Hoeffding’s Theorem 1 presenting

bounds on the sum of independent random variables, Xi, i = 1, . . . , n, with P (0 ≤ Xi ≤ 1) =

1; the former by using a refined arithmetric-geometric mean bound, the latter splitting the

expectations of the Xi into two groups.

Hoeffding (1963) remarks how his Theorem 1 extends to b ≤ Xi ≤ c via an affine trans-

formation. Letting µ = 1
nE [Sn]:

P (Sn ≥ nt+ E [Sn]) ≤ exp

(
n

[
µ− b+ t

c− b
log

(
µ− b

µ+ t− b

)
+
c− µ− t
c− b

log

(
c− µ

c− µ− t

)])
= exp

(
−nDKL

(
µ− b+ t

c− b

∣∣∣∣∣
∣∣∣∣∣µ− bc− b

))

= exp

(
−nDKL

(
p̄+

t

c− b

∣∣∣∣∣
∣∣∣∣∣p̄
))

,

with pi = (E [Xi] − bi)/(ci − bi) as defined in §5.3.1. Bounds of this form are often referred

to as Chernoff-Hoeffding bounds.

Here we present (and later use) a slightly more general, novel, Chernoff-Hoeffding bound

allowing the Xi to have different upper bounds.

Theorem 5.3.5.1 (Chernoff-Hoeffding inequality). Under Assumption 1 and 2 and with pi,

cmax and cmin defined as in §5.3.1 the Chernoff-Hoeffding inequalities are,

P (Sn ≥ E [Sn] + nt) ≤ exp

(
−nDKL

(
cp+ t

cmax

∣∣∣∣∣
∣∣∣∣∣p̄
))

, p̄cmax − cp < t < cmax − cp,

(5.3.10)

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−nDKL

(
cp− t
cmin

∣∣∣∣∣
∣∣∣∣∣p̄
))

, cp− cminp̄ < t < cp ; (5.3.11)
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alternatively,

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−nDKL

(
cp′ + t

cmax

∣∣∣∣∣
∣∣∣∣∣p̄′
))

, p̄′cmax − cp′ < t < cmax − cp′,

(5.3.12)

where p′ = 1 − p and DKL(q||p), is the Kullback-Leibler divergence, as defined in (5.3.4),

between Bernoulli distributed random variables with parameters p and q respectively.

The alternative bound (5.3.12) can also be written as:

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−nDKL

(
c̄− cp+ t

cmax

∣∣∣∣∣
∣∣∣∣∣1− p̄

))

= exp

(
−nDKL

(
cmax − c̄+ cp− t

cmax

∣∣∣∣∣
∣∣∣∣∣p̄
))

,

for cp− p̄cmax + cmax− c̄ < t < cp+ cmax− c̄. Notice that the two upper bounds, (5.3.11) and

(5.3.12), on P (Sn ≤ E [Sn]− nt) are the the same when ci = c ∀i. Below we give the proof

for the bound (5.3.10) and outline the proofs for (5.3.11) and (5.3.12).

Proof For some fixed λ > 0 we have by Chernoff’s inequality (5.3.7):

P (Sn ≥ E [Sn] + nt) ≤ exp(−λ(E [Sn] + nt))

n∏
i=1

E [exp(λ(Xi))] . (5.3.13)

Since eλXi is a convex function we have (using (5.3.2)) E
[
eλXi

]
≤ ci−E[Xi]

ci
+ E[Xi]

ci
eλci =

1− pi + pie
λci .

Substituting this into (5.3.13) and using the inequality (5.3.3) relating the arithmetic and

geometric means:

P (Sn ≥ E [Sn] + nt) ≤
n∏
i=1

(1− pi + pie
λci)e−λ(

∑n
i=1 cipi+nt)

≤

(
1

n

n∑
i=1

(1− pi + pie
λci)

)n
e−λn(cp+t) (5.3.14)

≤ (1 + p̄(eλcmax − 1))ne−λn(cp+t) , (5.3.15)

where p̄ = 1
n

∑n
i=1 pi, cp = 1

n

∑n
i=1 cipi and cmax = maxi ci, the maximum value of all the Xi.



CHAPTER 5. CONCENTRATION INEQUALITIES 102

The expression (5.3.15) is minimised by choosing

λ =
1

cmax
log

(
(1− p̄)(cp+ t)

p̄(cmax − cp− t)

)
, (5.3.16)

when p̄cmax − cp < t < cmax − cp . The bound is 1 when t < p̄cmax − cp and 0 when

t > cmax − cp.

Finally substituting (5.3.16) into (5.3.15) we arrive at our Chernoff-Hoeffding inequality:

P (Sn ≥ E [Sn] + nt) ≤

exp

{
− n

[(
cp+ t

cmax

)
log

(
cp+ t

cmaxp̄

)
+

(
cmax − cp− t

cmax

)
log

(
cmax − cp− t
cmax(1− p̄)

)]}
.

Using (5.3.4) we can write this more concisely in terms of the Kullback-Leibler divergence,

DKL(q||p), between Bernoulli distributed random variables with parameters p and q respec-

tively so obtain bound (5.3.10).

Bound 5.3.11 For some fixed λ > 0 we have by Chernoff’s inequality (5.3.8):

P (Sn ≤ E [Sn]− nt) ≤ exp(−nλ(t− cp))
n∏
i=1

E [exp(−λ(Xi))] .

Since e−λXi is a convex function we have (using (5.3.2)) E
[
e−λXi

]
≤ 1− pi + pie

−λci .

Substituting this and using the inequality (5.3.3) relating the arithmetic and geometric

means:

P (Sn ≤ E [Sn]− nt) ≤

(
1

n

n∑
i=1

(1− pi + pie
−λci)

)n
e−λn(t−cp)

≤ (1 + p̄(e−λcmin − 1))ne−λn(t−cp) ,

where p̄ = 1
n

∑n
i=1 pi, cp = 1

n

∑n
i=1 cipi and cmin = mini ci, the minimum value of all the Xi.

The expression is minimised by choosing

λ = − 1

cmin
log

(
(1− p̄)(−cp+ t)

p̄(−cmin + cp− t)

)
,

when cp − cmin < cp − cminp̄ < t < cp . The bound is 1 when t < cp − cminp̄ and 0 when

t > cp. Substituting this λ value we obtain (5.3.11). To see this use Proposition 5.3.9.1 with

q = (cp− t)/cmin and p = p̄.
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Bound 5.3.12 The bound (5.3.12) is obtained by letting Zi = ci −Xi and considering

P (Sn ≤ E [Sn]− nt) = P

(
n∑
i=1

ci −
n∑
i=1

Zi ≤ ncp− nt

)
= P

(
n∑
i=1

Zi ≥ n(t+ cp′)

)

≤
∏n
i=1 E [exp(λZi)]

exp(λn(t+ cp′))
,

by Chernoff’s inequality. Then since

E
[
eλZi

]
≤ ci − E [Zi]

ci
+

E [Zi]

ci
eλci = 1− p′i + p′ie

λci ,

we have

P (Sn ≤ E [Sn]− nt) ≤
n∏
i=1

(1− p′i + p′ie
λci)e−nλ( ¯cp′+t).

The proof is then the same as that for (5.3.10) with p replaced by p′ = 1− p throughout.

It is not immediately clear which of (5.3.11) and (5.3.12) is the tighter bound. In fact it

depends largely on the value of t and whether the bounds on t given in (5.3.11) and (5.3.12)

overlap. When p̄′ > c̄/cmax the lower bound on t in (5.3.12), p̄′cmax− cp′ = p̄′cmax− c̄+ cp, is

larger the the upper bound in (5.3.11), cp. So for t < cp bound (5.3.12) is 1 (the case t > cp

is trivial since P (Sn < E[Sn]− ncp) = P (Sn < 0) = 0) whereas bound (5.3.11) is less than

1 for cp − p̄cmin < t < cp. However, when cmin is small the interval is very narrow and so

bound (5.3.11) is only useful for a small range of t values.

The scenario of interest has small values of p. When p is small the condition p̄′ > c̄/cmax

is likely to be satisfied (unless c̄ is very close to cmax) and so bound (5.3.11) is tighter than

(5.3.12). Thus henceforth we only consider (5.3.11). The proofs of Chernoff-Hoeffding+ and

Chernoff-Hoeffding++ bounds in §5.4.1 use the same initial steps as bound (5.3.12).

5.3.6 Bernstein’s inequality

An inequality for the sum of independent variables which makes use of the variance of each

component of the sum is Bernstein’s inequality, however this inequality assumes uniform

bounds on the random variables.

Theorem 5.3.6.1 (Bernstein (1946)). Under assumption 1 with amax and mmin defined as
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in §5.3.1 the Bernstein inequalities are, for t > 0,

P (Sn ≥ E [Sn] + nt) ≤ exp

(
−

1
2(nt)2∑n

i=1 Var (Xi) + nt
3 amax

)
(5.3.17)

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−

1
2(nt)2∑n

i=1 Var (Xi)− nt
3 mmin

)
, (5.3.18)

Remark 5.3.6.2. These bounds have different tail properties depending on the deviation t in

relation to the variance of the sum. For small deviations, t << 3 Var(Sn)
namax

, the upper bound has

Gaussian tails, i.e., behaves like e−nKt
2

for some constant K. Whereas for large deviations

the bound has exponential tails e−nKt.

Proof Let f(x) := ex−x−1
x2

=
∑∞

k=2
xk−2

k! . Using the fact that k! ≥ 2(3k−2) ∀k ≥ 1, we have

for x < 3:

f(x) ≤
∞∑
k=2

xk−2

2(3k−2)
=

1

2

∞∑
k=0

(x
3

)k
=

1

2(1− x
3 )
. (5.3.19)

Defining σ2
i = E

[
Y 2
i

]
= Var (Xi) we have from the definition of f :

E
[
eλYi

]
= 1 + λ2E

[
Y 2
i f(λYi)

]
≤ 1 + σ2

i λ
2f(λai) ≤ exp(σ2

i λ
2f(λai)), (5.3.20)

where the first inequality follows because f(x) is monotone increasing and the second follows

as 1 + x ≤ ex. So, for some fixed 0 < λ < 3/amax,

P (Sn ≥ E [Sn] + nt) ≤ exp (−λnt)
n∏
i=1

E [exp(λYi)] (by Chernoff’s inequality (5.3.7))

≤ exp (−λnt) exp

(
λ2

n∑
i=1

σ2
i f(λai)

)
(substituting (5.3.20))

(5.3.21)

≤ exp (−λnt) exp

(
λ2f(λamax)

n∑
i=1

σ2
i

)
. (5.3.22)

Then, using (5.3.19),

(5.3.22) ≤ exp

(
−λnt+

λ2

2

Var (Sn)

1− amaxλ
3

)
(using (5.3.19)).
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The right-hand side is minimised by

λ =
nt

Var (Sn) + amaxnt/3
,

and leads to (5.3.17). The proof for (5.3.18) follows by replacing Yi by −Yi, ai by −mi and

amax by −mmin in the above.

5.3.7 Bennett’s inequality

Theorem 5.3.7.1 (Bennett (1962)). Under assumption 1 with amax and mmin defined as in

§5.3.1 the Bennett inequalities are, for t > 0,:

P (Sn ≥ E [Sn] + nt) ≤ exp

(
− Var (Sn)

a2
max

h

(
namaxt

Var (Sn)

))
P (Sn ≤ E [Sn]− nt) ≤ exp

(
− Var (Sn)

m2
min

h

(
−nmmint

Var (Sn)

))
,

where h(x) = (1 + x) log(1 + x)− x.

Proof Following the first part of the proof of the Bernstein inequality we have

P (Sn ≥ E [Sn] + nt) ≤ exp
(
−λnt+ λ2f(λamax) Var (Sn)

)
(from (5.3.22)). (5.3.23)

This is minimised at λ? = 1
amax

log
(

1 + ntamax
Var(Sn)

)
, giving the Bennett bound above.

Notice that Bennett’s inequality is strictly tighter than Bernstein’s inequality since it does

not use the loosening step bounding f(x).

Remark 5.3.7.2. Similar to Bernstein we have different tail behaviour for different t val-

ues. For t << Var(Sn)
namax

, h (namaxt) ≈
(
namaxt
Var(Sn)

)2
so the Bennett bound is approximately

exp
(
− n2t2

Var(Sn)

)
, i.e., it has Gaussian tails. On the other hand, when t ≥ Var(Sn)

namax
, h (namaxt) ≥

namaxt
Var(Sn) log

(
namaxt
Var(Sn)

)
so the Bennett bound is less than or equal to exp

(
− nt

Var(Sn) log
(
namaxt
Var(Sn)

))
=(

Var(Sn)
namaxt

) nt
amax , which is a Poisson-like tail.

5.3.8 Jebara’s Bennett refinement

Jebara (2018) presents a more complex refinement of Bennett’s concentration bound which

which can be, but is not always, slightly tighter than the Bennett bound. First omitting the
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loosening step (5.3.20) in the proof of Bennett’s inequality, (5.3.21) becomes:

P (Sn ≥ E [Sn] + nt) ≤ e−λnt
n∏
i=1

(
1 + λ2σ2

i f(λai)
)

(5.3.24)

≤ exp

(
n∑
i=1

[
log
(
1 + λ2σ2

i f(λai)
)
− λtai

ā

])
. (5.3.25)

Jebara (2018) then finds the λi which minimises each term, bi(λ), in the summation and uses

this λi as part of a quadratic bound on each term:

log
(
1 + λ2σ2

i f(λai)
)
− λtai

ā
≤ a2

i

1− e−a2i /σ2
i

(λ− λi)2

2
+ log

(
1 + λ2

iσ
2
i f(λiai)

)
− λit

ai
ā
.

(5.3.26)

The bound (5.3.26) is then inserted into (5.3.25) and the optimal λ is found, which we

denote by λ?Q. The resulting bound for the sum, Sn, of n independent variables, Xi, with

Xi − E [Xi] ≤ ai and t ∈ (0, ā) is bound (5.3.24) with λ replaced by λ?Q where

λ?Q =

(
n∑
i=1

a2
i

1− e−a2i /σ2
i

)−1 n∑
i=1

a2
iλi

1− e−a2i /σ2
i

, (5.3.27)

λi =
ā

tai
+
ai
σ2
i

− 1

ai
− 1

ai
W

(
exp

(
ā

t
+
a2
i

σ2
i

− 1 + log

(
ā− t
t

)))
.

So to calculate this bound one needs to work out the Lambert W function for each Xi, that is

n times. The individual variances, σ2
i , and ai are also needed unlike the other bounds which

only require some summary statistics such as the mean of the variances.

5.3.9 Comparing existing concentration inequalities on simulated data

The upper tail bounds presented in the previous sections are now compared for the sum

of n independent binary variables, Sn =
∑n

i=1Xi with Xi ∼ ciBernoulli(pi). We consider

two cases for each of pi and ci: pi = 0.013 ∀i and Pi ∼ Beta(0.3, 22), and ci = 1 ∀i and

Ci ∼ 0.1 + Exp(1). The parameters are chosen in this way to mimic the loss simulation

setting where the expected loss is small since probabilities are very small but the variance is

high with large potential loss. Figure 5.3.1 shows the various concentration bounds on the

probability of the sum of 1000 independent binary variables exceeding a certain number, nsd,

of standard deviations, σ =
√∑

pi(1− pi)c2
i , above the mean, P (Sn ≥ E [Sn] + nsdσ). The

concentration inequalities presented are bounds on P (Sn ≥ E [Sn] + nt) so throughout this
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1000 Binary r.v.s with p= 0.013 , C~Exp(1) + 0.1
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1000 Binary r.v.s with P~Beta( 0.3 , 22 ), C~Exp(1) + 0.1
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Figure 5.3.1: Bound on the exceedance probability, P
(
Sn ≥ E [Sn] + nsd

√
Var (Sn)

)
, against nsd

for the sum of 1000 binary random variables, Xi ∼ ciBernoulli(pi). Top left: p = 0.013, ci = 1 ∀i,
Top right: pi ∼ Beta(0.3, 22), ci = 1, Bottom left: p = 0.013, ci ∼ 0.1 + Exp(1), Bottom right:

pi ∼ Beta(0.3, 22), ci 0.1 + Exp(1).
Bounds used are: Markov (5.2.1) (cyan), Cantelli (5.2.2) (Red), Chernoff (5.3.7) numerically

optimised (dashed black), Hoeffding (5.3.4) (solid green), Chernoff-Hoeffding (5.3.10) (green dashed),
Bernstein (5.3.17) (blue), Bennett (5.4.12) (pink), Jebara (C.3.1) (grey dashed). The solid black line

indicates the Monte Carlo estimate based on 10000 simulations of Sn.

subsection we let t = nsdσ/n. The Chernoff bound (5.3.7) is shown by a dashed black line,

all of our bounds presented (aside from Markov and Cantelli) derive from this bound and

so this provides a best possible bound for us to compare against. When both c and p are

fixed the Chernoff bound can be found analytically (since the MGF is tractable), otherwise

the bound is found by numerical optimisation. The Monte Carlo estimate based on 10000

simulations of Sn is also shown for comparison.

Of the classical concentration inequalities reviewed in §5.2 and §5.3 Bennett’s inequality

(solid pink) performs best for exceedances more than 5 standard deviations from the mean.

The Cantelli inequality (solid red) is usually the tightest bound for small t, i.e., nsd small.

When p is large Bernstein’s inequality is very similar to Bennett’s bound however for small p
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it is considerably looser and performs worse when the maximum value of each Xi is different

(Figure 5.3.1 bottom, blue). When c is not fixed the Chernoff-Hoeffding bound is very loose.

However, when both c and p are fixed the Chernoff-Hoeffding bound, P (Sn ≥ E [Sn] + nt) ≤

exp (−nDKL(t+ p||p)), is equal to the Chernoff bound, i.e., it is the best possible bound

of this form. Hoeffding’s inequality (solid green) performs particularly poorly in all four

cases since it does not incorporate any information about the small pi values, i.e., there is

no information on the variance of the random variables, only their upper and lower bounds.

On the other hand, it is one of the tightest bounds when p̄ ≈ 0.5, particularly when c is

fixed, since this leads to the largest possible variance and so the other bounds (which use the

variance information) do not perform as well.

For small p and when all ci = c the Bennett bound is almost equal to but slightly larger

than the Chernoff-Hoeffding bound. The following proposition formulates this observation.

Proposition 5.3.9.1. Let pCH(t) and pB(t) be the Chernoff-Hoeffding and Bennett upper

tail bound (the right-hand sides of (5.3.10) and (5.4.12)) respectively. Define ρ := (1 −

pmin)/(1− p2/p̄). If ci = c ∀i then

− 1

n
log pCH(t) = p̄h

(
t

cp̄

)
+

(t/c)2

2(1− p̄)
+O

([
t

c

]3
)
.

for t ≤ εā for some 0 < ε < 1. Furthermore, if t/[cp̄] > b for any fixed b > 1 then

− 1

n
log pB(t) = p̄h

(
t

cp̄

)
× 1

1− pmin
ρ{t/[cp̄]−log(1+t/[cp̄])}/h(t/[cp̄]) ×

{
1 +O

(
[log ρ]2

)}
.

(5.3.28)

Proposition 5.3.9.1 tells us if ci = c ∀i and cp̄ < t < ā = c(1− p̄) then our Chernoff-Hoeffding

bound and the Bennett bound are close since each log bound is −np̄h(t/[cp̄]) modulo a

small correction. For the correction term in pB, first notice that pminp̄ ≤ p2 ≤ pmaxp̄, so

1 ≤ ρ ≤ 1−pmin
1−pmax

and ρ ≈ 1 when p are small. Also the power of ρ in (5.3.28) with fixed t

and c is a monotonically increasing function in p̄ which is bounded above by 1 and tends to

0 as p̄ → 0. So when p̄ is small the correction term in pB is very small and, unless t is very

small, it is larger than the correction term in pCH . The proof of Proposition 5.3.9.1 along

with examples and more details are given in Appendix C.2.

For Jebara’s bound (grey dashed) one must take care evaluating the Lambert W function;

often approximations for W (x) at large or small x are needed. When p is fixed Jebara’s bound
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is tighter than the Bennett bound whereas for P ∼ Beta(0.3, 22) the bound is very loose; for

small t it is 1 and only starts to improve upon other bounds when t is large. This poor

behaviour seems to be driven by very small values of p. We also found that Jebara’s bound

is much looser than Bennett when p is fixed but very small (e.g., p = 0.001) so it appears the

larger p̄ is the tighter the bound becomes. This suggests that the minimiser (5.3.27) which

Jebara uses is not optimal when c and/or p are not fixed and p is small unless t is very large.

We now explore this issue in more detail in Appendix C.3.

5.4 Tighter concentration inequalities

In this section we present some novel, tighter concentration bounds based on the Chernoff-

Hoeffding (§5.3.5) and Bennett (§5.3.7) bounds in §5.4.1 and §5.4.2 respectively.

5.4.1 Convexity tricks with the Chernoff-Hoeffding bound

We first present two refinements to the Chernoff-Hoeffding bound found by bounding convex

functions. These bounds are compared to other concentration inequalities (in particular the

Chernoff-Hoeffding bound) in §5.4.3. When ci is the same for all i these bounds both reduce

to the standard Chernoff-Hoeffding bound (5.3.10).

Chernoff-Hoeffding+

In the derivation of the Chernoff-Hoeffding bound we bound ci by cmax after applying the

arithmetic-geometric mean inequality (going from (5.3.14) to (5.3.15)). In the following we

omit this loosening step and instead use a tighter bound, using the convexity of eλc, before

applying the arithmetic-geometric mean inequality.

Theorem 5.4.1.1 (Chernoff-Hoeffding+). Under Assumption 1 and 2, and with pi and cmax

defined as in §5.3.1 the Chernoff-Hoeffding+ inequalities are

P (Sn ≥ E [Sn] + nt) ≤ exp

(
−nDKL

(
cp+ t

cmax

∣∣∣∣∣
∣∣∣∣∣ cpcmax

))
0 < t < cmax − cp (5.4.1)

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−nDKL

(
cp− t
cmax

∣∣∣∣∣
∣∣∣∣∣ cpcmax

))
0 < t < cp. (5.4.2)

Proof Notice that, since eλc is convex in c, if 0 ≤ c ≤ cmax then eλc ≤
(

1− c
cmax

)
e0 +

c
cmax

eλcmax , so
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1− pi + pie
λci ≤ 1− pi + pi

(
1− ci

cmax

)
+
pici
cmax

eλcmax . (5.4.3)

So we can replace the sum in (5.3.14) by the sum of (5.4.3) over i:

P (Sn ≥ E [Sn] + nt) ≤ e−λn(cp+t)

[
1

n

n∑
i=1

(
1− cipi

cmax
+
cipi
cmax

eλcmax

)]n
= e−λn(cp+t)

(
1 +

cp

cmax
(eλcmax − 1)

)n
.

Since cp/cmax ≤ p̄ this bound is no larger than (5.3.15) and is strictly smaller if the cis differ.

The right hand side is minimised by choosing

λ =
1

cmax
log

(
(cmax − cp)(cp+ t)

cp(cmax − (cp+ t)))

)
, (5.4.4)

where 0 < t < cmax − cp. When t > cmax − cp, P (Sn − E [Sn] ≥ nt) = 0. Substituting into

(5.4.4) we obtain the following bound:

P (Sn ≥ E [Sn] + nt) ≤

exp

{
− n

[(
cp+ t

cmax

)
log

(
cp+ t

cp

)
+

(
cmax − cp− t

cmax

)
log

(
cmax − cp− t
(cmax − cp)

)]}
.

Following Proposition 5.3.2.2, this can be written in terms of Kullback-Leibler divergence to

obtain the forms given in the theorem.

Bound 5.4.2 For the bound on P (Sn ≤ E [Sn]− nt) note that since e−λc is convex in c,

e−λc ≤ (1− c/cmax) + (c/cmax)e−λcmax . So 1− pi + pie
−λci ≤ 1 + (e−λcmax − 1)cipi/cmax and

we can replace the sum in (4.23) by the sum of these and proceed as before arriving at:

P (Sn ≤ E [Sn]− nt) ≤ e−λn(t−cp)
(

1 +
cp

cmax
(e−λcmax − 1)

)n
. (5.4.5)

Unlike the upper tail bound, we cannot say at this step that (5.4.2) will be tighter than

(5.3.11); e−λcmax < 1 so

1 +
cp

cmax
(e−λcmax − 1) > 1 + p̄(e−λcmax − 1).

However, 1+ cp
cmax

(e−λcmax−1) may be smaller than 1+p(e−λcmin−1) since 1+ p̄(e−λcmax−1)

is smaller than 1 + p̄(e−λcmin − 1).
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The right-hand side of (5.4.5) is minimised at

λ = − 1

cmax
log

[
(t− cp)(cmax − cp)
cp(cp− t− cmax)

]
,

where 0 < t < cp. Otherwise P (Sn ≤ E [Sn]− nt) = 0. Substituting in we arrive at the

correct bound.

Again, an alternative bound on P (Sn ≤ E [Sn]− nt) can be found which is the same as (5.4.1)

with p′ = 1− p:

P (Sn ≤ E [Sn]− nt) ≤ exp

(
−nDKL

(
cp′ + t

cmax

∣∣∣∣∣
∣∣∣∣∣ cp′cmax

))
0 < t < cmax − cp′

≤ exp

(
−nDKL

(
c̄

cmax
− cp− t

cmax

∣∣∣∣∣
∣∣∣∣∣ c̄

cmax
− cp

cmax

))
, (5.4.6)

for 0 < t < cmax − (c̄− cp). When c̄ ≈ cmax the bound is approximately the same as (5.4.2)

(Again, when ci = c ∀i the bound is the same as (5.3.11)). As we noted for the Chernoff-

Hoeffding alternative bound, this bound is only tighter than bound (5.4.2) when p is large so

we only consider (5.4.2).

Chernoff-Hoeffding++

Now we derive an even tighter bound on the upper tail, which we call Chernoff-Hoeffding++,

by using the convexity in c of the function h(c;λ) := (eλc − 1)/c = λ+ λ2c/2 + λ3c2/6 + . . ..

Theorem 5.4.1.2 (Chernoff-Hoeffding++). Under assumption 1 and 2 and with pi and cmax

defined as in §5.3.1 the Chernoff-Hoeffding++ inequality is,

P (Sn ≥ E [Sn] + nt) ≤ exp

{
− n

[
λ?(cp+ t)− log

(
1 + cpλ? + pc2

(
eλ

?cmax − 1− λ?cmax

c2
max

))]}
,

for 0 < t < cmax − cp where pc2 = 1
n

∑n
i=1 pic

2
i and λ? = − 1

cmax

[
W
(
−ke−l

)
+ l
]

with

k =
pc2(cmax − cp− t)

(cmaxcp− pc2)(cp+ t)
and l =

pc2(cmax − cp− t) + c2
maxt

(cmaxcp− pc2)(cp+ t)

The upper bound on P (Sn ≤ E [Sn]− nt) for 0 < t < cmax − c̄ + cp is as above but with cp

and pc2 replaced by cp′ = c̄− cp and p′c2 = 1
n

∑n
i=1(1− pi)c2

i respectively.

Before proving Theorem 5.4.1.2 we introduce and prove the following useful lemma.
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Lemma 5.4.1.3.

For any integer k ≥ 0 and x > −(k + 4)/3, hk(x) = 1
xk+1

(
ex −

∑k
j=0

xj

j!

)
is convex.

Proof [Lemma 5.4.1.3] We have

hk(x) =
1

xk+1

∞∑
j=k+1

xj

j!
=

∞∑
j=k+1

xj−k−1

j!
.

Therefore,

h′′k(x) =
∞∑

j=k+3

(j − k − 1)(j − k − 2)
xj−k−3

j!

=
∞∑
j=0

(j + 1)(j + 2)
xj

(j + k + 3)!

=
∞∑
j=0

(2j + 1)(2j + 2)
x2j

(2j + k + 3)!
+ (2j + 2)(2j + 3)

x2j+1

(2j + k + 4)!

=

∞∑
j=0

(2j + 2)
x2j

(2j + k + 3)!

[
2j + 1 + (2j + 3)

x

(2j + k + 4)

]
.

The factor outside of the bracket is non-negative for all x so we have h′′k(x) > 0 if the square

bracket is also non-negative, this happens when

x >
−(2j + k + 4)(2j + 1)

2j + 3
:= f(j)

for all j i.e., x ≥ maxj=0,1,2,...(f(j)). Now f ′(j) < 0 so f(j) is an decreasing function in j,

thus the largest value is at j = 0 and we arrive at the following condition on x for which

hk(x) is convex: x > −(k+4)
3 .

Remark 5.4.1.4. We believe the result of Lemma 5.4.1.3 is true for all x, but have been

unable to prove it.

Proof [Theorem 5.4.1.2]

Since, by Lemma 5.4.1.3, the function h(c;λ) := (eλc− 1)/c = λ+ λ2c/2 + λ3c2/6 + . . . is

convex in c using (5.3.1) we have

eλc − 1

c
≤
(

1− c

cmax

)
h(0;λ) +

c

cmax
h(cmax;λ) ≤

(
1− c

cmax

)
λ+

c

cmax

eλcmax − 1

cmax
.
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Since 1− p+ peλc = 1 + pc h(c;λ) we can bound the sum in (5.3.14) as follows:

n∑
i=1

(1− pi + pie
λci) ≤

n∑
i=1

{
1 + pici

[(
1− ci

cmax

)
λ+

ci
cmax

eλcmax − 1

cmax

]}

≤ n

[
1 + cpλ+

(
1

n

n∑
i=1

pic
2
i

)
×
(
eλcmax − 1− λcmax

c2
max

)]
.

Setting pc2 = 1
n

∑n
i=1 pic

2
i and substituting into (5.3.14) we obtain the bound for t > 0:

P (Sn ≥ E [Sn] + nt) ≤ exp

{
− n

[
λ(cp+ t)− log

(
1 + cpλ+ pc2

(
eλcmax − 1− λcmax

c2
max

))]}
.

(5.4.7)

Note that (5.4.7) is tighter than the Chernoff-Hoeffding+ bound since:

log

(
1 + cpλ+ pc2

(
eλcmax − 1− λcmax

c2
max

))
≤ 1 + cpλ+

pc2

c2
max

(eλcmax − 1− λcmax)

≤ 1 + cpλ+
cpcmax

c2
max

(eλcmax − 1− λcmax)

= 1 +
cp

cmax
(eλcmax − 1).

If t > cmax − c̄p (5.4.7) is a decreasing function in λ and so is minimised at λ =∞. This is a

trivial case since P (Sn > E [Sn] + ncmax − ncp) = P (Sn > ncmax) = 0. Otherwise the (local)

minimum occurs where the gradient is 0 so the optimal λ is the solution to

cp+ t−
cp+ (eλcmax − 1) pc2

cmax

1 + cpλ+ pc2

c2max
(eλcmax − 1− λcmax)

= 0

⇒ cp+ t+ cp(cp+ t)λ+
pc2

c2
max

(cp+ t)(eλcmax − 1− λcmax)

= cp+
pc2

cmax
(eλcmax − 1− λcmax) + λpc2

⇒ pc2

c2
max

(cmax − cp− t)(eλcmax − 1− λcmax) = t− (pc2 − cp(cp+ t))λ

⇒ pc2

c2
max

cmax − cp− t
pc2 − cp(cp+ t)

(eλcmax − 1− λcmax) =
t

pc2 − cp(cp+ t)
− λ (5.4.8)

The right-hand side is simply a linear function of λ with negative gradient and we know

eλcmax−1−λcmax is an increasing convex function of λ, in particular its behaviour is quadratic

around 0. So there is a solution of (5.4.8) for positive λ when either pc2− cp(cp+ t) > 0 and
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cmax − cp− t > 0 or pc2 − cp(cp+ t) < 0 and cmax − cp− t > 0. These conditions reduce to

t < cmax − cp which is always satisfied so there is a positive solution for λ.

Rearranging (5.4.8) further we obtain

eλcmax =
(cmaxcp− pc2)(cp+ t)

pc2

cmax
(cmax − cp− t)

λ+ 1 +
c2

maxt

pc2(cmax − cp− t)
.

This equation is of the form eλa = λb+ d so the optimal λ is (5.3.6) with a = cmax,

b = (cmaxcp− pc2)(cp+ t)
(
pc2

cmax
(cmax − cp− t)

)−1
and d = 1 + c2

maxt
(
pc2(cmax − cp− t)

)−1
.

Note that b > 0 (since t < cmax − cp and cmaxcp > pc2) so the argument of the Lambert

W function is negative and the function is either undefined (argument less than −1/e) or

doubled valued. Here the value of the Lambert W function is −(λa + ad
b ) < −λa − 1 < −1

so the lower branch is the correct branch. Then setting l = ad
b and k = a/b we obtain the

bound as given in Theorem 5.4.1.2.

A bound on P (Sn ≤ E [Sn]− nt) cannot be found by replacing Xi by −Xi in the above

since 1− p+ pe−λc cannot be written in the form 1 + pcg(c;λ) with g(c;λ) a convex function

of c. Instead we note that with Zi = ci −Xi we have by Chernoff’s inequality:

P (Sn ≤ E [Sn]− nt) ≤
∏n
i=1 E [exp(λZi)]

exp(λn(t+ cp′))

and we have the following bound: E
[
eλZi

]
≤ 1 − p′i + p′ie

λci = 1 + p′ici h(ci;λ). Then the

upper bound on P (Sn ≤ E [Sn]− nt) follows by replacing pi by p′i in the above proof.

The lower tail bound here behaves as the upper tail bound with p replaced by 1 − p, so if

(5.4.7) is not tight for large p, the corresponding lower tail bound is not tight for small p.

Therefore, in practice if the upper bound on P (Sn ≥ E [Sn] + nt) is tight it may be better to

use a different concentration inequality to obtain an upper bound on P (Sn ≤ E [Sn]− nt).

Also, while the lower tail bound is strictly tighter than the Chernoff-Hoeffding(+) alternative

lower bounds ((5.3.12) and (5.4.6)), it can be looser than the more useful lower tail bounds

((5.3.11) and (5.4.2)).

5.4.2 Improving Bennett’s inequality

Here we present the Bennett+ inequality, a tighter concentration bound found by tightening

various steps in the proof for Bennett’s inequality.
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Bennett+

Theorem 5.4.2.1 (Bennett+). Under Assumption 1 and 2 and with amax defined as in

§5.3.1 the Bennett+ inequality is, for 0 < t < amax,

P (Sn ≥ E [Sn] + nt) ≤ exp

{
−n

[
λ?t−

λ2
?

2
σ2 −

(
eλ?amax − 1

2λ
2
?a

2
max − λ?amax − 1

a3
max

)
aσ2

]}
,

(5.4.9)

where σ2 = Var (Sn) /n, aσ2 = 1
n

∑n
i=1 aiσ

2
i and

λ? = − 1

amax

[
W

(
− aσ2

aσ2 − amaxσ2
exp

(
− aσ2 + a2

maxt

aσ2 − amaxσ2

))
+

aσ2 + a2
maxt

aσ2 − amaxσ2

]
.

The upper bound on P (Sn ≤ E [Sn]− nt) for 0 < t < −mmin is as above but with amax and

aσ2 replaced by −mmin and −mσ2 = − 1
n

∑n
i=1miσ

2
i respectively.

Proof In the proof for Bennett’s inequality we defined the function f(x) := (ex−x−1)/x2 =

1/2 + x/6 + . . .. By Lemma 5.4.1.3 f(x) is convex so we can bound it using (5.3.1):

f(λai) ≤
(

1− ai
amax

)
f(0) +

ai
amax

f(λamax) =
1

2
+

ai
amax

(
eλamax − λamax − 1

λ2a2
max

− 1

2

)
.

(5.4.10)

Inserting the bound (5.4.10) into (5.3.21) we arrive at the following:

P (Sn ≥ E [Sn] + nt) ≤ exp

{
−λnt+

λ2

2

n∑
i=1

σ2
i +

(
eλamax − 1

2λ
2a2

max − λamax − 1

a3
max

)
n∑
i=1

aiσ
2
i

}

≤ exp

{
−n

[
λt− λ2

2
σ2 −

(
eλamax − 1

2λ
2a2

max − λamax − 1

a3
max

)
aσ2

]}
.

(5.4.11)

The λ which minimises this bound is the solution to

t− λσ2 − aσ2

a3
max

(amaxe
λamax − λa2

max − amax) = 0

⇒ eλamax = λ

(
amax −

a2
maxσ

2

aσ2

)
+ 1 +

a2
maxt

aσ2
. (5.4.12)

The right hand side of the equation is a linear function in λ with negative gradient and

intercept greater than 1, hence there will be one, positive, solution for λ. The equation
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(5.4.12) is of the form eλa = λb + d so the optimal λ is (5.3.6) with a = amax, b = a − a2σ2

aσ2

and d = 1 + a2t

aσ2
i.e.,

λ = − 1

amax

[
W

(
− aσ2

aσ2 − amaxσ2
exp

(
− aσ2 + a2

maxt

aσ2 − amaxσ2

))
+

aσ2 + a2
maxt

aσ2 − amaxσ2

]
.

Since b < 0 and a > 0 the argument of the Lambert W function is positive and so the function

is defined and single-valued.

Similarly, an upper bound on P (Sn − E [Sn] ≤ −nt) is obtained by replacing amax by

−mmin and ai by −mi in the above proof.

Remark 5.4.2.2. Since 0 ≤ Xi ≤ ci ∀i we have 0 ≤ Sn ≤
∑n

i=1 ci = nc̄ and thus −ncp ≤

Sn − E [Sn] ≤ n(c̄− cp) i.e., it is impossible for the sum Sn, to deviate from it’s expectation

by more than ncp below or more than nā above. Therefore we have the following trivial

probabilities:

P (Sn ≥ E [Sn] + nt) = 0 for t > ā = c̄− cp

P (Sn ≤ E [Sn]− nt) = 0 for t > cp.

Remark 5.4.2.3. When ci = c ∀i the bound, (5.4.11), to be minimised becomes

exp

(
−λnt+ n

[
λ2f(λamax)

(1− p)σ2

1− pmin
+
λ

2

(
σ2 − (1− p)σ2

1− pmin

)])
,

which is close to (5.3.23) of the Bennett proof when p is small and so the Bennett+ bound will

be close to Bennett when ci = c ∀i and pσ2 ≈ pminσ2 is small. Furthermore, when pi = p ∀i

the Bennett+ and Bennett bounds are identical.

5.4.3 Comparing our concentration inequalities on simulated binary data

We now compare our new bounds to the best performing existing bounds when p is small. We

consider the sum of n independent binary variables with the same set up as in §5.3.9 but only

consider the case Ci ∼ Exp(1) + 0.1 since when ci = c ∀i the Chernoff-Hoeffding+ and ++

bounds are equal to Chernoff-Hoeffding and Bennett is close to Bennett+ when pσ2 ≈ pminσ2.

Figure 5.4.1 is the same as Figure 5.3.1 (§5.3.9) except with our new concentration bounds

and dropping the looser existing bounds. Here we also consider the performance of the lower

tail bounds for Ci ∼ Exp(1) + 0.1 (Figure 5.4.2).
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Figure 5.4.1: Bound on the exceedance probability, P
(
Sn ≥ E [Sn] + nsd

√
Var (Sn)

)
, against nsd

for the sum of 1000 binary random variables, Xi ∼ ciBernoulli(pi). Left: p = 0.013,
ci ∼ 0.1 + Exp(1), Right: pi ∼ Beta(0.3, 22), ci 0.1 + Exp(1).

Bounds used are: Cantelli (5.2.2) (Red), Chernoff (5.3.7) numerically optimised (dashed black),
Chernoff-Hoeffding (5.3.10) (green dashed), Chernoff-Hoeffding+ (5.4.1) (green dotted),

Chernoff-Hoeffding++ (5.4.7) (green dot-dash), Bennett (5.4.12) (pink), Bennett+ (5.4.9) (pink
dashed). The solid black line indicates the Monte Carlo estimate based on 10000 simulations of Sn.

Of all the concentration inequalities considered in this chapter Bennett+ is the most

consistent in its good performance, particularly when p is small and we have differing c

values. When all ci = c the Bennett+ bound is very close to (or when pi = p ∀i equal

to) the Bennett bound and the upper tail bound is very similar but slightly looser than

the Chernoff-Hoeffding bounds (see §5.3.9 Proposition 5.3.9.1). However, when the ci’s are

different Bennett+ (5.4.9) provides a much tighter bound for both tails. In all cases where p

is small the Bennett+ bound (5.4.9) is consistently close to the optimal Chernoff bound.

As noted in the proof, the Chernoff-Hoeffding+ upper tail bound (Figure 5.4.1 green

dots) is tighter than the Chernoff-Hoeffding bound since cp/cmax ≤ p̄ so the bound uses more

information of the different ci’s. When p is fixed the bound will be tighter the smaller c̄

is compared to cmax. The Chernoff-Hoeffding++ upper tail bound (green dash-dot) is even

tighter (as shown in the proof) and is close to Bennett’s bound when p is small.

In our setting with Bernoulli random variables and small p, we have amax ≈ cmax and

Var (Sn) ≈ npc2.

The right-hand side of (5.3.23) of the Bennett proof is:

exp
(
−λnt+ λ2f(λamax) Var (Sn)

)
≈ exp

(
−λnt+

npc2

c2
max

(eλcmax − 1− λcmax)

)
. (5.4.13)
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Figure 5.4.2: Bound on the exceedance probability, P
(
Sn ≤ E [Sn]− nsd

√
Var (Sn)

)
, against nsd

for the sum of 1000 binary random variables, Xi ∼ ciBernoulli(pi). Left: p = 0.013,
ci ∼ 0.1 + Exp(1), Right: pi ∼ Beta(0.3, 22), ci 0.1 + Exp(1). Colour and line scheme as in

Figure 5.4.1. The vertical dashed green lines indicate the range of t for which the Chernoff-Hoeffding
bound can be used, i.e., ns such that cp− cminp̄ < t = nsσ

n < cp.

The right-hand side of (5.4.7) of the Chernoff-Hoeffding++ proof:

exp

{
− nλt− nλcp+ n log

(
1 + cpλ+

pc2

c2
max

(
eλcmax − 1− λcmax

))}

≈ exp

(
−λnt− nλcp+ nλcp+

npc2

c2
max

(eλcmax − 1− λcmax)

)
= (5.4.13),

if λcp+ pc2

c2max
(eλcmax − 1−λcmax) is small since log(1 +x) ≈ x near x = 0. This happens when

λ is sufficiently small (in our example we need λ < ∼1.8 and λ?Benn < 1 and λ?CH++ < 1). So

for small p the Bennett and Chernoff-Hoeffding++ upper tail bound are approximately the

same. Similarly when p is large the Bennett and Chernoff-Hoeffding++ lower tail bounds

are similar.

In contrast the Chernoff-Hoeffding++ bound for the lower tail performs poorly, even

looser than the Hoeffding bound, since p′ = 1 − p is large (Figure 5.4.2). The range of

values of t for which the classic Chernoff-Hoeffding lower tail bound holds is quite small in

this setting so the bound is 1 for most t and sharply decreases towards 0 for t > cp− cminp̄.

Recall that in the Chernoff-Hoeffding+ lower tail proof (Bound 5.4.2) we could not show that

the bound is tighter than the Chernoff-Hoeffding bound. Here, in Figure 5.4.2, we see that

Chernoff-Hoeffding+ is tighter for small t but as t approaches ā it is looser than the classic

bound.
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Figure 5.5.1: Histograms of log10(p) and p for all 1000 years of the JBA test data where p is the
expectation of the loss as a fraction of maximum possible loss for each event and subrisk combination.

5.5 Connecting concentration inequality notation with the loss

estimation setting

Since we are interested in estimating the tail probabilities of the total loss and thereby sum-

ming over events and risks (and subrisks) we can use the bounds described in §5.3 and §5.4.

In the loss estimation setting, each subrisk within a risk is sampled independently so we can

connect the concentration inequality notation with the loss simulation notation of §5.1 as

follows:

Concentration inequality notation Loss estimation notation

Xi Le,r,s := vr
|Sr|Ze,sXe,s

ci vr/|Sr|

pi = E [Xi] /ci pe,rE [Xe,r]

For loss simulation we are interested in the sum Sy =
∑

e∈Ey
∑

r∈R
∑

s∈Sr Le,r,s which is the

same as
∑

e∈Ey
∑

r∈R
∑

s∈Sr Le,r,s1{pe,r > 0} since Le,r,s = 0 when pe,r = 0. Therefore our

‘n’ is the number of flooded subrisk and event combinations:
∑

e∈Ey
∑

r∈R |Sr|1{pe,r > 0}.

A range of summary statistics is needed to calculate the various concentration inequality

bounds, we have:

cmax = max

(
vr
|Sr|

)
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Figure 5.5.2: Histogram of n, the number of independent random variables (i.e., the number of event
and subrisk combinations with possible flooding), for each of the 1000 years of the JBA test data.

amax = max(ci(1− pi)) = max
r∈R

(
vr
|Sr|

(
1− min

e∈Ey
pe,rE [Xe,r]

))
(5.5.1)

mmin = min(−cipi) = −max
r∈R

(
vr
|Sr|

max
e∈Ey

pe,rE [Xe,r]

)
(5.5.2)

p̄ =
1

n

∑
e∈Ey

∑
r∈R
|Sr| pe,rE [Xe,r]


cp =

1

n

∑
e∈Ey

∑
r∈R

vr pe,rE [Xe,r]


c2p =

1

n

∑
e∈Ey

∑
r∈R

v2
r

|Sr|
pe,rE [Xe,r]


σ2 =

1

n

∑
e∈Ey

∑
r∈R

v2
r

|Sr|
pe,r

[
Var (Xe,r) + (1− pe,r)E [Xe,r]

2
]

aσ2 =
1

n

∑
e∈Ey

∑
r∈R

v3
r

|Sr|2
pe,r

[
E
[
(Xe,r)

2
]
− pe,rE [Xe,r] (E [Xe,r] + Var (Xe,r)) + (pe,r)

2E [Xe,r]
3
]

For our JBA test data pi ranges from 1×10−9 to 0.24 with a mean of 0.0132, the distribution

of p is highly skewed towards low values as can be seen in the histogram of p between 0 and

0.005 (Figure 5.5.1). The c values are spread between 108900 and 155200 with only 11 unique
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Summary statistics
Year n E [Sy] cp p̄ pmin pmax p median Subrisks hit per flood event

18 0 0 0 0 0 0 0 No flood events
680 227 72420 319 2.22 · 10−3 8.33 · 10−5 8.84 · 10−2 5.24 · 10−4 200, 26, 1
22 450 393600 875 6.27 · 10−3 1.87 · 10−6 6.23 · 10−2 6.90 · 10−4 3, 390, 40, 17
909 674 1362241 2021 1.57 · 10−2 4.00 · 10−8 1.42 · 10−1 1.58 · 10−3 28, 7, 48, 4, 350, 237
699 6597 22480000 3407 2.52 · 10−2 2.00 · 10−9 2.34 · 10−1 7.87 · 10−3 2, 30, 6565

All 587 1139816 1423 1.32 · 10−2 3.49 · 10−4 8.32 · 10−2 4.09 · 10−3 155

Table 5.5.1: Summary statistics for selected years of the event set. The first row is one of
the years with smallest expected loss (i.e., zero loss); the second to fourth row are the years
with expected losses close to the 1st, 2nd and 3rd quartile respectively; the fifth row is the
year with the highest expected loss; and the last row gives the average over all years of the
summary statistic given by the column title. The final column gives the number of subrisks
which may experience flooding for each of the flood events in the year (events which cannot

cause flooding for this portfolio are removed).

values.2 The number of terms in the sum Sy varies greatly from year to year, Figure 5.5.2

shows the histogram of n over all years, the average is 587 with almost a fifth of years having

n < 100. Some summary statistics are given in Table 5.5.1 for a selection of 5 years (the

years with the highest and lowest expected loss and the years with expected losses close to

the 1st, 2nd and 3rd quartile respectively) covering the entire range of expected yearly losses.

The number of events causing flooding in a year ranges from 0 to 10 with an average of 3.783,

whereas the number of subrisks possibly hit per flood event ranges from 1 to 6565 with high

skew towards lower numbers (for example, the median is 47). The final column of Table 5.5.1

gives the number of subrisks potentially flooded for all events, e ∈ Ey, in the given year for

which ∃r ∈ R such that pe,r > 0. For example, in year 680 there are three flood events with

possible damage to 200, 26 and 1 subrisk(s) respectively. Out of the 1000 years there are 23

years (e.g., year 18 of Table 5.5.1) with no events which can lead to flooding of risks in the

portfolio, so for these years n = 0 and Sy = 0. However with a larger, i.e., more realistic,

portfolio we are unlikely to have years with no possible flood damage (the more risks the

more likely that at least one pe,r > 0 in each year) and n would also be much larger.

If we are interested in the probability of being a certain number, ns, of standard devi-

ations above the mean then nt = ns
√

Var (Sy) in the inequalities of the previous sections.

2There is some doubt in JBA and our understanding whether these values of c are realistic. The total value
of a risk has a wider spread (Figure 5.5.3 left) but when one divides by subrisks there is little variability. This
phenomenon could perhaps be down to a deliberate choice of the number of subrisks per risk so as to ensure
similar values for all subrisks; however, informal communication with JBA suggested that this was not the
case. Since the JBA employee who supplied us with the data subset has since left the company it was not
possible to dig down to find the cause. This is why, in our simulations of §5.3.9 and §5.4.3, we cover a large
range of possibilities for the variability of c by investigating sums of random variables with the same fixed
maximum size, c, and sums of random variables with maximum sizes, C ∼ Exp(1) + 0.1.
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Figure 5.5.3: Histograms of vr and vr/|Sr| for all 1000 years of the JBA test data.

Figure 5.5.4 show the log probability bounds on the probability of the total loss (for coverage

type B) of each year exceeding the expected loss for that year by some number of standard

deviations. The plots of Figure 5.5.4 are very similar to those for the sum of 1000 Bernoulli

random variables in §5.3.9 and §5.4.3; the largest difference is in the behaviour of the Chernoff-

Hoeffding bounds. We noted in §5.4.3 when ci = c ∀i all the Chernoff-Hoeffding bounds are

equal (and perform similarly to Bennett for small p) whereas when Ci ∼ 0.1 + Exp(1) the

bounds were very different with the classic Chernoff-Hoeffding being 1 or close to 1 and

Chernoff-Hoeffding++ being close to the much tighter Bennett bound. For the JBA data

the c’s have a small spread (Figure 5.5.3 right panel) and so we expect the bounds to be

a mixture of these two behaviours - this is the case since the bounds are close but not the

same, all being larger than Bennett but much smaller than 1. The Chernoff-Hoeffding++

bound is substantially larger than the Bennett bound despite the small p̄ since the variance

approximation, Var (Sy) ≈ npc2, used in §5.4.3 does not hold due to the large c values.

Jebara’s Bennett refinement was also considered but was almost always worse than the

Bennett bound, being particularly poor for years with large n. This reinforces our decision

not to use Jebara’s Bennett refinement in further work. As expected all concentration bounds

except Cantelli and Jebara perform better when n is larger.

The horizontal lines indicate where the bounds are equal to 0.001 and 10−6 and so the

intersections with these lines tell us the number of standard deviations above the expected

loss we need to achieve an upper concentration bound of 0.001/10−6. For example, for year

909 the Bennett and Bennett+ bounds are 0.001 for deviations of approximately 6σ from

E [Sy] whereas Cantelli requires 31σ and Hoeffding 37σ. It is likely when we apply our
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Figure 5.5.4: Log probability bounds on the probability of the total loss (for coverage type B)
exceeding the expected loss for that year by some number of standard deviations for years 680, 22,

909 and 699. Colour and line scheme as in Figures 5.3.1 and 5.4.1. The horizontal grey dotted lines
indicate the level corresponding to ε = 0.001 and ε = 10−6.

loss estimation procedure outline in §6.1 that Bennett and Bennett+ will be most useful

concentration bounds.

Examples of loss bounds

We now present, for a selection of concentration inequalities, the upper and lower bounds,

UBy and LBy respectively, on Sy such that P (Sy > UBy) < ε and P (Sy < LBy) < ε, where

ε is some small probability. We do this by setting the concentration bounds presented in

§5.2-5.4 equal to ε and solving for t.

Using the Cantelli inequality the upper and lower bounds for the loss in year y are:

UBCantelli
y = E [Sy] +

√
1− ε
ε

Var (Sy) LBCantelli
y = E [Sy]−

√
1− ε
ε

Var (Sy). (5.5.3)
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For Hoeffding’s inequality we have

UBHoeffding
y = E [Sy] +

√√√√−1

2
log (ε)

∑
e∈Ey

∑
r∈R

v2
r

|Sr|
,

LBHoeffding
y = E [Sy]−

√√√√−1

2
log (ε)

∑
e∈Ey

∑
r∈R

v2
r

|Sr|
. (5.5.4)

Using the Bernstein inequality we obtain:

UBy = E [Sy]−
amax

3
log (ε) +

√(amax

3
log (ε)

)2
− 2 log (ε) Var (Sy)

LBy = E [Sy]−
mmin

3
log (ε)−

√(mmin

3
log (ε)

)2
− 2 log (ε) Var (Sy),

where mmin ≤ Le,r − E [Le,r] ≤ amax for all r and e in year y with amax and mmin as defined

in (5.5.1) and (5.5.2).

Using the Bennett’s inequality is more complicated since it requires finding the root of

an equation. The bounds are:

UBy = E [Sy] +
Var (Sy)

amax
· u∗UP LBy = E [Sy]−

Var (Sy)

−mmin
· u∗LOW ,

where u∗UP = h−1(−a2
max log ε/Var (Sy)) i.e., it is the root of the following equation:

(1 + u) log (1 + u)− u+
a2

max log (ε)

Var (Sy)
= 0,

and u∗LOW is the equivalent with amax replaced by −mmin.

Figure 5.5.5 shows the simulated losses (top) and the base-ten logarithm of the simulated

losses (bottom) for years 10i, i = 1, . . . , 100, where years have been reordered according to

their expected total loss. For each of these years upper and lower bounds derived from

various concentration inequalities with ε = 1 × 10−6 are shown. The Bernstein, Bennett

and Bennett+ bounds (pink) are very tight with Bennett+ having a slightly tighter lower

bound. In agreement with Figure 5.5.4, the Chernoff-Hoeffding, Chernoff-Hoeffding+ and

Chernoff-Hoeffding++ upper bounds are similar, with Chernoff-Hoeffding++ providing the

tightest bounds. For the bottom 500 years in terms of expected yearly loss these bounds are

tighter than the Bernstein bounds (e.g., Figure 5.5.4 top left) but are otherwise looser.

All of the concentration inequalities except Cantelli, Hoeffding and Chernoff-Hoeffding
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Figure 5.5.5: 100 simulated yearly losses (black) for years 10i, i = 1, . . . , 100 of 1000 years ordered
by yearly expected loss with upper and lower bounds on the total loss in each year derived by setting
the various concentration inequalities to ε = 1× 10−6. The lower bounds that do not appear on the
plots, which includes all lower bounds for Cantelli, Hoeffding and Chernoff-Hoeffding, are zero. The
top and bottom plots show the same quantities, but differ in terms of the scale of the y-axis: the top

plot uses loss whereas the bottom plot shows its base 10 logarithm.
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provide lower bounds greater than 0 for years with large n when ε = 1×10−6, in particular the

top 338 years (in order of expected loss) have positive lower bounds when using the Bennett+

inequality. We know that P (Sy ≤ 0) = 0; however, for a given year and concentration

bound, as E [Sy] + nt approaches zero (from above) P (Sy ≤ E [Sy] + nt) does not approach

zero, tending, instead to some small positive value, ε∗, say. Inverting this, for ε ≤ ε∗ the

concentration inequality gives the unhelpful value for LBy = 0. In practice, because p is

small, the expected loss for each year is small compared to total loss possible, i.e., E [Sy]�∑
e∈Ey

∑
r∈R vr and ε∗ is large for the Hoeffding, Cantelli and Chernoff-Hoeffding inequalities.

5.6 Summary

In this chapter we have detailed a standard procedure used by insurers to describe the yearly

loss distribution due to flood events; this procedure is computationally expensive so we aim

to obtain a more efficient procedure. Our approach to reducing computational cost uses con-

centration inequalities so in §5.2.1 we reviewed known concentration inequalities, particularly

for sums of independent bounded random variables; and, in §5.4, we developed novel bounds,

Chernoff-Hoeffding+ and ++ and Bennett+, improving on the Chernoff-Hoeffding and Ben-

nett bounds respectively. Our Bennett+ concentration bound was the most consistent in its

good performance out of all the concentration inequalities considered, particularly when the

independent random variables had differing upper bounds and a very small expectation.

Finally, we applied the concentration bounds in the loss simulation setting, applying the

various concentration bounds to the losses in each year of a test data set. Figure 5.5.5 is useful

to visualise the loss simulations, in particular showing how the simulated years differ, and

gives an impression of the tightness of the concentration inequalities in the loss simulation

setting. However, in further work we will not simply be considering a fixed ε for each year.

Instead we consider an overall ε◦ bounding the total probability of both a particular set

of years all exceeding a particular threshold and a particular set of years being below the

same threshold. So the actual performance of each concentration inequality depends on their

tightness at a range of t values. Details of the probabilities and connection to ε◦ are given

in §6.2. First, in Chapter 6, we introduce our method to reduce the number of years of

losses simulated. For most years the losses are relatively low whereas the top years can

have extremely high losses. Intuitively, our method will perform best when there is high
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between-year but low within-year variance leading to a greater separation between years.



Chapter 6

Improving Loss Estimation

In this chapter we discuss a novel approach to improving the computational efficiency (§6.1) of

the loss estimation procedure using concentration inequalities. There is some small probabil-

ity that the return-level estimates of the yearly loss using our approach will differ from those

using the standard loss estimation procedure; this probability is discussed in §6.2. Finally, in

§6.3 we discuss a method to estimate the return levels with low return periods.

6.1 Efficient loss simulation via concentration inequalities

We propose a simple method, the ‘exclude method’, to reduce the number of simulations by

not simulating from (i.e., excluding) years which are very unlikely to change the estimate

of the quantile. Recall that usually the loss for each of 10000 years is simulated 100 times

and each of the 100 simulations gives an estimate of one or more return levels of interest.

The method we propose here will require simulating 100 times (and obtaining 100 return-level

estimates) but from a reduced number of years, thus reducing the total simulations necessary.

This method is for estimating high quantiles in particular, for lower quantiles we consider

other methods.

The key idea is as follows. Suppose that for some threshold, u, the losses in at least a

years are all extremely likely to exceed u, and the losses in at least b years are all extremely

unlikely to exceed u, then the
ny+1
a -year return level estimated by completely ignoring the

b years is very likely to be the same as the
ny+1
a -year return level that would be estimated

if the b ‘low’ years were also simulated. Using concentration inequalities with the quantities

defined in §5.5 we can obtain an upper bound, εy+, on the probability, P (Sy > u), of the total

loss in year y being greater than some value, u. Similarly we can obtain an upper bound,

εy−, on P (Sy < u). These bounds are used to obtain a bound on the probability that the

t-year return-level estimate using the ‘exclude method’ differs from the t-year return-level

estimate obtained when simulating from all the years. We refer to this probability as the

128
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non-equivalence probability. This probability is a function of the threshold, u, and a set of

years to discard (see §6.2 for more details). The aim is to maximise the number of years

discarded while keeping the non-equivalence probability low.

Exclude procedure

Step 1: Find the optimal combination of threshold, u, and set of years to discard such that

the non-equivalence probability of one simulation is bounded by some small, chosen, ε◦ and

the number of years discarded is as large as possible (see §6.2). We call the resulting set of

years to discard the maximum discard set and denote by D.

Step 2: Simulate total losses from the years not in the maximum discard set (Steps 1-2a of

§5.1.6 standard procedure).

Step 3: The t-year return-level estimate for simulation i, q
(i)
t , is the solution to

∑
y∈Dc

1{sy>qt} =
ny + 1

t
− 1.

As in the standard procedure we take the estimate to be a linear interpolation between the(
ny+1
t

)
th and

(
ny+1
t − 1

)
th largest simulated loss:

q̂
(i)
t = (1− ω)s

?(i)
(|Dc|+1−dke) + ωs

?(i)
(|Dc|+1−(dke−1)), (6.1.1)

where k =
ny+1
t , ω = dke − k, and s

?(i)
(j) is the jth order statistic (jth smallest loss) of the

non-discarded years in simulation i.1

Step 4: Find the t-year return-level estimates and approximate 95% confidence interval as

in Step 3 of the standard procedure (§5.1.6).

6.1.1 Best Case from consideration of Monte Carlo samples

In Step 1 of the exclude procedure we sort the yearly losses into order of descending expec-

tation and denote the ordered set of random variables by {Sk}
ny
k=1 (so the loss from the year

with the kth largest expectation is Sk etc.). Discard sets are formed as sets of years corre-

sponding to the random variables {Sk}
ny
k=j for some index j ≥ 1, that is, if we discard the

year with the jth largest expected loss then we also discard all years with smaller expected

loss. Therefore to obtain the same t-year return-level estimate with the exclude procedure

1Note that ny is the total number of years, not just those kept. We can imagine we have simulated from
other years but they were all too low to contribute to the return level of interest.
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as the standard procedure we cannot discard any years which have an higher expected loss

than the year for which the
⌈
ny+1
t

⌉
th largest simulated loss was obtained. This motivates

the ‘BC-MC’ column of Table 6.1.1 which provides a ‘best case scenario’ for the number of

years which we can discard while ensuring the quantile estimates, q
(i)
t , for each simulation,

i = 1, . . . , 100, are the same and hence X̂excl
t = X̂std

t for this particular set of 100 simulations.

We obtain this number in the following way:

1. For each simulation, i in 1, . . . , 100:

Find the maximum index, kmax, of the sk corresponding to the
⌈
ny+1
t

⌉
top years in

terms of simulated loss:

k(i)
max = max

(
k : s

(i)
k ≥ s

(i)(
ny+1−

⌈
ny+1

t

⌉)
)
.

To ensure that q
excl,(i)
t = q

std,(i)
t we cannot discard any years with expected loss more

than E
[
S
k
(i)
max

]
, the k

(i)
maxth largest expected loss. So for simulation i we need to keep

at least k
(i)
max years, i.e., we can discard at most ny − k(i)

max years.

2. The lower bound on the number of years that losses must be simulated from needs to be

acceptable for all 100 simulations so we take our lower bound, k?, to be maxi

(
k

(i)
max

)
.

This k? is only valid for the particular set of simulations it was calculated with; if only the

largest k? years in terms of expected loss had been simulated then we could not have known

that none of the other years would exceed the standard return-level estimate. So BC-MC

represents a sample from the distribution of a quantity that itself represents an unachievable

goal but is a useful lower bound on the percentage of years it is necessary to simulate from.

6.1.2 Results

Table 6.1.1 shows the number of years ‘kept’, i.e., not discarded, out of the 1000 years of

events in the JBA test data set when using the exclude method, for a range of concentration

inequalities and return periods, with the non-equivalence probability bounded by ε◦ = 0.001.

Both Cantelli and Hoeffding are omitted since for all return periods, all 1000 years were

kept; these inequalities were expected to perform poorly since the highest potential loss for

each event and risk combination varies greatly and the probabilities of losses are often very

small. In Appendix D.2 there are also results for ε◦ = 1× 10−4; these show a similar pattern
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No. of kept years
Return period C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 1000 1000 1000 1000 1000 1000 687
5 975 977 762 869 977 1000 303
10 862 517 415 398 835 1000 158
20 690 274 242 228 618 1000 99
50 376 81 78 75 299 621 30
75 310 47 43 40 206 364 21
100 266 33 32 32 169 318 14
150 147 20 20 20 85 176 7
200 139 20 20 19 81 143 7
250 128 17 15 14 71 131 7
500 125 14 14 14 62 107 7

Table 6.1.1: Number of years kept out of 1000 years when using the exclude method for each
concentration inequality with ε◦ = 0.001. The meaning behind the final column is described in §6.1.1.

of results but with slightly more years kept since the non-equivalence probability bound is

stricter.

In the setting of Table 6.1.1, we find that the BC-MC lower bound on the percentage of

years kept is less than 30.5% when we are estimating return levels with return period of at

least 5, with this percentage rapidly decreasing with increasing return period. For the 2-year

return level, however, the number of years simulated cannot be reduced by more than 30.1%

for this particular set of simulations. For most years the simulated losses will be relatively

low whereas years with the highest expected loss can have extremely high simulated losses;

for example, in Figure 5.5.5 there is a large jump in simulated losses from the year with

the 10th highest expected loss to the year with the highest expected loss. Since our method

works better the more separation there is between years, the behaviour of this data leads to

a large reduction in years simulated for high return levels using the exclude procedure but a

high percentage of years needed to estimate the 2-year return level.

Using the Bernstein, Bennett or Bennett+ concentration inequalities leads to the largest

reduction in the number of years simulated. In particular, for high return periods, the

number of kept years is close to the best case scenario given by BC-MC (for example, with

ε◦ = 0.001, for the 100-year return period only losses from 3.2-3.3% of years need to be

simulated). The discard sets using these three concentration inequalities in the exclude

procedure are (essentially) the same for high return periods, but for return periods of at least

10 years Bennett+ generally leads to the largest reduction in years simulated followed closely

by Bennett.

The Chernoff-Hoeffding+ inequality reduces the number of years simulated compared to
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the classic Chernoff-Hoeffding for return periods larger than 5 years, however, the number of

kept years is up to 5 times that using Bernstein, Bennett or Bennett+.

The Chernoff-Hoeffding++ inequality is generally poor; it performs similarly to the classic

Chernoff-Hoeffding inequality for high return periods but results in a much smaller, or even

empty, discard set for mid to low return periods. The non-equivalence probability is lowest

(and so the exclude method performs best) when the lower/upper concentration bounds are

tight for years with high/low expected loss. Recall that when p is small, and so p′ = 1− p is

large, the Chernoff-Hoeffding++ probability bound on the lower tail is quite poor (as we saw

for simulated binary data in Figure 5.4.2). For the JBA test data we have small p’s, even for

the years with high expected loss, and so the C-H++ lower bound is poor; for example, an

upper bound on the lower tail exceedance probability, P (Sy ≤ LBy), of at most 10−6 can only

be achieved using the Chernoff-Hoeffding++ inequality by LBy = 0 (crosses do not appear

below the simulated values of Figure 5.5.5). This poor lower tail performance restricts the

number of years which can be discarded while keeping the non-equivalence probability below

ε◦ = 0.001. Thus it may be more useful to use C-H+ for the lower bound and C-H++ for

the upper bound to obtain a larger discard set.

Unfortunately, when estimating the 2-year return level using the exclude method with

these concentration inequalities, there is no reduction in the number of years from which

losses must be simulated, even when ε◦ is large. This is not surprising as our procedure

concentrates on bounding tail probabilities so its strength is in calculating return levels with

high return periods. Recall that the maximum discard set is found such that our return-

level estimates using the exclude procedure will be the same as the those from the standard

procedure with probability greater than 1− ε◦. Suppose that we use the Bennett inequality

and choose to discard 23.8% of the years, then the non-equivalence probability will be around

0.001 for the 5-year return level (Table 6.1.1) and much lower for higher return levels, whereas

the 2-year return-level estimate will almost certainly be different to that obtained from the

standard procedure. Nevertheless, given the large number of years, the 2-year return-level

estimate found by simulating losses from 76.2% of the years is likely to be relatively close to

the 2-year return-level estimate based on simulating all the years and also, crucially, close to

the ‘true’ 2-year return level.
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Percentage of simulations performed
Return period C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 100.0 100.0 100.0 100.0 100.0 100.0 95.5
5 100.0 100.0 97.2 99.1 100.0 100.0 69.6
10 99.0 86.9 79.8 78.5 98.7 100.0 50.5
20 95.1 66.4 62.4 60.5 91.9 100.0 37.2
50 76.5 32.9 31.9 31.1 69.2 92.1 15.2
75 70.2 22.8 21.5 20.6 57.4 75.4 14.9
100 65.3 18.2 17.9 17.9 51.8 71.1 11.4
150 48.0 13.0 13.0 13.0 33.9 52.8 7.3
200 46.4 13.0 13.0 12.4 32.9 47.2 6.1
250 44.1 11.4 10.5 10.0 29.9 44.6 6.1
500 43.5 10.0 10.0 10.0 27.7 39.5 6.1

Table 6.1.2: Simulated subrisk and event combinations for the exclude procedure as a percentage of
the standard procedure time with 1000 years for each concentration inequality with ε◦ = 0.001.

6.1.3 Comparison of standard and exclude procedure times

Overall the results in Table 6.1.1 are promising, however, the percentage of years kept is not

the same as the percentage of total standard simulation time taken by the new procedure.

On one hand, many of the years discarded are those with a lower number of flood events

and risks which experience loss therefrom, i.e., the sum (5.1.2) has a smaller number of

terms, and so these years are quicker to simulate relative to the kept years. Therefore, the

percentage simulation time saved is less than the percentage of years discarded. In fact,

the computational time is proportional to the total number of subrisk losses that must be

simulated summed over all events in all the years simulated. Table 6.1.2 gives the number of

subrisk and event combinations simulated when using the exclude procedure as a percentage of

the total number of event and subrisk combinations simulated with the standard procedure.

Furthermore, the exclude method introduces a new step to the loss estimation procedure,

namely calculation of the discard set, D, which adds to the total procedure time. We can

write the procedure time for the exclude procedure as follows:

T (Procedure time) = Tsim (Simulation) + Tdisc (Finding discard set) + Tother

The third term, Tother, is negligible compared to Tsim and Tdisc. Figure 6.1.1 shows for each

concentration inequality the % of years kept (right) and the time T (left) as a percentage of

T std, the total simulation time for the standard procedure.

For return periods of 75 years and above the loss simulation stage with the Bernstein,
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Figure 6.1.1: Comparing performance of our procedure with various concentration inequalities
against the standard procedure with a 1000 year event set and ε◦ = 0.001. Left: T , all as a

percentage of T std and right: % of years kept. Usual color scheme for concentration inequalities
(Red: Cantelli, Green + : C-H, Green 4 : C-H+, Green × : C-H++, Blue: Bernstein, Pink ◦:

Bennett, Pink × : Bennett+). The black filled circles is the lower bound BC-MC.

Bennett and Bennett+ inequalities takes less than 20% of the standard procedure time, T std,

to simulate losses from up to 4.7% of the years. For lower return periods the time taken is

much larger, e.g., the time taken for the exclude procedure with Bennett’s inequality and

ε◦ = 0.001 to obtain the 10-year return-level is 79% of T std despite only simulating 42% of

years. Overall Tdisc is small compared to Tsim but for Bennett+ finding the discard set can

take up to 8% of the standard procedure time (due to the cost of evaluating the Lambert

W function) making it perform slightly worse overall (in terms of total procedure time) than

Bennett, which tends to have a very similar maximum discard set.

In conclusion, for estimating return levels with return periods of at least 5 the exclude

method with Bennett’s inequality reduces computational time by the largest amount, with

time savings over 70/80% for return periods of 50/75 or higher.

Most of our work uses ny = 1000 years of events, but JBA uses ny = 10000 years of events.

Multiplying the number of years by 10 whilst attempting to discard the same percentage of

years might be expected to increase the non-equivalence probability by a factor of around 10.

Alternatively, if the non-equivalence probability is to be maintained then fewer years may be

discarded. We investigate the effect of event set size on the non-equivalence probability in

Appendix D.1. Experiments comparing ny = 500 with ny = 1000 showed a general reduction
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in the percentage of discarded years when increasing ny and a small increase in the computing

time as a percentage of the standard computing time. (Figures and tables for the exclude

procedure applied to a random selection of 500 of the years in the portfolio are given in

Appendix D.2.)

On the other hand, the portfolio sizes considered by JBA are typically much larger than

the 10000-risk portfolio that we considered. Since expected losses are proportional to portfolio

size and standard deviations are proportional to the square root of the size, a larger portfolio

size is expected to lead to a much clearer delineation between years and a much larger

percentage of discards. For example, if we increase the number of risks in a portfolio by

a factor of 10 while retaining the distribution of values, vr, and pe,r etc., then most of the

summary statistics (cp, p̄, pmax, . . .) would remain the same but we would have 10n and t√
10

instead of n and t respectively. It is straightforward to see that, when the deviation from the

expectation is a fixed number of standard deviations, the Bernstein bound will be tighter for

larger portfolio size. For Bennett and the Chernoff-Hoeffding inequalities the behaviour is

less clear but in simulations these bounds appears to be tighter for larger portfolio sizes.

Overall we advocate our proposed procedure for the estimation of t-year return levels

with t ≥ 20 since it requires substantially less computational effort compared to the standard

procedure. For smaller return periods (2 ≤ t < 20), in the worst case scenario no years are

discarded with a little additional effort to work out this empty discard set, whereas in the

best case scenario substantial computational effort and time is saved by simulating from less

years.

There is some probability < ε◦ that the simulated loss from one or more of the discarded

years would be larger than that from one or more of the kept years. This would cause

the return-level estimate of the exclude method to be smaller than that using the standard

procedure. In the example(s) shown here the return-level estimates using both procedures

were the same. We discuss, in §6.2, an upper bound on this non-equivalence probability.

6.2 Non-equivalence probability

We now discuss the non-equivalence probability, the probability of return-level estimates using

the procedure of §6.1 differing from those using the standard procedure, and how we use this

probability to decide which years to discard in the simulation procedure.
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Let X̂std
t and X̂excl

t be the t-year return-level estimators using the standard procedure and

the exclude procedure respectively. Recall that for simulation, i of m, the t-th year return-

level estimate, q̂
(i)
t , is a weighted sum of the the dny+1

t eth and (dny+1
t e − 1)th largest s

(i)
y out

of the years simulated (6.1.1). The exclude estimator, X̂excl
t = 1

m

∑m
i=1 q̂

(i),excl
t , will never

be greater than the standard, Monte Carlo estimator; either all years discarded would have

simulated losses less than s(ny+1−dny+1
t e) and so q̂

(i),std
t = q̂

(i),excl
t , or at least one discarded

year would have a simulated loss greater than s(ny+1−dny+1
t e) so the dny+1

t eth largest loss

simulated of the kept years is smaller than s(ny+1−dny+1
t e) and q̂

(i),excl
t < q̂

(i),std
t .

Therefore, X̂std
t will always be greater than or equal to X̂excl

t so we are interested in the

probability P
(
X̂std
t 6= X̂excl

t

)
= P

(
X̂std
t > X̂excl

t

)
. This probability can be written in terms

of the probabilities of the standard quantile estimate of one simulation exceeding the exclude

quantile estimate:

P
(
X̂std
t 6= X̂excl

t

)
= P

(
m∑
i=1

q̂
(i),std
t 6=

m∑
i=1

q̂
(i),excl
t

)

= 1− P

(
m∑
i=1

q̂
(i),std
t =

m∑
i=1

q̂
(i),excl
t

)

= 1− P

(
m⋃
i=1

{q̂(i),std
t = q̂

(i),excl
t }

)
(since q̂

(i),std
t ≥ q̂(i),excl

t ∀i)

= 1−
m∏
i=1

P
(
q̂

(i),std
t = q̂

(i),excl
t

)
(simulations independent)

= 1−
[
1− P

(
q̂

(1),std
t > q̂

(1),excl
t

)]m
(identically distributed) (6.2.1)

We drop the superscript (1) in the following for simplicity.

The probability P
(
q̂stdt > q̂exclt

)
can be decomposed by conditioning on the exceedance or

non-exceedance of some arbitrary threshold, u:

P
(
q̂stdt > q̂exclt

)
= P

(
q̂stdt > q̂exclt |q̂stdt ≤ u

)
P
(
q̂stdt ≤ u

)
+ P

(
q̂stdt > q̂exclt , q̂stdt > u

)
≤ P

(
q̂stdt ≤ u

)
+ P

(
q̂stdt > q̂exclt , q̂stdt > u

)
. (6.2.2)

This is true for all u so the right-hand side of (6.2.2) minimised over u gives an upper

bound on the non-equivalence probability. Next we find upper bounds on P
(
q̂stdt ≤ u

)
and

P
(
q̂stdt > q̂exclt , q̂stdt > u

)
in terms of u.

The probability, P
(
q̂stdt ≤ u

)
, is smaller than the probability that the

⌈
ny+1
t

⌉
th largest
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simulated loss is less that u. We sort the yearly losses into order of descending expectation

and denote this ordered set of random variables by {S}k=1,...,ny (so the loss from the year

with the kth largest expectation is Sk etc.). We define the events

E1(u) = “at least
⌈
ny+1
t

⌉
of the simulated losses are > u”

E2(u) = “the
⌈
ny+1
t

⌉
years with the largest expectations all have simulated losses > u”.

Then,

P
(
q̂stdt ≤ u

)
≤ P

(
S(ny+1−dny+1

t e) ≤ u
)

= 1− P (E1(u))

≤ 1− P (E2(u)) since E2(u)⇒ E1(u)

= 1−

⌈
ny+1

t

⌉∏
k=1

P (Sk > u) (Independence)

= 1−

⌈
ny+1

t

⌉∏
k=1

[1− P (Sk ≤ u)]

≤ 1−

⌈
ny+1

t

⌉∏
k=1

(
1− εu−,(k)

)
=: b1(u; t), (6.2.3)

where εu−,(k) is the upper bound on P (Sk ≤ u) found using a concentration inequality. For

E2 we could use we could use a different ordering of the years, for example ordering by

some chosen quantile. The tightest bound will be achieved with an ordering that reflects the

ordering of the simulated losses.

To bound the probability P
(
q̂stdt > q̂exclt , q̂stdt > u

)
we notice that to have both q̂stdt >

q̂exclt and q̂stdt > u there must be one or more of the simulated losses from the discarded

years greater than u. So to derive an upper bound on this probability we need to know

which years are discarded; we will refer to this set of years as D. We denote the event

E3“∃y ∈ D such that Sy > u” then

P
(
q̂stdt > q̂exclt , q̂stdt > u

)
≤ P (E3) ≤

∑
y∈D

P (Sy > u) ≤
∑
y∈D

εu+,y =: b2(u, t), (6.2.4)

where εu+,y is the upper bound on P (Sy ≥ u) found using a concentration inequality. In

§5.3.9, §5.4.3 and §5.5 we explored how εu+ behaves as u changes for different concentra-
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tion inequalities and, in particular, in Figure 5.5.5 of §5.5 we plotted the bounds such that

εupperbound+,y = 10−6 and εlowerbound−,y = 10−6. Now, each of these individual probabilities con-

tributes to an overall probability bound, ε◦.

Inserting (6.2.3) and (6.2.4) into (6.2.2) we obtain the following upper bound on the

non-equivalence probability for a particular simulation:

P
(
q̂stdt > q̂exclt

)
≤ 1−

⌈
ny+1

t

⌉∏
k=1

(
1− εu−,(k)

)
+
∑
y∈D

εu+,y = b1(u; t) + b2(u; t). (6.2.5)

This is valid for any chosen threshold so, if the set D is known, we can find the optimal

threshold, u?, which minimises this bound.

Thus, using (6.2.1), an upper bound on the probability of the return-level estimates of

the exclude method differing to the standard return-level estimate with m simulations is

P
(
X̂std
t 6= X̂excl

t

)
≤ 1− [1− b1(u; t) + b2(u; t)]m. (6.2.6)

Finally, using the binomial expansion, probability (6.2.6) is bound above by m(b1(u; t) +

b2(u; t)) and is approximately equal to m(b1(u; t) + b2(u; t)) when the non-equivalence proba-

bility bound, b1(u; t) + b2(u; t), is small. Using the exclude method we wish to simulate from

as few years as possible while keeping P
(
X̂std
t 6= X̂excl

t

)
less than mε◦ for some small, chosen,

ε◦, i.e., we want to keep b1(u; t) + b2(u; t) < ε◦.

We employ a two step procedure to find the maximum number of years, d? = |D|, that

can be discarded. Firstly, to simplify and speed up the procedure, we only consider possible

discard sets of the form {k, . . . , ny}, with (ny + 1)(1 − 1/t) < k ≤ ny, where the years are

ordered in terms of their expected loss from highest to lowest. Thus, if a year with some

particular expected loss is discarded then all years with a smaller expected loss are also

discarded. Next, given a threshold, u, we perform a binary search over possible discard sets

for the largest d = |D| such that the non-equivalence probability bound (6.2.5) is close to,

but below, our chosen ε◦. Finally, we find the maximum of this function, d?, by optimising

over possible threshold, u, using the ‘R’ function ‘optimise()’.

The above algorithm finds a threshold, u, that maximises the size of the discard set, |D|.

However, this threshold is not unique: all values of u over some contiguous interval would

lead to the same discard set. In order to automatically find the threshold that minimises the
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Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 0
5 0 0 1 1 1 1 1 0
10 0 0 0.04 0.2 0.3 0.4 0.05 0
20 0 0 0.001 0.0009 0.0009 0.0009 0.0009 0
50 0 0 2 · 10−8 1 · 10−9 8 · 10−11 2 · 10−11 4 · 10−8 0
75 0 0 2 · 10−10 4 · 10−12 3 · 10−14 5 · 10−15 4 · 10−10 0
100 0 0 1 · 10−11 1 · 10−13 4 · 10−16 7 · 10−18 1 · 10−11 0
150 0 0 1 · 10−15 1 · 10−19 1 · 10−29 3 · 10−33 8 · 10−15 0
200 0 0 1 · 10−15 9 · 10−22 1 · 10−33 1 · 10−37 9 · 10−16 0
250 0 0 1 · 10−16 9 · 10−22 1 · 10−33 1 · 10−37 8 · 10−16 0
500 0 0 1 · 10−51 9 · 10−40 1 · 10−71 7 · 10−79 4 · 10−40 0

No. yrs kept 1000 1000 690 274 242 228 618 1000
% simulations 100.0 100.0 95.1 66.4 62.4 60.5 91.9 100.0

Table 6.2.1: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 20-year return level non-equivalence probability to be less than ε = 0.001 (4th row

of Table 6.1.1).

bound on the non-equivalence probability, b1(u; t) + b2(u; t), instead of maximising |D|, we

maximise |D| − (b1(u; t) + b2(u; t)).

Tables 6.2.1 and D.2.8 in the appendix show the non-equivalence probability when simu-

lating the number of years necessary for the t?-year return level non-equivalence probability

to be less than ε◦ = 0.001 and ε◦ = 1 × 10−4 respectively with t? = 20, i.e., the number of

years discarded correspond to the 4th rows of Tables 6.1.1 and D.2.1 respectively. Similar ta-

bles (D.2.7, D.2.9, D.2.10 and D.2.12) are also given in the appendix for simulating the years

necessary for the 10-year and 50-year return level non-equivalence probability to be less than

ε◦ = 0.001 and ε◦ = 1× 10−4. Even when ε◦ = 0.001 the non-equivalence probability of the

20-year return levels being less than 0.001, the Cantelli, Hoeffding and Chernoff-Hoeffding++

inequalities lead to no years being discarded. For the remaining inequalities, the upper bound

on the non-equivalence probability dramatically decreases the larger the return period of in-

terest. The Bennett and Bennett+ inequalities lead to the smallest upper bounds on the

non-equivalence probability for all return periods higher than t? = 20 with non-equivalence

probability less than ε◦, despite these inequalities resulting in the largest discard sets.

It should be highlighted here that we do not know how tight the bound on the non-

equivalence probability is; the derivation of the bound involved quite a few loosening steps

and so the non-equivalence probability may well be much smaller than the bounds. It is

also important to remember that the non-equivalence probability is the probability of the

return-level estimate obtained from the exclude method differing from the standard estimate

and is not a measure of the size of the discrepancy of our estimate from the true return level.
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So a large non-equivalence probability does not imply that the return-level estimate from

the exclude method is far from the true return level; on the contrary, for the estimation of

low return levels to a desired ‘accuracy’ the number of years which need to be simulated is

much less than 1000 (albeit larger than
⌈
ny+1
t

⌉
). In the centre of the loss distribution the

discrepancy between ordered losses is small so the standard estimate based on 1000 years will

be very ‘accurate’ (close to the true return level) and the exclude estimate from simulating a

much lower number of years will likely be close to this. So, despite the large non-equivalence

probability bound, the lower t-year return-level estimates are likely to be close to the standard

estimates if at least
⌈
ny+1
t

⌉
years are simulated - indeed in all simulations we have performed

to date the estimates have been the same - however, we cannot determine how close to the

true return level they will be. This motivates the need for a different method to estimate

the lower return levels which can be used in conjunction with the fast exclude procedure for

higher return levels. In §6.3 we attempt to develop such a method based on the Central Limit

Theorem and the Berry-Esseen inequality.

In practice one needs to decide, for each return period, how important computational

saving is compared to ensuring the return-level estimate is almost always the same as that

using the standard procedure. For example, suppose we use our exclude method with Ben-

nett’s inequality and ε◦ = 0.001. If we simulate 415 of the 1000 years, we ensure that the

10-year return-level estimate is the same as the standard estimate with probability greater

than 0.999 (Table 6.1.1) and for higher return levels this probability is much higher. In this

case the exclude procedure takes 79% of the time of the standard procedure (Figure 6.1.1

left) as 79.8% of the event and subrisk combinations need to be simulated (Table D.2.10 3rd

row). On the other hand, if we are willing to allow the 10-year return-level estimate under

the exclude procedure to differ from the standard estimate we only need to simulate 242 years

to ensure the non-equivalence probability of return levels with return periods of 20 years or

higher is less than ε◦ = 0.001, saving more than 19% of computational effort (simulating

62.4% of event and risk combinations). Moreover, we can save more than 67/80% of compu-

tation time if we are only concerned about ensuring that the non-equivalence probability of

the 50-yr/100-yr return level and above is less than ε◦ = 0.001. However, with ε◦ = 0.001,

the probability that the quantile estimates, X̂std
t and X̂excl

t , obtained by averaging over the

100 simulations will be the same is bounded above by 100× 0.001 = 0.1.
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6.3 Estimating return levels via the Berry-Esseen inequality

6.3.1 Normal approximation

The standard procedure estimates the t-year return level of yearly loss, and confidence in-

tervals thereof, by simulating m (typically 100) times the loss from each year (1000 years in

our JBA test data, 10000 years in practice). Each of these mny yearly loss simulations is a

sum of realisations of the losses from each event and subrisk in the relevant year. Since the

yearly loss, Sy, is a sum of many independent random variables we can approximate (under

some mild conditions) the distribution of loss in each year by the normal distribution with

the same mean and variance as the true distribution of Sy. This approximation is justified

by a variant of the central limit theorem, the Lyapunov CLT, which requires the summands

to be independent but not necessarily identically distributed random variables.

Theorem 6.3.1.1 (Lyapunov CLT, Billingsley (1995)). Let {Xi}∞i=1 be a sequence of in-

dependent random variables and let Sn =
∑n

i=1Xi. Then if Sn has finite expectation,

µn =
∑n

i=1 E [Xi], and variance, σ2
n =

∑n
i=1 Var (Xi), and the Lyapunov condition:

lim
n→∞

1

σ2+l
n

n∑
i=1

E
[
|Xi − E [Xi] |2+l

]
= 0

holds for some l > 0, then

1

σn
(Sn − µn)

d−→ N(0, 1).

In the loss estimation setting we have Sy =
∑

r∈R
∑

e∈Ey
∑

s∈Sr Le,r,s (as defined in §5.5) with

the loss from each event and subrisk combination, Le,r,s, being independent random variables.

Thus, in our context n in Theorem 6.3.1.1 is the number of event and subrisk combinations

(over all risks). There are two ways these combinations could be considered to be part of an

infinite sequence: (i) more and more risks, and consequently more subrisks, could be added

to the portfolio, and (ii) more and more events could occur in year y. We do not believe that

there will be many more events in any given year, but we know that our portfolio set is a

subsample of all the risks that could be in the portfolio, so we consider case (i). Provided

that the values of all subrisks in the potentially infinite sequence are upper bounded by some

constant, c, we have bounded finite expectations, E [Le,r,s] < c, so E [Sy] < nc. We assume
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that the underlying distributions of the loss modelling process2 are invariant to permutations

in r (that is, the distributions do not depend on the order in which risks are added to the

portfolio) and that the variance, Var (Sy), is proportional to n. Then the Lyapunov condition

on the sequence of Le,r,s with increasing portfolio size, |R| → ∞, holds for any l > 0.

The normal approximation to the distribution of Sy is

P (Sy ≤ s) ≈ Φ

(
s− µy
σy

)
,

where µy is E [Sy] and σy is
√

Var (Sy) (see §5.5). For each year, y, of the ny years, we

simulate m̃ times from the normal approximation for Sy. Then a t-year return-level estimate,

X̂approx
t , can be obtained by following Steps 2b and 3 of the standard procedure (§5.1.6).

The error in this approximation is known to be larger in the tails (see the Berry-Esseen

Theorem, §6.3.2 below). Similarly, the tail behaviour of a large number of simulations from

the normal approximation to the yearly loss will not accurately reflect the true tail behaviour

of the losses for that year. The accuracy with which simulations from the CLT will reflect

the true distributions depends on how the year distributions are themselves distributed; here

we focus on discussing the simulations from the CLT for the year distributions in the JBA

test data.

Figure 6.3.1 shows the empirical cdf of the total loss for a selection of years (the years

with the 90th, 334th, 667th and 920th largest expected losses) using losses simulated from

the standard procedure (red). The cdf of the corresponding normal approximation is shown

in black with grey indicating absolute bounds on the error in the approximation (the Berry-

Esseen error provided in Theorem 6.3.2.1 of §6.3.2). The normal approximation is closest to

the actual loss distribution for years with the largest expected losses (which are the years

with the largest n and p generally). For the years with small n, (e.g., Figure 6.3.1 top left)

the loss distribution is skewed towards smaller values (with a large positive probability of

having zero loss) but there is still a small probability of very large losses; for such years the

body of the normal approximation is around larger loss values and the upper tail is lighter

than that of the actual loss distribution.

In the left panel of Figure 6.3.2 the return-level estimates, X̂t, and 95% confidence intervals

are plotted against return period, t, for the JBA test data using the standard procedure (red)

with m = 100 simulations and using the normal approximation (black) as described above

2e.g., the distributions of risk value vr, probability of flooding pe,r and damage ratio Xe,r.
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Figure 6.3.1: Comparing the normal approximation to the empirical distribution for a selection of
years. The empirical cdf of the total loss using losses simulated from the standard procedure with
m = 100 simulations is in red, the cdf of the corresponding normal approximation is in black. Grey
indicates the Berry-Esseen error i.e., the absolute bounds on the error in the normal approximation.
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Figure 6.3.2: Comparing return-level estimates and 95% confidence intervals for the JBA test data
using the standard procedure with m = 100 and using the normal approximation method with
m̃ = 10000. Left: The Loss estimation curve using the standard procedure (red) and using the

normal approximation (black). Right: The relative difference of the return level estimates (black),
lower (blue) and upper (red) confidence interval bounds of the normal approximation compared to the

standard procedure.
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with m̃ = 10000 simulations. We show the differences of the return-level estimates (black)

and lower (blue) and upper (red) confidence interval bounds from the two methods relative

to the standard procedure in the right panel of Figure 6.3.2. The return-level estimates, X̂std
t

and X̂approx
t are close for all return periods, with a relative difference less than 1.5%. The

confidence intervals using the normal approximation are almost the same as the standard

confidence intervals but slightly narrower with less skew towards larger values, particularly

for large return periods.

The error in the normal approximation is greater in the tails (see the Berry-Esseen Theo-

rem below) so for high return periods the return-level estimates based on the normal approx-

imation will be less ‘accurate’ than for low return periods. Given a simulation from each of

1000 years, for example, the 100-year return level is taken to be the 10th highest simulation.

The distribution of this might depend on the body of the distribution for the handful of

years with the very highest expected loss, but also on the upper tail of the next 10 or so

years. By contrast, the 2-year return level is estimated as the 500th highest simulation. The

distribution of this might depend on the upper tail of some years with a loss that is typically

relatively low and the lower tail of some years which have a loss that is typically relatively

high; however, it will mainly depend on the bodies of the distributions for the many years

with typical losses that are around the median. Thus, we expect low return levels to be

estimated well via the CLT, and high return levels to be estimated less well.

For each year the total number of random variables simulated under the normal approxi-

mation is m̃ny where ny is the number of years and m̃ is the number of times the approximate

loss for each year is simulated. In contrast, the number of simulations under the standard

procedure is mN , where m is the number of times the total loss for each year is simulated and

N is the number of event and subrisk combinations which may lead to flooding. Denoting the

number of event and subrisk combinations in year y by n(y) =
∑

e∈Ey
∑

r∈R |Sr|1{pe,r > 0}

we have N =
∑ny

y=1 n(y). For out test data we have N = 586459 so almost 5.9× 107 simula-

tions are needed under the standard procedure. Using the normal approximation the number

of times the loss in each year is simulated can be increased while keeping computation cost

low; since N is large and typically much larger than ny we can have m̃ > m and still have a

low number of simulations overall, i.e., m̃ny << mN . For example, for our data we can have

m̃ = 10000 and still have fewer simulations: 10000× 1000 = 107 < 5.9× 107.

Overall the normal approximation method provides estimates and confidence intervals
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close to those found using the standard procedure with the advantage of much reduced com-

putational effort. Furthermore, intuitively, when t is small, using the normal approximation

with m̃ > m should result in t-year return-level estimates closer to the ‘true’ return level than

the standard procedure. However, we do not have a way of ‘measuring’ how the return-level

estimates, X̂approx
t , from the normal approximation will compare to those from the standard

procedure (such as e.g., the non-equivalence probability for the exclude procedure (§6.2)).

Also, unfortunately, for 39.5% of the 1000 years the normal approximation to the distribu-

tion of yearly losses is not justified since
∑

e∈Ey
∑

r∈R |Sr|pAA < 20, that is, these years have

a small number of event and subrisk combinations (recall Figure 5.5.2 in §5.5) and/or the

distribution of losses in the year is skewed towards 0. Nevertheless, the high return-level

estimates are driven mostly by the years with higher expected loss rather than the years with

large approximation error and the low return levels are less affected by the error in the tails

(as described above) so X̂approx
t ≈ X̂std

t .

6.3.2 Berry-Esseen procedure

Under some stronger conditions, the Berry-Esseen theorem provides bounds on the error of

the normal approximation to the distribution of the sum of independent (not necessarily

identically distributed) random variables.

We now propose a method extending the normal approximation method to obtain an

estimated range for return levels which is certain to contain the standard return-level esti-

mate. The Berry-Esseen inequality provides an absolute bound on the error of the normal

approximation to the distribution of the sum of n independent (not necessarily identically dis-

tributed) random variables for all n ∈ N without the need to satisfy the Lyapunov condition.

The ‘error’ is the Kolmogorov-Smirnov distance - comparing how ‘close’ two distributions

are. It is the supremum of the absolute difference between the cdfs over all possible values.

Theorem 6.3.2.1 (Berry-Esseen inequality (Berry, 1941; Esseen, 1942)).

For the sum Sn =
∑n

i=1Xi the Berry-Esseen inequality bounding the error in the normal

approximation to the distribution of standardised sum is∣∣∣∣∣P
(
Sn − E [Sn]√

Var (Sn)
≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ C0

∑n
i=1 E

[
|Xi − E [Xi] |3

]
( Var (Sn))3/2

, (6.3.1)

where C0 is a constant bounded below by
√

10+3
6
√

2π
≈ 0.4097 (Esseen, 1956) and above by 0.5600



CHAPTER 6. IMPROVING LOSS ESTIMATION 146

(Shevtsova, 2010).

Notice that the right-hand side of (6.3.1) is the left-hand side of the Lyapunov condition with

l = 1 multiplied by the constant C0. Applying the Berry-Esseen inequality to the yearly loss,

Sy (as defined in §5.5) and letting µy = E [Sy] and σy =
√

Var (Sy), we have:

∣∣∣∣P(Sy − µyσy
≤ t
)
− Φ(t)

∣∣∣∣ ≤ C0

∑
e∈Ey

∑
r∈R

∑
s∈Sr E

[
|Le,r,s − E [Le,r,s] |3

]
σ3
y

. (6.3.2)

We denote the Berry-Esseen error for year y (i.e., the right-hand side of (6.3.2)) by C0ψy.

Let Fy(s) be the true cumulative distribution function of Sy then the Berry-Esseen inequality

tells us

Φ

(
s− µy
σy

)
− C0ψy ≤ Fy(s) ≤ Φ

(
s− µy
σy

)
+ C0ψy.

Setting u = Fy(s) and rearranging the two inequalities gives

µy + σyΦ
−1(u− C0ψy) ≤ s ≤ µy + σyΦ

−1(u+ C0ψy).

Using this information we can obtain an absolute upper and lower bound on quantiles of Sy,

sub(u; y) and slb(u; y) respectively:

slb(u; y) =

 max
(
µy + Φ−1(u− C0ψy)σy , 0

)
if u > C0ψy

0 if u ≤ C0ψy

,

sub(u; y) =

 min
(
µy + Φ−1(u+ C0ψy)σy , s

max
y

)
if u < 1− C0ψy

smaxy if u ≥ 1− C0ψy

,

where smaxy is the maximum possible loss in year y, i.e., smaxy =
∑

e∈Ey
∑

r∈R vr1{pe,r > 0},

with vr and pe,r defined as in §5.5. We use these upper and lower bounds to obtain an upper

and lower bound on the simulated loss for each year. We treat these losses in the same

manner as the simulated yearly loss values, s
(i)
y , i = 1, . . . ,m, in the standard procedure to

obtain an estimated range for the return level and a conservative 95% confidence interval.

Berry-Esseen procedure

Input: m̃

Step 1: For each year, y = 1, . . . , ny:

a) Calculate the Berry-Esseen error, C0ψy, of the normal approximation as defined in
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(6.3.2). See below, directly following the procedure, for details.

b) Calculate sy,max =
∑

e∈Ey
∑

r∈R vr1{pe,r > 0}, with vr and pe,r defined as in §5.5.

Step 2: For each simulation, j:

a) For each year, y, simulate u(j) from the uniform distribution on [0, 1] and calculate:

s
(j)
y,lb = slb(u

(j); y) s
(j)
y,ub = sub(u

(j); y)

Note that simulating a loss value from year y using the inverse probability integral

transformation of the true distribution of the loss in year y and u(j) would result in a

value between s
(j)
y,lb and s

(j)
y,ub. Therefore s

(j)
y,lb and s

(j)
y,ub are giving a range on the possible

loss simulated in year y given the simulated u(j).

b) Calculate the lower and upper t-year return-level estimate, q
lb,(j)
t and q

ub,(j)
t respectively

as we described in the standard procedure in §5.1.6:

q
lb,(j)
t = (1− ω)s

(j)
lb,(ny+1−dke) + ωs

(j)
lb,(ny+1−(dke−1))

q
ub,(j)
t = (1− ω)s

(j)
ub,(ny+1−dke) + ωs

(j)
ub,(ny+1−(dke−1))

where k =
ny+1
t , ω = dke − k and s

(j)
ub,(l) is the lth order statistic of s

(j)
ub .

Step 3: We have m̃ upper and lower t-year return-level estimates, (q
ub,(1)
t , . . . , q

ub,(m̃)
t ) and

(q
lb,(1)
t , . . . , q

lb,(m̃)
t ).

a) Take the median of the lower return-level estimates to obtain a lower t-year return-level

estimate, X̂ lb
t . Similarly obtain an upper t-year return-level estimate, X̂ub

t .

b) Obtain a conservative 95% confidence interval for the t-year return-level estimate by tak-

ing the 2.5th quantile of (q
lb,(1)
t , . . . , q

lb,(m̃)
t ) and the 97.5th quantile of (q

ub,(1)
t , . . . , q

ub,(m̃)
t ).

We now derive the Berry-Esseen error used in the above procedure. The variance of each year

is known so we only need to derive the numerator of (6.3.2). Recall (§5.5) Le,r,s = vr
|Sr|Ze,sXe,s

where vr is the value of risk r, Ze,s ∼ Bernoulli(pe,r) and Xe,s ∼ Beta(αe,r, βe,r) for event e
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and subrisk s ∈ Sr. Then:

∑
r∈R

∑
e∈Ey

∑
s∈Sr

E
[
|Le,r,s − E [Le,r,s] |3

]
=
∑
r∈R

(
vr
|Sr|

)3 ∑
e∈Ey

∑
s∈Sr

E
[
|Ze,sXe,s − E [Ze,sXe,s] |3

]
.

(6.3.3)

Let Ye,s = Ze,sXe,s and denote E [Xe,r] by µe,r. We have E [Ye,s] = pe,rµe,r since Ze,s and

Xe,s are independent and for all s ∈ Sr, E [Xe,s] = µe,r. The random variable Ye,s is 0 with

probability 1− pe,r and is Beta(αe,r, βe,r) distributed with probability pe,r hence

E
[
|Ye,s − E [Ye,s] |3

]
= (1− pe,r)E

[
|0− E [Ye,s] |3

]
+ pe,rE

[
|Xe,r − E [Ye,s] |3

]
= (1− pe,r)p3

e,rµ
3
e,r + pe,rE

[
|Xe,r − pe,rµe,r|3

]
.

Inserting into (6.3.3) we have:

∑
r∈R

∑
e∈Ey

∑
s∈Sr

E
[
|Le,r,s − E [Le,r,s] |3

]
=
∑
r∈R

v3
r

|Sr|2
∑
e∈Ey

(1− pe,r)p3
e,rµ

3
e,r + pe,rE

[
|Xe,r − pe,rµe,r|3

]
.

(6.3.4)

To calculate E
[
|Xe,r − pe,rµe,r|3

]
we need to consider the distribution of Xe,r, using Beta

functions to obtain an expression for this expectation. The probability distribution function

of the Beta distribution with parameters α and β is

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, (6.3.5)

where B(α, β) :=
∫ 1

0 t
α−1(1− t)β−1dt is the Beta function.

Definition 6.3.2.2 (The regularised incomplete Beta function). The regularised incomplete

Beta function is

Ix(α, β) :=

∫ x

0

tα−1(1− t)β−1

B(α, β)
dt =

∫ x

0
f(t;α, β)dt = F (x;α, β),

where f(t) is defined as in (6.3.5) and F (x;α, β) is the cumulative distribution function of

the Beta(α, β) distribution.
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The following equality is useful for later calculations: for any c ∈ [0, 1] and integer k ≥ 0,

∫ 1

c
xα+k−1(1− x)β−1dx−

∫ c

0
xα+k−1(1− x)β−1dx

= B(α+ k, β)

(∫ 1

c

xα+k−1(1− x)β−1

B(α+ k, β)
dx−

∫ c

0

xα+k−1(1− x)β−1

B(α+ k, β)
dx

)
= B(α+ k, β) (1− 2Ic(α+ k, β)) , (6.3.6)

where B(α, β) is the Beta function and Ic(α, β) is the regularised incomplete Beta function

evaluated at c.

Dropping the subscripts of µe,r, pe,r, αe,r and βe,r for clarity we have

E
[
|Xe,r − pe,rµe,r|3

]
=

∫ 1

pµ
(x− pµ)3f(x;α, β) dx+

∫ pµ

0
(pµ− x)3f(x;α, β) dx

=

∫ 1

pµ
(x− pµ)3x

α−1(1− x)β−1

B(α, β)
dx+

∫ pµ

0
(pµ− x)3x

α−1(1− x)β−1

B(α, β)
dx

= (pµ)3 (2Ipµ(α, β)− 1) + 3(pµ)2B(α+ 1, β)

B(α, β)
(1− 2Ipµ(α+ 1, β)) +

3pµ
B(α+ 2, β)

B(α, β)
(2Ipµ(α+ 2, β)− 1) +

B(α+ 3, β)

B(α, β)
(1− 2Ipµ(α+ 3, β))

=
3∑

k=0

(−1)k
(

3

k

)
(pµ)3−kB(α+ k, β)

B(α, β)
[2Ipµ(α+ k, β)− 1] . (6.3.7)

Finally inserting (6.3.7) into (6.3.4) we have the Berry-Esseen error for year y.

We followed the Berry-Esseen procedure with the JBA test data and m̃ = 10000 to obtain

lower and upper t-year return-level estimates (X̂ lb
t and X̂ub

t ) and conservative 95% confidence

intervals for return periods t = (2, 5, 10, 20, 50, 100, 150, 200, 250, 500). These estimates and

confidence intervals are shown in blue in Figure 6.3.3. The return-level estimates, X̂approx
t ,

based on simulating from the normal approximation for the loss in each year as described in

§6.3.1 are shown as solid blue dots. The return-level estimate, X̂std
t , and confidence interval

when using the standard procedure are in red. Recall that our main aim is to have a pro-

cedure which is more computationally efficient than the standard procedure while providing

essentially the same return-level estimates. The plot of these estimates as in Figure 6.3.3 is

referred to as a loss estimation curve and is used by JBAs clients to check against historical

loss data.

The lower Berry-Esseen estimates, X̂ lb
t , are relatively close to X̂approx

t except when t = 2,

in which case X̂ lb
t ≈ 0.4X̂approx

t . The upper Berry-Esseen return-level estimates on the other
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Comparing return level results (Loss Estimation Curve)

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Ye
ar

ly
 L

os
s

2 5 10 20 50 100 200 500
Return Period

Comparing return level results (Loss Estimation Curve)

5
6

7
8

9
Lo

g1
0 

Ye
ar

ly
 L

os
s

2 5 10 20 50 100 200 500
Return Period

Comparing return level results (Loss Estimation Curve)

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Ye
ar

ly
 L

os
s

2 5 10 20 50 100 200 500
Return Period

Comparing return level results (Loss Estimation Curve)

5
6

7
8

9
Lo

g1
0 

Ye
ar

ly
 L

os
s

2 5 10 20 50 100 200 500
Return Period

Figure 6.3.3: Loss (left) and log10 Loss (right) estimation curves (return-level estimates and 95%
confidence intervals) for the JBA test data using the standard procedure (red), the Berry-Esseen

method (blue) and the combined method (green) introduced in §6.3.3. Solid dots are the return-level
estimates (standard estimate or using the normal approximation) and circles are the upper and lower
return-level estimates using the Berry-Esseen/combined method. The only difference in the top and

bottom plots is in the combined method which in the top/bottom row uses simulations from years kept
using Bennett’s inequality in the exclude procedure when ensuring the 5-yr/10-yr return level is the

same as the standard estimate with probability greater than 1− ε = 0.999. For combined method
there are 762 and 415 kept years for top and bottom respectively.
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Figure 6.3.4: Upper (red) and lower (blue) bounds on the simulated loss (s
(j)
y,ub and s

(j)
y,lb respectively)

and the loss simulated based on the normal approximation, s
approx,(j)
y (black), for each year of a

given simulation.
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hand are much larger than X̂approx
t with factor increasing with increasing return period; for

the 2-year return level X̂ub
2 ≈ 5X̂approx

2 and for the 500-year return level X̂ub
500 ≈ 20X̂approx

500 .

The Berry-Esseen confidence intervals are similarly skewed towards large values. Note that

comparing confidence intervals here is somewhat unfair as the Berry-Esseen confidence inter-

vals are very conservative since the Berry-Esseen error bound is an absolute bound whereas

the standard confidence intervals are only based on 100 simulations from the loss distribution

in each year. These poor upper return-level estimates and confidence bounds are due to a

combination of large Berry-Esseen error and the asymmetry of the loss distribution.

Figure 6.3.4 shows for a particular simulation (i.e., a certain j) the losses simulated using

the normal approximation, sapproxy , and the upper and lower bounds on the simulated loss

(sy,ub and sy,lb respectively) for each year ordered by expected loss. For each simulation,

j = 1, . . . , m̃, 37-42% of the lower bounds are 0; those which are not zero are reasonably close

to the loss simulated from the normal approximation. Using the Berry-Esseen error calculated

we find the expected percentage of years for which sy,lb = 0 is approximately 39.3%. Similarly

the expected percentage of years with the upper bound, sy,ub, set to the maximum possible

loss for the year is 33.0% and in our simulations the percentage ranged from 31 to 36%. The

maximum possible loss is in many cases more than 100 times the simulated loss; these losses

are seen clearly in a separate ‘cluster’ in the plot ranging from 105.5 to 108.5. All the upper

Berry-Esseen return-level estimates, X̂ub
t , with return period greater than 3(≈ 1/0.33) will

be in this higher cluster of values.

Unfortunately, the Berry-Esseen error is greater than 1 for approximately 7.7% of all

years; in these years the lower bound on the simulated loss, s
(j)
y,lb, will always be 0 and the

upper bound on the simulated loss, s
(j)
y,ub, will be the maximum possible loss, sy,max. Thus

for a return period t ≥ 13 ≈ 1/0.077 the upper Berry-Esseen quantile estimate, q
ub,(j)
t , will

be a linear interpolation of the maximum possible loss in two years. Under the ‘true’ data

generating mechanism described in §5.1, the probability of simulating a loss between sy,max/2

(say) and sy,max can be bounded above using the concentration inequalities in §5.4, and is

extremely low. Out of the years with Berry-Esseen error of at least 1 this probability using

Bennett+ is at most 3×10−23, and for the year with the highest loss it is at most 5.3×10−13.

Thus the upper bound of sy,max occurs far too frequently.

The top right panel of Figure 6.3.5 shows the Berry-Esseen error against n; as expected

the error is smaller the larger the number of independent terms in the sum, Sy. In particular,
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Figure 6.3.5: Applying the Berry-Esseen method to the JBA data set. Left: Densities of m̃ = 100
lower and upper Berry-Esseen 2-year return-level estimates (blue and red respectively) and the 2-year
return-level estimate using the normal approximation (black). The dashed vertical line indicated the
2-year return-level estimate using the standard procedure. Right: Log base 10 of the Berry-Esseen

error versus log10(n) for each of the 1000 years in the event set.

for all years with Berry-Esseen error more than 1 we have n < 200. Note that for a larger

(and so more realistic) portfolio n would be larger and so we would expect the Berry-Esseen

error to be smaller; for example a portfolio 100 times larger with the same characteristics

(average number of subrisks affected for each event in the year, average variance of Le,s over

all event and subrisk combinations) will have a tenth of the Berry-Essen error of the smaller

portfolio, leading to only approximately 1.2% of the years having Berry-Esseen errors larger

than 1.

One could consider simulating directly from the years with large Berry-Esseen error; this

would increase the estimation procedure time but only slightly since the worst years have

small n. The smallest Berry-Esseen error over all the years is 0.0339; thus for all years there

is more than 1 in 30 chance of simulating sy,ub = sy,max. Moreover, for a particular simulation

we expect 39.3% of sy,ub = sy,max (as seen, for example, in Figure 6.3.4) resulting in a very

large q
ub,(j)
t . Similarly, the expected number of years with sy,lb = 0 is ≈ 330. However, even

though this is large, the estimates of the lower bounds on the return levels are less affected

by these bounds than the upper bounds were of sy,ub = sy,max. The lowest return period of

interest is the two year return period, which for a particular replicate of simulations from the

ny years is estimated by the median, so q
lb,(j)
t with t = 2 will typically not be influenced by

any of the zero values.
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6.3.3 Combined procedure

The Berry-Esseen procedure can be improved by combining it with the exclude procedure

of §6.1. Recall that the exclude procedure simulates from a subset of the years, with this

set chosen such that for t greater than the desired minimum return period, t?, the t-year

return-level estimate differs from the standard t-year return-level estimate with probability

less than some chosen small ε. The smaller the minimum return period, t?, the lower the

reduction in years simulated; with the JBA test data the exclude procedure with t? = 2

resulted in no simulation reduction whereas t? = 10 reduced the number of years simulated

by more than 60%. With t? = 10, however, the non-equivalence probability bound for return

periods less than 10 is large - even as large as 1 - so to estimate return levels with small

return periods we need more simulations. Moreover, it may even occur that for the chosen

t? there are fewer years simulated than are necessary to calculate small return levels; for

example, using the exclude procedure with Bennett+, ε◦ = 0.001 and t? = 10 leads to only

39.7% years simulated so the 2-year return level cannot be estimated.

We need to be able to estimate return levels with both low and high return periods. For

low return periods we need simulations from the body of the yearly loss distribution whereas

for high return periods we need simulations from the tail. For high return periods we can

obtain good estimates and also reduce the number of years substantially using the exclude

procedure as we only ‘keep’ years with high losses. This approach cannot be used for low

return periods; as noted in §6.3.1 the 2-year return level depends mainly on the bodies of

distributions of many years with typical losses around the median. So we need some way of

estimating losses from the bodies of loss distributions of years likely to be discarded using the

exclude procedure with t? > 10 (say). In the standard procedure this is achieved by simulating

m times each risk and event combination over all years (N combinations altogether) - we

propose to do this only for the ‘kept’ years according to the exclude procedure with some t?

and to simulate m times the approximate total year loss (not each risk and event combination)

for each of the years discarded. Thus, using the same notation as in §6.3.1, we have m(N −

ND + |D|) < mN simulations overall where ND =
∑

y∈D n(y), D is the discard set and n(y)

is the number of event and subrisk combinations in year y. Then we have good estimates

and confidence intervals for return levels with t ≥ t? via the exclude procedure and good

return-level estimates for low return periods via the normal approximation.
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Combined estimation procedure

Input: ε◦, m, t?

1. Follow the exclude procedure with the maximum discard set D found such that the

non-equivalence probability for the t?-year return level, P
(
X̂std
t? > X̂excl

t?

)
, is less than

ε◦.

2. Set m̃ = m (the number of simulations used for the exclude procedure).

3. Follow steps 1 and 2a of the Berry-Esseen procedure for years in the discard set, y ∈ D.

4. Set s
(k)
y,lb = s

(k)
y,ub = s

(k)
y for y ∈ Dc and k = 1, . . . ,m.

5. Follow steps 2b and 3 of the Berry-Esseen procedure taking the order statistics over

the upper and lower bounds of all years.

We now discuss the combined estimation procedure applied of the JBA test data and discuss

areas for improvement.

We applied the combined estimation procedure with t? = 5 and t? = 10 using Bennett’s

inequality and ε = 0.001; the resulting return-level estimates and confidence intervals are

shown in Figure 6.3.3 in green. The estimates and confidence interval bounds lie between

those for the standard procedure and the Berry-Esseen procedure since the simulations used

to obtain the estimates are a mixture of those from both procedures. The estimates and

confidence intervals are closer to those of the standard procedure when t? is smaller since

then more years are simulated. Note that plots illustrate the return-level estimates and

confidence intervals from the Berry-Esseen method for all return periods but in practice

we would use the estimates and confidence intervals in red for return periods t > t?. For

lower return periods the non-equivalence probability is not bounded so we use the normal

approximation and Berry-Esseen method.

When discussing using the Berry-Esseen procedure alone we noted it could be improved

by simulating directly from the years with large Berry-Esseen error, however, since these

years are generally those with low expected losses doing this in conjunction with the exclude

procedure could lead to simulating almost all of the years. For t? = 5 approximately 76%

of years are simulated in the exclude procedure and this takes up to 97% of the standard

procedure time so additionally using the Berry-Esseen procedure could lead to a procedure

time larger than the standard. For t? = 10 approximately 41% of years are simulated in
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the exclude procedure and this takes up 79% of the standard procedure time. If the Berry-

Esseen procedure and simulating losses from years with low expected loss is fast then the

combined method with t? = 10 could provide time savings; unfortunately, the upper Berry-

Essen return-level estimate, X̂ub
t , and Berry-Esseen confidence bound is very poor for t = 2

and t = 5 (Figure 6.3.3 bottom row). So we return to the problem of needing to have a

method which calculates both return levels with high return periods and those with low

return periods effectively.

6.3.4 Discussion

To conclude, return-level estimates based on simulations from the normal approximation to

the yearly loss distributions perform well, and, empirically, using the normal approximation

saves much computational effort, but we cannot show to a degree of certainty how close the

return-level estimates will be to the standard return-level estimates (or to the true return

level). For many years the error in the normal approximation is too large for the Berry-

Esseen procedure to work well, however, this should improve with larger portfolios. The

combined procedure improves upon the Berry-Esseen results but still results in upper Berry-

Essen return-level estimates, X̂ub
t , much larger than the standard estimates along with the

cost of extra computation. Overall, it seems reasonable to use the exclude procedure with

Bennett’s inequality for t ≥ 10 and the normal approximation for the 2 and 5-year return

periods since we have seen that return-level estimates based on the normal approximation

are very close to the standard estimates. The upper and lower Berry-Esseen return-level

estimates, X̂ub
t and X̂ lb

t , give a rough guide to the possible error in the 2 and 5-yr return-level

estimates, X̂approx
t , from the normal approximation method.

The main issue with the Berry-Esseen procedure is the large error bound on the normal

approximation for the loss in each year. This could be improved if it is possible in this setting

to develop a tighter error bound than the Berry-Esseen bound for the normal approximation.

In particular it would be useful to have a tighter bound on P
(
Sy−µy
σy
≤ t
)
−Φ(t); this seems

plausible for our set of bounded random variables3 since, as we saw using concentration

inequalities, for many years sy,ub = smaxy is much too large. Currently the upper Berry-Esseen

return-level estimates, X̂ub
t , and confidence interval bounds are created from essentially the

upper tails of the loss in each year - this is extremely unlikely to occur so the high estimates

3In the general setting, the Berry-Esseen theorem tells us that it is not possible to get a much tighter
bound using the expected sum of cubes of absolute values.
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and confidence bounds are too conservative. Some sort of cross-year distribution would be

needed to create estimates and confidence bounds which are not based on taking the ‘worst

case’ in every year rather have a few ‘bad’ years. Another consideration would be whether

there is another distribution which better approximates the true loss distribution and if so,

whether some sort of error bound could be developed for this. This could be of particular

use for the years with small n, (e.g., Figure 6.3.1 top left) for which the loss distribution is

skewed towards 0.

Finally, one could obtain a range for the return-level estimate using concentration bounds

instead of the Berry-Esseen bound. This could be done by following the Berry-Esseen proce-

dure but replacing s
(j)
y,ub in Step 2a by E [Sy] + nt where t solves C(t) = u(j) and C(t) is the

concentration bound on the upper tail (e.g., σy/(σy + t2) for Cantelli). Similarly s
(j)
y,lb can be

replaced using the concentration bound on the lower tail.
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Chapter 7

Extremes of dependent sequences

In this chapter we discuss two extensions to the classical univariate extreme value theory.

First, in §7.1, we focus on extreme values when the series exhibits temporal dependence

and discuss so called declustering methods. In §7.2 we introduce a stationary process, the

ARMAX process, for which we derive the extremal index and coefficient of asymptotic depen-

dence and apply declustering methods. Second, in §7.3, we address the extension of univariate

extreme value theory to many dimensions. This theory is substantially more complex than

the univariate case since now the dependence structure between variables needs to be in-

corporated into the model. We build up through the literature from the classical approach

of componentwise maxima to the point process representation of multivariate extremes with

particular interest in measures of dependence. This material is mostly well-known and is

presented here primarily as a stepping stone in the developments for Chapter 8.

7.1 Stationary dependent sequences

In many processes there is a degree of temporal dependence between the consecutive obser-

vations. For example, if an area experiences intense flooding one day it is likely that the

next day there will also be flooding. This violates the independence assumption which the

extreme value analysis has been based upon in the previous sections. To handle this violation,

when the process is stationary, we assume that extreme events are near-independent if there

are far enough apart in time, which is a reasonable assumption for many physical processes.

Under such an assumption the limit distribution of the block maxima is GEV and has a nice

connection to the limit for the corresponding independent sequence of random variables. We

now formalise this finding mathematically.

Let {Xt}t≥1 be a stationary sequence of dependent variables with common distribution F

and define Mn := max(Xt+1, . . . , Xt+n). Let {X̃t}t≥1 be the corresponding sequence of inde-

pendent variables with common distribution F . We define M̃n := max(X̃t+1, . . . , X̃t+n) for

158
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some arbitrary t so P
(
M̃n ≤ x

)
=
∏n
i=1 P

(
X̃t+i ≤ x

)
= Fn(x) and examine the connection

between Mn and M̃n. We normalise using a sequence of constants (an > 0, bn) and consider

the limiting distribution of Z̃n = (M̃n − bn)/an. If such a sequence of normalising constants,

an > 0 and bn, exists such that the distribution of Z̃ in the limit is non-degenerate then

P
(
M̃n ≤ anz + bn

)
= Fn(anz + bn)→ G̃(z)

and the limit distribution of Z̃, G̃(z), is a member of the family of Generalized Extreme Value

(GEV) distributions. We set un = un(z) = anz + bn for the remainder of §7.1.

To obtain a similar result for the dependent sequence {Xt}t≥1 we restrict the dependence

structure by assuming that extreme events are near-independent if they are far enough apart

in time, which is a reasonable assumption for many physical processes. Leadbetter (1983a)

presents this condition of asymptotic independence at long ranges as the D(un) condition.

Consider two sets of indices I1 = {i1, . . . , ip} and I2 = {j1, . . . , jq} such that 1 ≤ i1 < . . . <

ip < j1 . . . < jq ≤ n and j1 ≥ ip + l. Let I = I1 ∪ I2 and M{I} = max(Xi : i ∈ I) then

|P
(
M{I} ≤ un

)
− P

(
M{I1} ≤ un

)
P
(
M{I2} ≤ un

)
| < αn,l (D(un) condition) (7.1.1)

and αn,ln → 0 as n→∞ for some {ln}, ln = o(n), i.e., ln/n→ 0 as n→∞. This condition

essentially ensures that the maxima over I1 and I2 become independent as the n increases.

If condition (7.1.1) holds for all z such that G̃(z) > 0 and the limit, G(z), exists then

P (Mn ≤ anz + bn)→ G(z) = G̃θ(z), (7.1.2)

where the constant θ (0 ≤ θ ≤ 1) is the extremal index and G(z) is a GEV distribution

with the same shape parameter as G̃(z). The extremal index lies between 0 and 1 with

dependence at extreme levels increasing as θ decreases. An extremal index of 1 is indicative

of independence at asymptotically high levels (since then the limit is the same as in the

independent case), however, there may still be dependence at extreme but non-limit levels,

e.g., θ = 1 for all Gaussian processes but such processes can exhibit any correlation, ρ, with

|ρ| < 1, at lag 1.

The extremal index is also shown to have the following definition from O’Brien (1987) for

t ≥ 1:
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θ = lim
n→∞ P (Mrn ≤ un|Xt > un) , (7.1.3)

where rn = o(n), that is rn/n→ 0 as n→∞ and Mrn = max(Xt+1, . . . , Xt+rn).

7.1.1 Cluster size distribution and point process formulation

The more dependence there is between consecutive values, i.e., the smaller θ is, the more the

process tends to cluster so that extremes occur at similar times. In fact, the extremal index

is asymptotically equal to the reciprocal of the mean cluster size as the threshold tends to

the upper end point (Leadbetter, 1983b). The observations within a cluster are thought of

as being part of one extreme event.

Let K be the cluster size. The cluster size distribution is defined for k ∈ Z+ as

π(k) := P (K = k|K > 0) = lim
n→∞ P

(
rn∑
i=1

1{Xt+i > un} = k

∣∣∣∣∣
rn∑
i=1

1{Xt+i > un} > 0

)
.

(7.1.4)

It is assumed that as n → ∞ the exceedances in a block of length rn belong to the same

cluster so (7.1.4) gives the probability of k exceedances in a block given that there is at least

one exceedance, i.e., that there is a cluster.

We can also define a point process count, Nn, on a scaled time axis [0, 1], which counts

the exceedances of the threshold, un(z):

Nn([0, 1]× [z, zU )) =
n∑
i=1

1

{
i

n
∈ [0, 1]

}
1{Xt+i > un(z)} (7.1.5)

=
n∑
i=1

1

{
i

n
∈ [0, 1]

}
1

{
Xt+i − bn

an
∈ (z,∞)

}
,

where zU is the upper end point of G(z). We can rewrite the cluster size distribution, (7.1.4),

in terms of this point process:

π(k) = lim
n→∞ P

(
Nn([0, rn/n]× [z, zU )) = k

∣∣ Nn([0, rn/n]× [z, zU )) > 0
)
. (7.1.6)

Definition 7.1.1.1. A marked point process is a sequence of pairs of random variables, one

following a point process and the other a randomly assigned ‘mark’ or ‘size’ associated to each

point.
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A compound Poisson process arises as the sum of the ‘marks’ over the counting point

process in a marked point process:

Definition 7.1.1.2. A compound Poisson process is a stochastic process where the time

of events are determined by a Poisson process and the ‘size’ of each event is independent

and identically distributed; we call this distribution of sizes the ‘mark’ distribution or the

‘multiplicity’.

Assume that there exists an > 0 and bn such that (7.1.2) holds with G non-degenerate.

Then Hsing et al. (1988) show under mild mixing conditions that Nn → N , where N is a

compound Poisson process with intensity measure

Λ((t1, t2)× [z,∞)) = −(t2 − t1) log(G(z)) = −θ(t2 − t1) log(G̃(z)), (7.1.7)

for (t1, t2) ∈ [0, 1] and ‘mark distribution’ or ‘multiplicity’ π as described in Definition 7.1.1.2.

Here, the ‘events’ are the independent clusters and the ‘multiplicity’ is the cluster size

distribution. Notice that, in the limit, events occur at single points in time (corresponding to

a point in the point process) whereas in practice we will have clusters of exceedances spread

over time which belong to the same independent event. The intensity measure is the expected

number of independent events in the limit. The expected number of exceedances in the time

frame [0, 1] is the product of the expected number of clusters/events in [0, 1] and the expected

cluster size:

E [N([0, 1]× [z,∞))] = Λ([0, 1]× [z,∞))E [K] = −θ log(G̃(z))
∞∑
k=1

kπ(k).

Under very mild conditions, (see, for example, Hsing et al. 1988,) θ = (
∑∞

k=1 kπ(k))−1. This

relation is assumed true throughout the thesis. An estimate for the extremal index can

therefore be constructed as the inverse empirical mean of cluster sizes.

7.1.2 Measures of extremal serial dependence

As we wish to measure the serial dependence of extreme values it is informative to consider the

probability of an observation being extreme given that an observation earlier in the sequence
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was extreme. A measure of extremal serial dependence for the process lag τ apart is

χ(τ) = lim
x→∞ P (Xt+τ > x|Xt > x) ,

when Xt+τ and Xt have the same margins (i.e., the process is stationary). The notation here

follows from the coefficient of asymptotic dependence, χ, which is a measure of dependence

between multiple variables and is explored more later (§7.3.4). Here χ(τ) ranges between 0

and 1 with 0 corresponding to asymptotic independence. For χ(τ) > 0 we have the case of

asymptotic dependence and χ(τ) gives a measure of the different degrees of dependence for

each lag.

Now:

P (Xt+τ > x|Xt > x) =
P (Xt+τ > x,Xt > x)

P (Xt > x)

=
1− P (Xt+τ ≤ x)− P (Xt ≤ x) + P (Xt+τ ≤ x,Xt ≤ x)

1− F (x)

=
1− 2F (x) + P (Xt+τ ≤ x,Xt ≤ x)

1− F (x)

= 2− 1− P (Xt+τ ≤ x,Xt ≤ x)

1− F (x)

∼ 2− logP (Xt+τ ≤ x,Xt ≤ x)

logF (x)
as x→∞, (7.1.8)

where F is the common distribution of the stationary sequence {Xt}t≥1, so χ(τ) can be written

as the limit as x→∞ of a function χ(τ)(x):

χ(τ) = lim
x→∞ χ(τ)(x) = 2− logP (Xt+τ ≤ x,Xt ≤ x)

logF (x)
. (7.1.9)

When we are in the case of asymptotic independence χ(τ) gives no measure of the different

degrees of dependence at finite levels. The need for such a measure when we have asymptotic

independence led to the development of a dual measure, χ̄(τ), in the bivariate setting (Coles

et al., 1999). This measure ranges between -1 and 1 with χ̄(τ) = 1 corresponding to the case

of asymptotic dependence and χ̄(τ) < 1 for asymptotic independence, with the value χ̄(τ) < 1

of informative about the degree of asymptotic independence.

The dual χ̄(τ) can be defined in a similar manner to χ(τ):

χ̄(τ) = lim
x→∞

χ̄(τ)(x),
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where

χ̄(τ)(x) =
2 logP (Xt > x)

logP (Xt > x,Xt+τ > x)
− 1

=
2 log(1− F (x))

log(1− 2F (x) + P (Xt+τ ≤ x,Xt ≤ x))
− 1. (7.1.10)

Together the two measures give a complete description of the extremal dependence: whether

we have asymptotic dependence at lag τ , (χ(τ) > 0, χ̄(τ) = 1), or asymptotic independence,

(χ(τ) = 0, χ̄(τ) < 1), and a measure of the strength of the dependence at finite levels of the

process lag τ apart.

7.1.3 Declustering

We now consider inference for extremes of stationary dependent data. As we saw earlier,

the limit distribution of the ‘normalised’ maxima is GEV (7.1.2) and is connected to the

independence case through the extremal index, θ. If one is only interested in inference for

the block maxima of data with short-term dependence, such as meteorological data, then it

is sufficient to use the GEV model, estimating parameters using the likelihood with the block

maxima observed. The model fit will be less accurate, however, the stronger and longer term

the dependence between subsequent observations is.

Inference is more complicated for threshold exceedances and cluster characteristics due to

the temporal dependence within clusters. Leadbetter (1991) shows that the limiting distri-

bution of the maximum threshold excesses in each independent cluster is a GPD. This leads

to the idea of declustering in order to obtain sets of extreme observations (clusters) which

we assume to be independent from one cluster to another and are part of one extreme event.

The maxima of each cluster can then be considered independent and the GP distribution can

be fitted to these maxima.

A simple declustering technique is so called runs declustering (Smith and Weissman,

1994). Once the threshold has been exceeded, subsequent observations above the threshold

are taken to belong to the same event/cluster until there are r consecutive observations which

fall below the threshold thus implying that the end of that cluster has been reached. However,

the choice of r can greatly affect the clusters obtained - the familiar problem of bias versus

variance is again relevant. If r is chosen to be too small we can obtain clusters split by only

a few observations when in fact they may have truly belonged to the same event, i.e., we

are assuming there are too many independent clusters thus leading to bias in the parameter
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estimators due to the false independence assumption. On the other hand, taking r too large

can result in the number of clusters being underestimated reducing the number of cluster

maxima and increasing the variance of the estimates. An illustration of this method with

r = 4 is shown in Figure 7.1.1 leading to the identification of 2 clusters. Note that if we

instead chose r < 4 or r > 4 we would obtain 4 and 1 clusters respectively.

Clearly there is much room for improvement on this method, in particular note that for

the consecutive observations below the threshold there is no measure of their distance below

the threshold. One could imagine a situation where following some exceedances there are a

set of observations only just below the threshold before crossing the threshold again, in which

case these observations could arguably be part of the same event. Furthermore, we could have

the situation where we have a small number of observations between exceedances which are

far below the threshold and so are conceivably not part of the same event. This incorporation

of the trajectory of the process is considered in Laurini and Tawn (2003). The idea commonly

used by hydrologists is to include a second lower threshold; in the river setting this could be

the base river level. If observations are still above this level after dropping below the higher

threshold they may contribute to further flooding and so can be considered as part of the

same event. Laurini and Tawn (2003) introduce a declustering method which combines runs

declustering and this lower chosen threshold, v. This improvement on the runs declustering

method reduces the sensitivity to the choice of run length although it is also sensitive to the

choice of the lower threshold. Laurini and Tawn’s method is applied with r = 4 and v = 10 in

Figure 7.1.1 right panel; three clusters are now identified since the low observation at index

15 leads to a reasonable split in the large cluster identified using the runs method.

Ferro and Segers (2003) introduced a declustering method which doesn’t rely on such ar-

bitrary cluster identification parameters. The idea is to consider the limiting distribution as

the threshold increases (towards the upper end point of the common distribution, F ) of the

time between threshold exceedances. The time between events, or inter-cluster times, are ex-

ponentially distributed asymptotically whereas within events the times between exceedances

will not be exponentially distributed. Hence the limiting distribution of the inter-exceedance

times is a mixture distribution of an exponential distribution and a point mass at zero if

time is scaled to [0, 1] in the limit. Ferro and Segers (2003) show that the proportion of

inter-cluster (non-zero interexceedance) times is given by the extremal index, θ and also that

the mean of the exponential distribution of inter-cluster times is the inverse of this (θ−1).
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Figure 7.1.1: Illustration of declustering methods with threshold 13.5. Runs declustering with r = 4,

resulting in 2 clusters (left) and Laurini and Tawn’s method with v = 10 (lower threshold) and r = 4,

resulting in 3 clusters (right).

That is, the probability density function of the inter-exceedance times is:

(1− θ)δ(t) + θ2 exp(−θt) t ≥ 0, (7.1.11)

where δ(t) is the Dirac delta function1. So if we plot the exponential quantiles against the

inter-exceedance times we should find that it is non linear for small inter-exceedance times

(corresponding to intra-cluster, i.e., within cluster, times) and then becomes linear with a

gradient equal to θ−1 (corresponding to inter-cluster times).

The extremal index can be estimated based on the moments of the limiting distribution

(7.1.11) and Ferro and Segers (2003) refer to this estimator as the intervals estimator :

θ̂(u) =


min

(
1,

2(
∑nu−1
i=1 (ti−1))

2

(nu−1)
∑nu−1
i=1 (ti−1)(ti−2)

)
if max{ti : 1 ≤ i ≤ nu − 1} > 2

min

(
1,

2(
∑nu−1
i=1 ti)

2

(nu−1)
∑nu−1
i=1 t2i

)
if max{ti : 1 ≤ i ≤ nu − 1} ≤ 2,

(7.1.12)

where nu is the number of exceedances of the threshold u and ti are the interexceedance

times. Ferro and Segers (2003) show in a simulation study that this estimator is robust

to both the threshold and the ‘true’ extremal index. The estimate, θ̂, can then be used

as part of a declustering scheme since the extremal index is the proportion of inter-cluster

times; it can be assumed that the largest bθ nuc+ 1 interexceedance times, where nu are the

1The Dirac delta function can be properly defined as a measure. Informally, δ(t) = ∞ if t = 0 and is 0
otherwise and

∫∞
−∞ δ(t)dt = 1.



CHAPTER 7. EXTREMES OF DEPENDENT SEQUENCES 166

number of exceedances observed, are approximately independent inter-cluster times. Note

other declustering schemes estimate θ after declustering whereas the intervals estimate for θ

requires no declustering, rather it is used to decluster. Ferro and Segers (2003) also describe

a bootstrap method for estimating the uncertainty of θ̂ and functionals of the clusters.

7.2 The ARMAX process

We now introduce a stationary process, the ARMAX process, for which we can decide the

common distribution and the level of serial dependence. We can derive the true extremal

index and cluster size distribution for the ARMAX process and use it to test the various

declustering methods.

The ARMAX process (Alpuim, 1989) is for t ≥ 1:

Xt = max (cXt−1, εt) 0 < c < 1, (7.2.1)

where X0 ∼ F0 for some distribution F0 independent of εt, {εt}t≥1 are independent and

εt ∼ G for some distribution G. We set G(x) = exp(−(1− c)/x) as this ensures unit Fréchet

margins for the common distribution F of X. Then, for t ≥ 0 and n ≥ 1,

Xt+n = max (cnXt,
max
j=1:n c

n−jεt+j). (7.2.2)

So for Xn,

Fn(x) := P (Xn ≤ x) = P
(
X0 ≤

x

cn

) n∏
j=1

P
(
εj ≤

x

cn−j

)
= F0

( x
cn

) n−1∏
j=0

G
( x
cj

)

and the distribution of the stationary univariate ARMAX process is

F (x) = lim
n→∞ Fn(x) =

∞∏
j=0

G
( x
cj

)
(7.2.3)

=

∞∏
j=0

exp

(
−c

j(1− c)
x

)

= exp

(
−1

x

)
for x > 0, (7.2.4)
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that is, F is unit Fréchet. To see the stationarity, note that from (7.2.1),

Ft(x) = Ft−1

(x
c

)
G(x) and F (x) = F

(x
c

)
G(x). (7.2.5)

The above relations are useful in later calculations.

The limit distribution F is max-stable: Fn(anx + bn) = F (x), when we choose an = n,

bn = 0. Therefore F is also the limiting distribution of M̃n := max(X̃t+1, . . . , X̃t+n) where

{X̃t}t≥1 are i.i.d. with the same marginals as {Xt}t≥1.

7.2.1 Extremal Index

Now let Mn := max(Xt+1, . . . , Xt+n) = max(cXt, εt+1, . . . , εt+n) by (7.2.2). We have

P (Mn ≤ nx) = Ft

(nx
c

)
Gn(nx) −→

n→∞ G(x),

since G is max-stable. The D(un) condition holds since {Xt}t≥1 is a Markov chain, i.e., each

state depends only on the previous state (see Asmussen 1987), so we can use (7.1.2) to deduce

that G(x) = F θ(x). So, since we set G(x) = exp(−(1− c)/x) and F is unit Fréchet we have

θ = 1− c.

Alternatively, we can find θ using O’Brien’s formulation (7.1.3):

θ = lim
n→∞ P (Xt+1 ≤ un, . . . , Xt+rn ≤ un|Xt > un)

= lim
n→∞

P
(
εt+1 < un, . . . , εt+rn < un, un < Xt <

un
c

)
P (Xt > un)

(using (7.2.2))

= lim
n→∞ Grn(un)

F
(
un
c

)
− F (un)

1− F (un)

= lim
n→∞ Grn(un)F

(un
c

) 1−G(un)

1− F (un)
(using (7.2.5)). (7.2.6)

Now Grn(un) = exp(−rn(1 − c)/nx) → 1 as n → ∞ since rn = o(n). Also since F and G

are both max stable, n(1−F (un)) −→
n→∞ − log(F (x)) and n(1−G(un)) −→

n→∞ − log(G(x)). So

(7.2.6) becomes

θ =
− log(G(x))

− log(F (x))
=

1/x

1/(x(1− c))
= 1− c.
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7.2.2 Cluster size distribution

For the stationary ARMAX process a set of consecutive exceedances begins with an indepen-

dent innovation, i.e., an ε exceeding un. In fact there can only be one such exceedance by {εt}

of un in a cluster as the probability of an independent innovation is 1−G(un) which is O( 1
n)

and in a run of length rn there are rn places this could occur. Thus the probability of an

independent innovation somewhere in the run is rnO( 1
n) which tends to 0 as n→∞. There-

fore we can just consider the exceedances in the run to be consecutive with no independent

innovation after Xt = εt, i.e., for each j ∈ 1 : rn Xt+j = cXt+j−1, so (7.1.4) becomes

π(k) = lim
n→∞ P (Xt+1 > un, . . . , Xt+k−1 > un, Xt+k ≤ un|Xt > un)

= lim
n→∞ P

(
cXt > un, . . . , c

k−1Xt > un, c
kXt ≤ un|Xt > un

)
= lim
n→∞ P

( un
ck−1

< Xt ≤
un
ck
|Xt > un

)
= lim
n→∞

P
(
un
ck−1 < Xt ≤ un

ck

)
P (Xt > un)

= lim
n→∞

F (un
ck

)− F ( un
ck−1 )

1− F (un)

= lim
n→∞

e−
ck

nx − e−
ck−1

nx

1− e−
1
nx

= ck−1(1− c)

= θ(1− θ)k−1.

Note as c tends to 0 we get closer to independence and so the probability of a cluster of size

1 tends to 1. The cluster size distribution is Geometric with probability of ‘success’,

θ = lim
n→∞ P (Xt+1 ≤ un|Xt > un), being the probability that given an exceedance the next

‘observation’ is a non-exceedance. This probability is independent of previous values of

{Xi}t−1
i=1 given the current exceedance and so the distribution is memoryless.

As noted earlier, we can confirm that the inverse of the limiting mean cluster size is the

extremal index (Leadbetter, 1983b):

( ∞∑
k=1

kπ(k)

)−1

=

(
(1− c)

∞∑
k=1

kck−1

)−1

=

(
1− c

(1− c)2

)−1

= 1− c = θ. (7.2.7)
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7.2.3 Measures of serial dependence

We now derive the joint distribution of Xt and Xt+τ , i.e., the process lag τ apart, for an

ARMAX sequence with unit Fréchet common distribution: for x0 > 0 and xτ > 0,

Ft,t+τ (x0, xτ ) = P
(
Xt ≤ x0, Xt ≤

xτ
cτ
, εt+1 ≤

xτ
cτ−1

, . . . , εt+τ ≤ xτ
)

= P
(
Xt ≤ min(x0,

xτ
cτ

)
) τ∏
j=1

P
(
εt+j ≤

xτ
cτ−j

)

= exp

− 1

min(x0,
xτ
cτ )
− 1− c

xτ

τ∑
j=1

cτ−j


= exp

(
−max

(
1

x0
,
cτ

xτ

)
− cτ − 1

xτ

)
= exp

(
−max

(
1

x0
− cτ − 1

xτ
,

1

xτ

))
. (7.2.8)

So, using (7.1.9),

χ(τ) = lim
x→∞

(
2− log(Ft,t+τ (x, x))

log(exp(− 1
x))

)

= lim
x→∞

(
2−

max
(

1
x −

cτ−1
x , 1

x

)
1
x

)

= lim
x→∞ (2−max (2− cτ , 1)) = cτ , (7.2.9)

where 0 < cτ < 1, so χ(τ) decays geometrically.

Similarly using (7.1.10) we find χ̄τ = 1, that is we have asymptotic dependence with

the strength of dependence at lag τ being cτ . Moreover, the joint distribution (7.2.8) is

a bivariate extreme value distribution (see 7.3.4) and, as stated in Coles et al. (1999), all

bivariate extreme value distributions have χ̄ = 1 as they are asymptotically dependent.

7.2.4 Simulation and declustering

We now consider the performance of the declustering methods of §7.1.3 for a range of ARMAX

sequences with unit Fréchet common distribution, F . First, Figure 7.2.1 gives an example

ARMAX sequence with c = 0.8 - for this example the extremal index is 0.2 and thus the

limiting mean cluster size is 5. According to the limiting cluster size distribution there is

less than 0.33 probability of a cluster size greater than 5. Figure 7.2.1 shows the result of

runs declustering with r = 10 (top) and intervals declustering (bottom) for exceedances of
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Figure 7.2.1: Simulated ARMAX sequence with c = 0.8 and unit Fréchet common distribution
declustered using runs declustering with r = 10 (top) and Ferro and Seger’s intervals declustering

(bottom).

the 95% quantile of the data. When applied to an ARMAX sequence the intervals method

almost always chooses clusters to end when the series dips below the threshold - even when

this is only one value just below the threshold. Sequences for which this is not the case are

rare for all c but are more common the smaller c is, so for the ARMAX process the intervals

method is generally equivalent to the runs method with run length 1. In contrast the runs

declustering method with r > 1 would group two such sets of exceedances into one cluster.

Of course in this setting it makes sense that the next upward jump in the process is the start

of a new cluster.

We simulated 100 ARMAX sequences with unit Fréchet common distribution, F , for

each c ∈ (0, 0.2, 0.4, 0.6, 0.8) and applied the the runs, intervals and Laurini and Tawn’s

declustering methods to the simulated sequences. From the counts of the cluster sizes one

can obtain an empirical estimate of the cluster size distribution; an estimate for the extremal
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index, θ, can then be obtained using this empirical distribution in place of π(k) in (7.2.7).

An equivalent estimate, θ̂, is the number of clusters divided by the the total number of

exceedances.

The relative bias of the empirical θ estimators for all three declustering methods and a

range of run lengths as well as the intervals estimator (7.1.12) are shown in Figure E.2.1.

The intervals estimator has close to zero bias - in fact the estimator does have zero first-order

bias (Ferro and Segers, 2003) - whereas the empirical estimators from all three declustering

methods have positive bias; this bias is smaller the larger c is, i.e., the more serial dependence

there is. The runs estimator for θ has the largest bias followed by Laurini and Tawn’s method

with a lower threshold set to the 80% quantile of the simulated values; the bias is reduced

for both of these methods the smaller the run length, r, is, particularly when c is small.

The relative RMSE is slightly harder to interpret (Figure E.2.2). In most cases the relative

RMSE increases as c increases with the intervals/runs estimator having the smallest RMSE

for small/large c. The most notable exception is for the runs declustering with r > 1; for

large c the RMSE is similar and increasing for all run lengths whereas for small c the relative

RMSE is larger the larger the run length is and is greatest for c = 0, i.e., when we have an

independent sequence of random variables.

Recall that the intervals estimator is based on the limiting distribution of (normalised)

interexceedance times which is a mixture distribution of a point mass at 0 and a standard

exponential distribution (7.1.11). In Appendix E Figure E.2.3 shows example of a diagnostic

plot comparing standard exponential quantiles and normalised interexceedance times; the

vertical line corresponds to the (1 − θ̂) quantile, where θ̂ is the intervals estimator, and the

diagonal line has gradient 1/θ̂.

7.3 Multivariate Extreme Value Theory

Multivariate extremes occur naturally in many environmental settings as often multiple physi-

cal processes are linked to each other (for example, rainfall and wind speed) or there is interest

in a physical process at multiple locations, such as river flows on a network of river gauges.

In the latter case there will be some interaction between observations at different sites; the

occurrences of extreme values at multiple locations simultaneously is of interest as well as

determining which occurrences ‘belong’ to the same ‘extreme event’. In this section we con-
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centrate on independent multivariate sequences of random vectors and return to sequences

with serial dependence in §8.1.

In §7.3.1 we describe the componentwise maxima approach to modelling multivariate

extremes and in §7.3.3 we discuss how the copula function encompasses the dependence

structure of a multivariate distribution. Measures of dependence are then described in §7.3.4.

Finally, the multivariate extension of the point process representation is discussed in §7.3.5.

In what follows {Xt}t≥1 is a sequence of independent d-dimensional random vectors.

Each dimension corresponds to a physical process and, as in previous sections, the index

t corresponds to time. It is convenient for much of the following theory to transform the

components such that they follow a unit Fréchet distribution (so P (Xj ≤ x) = exp(−1/x)

for x > 0) - this can be easily done using the probability integral transform.

7.3.1 Componentwise maxima approach

Maxima are less straightforward to define in the multivariate setting than in the univariate

setting as there is no natural ordering. The classical approach discussed here is to consider

the componentwise maxima:

Mn = (Mn,1, . . . ,Mn,d) =

(
max
i=1,...,n

Xt+i,1, . . . , max
i=1,...,n

Xt+i,d

)
. (7.3.1)

However, with this approach the maxima of one component does not necessarily occur at the

same time as the maxima of another so the vector of componentwise maxima is not necessarily

an observed vector of values.

We define the marginal distributions of the normalised maxima for each component j ∈

(1, . . . , d) as

Zj = lim
n→∞ Zn,j = lim

n→∞

Mn,j − bn,j
an,j

,

for some sequences an,j > 0 and bn,j for j = 1, . . . , d. We know from the univariate theory

that, if they exist, these marginal distributions for the maxima of each component must

be GEV. When the components are unit Fréchet distributed we can choose the normalising

constants an,j = n and bn,j = 0 then the normalised maxima are also unit Fréchet:

P (Zn,j ≤ z) = P (Mn,j ≤ nz) =

[
exp

(
− 1

nz

)]n
= exp

(
−1

z

)
.
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We now introduce the family of multivariate extreme value distributions as the limit distri-

bution of the normalised maxima with unit Fréchet marginal distributions.

Theorem 7.3.1.1 (Pickands (1981)). Let {(Xt+i}i=1,...,n be a sequence of independent d-

dimensional random variables with standard Fréchet marginal distributions and define Zt,j =

Mn,j/n where Mn,j are the component-wise maxima (7.3.1). Let z = (z1, . . . , zd). If

lim
n→∞

P (Zn,1 ≤ z1, . . . , Zn,d ≤ zd) = G(z),

where G is a non-degenerate distribution function in each margin, then G is of the form

G(z) = exp (−V (z)), z1 > 0, . . . , zd > 0, (7.3.2)

with

V (z) =

∫
Sd

max
j=1,...,d

(
wj
zj

)
dH(w), (7.3.3)

where Sd is the unit simplex and H(w) is the spectral measure of dimension d− 1 satisfying∫
Sd

dH(w) = d and

∫
Sd

wj dH(w) = 1 for j = 1, . . . , d− 1. (7.3.4)

A unit simplex is basically a generalisation of a triangle (the unit simplex in 2 dimensions) to

other dimensions, that is, the d-dimensional unit simplex is the convex hull of d+ 1 vertices.

In the bivariate case, (Z1, Z2), the simplex is simply the line segment [0, 1] so the integrals

above are then 1-dimensional from 0 to 1.

The spectral measure, H, can be thought of as a distribution function on Sd with mean

1
d if normed to give H

d . This concept is easier to visualise in the bivariate case since then

H
2 is the set of distribution functions on [0, 1] satisfying the moment constraint (7.3.4) with

d = 2. This set includes differentiable distribution functions for which dH(w) simply becomes

h(w)dw and also non-differentiable functions, for example H could place a point mass of a

half at 0 and at 1. Insight into what w and H(w) represent is gained when we consider the

point process representation for multivariate extremes in §7.3.5.

Note that we obtain the unit Fréchet marginal distributions if we set all but one component
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equal to infinity in the exponent measure, V , for example:

G(z1,∞, . . .) = exp (−V (z1,∞, . . .)) = exp

(
−
∫
Sd

max

(
w1

z1
,
w2

∞
, . . .

)
dH(w)

)
= exp

(
− 1

z1

∫
Sd

w1 dH(w)

)
(for z1 > 0)

= exp

(
− 1

z1

)
.

The max-stability property (2.1.3) is also satisfied here since V is homogeneous of order −1:

Gn(nz) = exp(−nV (nz)) = exp (−V (z)) = G (z) .

7.3.2 Dependence Structure

We can obtain various dependence structures from different choices of the spectral measure

H. Independence is obtained if the spectral measure is chosen such that V (z) = 1
z1

+ . . .+ 1
zd

,

since then G(z) can be factorised. This occurs when H places point masses at the vertices of

the simplex and nowhere else. Complete dependence is obtained when the spectral measure

only places a point mass in the centre of the simplex, then V (z) = max( 1
z1
, . . . , 1

zd
).

There are (infinitely) many possibilities for the spectral measure, H, despite being subject

to the moment constraint. The drawback of this is that there is no finite parametrisation

for the limit distributions. One approach is to find parametric models/subfamilies which can

approximate the entire family of distributions for G. An example of such a family is the

logistic model (Gumbel, 1960) for which

V (z) =

 d∑
j=1

z
− 1
α

j

α

for 0 < α ≤ 1. (7.3.5)

For this model the dependence structure is symmetric (the variables are exchangeable), with

dependence determined by the parameter α. When α→ 0 we have complete dependence and

when α → 1 independence. There are also models, such as the bilogistic model (Joe et al.,

1992), which allow asymmetry in the dependence structure. A range of other parametric

models can be found in Kotz and Nadarajah (2000).
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Figure 7.3.1: The space of possible Pickands’ dependence functions. The crosses correspond to the

points the function must pass through when θ =2, 7/8 and 9/16.

Pickands’ dependence function

In the bivariate setting we can derive models by choosing a suitable function, A(w) w ∈ [0, 1],

related to the spectral measure. The function A(w) is termed the Pickands’ dependence

function (Pickands, 1981) and is linked to the exponent measure as

V (z1, z2) =

(
1

z1
+

1

z2

)
A

(
z1

z1 + z2

)
.

To satisfy the marginal conditions, i.e., to obtain the standard Fréchet distribution when we

set z1 or z2 to∞ we must have A(0) = A(1) = 1. The function A(w) must also be convex with

max(w, 1− w) ≤ A(w) ≤ 1 and so the function is restricted to the dashed triangular region

shown in Figure 7.3.1. Nonetheless there are infinite possibilities for this function within

this space. The upper bound on A(w) corresponds to independence between the variables

whereas the lower bound corresponds to complete dependence.

Pickands (1981) showed that the functions H and A are connected in the following way:

A′(w) = H(w)− 1 A′′(w) = H ′(w) ≡ h(w),

at points where these functions are differentiable. Coles and Tawn (1991) showed that given

the exponent measure we can find the spectral measure through consideration of the deriva-
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tives of V :

V1,...,d(z) = − 1

(
∑

i zi)
d+1

h

(
z∑
i zi

)
,

when no mass exists on the boundaries of H.

We can estimate A(w) for a range of w by considering the empirical distribution of

Tw = max{(1− w)Z1, wZ2} since

P (Tw < z) = P
(
Z1 <

z

1− w
,Z2 <

z

w

)
= exp

(
−A(w)

z

)
,

thus

P
(
T−1
w > z

)
= P

(
Tw <

1

z

)
= exp(−zA(w)).

This is the survivor function of the exponential distribution with mean 1
A(w) hence A(w)

can be estimated as the reciprocal of the mean of the 1/Tw observations. However, these

estimates for a range of w may go outside the bounds on A(w) and/or together they may

result in a non-convex estimate of A(w). Alternative methods can be used to improve on this

estimation, for example, Hall and Tajvidi (2000) present a modified version which ensures

the end points are correct (A(0) = A(1) = 1) and that the lower bound on A(w) is satisfied.

7.3.3 Copulas

To fully define a multivariate distribution we require both the marginal distributions and the

dependence structure of the variables. Obtaining the marginals is simple since we can easily

transform between margins using the probability integral transform. In §7.3.1 we transformed

the data to Fréchet margins and based subsequent analysis of the model for the componen-

twise maxima on the assumption of these margins. Fréchet margins are convenient in the

componentwise maxima approach since they lead to a nice form for the limiting distribution

of the maxima, however, different margins can be more convenient for other approaches e.g.,

Gumbel margins with the Heffernan and Tawn model (§E.1). Though all these marginals are

equivalent, different margins can give different indications of the structures present in the

data. For example, Fréchet margins emphasise the extremes whereas in Gumbel margins the

relationship between variables can be seen more clearly.

The dependence structure of a multivariate distribution can be completely explained by
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its copula. Sklar’s theorem (Sklar, 1959) states that the joint distribution function of the con-

tinuous random variables X1, . . . , Xd can be written as a unique function of its corresponding

marginal distributions, F1, . . . , Fd:

F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)).

This function, C, is the copula and it is a distribution function with uniform margins:

C(u) = P
(
X1 ≤ F−1

1 (u1), . . . , Xd ≤ F−1
d (ud)

)
= F (F−1

1 (u1), . . . , F−1
d (ud)).

Copulas can also be written in different margins2, in which case each element inside the

copula must be transformed by the distribution function of the desired margin. This is in

order to ensure the joint distribution function F retains the correct margins. Let F∗ be the

distribution function of the desired common margins then the copula function C∗ in these

margins is, for x = (x1, . . . , xd),

C∗(x) = F (F−1
1 (F∗(x1)), . . . , F−1

d (F∗(xd))),

then

C(F1(x1), . . . , Fd(xd)) = F (x)

= P (X1 ≤ x1, . . . , Xd ≤ xd)

= P
(
X1 ≤ F−1

1 (F∗(F
−1
∗ (F1(x1)))), . . . , Xd ≤ F−1

d (F∗(F
−1
∗ (Fd(xd))))

)
= C∗(F

−1
∗ (F1(x1)), . . . , F−1

∗ (Fd(xd))).

For example, in Fréchet margins we obtain the copula, CF , for which

F (x) = CF

(
− 1

logF1(x1)
, . . . ,− 1

logFd(xd)

)
,

since the inverse distribution function for the Fréchet distribution, F−1
∗ (u), is −(log u)−1. In

the componentwise maxima approach of §7.3.1 the multivariate (MVE) copula (7.3.2) was

2Technically copulas have uniform margins but we can create similar functions in different common margins
and for convenience we also call these copulas.
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presented in Fréchet margins:

G(z) = C(F1(z1), . . . , Fd(zd)) = CMVE
F (z) = exp(−V (z)).

It is also useful to consider copulas with Gumbel margins:

F (x) = CG(− log(− log(F1(x1))), . . . ,− log(− log(Fd(xd)))).

Heffernan and Tawn (2004) work in Gumbel margins in their conditional approach to mod-

elling extremes (§E.1).

7.3.4 Measures of dependence

In order to gauge the dependence between extremes a number of dependence measures have

been developed some of which we discuss in this section.

Coefficient of extremal dependence

From the exponent measure we can obtain a measure of the extremal dependence between

a set of variables. If we denote the indices of the set of variables by C then by considering

equal margins for the variables in this set and marginalising over the other variables (i.e.,

setting zj =∞ for j /∈ C and zj = z for j ∈ C), we find:

G(z) = exp

(
−z−1

∫
Sd

max
i∈C

(wi)dH(w)

)
= exp(−z−1)θC with θC =

∫
Sd

max
i∈C

(wi)dH(w) ,

where we have exploited the homogeneity of the exponent function. Then θC is termed the

coefficient of extremal dependence for these variables. This measure can be interpreted as

the effective number of independent variables in this set. This interpretation is clear if we

consider the full set of variables, D = {1, . . . , d}, in which case 1 ≤ θD ≤ d. When the

extremal coefficient equals the number of variables, θD = d, the joint distribution, G(z),

clearly factorises into d unit Fréchet distributions corresponding to independence between

the variables. On the other hand, θD = 1 corresponds to complete dependence between

the variables. Schlather and Tawn (2003) derived bounds on the extremal coefficient for

different sets of variables, with the bounds being a function of extremal coefficients of lower
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dimensional sets of variables. This is intuitive since we would expect information about the

dependence structure of lower dimensions to provide information about the dependence at

higher dimensions.

In the bivariate setting the extremal coefficient is related to Pickands’ dependence function

(§7.3.2) as θ = V (1, 1) = 2A(1
2). Thus the function A(w) is restricted as it must pass through

θ
2 at w = 1

2 while maintaining convexity and this restriction is stronger the larger θ is - this

is illustrated in Figure 7.3.1.

Coefficient of asymptotic dependence

To measure the extent to which values of one variable occur with large values of another

variable it is informative to consider the probability of variables being extreme given that

another variable is extreme. This probability is presented as the limit as the values get more

and more extreme and is termed the coefficient of asymptotic dependence (Coles et al., 1999):

χC = lim
u→1

P
(⋂

j∈C{Xj > F−1
j (u)}

)
1− u

,

where C ⊂ (1, . . . , d). If the joint distribution has common margins, F , this is simply:

χC = lim
x→∞

P
(⋂

j∈C{Xj > x}
)

1− F (x)
.

This measure is similar to χ(τ) for measuring the dependence in a univariate sequence at lag

τ (§7.1.2) and has the same properties: for χC = 0 we have asymptotic independence whereas

χC > 0 gives a measure of degree of dependence when there is asymptotic dependence but

now for all variables in C. Likewise there is a dual measure χ̄C for measuring the degree of

dependence at finite levels in the set C when there is asymptotic independence.

Restricting to the bivariate setting and omitting subscripts for simplicity and following

the same arguments used to derive (7.1.8) we can write χ =
lim
u→1 χ(u) with

χ(u) = 2− logC(u, u)

log u
, (7.3.6)

where C(u1, u2) = P
(
X1 ≤ F−1

1 (u1), X2 ≤ F−1
2 (u2)

)
is the copula describing the dependence

structure of the random variables (X1, X2).
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Similarly the dual χ̄ is:

χ̄ = lim
u→1

χ̄(u) = lim
u→1

2 log(1− u)

log(1− 2u+ C(u, u))
− 1.

A graphical method for determining χ and χ̄ is to plot empirical estimates of χ(u) and χ̄(u)

for increasing threshold u. For all distributions falling in the class of bivariate extreme values

distributions χ(u) is constant for all u. So the graphical method can be used as a diagnostic

test to check the suitability of the bivariate extreme value model as in this case the plot

should be linear. However, we can only estimate χ(u) and χ̄(u) for u < 1, so for distributions

where χ(u) varies with u there can be issues of convergence. Coles et al. (1999) give an

example of this behaviour for random variables from the bivariate normal distribution, which

exhibits asymptotic independence. However, when the correlation coefficient is positive the

convergence of χ(u) to zero is slow and so in practice will be positive near u = 1, falsely

suggesting asymptotic dependence.

The consideration of both of the measures, (χ, χ̄), is important since then we can decide

whether or not the data exhibit asymptotic independence with more certainty. Assuming

asymptotic dependence when in fact we have asymptotic independence can lead to overesti-

mation of the extreme values. This overestimation can occur when we employ the bivariate

extreme value distribution since for all cases of positive dependence these distributions are

all asymptotically dependent (χ 6= 0) (Ledford and Tawn, 1996). Thus the bivariate extreme

value distribution is not a good model for the extremes when χ̄� 1.

Coefficient of tail dependence

A better way of estimating χ̄ is based on the following asymptotically justified parametric

approach for unit Fréchet distributed Xj (Eastoe and Tawn 2012 extension of Ledford and

Tawn 1996)

P
(

min
j∈A

(Xj) > x

)
∼ LA(x)x

− 1
ηA , (7.3.7)

where A is the set of indices corresponding to the set of variables of interest and LA(z) is a

slowly varying function as z → ∞. (A slowly varying function is a function, f , for which:

f(xt)/f(t) → 1 as t → ∞ for fixed x > 0). The coefficient of tail dependence, ηA, with

0 < ηA ≤ 1, is another useful measure of extremal dependence. The value of ηA covers
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the four classes of extremal dependence as described by Ledford and Tawn (1997). When

ηA = 1 the variables corresponding to the set A are asymptotically dependent. All other

cases correspond to asymptotic independence with the value of ηA giving an indication of

the nature of the extremal dependence: positive extremal dependence when ( 1
|A| < ηA < 1)

indicating that the joint extremes occur more than one would expect if the variables were

independent; negative extremal dependence when (0 < ηA <
1
|A|) for extremes occurring less

often than one would expect; and near extremal independence when (ηA = 1
|A|) indicating

that extremes occur as often as one would expect.

It arises that in the bivariate case χ̄ = 2η − 1 (Coles et al., 1999) and so inferences on η

automatically lead to inferences for χ̄. By considering the variable T = min(X1, X2) (7.3.7)

becomes

P (T > t) = P (X1 > t,X2 > t) ∼ L(t)t
− 1
η . (7.3.8)

Then η can be estimated as the shape parameter of variable T using threshold-based likelihood

inference. For t > u where u is some large threshold we can approximate (7.3.8) as:

P (T > t) =
c

t
1
η

t > u,

for some unknown c and η. The observations which lie below this threshold contribute

information to the likelihood as P (T < u). Therefore the likelihood is:

L(c, η) = P (T < u)n−nu
nu∏
i=1

fT (ti) =

(
1− c

u
1
η

)n−nu nu∏
i=1

c

n
t
1− 1

η

i ,

where fT is the density of T and nu are the number of observations of T above the threshold

u. The maximum likelihood estimate, η̂, is found to be the Hill’s estimator (Hill, 1975). Then

ĉ is estimated from the proportion of points above the threshold:

nu
n

=
ĉ

u
1
η̂

.

7.3.5 Point process representation

The point process representation of §2.1.3 extends to the multivariate setting and likewise

all multivariate models are unified in this representation. A particularly ‘nice’ feature of

this representation is that it gives insight into the interpretation of the spectral measure, H,
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which was introduced in §7.3.1.

Let Xi = (Xi,1, . . . , Xi,d) for i = 1, . . . , n be independent and identically distributed

random vectors. As described in Coles and Tawn (1991) the marginals, Zj , are taken to be

unit Fréchet (we can simply transform to ensure this). Then the point process,

Pn =

{
Xi

n

}
i=1,...,n

,

converges to the non-homogeneous Poisson point process, P , on sets bounded away from the

origin, i.e., on Rd+/{0}. The origin is excluded since small points in the Poisson process

Pn will tend to zero in the limit resulting in a point mass at zero. By considering pseudo

polar co-ordinates we arrive at a useful form for the intensity of the limiting process and an

interpretation for the spectral measure, H. The pseudo polar coordinates are defined as:

Ri =
d∑
j=1

Xi,j Wi,j =
Xi,j

Ri
.

Then it emerges (Coles and Tawn, 1991) that the limiting process, P , has intensity on the

set A ⊂ R2 \ {0} with

Λ(A) =

∫
A

dr

r2
dH(w),

where H is a positive measure on the d− 1 dimensional simplex, Sd. The radial component

gives a sense of how extreme the values are whereas the angular component measures the

relative size of each component. In 2 dimensions the angular component can be interpreted

as a ray, e.g., w = 1
2 is the ray X1 = X2, whereas w = 0 and w = 1 correspond to the rays

X1 = 0 and X2 = 0 respectively. The spectral measure gives a sense of the ‘spread’ of the

points i.e., H places more weight on values of w corresponding to rays on which observations

are more likely to occur. So if the extremes of two components are likely to occur at the

same time more weight will be on values of w close to 1
2 . On the other hand if the extremes

are near-independent the density h(w) of H(w) will be larger near w = 0 and w = 1.

We obtain the multivariate extreme value distribution of the componentwise maxima

approach (7.3.3) by considering the point process on the set A = {maxj(Xj − xj) > 0} with

xj > 0 for all j (i.e., the set with at least one large component being above its respective xj)

since:
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Figure 7.3.2: Visualisation of point process representation in 2-dimensions.

max
j

(Xj − xj) > 0⇔ max
j

(Rwj − xj) > 0

⇔ max
j

(R− xj/wj) > 0

⇔ R > min
j

(
xj
wj

)
as all wj > 0,

then

Λ(A) =

∫
Sd

∫
R>minj

(
xj
wj

) dr
r2
dH(w) =

∫
Sd

[
−1

r

]∞
minj

(
xj
wj

) dH(w)

=

∫
Sd

1

minj

(
xj
wj

)dH(w)

=

∫
Sd

max
j

(
wj
xj

)
dH(w)

and P (X1 ≤ x1, . . . , Xd ≤ xd) = P (N(A) = 0) = exp(−Λ(A)) = exp(−V (x)).

If we instead consider the set A = {R > u}, then Λ(A) = d
u . Another choice for the set,

A = {R > u,W ∈ C}, results in Λ(A) = H({C})
u . Combining the intensity measures for these

two sets we can find an estimate for H based on the following:

H({C}) = d
H({C})/u

d/u
= d

log(P (R > u,W ∈ C))

log(P (R > u))
.

A useful property of the point process in Fréchet margins is that as t→∞

P (X ∈ tA) ∼ 1

t
P (X ∈ A) ,

since Λ(tA) = 1
tΛ(A). So we can use the probability of being in set A, which we can estimate



CHAPTER 7. EXTREMES OF DEPENDENT SEQUENCES 184

(a) Fréchet margins (b) Gumbel margins

Figure 7.3.3: Estimating probabilities of extreme sets.

from the data empirically, to find the probability of lying in a more extreme set tA in which

we have no observations.

It is perhaps more useful to work in Gumbel margins, in which case we can instead find

the probability of lying in the set translated by some value t, P (X ∈ t+A). However in both

cases, as can be seen in Figure 7.3.3, this technique is only useful when extreme values occur

together. When there is asymptotic independence the probability of points lying in these sets

will be smaller than each of the associated marginal probabilities and we are more interested

in the areas nearer to the axes, i.e., extremes in a subset of the variables. This leads on to

the conditional approach of Heffernan and Tawn (2004) to modelling extremes detailed in

Appendix E.



Chapter 8

Extremes of multivariate temporally

dependent sequences

In this chapter we extend the univariate results for dependent sequences to the multivariate

setting and present multivariate versions of the extremal index, cluster size distribution and

coefficient of asymptotic dependence. We explore two multivariate stationary processes, the

MARMAX and M4 process, in §8.2 and §8.3 respectively, and derive the multivariate extremal

index and coefficient of asymptotic dependence for both processes. For the M4 process we

also derive the multivariate cluster size distribution; both this and (χτ , χ̄τ ) for the M4 process

are believed to be novel contributions. We complete each subsection with simulations of the

processes focusing on estimation of the multivariate extremal index.

8.1 Multivariate extremes of dependent sequences

8.1.1 Limit distributions

Let {Xt = (Xt,1, . . . , Xt,d)}t≥1 be the stationary sequence of d-dimensional random variables

with stationary distribution F (x) and let {X̃t = (X̃t,1, . . . , X̃t,d)}t≥1 be the corresponding

i.i.d. sequence with stationary distribution F (x). Let Fj(x) = P (Xt,j ≤ x) , j = 1, . . . , d,

be the marginal distributions. We define the pointwise maxima over a period of length

n as Mn = (Mn1, . . . ,Mnd) with Mnj = max(X1,j , . . . , Xn,j) for j = 1, . . . , d. First we

determine the distribution of the maxima of the independent sequences, M̃n, by generalising

Theorem 7.3.1.1 to allow F to have different margins.

Theorem 8.1.1.1 (Nandagopalan (1994)). For each dimension, j ∈ 1, . . . , d, let unj(x) =

anjx+ bnj, where anj > 0 and bnj are a sequence of constants such that the limit distribution

of Xj is non-degenerate, then

185
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P
(
M̃nj ≤ unj(x)

)
= Fnj (unj(x))→ G̃j(x),

where G̃j(x) is a GEV CDF. If these unj(x) also satisfy

n(1− F (un(x)))→ − log G̃(x),

where un(x) = (un1(x1), . . . , und(xd)) and G̃ is non-degenerate, then G̃(x) is a MEV distri-

bution. The margins of G̃(x) are GEV with parameters depending on the margins of F .

Recall that the MEV distribution in unit Fréchet margins is written as G(z) = exp(−V (z))

with the exponent function V defined as in Theorem 7.3.1.1. The MEV, G̃(x), in Theo-

rem 8.1.1.1 does not (necessarily) have unit Fréchet margins but we can write G̃(x) in terms

of V by using the probability integral transform in the same manner as with copulas in §7.3.3:

G̃(x) = exp

(
−V

(
− 1

log G̃1(x1)
, . . . ,− 1

log G̃d(xd)

))
= G̃II

(
− 1

log G̃1(x1)
, . . . ,− 1

log G̃d(xd)

)
, (8.1.1)

where G̃II is the MEV with unit Fréchet margins (Fréchet distributions are also known as a

type II extreme value distributions).

It is often convenient to work in terms of τ(x) = (− log(G̃1(x1)), . . . ,− log(G̃1(x1))) then

(8.1.1) is simply G̃II(τ(x)−1). Working in x we are comparing extremes on the data scale of

each margin whereas with τ−1 we are comparing extremes on a unified unit Fréchet scale.

The multivariate theory can thus be developed purely in terms of τ = (τ1, . . . , τd) ∈ (0,∞)d

without ‘thought of’ x. We suppose we can find a sequence of thresholds, unj(τj) which

satisfy n(1 − Fj(unj(τj))) → τj . As Robert (2008) notes, a natural choice for the threshold

is unj(τj) = inf {x ∈ R : Fj(x) ≥ 1− τj/n}. If these unj(τj) also satisfy n(1 − F (un(τ ))) →

− log H̃(τ ) for some non-degenerate H̃ then

P
(
M̃n ≤ un(τ )

)
→ H̃(τ ) = G̃II(τ−1), (8.1.2)

where G̃II(z) is a MEV distribution function with unit Fréchet margins. The margins in terms

of x can be recovered by simply replacing τ by τ(x) = −(log(G̃1(x1)), . . . , log(G̃d(xd))).

Moreover we can formulate the theory for extremes on a unified standard uniform scale with

t = (G̃1(x1), . . . , G̃d(xd)) - this is perhaps useful as it gives an indication as to how extreme
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we are considering each component in comparison to the other components.

All three scales have their merits - for the remainder of the chapter we mostly use x but

in this section and §8.1.2 we also present results in terms of τ to provide further insight.

As we did in the univariate case we can obtain a similar limit result for the depen-

dent sequence {Xt = (Xt,1, . . . , Xt,d)}t≥1 by restricting the dependence structure. Leadbet-

ter’s D(un) condition can be extended to the multivariate setting (Hsing (1989)) whereas

Nandagopalan (1994) presents a slightly stronger mixing condition, ∆(un). Like the univari-

ate counterpart both conditions are said to hold if αn,ln → 0 as n → ∞ for some ln = o(n)

where αn,ln is in some sense giving a distance between the independent and dependent case.

For the multivariate D(un) condition:

αn,ln = max(|P (Ac ∪Bc)− P (Ac)P (Bc) | : A ∈ Bk
1 (un), B ∈ Bn

k+ln(un), 1 ≤ k < k + ln ≤ n)

and for ∆(un):

αn,ln = sup(|P (A ∩B)− P (A)P (B) | : A ∈ Bk
1 (un), B ∈ Bn

k+ln(un), 1 ≤ k < k + ln ≤ n),

(8.1.3)

where Br
m(un) is the σ-field of events {Xtj > unj}, m ≤ t ≤ r, 1 ≤ j ≤ d.

Theorem 8.1.1.2 (Hsing (1989)). Let un(x) = anx+ bn be such that P (Mnj ≤ unj(x)) has

a non-degenerate limit distribution, Gj(x), for j = 1, . . . , d. If D(un(x)) holds and the limit

exists then

P (Mn ≤ un(x))→ G(x),

where G(x) is a multivariate extreme value distribution.

From the univariate theory, the margins of G(x) are Gj(xj) = G̃j(xj)
θj for each j, where θj

is the extremal index for the sequence of the jth component and G̃j is the limit distribution

of the corresponding independent sequence of the jth component. Then we can rewrite G(x)
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in terms of the univariate extremal indices:

G(x) = exp

(
−V

(
− 1

logG1(x1)
, . . . ,− 1

logGd(xd)

))
= exp

(
−V

(
− 1

θ1 log G̃1(x1)
, . . . ,− 1

θd log G̃d(xd)

))
= exp

(
−V

(
1

θ1τ1
, . . . ,

1

θdτd

))
using τj = − log G̃j(xj).

Equivalently, with some restrictions on τ (see Robert 2008) and un(τ ) chosen such that the

limit exists and D(un) holds, we have

P (Mn ≤ un(τ ))→ H(τ ) = GII(τ−1),

where GII(x) is a MEV distribution with (non-unit) Fréchet margins (Robert, 2008).

8.1.2 Multivariate Extremal Index

The multivariate extremal index is a function describing the relation between the indepen-

dent multivariate process and the dependent process. The index, θ(t), was introduced by

Nandagopalan (1994) in terms of, t = (G̃1(x1), . . . , G̃d(xd)) but is most often presented in

terms of τ (Robert, 2008; Ferreira, 1994; Martins and Ferreira, 2005):

θ(τ ) =
log(H(τ ))

log(H̃(τ ))
, (8.1.4)

where H̃(τ ) is as defined in (8.1.2). In terms of x:

θ(x) =
log(G(x))

log(G̃(x))
=

log(GII(τ (x)−1)

log(G̃II(τ (x)−1)
, (8.1.5)

where GII and G̃II have Fréchet margins with τ (x) = −(log(G̃1(x1)), . . . , log(G̃d(xd))). In

particular, when the stationary distribution, F , has unit Fréchet margins τ (x) = 1/x and

G̃ = G̃II. Note that the margins of G and G̃ are different GEVs.

Like the univariate extremal index we have the following relation equivalent to (8.1.5):

G̃(x)θ(x) = exp(θ(x) log(G̃(x))) = G(x)

and
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θ(τ ) =
log(GII(τ−1))

log(G̃II(τ−1))
=
V
(

1
θ1τ1

, . . . , 1
θdτd

)
V
(

1
τ1
, . . . , 1

τd

) .

Properties of the multivariate extremal index

1. 0 ≤ θ(τ ) ≤ 1 ∀τ ∈ (0,∞)d ⇔ 0 ≤ θ(τ(x)) ≤ 1 ∀x ∈ (0,∞)d.

2. θ(cτ ) = θ(τ ) ⇔ θ(τ(tc)) = θ(τ(t)), ∀c > 0.

3. The extremal index for the sequence of the jth component, θj , is recovered by setting

τ = (0, . . . , 0, τj , 0, . . . , 0) into (8.1.4) or x = (∞, . . . ,∞, xj ,∞, . . . ,∞) into (8.1.5).

4. By property 3, if the components of GII and G̃II are independent:

θ(τ ) =

∑d
j=1 log(GII

j (τ−1
j ))∑d

j=1 log(G̃II
j (τ−1

j ))
=

∑d
j=1 θjτj∑d
j=1 τj

.

5. The extremal index can be written as a function of d − 1 rather than d variables

(Nandagopalan, 1994). For example, θ(τ ) = θ(a) where a =
(
τ1
τd
, . . . ,

τd−1

τd

)
∈ (0,∞)d−1.

6. When τj = τ ∀j we recover a relationship between the extremal index and the coefficient

of extremal dependence of the D = {1, . . . , d} variables, φD, defined in §7.3.4:

θ(τ ) =
V
(

1
θ1
, . . . , 1

θd

)
V (1, . . . , 1)

=
V
(

1
θ1
, . . . , 1

θd

)
φD

.

The denominator describes the extremal dependence between variables when there is

no temporal dependence.

Remark 8.1.2.1. The intuition behind property 5 is clear when one considers the univariate

setting. The univariate extremal index is a constant - it does not depend on τ - as it is a

limit in one component only. In higher dimensions the extremal index is a function since

there is interaction between the components and so the limit depends on the value of the

components compared to one another. For example, in two dimensions when τ1 = τ2 the

two components are being considered at the same extremal level and the extremal index is a

measure of dependence when the two components are similarly extreme. On the other hand

if τ1 >> τ2, then the the first component is more extreme than the 2nd component and the

extremal index is capturing the dependence at a higher level for the first component than the

second.
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The multivariate extremal index can also be found as the univariate extremal index of an

associated sequence depending on τ (Smith and Weissman, 1996). Let {Xt}t≥1 have unit

Fréchet margins then the sequence {Zt(τ )}t≥1 where Zt(τ ) = maxj=1:d(τjXtj) has extremal

index θ(τ ). Applying O’Brien’s formulation of the extremal index, (7.1.3), to the sequence

{Zt(τ )}t≥1 with un = {n/τ1, . . . , n/τd} and rn = bn/knc where kn satisfies the appropriate

conditions1 we have:

θ(τ ) = lim
n→∞ P

(
Xt+i,j ≤

n

τj
, 1 ≤ i ≤ rn, 1 ≤ j ≤ d

∣∣∣∣∣ max
j

(
Xt,jτj
n

)
> 1

)
.

One can also consider other definitions of ‘extreme’, for example, defining observations as

extreme if all components exceed the threshold rather than at least one component exceeding.

Nandagopalan (1994) gives a more general formulation of the extremal index on the set of

interest:

θ(A) =
log( lim

n→∞ P (Mn ∈ un(A)))

log( lim
n→∞ P(M̃n ∈ un(A)))

where A =
⋃
j(xj , x

U
j ), with xUj being the upper end point of G̃j , for the usual component-wise

maxima and A =
⋂
j(xj , x

U
j ) for the case where all components must exceed to be considered

extreme.

8.1.3 Cluster size distribution(s) and point processes

In the univariate setting there is a clear definition of a cluster as a set of exceedances of

a high threshold, un, in a run of length rn = o(n) as n → ∞. In the multivariate setting

there are multiple thresholds so the exceedances depend on the thresholds relative to one

another. Therefore, as we have seen for the extremal index, the cluster size distribution

and underlying point process representation of the exceedances depends on x. Furthermore,

there is not a clear definition of what is extreme in the multivariate setting - it may refer to

joint exceedances or exceedance in at least one component. Additionally, one can consider

many variants of cluster size distribution, for example conditioning on exceedances in certain

components. We now present some of these point process representations and cluster size

distributions.

1The mixing condition, ∆(un), holds for some ln and we can find a sequence {kn}n≥1 such that kn →
∞, knln/n→ 0, knαn,ln → 0 as n→∞.
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Extending (7.1.5) we obtain the multivariate point process:

N (x)
n ([a, b]) =

n∑
i=1

1

{
i

n
∈ [a, b]

}
(1{Xt+i,1 > un,1(x1)}, . . . ,1{Xt+i,d > un,d(xd)}) ,

where 0 ≤ a < b ≤ 1. This is a marked point process with marks on [0, 1]d.

Let {mn} be a sequence of positive integers that satisfy

mn →∞, mnln/n→ 0 and mnαn,ln → 0 as n→∞ , (8.1.6)

with ln satisfying the ∆(un) condition (8.1.3), and set rn = bn/mnc. We then define the

multivariate cluster size distribution given there is an exceedance in at least one component

as:

π(x)(k) = lim
n→∞ π(x)

n (k) (8.1.7)

= lim
n→∞ P

(
N (x)

n ([0, rn/n]) = k|N (x)
n ([0, rn/n]) 6= 0

)
k ∈ Zd+/{0}.

A similar result to Theorem 7.1.7 is obtained:

Theorem 8.1.3.1. Assume that we have a sequence of constants, an and bn such that the

conditions of Theorem 8.1.1.2 are satisfied, {mn} and {ln} satisfy (8.1.6) and the limit

π(x)(k) exists. Then it follows that N
(x)
n → N , where N is a compound Poisson pro-

cess with mark distribution π on Zd+/{0} and intensity measure Λ((t1, t2) × [x,∞)d) =

−(t2 − t1) log(G(x)).

Nandagopalan (1994) also described a one dimensional distribution, π(x), of the total cluster

size over all components. Consider the one-dimensional point process counting when there is

an exceedance in at least one component:

N (x)
n ([a, b]) =

n∑
i=1

1

{
i

n
∈ [a, b]

}
1


d⋃
j=1

{Xt+i,j > un,j(xj)}

 .

Using this point process we arrive at the following ‘cluster size’ distribution:

π(x)(k) = lim
n→∞ P

(
N (x)
n ([0, rn/n]) = k|N (x)

n ([0, rn/n]) > 0
)

k ∈ Z+/{0} . (8.1.8)

Under mild conditions, including that the mixing condition ∆(un) holds, Nandagopalan
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(1994) showed that (8.1.8) has a nice relation with the extremal index:

θ(x) =

( ∞∑
k=1

kπ(x)(k)

)−1

.

That is the extremal index is the reciprocal of the limiting mean number of exceedances as

found in the univariate setting.

One can also consider the distribution of joint exceedances as (8.1.8) but with:

Ñ (x)
n ([a, b)) =

n∑
i=1

1

{
i

n
∈ [a, b]

}
1


d⋂
j=1

{Xt+i,j > un,j(xj)}

 , with 0 ≤ a < b ≤ 1.

Now we consider the connection between the distribution of cluster sizes in the multivariate

setting with that of the marginals. Let Nn,j be the point process, as defined in (7.1.5),

counting exceendances in component j. In (8.1.7) we condition on there being an exceedance

in some component, we can instead define the cluster size distribution given an exceedance

in a particular component, j:

π
(x)
j (k) = lim

n→∞ P
(
N (x)

n ([0, rn/n]) = k|Nn,j([0, rn/n]) > 0
)

(8.1.9)

= lim
n→∞ P

((
rn∑
i=1

1{Xt+i,l > un,l} = kl, l = 1, . . . , d

) ∣∣∣∣∣
rn∑
i=1

1{Xt+i,j > un,j} > 0

)

= lim
n→∞

P ((
∑rn

i=1 1{Xt+i,1 > un,1} = k1, . . . ,
∑rn

i=1 1{Xt+i,d > un,d} = kd))

1− P (∩rni=1{Xt+i,j ≤ un,j})

k ∈ Zd+, kj > 0.

This distribution is different to (8.1.7) only in the denominator; the ratio of the cluster

size distributions (8.1.7) and (8.1.9) is the ratio of the probability of an exceedance in one

component to the probability of at least one exceedance in component j. That is, we have

π
(x)
j (k) = qπ(x)(k) for k ∈ Zd+, kj > 0 with

q = lim
n→∞

1− P (Nn([0, rn/n]) = 0)

1− P (Nn,j([0, rn/n]) = 0)
= lim
n→∞

1− P
(∑rn

i=1

∑d
j=1 1{Xi,j > un,j} = 0

)
1− P (

∑rn
i=1 1{Xi,j > un,j} = 0)

= lim
n→∞

1− P
(
∩rni=1 ∩dj=1 {Xi,j ≤ un,j}

)
1− P (∩rni=1{Xi,j ≤ un,j})

,

and 1 < q ≤ 1/π(x)(k).
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The distribution of cluster sizes given the size in one component can be obtained from

(8.1.9) and the corresponding marginal cluster size distribution πj(kj):

π(x)(k−j |kj) = lim
n→∞ P

((
rn∑
i=1

1{Xt+i,l > un,l} = kl, l = 1, . . . , d

) ∣∣∣∣∣
rn∑
i=1

1{Xt+i,j > un,j} = kj

)

=
π

(x)
j (k)

π(kj)
.

In summary variants of cluster size distribution include:

• πj(kj) - the marginal cluster size distribution from the univariate setting (7.1.6);

• π(x)(k) - the multivariate cluster size distribution given an exceedance in some com-

ponent (8.1.7);

• π(x)(k) - the one dimensional distribution of exceedances over all components (union

of exceedances (8.1.8));

• π̃(x)(k) - the one dimensional distribution of joint exceedances (intersection of ex-

ceedances);

• π
(x)
j (k) - the multivariate cluster size distribution given an exceedance in a particular

component, j (8.1.9);

• and π(k−j |kj) - the d− 1 dimensional cluster size distribution given the exceedance in

the jth component.

8.1.4 Coefficient of asymptotic dependence for dependent multivariate se-

quences

We extend the extremal dependence measures (χ, χ̄) of §7.3.4 to the multivariate setting by

considering the dependence between two different sets of components at some lag τ . We

define

χ
(τ)
C,C? = lim

u→1
χ

(τ)
C,C?(u) =

lim
u→1 P

 ⋂
j?∈C?

{Fj?(Xt+τ,j?) > u}

∣∣∣∣∣ ⋂
j∈C
{Fj(Xt,j) > u}

 ,

where C ⊆ {1, . . . , d} and C? ⊆ {1, . . . , d}.

It is simple, and perhaps most useful, to consider the measure for pairs of variables (j, j?)

split by a certain lag. Then the coefficient of asymptotic dependence, χτj,j? , has a similar
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form to (7.3.6) for bivariate random variables with temporal independence:

χ
(τ)
j,j? = lim

u→1
χ

(τ)
j,j?(u) where χ

(τ)
j,j?(u) = 2−

log(C
(τ)
j,j?(u, u))

log u
, (8.1.10)

where

C
(τ)
j,j?(u, u) = P (Fj(Xt,j) ≤ u, Fj?(Xt+τ,j?) ≤ u) .

Similarly an extension to the dual measure, χ̄, is

χ̄
(τ)
j,j? = lim

u→1
χ̄

(τ)
j,j?(u) = lim

u→1

2 log(1− u)

log(1− 2u+ C
(τ)
j,j?(u, u))

− 1. (8.1.11)

8.2 The multivariate ARMAX process

8.2.1 The MARMAX process

We now present the MARMAX process, a multivariate stationary process introduced by

Ferreira and Ferreira (2013) which extends the ARMAX process of §7.2. We derive the

multivariate extremal index and coefficient of asymptotic dependence for this process and

apply and discuss estimation of the multivariate extremal index.

Consider the sequence {Xt}t≥1 = {Xt,1, . . . , Xt,d}t≥1 such that

Xt,j = max(cjXt−1,j , εt,j) 0 < cj < 1 j = 1, . . . , d,

where εt ∼ G, {εt}t≥1 are independent andX0 ∼ F0 independent of εt for some d-dimensional

distributions F0 and G. Following the same argument as in §7.2 {Xt}t≥1is a stationary

sequence with common distribution:

F (x) = lim
n→∞

F0

(
x1

cn1
. . . ,

xd
cnd

) n−1∏
t=0

G

(
x1

ct1
, . . . ,

xd
ctd

)
=

∞∏
t=0

G

(
x1

ct1
, . . . ,

xd
ctd

)
(8.2.1)

by extension of (7.2.3) and F satisfies, extending (7.2.5),

F (x) = G(x)F

(
x1

c1
, . . . ,

xd
cd

)
. (8.2.2)

If F is a MEV distribution with unit Fréchet margins then G is also a MEV distribution
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albeit with different margins and vice versa. If we want the stationary distribution to be

MEV with unit Fréchet margins, i.e., F (x) = exp(−VF (x1, . . . , xd)), then G must have

marginal distributions

Gj(xj) =
Fj(xj)

Fj

(
xj
cj

) = exp

(
−1− cj

xj

)
= Fj(xj)

1−cj j = 1, . . . , d

and

G(x) = exp

(
−
[
VF (x1, . . . , xd)− VF

(
x1

c1
, . . . ,

xd
cd

)])
using (8.2.2).

Note that the extremal index of the marginal ARMAX process is θj = 1− cj . It follows that

G is a MEV distribution since it has GEV margins and its copula is max-stable:

CkG(u
1
k ) =

[
G

(
G1(X1) ≤ u

1
k
1 , . . . , Gd(Xd) ≤ u

1
k
d

)]k
= exp

−k
VF (G−1

1 (u
1
k
1 ), . . . , G−1

d (u
1
k
d )

)
− VF

G−1
1 (u

1
k
1 )

c1
, . . . ,

G−1
d (u

1
k
d )

cd


= exp

(
−k

[
VF (kG−1

1 (u1), . . . , kG−1
d (ud))− VF

(
k
G−1

1 (u1)

c1
, . . . , k

G−1
d (ud)

cd

)])

= exp

(
−

[
VF (G−1

1 (u1), . . . , G−1
d (ud))− VF

(
G−1

1 (u1)

c1
, . . . ,

G−1
d (ud)

cd

)])

= CG(u).

Thus we can write G(x) = exp(−VG(x?1, . . . , x
?
d)) where x?j = F−1

j Gj(xj) = xj/(1 − cj).

Examples of G and the extremal index given different choices of VF are shown later (§8.2.3).

A useful consequence if F (x) and G(x) are MEV is that both distributions are max-stable:

CkF (u
1
k ) = CF (u) and CkG(u

1
k ) = CG(u). For F with unit Fréchet margins and G determined

from F as above we have Fn(nx) = F (x) and Gn(nx) = G(x). Let un(x) = nx and let

{X̃t}t≥1 be the independent sequence of vectors corresponding to the MARMAX sequence

{Xt}t≥1. The components of each vector, X̃t, are potentially dependent but each vector X̃t

in the sequence {X̃t}t≥1 is independent. Then we have the following limits:

P
(
M̃n ≤ un(x)

)
= P

(
X̃t+1 ≤ nx, . . . , X̃t+n ≤ nx

)
= Fn(nx)→ F (x),
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and, since Mn,j = max (cjXt,j , εt+1,j , . . . , εt+n,j),

P (Mn ≤ un(x)) = P (Xt+1 ≤ nx, . . . ,Xt+n ≤ nx)

= F

(
nx1

c1
, . . . ,

nxd
cd

)
Gn(nx)→ G(x), n→∞.

Ferreira and Ferreira (2013) show that the mixing condition ∆(un) (8.1.3) holds for the

MARMAX sequence with general F and G.

8.2.2 Multivariate Extremal Index

For the following we consider F as a MEV distribution with unit Fréchet margins. Since the

necessary mixing condition holds, using (8.1.5) the extremal index is θ(x) = logG(x)
logF (x) , where

F and G are both MEV distributions with Fréchet margins. We can write θ(x) in terms of

just one of the distributions by using the relations (8.2.2) and (8.2.1):

θ(x) = 1−
logF

(
x1
c1
, . . . , xdcd

)
logF (x)

and θ(x) =
logG(x)∑∞

t=0 logG
(
x1
ct1
, . . . , xd

ctd

) .
Moreover, since F and G are both MEV distributions we can write the multivariate extremal

index in terms of the exponent functions, VF (x) = − logF (x) and

VG(x) = − logG(G−1
1 F1(x1), . . . , G−1

d Fd(xd)) = − logG((1− c1)x1, . . . , (1− cd)xd):

θ(x) =
VG

(
x1

1−c1 , . . . ,
xd

1−cd

)
VF (x1, . . . , xd)

= 1−
VF

(
x1
c1
, . . . , xdcd

)
VF (x1, . . . , xd)

.

The extremal index for component j, θj = 1−cj , is recovered by setting all xi, i 6= j to infinity.

Since VF and VG are homogeneous functions of order −1, θ(ax) = θ(x) where a > 0 is some

constant. We can therefore reparameterise, x̃j = xj/
∑d

j=1 xj (so that 0 < x̃j < 1, which

is an easier input to interpret), without changing the extremal index, i.e., θ(x1, . . . , xd) =

θ(x̃1, . . . , x̃d).

8.2.3 Examples

Here we consider various dependence structures for the stationary distribution F . In order

to simulate a MARMAX process with such a stationary distribution one must calculate G.

We let x? = (x?1, . . . , x
?
d) with x?j = xj/(1− cj) throughout.
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Example 1a (General MEV with unit Fréchet margins and constant x)

If xj = x ∀ j then

VG

(
1

θ1
, . . . ,

1

θd

)
= VG

(
1

1− c1
, . . . ,

1

1− cd

)
= VF (1, . . . , 1)− VF (c−1

1 , . . . , c−1
d )

= φD − VF (c−1
1 , . . . , c−1

d ),

where φD is the coefficient of extremal dependence of the D = {1, . . . , d} variables (§7.3.4)

for F . The multivariate extremal index is

θ(x) = 1−
VF (c−1

1 , . . . , c−1
d )

VF (1, . . . , 1)
=
VG

(
1

1−c1 , . . . ,
1

1−cd

)
VF (1, . . . , 1)

=
VG

(
1
θ1
, . . . , 1

θd

)
φD

.

Example 1b (General MEV with unit Fréchet margins and constant c)

Clearly if cj = c ∀ j then VG(x?) = (1 − c)VG(x) = VF (x) − cVF (x), i.e., VG(x) = VF (x),

and θ(x) = 1− c.

Example 2 (Independence)

Consider VF (x) =
∑d

j=1 x
−1
j , then

VG(x?) = VG

(
x1

1− c1
, . . . ,

xd
1− cd

)
= VF (x)− VF

(
x1

c1
, . . . ,

xd
cd

)
=

d∑
j=1

1− cj
xj

.

So VF (x) = VG(x) and

θ(x) =

∑d
j=1

1−cj
xj∑d

j=1
1
xj

(c.f., Nandagopalan (1994) Prop. 3.4).

In particular, θ(x, . . . , x) =
∑d
j=1 1−cj
d =

∑d
j=1 θj
d .

Example 3 (Perfect dependence)

Consider VF (x) = maxj(x
−1
j ), then

VG(x?) = VG

(
x1

1− c1
, . . . ,

xd
1− cd

)
= max

j
(x−1
j )−max

j

(
cj
xj

)

and θ(x) = 1−
maxj

(
cj
xj

)
maxj(x

−1
j )

,
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with VG(x, . . . , x) = VF (x, . . . , x), and θ(x, . . . , x) = 1−maxj(cj).

Example 4 (Logistic)

Consider F with logistic dependence function: VF =

(∑d
j=1 x

− 1
α

j

)α
where 0 < α < 1.

Examples 2 and 3 are the special case of the logistic dependence function where α = 1 and

α→ 0 respectively.

VG(x?) =

 d∑
j=1

x
− 1
α

j

α

−

 d∑
j=1

(
cj
xj

) 1
α

α

and θ(x) = 1−

(∑d
j=1

(
cj
xj

) 1
α

)α
(∑d

j=1 x
− 1
α

j

)α .

When α is close to 0 the largest
cj
xj

(xj) dominates the sum on the numerator(denominator)

so α→ 0 gives same result as example 3.

Example 4a (Logistic with constant x)

If xj = x ∀ j then

VG(x?) =
1

x

dα −
 d∑
j=1

c
1
α
j

α and θ(x) = 1−

(∑d
j=1 c

1
α
j

)α
dα

.

8.2.4 (χ, χ̄) for the MARMAX process

We now present the extremal dependence measures (χ
(τ)
j,j∗ , χ̄

(τ)
j,j∗) for the dependence between

component j and j∗ at a lag τ apart in the MARMAX sequence with common distribution F

MEV with unit Fréchet margins. First we need to derive the copula of the joint distribution

of these two components with lag τ > 0:

C
(τ)
j,j∗(u, u) = P (Fj(Xt,j) ≤ u, Fj∗(Xt+τ,j∗) ≤ u)

= P

(
Fj(Xt,j) ≤ u, Fj∗(Xt,j∗) ≤ Fj∗

(
F−1
j∗ (u)

cτj∗

)
, εt+1,j∗ ≤

F−1
j∗ (u)

cτ−1
j∗

, . . . , εt+τ,j∗ ≤ F−1
j∗ (u)

)

= P
(
Fj(Xt,j) ≤ u, Fj∗(Xt,j∗) ≤ uc

τ
j∗
) τ−1∏
i=0

Gj∗

(
F−1
j∗ (u)

cij∗

)

= C
(0)
j,j∗

(
u, u

cτ
j∗
) τ−1∏
i=0

u
(1−cj∗ )ci

j∗

= C
(0)
j,j∗

(
u, u

cτ
j∗
)
u

1−cτ
j∗ since

∑τ−1
i=0 c

i
j∗ =

1−cτ
j∗

1−cj∗
.
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The copula between 2 components, (j, j∗), with no lag, evaluated at (u, u
cτ
j∗ ) is equivalent to

F (y) = exp(−VF (y)) with yj = F−1
j (u) = (− log u)−1, yj∗ = F−1

j∗ (u
cτ
j∗ ) = (−cτj∗ log u)−1 and

yk =∞ ∀k ∈ (1, . . . , d)\{j, j∗}. This simplifies to C
(0)
j,j∗(u, u

cτ
j∗ ) = uVF (z) where zj = 1, zj∗ =

log u
cτ
j∗ log u = c−τj∗ and zk =∞ ∀k ∈ (1, . . . , d) \ {j, j∗}. Then, using (8.1.10) and (8.1.11),

χ
(τ)
j,j∗(u) = 1 + cτj∗ − VF (z) χ̄

(τ)
j,j∗(u) =

log(1− 2u+ u2)

log

(
1− 2u+ u

2−χ(τ)
j,j∗

) − 1.

As we would expect (χ
(τ)
j,j∗ , χ̄

(τ)
j,j∗) = (0, 0) when cj∗ = 0 or τ → ∞ since then we have

independence between the two components at lag τ . In all other cases χ̄
(τ)
j,j∗ = 1, indicating

asymptotic dependence.

For the special case where F is MEV with the logistic dependence function (7.3.5) we

have

C
(τ)
j,j∗(u, u) = u

(
1+c

τ
α
j∗

)α
u

1−cτ
j∗ .

Therefore we obtain

χ
(τ)
j,j∗(u) = 2−

log(C
(τ)
j,j∗(u, u))

log u
= 1 + cτj∗ −

(
1 + c

τ
α
j∗

)α
.

The bivariate logistic results for independent sequences are recovered when τ = 0 or cj∗ = 1,

i.e., χ
(τ)
j,j∗ = 2 − 2α. We have independence (component-wise) when α = 1 so (χ

(τ)
j,j∗ , χ̄

(τ)
j,j∗) =

(0, 0) in this case for any value of cj∗ or τ . For 0 < cj∗ ≤ 1 and fixed α and τ the dependence

level increases towards 2 − 2α as cj∗ → 1, i.e., as serial dependence decreases. Similarly for

0 ≤ α < 1 and fixed cj∗ and τ the dependence level increases towards cτj∗ , the univariate

ARMAX χτ (7.2.9), as α→ 0, i.e., as component-wise dependence increases.

8.2.5 MARMAX simulations and estimation of θ(x)

Here we consider the behaviour of the extremal index and dependence measures (χ, χ̄) for

simulated bivariate MARMAX sequences with common distribution MEV with unit Fréchet

margins and a logistic dependence function. We explore a possible multivariate declustering

method and apply it to the simulated sequences.

Recall that the extremal index, θ(x) is equal to θ(x̃) with x̃ = (x̃1, . . . , x̃d) and x̃j =

xj/
∑d

j=1 xj . Moreover,
∑d

j=1 x̃j = 1 so one can define x̃d as a function of x̃1, . . . , x̃d−1. Since
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0 < x̃j < 1 we can think of each x̃j as a weight on component j. In the bivariate setting

we can simply set x̃1 = ω and x̃2 = 1 − ω so we have the extremal index in terms of one

parameter. For common distribution F = exp

(
−
(∑d

j=1 x
− 1
α

j

)α)
where 0 < α ≤ 1 the

bivariate ARMAX extremal index is

θ(ω, 1− ω) = 1−

((
ω
c1

)−1/α
+
(

1−ω
c2

)−1/α
)α

(ω−1/α + (1− ω)−1/α)α
,

for 0 < ω < 1. Figure 8.2.1 shows the extremal index, θ(ω, 1 − ω), and estimators thereof

against ω based on bi-variate ARMAX simulations where F has a logistic dependence struc-

ture with α and c indicated in the title. It is immediately clear, as must be the case, that

θ(0, 1) = θ1 = 1 − c1 and θ(1, 0) = θ2 = 1 − c2. When there is independence between

components, i.e., when α = 1, θ(ω, 1− ω) is a linear function of ω whereas the stronger the

between-component dependence is, the more the component with the stronger serial depen-

dence, i.e., the larger cj dominates. Let c1 > c2 (as in Figure 8.2.1), then for 0 < ω < 1
2 and

small α, θ(ω, 1−ω) ≈ θ1 = 1− c1 and θ(1
2 ,

1
2) is closer to θ1 than θ2 - how close and how fast

θ(ω, 1− ω) moves towards θ2 with increasing ω is determined by α.

One declustering method is to take the weighted maximum over all components at each

time point and then decluster the resulting univariate sequence. We consider intervals declus-

tering (Ferro and Segers, 2003) on the univariate sequence {Z : Zt = max((1−ω)Xt,1, ωXt,2)}

which, using the arguments of Smith and Weissman (1996), has the same extremal in-

dex as θ(ω, 1 − ω). The intervals estimator (7.1.12) for θ(ω, 1 − ω) based on the sequence

{Z}t, t = 1, . . . , 5000 is shown in Figure 8.2.1 (×). We also show the runs estimator with run

length 1(◦) and the empirical estimator from intervals declustering (+) for the Z sequence

with both estimates calculated as the number of clusters identified over the total number of

exceedances. All the estimators considered perform better when more emphasis is placed on

the component with stronger serial dependence (low ω) and underestimate the truth when

ω is large. The bias in the extremal index estimators is smallest the smaller the difference

between the components of c, especially for small values of c.
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8.3 The M4 process

8.3.1 Theory

The MARMAX process of §8.2 is restricted to a certain shape of exceedances, that is extremes

appear as a sudden spike followed by decreasing points until the next large innovation. We

now discuss the M4 process which is a multivariate stationary process for which extremes

can follow different shapes known as signature patterns. The M4 (multivariate maxima of

moving maxima) process was introduced by Smith and Weissman (1994) and is shown to

closely approximate a max stable process. Smith and Weissman (1994) also showed that

the limiting distribution of joint maxima is taken from a max stable process, i.e., it is a

multivariate extreme value distribution, hence motivating the use of M4 processes to study

multivariate extremes.

Let {Zsi : s ≥ 1,−∞ < i <∞} be an array of independent unit Fréchet random variables.

The M4 process is defined as {Xi}−∞<i<∞ where

Xij = max
s≥1

max
−∞<k<∞

askjZs,i−k, j = 1, . . . , d, (8.3.1)

for non-negative constants {askj : s ≥ 1,−∞ < k <∞, 1 ≤ j ≤ d} such that

∞∑
s=1

∞∑
k=−∞

askj = 1 for j = 1, . . . , d.

The M4 process has unit Fréchet margins:

P (Xij ≤ x) = P
(
Zs,i−k ≤

x

askj
, s ≥ 1,−∞ < k <∞

)
=
∏
s≥1

∞∏
k=−∞

exp
(
−
askj
x

)
= e−

1
x ;

and is a stationary process with joint common distribution function

F (x) := P (Xi ≤ x) = P
(
Zs,i−k ≤

xj
askj

, s ≥ 1,−∞ < k <∞, 1 ≤ j ≤ d
)

= P
(
Zs,i−k ≤ min

1≤j≤d

(
xj
askj

)
, s ≥ 1,−∞ ≤ k ≤ ∞

)

=
∏
s≥1

∞∏
k=−∞

exp

(
− max

1≤j≤d

askj
xj

)
= exp

−∑
s≥1

∞∑
k=−∞

max
1≤j≤d

(
askj
xj

) .

(8.3.2)
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Notice that P
(
M̃n ≤ un

)
= Fn(nx) = F (x), i.e., the max-stability property is satisfied.

Similarly, setting l = i− k so 1− l ≤ k ≤ n− l and −∞ < l <∞ when 1 ≤ i ≤ n,

P (Mn ≤ un) = P (Xi ≤ nx, 1 ≤ i ≤ n)

= P
(
Zs,l ≤

nxj
askj

, s ≥ 1, 1− l ≤ k ≤ n− l,−∞ < l <∞, 1 ≤ j ≤ d
)

= P
(
Zs,l ≤ min

1≤j≤d
min

1−l≤k≤n−l

(
nxj
askj

)
, s ≥ 1,−∞ ≤ l ≤ ∞

)
=
∏
s≥1

∞∏
l=−∞

exp

(
− max

1≤j≤d
max

1−l≤k≤n−l

askj
nxj

)

= exp

− 1

n

∑
s≥1

∞∑
l=−∞

max
1≤j≤d

max
1−l≤k≤n−l

(
askj
xj

) .

Smith and Weissman (1994) show that

1

n

∞∑
l=−∞

max
1≤j≤d

max
1−l≤k≤n−l

(
askj
xj

)
→ max
−∞≤k≤∞

max
1≤j≤d

askj
xj

as n → ∞ and lim
n→∞ P (Mn ≤ un) = exp(−

∑
s≥1 max−∞≤k≤∞max1≤j≤d

askj
xj

). Thus the

extremal index of M4 process is

θ(x) =
log( lim

n→∞ P (Mn ≤ un))

log( lim
n→∞ Fn(un))

=

∑
s≥1 max−∞≤k≤∞max1≤j≤d

askj
xj∑

s≥1

∑∞
k=−∞max1≤j≤d

askj
xj

.

8.3.2 Measures of dependence

We now derive the coefficient of asymptotic dependence χ
(τ)
{j,j?} (8.1.10) for the M4 process

starting with the case of 0 lag. We first calculate the copula describing the dependence

structure of all components at the same point in time. Let u = (u, . . . , u) ∈ Rd then

C(u) = P (F1(Xi,1) ≤ u, . . . , Fd(Xi,d) ≤ u)

= exp

−∑
s≥1

∞∑
k=−∞

max
1≤j≤d

(
askj

F−1
j (u)

) using (8.3.2)

= exp

−∑
s≥1

∞∑
k=−∞

(− log u) max
1≤j≤d

askj

 = u
∑
s≥1

∑∞
k=−∞max1≤j≤d askj .
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Thus, using (8.1.10) with C
(0)
j,j?(u, u) = P (Fj(Xi,j) ≤ u, Fj?(Xi,j?) ≤ u), we have for the de-

pendence of components j and j?

χ
(0)
j,j? = 2−

log(C
(0)
j,j?(u, u))

log u
= 2−

∑
s≥1

∑
−∞≤k≤∞

max (askj , askj?)

and from (8.1.11) in §8.1.4 we obtain the dual measure

χ̄
(0)
j,j? = lim

u→1

2 log(1− u)

log(1− 2u+ u
∑
s≥1

∑
k max(askj ,askj? ))

− 1.

For any set C ⊂ D with j? ∈ C we have

1 =
∑
s≥1

∞∑
k=−∞

askj? ≤
∑
s≥1

∞∑
k=−∞

max
j∈C

askj ≤
∑
s≥1

∞∑
k=−∞

∑
j∈C

askj = |C|

so ud ≤ C(0)
j,j?(u, u) ≤ u and thus 0 ≤ χ(0)

j,j? ≤ 1 and 0 ≤ χ̄(0)
j,j? ≤ 1.

Example 1: Let askj = ask∀j then we have complete dependence, C
(0)
j,j?(u, u) = u and

(χ
(0)
j,j? , χ̄

(0)
j,j?) = (1, 1).

In practice we concentrate on 1 ≤ s ≤ S and −K1 ≤ k ≤ K2 where S is the number of so

called signature patterns and (K1 > 0,K2 > 0) are ‘determining’ the range of serial depen-

dence. So askj = 0 for k > K2, k < −K1 or s < S.

Example 2: Let a101 = 1, a112 = 1 and all other askj = 0 so there is only one signa-

ture pattern (S = 1) and serial dependence is only between component 1 and component 2

a lag 1 behind component 1 (K1 = 0,K2 = 1). So Xi1 = max(a101Z1,i, a111Z1,i−1) = Z1,i

and Xi2 = Z1,i−1. Then we have complete independence (at 0 lag), C
(0)
1,2 (u, u) = u2 and

(χ
(0)
1,2, χ̄

(0)
1,2) = (0, 0).

Now, back in the general case, we consider the joint distribution of one component separated
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by some lag τ :

P (Xt ≤ x0, Xt+τ ≤ xτ ) = P
(
Zs,t−k ≤

x0

as,k
, Zs,t+τ−k ≤

xτ
as,k

, s ≥ 1,−K1 ≤ k ≤ K2

)
= P

(
Zs,t−k ≤ min

(
x0

as,k
,

xτ
as,k+τ

)
, s ≥ 1,−K1 − τ ≤ k ≤ K2

)
,

with as,−K1−1 = . . . = as,−K1−τ = 0 and as,K2−τ = . . . = as,K2 . So

C(τ)(u, u) = P
(
Xt ≤ F−1(u), Xt+τ ≤ F−1(u)

)
= P

(
Zs,t−k ≤ (− log u)−1 min

(
1

as,k
,

1

as,k+τ

)
, s ≥ 1,−K1 − τ ≤ k ≤ K2

)
= u

∑
s≥1

∑K2
k=−K1−τ

max(ask,as,k+τ )
.

Thus,

χ(τ) = 2−
∑
s≥1

K2∑
k=−K1−τ

max(as,k, as,k+τ ) χ̄(τ) = lim
u→1

2 log(1− u)

log(1− 2u+ u2−χ(τ)
)
− 1. (8.3.3)

To evaluate (χ(τ), χ̄(τ)) we need to consider various ranges of τ . For simplicity consider

S = 1 (the following results are the same for S ≥ 2) and let r = K1 + K2 + 1 > 1. Then,∑K2
k=−K1

ak = 1 by definition of the M4 process, and

K2∑
k=−K1−τ

max(ak, ak+τ ) =



K2∑
k=−K1

ak = 1 if τ = 0

−K1−1∑
k=−K1−τ

ak+τ +
K2−τ∑
k=−K1

max(ak, ak+τ ) +
K2∑

k=K2−τ+1

ak if 1 ≤ τ < r

−K1−τ+r−1∑
k=−K1−τ

ak+τ +
K2∑

k=−K1

ak = 2 if τ ≥ r.

So by inserting the above results into (8.3.3) we have 0 ≤ χ(τ) ≤ 1 for general τ with

(χ(τ), χ̄(τ)) = (1, 1) when τ = 0 (complete dependence) and (χ(τ), χ̄(τ)) = (0, 0) when τ ≥ r

(independence). For τ < r we have asymptotic dependence as χ̄(τ) = 1 with asymptotic

dependence level χ
(τ)
j? .

It is easy to extend the above ideas to obtain dependence measures over multiple com-

ponents and lags. Let C be the set of components of interest at lag 0 and let j? be the
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component we are interested in at lag τ from the components in C. Then the copula de-

scribing the dependence structure between the components of C and component j? at lag τ

is

C
(τ)
C,j?(u) = P

(
Xt+τ,j? ≤ F−1

j? (u), Xt,j ≤ F−1
j (u) ∀j ∈ C

)
= u

[∑
s≥1

∑K2
k=−K1−τ

maxj∈C(askj ,as,k+τ,j?)
]
.

So for the dependence structure between pairs of components j and j? (j 6= j?) lag τ apart:

χ
(τ)
j,j? = 2−

∑
s≥1

K2∑
k=−K1−τ

max (askj , as,k+τ,j?)

χ̄
(τ)
j,j? = lim

u→1

2 log(1− u)

log(1− 2u+ C
(τ)
j,j?(u, u))

− 1 =

 1 if τ < r

0 if τ ≥ r.

Following the same arguments as above we have in the binary setting (χ
(τ)
j,j? , χ̄

(τ)
j,j?) = (0, 0)

for τ ≥ r, and 0 < χ
(τ)
j,j? < 1, χ̄

(τ)
j,j? = 1 for 0 < τ ≤ r. We do not (necessarily) have

complete dependence (χ
(τ)
j,j? = 1) when τ = 0 since this depends on the dependence between

components at 0 lag also.

Example 2 cont.: We have r = 0 + 1 + 1 = 2 so for lag τ ≥ 2 we have independence

(χ
(τ)
j,j? , χ̄

(τ)
j,j?) = (0, 0). Recall a101 = a112 = 1 and all other askj = 0. For τ = 1, χ̄

(τ)
j,j? = 1 and

χ
(τ)
j,j? = 2−

1∑
k=−1

max (a1kj , a1,k+1,j?)

= 2− (a10j? + max(a10j , a11j?) + a11j) =

 1 if j = 1, j? = 2

0 if j = 2, j? = 1.

So there is complete dependence between component 1 and component 2 one time step ahead

but independence between component 1 and component 2 one time step behind.

8.3.3 Cluster size distribution

A cluster of extreme values occurs when there is a large realisation of Zs?,t? for some t? and

s?. When this occurs Zs?,t? dominates the maximum in (8.3.1) in the neighbourhood of Zs?,t?

resulting in a sequence of related realisations from time t? − K1 to time t? + K2 which we

refer to as an event. The realisations of Xi,j for t? −K1 ≤ i ≤ t? + K2 will be multiples of

Zs?,t? , i.e., (as?,−K1,j , . . . , as?,K2,j)Zs?,t? for j = 1, . . . , d. Here we consider only one signature
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pattern, S = 1, so (8.3.1) simplifies to

Xi,j = max
−K1≤k≤K2

akjZi−k j = 1, . . . , d. (8.3.4)

We define the event At,j in component j starting at time t by

At,j =

{
aijZt+K1 = max

−K1≤k≤K2

akjZt+K1+i−k, i = −K1, . . . ,K2

}
= {Xt+K1+i,j = aijZt+K1 , i = −K1, . . . ,K2} .

Zhang (2002) calculated the probability of this event and Zhang and Smith (2004) show that

such an event occurs infinitely often, i.e., there are an infinite number of times at which the

process {Xt,j}t≤1 is determined by a single large jump and the signature pattern given by the

constants ai,j , i = −K1, . . . ,K2. The probability of two events within K1 + K2 time points

of each other is 0; by definition each event is a sequence of K1 +K2 + 1 random variables so

if the time between two events was less than K1 +K2 + 1 then at least one of these random

variables would overlap leading to contradiction as they have different definitions according

to each event. For example in event Atj we have Xt+K1+i,j = aijZt+K1 whereas in event

At+l,j we have Xt+K1+i,j = ai−l,jZt+l+K1 . It is also shown that events are independent when

there are further apart in time thus:

P (At,j , At+l,j) =

 [P (At,j)]
2 if l > K1 +K2

0 if 1 ≤ l ≤ K1 +K2.

Independent extreme events of the process {Xt}t≥1 are formed from the exceedances of un

in the independent events {At?i }i≥1 =
⋂d
j=1{At?i ,j}i≥1 where {t?i }i≥1 are the times of these

events.

We now derive the cluster size distribution, π(x)(k) given by (8.1.8), for the M4 process

with S = 1. Roughly our calculation is as follows:

π(x)(k) = lim
n→∞

P
(
N

(x)
n ([0, rn/n]) = k

)
P
(
N

(x)
n ([0, rn/n]) > 0

) (8.3.5)

= lim
n→∞

P (‘Exactly k time points in an event A have an exceedance’)

P (‘At least one time point in an event A has an exceedance’)
.

In the limit there is no cluster size larger than the range of temporal dependence therefore the
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numerator of (8.3.5) is 0 for k > K1 +K2 +1. For k ≤ K1 +K2 +1 we consider the numerator

and denominator separately before considering the whole limit. First, the denominator is

1− P (Xt+K1+i,j ≤ un,j , j = 1, . . . , d, i = −K1, . . . ,K2)

= 1− P (aijZt+K1 ≤ un,j , j = 1, . . . , d, i = −K1, . . . ,K2)

= 1− P
(
Zt+K1 ≤ min

j=1,...,d

(
unj

maxi=−K1,...,K2(aij)

))
=

1

n
max
j=1,...,d

(
maxi=−K1,...,K2(aij)

xj

)
+O

(
1

n2

)
. (8.3.6)

Let I? be an arbitrary set of values of size k ≤ K1 +K2 + 1 from the set I = (−K1, . . . ,K2).

For the numerator of (8.3.5) we note that in order to have exactly k exceedances in an event

we need (i) Xt+K1+i,j > unj for at least one component j and for i ∈ I? ⊂ I where |I?| = k

and (ii) Xt+K1+i,j ≤ unj ∀j and for i ∈ I \ I?. For (i) we have, for all i ∈ I?,

Xt+K1+i,j > unj ⇔ aijZt+K1 > unj for at least one component j

⇔ max
j=1,...,d

(aijZt+K1 − unj) > 0

⇔ Zt+K1 > min
j=1,...,d

(
unj
aij

)
⇔ Zt+K1 >

n

bi
⇔ Zt+K1 >

n

b(k)
,

where in the final two steps we have defined bi := maxj=1,...,d

(
aij
xj

)
and ordered these bi, i =

−K1, . . . ,K2 such that b(m) is the mth largest. For (ii) we have, for k < K1 + K2 + 1 and

∀i ∈ I \ I?,

Xt+K1+i ≤ unj ⇔ aijZt+K1 ≤ unj ∀j

⇔ Zt+K1 ≤ min
j=1,...,d

(
unj
aij

)
⇔ Zt+K1 ≤

n

bi
⇔ Zt+K1 ≤

n

b(k+1)
.

When k = K1 + K2 + 1 all elements in the event are exceedances, so I? = I and there is

no upper bound on Zt+K1 - the derivation of π(x)(K1 + K2 + 1) follows below with b(k+1)
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replaced by 0. Putting (i) and (ii) together the numerator becomes for k ≤ K1 +K2

P
( n

b(k)
< Zt+K1 ≤

n

b(k+1)

)
= exp

(
−b

(k+1)

n

)
− exp

(
−b

(k)

n

)

=
1

n
(b(k) − b(k+1)) +O

(
1

n2

)
. (8.3.7)

Thus, taking the limit as n → ∞ of (8.3.7) over (8.3.6) the cluster size distribution for

k = 1, . . . ,K1 +K2 + 1 is

π(x)(k) =



lim
n→∞

1
n(b(k) − b(k+1)) +O

(
1
n2

)
1
nb

(1) +O
(

1
n2

) =
b(k) − b(k+1)

b(1)
if k ≤ K1 +K2

b(k)

b(1)
if k = K1 +K2 + 1

0 otherwise.

We recover the marginal cluster size distribution for the j?th component, (a
(k)
j? − a

(k+1)
j? )/a

(1)
j?

as stated by Robinson and Tawn (2000), by setting xj =∞ for j 6= j?.

Example 3 Consider the 3-dimensional M4 process (8.3.4) with a01 = a12 = a23 = 1 and

aij = 0 otherwise. Then Xt1 = Zt, Xt2 = Zt−1, Xt3 = Zt−2 for all t, i.e., at a given time

point the process is independent across components, however, there is dependence across

components with a time delay (component 2 is the same as component 1 in the previous time

step etc.). We have K1 = 0 and K2 = 2 so π(x)(k) = 0 for k > 3. Ordering x1, x2, x3 such

that x(1) ≥ x(2) ≥ x(3) we have b(i) = 1
x(4−i)

and

π(x)(1) = 1− x(3)

x(2)

π(x)(2) = x(3)

(
1

x(2)
− 1

x(1)

)
π(x)(3) =

x(3)

x(1)
.

(i) Consider x1 = x2 = x3. Then π(x)(1) = π(x)(2) = 0 and π(x)(3) = 1, i.e., every cluster

of extremes is of size 3 with one exceedance in each component at each time point.

(iii) Consider x1 = 2y, x2 = x3 = y. Then π(x)(1) = 0 and π(x)(2) = π(x)(3) = 1
2 , i.e., half

of the clusters are of size 3 with one exceedance in each component at each time point and

the other half of clusters are size 2 consisting of exceedances in components 2 and 3 only.
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(ii) Consider x1 = 3y, x2 = 2y, x3 = y. Then π(x)(1) = 1
2 , π(x)(2) = 1

6 , π(x)(3) = 1
3 and

the expected cluster size is 11
6 .

Example 4 Consider the 2-dimensional M4 process (8.3.4) with a01 = a11 = a21 = 1
3 ,

a32 = a42 = 1
2 and aij = 0 otherwise. Then Xt1 = 1

3 max(Zt, Zt−1, Zt−2) and Xt2 =

1
2 max(Zt−3, Zt−4). We have K1 = 0 and K2 = 4 so π(x)(k) = 0 for k > 5. We have

b0 = b1 = b2 = 1
3x1

and b3 = b4 = 1
2x2

.

(i) If 1
3x1

< 1
2x2

, then π(x)(1) = π(x)(3) = π(x)(4) = 0,

π(x)(2) = 1− 2x2

3x1
π(x)(5) =

2x2

3x1

and E [K] = 2 + 2x2
3x1

. So clusters occur as exceedances in component 2 (so k = 2) or as

exceedances in both components (k = 2 + 3 = 5).

(ii) If 1
3x1

> 1
2x2

, then π(x)(1) = π(x)(2) = π(x)(4) = 0,

π(x)(3) = 1− 3x1

2x2
π(x)(5) =

3x1

2x2

and, letting K denote the random cluster size, E [K] = 3 + 3x1
x2

. So clusters occur as ex-

ceedances in component 1 (so k = 3) or as exceedances in both components (k = 2 + 3 = 5).

(iii) If 1
3x1

= 1
2x2

, we have π(x)(1) = π(x)(2) = π(x)(3) = π(x)(4) = 0 and π(x)(5) = 1. So

all clusters consist of exceedances in both components and are of size 5 in the limit.

All of the derivations in this subsection have been based on the M4 process with S = 1. In

the case of multiple signature patterns there will be a particular s associated with a large

Zs,t+K1 realisation so each extreme event will be dominated by a particular signature pattern

corresponding to this s. Different extreme events will be dominated by a different values of

s and so events will follow a range of signature patterns. The cluster size distribution will

reflect all the signature patterns. For example, if there are two signature patterns with one

short term serial dependence and one long term then the clusters formed will be a mixture

of these.



CHAPTER 8. MULTIVARIATE TEMPORALLY DEPENDENT SEQUENCES 211

0.0 0.2 0.4 0.6 0.8 1.0

0.
20

0.
30

0.
40

0.
50

θ

ω

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y

ω

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 8.3.1: Extremal index θ(ω, 1− ω), 0 < ω < 1 and probabilities of cluster sizes (1-green,
2-red, 3-blue, 4-cyan, 5-black) for Example 2 of §8.3.3. True extremal index and cluster size

probabilities (solid line), runs estimator with run length 1 (o), empirical estimator from intervals
declustering (+) and the intervals estimator (x). Estimates are averages over 100 repeated

simulations of the M4 process with 5000 time points.

8.3.4 M4 simulations and estimation of θ(x)

We now simulate some bivariate M4 processes and discuss the corresponding multivariate

extremal index for varying thresholds. We apply and evaluate declustering methods to these

simulations and compare extremal index estimates and empirical cluster size distributions.

As in §8.2.5 we set x̃1 = ω and x̃2 = 1− ω so we have the extremal index in terms of one

parameter. The bivariate M4 multivariate extremal index is, for 0 < ω < 1,

θ(ω, 1− ω) =

∑
s≥1 max−K1≤k≤K2 max(ask1(1− ω), ask2ω)∑

s≥1

∑K2
k=−K1

max(ask1(1− ω), ask2ω)
.

Figure 8.3.1 shows the extremal index, θ(ω, 1 − ω), and estimators thereof against ω based

on simulations of the bivariate M4 process described in §8.3.3 Example 4. We also show the

cluster size distribution and estimates thereof in Figure 8.3.1 right panel. Rewriting the cases

in Example 4 in terms of ω we have (i) 1
3x1

< 1
2x2
⇔ ω > 2

5 , (ii) 1
3x1

> 1
2x2
⇔ ω < 2

5 and

(iii) 1
3x1

= 1
2x2
⇔ ω = 2

5 . The lowest extremal index value occurs when ω = 2
5 , for this ω

all clusters are of size 5 in the limit and so the extremal index is 0.2. In case (ii) we found

that in the limit clusters are of size 5 with probability 3x1
2x2

= 3ω
2(1−ω) and are of size 3 (shown

in blue) otherwise. The mean cluster size in case (ii) is 3
1−ω so the extremal index is 1−ω

3 , a

decreasing function in ω, and when ω = 0 we recover the extremal index for component 1. In

contrast, when in case (i), the extremal index is an increasing function of ω and the extremal

index for component 2 is recovered at ω = 1.

As in §8.2.5 we consider intervals and runs declustering (Ferro and Segers, 2003) on the
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univariate sequence {Z : Zt = max((1 − ω)Xt,1, ωXt,2)} with length 5000. We show the

mean over 100 such simulations of the intervals estimate (7.1.12) (×), the runs estimate with

run length 1(◦) and the empirical estimate from intervals declustering (+) for each ω. The

intervals estimates are close to the truth whereas the empirical estimates underestimate the

extremal index. The underestimation of the empirical estimates is due to the too small/large

proportion of small/large clusters as a result of the declustering methods – this can be seen

particularly when ω is large as the probability of a cluster of size 2 is underestimated using

the runs method by almost 0.1 and there is a non-zero probability estimate of a cluster of

size 4.

8.4 Summary

In Part III we have discussed the extension of classical extreme value theory to sequences

with serial dependence and to multiple dimensions. Having techniques and understanding of

multivariate temporally dependent extremes is important for companies such as JBA since

losses, caused by extreme river flows, must be aggregated across a region (thus multiple

locations/dimensions) over some period of time. The extreme events modelled need to capture

both the dependence structure between different locations and at different time lags. Here we

explored the theory of multivariate temporally dependent extremes with focus on measures

of dependence; we investigated the multivariate extremal index and cluster size distribution

and extended the coefficient of asymptotic dependence to describe the dependence between

two sets of components some lag τ apart, specifically for pairs of components. We explored

two stationary processes, the MARMAX process (ARMAX in one dimension) and the M4

process and derived the multivariate extremal index and coefficient of asymptotic dependence

for these processes. For the M4 process we also derived the cluster size distribution expanding

on the univariate cluster size distribution in Robinson and Tawn (2000). In simulations of

the MARMAX and M4 processes we focussed on estimation of the multivariate extremal

index using univariate declustering methods. In the thesis discussion (§9.2.3) we discuss the

difficulties of declustering in the multivariate setting and empirical estimation of the cluster

size distribution illustrated with an example bi-variate M4 process.



Chapter 9

Conclusion

9.1 Summary

In this thesis we explored extreme value problems in the analysis of river flow data, particu-

larly after flood events, and the efficient estimation of loss from such events. The thesis cov-

ered three main topics: Extreme values under stopping rules (Part I); efficient loss estimation

(Part II) and extremes of multivariate dependent sequences (Part III). Part I was motivated

by the stochastic nature of the time an analysis takes place due to increased interest after a

flood event. We studied the extent of the inference problems due to the variable sample size

under such ‘stopping rules’ and developed and evaluated new conditional-likelihood methods

which appear to overcome these problems. Part II focused on the improving the efficiency

of the standard (Monte Carlo) procedure used to simulate losses and estimate return levels

from property and flood event information. We focussed on estimation of return levels with

high return periods, using concentration inequalities as part of a novel simulation procedure

which is faster than the standard procedure. We also developed our own tighter concen-

tration inequalities. Finally, modelling flood events can be quite complicated due to the

presence of extreme values occurring at different locations, with strong dependence between

neighbouring locations, and short-term serial dependence (e.g., similar river flow values on

consecutive days). This motivated our exploration of the extreme value theory of multivariate

and dependent sequences in Part III.

9.1.1 Stopping bias

In Chapter 3 we showed that return-level estimators based on the standard likelihood are

positively biased when sampling from the GEV distribution using a fixed-threshold stopping

rule. We proposed two new likelihoods, full conditioning and partial conditioning, based on

conditioning upon the stopping threshold. We found that full conditioning almost eliminates

213
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the bias in the return-level estimators and gives close to the desired coverage but at the cost

of large RMSE. In most cases we found that conditioning on the final observation exceeding

the stopping threshold (partial conditioning) results in return-level estimates with the lowest

RMSE despite the estimator being negatively biased. We noted that the interval widths using

the full and partial conditional likelihoods are smaller the closer the stopping threshold is to

the final observation since the occurrence of the final exceedance becomes more informative

on the tail of the distribution. We investigated the confidence intervals for the return-level

estimates in more depth in Chapter 4 concentrating on data sets similar to the Lune data

set. In particular, in §4.5, we discussed the issues that arise with the profile-likelihood based

intervals when the final observation is close to the stopping threshold.

In Chapter 4 we also considered the standard bootstrap confidence interval and bias-

reducing variations thereof including our own version based on Efron’s bias correction. We

found that the standard bootstrap method results in narrow intervals and poor coverage

whereas the bootstrap variations generally increase coverage but with confidence interval

widths comparable to the profile likelihood based interval widths; the latter is much faster

computationally so remains the preferred confidence interval method. For the variable-

threshold stopping rule we developed an importance-weighted bootstrap to create confidence

intervals including an extension to multiple exceedances of the stopping threshold. These

importance sampling confidence intervals are narrower than the profile likelihood based in-

tervals however they are highly negatively biased due to the negative bias in the return-level

estimators and the resulting bootstrap samples.

Overall, the conditioning estimators we presented in Chapter 3 outperform the standard

estimator when the decision to analyse data at a particular time was triggered by what was

perceived to be a large observation. For the fixed-threshold stopping rule, partial conditioning

has the best combination of RMSE and coverage for a range of ξ with moderate stopping

threshold and particularly when the distribution is heavy tailed, as is the case for most UK

rivers (CEH, 1999). For the variable-threshold stopping rule, full conditioning provides the

best balance of coverage and low RMSE.

9.1.2 Loss Estimation

In Part II we discussed the estimation of the return levels of the loss distribution and our

approaches to increase the computational efficiency of this estimation process. In Chapter 5
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we reviewed known concentration inequalities, particularly for sums of independent bounded

random variables, noting the issues with Jebara’s Bennett refinement in our loss estimation

setting. To better handle cases where the upper bounds on the magnitude of the individual

terms in the sum are not uniform, we developed novel bounds, Chernoff-Hoeffding+ and ++

and Bennett+, improving on the Chernoff-Hoeffding and Bennett bounds respectively. In

each case we exploited the convexity of a key function (see Lemma 5.4.1.3). Our Bennett+

concentration bound was the most consistent in its good performance out of all the con-

centration inequalities considered, particularly when the independent random variables had

differing upper bounds and a very small expectation.

In Chapter 6 we used the concentration inequalities discussed in Chapter 5 as part of

a novel approach, the ‘exclude method’, to improving the computational efficiency of the

loss estimation procedure. Our method reduces the number of simulations by not simulating

from (i.e., excluding) years which are very unlikely to change the estimate of the quantile.

The years to be discarded are determined using an upper bound on the non-equivalence

probability; the probability that the t-year return-level estimate using the ‘exclude method’

differs from the t-year return-level estimate obtained when simulating from all the years.

This upper bound is a function of concentration bounds on the losses in each year of the

event set. For high return periods the results using the exclude procedure are very promising

- substantial computational effort can be saved while ensuring the return-level estimate is

almost always the same as that using the standard procedure.

The exclude method was developed with the estimation of high return levels in mind -

for small return periods there is no or little computational saving. However, our criterion

for deciding on the years to discard is very conservative in two ways: (i) we imply that only

an estimate exactly equal to the standard estimate is acceptable rather than accepting being

sufficiently close to the standard estimate or, even better, the true return level and (ii) the

upper bound on the non-equivalence probability involved many loosening steps (e.g., (6.2.4))

and is, at best, only as tight as the concentration inequalities. These are both topics for

further work. The former problem requires some sort of measure of distance to the standard

estimate or true return level. For (ii) a tighter upper bound could be found if we take the

return-level estimate to be the median of the quantile estimates of each simulation rather

than the mean. This would allow the m/2 − 1 smallest quantile estimates to differ to those

using the standard procedure.
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In §6.3 we discussed a method to estimate the return levels with low return periods

using the normal approximation and Berry-Esseen error. Using the normal approximation

to the yearly loss distributions saved substantial computational effort and the return-level

estimates based on such simulations performed well. The issue with just using the normal

approximation is that we have no measure of how close the return-level estimates will be to the

standard return-level estimates (or to the true return level). This motivated the incorporation

of the Berry-Esseen bound into a loss estimation procedure using the normal approximation.

Unfortunately, for many years in our test event set the error in the normal approximation

was too large for the Berry-Esseen procedure to work well, however, this should improve with

larger portfolios.

9.1.3 Extremes of dependent and multivariate sequences

Finally, in Part III we discussed the extension of classical extreme value theory to sequences

with serial dependence and to multiple dimensions. As part of this work we investigated

the multivariate extremal index and cluster size distribution and extended the coefficient of

asymptotic dependence to describe the dependence between two sets of components some

lag τ apart, specifically for pairs of components. We explored two stationary processes, the

MARMAX process (ARMAX in one dimension) and the M4 process and derived the multi-

variate extremal index and coefficient of asymptotic dependence for these processes. For the

M4 process we also derived the cluster size distribution. In simulations of the MARMAX and

M4 processes we focussed on estimation of the multivariate extremal index using univariate

declustering methods. More exploration of declustering in the multivariate setting is the

subject of further work.

9.2 Possible further work

9.2.1 Stopping Bias

In Chapter 3 we considered two stopping rules; one based on a fixed threshold and one based

on past return-level estimates since the decision to ‘stop’ and analyse data would in part be

based on both past experience and thresholds set due to current infrastructure. Our work

attempted to simplify the true decision making procedure by using stopping rules based on the

occurrence of a single large observation exceeding some threshold. An analysis may instead be
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prompted by a prolonged period of quite large (but not necessarily ‘extreme’) observations or

the observation of large values at many locations simultaneously (or within in a short period

of time). Such stopping criteria requires more complex, multivariate, analysis to account for

serial dependence and the dependence between observations at nearby locations building on

the theory of Chapters 7 and 8.

Another area of further work is the investigation of stopping rules on data with a long-term

trend, such as river flows gradually increasing over the years. The fixed-threshold stopping

rule may be less appropriate in this setting, in particular it might become necessary to change

the threshold after a certain number of years. Nonetheless, doing this is probably not too

unrealistic since, for example, the height of a flood defence might be increased if there has

been evidence of higher flow in recent years. The variable-threshold stopping rule is more

robust to data with an underlying trend as it is directly a function of the observed data.

Finally, as we saw in Chapter 4, in many cases the full-conditioning method leads to wide

profile-likelihood based confidence intervals. Bootstrap-based intervals were found to have

smaller intervals but poorer coverage and the contest between interval width and coverage

was seen in all the various bias-corrected methods compared. However, it appears reasonable

that some reduction in width should be possible without drastically reducing the coverage;

more investigation into confidence intervals in the stopping rule setting could be useful.

9.2.2 Loss simulation and return level estimation

Improving concentration inequalities in the loss estimation setting

The concentration inequalities we have discussed and developed apply to any sum of indepen-

dent, bounded random variables. More of our knowledge of the actual distribution (weighted

sum of Betas) could also be employed to find a tighter bound for our particular loss estimation

setting rather than the general setting considered so far. Also more research directions could

be opened up since the bound itself does not need to be tractable to be useful in reducing

computational efficiency.

A possible extension to the Chernoff-Hoeffding inequality is to split the random variables

into groups with different upper bounds, using the information of these different upper bounds

to obtain tighter concentration bounds than just using cmax as the upper bound for all Xi.

The indices of the random variables can be split into J mutually disjoint sets such that for

every j ∈ 1, . . . , J we have cMj−1 < ci ≤ cMj ∀i ∈ Ij where 0 = cM0 < cM1 < . . . < cMJ
= cmax
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and Xi ≤ cMj∀i ∈ Ij . In the Chernoff-Hoeffding proof the step from (5.3.14) to (5.3.15)

is achieved by the bound eλci < eλcmax . Now using the bounds eλci < e
λcMj for every

i ∈ Ij , j ∈ 1, . . . , J we arrive at the bound:

P (Sn ≥ E [Sn] + nt) ≤

1 +
1

n

J∑
j=1

njpj(e
λcMj − 1)

n

e−λn(cp+t), (9.2.1)

where nj = |Ij | and pj = 1
nj

∑
i∈Ij pi. It is likely that numerical optimisation will be re-

quired to minimise (9.2.1) over λ > 0, however, this is only an issue if said optimisation is

computationally expensive.

In our results of §6.1 we saw that in our setting the Chernoff-Hoeffding bounds and vari-

ations thereof are poorer (often substantially so) than the Bennett, Bennett+ and Bernstein

bounds; it is unlikely that the improvements conjectured here will lead to bounds as ‘good’

as these, nevertheless, they could be useful in other settings and a variation of this idea could

also be applied to other inequalities such as the Bennett inequality. On the other hand, the

Bennett(+) concentration bounds are fairly tight and the resulting discard sets using the

exclude procedure are almost as large as they can be for high return periods. This suggests

that any improvement to the concentration inequalities is unlikely to make much difference to

the performance of the exclude procedure. A better way forward would be to consider ways

of improving the exclude procedure and/or completely different methods. We now consider

an idea to improve the former and focus on the latter in subsequent subsections.

Separating risk and event losses by variance

The exclude procedure of §6.1 reduced the computational cost of return-level estimation by

reducing the number of years simulated. We now focus instead on reducing the computational

effort needed to simulate the total loss in a given year by reducing the number of risk and

event losses simulated.

There are a large number of risk and event combinations for which the simulated water

depths are very small and so contribute little to the total loss of the event. Simulating these in-

creases the computation time, however, they cannot simply be ignored since these small losses

aggregated over a large number of such events may contribute substantially to the total loss.

One consideration could be to circumvent this computational effort by bounding the losses or

crudely replacing losses by their expected value from such event and risk combinations and
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Figure 9.2.1: Histograms of variance of the loss from event and subrisk combinations. Left: All
combinations. Right: Combinations with variance lower than 11465217, the median variance.

simulate losses only from more volatile event and risk combinations. Our idea is to separate

the risks (for each event) into ‘low-variance risks’ and ‘high-variance risks’, simulating only

losses from the ‘high-variance risks’. We denote the total loss in year y from high-variance

risks by Shiy =
∑

e∈Ey
∑

r∈R Le,r1{Var(Le,r)≥γ} and Sloy =
∑

e∈Ey
∑

r∈R Le,r1{Var(Le,r)<γ} for

low-variance risks, where the threshold, γ, can be chosen, for example, by inspecting the

histogram of variances of the loss from all event and risk combinations (which are given in

the damage distribution table).

One way to include the contribution of ‘low-variance’ risks without simulation would be

to use, for each year, the expected total loss of all such risks in the year, E
[
Slowy

]
, rather

than simulating m times from the loss distributions of each ‘low-variance’ event and risk

combination. This would reduce the simulations needed in Step 1 of the standard procedure

(§5.1.6).

Another approach which uses more information from the ‘low variance risks’ whilst not

resorting to computationally expensive simulation is to find bounds on the loss contribution

of such risks in each year using concentration inequalities. The sum of the simulated losses

(from ‘high variance’ risks) and the bound on loss from low variance risks in a particular year

can be treated as a simulation of total loss in that year. Then one can find upper and lower

t-year return-level estimates, q
ub,(i)
t and q

lb,(i)
t , as in Steps 2b and 3 of the standard procedure

(in the same manner as in the Berry-Esseen procedure).

Both approaches described above could possibly be used in conjunction with the exclude

procedure, however some thought would be needed to find the discard set; the return-level

estimates will differ from the standard estimate and so one would need an alternative to
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the non-equivalence probability, rather some sort of measure of ‘closeness’ to the standard

estimate, to obtain a discard set.

If a large number of risks can be classified as ‘low variance’ then the methods in this

subsection may reduce the computational cost substantially. For example, if 50% of subrisk

and event combinations have low-variance loss then we have 0.5Nm simulations rather than

Nm (recall N is the total number of possible flood event and subrisk combinations over all

years). A disadvantage of this method is that there is some arbitrariness in what we decide

to be high or low variance. There would be more thought and testing needed to determine

an appropriate threshold above which we consider the variance to be ‘high’. Some sensitivity

analysis would be required since there would be a trade off between computational efficiency

and the estimation performance depending on the threshold chosen.

Importance Sampling

In Chapter 2 we presented importance sampling, a variance reduction method. Can an

importance sampling scheme enable us to estimate return levels more efficiently by sampling

more frequently from the high loss region of the yearly loss distribution? The standard

procedure used for loss estimation (§5.1) is to estimate the cdf of the yearly loss distribution

and invert it to find quantile estimates. Let f(s) be the target distribution, the (univariate)

distribution of total loss in any single year. Then the unbiased importance sampling estimator

of the cdf corresponding to that used in the standard procedure is, for simulation i:

Î
IS(i)
t =

1

ny

ny∑
y=1

ny
ny + 1

1{s(i)y ≤qt}
w(s(i)

y ),

where (s
(i)
1 , . . . , s

(i)
ny) is an independent sample of size ny from q(s), the proposal distribution

of yearly loss, and w(s) = f(s)
q(s) is the importance weight. The proposal distribution needs

to ‘cover’ the target distribution, have heavier tails and preferably be easy to simulate from.

The best proposal distributions will have high density around the quantiles of interest so

there will be a high probability of sampling higher losses.

A major obstacle of such an importance sampling scheme shown here is the calculation of

the importance weights. In our loss estimation setting we do not know the target distribution,

f(s), and so cannot calculate weights. Therefore in order to use importance sampling we

would need to focus on proposals with a known relationship to the target distribution. One
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possibility, for which the importance weight is tractable, is to focus on the part of the yearly

loss distribution which determines whether there is a flood or not for each risk and event

combination in a particular year. Recall that the true probability of flooding is pe,r for event

e and risk r. We can instead sample qe,r = logit−1(log(pe,r/(1− pe,r)) + c) for some positive

tuning constant c so more high probabilities of flooding are sampled. For each risk and event

combination this skew towards flood events is then accounted for by the weight pe,r/qe,r if

we simulate that there is a flood, and (1− pe,r)/(1− qe,r) if not. Then the product of these

ratios over all events and risks in a year give us the importance weight.

Latin Hypercube Sampling and Conditional Monte Carlo

In Chapter 2 we reviewed two other variance reduction methods: conditional Monte Carlo and

Latin Hypercube sampling. The latter method should be easily applied to our loss estimation

problem by considering the random elements contributing to the yearly loss i.e., we would

need to write S as some function of U where the elements of U a standard uniform random

variables determining the year, the probability of each event and subrisk combination etc.

Note that in some sense our procedure is already stratified over the element of U describing

the year since we sample once from each year in the 1000 year set.

For conditional Monte Carlo in our loss estimation setting it is not clear what auxiliary

random variable, Y , we could condition on. The auxiliary random variable needs to be

something that doesn’t contain all the information about S (for example, a partial sum of

losses in the year) but crucially we want P (S ≤ s|Y ) to be easy to compute. This would

require more careful thought for future work.

Splitting

Another approach to make loss estimation more efficient is to consider ways to steer simula-

tions to the region of interest (high loss). For a particular year, rather than simulating the

loss for an entire portfolio this process could be split up over a number of sub-portfolios (e.g.,

streets or towns as opposed to the whole country). In analogy to splitting methods (§2.2.3),

the ‘process’, Xy(t), is the cumulative total loss over the sub-portfolios in a particular year

and at each ‘time step’, t, the loss due to a randomly selected sub-portfolio is realised and

added onto the current total loss. Thus ‘time’ in this setting is the number of sub-portfolios

added. Since sub-portfolios are randomly selected we expect the gradient to be approximately
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constant so trajectories can be used to decide which years are most likely to achieve high

total losses over the whole portfolio.

A simple method would be to discard the simulations from the half of the years with the

lowest cumulative loss after a certain number of sub-portfolios have been added. Alternatively,

since the less promising years may still contribute to the quantile of interest, instead of simply

discarding all the simulations from the years with lower losses we could reduce the number

of simulations from these years.

An extension to this idea, related to the approach of §9.2.2, could be to split the sub-

portfolios into sets of low, medium and high variance portfolios and simulate from the high

variance portfolios first. This would result in different gradients for the first, second and final

section of the simulation but the gradients within each segment would be approximately con-

stant if the sub-portfolios are randomly selected within these sets. With this procedure it may

be feasible to use concentration inequalities to bound the contribution to the loss distribution

of the low variance sub-portfolios thus reducing the number of simulations further.

9.2.3 Extremes of dependent and multivariate sequences

In our work on extremes of multivariate dependent sequences we focused on the properties of

such sequences and estimation of measures such as the multivariate extremal index. In the

univariate setting we described (and applied to an ARMAX process) declustering methods

which allow us to identify independent events over a time series with the maxima of the events

following a generalised Pareto distribution. Identification of events is much more complex in

the multivariate setting. Firstly it is not clear how an event/cluster should be formed across

margins – do they necessarily need to occur in the same time frame? How do we account for

events happening independently in each margin? Or multiple events in one margin during

one event in another margin? Secondly it is unclear what information we can/should extract

from the identified events – are we interested in the componentwise maxima or the values of

all components simultaneously where (at least) one component has its maximum value in the

event?

For a brief discussion we illustrate in Figure 9.2.2 declustering on the bi-variate M4

process, {(Xt,1, Xt,2)}, (8.3.4) with a01 = 0.7, a11 = 0.3 and ai2 non-zero for i = 0, . . . , 11

giving a signature pattern (shown in Figure 9.2.3) of a large peak followed by a smaller

peak. The areas in blue are the clusters found using intervals declustering (§7.1.3) on the
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Figure 9.2.2: Bi-variate M4 process declustered component-wise (blue areas) and using intervals
declustering on Z with ω = 0.5 (red areas).
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Figure 9.2.3: Signature pattern for component 2 in declustering examples.
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Figure 9.2.4: Empirical cluster size distributions based on clusters formed from a simulated M4
process. Left: Univariate intervals declustering in each component, middle: Intervals declustering on
Z, right: Nadarajah’s declustering method. True cluster size probabilities are shown by red crosses.
The multivariate extremal index (MVEI) estimates based on these empirical distributions are also

shown.

individual components whereas in red are the clusters found using intervals declustering on

{Zt : Zt = max((1 − ω)Xt,1, ωXt,2)}5000
t=1 where ω = 0.5. The pairs shown in the top two

panels of Figure 9.2.2 as thick red dots are independent cluster peaks in each margin with

the corresponding value in the other margin. These pairs are not necessarily independent

temporally despite the cluster maxima being independent in each margin, rather we may

have multiple pairs from the same independent cluster, for example the pairs at 1950 and

1953.

The component with stronger serial dependence (component 2 here) dominates the declus-

tering procedure; here the two independent clusters identified between 1965 and 1980 in com-

ponent 1 are merged into one cluster when declustering the Z sequence and the clusters at

1900, 1940 and 2020 are no longer identified. So if one defines events over all components

by the start and end times of the clusters identified using intervals declustering on the Z

sequence, then information is lost about independent events in the margin with weaker serial

dependence. Nadarajah (2001) presents two multivariate declustering methods which aim to

capture the missing information of such events by (i) grouping events which occur too close

together in time into a smaller set of independent events and (ii) by forming lower dimen-

sional sets of independent events over components with lower temporal dependence which

would be ‘lost’ when creating events over all components.

In Figure 9.2.4 we compare the empirical cluster size distributions and extremal index
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estimates for some of the declustering methods discussed here. The true extremal index for

our example is 0.3658 and the true probabilities of each cluster size are marked by red crosses.

In the first panel we simply took the cluster sizes to be the union of the sizes in each component

separately hence assuming both independence between components and that the events in

each component did not overlap. Clearly this is a false assumption and this is reflected in

a slight bias towards smaller cluster sizes and an overestimate of the extremal index. The

second panel shows the cluster size distribution from intervals declustering on the sequence

Z. This distribution is fairly close to the true cluster size distribution and the empirical

extremal index estimate is only slightly too small. The final panel shows the distribution of

cluster sizes determined using Nadarajah’s declustering procedure. This procedure extracts

independent pairs as events and so it is not clear how to define a cluster size, here the size

was taken to be the difference of time from the first exceedance in one of the grouped events

to the last exceedance. This leads to a bias towards larger clusters, due to the grouping of

close events, and so a negatively biased extremal index estimate.

Finally, we saw in Figure 8.2.1 for MARMAX simulations that estimation of the multi-

variate extremal index is poorer when there is low component-wise dependence and a high

difference in temporal dependence across margins. Low component-wise dependence could

occur as a result of lag between the process in each margin so it seems sensible to reduce

this lag or adjust for it some way in estimation of the extremal index and/or declustering

methods. It may be useful to develop a scheme which uses the measure χ(τ) (§8.1.4) since

empirical estimates of χ(τ) will be largest at the lag where dependence between components

is strongest.

We have seen that there are many open problems in the area of multivariate and tem-

porally dependent extremes – in particular declustering and the identification of events is

unclear. Smith and Weissmann’s technique of combining the series of each component into

one univariate time series and then declustering is effective for the estimation of the multi-

variate extremal index, but it is not clear how to identify events in the individual components

using such a method. In the univariate setting we saw that intervals declustering is an effective

and theoretically justified method – the extension of this theory and declustering technique to

multiple dimensions is one direction further work could pursue. Another idea, as mentioned

above, is to incorporate other dependence measures such as χ(τ) into a declustering method

so that more knowledge of the dependence structure is being utilised.
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Appendix A

Appendix to Chapter 3

A.1 Proof of results from Chapter 3 §3.2

A.1.1 Proof of Proposition 3.2.3.1

For simplicity we denote ck by c. Sampling from some general distribution with the first

stopping rule, we have:

E
[

1

N

]
=

∞∑
n=1

F̄ (c)
F (c)n−1

n
= − F̄ (c)

F (c)
log(F̄ (c)),

where F (x) and F̄ (x) = 1 − F (x) are the CDF and survival function of the distribution of

Xi, i = 1, . . . , n. Thus,

E
[
XN

]
= E

[
1

N
E

[
N∑
i=1

Xi|N = n

]]

= E
[

1

N
((N − 1)E [X|X ≤ c] + E [X|X > c])

]
= E [X|X ≤ c] + E

[
1

N
(E [X|X > c]− E [X|X ≤ c])

]
= E [X|X ≤ c] + E

[
1

N

]
(E [X|X > c]− E [X|X ≤ c]).

Specifically for sampling from the exponential distribution:

E
[

1

N

]
=

βc

eβc − 1
.

By the memoryless property of the exponential distribution:

E [X|X > c] = E [X] + c =
1

β
+ c,
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and rearranging E [X] = F (c)E [X|X ≤ c] + F̄ (c)E [X|X > c] gives

E [X|X ≤ c] =
1

F (c)

[
1

β
− F̄ (c)

(
c+

1

β

)]
=

1

β
− cF̄ (c)

F (c)
. (A.1.1)

Therefore, for the exponential distribution,

E
[
XN

]
=

1

β
+

c

eβc − 1

(
βc

1− e−βc
− 1

)
. (A.1.2)

For the standard estimator based on the full sample we have 1/β̂std = XN , the sample mean.

The first part of Proposition 3.2.3.1 then follows from (A.1.2).

If the final data point is excluded from the sample then all included samples are from the

distribution truncated at c, so, from (A.1.1),

E
[

1

β̂ex

∣∣∣N > 1

]
= E [X|X ≤ c] =

1

β
− c

eβc − 1
,

leading to the expression in the second part of Proposition 3.2.3.1.

A.1.2 Proof of Theorem 3.2.4.1 in Chapter 3

We start by defining the following key quantities for each k ≥ 1,

Sk := (n0 + k)Xk = n0X0 +
k∑
j=1

Xj Vk :=
Xk

Sk
.

Marginally Sk ∼ Gamma((n0 +k)α, β) and Vk ∼ Beta(α, (n0 +k)α); we denote their marginal

densities as:

fSk(sk) ∝ s
(n0+k−1)α−1
k e−βsk

fVk(vk) ∝ vα−1
k (1− vk)(n0+k−1)α−1.

The stopping time, N , is n if Xn > γXn−1 and Xi < γXi−1 for 1 ≤ i < n. However,

Xn > γXn−1 ⇔ Xn >
γ

n+ n0 − 1
(Sn −Xn)

⇔
(

1 +
γ

n+ n0 − 1

)
Xn > γ

1

n+ n0 − 1
Sn

⇔
(

1 +
γ

n+ n0 − 1

)
Vn >

γ

n+ n0 − 1
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⇔ Vn >
γ

n+ γ + n0 − 1
.

So the stopping rule can be written purely as function of the V s. Explicitly, we stop at time

n if Vn >
γ

n+γ+n0−1 and Vi <
γ

i+γ+n0−1 for 1 ≤ i < n.

We define the statement An ··= “V1, . . . , Vn, Sn are mutually independent”. Below, we

will show by induction that An holds for all n ≥ 1. Thus Xn ⊥⊥ Vi ∀i ≤ n; the distribution

of Xn is independent of whether or not the stopping rule has been triggered. Therefore, XN

conditioned on N = n is equivalent to the mean of n i.i.d. Gamma(α, β) random variables,

as stated in the theorem.

An−1 ⇒ An: If An−1 holds then the joint pdf of V1, . . . , Vn−1, Sn−1 can be factorised:

fn−1(v1, . . . , vn−1, sn−1) = fSn−1(sn−1)

n−1∏
i=1

fVi(vi),

Consider the change of variables (V1, . . . , Vn−1, Sn−1, Xn) → (V1, . . . , Vn−1, Vn, Sn), where

Xn = SnVn and Sn−1 = Sn(1− Vn). The Jacobian for this transformation is:

|J | =
∣∣∣∣∂(v1:n−1, sn−1, xn)

∂(v1:n, sn)

∣∣∣∣ =

∣∣∣∣∣∣In−1 0

0 A

∣∣∣∣∣∣ = sn.

where In−1 is the (n− 1)× (n− 1) identity matrix and

A =
∂(sn−1, xn)

∂(vn, sn)
=

−sn 1− vn

sn vn

 .
So, since Sn−1 and V1, . . . , Vn−1 are independent of Xn,

fn(v1:n, sn) = fn−1(v1:n−1, sn−1(sn, vn))fX(x(sn, vn))|J |

∝

(
n−1∏
i=1

fVi(vi)

)
(sn(1− vn))(n0+n−1)α−1e−βsn(1−vn)(snvn)α−1e−βsnvnsn

=

(
n−1∏
i=1

fVi(vi)

)
s(n+n0)α−1
n e−βsnvα−1

n (1− vn)(n0+n−1)α−1

∝
n∏
i=1

fVi(vi)fSn(sn) .

So An holds.
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A1 holds: We must show that V1 and S1 are independent. We do this by using the change

of variables (X0, X1)→ (V1, S1) to show that the joint pdf of V1 and S1 factorises.

We have

fX0,X1
(x0, x1) ∝ xn0α−1

0 e−n0βx0xα−1
1 e−βx1

and X1 = S1V1 and X0 = 1
n0
S1(1− V1). So Jacobian for the transformation is:

∣∣∣∣∂(X0, X1)

∂(V1, S1)

∣∣∣∣ =

∣∣∣∣∣∣ − s1
n0

s1

1
n0

(1− v1) v1

∣∣∣∣∣∣ =
s1

n0
.

Thus the joint pdf of V1, S1 is:

fV1,S1(v1, s1) ∝ s1(s1(1− v1))n0α−1e−n0β(s1(1−v1)/n0 × (s1v1))α−1 e−βs1v1

= s
(n0+1)α−1
1 e−βs1vα−1

1 (1− v1)n0α−1

∝ fS1(s1)fV1(v1), as required.

A.2 Properties of the GEV shape parameter

A.2.1 Fixed-threshold stopping rule

The shape parameter, ξ, is important in determining the tail behaviour. Figure A.2.1 shows

the relative bias, variance and RMSE of each of the estimators when sampling using the fixed-

threshold stopping rule for ξ = 0.2 and −0.2 (top and bottom rows respectively). Judged by

RRMSE, we find that `pc is generally best for moderate to large k, with clear benefits for

ξ = −0.2; however `fc has generally quite similar RRMSE and low bias. As one would expect

the lighter the tail of the distribution, the smaller both the relative variance and, in most

cases, the relative bias of the shape parameter estimators resulting in smaller RRMSE. To help

understand why these RRMSE results arise we now look at more detail at the performance

of the four estimators.

The standard MLE for the shape parameter, ξ̂std, is almost always positively biased

while ξ̂ex leads to quite large negative bias (with E(ξ̂ex) < 0.1 when ξ = 0.2 and k < 50

(Figure A.2.1)) since we lose information about the upper tail of the underlying distribution.

In particular, the fitted distribution typically has a lighter tail and can even have an upper
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Figure A.2.1: Shape parameter estimates when sampling from the GEV distribution with
(µ, σ) = (0, 1) using the fixed-threshold stopping rule with threshold ck and ξ = 0.2 (top) and

ξ = −0.2 (bottom) both plotted against k. Left: relative bias, centre: relative variance, right: relative
RMSE, using: standard likelihood (red), excluding the final observation (black), full conditioning
(green) and partial conditioning (blue). Based on 105 replicated samples with the historical data

created using approach (3.4.2).

end point which could be less than the excluded observation. Unlike all other estimators

considered, the variance of ξ̂ex is not substantially lower when the tail is lighter and so has

quite large RRMSE when ξ = −0.2.

The partial conditioning method generally has ξ̂pc lower than the truth however, for

moderate k, they consistently have low variance relative to the other methods over a range of

ξ. Therefore, partial conditioning provides ξ estimators with the lowest RRMSE for k > 100.

In contrast, `fc leads to very little bias in ξ estimates for k > 100 but the variance can be

large, particularly when ξ = 0.2 with k < 100. This is in agreement with Molenberghs et al.

(2014) findings that the full-conditional estimator has poor precision despite it’s unbiasedness.

However, unlike in Molenberghs et al. (2014), we find that, in our context, full conditioning

can improve upon the standard estimator especially when the stopping threshold is high (i.e.,

for large k).
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A.2.2 Variable-threshold stopping rule

Properties of the shape parameter estimators under the variable stopping rule are shown in

the supplementary material of Barlow et al. (2020). We find that in the variable threshold

setting ξ̂std has very low bias (similarly recall in Chapter 3 §3.2.4 when sampling from the

gamma distribution with this stopping rule we found the standard return-level estimator was

unbiased) whereas all other ξ estimators are negatively biased, with ξ̂ex having the largest

negative bias out of all the estimators for both values of ξ considered. We find that ξ̂std also

has the lowest RRMSE of the estimators. Despite ξ̂std performing well under the variable

threshold stopping rule, this is not always the case for the `std return-level estimators.
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Appendix to Chapter 4

B.1 Profile-likelihood based confidence intervals
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Figure B.1.1: Log CI width vs log sample size for the 50-year (left) and 1000-year (right) return
level estimates. Profile likelihood confidence intervals found using the standard likelihood (red),

excluding the final observation (black), full conditioning (green) and partial conditioning (blue) based
on 5000 samples from the GEV distribution with parameters equal to the standard MLEs for the

Lune data and sample size determined by the fixed-threshold stopping rule
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Figure B.1.2: CI widths (left) and CI widths/MLE (right) for the 50-yr (top) and 1000-yr (bottom)
return level using k = 50 and Lune MLE to create samples of size 48.
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Figure B.1.3: CI widths (left) and CI widths/MLE (right) for the 50-yr (top) and 1000-yr (bottom)
return level using k = 500 and Lune MLE to create samples of size 48.
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50 −year return level, k= 100 , n=48

500 1000 1500 2000 2500 3000 3500 4000

0
20

40
60

80
10

0

%
 o

f C
Is

 c
on

ta
in

in
g 

x 
va

lu
e

x

200 −year return level, k= 100 , n=48
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1000 −year return level, k= 100 , n=48
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50 −year return level, k= 500 , n=48
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Figure B.1.4: CIs for the 50/200/1000-year return levels (from left to right) using k = 50, 100, 500 (top to bottom) and the Lune MLE to create samples of
size 48 using the fixed-threshold stopping rule with threshold ck.
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B.2 Comparing bootstrap-based confidence intervals
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Figure B.2.1: Coverage, % of lower bounds below xy, % of upper bounds xy of confidence intervals
for the y-year return level, xy, found using different confidence interval methods with `std (red), `ex

(black), `fc (green) and `pc (blue). Primary data sets simulated from GEV (θ̂
Lune

std ) with sample size
determined by the fixed-threshold stopping rule with stopping threshold c50 (left) and c500 (right).

Bootstrap samples are created from the same sampling process as the primary data set with no
restriction on sample size.
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Figure B.2.2: Coverage, % of lower bounds below xy, % of upper bounds xy of confidence intervals
for the y-year return level, xy, found using different confidence interval methods with `std (red), `ex

(black), `fc (green) and `pc (blue). Primary data sets simulated from GEV (θ̂
Lune

std ) with sample size,
n, determined by the fixed-threshold stopping rule with stopping threshold c50 (left) and c500 (right)

such that n = 48. Bootstrap samples are created from the same sampling process as the primary data
set with no restriction on sample size.
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Figure B.2.3: Box plots of confidence interval widths for x50, the 50-year return level, using the 5
confidence interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 50. Crosses indicate the mean confidence interval width for each method.
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Figure B.2.4: Box plots of confidence interval widths for x1000, the 1000-year return level, using the
5 confidence interval methods considered. Primary data sets and bootstrap samples are the same as
for Figure 4.3.1 with k = 50. Crosses indicate the mean confidence interval width for each method.
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Figure B.2.5: Box plots of confidence interval widths for x50, the 50-year return level, using the 5
confidence interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 500. Crosses indicate the mean confidence interval width for each method.
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Figure B.2.6: Box plots of confidence interval widths for x1000, the 1000-year return level, using the
5 confidence interval methods considered. Primary data sets and bootstrap samples are the same as
for Figure 4.3.1 with k = 500. Crosses indicate the mean confidence interval width for each method.
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Figure B.2.7: Confidence intervals for x50, the 50-year return level, using the 5 confidence interval
methods considered. Primary data sets and bootstrap samples are the same as for Figure 4.3.1 with

k = 50.
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Figure B.2.8: Confidence intervals for x1000, the 1000-year return level, using the 5 confidence
interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 50.
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Figure B.2.9: Confidence intervals for x50, the 50-year return level, using the 5 confidence interval
methods considered. Primary data sets and bootstrap samples are the same as for Figure 4.3.1 with

k = 500.
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Figure B.2.10: Confidence intervals for x1000, the 1000-year return level, using the 5 confidence
interval methods considered. Primary data sets and bootstrap samples are the same as for

Figure 4.3.1 with k = 500.
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B.3 Optimisation issues near the boundary
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Figure B.3.1: Standard likelihood for each combination of σ and ξ given fixed x200 and c = 1739
over a range of x200 values. Low/high likelihood regions are coloured in blue/yellow with grey being

outside the parameter space. The black/red crosses are the MLEs using the optimisation/grid method
respectively.
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Figure B.3.2: As Figure 4.5.1 but for x200 values around the discontinuity.
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Figure B.3.3: Top: MLE of scale(left) and shape(right) parameters given the x200 value on the
x-axis. Bottom: Estimated upper end point (left) and profile likelihood (right) over different x200

values. The black/red points refer to the optimisation/grid method respectively with the full
conditional likelihood with c = 1739. The blue crosses are at the MLE using the grid method and the
red vertical line on some of the profile likelihood plots is the estimated upper end point at the MLE.
The blue dotted and dashed lines are the thresholds to obtain the 99% and 95% confidence intervals

respectively.
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Figure B.3.4: As Figure B.3.3 but with c = 1735.
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Figure B.3.5: As Figure B.3.3 but with c = 1730.
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Figure B.3.6: Top: MLE of scale(left) and shape(right) parameters given the x200 value on the
x-axis. Bottom: Estimated upper end point (left) and profile likelihood (right) over different x200

values.
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Figure B.3.7: Full conditioning profile likelihood, Pl(x200), for values of x200 around the
discontinuity without/with a shift away from boundary in the initial parameters (left/right). The

black/red points refer to the optimisation/grid method respectively.
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Figure B.3.8: As Figure B.3.3 but with initial parameters shifted away from the boundary in the
optimisation method.
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Figure B.3.9: As Figure B.3.8 but with c = 1735.
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Figure B.3.10: As Figure B.3.8 but also using the GP approximation when G(c) close to 1.



Appendix C

Appendix to Chapter 5

C.1 Proof of Hoeffding’s Inequality (Theorem 5.3.4.1)

Proof For some fixed λ > 0 (chosen later) we have by Chernoff’s inequality (5.3.7):

P (Sn ≥ E [Sn] + nt) ≤ exp(−λnt)
n∏
i=1

E [exp(λ(Xi − E [Xi]))]

= exp(−λnt)
n∏
i=1

E [exp(λYi)] . (C.1.1)

Now we prove an upper bound on E
[
eλY

]
known as Hoeffding’s Lemma (as in proof of

Theorem 2 in Hoeffding (1963)). For any real valued random variable, Y = X − E [X], with

b ≤ X ≤ c:

E
[
eλY

]
≤ c− E [X]

c− b
eλ(b−E[X]) +

E [X]− b
c− b

eλ(c−E[X]) ((5.3.2) applied to Y )

= exp
(

log
[
eλ(b−E[X])

(
1− ω + ωeλ(c−b)

)])
(where ω = (E [X]− b)/(c− b))

= exp(g(z)),

where g(z) = −ωz+ log(1−ω+ωez) and z = λ(c− b). The Taylor expansion of g(z) around

0 is g(z) = g(0) + zg′(0) + z2

2 g
′′(η) for some η between 0 and z. Now g(0) and g′(0) are 0 and

g′′(η) ≤ 1
4 so g(z) ≤ z2

8 . Thus,

E
[
eλY

]
≤ exp

(
λ2(c− b)2

8

)
. (C.1.2)

So, following on from (C.1.1):

P (Sn ≥ E [Sn] + nt) ≤ exp(−λnt)
n∏
i=1

(
1 +

λ2(ci − bi)2

8

)
(Hoeffding’s Lemma (C.1.2))

≤ exp(−λnt) exp

(
λ2
∑n

i=1(ci − bi)2

8

)
,

248



APPENDIX C. CONCENTRATION INEQUALITIES 249

using the inequality 1 + x ≤ ex. The right hand side is minimised at λ = 4nt/
∑n

i=1(ci − bi)2

and thus we arrive at (5.3.9).

C.2 Proof and exploration of Proposition 5.3.9.1

Define h(x) = (1 + x) log(1 + x)− x,

pB(t) := exp

(
− Var (Sn)

a2
max

h

(
namaxt

Var (Sn)

))
and pCH(t) := exp

(
−nDKL

(
cp+ t

cmax

∣∣∣∣∣
∣∣∣∣∣p̄
))

.

Then we have the following two inequalities:

Bennett

P (Sn ≥ E [Sn] + nt) ≤ pB(t) 0 < t < ā = c̄− cp. (C.2.1)

Chernoff-Hoeffding

P (Sn ≥ E [Sn] + nt) ≤ pCH(t) p̄cmax − cp < t < cmax − cp. (C.2.2)

For small p and when all ci = c the Bennett bound is almost equal to but slightly larger than

the Chernoff-Hoeffding bound.

Proposition (Recalling Proposition 5.3.9.1)

Let pCH(t) and pB(t) as defined in equations (C.2.2) and (C.2.1). Define ρ := (1−pmin)/(1−

p2/p̄). If ci = c ∀i then

− 1

n
log pCH(t) = p̄h

(
t

cp̄

)
+

(t/c)2

2(1− p̄)
+O

([
t

c

]3
)
.

for t ≤ εā for some 0 < ε < 1. Furthermore, if t/[cp̄] > b for any fixed b > 1 then

− 1

n
log pB(t) = p̄h

(
t

cp̄

)
× 1

1− pmin
ρ{t/[cp̄]−log(1+t/[cp̄])}/h(t/[cp̄]) ×

{
1 +O

(
[log ρ]2

)}
.

Both bounds are p̄h(t/[cp̄]) modulo a small correction. For the correction term in pB, pminp̄ ≤

p2 ≤ pmaxp̄ , so 1 ≤ ρ ≤ (1− pmin)/(1− pmax) and ρ = 1 when pi = p ∀i. In the latter case

− 1
n log pB = ph (t/(cp)) /(1−p). Further, [x− log(1+x)]/h(x) is positive and decreasing from

1 (when x = 0) to 0 as x → ∞, so the correction term in − 1
n log pB(t) becomes irrelevant
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Figure C.2.1: Bounds and approximations for our example with fixed p = 0.0135. The dark grey
dashed line is p̄h(t/[cp̄]), the solid lines are the actual CH (green) and Bennett (magenta) bounds.
The dashed lines are as in the proposition but without the O term with colour corresponding to the

relevant concentration inequality.

as t/[cp̄] becomes large. Thus, when t and c are fixed and p → 0, the Bennett correction

becomes negligible since ρ→ 1 and the exponent of ρ→ 0. In contrast the positive correction

term for −(1/n) log pCH only becomes negligible as t/c becomes small and is larger than that

for pB when pi = p ∀i or t is large enough.

Figures C.2.1 and C.2.2 show the bounds and approximations based on the proposition

(including p̄h(t/[cp̄]) in dark grey) and Figure C.2.3 shows the difference: − 1
n log(pCH) −

(− 1
n log(pB)). The solid and dashed green lines in Figures C.2.1 and C.2.2 are − 1

n log pCH(t)

and − 1
n log pCH(t) without the O term: ph (t/(cp̄)) + 1

2(t/c)2/(1− p̄), respectively. The solid

and dashed magenta lines are− 1
n log pB(t) and− 1

n log pB(t) without theO term: p̄h (t/(cp̄))×

ρ{t/[cp̄]−log(1+t/[cp̄])}/h(t/[cp̄])/(1− pmin), respectively.

Example (Figure C.2.1): c = 1, pi = 0.0135 ∀i.

In this case pmin = p̄ = p so ρ = 1 and the Bennett bound is p
1−ph

(
t
p

)
(magenta lines in

Figure C.2.1 are identical). The correction term (t/c)2

2(1−p̄) for the Chernhoff-Hoeffding bound is

much larger than the correction of the Bennett bound; this difference increases with increasing

t/p (Figure C.2.3 left panel).
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Figure C.2.2: Bounds and approximations for our example with P ∼ Beta(0.3, 22). The dark grey
dashed line is p̄h(t/[cp̄]), the solid lines are the actual CH (green) and Bennett (magenta) bounds.
The dashed lines are as in the proposition but without the O term with colour corresponding to the

relevant concentration inequality.
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Figure C.2.3: (− log(pCH)− (− log(pB))/n against t/cp with c = 1. Left: Fixed p = 0.0135, Right:
P ∼ Beta(0.3, 22). Positive values indicate that the CH bound is smaller than the Bennett bound.
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Example (Figure C.2.2): c = 1, P ∼ Beta(0.3, 22)

We have p̄ ≈ 0.0135, p2 ≈ 0.00075, pmin = 5 × 10−12 so ρ ≈ 1.06 and 0 < t < 25cp̄ = ā.

For large t we have the same behaviour as for fixed p (Figure C.2.2 right) but for t < 6 the

correction for CH is less than than for Bennett making the former bound larger for small t

(Figure C.2.3 right and Figure C.2.2 left).

Proof [Proposition 5.3.9.1] Let `B := − 1
n log pB(t) and `CH := − 1

n log pCH(t), where we

suppress the dependency on t for simplicity of presentation. Firstly, since ci = c for i =

1, . . . , n, amax = c(1− pmin), and

Var (Sn)

namax
=

1

nc(1− pmin)
c2

n∑
i=1

pi(1− pi) =
c(p̄− p2)

1− pmin
=
cp̄

ρ
.

Thus,

`B =
1

ρ(1− pmin)
p̄h

(
ρ
t

cp̄

)
.

Set g(y) = log h(exp(y)) = log [{1 + exp(y)} log{1 + exp(y)} − exp(y)]. Then, after some

algebra,

g′(y) = exp(y)
log{1 + exp(y)}

h(exp(y))
=
x log(1 + x)

h(x)
,

g′′(y) =
exp(y) [log{1 + exp(y)}]2 − exp(3y)/{1 + exp(y)}

[h(exp(y))]2
=
x [log(1 + x)]2 − x3/(1 + x)

h(x)2
,

where x = exp(y). Now |g′′(y)| is bounded for y ≥ 0. Define x0 = t/(cp̄) and y0 = log(x0),

then

log h(ρx0) = g(y0 + log ρ) = g(y0) + log ρ× g′(y0) + r,

where the remainder term, r = O
(
(log ρ)2

)
provided x0 ≥ b > 1. Thus,

h(ρx0) = h(x0)× ρg′(y0) × exp(r) = h(x0)× ρx0 log(1+x0)/h(x0) exp(r).

Bringing this all together we obtain:

`B =
1

1− pmin
p̄h

(
t

cp̄

)
ρx0 log(1+x0)/h(x0)−1 exp(r)

=
1

1− pmin
p̄h

(
t

cp̄

)
ρ[x0−log(1+x0)]/h(x0) exp(r),
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as required.

Since ci = c for i = 1, . . . , n,

`CH = DKL

(
cp̄+ t

cmax

∣∣∣∣∣
∣∣∣∣∣p̄
)

= DKL

(
p̄+

t

c

∣∣∣∣∣
∣∣∣∣∣p̄
)

=

(
p̄+

t

c

)
log

(
1 +

t

cp̄

)
+

(
1− p̄− t

c

)
log

(
1− p̄− t/c

1− p̄

)
.

Now h′(x) = log(1 +x) and h′′(x) = 1/(1 +x) so h′(0) = 0 and h′′(0) = 1. For x ≥ −ε where

ε < 1, |h′′′| ≤ 1/(1 − ε)2; hence, the Taylor expansion gives h(x) = x2/2 + O(x3). Setting

x = −(t/c)/(1− p̄) we have that for x ≥ −ε, i.e., t ≤ εā

(
1− p̄− t

c

)
log

(
1− p̄− t/c

1− p̄

)
= (1− p̄)(1 + x) log(1 + x) = (1− p̄)[h(x) + x]

= (1− p̄)
[
x+ x2/2 +O(x3)

]
= (1− p̄)

[
− (t/c)

2(1− p̄)
+

(t/c)2

(1− p̄)2
+O

(
(t/c)3

)]
= − t

c
+

(t/c)2

2(1− p̄)
+O

(
t3

c3

)
.

So

`CH = p̄h

(
t

cp̄

)
+

(t/c)2

2(1− p̄)
+O

(
t3

c3

)
.

C.3 Issues with Jebara’s Bennett refinement

The inequality of Jebara (2018) appears to be strictly tighter than Bennett’s for fixed c and

p as claimed, however, as we saw in §5.3.8, when c and/or p are not fixed with some p being

extremely small there is a considerable number of cases for which the bound does not perform

as well as Bennett and may even do much worse. If λ?Q (5.3.25) were the minimiser of (5.3.24),

the bound would indeed be strictly tighter, however, in some settings this is not the case.

This is because the true minimum of (5.3.24), which we will denote λ?, is not the same as

the minimum of the sum of the quadratic bounds, λ?Q.

Looking more in depth at the performance of Jebara’s bound for different n, p, c and

t values we can construct many more examples where Jebara is not performing optimally,

particularly when p is small. For simplicity we consider cases where p is fixed and let t = ā/k
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Figure C.3.1: Examples of Jebara’s bound being sub-optimal. The curve
∑n
i=1 bi(λ) (solid black)

and curves bi(λ), i = 1, . . . , n (solid grey) and their quadratic bounds (dashed grey) against λ. The
sum of the quadratic bounds are in dashed black and the dashed red line indicates λ?Q. Left

(Example 1): n = 5, p = 10−4, c1 = 5, ci = 1, i = 2, . . . , 5, t = ā/20. Right (Example 2): n = 10,
p = 0.013, t = ā/10.

for some k > 1 so Jebara’s bound is

P (Sn > E [Sn] + nt) ≤ exp

(
n∑
i=1

bi(λ
?
Q)

)
(C.3.1)

where

bi(λ) = log

(
p

1− p

[
eλci(1−p) − 1− λci(1− p)

]
+ 1

)
− λci(1− p)

k
,

λ?Q =

∑n
i=1 c

2
iλi∑n

i=1 c
2
i

= c1λ1

∑n
i=1 ci∑n
i=1 c

2
i

and

λi =
1

ci

{
k − 1

1− p
+

1

pi
− 1

1− p
W

(
exp

[
k − 2 +

1

p
+ log (k − 1)

])}
.

The quadratic bounds (5.3.26) are, for each i:

c2
i (1− p)2

1− e1−1/p

(λ− λi)2

2
+ bi(λi).

We can also write nt as some multiple, nsd, of the total standard deviation, σ =
√
p(1− p)

∑
c2
i :

nsd =
c̄

k

√
n(1− p)
c2p

.
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Example 1:

First, we consider a simple if extreme example, with n = 5, for which Jebara’s refinement

results in a probability bound larger than 1. Consider 5 binary variables, Xi, i = 1, . . . , 5 with

0 ≤ X1 ≤ c1 = 5, 0 ≤ Xi ≤ ci = 1 for i = 2, 3, 4, 5 and p = 10−4. Suppose we want to find an

upper bound on the probability: P (S5 − E [S5] ≥ 5t), where S5 =
∑5

i=1Xi and t = ā/20 (so

5t ≈ 8.4σ). Figure C.3.1 (right panel) shows the individual bi(λ) against λ (solid grey), the

quadratic bound on b1(λ) (dashed grey), the sum,
∑5

i=1 bi(λ), to be minimised is in black and

the minimiser of the sum of the quadratic bounds, λ?Q (red dashed). The sum of the quadratic

bounds is not shown on the plot since it is 42 at its minimum, λ?Q. The curve,
∑5

i=1 bi(λ),

is minimised at ∼1.38 leading to a bound of ∼0.591. However λ?Q ≈ 1.95 and inserting this

into (C.3.1) leads to a value greater than 1.

Example 2:

Our next example is of a more realistic setting similar to that of the simulations in §5.3.9 Fig-

ure 5.3.1. We consider 10 binary random variables Xi ∼ ciBern(p) with p = 0.013 and

Ci ∼ Exp(1) and let t = ā/10 (which results in nsd ≈ 2.1). Figure C.3.1 (left panel) shows

the individual bi(λ) against λ (solid grey), their quadratic bounds (dashed grey), the sum,∑10
i=1 bi(λ), to be minimised is in black and the red dashed line indicates λ?Q, the minimiser of

the sum of the quadratic bounds (black dashed). It is clear that
∑10

i=1 bi(λ
?
Q) >

∑10
i=1 bi(λ

?).

This results in an upper bound on P (S10 ≥ E [S10] + 10t) of approximately 0.561 using λ?Q

compared to approximately 0.505 at the optimal λ?. Bennett’s bound in this setting is 0.553

so Jebara’s Bennett refinement is slightly looser than Bennett.

In the loss estimation setting we will have a range of c values and many small p values and

so it is likely that Jebara’s Bennett refinement will not provide tight bounds reliably. Also,

in all cases considered, when the refinement is tighter, it is only a slight improvement on

the Bennett refinement we introduced in §5.4.2. For these reasons we do not consider Jebara

further.
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Appendix to Chapter 6

D.1 Investigating the effect of event set size

In §6.1 we briefly discussed the effect of the number of years, ny, in the event set on the discard

sets calculated with our exclude method. In particular, the percentage of discarded years

generally reduces in size when the number of years in the event set is increased, especially for

low return periods. We now investigate this observation by looking in detail at the behaviour

of the two terms, b1(u; t) (6.2.3) and b2(u; t) (6.2.4), of the non-exceedance probability for a

set of ny years, Y, and subset of ñy years, Yñy ⊂ Y. We illustrate with an example of the

estimation of the 5-year return level using the exclude method with Bennett’s inequality for

ñy = 500 and ny = 1000. We choose our subset, Y500, of years from the 1000 year subset

by ordering the years by expected loss and choosing every other year in this sequence to be

in the subset Y500. In this way we ensure that our subset of years has similar characteristics

to the full set of years, in particular we should have a similar percentage of years which are

prone to high losses etc.

The discard set is only present in term b2(u; t) of the non-equivalence probability bound;

for a fixed threshold, u, this term increases as the discard set size increases whereas for a

fixed discard set, D, it is monotonically decreasing in u. Thus the largest discard set possible

is restricted by how large the threshold, u, can be. Figure D.1.1 shows b2(u; t), with εu+,y

determined by Bennett’s inequality, plotted against the threshold for a range of discard set

sizes (indicated by different coloured curves). The dashed line indicates the restriction on

b2(u; t) such that b1(u; t)+ b2(u; t) < ε◦ with ε◦ = 0.001. The restriction on u comes from the

term b1(u; t) in the non-equivalence probability bound; the term b1(u; t) will only be smaller

than ε◦ as long as the threshold u is small enough such that all εu−,(k) in the product are less

than ε◦. We see that a slightly larger percentage of years (approximately 27.5% compared

with 23.5%) can be discarded from the subset Y500 than from the full 1000-year set Y. This is

256
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Figure D.1.1: The second term of the non-equivalence probability bound, b2(u; t), for thresholds in
the neighbourhood of the ‘optimal’ threshold. Each unique colour corresponds to a discard set size.

Left: ny = 500 with 28 discard set sizes from 115 (red) to 143 (pink), right: ny = 1000 with 55
discard set sizes from 230 (red) to 285 (pink). The black dashed line indicates the bound ε◦ − b1(u; t)
as in Figure D.1.2 bottom row. The coloured curve which represents the maximum discard set size is

emphasised with filled circles.

due to the restriction imposed by the dashed line and that for a given percentage of discards

the curve is higher for the full 1000-year set (in fact we will see that in our example b2(u; t)

for Y is approximately double b2(u; t) for Y500). For insight we now discuss in detail how

b1(u; t) and b2(u; t) change with differing event set size.

Bound b1(u; t)

As in §6.1 we sort the yearly losses of the years in Y into order of descending expectation

and denote the ordered set of random variables by {S}k=1,...,ny . Let T tñy denote the indices

of Sk which correspond to the top
⌈
ñy+1
t

⌉
years, in terms of expectation, of the subset Yñy

and similarly denote the indices of the top
⌈
ny+1
t

⌉
years, in terms of expectation, of Y by

T tny (note that T tny =
{

1, . . . ,
⌈
ny+1
t

⌉}
by definition). For our construction of the subset Y500

we have T t500 = {1, 3, . . . , 2d501
t e − 1}. First we consider the case where the ‘top’ years of the

smaller event set form a subset of the ‘top’ years of the large event set, i.e., T tñy ⊂ T
t
ny . This

is true for our example due to the way we have chosen the years in the subset Y500. For the
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large event set term is:

b
ny
1 (u; t) = 1−

⌈
ny+1

t

⌉∏
k=1

(
1− εu−,(k)

)
= 1−

∏
k∈T tny\T

t
ñy

(
1− εu−,(k)

) ∏
k∈T tñy

(
1− εu−,(k)

)

> 1−
∏
k∈T tñy

(
1− εu−,(k)

)
= b

ñy
1 (u; t).

That is, for a fixed threshold u, b1(u; t) is larger for the event set of ny years than for

the smaller set of years, Yñy . Consequently, since b1(u; t) is monotonically increasing in u,

the maximum threshold for which b1(u; t) < ε◦ is smaller for larger ny. The top row of

Figure D.1.2 shows b1(u; 5) against threshold for finding the 5-year return-level estimate (i.e.,

t = 5) when ñy = 500 (left) and ny = 1000 (right). The dashed horizontal line is ε◦ = 0.001

and the solid horizontal line is the non-equivalence probability bound at the optimal threshold

(vertical line) and discard set combination. It can be seen that the the first term of the non-

equivalence probability bound reaches ε◦ at a lower threshold for ny = 1000 (∼652000) than

for ñy = 500 (∼670000).

For the subset, Y500, used here we have T t500 ⊂ T t1000, however, for another subset of

years this may not be true. If T tñy 6⊂ T tny we cannot say whether b
ny
1 (u; t) > b

ñy
1 (u; t) or vice

versa, however, if we assume that the subset Yñy is representative of the full set Y we can

deduce relations between b
ny
1 (u; t) and b

ñy
1 (u; t). In particular we assume that the average

εu−,(k) over k ∈ T tñy and over k ∈ T tny are approximately equal, i.e., 1
|T tñy |

∑
k∈T tñy

εu−,(k) ≈
1
|T tny |

∑
k∈T tny

εu−,(k). Now εu−,(k) ≤ 1 for all u > 0 and k ∈ {1, . . . , ny} and, moreover, for

all acceptable thresholds and k ∈ Tny ∪ Tñy we have εu−,(k) ≤ ε◦, so we can approximate

1−
∏
k∈Tny (1− εu−,(k)) ≈

∑
k∈Tny ε

u
−,(k). This approximation is more accurate the smaller the

threshold u is. Then under the assumption on the means of εu−,(k) we have:

b
ny
1 (u; t) ≈

∑
k∈Tny

εu−,(k) ≈
|T tny |
|T tñy |

∑
k∈Tñy

εu−,(k) ≈
dny+1

t e
d ñy+1

t e
b
ñy
1 (u; t). (D.1.1)

In our example the mean assumption is valid due to the way the years were selected so

b1000
1 (u; 5) ≈ d 1001

5
e

d 501
5
e b

ñy
1 (u; t) ≈ 2b500

1 (u; 5). In the ñy = 500 (top left) plot of Figure D.1.2

we see given the threshold the points are almost double the corresponding points in the
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Figure D.1.2: Investigating the bound b1(u; 5) + b2(u; 5) (6.2.5) for the exclude method with
Bennett’s inequality and ε◦ = 0.001. Left: 500-year event set, right: 1000-year event set. The

vertical lines indicate the ‘optimal’ threshold. Top: b1(u; t) from (6.2.3) against threshold, u. The
horizontal lines indicate ε◦ (dashed) and b1(u∗; 5) + b2(u∗; 5) at the optimal combination of threshold,

u∗, and discard set (solid). Middle: b2(u; t) from (6.2.4) at the maximum number of discards
possible given u against the threshold, u. The dashed line indicates the bound ε◦ − b1(u; t). The

points are coloured according to the percentage of discarded years, with blue indicating low numbers
and red indicating high numbers. Bottom: Maximum number of discards such that the upper bound

on non-equivalence probability is less than ε◦ against threshold. The horizontal line indicates the
maximum percentage of discarded years.
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Figure D.1.3: log10(b1(u; 5)) V u when estimating the 5-year return level using the exclude method
with Bennett’s inequality and ε◦ = 0.001. Left: Simulating 500 years, right: 1000 years. The vertical

lines indicate the ‘optimal’ threshold. The horizontal lines indicate ε◦ (dashed) and the
non-equivalence probability bound, (6.2.5), at the optimal combination of threshold and discard set

(solid).

ny = 1000 (top right) plot. In Figure D.1.3 log10(b1(u; 5)) is shown against threshold, the

two curves have almost the same gradient but are shifted by ∼0.25 which is slightly less than

the log10(2) ≈ 0.3 shift under approximation (D.1.1). For larger t b
ny
1 (u; t) is still larger than

b
ñy
1 (u; t) but by a smaller factor.

So if T tñy ⊂ T
t
ny and/or Yñy is representative of Y in terms of lower tail probabilities then

b
ny
1 (u; t) > b

ñy
1 (u; t) given u and the maximum possible threshold will be larger for the subset

Yñy .

Bound b2(u; t)

We now discuss how the discard set size is affected by b1(u; t) and the number of years in

the event set. The middle row of Figure D.1.2 shows the second term of the non-equivalence

probability bound, b2(u; t) (6.2.4), at the maximum number of discards possible given the

threshold indicated on the x-axis. The dashed line indicates the bound due to b1(u; t):

∑
y∈D

εu+,y < ε◦ − b1(u; t) = ε◦ − 1 +

⌈
ny+1

t

⌉∏
k=1

(
1− εu−,(k)

)
,

which is smaller the larger the threshold is. The points are coloured from blue through to

red by increasing % of discarded years. The straight, almost vertical, line patterns seen in
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some places (e.g., around 5 · 105 on the left plot) is due to a range of thresholds resulting in

the same optimal discard set; within this range b2(u; t) decreases as the threshold increases

and the discard set is fixed. All the points on the plot correspond to an acceptable threshold

and discard set (such that the bound (6.2.5) on the non-equivalence probability is less than

ε◦) but the largest discard set is found at the threshold indicated by the vertical line.

With a similar argument as used for the bound b1(u; t) we find that b
ny
2 (u; t) ≈ |D||D̃|b

ñy
2 (u; t).

The assumption made here is that the mean of the upper tail probabilities, εu+,y, of the low

loss years (those which are discarded) are similar for y ∈ D and y ∈ D̃. If one discards the

same percentage of years from both Y and Yñy then the discard sets are related as |D| = ny
ñy
|D̃|

thus the bound b
ny
2 (u; t) will be

ny
ñy

times larger than b
ñy
2 (u; t) at a given threshold u (as seen

in Figure D.1.1).

Maximum percentage of years discarded

The percentage of discarded years increases as threshold increases while ε◦ − b1(u; t) is close

to ε◦ but begins to decrease when u is so large that ε◦− b1(u; t) is close to 0. This behaviour

can be seen in the bottom row of Figure D.1.2 which shows the maximum percentage of years

discarded against threshold; the percentage of discarded years steadily increases as threshold

increases while the term b1(u; t) << ε◦ (Figure D.1.2 top row) and, as b1(u; t) approaches ε◦,

the percentage reaches a peak followed by a steep drop to 0.

We have seen that there are two main effects which can lead to a higher percentage of

discarded years for the smaller subset of years: the bound b1(u; t) restricting the possible

thresholds and the bound b2(u; t) being larger for the larger set of years. In our example with

t = 5 the bound b1(u; t) has a substantial effect on the possible discard set. For ny = 1000

the threshold cannot exceed 6.5× 105 resulting in at most 23.8% of years discarded whereas

for ñy = 500 we can discard a higher percentage of years (27%) since a much higher threshold

(6.9 × 105) is possible. For larger return periods the bound ε◦ − b1(u; t) is more similar for

both sets of years (so on the plots the dashed black lines would be around the same place)

so then the difference in maximum percentage of discards is due to b
ny
2 (u; t) > b

ñy
2 (u; t).

For some more insight, we revisit Figure D.1.1. It is clear from the curves that b2(u; t) is

monotonically decreasing in u when D is fixed and that, given u, b2(u; t) is larger when |D|

is larger, hence the coloured curves have no overlap. We can see how the bound ε◦ − b1(u; t)

restricts the number of discarded years; the curves for larger discard sets do not cross the
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bound and when the threshold is too large (e.g., greater than ∼637000 on the right plot) the

curve corresponding to the maximum discard set is larger than the bound. Note that for

ny = 1000 any threshold in the range 600000− 637551 with |D| = 238 would be acceptable,

the threshold 617346 is chosen to obtain the smallest possible b1(u; 5) + b2(u; 5) bound with

this discard set D. We also see on these plots that b1000
2 (u; 5) ≈ 2b500

2 (u; 5) (for a particular

curve on the left plot the curve with the same colour on the right plot is doubly large in the

y-direction).

In conclusion, if T tñy ⊂ T tny or the subset Yñy ⊂ Y is a ‘good representation’ of the years

in Y then the maximum possible threshold is larger for the subset Yñy and the maximum

percentage of discarded years is larger for the smaller set of years. This behaviour is stronger

the smaller the return period t is. On the other hand if T tñy 6⊂ T
t
ny and the subset is ‘skewed’

towards years with higher or lower losses then it is not clear whether the percentage of years

discarded will be larger for the subset or the full set. More investigation would be needed to

evaluate the impact of an increased number of years in the event set on the performance of

the exclude method.

D.2 Exclude procedure results

No. of kept years
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 1000 1000 1000 1000 1000 1000 1000 1000 703
5 1000 1000 977 977 874 941 1000 1000 310
10 1000 1000 929 762 486 474 922 1000 163
20 1000 1000 778 340 296 280 730 1000 89
50 1000 1000 451 110 98 97 370 907 26
75 1000 1000 367 66 62 57 267 535 20
100 1000 1000 327 44 39 38 226 469 15
150 1000 1000 195 24 24 24 122 293 9
200 1000 1000 175 24 24 24 116 224 9
250 1000 1000 168 21 20 20 100 208 7
500 1000 1000 168 20 19 19 92 170 7

Table D.2.1: Number of years kept out of 1000 years when using the exclude method for each
concentration inequality with ε◦ = 0.0001.
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No. of kept years
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 500 500 500 500 500 500 500 500 355
5 500 500 487 489 363 357 488 500 148
10 500 500 415 239 201 192 403 500 73
20 500 500 329 124 110 107 294 500 45
50 500 500 186 40 38 37 140 267 14
75 500 500 133 20 20 20 93 151 10
100 500 500 130 17 16 15 82 151 10
150 500 500 72 10 10 10 39 82 4
200 500 500 63 8 7 7 33 52 4
250 500 500 63 8 7 7 33 52 4

Table D.2.2: Number of years kept out of 500 years when using the exclude method for each
concentration inequality with ε◦ = 0.001.

No. of kept years
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 500 500 500 500 500 500 500 500 344
5 500 500 489 489 421 414 489 500 156
10 500 500 456 347 238 234 454 500 82
20 500 500 380 164 142 128 353 500 46
50 500 500 219 52 49 47 178 393 14
75 500 500 166 29 25 24 121 224 12
100 500 500 159 20 20 20 109 224 8
150 500 500 98 12 12 12 55 140 4
200 500 500 81 10 10 10 48 84 4
250 500 500 81 10 10 10 48 84 4

Table D.2.3: Number of years kept out of 500 years when using the exclude method for each
concentration inequality with ε◦ = 0.0001.

Percentage of simulations performed
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.6
5 100.0 100.0 100.0 100.0 99.2 99.9 100.0 100.0 70.2
10 100.0 100.0 99.8 97.2 85.0 84.2 99.8 100.0 50.6
20 100.0 100.0 97.6 73.3 68.7 67.2 96.4 100.0 35.1
50 100.0 100.0 82.5 40.2 37.2 37.0 76.0 99.6 15.6
75 100.0 100.0 75.8 28.6 27.7 26.0 65.5 87.8 13.0
100 100.0 100.0 72.0 21.8 20.3 19.9 60.3 83.8 10.5
150 100.0 100.0 55.9 14.9 14.9 14.9 42.9 68.5 7.3
200 100.0 100.0 52.7 14.9 14.9 14.9 41.4 60.0 7.3
250 100.0 100.0 51.6 13.4 13.0 13.0 37.8 57.7 6.1
500 100.0 100.0 51.6 13.0 12.4 12.4 35.6 52.1 6.1

Table D.2.4: Simulated subrisk and event combinations for the exclude procedure as a percentage of
the standard procedure time with 1000 years for each concentration inequality with ε◦ = 0.0001.
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Percentage of simulations performed
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.2
5 100.0 100.0 99.8 99.8 98.0 99.3 100.0 100.0 66.3
10 100.0 100.0 99.1 95.5 81.3 80.5 99.0 100.0 46.8
20 100.0 100.0 96.0 69.5 64.8 63.1 94.3 100.0 32.1
50 100.0 100.0 78.8 37.2 34.4 34.2 72.2 98.6 14.9
75 100.0 100.0 71.9 26.3 25.5 23.9 61.5 84.4 12.3
100 100.0 100.0 68.2 20.6 19.4 19.1 56.3 80.2 10.3
150 100.0 100.0 51.9 14.2 14.2 14.2 39.6 64.5 7.6
200 100.0 100.0 48.8 14.2 14.2 14.2 38.3 56.0 7.6
250 100.0 100.0 47.6 12.8 12.3 12.3 34.9 53.8 6.4
500 100.0 100.0 47.6 12.3 11.9 11.9 32.8 48.0 6.4

Table D.2.5: Simulated subrisk and event combinations for the exclude procedure as a percentage of
the standard procedure time with 500 years for each concentration inequality with ε◦ = 0.0001.

Percentage of simulations performed
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++ BC-MC

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.7
5 100.0 100.0 99.9 99.9 96.1 95.8 99.9 100.0 71.4
10 100.0 100.0 98.2 85.4 80.4 79.0 97.8 100.0 50.1
20 100.0 100.0 93.7 65.2 61.9 61.0 90.8 100.0 38.1
50 100.0 100.0 78.1 35.4 34.3 33.9 69.7 88.5 18.4
75 100.0 100.0 67.6 22.4 22.4 22.4 57.4 72.0 5.1
100 100.0 100.0 67.0 20.6 20.1 19.2 53.5 72.0 15.1
150 100.0 100.0 49.9 15.1 15.1 15.1 34.7 53.5 7.8
200 100.0 100.0 46.2 12.9 11.5 11.5 31.5 41.6 7.8
250 100.0 100.0 46.2 12.9 11.5 11.5 31.5 41.6 7.8

Table D.2.6: Simulated subrisk and event combinations for the exclude procedure as a percentage of
the standard procedure time with 500 years for each concentration inequality with ε◦ = 0.001.
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Figure D.2.1: Comparing performance of our procedure with various concentration inequalities
against the standard procedure with a 500 year event set and ε◦ = 0.001. Left: T , all as a percentage
of T std and right: % of years kept. Usual color scheme for concentration inequalities (Red: Cantelli,
Green + : C-H, Green 4 : C-H+, Green × : C-H++, Blue: Bernstein, Pink ◦: Bennett, Pink × :

Bennett+). The black filled circles is the lower bound BC-MC.
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Figure D.2.2: Comparing performance of our procedure with various concentration inequalities
against the standard procedure with a 500 year event set and ε◦ = 0.0001. Left: T , all as a

percentage of T std and right: % of years kept. Usual color scheme for concentration inequalities
(Red: Cantelli, Green + : C-H, Green 4 : C-H+, Green × : C-H++, Blue: Bernstein, Pink ◦:

Bennett, Pink × : Bennett+). The black filled circles is the lower bound BC-MC.
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Figure D.2.3: Comparing performance of our procedure with various concentration inequalities
against the standard procedure with a 1000 year event set and ε◦ = 0.0001. Left: T , all as a

percentage of T std and right: % of years kept. Usual color scheme for concentration inequalities
(Red: Cantelli, Green + : C-H, Green 4 : C-H+, Green × : C-H++, Blue: Bernstein, Pink ◦:

Bennett, Pink × : Bennett+). The black filled circles is the lower bound BC-MC.
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Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 0
5 0 0 0.03 0.05 0.2 0.2 0.04 0
10 0 0 9 · 10−5 1 · 10−4 9 · 10−5 8 · 10−5 9 · 10−5 0
20 0 0 4 · 10−7 2 · 10−7 2 · 10−8 9 · 10−9 3 · 10−7 0
50 0 0 2 · 10−13 1 · 10−13 1 · 10−19 4 · 10−21 3 · 10−13 0
75 0 0 2 · 10−15 2 · 10−16 1 · 10−29 2 · 10−31 4 · 10−16 0
100 0 0 7 · 10−21 5 · 10−19 2 · 10−35 2 · 10−37 8 · 10−23 0
150 0 0 2 · 10−42 5 · 10−27 2 · 10−56 9 · 10−59 1 · 10−42 0
200 0 0 1 · 10−15 3 · 10−29 2 · 10−62 9 · 10−65 2 · 10−50 0
250 0 0 2 · 10−48 3 · 10−29 2 · 10−62 9 · 10−65 2 · 10−50 0
500 0 0 2 · 10−125 2 · 10−47 5 · 10−116 3 · 10−119 7 · 10−114 0

No. yrs kept 1000 1000 929 762 486 474 922 1000
% simulations 100.0 100.0 99.8 97.2 85.0 84.2 99.8 100.0

Table D.2.7: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 10-year return level non-equivalence probability to be less than ε = 0.0001 (3rd row

of Table D.2.1).

Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 0
5 0 0 0.6 1 1 1 0.7 0
10 0 0 0.007 0.03 0.06 0.07 0.008 0
20 0 0 1 · 10−4 1 · 10−4 1 · 10−4 9 · 10−5 9 · 10−5 0
50 0 0 6 · 10−10 9 · 10−11 4 · 10−12 1 · 10−12 1 · 10−9 0
75 0 0 4 · 10−12 2 · 10−13 1 · 10−15 1 · 10−16 8 · 10−12 0
100 0 0 2 · 10−13 6 · 10−15 1 · 10−18 4 · 10−21 2 · 10−13 0
150 0 0 2 · 10−20 9 · 10−22 6 · 10−33 3 · 10−37 1 · 10−17 0
200 0 0 1 · 10−15 6 · 10−24 3 · 10−37 6 · 10−42 2 · 10−21 0
250 0 0 1 · 10−23 6 · 10−24 3 · 10−37 6 · 10−42 2 · 10−21 0
500 0 0 6 · 10−68 4 · 10−42 2 · 10−76 3 · 10−85 4 · 10−54 0

No. yrs kept 1000 1000 778 340 296 280 730 1000
% simulations 100.0 100.0 97.6 73.3 68.7 67.2 96.4 100.0

Table D.2.8: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 20-year return level non-equivalence probability to be less than ε = 0.0001 (4th row

of Table D.2.1).

Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 1
5 0 0 1 1 1 1 1 1
10 0 0 1 1 1 1 1 0.3
20 0 0 0.2 1 1 1 0.1 0.02
50 0 0 6 · 10−5 3 · 10−5 3 · 10−5 2 · 10−5 6 · 10−5 1 · 10−4

75 0 0 2 · 10−6 2 · 10−7 1 · 10−7 5 · 10−8 2 · 10−6 9 · 10−7

100 0 0 2 · 10−7 5 · 10−9 2 · 10−9 6 · 10−10 1 · 10−7 3 · 10−7

150 0 0 1 · 10−10 5 · 10−13 2 · 10−14 3 · 10−15 3 · 10−10 4 · 10−9

200 0 0 4 · 10−11 4 · 10−14 1 · 10−15 1 · 10−16 6 · 10−11 3 · 10−9

250 0 0 4 · 10−11 3 · 10−14 8 · 10−16 1 · 10−16 5 · 10−11 3 · 10−9

500 0 0 7 · 10−25 8 · 10−30 3 · 10−43 5 · 10−47 1 · 10−18 2 · 10−13

No. yrs kept 1000 1000 451 110 98 97 370 907
% simulations 100.0 100.0 82.5 40.2 37.2 37.0 76.0 99.6

Table D.2.9: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 50-year return level non-equivalence probability to be less than ε = 0.0001 (5th row

of Table D.2.1).



APPENDIX D. LOSS ESTIMATION 267

Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 0
5 0 0 0.2 0.4 1 1 0.2 0
10 0 0 0.0009 0.0009 0.0008 0.0008 0.0009 0
20 0 0 8 · 10−6 2 · 10−6 3 · 10−7 2 · 10−7 5 · 10−6 0
50 0 0 1 · 10−11 1 · 10−12 5 · 10−16 6 · 10−17 2 · 10−11 0
75 0 0 6 · 10−14 2 · 10−15 1 · 10−24 4 · 10−26 8 · 10−14 0
100 0 0 2 · 10−15 4 · 10−17 6 · 10−30 1 · 10−31 2 · 10−15 0
150 0 0 6 · 10−29 4 · 10−25 8 · 10−49 3 · 10−51 9 · 10−27 0
200 0 0 1 · 10−15 2 · 10−27 2 · 10−54 7 · 10−57 7 · 10−32 0
250 0 0 3 · 10−33 2 · 10−27 2 · 10−54 7 · 10−57 7 · 10−32 0
500 0 0 1 · 10−90 2 · 10−45 1 · 10−103 1 · 10−107 3 · 10−74 0

No. yrs kept 1000 1000 862 517 415 398 835 1000
% simulations 100.0 100.0 99.0 86.9 79.8 78.5 98.7 100.0

Table D.2.10: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 10-year return level non-equivalence probability to be less than ε◦ = 0.001 (3rd row

of Table 6.1.1).

Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 0
5 0 0 1 1 1 1 1 0
10 0 0 0.04 0.2 0.3 0.4 0.05 0
20 0 0 0.001 0.0009 0.0009 0.0009 0.0009 0
50 0 0 2 · 10−8 1 · 10−9 8 · 10−11 2 · 10−11 4 · 10−8 0
75 0 0 2 · 10−10 4 · 10−12 3 · 10−14 5 · 10−15 4 · 10−10 0
100 0 0 1 · 10−11 1 · 10−13 4 · 10−16 7 · 10−18 1 · 10−11 0
150 0 0 1 · 10−15 1 · 10−19 1 · 10−29 3 · 10−33 8 · 10−15 0
200 0 0 1 · 10−15 9 · 10−22 1 · 10−33 1 · 10−37 9 · 10−16 0
250 0 0 1 · 10−16 9 · 10−22 1 · 10−33 1 · 10−37 8 · 10−16 0
500 0 0 1 · 10−51 9 · 10−40 1 · 10−71 7 · 10−79 4 · 10−40 0

No. yrs kept 1000 1000 690 274 242 228 618 1000
% simulations 100.0 100.0 95.1 66.4 62.4 60.5 91.9 100.0

Table D.2.11: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 20-year return level non-equivalence probability to be less than ε = 0.001 (4th row

of Table 6.1.1).

Upper bound on non-equivalence probability
Return period Cantelli Hoeffding C-H Bernstein Bennett Benn+ C-H+ C-H++

2 0 0 1 1 1 1 1 1
5 0 0 1 1 1 1 1 1
10 0 0 1 1 1 1 1 0.9
20 0 0 0.6 1 1 1 0.5 0.1
50 0 0 0.0007 0.0004 0.0004 0.0004 0.0007 0.001
75 0 0 3 · 10−5 3 · 10−6 2 · 10−6 1 · 10−6 3 · 10−5 2 · 10−5

100 0 0 3 · 10−6 8 · 10−8 3 · 10−8 2 · 10−8 2 · 10−6 5 · 10−6

150 0 0 4 · 10−9 9 · 10−12 7 · 10−13 2 · 10−13 8 · 10−9 1 · 10−7

200 0 0 2 · 10−9 8 · 10−13 3 · 10−14 1 · 10−14 2 · 10−9 8 · 10−8

250 0 0 1 · 10−9 6 · 10−13 3 · 10−14 8 · 10−15 2 · 10−9 8 · 10−8

500 0 0 3 · 10−19 2 · 10−27 7 · 10−39 6 · 10−41 3 · 10−15 2 · 10−11

No. yrs kept 1000 1000 376 81 78 75 299 621
% simulations 100.0 100.0 76.5 32.9 31.9 31.1 69.2 92.1

Table D.2.12: Non-equivalence probability (rounded to 1 s.f.) when simulating the number of years
necessary for the 50-year return level non-equivalence probability to be less than ε = 0.001 (5th row

of Table 6.1.1).
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Appendix to Chapter 7

E.1 Heffernan and Tawn’s conditional multivariate extremes

model

The Heffernan and Tawn model is based upon an assumption on the asymptotic joint dis-

tribution conditioned on an extreme component. Let X = (X1, . . . , Xd) be a random vector

and consider a set, A, where at least on one component of X is extreme. This set can be

partitioned as

A =
d⋃
j=1

Aj ,

where Aj is the subset of A in which Xj is the largest component of X in terms of the

quantiles of its marginal distribution. Then, using this decomposition the probability of

lying in this extreme set is

P (X ∈ A) =
d∑
j=1

P (X ∈ Aj , Xj > νj) =
d∑
j=1

P (X ∈ Aj |Xj > νj)P (Xj > νj) ,

where νj is the smallest xj in the set Aj and so νj is large. The last term of the sum,

P (Xj > νj), can be easily estimated using the generalised Pareto distribution above some

high threshold.

The original theory of Heffernan and Tawn (2004) assumes X has standard Gumbel

margins (which can be achieved using the probability integral transform) so each Xj has

an exponential upper and lower tail. Here we formulate the theory in Laplace margins, as

described in Keef et al. (2012), since this makes the modelling of negative dependence cases

more parsimonious. Consider the limiting behaviour of P
(
X |j ≤ x−j |Xj > νj

)
where X |j is

the random vector X excluding the jth component. In a similar manner to that described in

§2.1 for univariate extremes, X |j is normalised to avoid degeneracy in the limit as νj →∞.

268
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So, we consider the asymptotic distribution of

Z |j =
X |j − a|j(Xj)

b|j(Xj)
,

where a|j(Xj) and b|j(Xj) are chosen vector functions so that limνj→∞ P
(
Z |j ≤ z|j |Xj > νj

)
=

G|j(x|j) where G|j(x|j) are non-degenerate in all margins.

This assumption leads to the following result for all fixed y > 0:

lim
νj→∞

P
(
Z |j ≤ z|j , Xj − νj > y|Xj > νj

)
= G|j(z|j) exp(−y). (E.1.1)

Therefore, Xj−νj and the residuals, Z |j , are independent conditional on Xj > νj as νj →∞.

Furthermore, the limit distribution of the residuals is G|j(z|j) and the limit distribution of

Xj − νj is exponential. This asymptotic independence is an important aspect of the method

for inference of the Heffernan and Tawn model.

In Laplace margins a|j(x) and b|j(x) can be simplified to αx and xβ respectively with

α = (αi|j , i = 1, . . . , d, i 6= j) and β = (βi|j , i = 1, . . . , d, i 6= j) where −1 ≤ αi|j ≤ 1 and

βi|j ≤ 1 for i 6= j. For example, for the multivariate extreme value distribution with the

logistic model (7.3.5) but here with dependence parameter γ , for all 0 ≤ γ ≤ 1, α = 1, β = 0

and

G|j(z|j) =

1 +
∑
i 6=j

exp

(
−
zi|j

γ

)γ−1

.

The dependence model Heffernan and Tawn 2004 derive from (E.1.1) is a semi parametric

model:

X |j = a|j(xj) + b|j(xj)Z |j Xj > νj ,

where νj is some high threshold, a|j(x) and b|j(x) follow a parametric model and the residuals

Z |j are modelled non-parametrically. The residuals are modelled non-parametrically since

we have no theory to specific the margins or the d − 1-dimensional dependence structure.

All four classes of dependence as described in §7.3.4 can be attained with this model. For

example, (Xi, Xj) are asymptotically dependent if they tend to infinity at the same rate -

this occurs when αi|j = 1 and βi|j = 0 since then Xi = Xj + Zi|j for Xj > νj .
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E.1.1 Inference in the bivariate setting

There are two steps to inference: estimating the normalisation functions parametrically and

non-parametrically modelling the distribution of Z. Here we describe the method for the

bivariate setting, X = (X,Y ), with the simplified normalisation functions, a(X) = αX and

b(X) = Xβ.

Due to the independence in (E.1.1), X and Z can be simulated independently. First

samples for X, which we denote xsim, are obtained by adding ν to simulations from the

standard exponential distribution. Second, if α and β are known, Z can be simulated from

the empirical distribution of Zobs = (Yobs−αXobs)/X
β
obs where Xobs and Yobs are the observed

(X,Y ) pairs with Xobs > ν. This method leads to simulated Xsim and Ysim = αXsim +

Xβ
simZsim values occurring along loci of decreasing density. Since Zsim are from the empirical

distribution, the simulated Ysim values are simply a translation of an observed point, along

a loci determined by α and β, to the simulated X value. In the simplest case when β = 0

the rays are parallel to the line Y = αX, whereas when β > 0 the rays fan outwards

with increasing X. One way to avoid the unrealistic simulation along rays is to smooth the

empirical distribution so samples of Z will not just correspond to observed points (Towe

et al., 2016). This smoothing can be done using a kernel density estimate. Nevertheless

this empirical modelling of the residuals suffers from the curse of dimensionality; Towe et al.

(2019) propose a model-based copula to replace the non-parametric empirical estimate to

reduce this issue in the model.

Following Heffernan and Tawn (2004) inference for the parameters, (α, β), is based on

the working assumption1 that Z is a normal random variable with mean µ and variance σ2.

Under this assumption we have the following model:

Y |X > ν ∼ N(αX +Xβµ,X2βσ2),

from which we can estimate the parameters, µ, σ, α and β using likelihood inference with

the observed (X,Y ) values for X > ν. There are also constraints on α and β that must be

taken into account, in particular −1 ≤ α ≤ 1 and 0 ≤ β < 1. A value of β less than 0 would

lead to strange behaviour as the simulated rays would then converge to the line Y = αX.

1Note that this assumption is only used for the estimation of (α, β) and does not affect the rest of the
modelling procedure
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Keef et al. (2012) propose additional joint constraints, restricting the combinations of α and

β possible.

E.2 ARMAX simulation
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Figure E.2.1: Relative bias of the extremal index estimators: the intervals estimator, θ̂int, and the
empirical estimators, θ̂intem, θ̂run and θ̂LT , when applying to simulated data the intervals method of

Ferro and Segers (2003), the runs method with r = 1, 2, 3, 4 and Laurini and Tawn’s method with
threshold equal to the 80% quantile of the data respectively. Data consists of (for each r and c) 100

simulated ARMAX sequences of length 10000 with unit Fréchet common distribution and c as
indicated on the x-axis with threshold equal to the 95% quantile of the data.
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Figure E.2.2: RMSE of the extremal index estimators: the intervals estimator, θ̂int; and the
empirical estimators, θ̂intem, θ̂run and θ̂LT , when applying to simulated data the intervals method of

Ferro and Segers (2003), the runs method with r = 1, 2, 3, 4 and Laurini and Tawn’s method with
threshold equal to the 80% quantile of the data respectively. Data consists of (for each r and c) 100

simulated ARMAX sequences of length 10000 with unit Fréchet common distribution and c as
indicated on the x-axis with threshold equal to the 95% quantile of the data.
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Figure E.2.3: Quantile-quantile plot of interexceedance times against standard exponential quantiles
when applying the intervals method of Ferro and Segers (2003) to a simulated ARMAX sequence

with unit Fréchet common distribution and c = 0.5 with threshold equal to the 95% quantile of the
data. The vertical line corresponds to the (1− θ̂) quantile, where θ̂ is the intervals estimator, and the

diagonal line has gradient 1/θ̂.
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