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Chapter 1

Introduction

Agents usually follow previously specified coordination and communication protocols

for the sake of working together towards solving various problems. Employing these

rules, however, is challenging due to environmental and technological constraints.

There are circumstances where communication channels are unreliable, and agents

cannot fully trust them to send or receive information. Moreover, particular situations

require the design of agents (e.g., robots) from various parties aiming to solve a

problem urgently, but constructing and testing communication and coordination

protocols for all different agents can be unfeasible given the time constraints [5], [22].

For instance, imagine a natural disaster and hazardous situation where autonomous

robots (agents) have been deployed from different countries or different organisations

for handling the emergency situations, and they need to do it quickly to save lives

by avoiding delays and funding usage but there is no time to construct and test

communication/coordination protocols.

Another example would be planetary rovers which are small, unmanned vehicles

that explore the surface of a planet, taking pictures and performing experiments.

One of the most important and interesting research topics related to space rovers

is the decision-making issue [49]. This problem is beyond simply developing robust

1



Chapter 1. Introduction

navigation strategies for the rovers. However, completing a mission by a rover might

take many years and lots of money to accomplish. Also, space is an unknown

environment, and there might be many harsh, dangerous and unpredictable situations

that cause the rover to fail and be unable to achieve its goals. A solution to mitigate

these concerns is having a team of artificially intelligent planetary rovers, which

must perform a wide variety of tasks with a wide variety of potential team-mates

in uncertain and unsafe environments. A team of rovers can allow us to have a huge

potential for space exploration, reduce cost and increase flexibility and reliability.

However, having these multiple autonomous rovers which are acting simultaneously

causes a coordination challenge. To achieve the best results, they should work

together, and it is not a simple task due to the large distances and harsh environments.

Furthermore, there are situations where different countries send robots to a specific

planet.

These kinds of scenarios define the context denominated as ad-hoc teamwork in

the multi-agent systems community, where agents intend to coordinate and cooperate

to reach common goals, without the definition of any prior communication or

coordination protocols. The agents, aware that other agents may follow different

standards for coordination and communication, will try to learn about the behaviour

and capabilities of their team-mates. As a result of their intelligent coordination, the

agents must be able to accomplish shared goals efficiently, even though they face the

lack of previous information about each other.

In particular, in many relevant domains the coordination can be modelled as

a set of tasks to be accomplished in a distributed fashion (e.g., victims to be

rescued from a hazard, mines that must be cleared, etc). In this way, I present

a novel ad-hoc teamwork method in this research that handles problems where

agents are supposed to complete several tasks in an environment, cooperatively. I

denominate this ad-hoc team situation as Task-based Ad-hoc Teamwork. I define it

2



Chapter 1. Introduction

as a decentralised distributed system where agents decide their tasks autonomously,

without previous knowledge of each other, in an uncertain environment. Hence, there

is no centralised mechanism to allocate tasks to individual agents, or manage their

actions to accomplish the objectives. Agents need to decide, autonomously, which

task they should pursue [23]. The decentralised allocation is quite natural in ad-hoc

teamwork, as we cannot assume that other agents would be programmed to follow

a centralised controller. Creating such partnerships among agents can support the

accomplishment of missions that are hard to deal with individually, reducing the

necessary completion time to achieve all tasks, and minimising the costs related to

the process.

In my research, I assume that every agent follows an algorithm to reach its goal.

Each of these algorithms depends on some parameters, which can be considered

as properties of the agents. I call these algorithms as agent types. Therefore,

instead of developing methods that could learn from scratch any possible policy, a

common approach in the ad-hoc teamwork literature is to consider a set of possible

agent types and parameters, reducing the problem to estimating those [2], [3], [21].

This approach is more applicable than learning models from scratch, as it does not

require such a large number of observations, allowing learning and acting to happen

simultaneously in an on-line fashion, in a single execution. Types could be built

based on previous experiences [18], [19] or derived from the domain [1]. Moreover,

the introduction of parameters for each type allowed more fine-grained models [2].

However, the previous works that learn types and parameters in ad-hoc teamwork are

not specifically designed for decentralised task allocation, missing an opportunity to

obtain better performances in this relevant scenario for multi-agent collaboration.

Other lines of works focus on neural network-based models and learn the policies of

other agents after thousands (even millions) of observations [46], [71]. These methods,

however, would be costly to be applied, especially when domains get more extensive

3



Chapter 1. Introduction 1.1. Summary of Contributions

and more complicated. Similarly, I-POMDP based models [29], [35], [42], [48] could

be employed for reasoning about the model of other agents from scratch, but utilising

such models to larger problems is non-trivial.

On the other hand, some approaches in the literature have also applied a task-

based point of view, inferring about agents pursuing tasks to predict their behaviour

[30]. Although I share some similarities, they have not yet handled learning types

and parameters of agents in ad-hoc teamwork, in a system where multiple agents may

need to help each other to complete a single task.

Meanwhile, a Monte Carlo Tree Search (MCTS) approach is usually employed

to estimate best actions, given the current type estimations [2], [21]. However, the

uncertainty over actions of the team-mates leads to a combinatorial explosion on the

number of potential next states, leading to an exponential number of possible children

for any given node in the search tree.

Consequently, in this work, I present a new method for estimating future behaviour

of the team-mates in the ad-hoc team which is task-based, Online Estimators for Ad-

hoc Task Allocation. Additionally, I introduce the novel on-line planning technique,

UCT-H, which helps to do planning in larger teams.

1.1 Summary of Contributions

1.1.1 Online Estimators for Ad-hoc Task Allocation

My main contribution in this research is presenting a novel algorithm for estimating

the team-mates types and parameters in decentralised task allocation, which is called

On-line Estimators for Ad-hoc Task Allocation (OEATA). This algorithm is light-

weight, enabling running estimations from scratch at every single run, instead of

employing pre-trained models or carrying knowledge between executions. The main
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idea of the algorithm is to observe how the team-mates accomplish their tasks and

keep them as a history of information about other agents. Afterwards, it applies

this information to assess the sets of estimators, to have a better prediction of the

team-mates types and parameters.

I prove theoretically that my algorithm converges to a perfect estimation when

the number of tasks to be performed gets larger. Additionally, I run experiments

in a collaborative foraging domain, considering both full and partial observability

scenarios, where agents collaborate to collect “heavy” boxes together. I show that

OEATA can obtain a lower error in parameter and type estimations in comparison

with the state-of-the-art, leading to significantly better performance in task execution.

I also run a range of different scenarios and find that OEATA still outperforms

previous approaches as the number of agents, scenario sizes, and the number of items

gets larger. Furthermore, I evaluate the impact of increasing the number of possible

types and find that my approach scales better than other algorithms. Finally, I run

experiments where my learning agent does not have the correct type of the other agents

in its pool of possible agent types. In such challenging situations, the performance of

OEATA is still better than the state-of-the-art in several cases.

For this contribution, I published two papers, and one paper is under review.

One of them is On-line Estimators for Ad-hoc Task Allocation: Extended Abstract

[85] which was accepted in Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2020). In this paper, I

presented OEATA in a fully observable environment. My other paper was presented

at 11th International Workshop on Optimization and Learning in Multiagent Systems,

called Decentralised Task Allocation in the Fog: Estimators for Effective Ad-hoc

Teamwork [84]. In this paper, I considered applying OEATA for an agent that has a

partial observation of the environment. Recently, I submitted another paper to the

Journal of Autonomous Agents and Multi-Agent Systems. In this paper, I explained
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OEATA in more detail with more results and a larger number of tasks.

1.1.2 History-based UCT

My other contribution in this thesis is proposing UCT-H, a new version of UCT Monte

Carlo Tree Search, adopting a history-based compact representation. After estimating

types and parameters of the team-mates, the learning agent needs to take the best

action to enhance the performance of the team where a Monte Carlo Tree Search

(MCTS) approach [2], [21] is usually employed to estimate best actions. Nevertheless,

the uncertainty over the actions of the team-mates leads to a combinatorial explosion

on the number of potential next states, leading to an exponential number of possible

children for any given node in the search tree.

Accordingly, to enable large-scale ad-hoc teamwork, I first formalise the problem

as a Markov Decision Process (MDP) and then solve it with UCT-H. Again, I evaluate

my approach in the level-based foraging domain, with larger team sizes than what has

been explored before[2], [6]. I evaluate overall task performance, computational time,

and memory usage. I find that my compact representation achieves better results than

the previous MCTS approaches for any team size, and scales better with the number

of agents. After evaluation, I show that the difference in performance between UCT-

H and UCT tends to increase as the number of agents grows, reaching 65% better

performance with ten agents; and the memory usage of UCT-H is roughly constant,

while memory usage for UCT rises exponentially. I present this method in my paper

called Towards Large Scale Ad-hoc Teamwork [102], which was accepted in the 2018

IEEE International Conference on Agents (ICA).
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1.2 Guide to Thesis

I organise the thesis as follows: Chapter 2 reviews some background for a better

understanding of the main contributions of the research as well as the literature review.

In Chapter 3, I explain how I define my task-based ad-hoc team as well as the state-

of-the-art for estimating type and parameters of the team-mates. Then, Chapter 4 is

focused on my novel approach, UCT-H, and its evaluations. Afterwards, in Chapter

5, I focus more on my other contribution, OEATA following with its evaluations.

Finally, Chapter 6 presents my conclusions and discussions for future work.
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Chapter 2

Background

2.1 Reinforcement Learning

There are different areas in machine learning [11], [61], such as supervised learning

[28] and unsupervised learning [16], in which there are training and testing dataset

to help learning and obtaining results. However, in reinforcement learning [55], [94],

which is another area in machine learning, there is no dataset, and all the learning

processes happen based on experience and interaction to achieve a goal. In this area,

the learner and decision-maker are called the agent, which wants to learn optimal

behaviour in an environment. However, the environment is everything outside the

agent, which it tries to interact with. These interactions occur continuously, with the

agent choosing actions and the environment responding to those actions and rendering

new situations to the agent. Hence, in reinforcement learning, there is one or multiple

agents in an environment, and they receive positive and negative rewards based on

their actions (Figure 2.1). The goal of agents is to find the best actions to maximise

the total reward they receive.

As I explained earlier, in reinforcement learning, there is no batch of data

like in supervised learning. When the agent moves around the environment starts
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Action

Observation

Reward

+1

-1

Figure 2.1: The interaction of agent and environment in reinforcement learning

gathering data and the actions that the agent takes affects the data that it observes.

Therefore, one of the fundamental dilemmas in reinforcement learning is exploration

and exploitation [12], [101]. In exploration, the agent keeps searching for new

strategies and gathering more information that might lead us to better decisions in

the future. However, in exploitation, the agent makes the best decision given current

information and chooses the best strategies found thus far.

2.2 Multi Arm Bandit

A good model for exploration and exploitation is the multi-armed bandit problem. The

multi-armed bandit is a problem [77] in which we need to allocate many alternatives

between a fixed limited set of resources. At the time that we are doing the allocation,

the property of each choice is partially known, but it may become better understood

as time passes or by allocating resources to that choice. However, we are supposed

to find a way that maximises their expected reward. Multi-armed bandit is a classic

reinforcement learning problem that exemplifies the exploration-exploitation trade-off

dilemma.

The name comes from imagining a gambler at a row of slot machines (sometimes
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Chapter 2. Background 2.2. Multi Arm Bandit

known as “one-armed bandits”). In this game, the gambler should decide which

machines to play. Additionally, he should resolve how many times to play each one

as well as the order of playing them. Furthermore, he should think about whether to

continue with the current machine or try a different one [41]. The multi-armed bandit

problem also falls into the broad category of stochastic scheduling. Imagine that you

are in a casino where there are many slot machines that you might want to play and

get a reward (Figure 2.2). However, you do not have any information about how each

is configured. Moreover, we need to know how big is the reward that you get from

a slot machine at each play. Hence, you might think about what would be the best

strategy to achieve the highest long-term rewards.

M1 M2 M3 M4 M5 M6

φ

Figure 2.2: Multi Armed Bandit

In the k -armed bandit problem [105], there are k slot machines with reward

probabilities, {p1, . . . , pK}, over each arm. Therefore, the Multi Armed Bandit is

defined as a tuple (A,R), where:

• A is a set of actions (arms)

• R = P[R = r|A = a] is an unknown probability distribution over rewards.

Hence, at each time step t, by taking any action a on a slot machine, a reward r

is received.
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2.3 Upper Confidence Bound

As I mentioned before, there is a dilemma when we want to have a balance between

exploration and exploitation, as the agent cannot choose to both explore and exploit

at the same time. Accordingly, one solution for it is to apply the Upper Confidence

Bound algorithm [39]. With UCB, the arms will be chosen in a way that keeps a

balance between exploring the less frequently simulated actions (arms) and exploiting

the already promising ones.

There are different variants of the UCB algorithms but in this research, I apply

the UCB1 algorithm[13].

At each given round of t trials, the UCB value of all arms (actions) are represented

by the following:

Qt(a) + c

√
log(t)

Nt(a)
(2.1)

In this equation, Qt(a) denotes the estimated value of action a at time t, where

log(t) denotes the natural logarithm of t, Nt(a) denotes the number of times that

action a has been selected at t trial, and the number c > 0 controls the degree of

exploration. Therefore, the selected action or arm would be the action that has the

maximum UCB value:

At = argmax
a∈A

[
Qt(a) + c

√
log(t)

Nt(a)

]
(2.2)

2.4 Markov Decision Process

Markov Decision Process (MDP) [99] provides a mathematical framework to formalise

sequential decision making. This formalisation is the basis for structuring problems

that we can solve with reinforcement learning. It formally describes a framework used
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to help for making decisions in a stochastic environment where the environment is

fully observable. The goal is to find a solution, with the given information and optimal

actions on each state of the environment. In practice, there are some situations where

given a certain action, the next state is stochastic, which is caused by uncertainty.

For example, we can consider the agent as a robot which is moving around a room.

Accordingly, based on the stochastic nature of the environment, some unexpected

outcomes might happen during execution time. There might be a possibility that the

actual action that the robot takes is going north, but it ends up going west because

of the dynamics of the environment and uncertain situations that might be arising.

It can occur even if the state of the environment is fully observable. There are some

initial concepts that I need to explain before explaining MDP.

2.4.1 Markov Property

The central idea for MDP is the Markov Property, which means that the future is

independent of the past given the present. In other words, a state is Markovian if

and only if:

P[St+1|St] = P[St+1|S1, ...St] (2.3)

Therefore, the next state St+1 is only dependent on the current state St and not any

of the other previous states.

2.4.2 Markov Process / Markov Chain

Markov Process is a memoryless random process, which is a sequence of random states

S1, . . . ,St, with the Markov Property, and is defined as a tuple (S,P) where S is a

finite set of states and P is a state transition matrix which defines the transition

probability for all St to all possible successor states St+1. Therefore, for a Markovian
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state s and successor state s′, the state transition probability is defined by :

Pss′ = P[St+1 = s′|St = s] (2.4)

Where Pss′ is a state transition matrix which defines the transition probability for

each s to all possible successor states s′.

2.4.3 Markov Reward Process

MRP is a Markov Process with a value judgement that says how much reward we

accumulate in a particular sequence that is sampled from a Markov Process. MRP is

defined as a tuple (S,P ,R, γ) where S and P are the same as Markov Chain and the

new element R is a reward function:

Rs = E[Rt+1|St] (2.5)

which tells us how much reward the agent will get immediately after transitioning

from St to St+1. However, the main important factor in reinforcement learning is to

maximise the cumulative reward in the whole process and not only the reward that

the agent gets in one time step. Additionally, γ ∈ [0, 1] is the discount factor which

presents the value of the future rewards in relation to the present.

2.4.4 Return

The return Gt is the total discounted reward from time step t summing up with the

future rewards, and the main goal of the decision-maker is to maximise the return

value. The total reward is defined as the following equation:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (2.6)

As it is shown in the equation, the return value is the accumulation of rewards of the

whole process where the reward is discounted in each time step by the factor γ. In
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this equation, the value of γ shows how much we care now about the rewards that

we get in the future. Therefore, the reward which is gotten in the next step t+ 1 has

the least discount factor value. Additionally, Rt+2 shows the reward which the agent

obtains when it goes from the state st+1 to the state st+2, which will be reduced by

the γ value. Consequently, the value of receiving reward R after k + 1 time-step is

γkR.

2.4.5 Policy

The other concept in MDP is the policy π, which is a distribution over actions given

states, and defines the behaviour of an agent.

π(a|s) = P[At = a|St = s]

2.4.6 Value Function

Value function estimates how good it is for the agent to be in a given state or how

good it is to perform a given action in a given state. In other words, how much will be

the future rewards that can be expected, or, to be precise, in terms of expected return.

Of course, the rewards the agent can expect to receive in the future depends on what

actions it will take. Accordingly, value functions are defined concerning particular

policies π.

The state value function Vπ(s) of an MRP is the expected return starting from

state s for policy π, which gives us the long term value of the state s.

Vπ(s) = E[Gt|St = s] = E[
∞∑
k=0

γkRt+k+1|St = s] (2.7)

Likewise, we define the value of taking action a in state s under a policy π:

Qπ(s, a) = E[Gt|St = s,At = a] = E[
∞∑
k=0

γkRt+k+1|St = s,At = a] (2.8)
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2.4.7 Bellman Equation for MRPs

The value function depends on the policy by which the agent picks actions to perform.

The Value Function can be decomposed into two parts:

• Rt+1 is the immediate reward

• γV(st+1) is the discounted value of successor states

Therefore, we can replace Gt with the sequences of rewards, so we would have:

V(s) = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s],

V(s) = E[Rt+1 + γ(Rt+2 + γRt+3 + . . .)|St = s],

V(s) = E[Rt+1 + γGt+1|St = s],

V(s) = E[Rt+1 + γV(St+1)|St = s],

V(s) = Rs + γ
∑
s′∈S

Pss′V(s′)

Finally, the Markov Decision Process is a Markov Reward Process with decisions in

which all states are Markovian. Accordingly, we can define it as tuple: (S,A,P ,R, γ)

where:

• S is a finite set of states S = {s0, s1, s2, s3, . . . , sn}, with s0 being the initial

state

• A is a finite set of possible actions in each state, Action(s) = a ∈ A;
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• P is the state transition probability matrix (function), and now the action will

be added to the following equation:

Pass′ = P[St+1 = s′|St = s,At = a]

• R is the Reward function

Ra
s = E[Rt+1|St = s,At = a]

In detail, at each time step, the process is in some state s, and the agent may

choose any action a ∈ Action(s) that is available in the state s. The agent follows

a stochastic way of thinking where, by taking action a, with a specific probability,

the next state will be s′. The probability that the process moves into its new state

s′, Pass′ , is influenced by the chosen action a. Thus, the next state s′ depends on the

current state s and the agent’s action a. However, given s and a, it is conditionally

independent of all previous states and actions; in other words, the state transitions

of a MDP satisfies the Markov property. Regarding computing applications, every

MDP must have a “final goal”, i.e., final states/terminals. It is mandatory because it

is required to evaluate the decisions throughout the process and it is done by assigning

rewards directly or indirectly linked to states until the tasks or goals are accomplished.

2.4.8 Optimal Value Function

Solving a reinforcement learning task means to find a policy that achieves a lot of

reward over the long run.

A policy π is defined to be better than or equal to a policy π′ if its expected return

is greater than or equal to that of π′ for all states. In other words, π ≥ π′ if and only

if Vπ(s) ≥ Vπ′(s) for all s ∈ S. There is always at least one policy that is better

than or equal to all other policies which is called an optimal policy. Therefore, the
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optimal value function specifies the best possible performance in the MDP, and once

we find the optimal value function, the MDP is solved. Although there may be more

than one, we denote all the optimal policies by π∗. They share the same state-value

function, called the optimal state-value function, denoted V∗, and defined as

V∗(s) = max
π
Vπ(s) (2.9)

Additionally, the optimal action-value function is the maximum action-value function

over all policies.

Q∗(s, a) = max
π

Qπ(s, a) (2.10)

Consequently, the optimal policy π∗ can be found by maximising over Q∗(s, a):

π∗(a|s) =


1 if a =argmax

a∈A
Q∗(s, a)

0 otherwise

(2.11)

Therefore, if we know the Q∗(s, a), we immediately have the optimal policy.

2.5 Monte Carlo Tree Search

One of the techniques to solve an MDP problem (described in Section 2.4) is called the

Monte Carlo Tree Search (MCTS) [26], [32], [56], which is a heuristic driven search

algorithm for making an optimal decision. MCTS is a combination of classic tree

search and reinforcement learning. In 2006, MCTS was introduced for computer Go

[87]. Other board games like chess and shogi [88] games with incomplete information

such as bridge [80] and poker [79], used MCTS as well.

MCTS is an online planning model which is aiming to find the most promising

actions in the current state by expanding the search tree based on a random sampling

of the search space. Therefore, it helps planning ahead to reach goals and avoid

failures.
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The MCTS algorithm keeps evaluating any possible action periodically by

executing them in simulation, and there is always an exploration-exploitation trade-

off. It exploits the best actions, and strategies found so far and at the same time,

proceed with exploring the local space of alternative decisions and discover if they

could replace the new best path. In other words, the goal is to find the unexplored

parts of the tree, which leads to identifying a more optimal path. In MCTS, nodes are

the building blocks of the search tree. These nodes are formed based on the outcome

of several simulations.

MCTS solves MDP problems, therefore, in this algorithm there is a set of states

S = {s0, s1, s2, s3, ..., sm}, with s0 being the initial state and in each state there are a

set of actions A = {a0, a1, a2, a3, ..., an}. The agent needs to get the best action which

gives it the highest return value. When the MCTS tackles the MDPs environment,

each node in the tree search holds a Q-table, where the average value of each action

across all simulations is stored and consists of a tuple (s,Q,N ). In this tuple,

• s is the state,

• Q(s, a) is the value that indicates how good or bad is a state-action pair or

evaluating the action a when an agent takes in this state s. The value associated

to the node is estimated by the mean cumulative discounted reward of all

simulations for the state s and action a where the action a was selected from

state s.

• N (s, a) is a visitation count which indicates how many times a node is visited

in the state s by taking the action a.

For each node, values for Q(s, a), N (s, a) are initialised to 0.

The four distinct steps of the Monte Carlo Tree Search process are Expansion,

Selection, Simulation, Backpropagation. Details of these steps are as below:
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2.5.1 Selection

In this process, the MCTS algorithm traverses the current tree from the root node

using a specific strategy (Figure 2.3). The strategy uses an evaluation function to

optimally select child nodes with the greatest estimated value. Tracing the tree

by selecting the child node will continue until reaching a leaf node or reaching the

maximum depth of the tree. By selecting a node, the N (s, a) of the selected node

will increase.

s0

s1 s2

a0 a1 a2

s3

a0 a1

s4 s5

a0 a1 a2

s6 s7 s8

s9

a0

Figure 2.3: The process of selecting an action while tracing the tree.

2.5.2 Expansion

In the selection step, we optimally reached a node, and now it is time to expand it

(Figure 2.4). Therefore, an action ai will be selected among the list of actions which

is not selected for that specific node. Accordingly, a new child node is added to the

tree. Then the selected action ai will be applied to the state sj, which is the state of

the last node and get the immediate reward by taking action ai in the state sj.
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s0

s1 s2

a0 a1 a2

s3

a0 a1

s4 s5

a0 a1 a2

s6 s7 s8

s9 s10

a0 a1

Figure 2.4: Expanding the tree by adding non-selected actions from the specific node

2.5.3 Simulation

Next step after expanding is the simulating step. In the simulating step (Figure 2.5),

random actions will be taken from the state of the expanded node. In each iteration,

after taking an action, there might be a reward. At each iteration, the reward is

multiplied with a discount factor γ. As I mentioned earlier (Section 2.4.4), the reason

is to reduce the value of the rewards which are taken in further states. This process

will be repeated until n iterations. But sometimes, in turn-based games, taking a

certain path or branch could result in losing. In the long run, this is due to a large

number of combinations and each node might not be visited enough times to grasp

its outcome. Additionally, in order to be able to determine the most efficient path,

MCTS algorithm needs a large number of iterations. The speed is a bit slow.
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s0

s1 s2

a0 a1 a2

s3

a0 a1

s4 s5

a0 a1 a2

s6 s7 s8

s9 s10

a0 a1

si

sj

n

Figure 2.5: Simulating random actions to evaluate the current state

2.5.4 Backpropagation

After the simulation phase, a result is returned. Therefore, the simulation result will

be added to all nodes’ value, from the last expanded node up to the root (Figure 2.6).

Moreover, the count of visits at each node will increase.
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s0

s1 s2

a0 rm a1

s3

a0 rk

s4 s5

rj a1 a2

s6 s7 s8

s9 s10

a0 ri

Figure 2.6: Backpropagation phase to return the accumulated rewards

2.6 UCT

The literature suggests the application of UCT [56] algorithm for improving the

MCTS, which is an application over the multi-armed bandit. With this in mind, each

state at the search tree is viewed as a multi-armed bandit taking an action chosen

by the Upper Confidence Bound 1 (UCB1) [13] algorithm. The UCB1 follows the

Equation 2.12, that tries to maximise the value of the experienced action attaching

bonus reward for each tried action at the current state.

Q⊕(s, a) = Q(s, a) + c

√
log (N (s))

N (s, a)
(2.12)

The scalar constant c ∈ [0, 1] determines the relative ratio of exploration to

exploitation, where if the constant is equal to 0, the UCT algorithm acts greedily

within the tree. Once all actions from state s are represented in the search
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tree, the tree policy selects the action maximising the augmented action-value,

argmaxaQ
⊕(s, a). For a suitable choice of c, the value function constructed by UCT

converges in probability to the optimal value:

Q(s, a)
p−→ Q∗(s, a),

Although Albrecht and Stone (2017) did not explicitly formalise the ad-hoc

teamwork problem as an MDP [2], they employed a traditional UCT Monte Carlo Tree

Search [56] (which are used for solving MDPs in an online fashion). As I explained

in Section 2.5, in Selection step of the MCTS, the best child node should be selected.

There might be a different selecting function. However, to decide an action to simulate

at each node, the UCB1 algorithm [13] is employed. After all x simulations are

performed, the agent can estimate the best action to take by considering the Q-table

at the root node. Once a new state is reached, the whole algorithm is repeated, to

decide the next action in that new state. A pseudo-code of the original UCT algorithm

is shown in Algorithm 1.
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Algorithm 1 UCT algorithm

1: function UCT(state) .

2: repeat

3: Search(state, 0)

4: until Timeout

5: return bestAction(state,0)

6: end function

7: function Search(state, depth) .

8: if Terminal(state) then

9: return 0

10: end if

11: if Leaf(state, depth) then

12: return Evaluate(State)

13: end if

14: action← selectedAction(state, action)

15: (nextState, reward)← simulateAction(state, action)

16: q ← reward+ γ Search(nextState, depth+ 1)

17: return q

18: end function

2.7 POMDP

Unlike the MDP, in Partial Observable Markov Decision Process (POMDP) [54]

approach, the agent cannot fully observe the environment and current state directly,

so there is not enough knowledge of the current state when the agent has a partial

observation.

A POMDP can be defined as a tuple: (S,A,P ,R,O,Z), where like MDP, S is the
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set of states, A is the set of actions, R is the reward function and P is the transition

model. The only differences are O, Z, where O is the observations that agent receives

and Z is the observation probabilities that is equal to:

Zas′o = P(Ot+1 = o|St+1 = s′,At = a),

Where the initial state s0 ∈ S is determined by a probability distribution Is =

P(s0 = s). Also, in POMDP there is a History which is a combination of action

and observation ht = {a1, o1, a2, o2, ..., at, ot} or htat+1 = {a1, o1, ..., at, ot, at+1}, where

a ∈ A and the observation o ∈ O represents the action taken at time t and the

corresponding observation that the agent receives from the environment.

Consequently, the agent never receives its exact current state and it builds a belief

state based on its history. Hence, the belief state is the probability distribution over

states given history h, and we can define a probabilistic belief state for each agent as:

B(s, h) = Ph,s = P[St = s|Ht = h]

The reward for a partially observable environment is calculated in the same way as

MDP:

Rt =
∞∑
k=t

γk−trk,

The policy of selecting action a given the history h follows a probability over the

actions:

π(h, a) = P(At+1 = a|Ht = h),

being the π∗(h, a) the optimum policy. And the value function is:

Vπ(h) = E[Rt|Ht = h]

which is the expected return value from the state s when following policy π. The

optimal value function is the maximum value function achievable by any policy.
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2.8 POMCP

Partially Observable Monte-Carlo (POMCP) [89] is a combination of a Monte-

Carlo update of the agent’s belief state and a Monte-Carlo tree search from the

current belief state. With regards to search approaches, POMCP is a very famous

extension of the traditional UCT Monte Carlo Tree Search, when considering partially

observable environments. In POMCP, Monte Carlo sampling is used both during

belief state updates and during planning. In addition, instead of having explicit

probability distribution, only a black box simulator of the POMDP is required. These

specifications of POMCP help to solve larger POMDP problems.

ho0

ha1 ha2 han

a0 a1 an

ho1 ho2 hom

o0 o1 om

Figure 2.7: An illustration of POMCP search tree

Partially Observable Monte-Carlo Planning (POMCP) consists of a UCT search

that selects actions at each time-step; and a particle filter that updates the agent’s

belief state. The search tree contains a node T (h) = (V(h),N (h),B(h)) for each

represented history h where:

• N (h) counts the number of times that history h has been visited.

• V(h) is the value of history h, estimated by the mean return of all simulations

starting with h.

• B(h) contains a set of particles. The most important change in the POMCP
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algorithm is the idea to use an unweighted particle filter to approximate the

belief state at each node in the UCT algorithm.

The search procedure, which is explained in detail in Algorithms 2, is called from

the current history ht. Each simulation begins from a start state that is sampled from

the belief state B(ht) (Line 6).

Algorithm 2 POMCP-Search Algorithm

1: procedure Search(h)

2: repeat

3: if h is empty then

4: s ∼ I

5: else

6: s ∼ B(h)

7: end if

8: Simulate(s, h, 0)

9: until Timeout()

10: return argmax
b

(V(hb))

11: end procedure

In the Simulation stage (Algorithm 3), similar to the MCTS, the simulations are

divided into two stages. In the first stage of simulation, when child nodes exist for all

children, actions are selected by UCB1 based on following equation,

V⊕(ha) = V(ha) + c

√
log(N (h))

N (ha)

and the action that maximises this augmented value, argmax
a
V(ha) will be selected.

In the next stage of simulation, actions are selected by a history based rollout

policy (Algorithm 4) πrollout(h, a) (e.g. uniform random action selection). After each
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simulation, precisely one new node is added to the tree, corresponding to the first

new history encountered during that simulation.

The agent uses a simulator G (Line 12 in Algorithm 3) as a generative model of

the POMDP. The simulator provides a sample of a successor state, observation and

reward, given the current state and action, (st+1, ot+1, rt+1) ∼ G(st, at), and can also

be reset to a start state s.

Algorithm 3 POMCP-Simulate Algorithm

1: procedure Simulate(s, h, depth)

2: if γdepth = ε then

3: return 0

4: end if

5: if h /∈ T then

6: for all a ∈ A do

7: T (ha)← (Ninit(ha),Vinit(ha), ∅)

8: end for

9: return Rollout(s, h, depth)

10: end if

11: a← argmax
b
V(hb) + c

√
log(N (h))
N (ha)

, ∀b ∈ A

12: (s′, o, r) ∼ G(s, a)

13: R ← r + γ.Simulate(s′, hao, depth+ 1)

14: B(h)← B(h) ∪ {s}

15: N (h)← N (h) + 1

16: N (ha)← N (ha) + 1

17: V(ha)← V(ha) + R−V(ha)
N (ha)

18: return R

19: end procedure
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For every history h, encountered during simulation, the belief state B(h) is updated

to include the simulation state. When the search is complete, the agent selects the

action at with the highest value and receives a real observation, ot, from the world.

At this point, the node T (htatot) becomes the root of the new search tree, and the

belief state B(htao) determines the agent’s new belief state. The remainder of the

tree is pruned, as all other histories are now impossible.

Algorithm 4 POMCP-Rollout Algorithm

1: procedure Rollout(s, h, depth)

2: if γdepth = ε then

3: return 0

4: end if

5: a ∼ πrollout(h)

6: (s′, o, r) ∼ G(s, a)

7: return r + γ Rollout(s′, hao, depth+ 1)

8: end procedure

More specifically, each time we start a search procedure with the tree, a state

is sampled from the belief state of the root node ht. Defining the current state, an

action a is selected, so the simulator samples the next state s′ and the observation o

(Figure 2.7). The pair ao defines the next node in the search tree, and for the current

iteration, the state of the node will be assumed to be s′. This sampled state s′ is

added to tree particle filter, and the process repeats recursively down the tree.
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Chapter 3

Literature Review

3.1 Multi-Agent Systems

There are many works towards multi-agent systems as the world is moving towards

“smart systems” which rely on some form of intelligent agent technology. These

agents can autonomously collect information from their surrounding environment

and act upon it. Examples include connected autonomous vehicles that gather

information from adjacent ones and act upon it to improve the efficiency and safety

of the transportation systems [52]. Moreover, virtual personal assistants that can

keep track of users’ behaviours and preferences to make recommendations and assist

the users in several tasks [62]. As technology evolves, so will the autonomy and

perceptual/actuation capabilities of such agents, prompting the need for autonomous

agents that can coexist with other (different) agents and eventually engage in some

form of teamwork towards the completion of some common task.

The literature introduces a multi-agent system (MAS) [86] as a system which is

composed of multiple interacting intelligent agents [80], which can solve problems

that are difficult or impossible for an individual agent to solve. Therefore, multi-

agent systems can solve complicated problems by dividing them into tasks [34], where
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the individual tasks are allocated to agents. Each agent chooses a proper action to

solve the task, handling multiple inputs, e.g., history of actions, interactions with

its neighbouring agents, and its goal. There are many problems in engineering and

technology [65] that are solved by applying MAS. Additionally, multi-agent systems

research may deliver an appropriate approach to many applications including online

trading [78] disaster response [40], [83], target surveillance [51] and social structure

modelling [93]. The key objective of forming the team of agents is the cooperation

and collaboration of the autonomous agents, which help them to achieve goals that

they cannot deal with individually and reduces the completion time of a target that

might take a significant long time to finish if they are alone. Accordingly, a core area

of research in modern artificial intelligence (AI) is the development of autonomous

agents that can interact effectively with other agents.

Working agents as a team is a principal subject of research in the multi-agent

systems literature [100]. To develop MAS, addressing a diverse range of complex

challenges such as coordination among agents [106], learning [25] and security [100] is

required. Many theoretical frameworks of teamwork have been developed for MAS.

For example, Cohen and Levesque (1991) [31], introduced the Joint Intentions theory,

which defined that a team has a joint mental state. All agents work to achieve a certain

objective in the joint mental state. If one of the agents discovers that the objective has

been achieved, or became irrelevant/impossible, then it must communicate with its

team-mates to pass this knowledge to the joint mental state. In the SharedPlans [43]

framework, there is a set of possible recipes for achieving one action, which is composed

by subactions, forming a hierarchy; and agents may have individual plans to complete

some of the subactions. These ideas are combined in a real implemented framework in

STEAM [95], where agents build a hierarchy of joint intentions when performing tasks

in three different domains. STEAM is further extended in Scerri and Pynadath (2003)

[82], where a Markov Decision Process (MDP) model is proposed, enabling agents to
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autonomously decide when to transfer control (i.e., decision-making) to humans or

other agents.

3.2 Task Allocation

Task allocation is a principal approach to coordinate a team of agents [57], which

refers to the allocation of tasks to agents considering the associated cost, time, and

(communication and processing) overhead [38], [96]. The contract net protocol [90] is a

common technique for task allocation, where agents can be managers and contractors.

A manager receives bids and allocates a task to the most appropriate agent. Upon

being allocated a task, the agent (contractor) must execute it, but it can divide those

into subtasks and also act as a manager to allocate those. A similar approach is the

auction-based task allocation mechanism [24], where agents submit bids to compete

for tasks, like in actual auctions.

Task allocation can be centralised or decentralised [57]. Dos Santos and Bazzan

(2002) [33] suggest a hybrid approach by organising the agent system into multiple

clusters. In each cluster, one node (known as cluster head) allocates tasks to the

members of the cluster. Task allocation has diverse applications, including allocating

sensing tasks to heterogeneous agents and allocating rescue missions to ambulances

[72]. A complete survey on task allocation is given in Krothapalli and Deshmukh

(2002) [57].

The remarkable features of MAS, including efficiency, low cost, flexibility, and

reliability, make it a powerful solution to solve complex tasks. Their efficiency arises

from the division of labour inherent in MAS whereby a complex task is divided into

multiple smaller tasks, each of which is assigned to a distinct agent [75].

As mentioned before, my main idea is to concentrate on decentralised task

allocation problems in ad-hoc teamwork. Chen et al. (2019) [30] present a related
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work, where they focus on estimating tasks of team-mates, instead of learning

their model. While related, they focus on task inference in a model-free approach,

considering that each task must be performed by one agent, and the ad-hoc agent goal

changes to identifying tasks that are not yet allocated. My work, on the other hand,

combines task-based inference with model-based approaches and allows for tasks to

require an arbitrary number of agents. Additionally, their experiments are on small

10× 10 grids, with a lower number of agents than us.

Another work attempts to identify the task being executed by a team, from a set

of potential tasks [60]; or an agent’s strategy for solving a repetitive task, enabling

the learner to perform collaborative actions [97]. My work, however, is fundamentally

different, since I focus on a set of (known) tasks which must all be completed by the

team.

3.3 Modelling Team-mates

A crucial feature of MAS is the capability to reason about the behaviours, goals, and

beliefs of the other agents. This reasoning occurs by forming models of the other

agents. Generally, a model is a function which takes as input some portion of the

observed interaction history and returns a prediction regarding the modelled agent.

The interaction history may contain information such as the past actions that the

modelled agent took in several conditions. The most important part of the modelling

of the autonomous agent is to discover its decision-making process.

Modelling agent is not only applied in informing decisions, and it can be utilised

for other purposes. An example can be an intelligent coaching system which may use

a model of a specific human player in games such as Chess to recognise and point out

weaknesses in the human’s play [53]. The process of creating models of other agents

is sometimes referred to as agent modelling. However, learning of the model can be
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based on information observed from the current interaction and possibly data collected

in past interactions. It is also possible that an agent may model another decision

making of the agent as a deterministic finite automaton and learn the parameters of

the automaton (e.g. nodes, edges, labels) during the interaction [27]. Likewise, an

agent may endeavour to classify the policy of another agent by employing classifiers

which were trained with statistical machine learning on data obtained from recorded

interactions [98].

There are several pieces of research for opponent modelling for particular domains.

Pourmehr and Dadkhah (2012) [69] provides a summary of modelling methods used

in 2D simulated robot soccer, in which two teams of agents compete in a soccer

match. Rubin and Watson (2011) [79] has a survey in Poker playing agents which has

a separate section about opponent modelling methods. Baarslag et al. (2016) [14],

gives a study of the opponent modelling in bilateral negotiation settings, in which

two agents adjust the values of one or more “issues” in an exchange. Bakkes et

al. (2012) and Karpinskyj et al. (2014) [15] survey methods for player modelling in

commercial video games, where the objective of modelling is to improve the strength

and satisfaction of the player.

There is another survey that Lasota et al. (2014) [58] did in safe human-robot

interaction. This survey has a section on methods which predict the motions and

actions of humans. Additionally, there are other several articles that survey work in

trust and reliability modelling in multi-agent systems (e.g. Pinyol and Sabater-Mir

(2013) [68]; Yu et al. (2013) [104]; Ramchurn et al. (2004)) [74]. Other surveys of

opponent modelling include van den Herik et al. (2005) [47], Olorunleke and McCalla

(2005) [66].
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3.4 Modelling in ad-hoc team

The literature introduces ad-hoc teamwork as a principled approach to handle multi-

agents systems [9], [92]. This approach presents the opportunity to achieve objectives

of the multiple agents in a collaborative-manner that surpasses the requirement of

designing a communication channel for information exchange between the agents or

the need for an application to do prior coordination. The principal aspect of ad-hoc

teams is the capability to analyse the behaviours, aims, and beliefs of the other agents

in the team. This reasoning can proceed by assembling models of the other agents.

Several works addressed this problem by introducing methods which utilise

beliefs over a set of possible behaviours for the other agents [4], [7], [20], [21],

[36], [91]. Behaviours in this approach are specified as types, which are mappings

from interaction histories to probability distributions over actions. If the types are

adequately representative of the true behaviours of other agents, then this method can

lead to speedy adaptation, and effective interaction [8], [20]. Therefore, considering

type-based reasoning and parameter learning, we can solve this problem using fine-

grained models, which evaluate the observations and estimate each agent’s type and

parameters in an on-line manner [1], [3], [18], [19], [21]. These lines of works propose

the approximation of agents’ behaviour to a set of potential types to improve the ad-

hoc agents’ decision-making capabilities, allowing the agents’ algorithms to be quickly

estimated on-line, without requiring a massive training for learning their policies from

scratch. However, if a set of potential types is not given by domain knowledge, then

they would have to be learned from previous interactions (e.g., [19]).

Albrecht and Stone (2017) [2], in particular, introduced the AGA and ABU

algorithms for type-based reasoning of team-mates parameters in an online manner.

These methods sample sets of parameters for gradient ascent and Bayesian estimation,

and were my main inspiration for this work.
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On the other hand, Hayashi et al. (2020) [46] propose an enhanced particle

reinvigorating process that leverages prior experiences encoded in a recurrent neural

network (RNN), acting into a partial observable scenario in their ad-hoc team.

However, they need thousands of previous experiences for training the RNN, while

still requiring knowledge of the potential types. My approach, however, starts from

scratch at every single run, with no pre-training.

Rabinowitz et al. (2018) [71] introduce a “Machine Theory of Mind”, where neural

networks are trained in general populations to learn agent types, and the current

agent behaviour is then estimated on-line. Similarly to learning policies from scratch,

however, their general models require thousands (even millions) of observations to be

trained. Besides, they used a small 11 × 11 grid in their experiments, while I scale

all the way to 45 × 45 to estimate the behaviour of several unknown and distinct

team-mates. On the other hand, if a set of potential types is not given by domain

knowledge, then their work serves as another example that types could be learned.

A different approach to learn team-mates’ models and reason about their behaviour

in planning is given by I-POMDP based models [29], [35], [42], [48]. However, they are

computationally expensive, assuming all agents are learning about others recursively,

and they consider agents with individual rewards.

On the other hand, Eck et al. (2019) recently proposed a scalable approach using

the I-POMDP-Lite Framework [37] in order to consider large open agent systems. In

their approach, an agent considers a large population by modelling a representative set

of neighbours. They focus on estimating how many agents perform a particular action,

hence their approach is not applicable to the task-based problems that I consider in

this work. Additionally, although they present a scalable approach in terms of team

size, they still consider only small 3× 3 scenarios.

Rahman et al. (2020) also handle open agent problems, and propose the

application of a Graph Neural Network (GNN) for estimating agents behaviours [73].
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Similarly to other neural network-based models, it needs a large amount of training,

and their results are limited to a 10 × 10 grid world with 5 agents. Their agent

parametrisation is also more limited, with only 3 possible levels in the level-based

foraging domain, which is directly given as input for each agent (instead of learned).

Recently, Panella and Gmytrasiewicz (2017) [10] proposed an extension of POMCP

for ad-hoc teamwork, when agents can be represented by probabilistic deterministic

finite state controllers. However, their approach still does not scale easily to a large

number of agents. In fact, their results are limited to only two agents (the main

planning agent, and a single unknown agent).

Another possible approach for scalability in ad-hoc teamwork is to learn a single

model for a team of agents, instead of individual models for each agent. For instance,

in the RoboCup soccer domain, Riley and Veloso (2002) [76] propose a method to

identify the type of an adversarial team, which defines probabilities for agents locations

in the field. Similarly, Barrett and Stone (2015) [17] assume a series of previous games

with potential teams, which are used to train team policies. Then, at execution time,

the most likely current team is estimated, and its corresponding policy executed.

Obviously, however, a single team model is less flexible than learning models for each

individual agent.

Other works directly try to learn a transition function. For instance, Guez et al.

(2013) proposed a Bayesian MCTS, sampling different potential MDP models [44].

Our planning approach (inspired by [2], [18]) is similar, as I sample different agent

models from my estimations. However, instead of directly working on the complex

transition function space, I learn agents types and parameters, which would then

translate to a particular transition probability for the current state or belief state.
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3.5 Planning

Regarding on-line planning, Barrett et al. (2011) [21] introduced the idea of sampling

types for each agent, based on the current beliefs, at each roll-out iteration of the UCT

Monte Carlo Tree Search method [56]. Albrecht and Stone (2017) [2] employ a similar

search technique, but they consider that parameters may affect the behaviour of each

type, and they introduced techniques for dynamically estimating these parameters.

Concerning task allocation, MDP-based models are commonly applied [63], [64].

For instance, it can be framed as a multi-agent team decision problem [81], where

a global planner calculates local policies for each agent. Auction-based approaches

are also common, assigning tasks based on bids received from each agent [59]. These

approaches, however, require pre-programmed coordination strategies, while I employ

on-line learning and planning for ad-hoc teamwork in decentralised task allocation,

enabling agents to choose their tasks without relying on previous knowledge of the

other team members, and without requiring centralised planners/controllers.

Additionally, Pelcner et al. (2020) [67] recently proposed an on-line learning

and planning approach for an agent to make decisions in environments containing

previously unknown swarms. Similarly to us, they also learn from scratch at every

run, but they focus on learning a single model for a whole swarm, while I learn a

model for each agent, also considering potentially different types.

Consequently, regarding estimating team-mates parameters and types, my main

novelty comes from focusing on decentralised task allocation in ad-hoc teamwork,

allowing us to outperform previous algorithms. Additionally, I do not rely on neural

network-based models nor I-POMDP based planners, allowing us to develop a light-

weight approach that can learn from scratch at every run. On the other hand, open

agent systems are not in my scope, and I do require a set of potential agent types,

which may have to be pre-trained.
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3.6 Summary

According to the state-of-the-art review I provided in this chapter, ad-hoc teamwork

is not commonly practised. Since there is no communication or pre-coordination

in ad-hoc teams, quicker and better decisions lead to improved performance. To

make a faster decision, in this research, I propose a modification for the UCT Monte

Carlo Tree Search algorithm, UCT-H, inspired by the representation strategy used

in POMCP [89]. However, my compact representation is aimed at scalability in ad-

hoc teamwork, instead of handling partial observability. Additionally, in POMCP

it is assumed full knowledge of the transition function (embedded in a “black-box

simulator”), while in my work the states are sampled from an estimated transition

function, according to the current estimations of types and parameters for each agent.

My approach for on-line planning is used for finding optimal actions while dynamically

learning types and parameters, as in Albrecht and Stone (2017) [2], but leads to a

significantly better performance, and scales better in terms of memory usage with

team size.

Making better decisions requires predicting the future behaviours of team mem-

bers. To do so, we need to learn their parameters and types. Therefore, by

focusing on decentralised task allocation in ad-hoc teams, my novel method OEATA

surpasses their parameter and type estimations, and consequently leads to better

team performance. I also extend their work by adding partial observability to all

team members.
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Task-based Ad-hoc Team

In this chapter, I will introduce the ad-hoc team I will be working with in this

study. In addition, I will discuss the models of agents in the team. To have a better

understanding of ad-hoc teamwork, we can define it as a domain where agents intend

to cooperate with their team-mates and coordinate their actions to reach common

goals. The agents in ad-hoc teamwork domains do not have prior communication

nor coordination protocols, so learning and reasoning about the current context are

mandatory to improve the team’s performance. However, if agents are aware of some

pre-existing standards for coordination and communication, they can try to learn

about their team-mates with limited information [19]. As a result of such intelligent

coordination in the ad-hoc teams, they could accomplish shared goals more efficiently.

In many domains, agents have to coordinate to handle sets of tasks that are

distributed in the environment. Hence, I describe the ad-hoc team that is introduced

in this work, Task-based Ad-hoc Teamwork, as a decentralised distributed system. In

this system, there are multiple tasks to be accomplished in an uncertain environment

with no centralised mechanism to allocate tasks. Therefore, agents are not managed

to perform their tasks, and they autonomously decide which one to complete, without

being directly allocated [23]. The decentralised allocation is quite natural in ad-hoc
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teamwork, as we cannot assume that other agents would be programmed to follow a

centralised controller.

Considering this ad-hoc teamwork definition, in this chapter, I will now describe

my model in detail to clarify my approaches.

4.1 Task-based Ad-hoc Teamwork

In task-based ad-hoc teamwork, there is one learning agent φ, that acts in the same

environment as a set of non-learning agents ω ∈ Ω, where φ /∈ Ω. In this ad-hoc team,

the objective of the agent φ is to maximise the performance of the team. However, all

non-learning agents are unknown to the agent φ. Hence, the agent φ must estimate

and understand their model as times progresses (Figure 4.1).

φ

ω0

ω1

ωn

ω0

ω1

ωn

ω0

ω1

ωn

ω0

ω1

ωn

Time

Figure 4.1: Agent φ tries to understand the behaviours of agents ω ∈ Ω, which are

quite vague at the beginning, but agent φ is able to have a better understanding of

them as time goes by.

Besides, there is a set of tasks (T ) which all agents in the team endeavour to
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accomplish autonomously. A task τ ∈ T may require multiple agents to perform it

successfully. Additionally, the task requires many time steps to be completed. For

instance, in a foraging problem, a heavy item may require two or more robots to

be collected, and the robots would need to move towards the task location, taking

multiple time steps to move from their initial position.

4.2 Model of Non-Learning Agents

All non-learning agents aim to finish the tasks in the environment autonomously.

However, choosing and completing each task τ by each ω agent is dependent on its

internal algorithm and its capabilities. Nonetheless, the algorithm of the ω agent can

be one of the potential algorithms defined in the system, which might be learned from

previous interactions with other agents [18]. Therefore, I suppose that there is a set

of potential algorithms in the system, and I see them as a set of possible types Θ for

all ω ∈ Ω, as in previous works [2]. I also assume that all these algorithms have some

inputs, which I denominate as parameters.

Hence, the types are all parameterised, which affects agents behaviour and actions.

Considering the existence of these types’ parameters allows the agent φ to use more

fine-grained models when handling new unknown agents.

According to these assumptions, I define each ω ∈ Ω as a tuple (θ, p), where θ ∈ Θ

is ω’s type and p represents its parameters, which is a vector p =< p1, p2, ..., pn >.

Also, each element pi in the vector p is defined in a fixed range [pmini , pmaxi ] [2]. These

parameters can be the abilities and skills of an agent. For instance, a robot can

be quite different depending on its hardware – for a robot, it can be vision radius,

the maximum battery level or the maximum velocity. The parameters could also be

hyper-parameters of the algorithm itself. Consequently, each ω ∈ Ω, based on its type

θ and parameters p will choose a target task. Selecting a new task (considered as the
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agent’s “target”) happens in the very first state, and whenever the agent ω finishes a

task. I call these states as Choose Target State (s).

4.3 MDP Model

First, I introduce task-based ad-hoc teamwork under full observability and formalise

the problem as a Markov Decision Process (MDP). Although there are multiple agents

in the team, I define the model under the point of view of an agent φ and apply a

single agent MDP model, as in previous works [2], [102]. Therefore, I consider a set

of states S, a set of actions Aφ, a reward function R : S × Aφ × S → [0, 1], and

a transition probability function P : S × Aφ × S → [0, 1], where the actions in the

model are only the agent φ’s actions and not any of others. Hence, the agent φ can

only decide its own actions and has no control over the actions of agents in the set

Ω. All ω in Ω are modelled as the environment, as their actions indirectly affect the

next state and the obtained reward, but they are not directly represented in the MDP

model. Accordingly, in the actual problem, the next state depends on the actions

of all agents. However, the agent φ is unsure about the following action of the non-

learning agents. For this reason, I consider that given a state s, an agent ω ∈ Ω has

a (unknown) probability distribution (pdf) across a set of actions Aω, which is given

by the agent ω’s internal algorithm (θ, p). Therefore, the uncertainty in the MDP

model comes from the randomness of the actions of the ω agents in the team as well

as the stochasticity of the environment.

This model allows us to employ single-agent on-line planning techniques, like UCT

Monte Carlo Tree Search [56]. Consequently, in the tree search process, the probability

distribution function (pdf) of each agent defines the transition function. At each node

transition, agent φ samples ω agents’ actions from their (estimated) pdfs, and that

will determine the next state s′ for the next node. However, in UCT Monte Carlo Tree
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Search, the search tree increases exponentially with the number of agents. Hence, I

apply the history-based version of UCT Monte Carlo Tree Search called UCT-H. It

employs a more compact representation than the original algorithm, which helps to

trace the tree in larger teams in a simpler and faster fashion (Chapter 5) [102].

As mentioned earlier, in this task-based ad-hoc team, the agent φ attempts to help

the team to get the highest possible achievement. For this reason, the agent φ requires

to find the optimal value function, which maximises the expected sum of discounted

rewards E[
∑∞

j=0 γ
jrt+j], where t is the current time, rt+j is the reward φ receives at

j steps in the future, γ ∈ (0, 1] is a discount factor. Also, I consider that we obtain

the rewards by solving the tasks τ ∈ T of the team. That is, I define the agent φ’s

reward as
∑
rτ , where rτ is the reward obtained after the task τ completion. Note

that the sum of rewards is not only across the tasks accomplished by the agent φ but

all of them completed by any set of agents in a given state. Furthermore, there might

be some tasks in the system that cannot be completed without cooperation between

the agents. Accordingly, the number of required agents for finishing a task τ depends

on each specific task and the set of agents that are jointly trying to complete it.

Note that the agents’ types and parameters are actually not observable, but in my

MDP model that is not directly considered. The estimated types and parameters are

used during on-line planning, affecting the current transition function. More details

are available in the next section.

4.4 Learning Team-mates

In order for the agent φ to be able to maximise the performance of the team, it needs

to know the target task of its team-mates. Moreover, we know that based on the

agent ω’s type and vector of parameters, it will choose a task τ and will try to finish

it by applying various actions a ∈ Aω.
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Maximise team’s performance

Model Team-mates

Estimates team-mates’ type and parameters

Find the probabilities of future actions of team-mates

Plan to take the best action

Figure 4.2

4.4.1 Estimating team-mates behaviour

Since the agent φ does not have information about each agent ω’s true type θ∗ and

true parameters p∗, it will not know how they may behave at each state. Hence,

the agent φ attempts to have an appropriate estimation for type θ and parameter p

of each non-learning agent in order to have better decision-making. At the end of

the estimation process, agent φ will learn a probability for each type, as well as a

corresponding estimated parameter vector.

Algorithm 5 gives more details about the process of how the agent φ estimates

models for all ω ∈ Ω. I assume that the agent φ does not have enough previous

information about the type and parameters of non-learning agents. Therefore, for

each ω ∈ Ω, I use uniform distributions for initialising the probability of having each

type θ ∈ Θ. Accordingly, I randomly initialise each parameter in the parameter
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vector p based on their corresponding value ranges. However, given some domain

knowledge, it could be sampled from a varied distribution both for types and for

parameters. Hence, for each agent ω, the agent φ produces a parameter vector p

for each θ ∈ Θ, and each element of the vector, pi, is generated randomly in its

corresponding fixed range.

In the further steps, as the agent φ observes the behaviour of all ω ∈ Ω, it notices

their actions and the tasks that they accomplish. Therefore, it keeps updating all

the estimated parameter vectors p, and the probability of each type P(θ)ω, based on

the current state. The way these estimations are updated depends on which on-line

learning algorithm is employed.

Hence, to improve the ad-hoc agent φ’s decision-making, I introduce a novel

algorithm Online Estimators for Ad-hoc Task Allocation (OEATA) for parameter and

type estimation of the team-mates where the task allocation is decentralised. I will

describe OEATA in more detail in Chapter 6. I compare my method to the state of the

art, Approximate Gradient Ascent, Approximate Bayesian Update [2] and POMCP

[89] which will be explained in more detail in further sections (Sections 4.5.2, 4.5.1,

4.5.3).
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Algorithm 5 Learning agent estimates the non-learning agent

1: procedure ProcessEstimation(ω,sc) . sc is the Current State

2: for all θi ∈ Θ do

3: if First Step then . Initialisation in the first step

4: for all pj ∈ pθi do

5: pj ← random value from Uniform Distribution . Each pj is

uniformly sampled from the parameter range.

6: end for

7: P(θi)ω = 1.0
|Θ|

8: else

9: pθi = Estimate NewParameterV ector(ω, sc, θi)

10: P(θi)ω = Update Type Probability (θi,pθi)

11: end if

12: end for

13: Normalise Probabilities Of Types(Θ)

14: return probability vector and related parameters

15: end procedure

4.4.2 Planning of the learning agent

The current estimated models of the non-learning agents are used for on-line planning,

allowing the agent φ to estimate its best actions. In particular, in this work, I employ

UCT-H (more details in Chapter 5) for the agent φ’s decision-making method. As

previously stated, UCT-H is similar to UCT, but using a history-based compact

representation. I will explain UCT-H in more detail in the next Chapter. I verify

that this modification leads to better results in ad-hoc teamwork problems (Section

5.3).

47



Chapter 4. Task-based Ad-hoc Team 4.5. Estimation Methods

As in previous works [2], [102], I sample a type for each non-learning agent from the

estimated type probabilities each time I re-visit the root node during the tree search

process. I utilise the newly estimated parameters for the corresponding sampled type.

Consequently, the higher the quality of the type and parameter estimations, the better

will be the result of the tree search process. As a result, the agent φ decides which

action to take.

4.4.3 Wrong type

Note that the actual non-learning agents may be using various algorithms than the

ones available in our set of types Θ. Nonetheless, the agent φ would still be able

to estimate the best type θ and parameters p to approximate agent ω’s behaviour.

Additionally, ω agents may or may not run algorithms that explicitly model the

problem as decentralised task allocation, but I only need the agent φ to be able to

model the problem as such.

4.5 Estimation Methods

I apply the state-of-the-art methods from the literature (Approximate Gradient

Ascent, Approximate Bayesian Estimation, POMCP) besides my novel method to

be able to compare it with them. Therefore, first, I will review the other algorithms,

and then I will introduce my novel algorithm.

Approximate Gradient Ascent, and Approximate Bayesian Estimation are intro-

duced in Albrecht and Stone (2017) [2]. In that work, the probability of taking

the action atω at time step t, for agent ω, is based on P(atω|H t
ω, θω,p) where H t

ω =

(s0ω, ..., s
t
ω) is the ω agent’s history of observations at time step t, θω is a type in

Θ, and p is the parameter vector which is estimated for type θω. For estimation

method, a function f is defined as f(p) = P(at−1ω |H t−1
ω , θω,p) where f(p) represents
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the probability of the agents previous action at−1ω , given the history of observations of

ω agent in previous time step, H t−1
ω , type θω and its corresponding parameter vector

p.

After estimating the parameter for ω agent for the selected type θω, the probability

of having type θω is updated like below:

P(θω|H t
ω) ∝ P(at−1ω |θω ,ptω)× P(θω |H t−1

ω ) (4.1)

4.5.1 Approximate Gradient Ascent

The main idea of this method is to update the estimated parameters of the ω agent by

following the gradient of a type’s action probabilities based on its parameter values.

Algorithm 6 provides a summary of this method.

Algorithm 6 Approximate Gradient Ascent

1: procedure AGA Estimation(pt−1, d)

2: Collect samples D = (p(l), f(p(l)))

3: Fit polynomial f̂ of degree d to D

4: Compute gradient ∇f̂(pt−1) and step size λt

5: Update estimate pt = pt−1 + λt∇f̂(pt−1)

6: end procedure

First of all, the method collects samples (p(l), f(p(l))), and stores them in a set

D (Line 2). The method for collection could be, for example, using a uniform grid

over the parameter space that includes the boundary points. After collecting a set

of samples, the algorithm, in Line 3, fits a polynomial f̂ of some specified degree d

according to the collected samples. By fitting f̂ , the gradient ∇f̂ with some suitably

chosen step size λt is calculated in the next Line 4. At the end, in Line 5, the estimated

parameter is updated as presented in Equation 4.2.
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pt = pt−1 + λt∇f̂(pt−1) (4.2)

These steps define the AGA algorithm to estimate the agent’s parameters and

type iteratively. For further details, I recommend reading Albrecht and Stone (2017)

[2].

4.5.2 Approximate Bayesian Update

In this method, rather than using f̂ to perform gradient-based updates, Albrecht and

Stone use f̂ to perform Bayesian updates that retain information from past updates.

Hence, in addition to the belief P(θω|H t
ω), agent φ now also has a belief P(p|H t

ω, θω) to

quantify the relative likelihood of parameter values p, for agent ω, when considering

type θω. This new belief is represented as a polynomial of the same degree d as f̂ .

Algorithm 7 provides a summary of the Bayesian update.

Algorithm 7 Approximate Bayesian

1: procedure ABU Estimation(p)

2: Fit f̂ to f as in Algorithm 6

3: Compute polynomial product ĝ = f̂ · P(p|H t−1
ω , θω)

4: Collect samples D = (p(l), ĝ(p(l)))

5: Fit new polynomial ĥ of degree d to D

6: Compute integral I =
∫ pmax

pmin
ĥ(p)dp

7: Set new belief P(p|H t
ω, θω) = ĥ/I

8: Extract estimate pt from P(p|H t
ω, θω)

9: end procedure

After fitting f̂ (Line 2), the convolution polynomial of P(p|H t−1
ω , θω) and f̂ results

in a polynomial ĝ of degree greater than d (Line 3). Afterwards, in Line 4, a set of
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sample points is collected from the convolution ĝ in the same way that is done in

Approximate Gradient Ascent. Afterwards, a new polynomial ĥ of degree d is fitted

to the collected set in Line 5. Finally, the integral of ĥ under the parameter space, and

the division of ĥ by the integral is calculated, to obtain the new belief P(p|H t
ω, θω).

This new belief can then be used to obtain a parameter estimation, e.g., by finding

the maximum of the polynomial or by sampling from the polynomial. For further

details, I also recommend reading Albrecht and Stone [2] work.

4.5.3 POMCP-based Estimation

Although in the MDP model, agent φ has the full observation of the environment, it

cannot observe the type and parameters of its team-mates. Therefore, I can employ

POMCP [89], a state-of-the-art on-line planning algorithm for POMDPs (Partially

Observable Markov Decision Process) [54]. POMCP stores a particle filter at each

node of a Monte Carlo Search Tree. In this case, the unobservable part is the types

and parameters of the other agents, rather than the fully observable environment.

Consequently, the particles are defined as different combinations of the types and

parameters for all agents in Ω. I.e., [(θ4,p1), (θ2,p2), ..., (θ1,pn)], where each (θ,p)

corresponds to one non-learning agent.

In the very first root, when the particles are created, I randomly assign types and

parameters for each agent at each particle. Therefore, at every iteration, I sample a

particle from the particle filter of the root and based on it, the estimated type and

parameters of the agents will be changed. As in the POMCP algorithm, the root gets

updated once a real action is taken, and a real observation is received. Therefore, for

having a type probability P(θ)ω for a certain agent ω, I calculate the frequency that

the type θ is assigned to agent ω in the current root’s particle filter. Additionally, for

the parameter estimation, I will consider the average across the particle filter (for each

type and agent combination). For further explanations about the POMCP algorithm,
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I recommend reading Silver and Veness (2010) [89].

4.6 Level-based Foraging Domain

The level-based foraging domain is a common problem for evaluating ad-hoc teamwork

[2], [6], [102]. In this domain, a set of agents collaborate to collect items displaced

in a rectangular grid-world environment in a minimum amount of time (Figure 4.3).

In this foraging domain, items have a certain weight, and agents have a certain skill

level, which defines how much weight they can carry. Hence, agents may need to

collaborate to pick up a particular heavy item.

1.0

0.5

0.3

ω2

0.5

ω1

0.7

φ

0.6

Figure 4.3: Level-based foraging domain. The number next to the boxes indicate

their weight, and the one next to agents indicate their skill levels.

4.6.1 Agent’s Parameters

Each agent has a visibility region and can only choose items as a target which are in

its visibility cone. Therefore, to know which items are in the visibility area of each

agent, I need to have the View Angle and the maximum View Radius of the agents.
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Additionally, each agent has a Skill Level which is defining its ability to collect items.

Also, each item has a certain weight, so each agent can collect items that have a

weight below their Skill Level or equal to it. Based on what I described above, each

agent can be defined by three parameters:

• l, which specifies the Skill Level and l ∈ [0, 1];

• a, which is referring to View Angle. The actual angle of the visibility cone is

given by the formula a ∗ 2π. Additionally, it is assumed that a ∈ [.1, 1];

• r, which is referring to the View Radius of the agent. The actual View Radius is

given by r
√
w2 + h2, where w and h are the width and height of the grid. Also,

the range of the radius is r ∈ [.1, 1].

All of these parameters are applicable to all ω ∈ Ω. Agent φ has the parameter

Skill Level when it has either full or partial observability, but the View Angle and

View Radius parameters are only applicable when it has partial observability.

4.6.2 Agent’s Type

Concerning types of non-learning agents, I took inspiration from Albrecht and Stone

(2017) [2] type definitions in the foraging domain. They considered four possible types

for the agents in Ω: two “leader” types, which choose items in the environment to

move towards, and two “follower” types, which attempt to go towards the same items

as other agents, in order to help them load items. However, “follower” agents may

also choose other agents as targets, while in my work I handle agents that choose

tasks as targets. Therefore, I only consider “leader” agents in my work. Hence, based

on agent ω’s type and parameter values, a target item will be selected, and the agent’s

internal state (memory) will be set to the position of that target. Afterwards, the
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agent will move towards the target using the A∗ algorithm [45]. Here is the detail for

how the different types choose their targets:

• L1: if there are items visible, return the furthest item that has a lower weight

then the agent’s level; else, return ∅.

• L2: if there are items visible, return the item with highest weight below own

level, or item with the highest weight if none are below own level; else, return

∅.

• L3: if there are items visible, return the closest item that has a lower weight

than the agent level; else, return ∅.

• L4: if there are items visible, return the item with the lowest weight; else, return

∅.

• L5: if there are items visible, return the item with the highest weight above its

own level; else return ∅.

• L6: if there are items visible, return an item with a lower weight than the agent’s

level, in the highest distance; else return ∅.

Types L1 and L2 are defined in Albrecht and Stone (2017) [2]. The other types

are defined by us.

4.6.3 Actions

Each agent has five possible actions in the grid: North, South, East, West, Load. The

first four actions will move the agent towards the selected direction, if the destination

cell is empty or it is inside the grid.

The fifth action, Load, helps the agent to load its target item. The only time that

an agent can collect an item is when the item is next to the agent, and the agent is
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facing it. Also, for loading the item, the Skill Level of the agent should be equal or

higher than the items’ weight. If the agent does not have enough Skill Level to collect

the item, then a group of agents can do the job if the sum of the Skill Levels of the

agents that surround the target is greater than or equal the item’s weight. Therefore,

the item can be “loaded” by a set of agents or just one agent. In the situation when

the agent does not have enough ability to collect the target item, it will stand still in

the same place when issuing the Load action. In case of collecting an item, the team

of agents receives a reward of 1 and it will be removed from the grid.

4.6.4 Foraging Process

The process of foraging and choosing a target for agents ω is described in Algorithm

8.
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Algorithm 8 Foraging

1: procedure MoveOmega (SkillLevel, V iewRadius, V iewAngle, Type)

2: if item in Mem is collected then

3: Mem← ∅ . Memory to keep target

4: end if

5: Loc← location of ω; Dest← ∅
6: if Mem 6= ∅ then

7: Dest←Mem

8: else . Choose new target

9: I ← VisibleItems(Loc, V iewRadius, V iewAngle)

10: Targ ← ChooseTarget (SkillLevel, Type, I)

11: if Targ 6= ∅ then

12: Dest← Targ

13: end if

14: end if

15: Mem← Dest

16: if Dest = ∅ then

17: Assign probability 0.2 to each action

18: else

19: if Loc is next to Dest then

20: Assign probability 0.96 to Load action

21: else

22: Use A∗ to find path from Loc to Dest

23: Assign probability 0.96 to first move action in the path

24: end if

25: Add probability 0.01 to each move action

26: end if

27: Return pdf over actions

28: end procedure

56



Chapter 4. Task-based Ad-hoc Team 4.7. Conclusion

In the very first step, as agent ω has not chosen any target, the Mem, which

holds the target item, is initialised to ∅. In Line 9, the VisibleItems routine is called,

which gets the agent ω’s parameters, View Angle and View Radius, and returns a set

containing the visible items. In Line 10, the ChooseTarget routine gets the Skill Level

and Type of the ω agent, and the list of visible items, returned from VisibleItems

routine as input. The output of this routine is the target item that agent ω should

go towards.

As it is shown in Line 16, there might be cases where agent ω is not able to find any

target task. In these cases, all actions would get equal probabilities and consequently,

it will perform actions uniformly randomly until it is able to choose a task.

I should mention that, this is an algorithm template that I assume non-learning

agents are following. I use the same template in my simulations, but in practice agents

ω could follow different algorithms. Hence, in Section 6.6, I will also evaluate the case

where the agents do not follow the same algorithm as in my template.

4.7 Conclusion

In this chapter, I focused on a type-based ad-hoc team of agents attempting to

complete tasks in a decentralised manner. I described how a learning agent estimates

the other non-learning team-mates parameters and types to reason their future

behaviour. The result will be better decisions that lead to better team performance.

Moreover, I explained the state-of-the-art methods, AGA, ABU, POMCP-based

estimation, which applied for estimating parameters and types in previous works.

After that, I discussed the evaluative domain, level-based foraging, in which I applied

my novel methods.
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Chapter 5

History-based UCT

As mentioned in Chapter 4, the ad-hoc team that is defined in this research has a

learning agent φ. The agent φ attempts to make the best decision based on the

estimated future behaviour of the team-mates. In this chapter, I introduce my novel

algorithm called History-based UCT (UCT-H). In this algorithm, the search tree will

be smaller than the original UCT. Accordingly, a node would have a lower number of

children, which will assist the agent φ to make a quicker decision when the team gets

larger.

5.1 UCT-H

In this section, I propose UCT-H, a modification over the original UCT algorithm

(described in Section 2.6) for large-scale ad-hoc teamwork. In this research, I apply

the UCT-H for task-based ad-hoc teamwork. UCT-H can solve any ad-hoc teamwork

model where there are probabilities over actions given estimations of team-mates

models. In UCT, every time we start to trace the search tree, by taking the

same action a, there might be separate nodes with different states, because of the

uncertainty in the environment. Consequently, having multiple nodes for the same
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action will cause a big increase in the size of the tree.

Therefore, my main idea is to represent a history of states at every node n for

each action (Figure 5.2). That is, instead of a node n representing a specific state s,

it will represent multiple states by taking a sequence of actions, a0, a1, . . . , ad−1, from

the root up to the current depth d. Accordingly, all possible states reachable from

the root by the sequence of actions, a0, a1, . . . , ad−1, will be represented by exactly the

same node n. Note that the root node still represents a unique state s0. Each time I

simulate taking an action a from the root towards a child node n′, I will sample the

next state s′ by simulating taking action a in the state s0. Similarly, each time, and I

go down from a node n to a child node n′, by taking action a, I will sample the next

state s′ by simulating taking action a in the state s (which will be fully determined

by the current sequence of action simulations up to n). Afterwards, I re-start the

process each time I go back to the root node for a new simulation. Hence, at each

simulation, the same node may represent different states. Consequently, instead of

each node storing a Q-Table with action-value pairs Q(s, a) for a certain state s, I

will store action-values Q(h, a) for each history h.

For a more detailed understanding of UCT-H I present it in Algorithm 10 and 11.

For an easier comparison of UCT and UCT-H, I mention the algorithm for the Search

function of UCT here in Algorithm 9 one more time. In Line 9 of both algorithms,

after selecting the next action, the next state is simulated in the simulateAction

function. Consequently, the next action will lead us from the current node to a child

node. The difference between them appears in line 10 in both algorithms The purpose

of this line of the code is to either expand the tree by adding a child node to the parent

node or choose an existing child node. However, the way of finding or adding a new

node is varied in each algorithm. In UCT, the child only depends on the state, and

for any number of actions, there will be a separate node for each state. However, in

UCT-H, for each action, there is only one node.
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Algorithm 9 Search in UCT

1: function Search(state, depth) .

2: if Terminal(state) then

3: return 0

4: end if

5: if Leaf(state, depth) then

6: return Evaluate(State)

7: end if

8: action← selectedAction(state, action)

9: (nextState, reward)← simulateAction(state, action)

10: nextNode← child(node, nextState)

11: q ← reward+ γ Search(nextNode, depth+ 1)

12: UpdateV alue(node, action, q, depth)

13: return q

14: end function

Algorithm 10 History-based UCT

1: procedure UCT-H(state) .

2: root← new Node

3: repeat

4: Search(state, 0)

5: until Timeout

6: return bestAction(root,0)

7: end procedure
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Algorithm 11 Search in History-based UCT

1: procedure Search(state, node, depth) .

2: if Terminal(state) then

3: return 0

4: end if

5: if Leaf(state, depth) then

6: return Evaluate(State)

7: end if

8: action← selectedAction(node, depth)

9: (nextState, reward)← simulateAction(state, action)

10: nextNode← child(node, nextState, action)

11: q ← reward+ γ Search(nextNode, depth+ 1)

12: UpdateV alue(node, action, q, depth)

13: return q

14: end procedure

Note, however, that in my case, I do not have the true MDP model, as mentioned

in the previous chapter. Hence, the simulator utilised in the search tree (Line 9 for

both UCT and UCT-H, respectively) does not match the true problem, for both UCT

and UCT-H. It happens because the transition probability and reward functions (P ,

R) depend on the pdfs over actions given by the agents in Ω. These pdfs, however,

are a function of the type, parameter and internal state of each ω ∈ Ω, which are

unknown.

As in Albrecht and Stone (2017) [2], each time I restart a simulation from the root

node, I sample a type for each agent from my estimated type probabilities, which

remains fixed for each agent for that simulation (i.e., until I reach the limited horizon

l), and is re-sampled next time a simulation is re-started from the root node. Given

a type, I use the currently estimated parameters when sampling the agents’ pdfs to

simulate the reward r and the next state s′.
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5.2 Example

I clarify the differences between UCT and UCT-H with an example in this section to

give readers a better understanding of the two algorithms. For this purpose, I assume

a problem with two possible actions, a0, a1, and two possible next states per action.

In Figure 5.1 and Figure 5.2, I show the root and the nodes for two levels below the

root for both algorithms. Figure 5.1 demonstrates the original UCT. As there are two

possible states after taking each action, therefore, after expanding the tree, the first

row of the tree will look like Figure 5.1 (a), in which there are four separate nodes.

Accordingly, the number of nodes increases exponentially to 16 in the second level.

s0

s1 s2 s3 s4

a0 a0
a1a1

(a)

s0

s1 s2 s3 s4

a0 a0 a1
a1

s5 s6 s7 s8

a0 a0 a1 a1

s9 s10 s11 s12

a0 a0 a1 a1

s13 s14 s15 s16

a0 a0 a1 a1

s17 s18 s19 s20

a0 a0 a1 a1

(b)

Figure 5.1: Illustration of original UCT in which the same action may lead to different

states.

On the other hand, Figure 5.2 illustrates the same situation in UCT-H. As it is

shown in Figure 5.2 (a), there are only two nodes after the root node, instead of four.

Each node is related to each action. Accordingly, in the second level, as shown in
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Figure 5.2 (b), there are only 4 nodes rather than 16.

s0

s1/s2 s3/s4

a0 a1

(a)

s0

s1/s2 s3/s4

a0 a1

s5/s6 s7/s8

a0 a1

s9/s10 s11/s12

a0 a1

(b)

Figure 5.2: Illustration of UCT-H, which shows having multiple states in the same

node for each action.

In Figure 5.3 and 5.4, I explain every step of expansions in both UCT and UCT-

H with their respective Q-Tables. These figures show the expansion of the tree by

applying both algorithms with their regarding Q-tables step by step. In the Q-table,

as we see, there are 3 values for each action and each state. R is the cumulative

reward for the corresponding state by taking the action. N is the total number of

times that this node was visited. Q is the Q-Value which is the division of cumulative

reward and the total number of visits: Q = R
N .
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Figure 5.3: A step-by-step traced tree with their associated Q-tables for UCT
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Figure 5.3, outlines how the growth of the tree happens in UCT, and Figure

5.4 demonstrates the steps in UCT-H. The way for expanding the tree and their

corresponding Q-tables are the same in four initial steps. However, the difference

appears in the fifth step. In this step, the action a0 is taken for the second time from

the root node.

As we see in Figure 5.3 (e), taking the action a0 leads to a different state, s3, and

not the same as before, which was s1. In this situation, UCT creates a new node for

this new state. However, in UCT-H, despite having a new state, s3, for a previously

taken action, a new node is not created (Figure 5.4 (e)). Instead, the same node for

that specific action is visited for the second time. It happens in the same way in

Figure 5.3 (f) and 5.4 (f) as well.

65



Chapter 5. History-based UCT 5.2. Example

s0

s1

a0

s0

s1 s2

a0 a1

a0 a1

s0
R N Q

0.9 1 0.9

R N Q

0 0 0

a0 a1

s0
R N Q

0.9 1 0.9

R N Q

0.2 1 0.2

(a) (b)

s0

s1 s2

a0 a1

s5

a0

s0

s1 s2

a0 a1

s5

a0

s6

a1

a0 a1

s0
R N Q

0.9+0.6 2 1.5 / 2

R N Q

0.2 1 0.2

s1 0.6 1 0.6 0 0 0

a0 a1

s0
R N Q

1.5+0.4 3 0.63

R N Q

0.2 1 0.2

s1 0.6 1 0.6 0.4 1 0.4

(c) (d)

s0

s1/s3 s2

a0 a1

s5

a0

s6

a1

s0

s1/s3 s2/s4

a0 a1

s5

a0

s6

a1

s7

a1

a0 a1

s0
R N Q

1.9+0.7 4 0.65

R N Q

0.2 1 0.2

s1/s3 0.6+0.7 2 0.65 0.4 1 0.4

a0 a1

s0
R N Q

2.6 4 0.65

R N Q

0.2+0.35 2 0.275

s1/s3 1.3 2 0.65 0.4 1 0.4

s2/s4 0 0 0 0.35 1 0.35

(e) (f)

Figure 5.4: Tracing the tree step by step with related Q-tables for UCT-H
66



Chapter 5. History-based UCT 5.3. Evaluation

5.3 Evaluation

In this section, I evaluate the overall performance, computational time and memory

usage of UCT and UCT-H. I ran experiments in the level-based foraging domain,

as I explained in Section 4.6. For these experiments, I only considered two types,

L1, L2, for the non-learning agents. Regarding their parameters, all assigned random

values in defined range as mentioned in Section 4.6.1. I evaluate each execution of the

algorithms in randomly generated scenarios. I run 15 executions per experiment and

plot the average results. Error bars show the 90% confidence interval. Additionally,

when I say that one result is “significantly better” than another, I mean better with

statistical significance, considering ρ < 0.1.

I evaluated the performance across several numbers of agents (|Ω|), with the

scenario size fixed to 20× 20. I consider “performance” as the number of time steps

required to collect all items in the scenario (hence, the lower the better). For both

UCT and UCT-H, I performed 100 simulations for each state, and considered a limit

horizon 100. Additionally, I used discount factor 0.95, and UCB1 exploration constant

0.5√
2
.

I show results for UCT and UCT-H using two different parameter estimation

approaches: Approximate Gradient Ascent (AGA) and Approximate Bayesian

Updating (ABU), from [2]. I do not consider the Exact Global Optimisation approach

since it is significantly more computationally expensive than the other two.
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Figure 5.5: Performance of different MCTS algorithms as the number of agents

increases (the lower the better).

In Figure 5.5, I show the results for an increasing number of agents (|Ω|). Evi-

dently, UCT-H has always a significantly better performance than UCT. Additionally,

the difference between UCT and UCT-H seems to increase with |Ω|: I can observe

that UCT-H is around 35% better than UCT with 2 agents, but around 65% better

with 10 agents.

In Figure 5.6, I evaluate the computational time per time step for each algorithm

(as I limit the time of the MCTS by the number of simulations). As I can see, the

difference in computational time is not significant between both algorithms. Hence,

UCT-H uses about the same computational time as UCT but achieves a better

performance.
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Figure 5.6: Computational time of MCTS algorithms as the number of agents

increases.

I also evaluate the memory usage of both algorithms, in Figure 5.7. As it can

be seen, both UCT and UCT-H tended to use a similar amount of memory up to 8

agents, although UCT tended to use more memory than UCT-H (up to 8 agents, the

difference is only significant with 3 agents). For more than 8 agents, however, UCT

uses a significantly higher amount of memory. In fact, it can be noted that UCT-

H memory usage tends to remain constant with |Ω|, while UCT tends to increase

exponentially as the number of agents increases. Therefore, not only UCT-H achieves

a better overall performance than UCT, but it is also more scalable in terms of memory

usage as the number of agents in the system grows.

Additionally, it is evident that UCT had a much larger variance than UCT-H in

terms of memory usage, especially for a larger number of agents. Therefore, when

using UCT-H one can have a better expectation of the amount of memory necessary

to run the system.
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Figure 5.7: Memory usage of MCTS algorithms as the number of agents increases.

5.4 Conclusion

In this chapter, I presented a novel method, UCT-H, which is a lighter online

planning technique for ad-hoc teamwork. My approach introduces a more compact

representation, by representing each node as a history instead of a state. I have

conducted several experiments in the domain of level-based foraging, a problem

that requires close cooperation between agents, and as such is very well suited to

the evaluation of ad-hoc teamwork. Based on my research, I have shown that my

approach has better performance than existing state-of-the-art approaches, and is

more efficient using roughly the same amount of computing time. The difference

between my approach and the current state-of-the-art gets larger as the number of

agents increases.

In addition, I assess the memory usage of my approach compared with the state-

of-the-art algorithms. In my experiment, I found that my method tends to use a
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roughly constant amount of memory, whereas the state-of-the-art method increases

exponentially as the number of agents increases. As a result, my approach is more

scalable and should better handle larger teams.
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OEATA

In this chapter, I present my novel algorithm, Online Estimators for Ad-hoc Task

Allocation (OEATA), which assists the ad-hoc agent φ to figure out the parameters

and types of non-learning team-mates autonomously. The primary conception of the

algorithm is to observe each non-learning agent (ω ∈ Ω) and record all tasks (τ ∈ T )

that any one of the agents accomplishes, to compare them with the predictions of sets

of estimators.

OEATA is inspired by Genetic Algorithms (GA) [50], since the main idea is to keep

a set of estimators, generating new ones either randomly or using information from

previously selected estimators. However, GAs evaluate all individuals simultaneously

at each generation, and usually, they are selected to stay in the new population or for

elimination according to its fitness function. Our estimators, on the other hand, are

evaluated per agent at every task completion, and survive according to the success

rate. The proportion of survived estimators are then used for type estimation, and new

ones are generated using a different approach than the usual GA mutation/crossover.

In OEATA, there are some fundamental concepts applied during the process of

evaluating parameters and types of team-mates. Therefore, I will introduce the basics

of the method first and, then, explain the algorithm in detail.
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6.1 OEATA Fundamentals

Sets of Estimators

In OEATA, there are sets of estimators Eθ
ω for each type θ and each agent ω (Figure

6.1), considering that each set Eθ
ω has a fixed number of N estimators. Therefore, the

total number of sets of estimators for all agents are |Ω| × |Θ|. Figure 6.1 presents

this idea, relating for each agent, all possible types and corresponding estimators.

ω

θ1

Eθ1ω

θ2

Eθ2ω

θn

Eθnω

Figure 6.1: For each ω agent there is a set of estimators for each type.

An estimator e of Eθ
ω is a tuple: {pe, se, τe, ce, fe}, where:

• pe is the vector of estimated parameters for the agent ω, and each element of

the parameter vector is defined in the related element range;

• se is the initial state or the last Choose Target State, where the agent ω

completed a task and wants to find a new task;

• τe is the task that the agent ω would attempt to achieve, assuming type θ and

parameters pe. By having estimated parameters pe and type θ, I presume it is

straightforward to predict the target task of the agent ω when it is at se;

• ce holds the number of times that e was successful in predicting the next task

for the agent ω;
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• fe keeps the count of the consecutive failures.

All estimators are initialised at the beginning of the process and evaluated

whenever a task is accomplished. The estimators that are not being able to make

accurate predictions after some trials are removed and replaced by estimators that

are created using successful ones as a basis, or purely random, in a fashion inspired

by genetic algorithms [50].

History of Tasks

In this method, besides having sets of estimators for each non-learning agent (ω ∈ Ω),

the agent φ keeps track of the tasks completed by each agent ω, as History of Tasks.

Hence, History of Tasks is defined as Hω = {(s0, τ 0), . . . , (sn, τn)}, where si is the ith

Choose Target State, where the agent ω intends to identify a new target, and τ i is the

actual task that the same agent completes afterwards. As previously stated, Choose

Target State is the initial state or the state where the agent ω accomplishes a task

and wants to choose a new one.

However, the states that the agent φ considers as the agent ω’s Choose Target

State might not be correct because there are some situations that a specific task τ

is completed by any other agent (including the agent φ), which could have been the

target of the agent ω. In these cases, when the agent ω notices that its target is not

existing anymore, it would choose a new target, and the Choose Target State would

not be the same state when the last task was done by the agent ω (nor the initial

state). Hence, as the internal state of the agent ω is not observable by the agent φ,

there will be an estimated Choose Target State instead of the true one in Hω. More

details will be in the Section 6.2.

During the process of OEATA, new parameter vectors pe are created in various

phases. Keeping History of Tasks will facilitate the calculation of the success rate

of the created pe from the initial step. For this purpose, I define a function called
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CheckHistory (Algorithm 12), which receives an agent ω, and the type θ and parameter

vector pe as inputs. In this function, all elements of the Hω will be evaluated to

discover how many of the previously accomplished tasks τ i can be correctly estimated,

supposing that the agent ω has the parameter pe and type θ. Accordingly, each

element of the Hω is extracted in Line 3. Afterwards, the function FindTarget is

called in Line 4, which aims to figure out the target τ of the agent ω, assuming that

the current state is the Choose Target State si and (pe, θ) are its parameter vector

and type. If τ is equal to τ i, the success rate will increase, and at the end, the final

result is the count of correct task predictions across the whole history from the initial

step.

Algorithm 12 Check History

1: procedure CheckHistory(ω, θ,pe)

2: Success Count ← 0;

3: for all (si, τ i) ∈ Hω do

4: τ ← FindTarget(ω, si,pe, θ)

5: if τ i = τ then

6: Success Count ← Success Count + 1;

7: end if

8: end for

9: return Success Count ;

10: end procedure

Bags of successful parameters

Given the vector of parameters pe =< p1, p2, ..., pn >, if any estimator e succeeds, I

keep each element of the parameter vector pe in bags of successful parameters to use

them in the future into the new parameter vectors creation (more details in Section

6.2). Accordingly, there are bags Bθ,i
ω , for each parameter pi in vector pe and each

Eθ
ω. Therefore, the total number of bags are n×|Ω|× |Θ|. These bags are not erased
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between iterations, and hence they may increase in size at each iteration.

6.2 Process of Estimation

After presenting the fundamental elements of OEATA, I will explain how I define the

process of estimating the parameters and type for each non-learning agent. The

algorithm has five steps: (i) Initialisation; (ii) Evaluation; (iii) Generation; (iv)

Estimation. Additionally, an (v) Update step is executed for all agents in Ω, any

time a task is completed by any agent of the team, including the agent φ. These steps

are described below:

Initialisation

At the very first step, all estimators should be generated and initialised. Therefore,

the agent φ creates N estimators for each type θ ∈ Θ and each ω ∈ Ω. If there is a

lack of prior information, the parameter vectors pe of each estimator can be initialised

with a random value from the uniform distribution, in each parameter’s range. For

all estimators, in the initialisation phase, the initial state of the environment is set

as the Choose Target State se. Since each estimator has a specific type θ and a

particular parameter vector pe, it allows the agent φ to estimate the agent ω’s task

decision process in the initial state. The estimated chosen task is assigned as τe in

the respective estimator. Finally, both ce and fe are initialised to zero.

Evaluation

The evaluation of all sets of estimators Eθ
ω for a particular agent ω starts when it

completes a task τω. The key objective of this step is to find the estimators that

could correctly estimate the real task τω that the agent ω just completed. Algorithm

13 presents the process for evaluating estimators.
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Algorithm 13 Evaluating Estimator

1: procedure Evaluation(τω, ω, sc) . sc is the Current State

2: e′ ← argmaxe∈⋃θ Eθω
ce . Get the estimator with highest success rate

3: s← se′ ; . Last estimated Choose Target State

4: for each θi ∈ Θ do

5: for each e ∈ Eθi
ω do

6: if τω = τe then

7: for each pi ∈ pe do

8: Bθ,i
ω ← Bθ,i

ω ∪ pi; . Parameters are added with repetition.

9: end for

10: ce ← CheckHistory(ω, θi,pe) + 1;

11: fe ← 0;

12: else

13: fe ← fe + 1;

14: ce ← ce − 1;

15: if fe > ξ then

16: remove e from Eθ
ω;

17: end if

18: end if

19: se ← sc;

20: τe ← FindTarget(ω, se,pe, θi)

21: end for

22: end for

23: UpdateHistory(τω, s)

24: end procedure

Consequently, for each type θ ∈ Θ, then for every e in Eθ
ω, the algorithm checks if

the τe (the estimated task by assuming pe to be agent ω’s parameters with type θ in

state se) is equal to τω or not (Line 6 of the Algorithm 13). If they are equal then the

estimator e is considered as successful estimator and each pi in the pe vector is stored
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in a respective bag Bθ,i
ω , which is mentioned in Line 7 and 8 of the Algorithm 13.

The union (∪) which is applied in the equation means that new parameters would be

added to the bag with repetition. If a parameter succeeds many times, it will appear

in the bag with the same numbers of successes, so the chance of selecting it would be

higher.

Moreover, when the estimated task τe is equal to the real task τω, fe is set to

zero and ce increases. However, the increment is not simply done by ce ← ce + 1

and the CheckHistory function (Algorithm 12) is applied for updating the ce to find

the number of successes across the whole history of agent ω’s task completion so far

(as shown in Line 10 of the Algorithm 13). The reason is, ce decreases when there

is a failure (Line 14). However, the lack of success might be an accident given the

stochastic behaviour of non-learning agents. Thus, when a correct prediction is made

with the same estimator e, the value of ce is restored to the total number of successes,

which can be easily done through the history Hω. Conversely, if τe is not equal to τω,

then fe is increased (Line 13) and ce is decreased (Line 14). The first failure for the

estimator e would not be the reason to remove it and it will be given more chances

since it may still hold correct parameters. Consequently, there would be a threshold

ξ for the removal, and if fe is greater than ξ, the estimator e will be erased from its

belonging set. This penalisation of estimators for successive failures aids us later in

the type estimation.

In this step, after finding successful and failing estimators, the se and τe of all

survived estimators of the sets Eθ
ω will be updated. Every se is replaced with the

current state sc, and the τe with the new predicted task (Line 20), by considering

the current state sc as the Choose Target State and assuming pe as parameter vector

of the ω agent, and θ as its type. Additionally, at the end of this step, as a task

has just been completed, the history Hω of the corresponding ω agent is updated as

well, to apply it for the coming evaluations. Notice that the agent φ has no access
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to the true Choose Target State of the ω agent. Even though when a non-learning

agent completes a task, the Choose Target State of all estimators would be the same

se (the state where the task has just been completed), these can later change during

the execution. Therefore, the estimators are used in the Eθ
ω sets to estimate the

Choose Target State. That is, the Choose Target State is set to the one, stored in

the estimator e with highest ce across all sets Eθ
ω. I.e., argmaxe∈⋃θ Eθω

ce. Accordingly,

to obtain the previously estimated Choose Target State, OEATA finds the estimator

in all sets Eθ
ω with highest ce value (Line 2 of the Algorithm 13) and then it assign

the last estimated Choose Target State with the se of the selected estimator (Line 3).

Afterwards, (s, τω) is added to the history, where τω is the task just completed and

s is the latest estimated Choose Target State of agent ω. Note that the process of

finding the last estimated Choose Target State s is done before the evaluation of the

estimators, to avoid the process being affected by the changed value of the updated

estimators.

Generation

Let’s suppose that E′θω is the new set with only the surviving estimators for the agent

ω and type θ that were not removed in the Evaluation step (Figure 6.2).

79



Chapter 6. OEATA 6.2. Process of Estimation

N

A
ll

E
stim

ators

Evaluation
S
u
rv

ived
E

stim
ators

Figure 6.2: Some of the estimators of each set Eθ
ω will be removed after evaluation

step.

In this step, the aim is to generate new estimators, in order to have the size of

the sets Eθ
ω equal to N again, which means N − |E′θω| new estimators should be

generated. Unlike the Initialisation step, new estimators are not only created with

random parameters, but a proportion of them are generated using previous successful

parameters from the bags Bθ,i
ω . Accordingly, a new combination of parameters that

had at least one victory in the previous steps can be utilised in generating new

estimators. As the number of copies of the parameter pi in the bag Bθ,i
ω is equivalent

to the number of successes of the same parameter in previous steps, the chance

of choosing very successful parameters will increase. Figure 6.3 shows how newly

generated estimators are divided into two parts.
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Figure 6.3: A proportion of new estimators are generated as a new combination of

saved parameters from the respective bags and the others are randomly generated.

More detail of the process of generating new estimators is indicated in Algorithm

14. The main part of producing new estimators is creating a new parameter vector

p′, and then updating the other elements of the estimator accordingly. The process

of creating all new parameters p′ are shown in Lines 6 to 11 of the Algorithm 14.

Parameters for a portion (N − |E′θω|) × 1
m

(where m > 1) of the new estimators will

be randomly sampled from a distribution (e.g., uniform within the parameters range,

if there is no domain knowledge). The other portion (N − |E′θω|) × (1 − 1
m

) will

be generated as a new combination from the corresponding bags, which are holding

previously victorious parameters.
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Algorithm 14 GenerateNewEstimators

1: procedure Generation(ω, sc) . sc is the Current State

2: for all θi ∈ Θ do

3: n← 0;

4: number of mutations← (N − |E′θiω |)× 1
m

5: while |E′θiω | < N do

6: for all p′i ∈ p′ do

7: if n < number of mutations then

8: p′i ← random value from Uniform Distribution . Each p′i is

uniformly sampled from the parameter range.

9: else

10: p′i ← random value from Bθ,i
ω ;

11: end if

12: end for

13: histsuccess ← CheckHistory(ω, θi,p
′);

14: if histsuccess > 0 then

15: pe′ ← p′;

16: se′ ← sc;

17: τe′ ← FindTarget(ω, se′ ,pe′ , θi);

18: ce′ ← histsuccess;

19: fe′ ← 0;

20: Add e′ to E′θiω ;

21: n← n+ 1;

22: end if

23: end while

24: end for

25: end procedure

That is, each position p′i of the parameter vector p′ of the new estimator is

populated by randomly sampling from the corresponding bag Bθ,i
ω (Figure 6.4). If
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the corresponding bag Bθ,i
ω is empty, then that position of the parameter vector will

be randomly generated. If all bags are empty, then all parameters will be random.

Before creating a new estimator e′, in Line 13 and 14 of the Algorithm 14, the

CheckHistory function (Line 13) is employed here to check if the recently generated

parameter p′ would have at least one success across the history so far. Checking

the history improves the algorithm since it decreases the likelihood of wasting an

estimator with a parameter p′ that would not be able to make any correct prediction

in the previous steps. As a result, if the output of the function is zero, p′ will be

discarded. Otherwise, it will be considered as the parameter vector pe′ of the new

estimator e′.

pe se τe ce fe

p1 p2 p3
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Figure 6.4: Each element pi of new parameter vector p′ is randomly selected from the

corresponding bag Bθ,i
ω .

Now, the other elements of the estimator e′ tuple should be created. Hence, ce′

will be assigned with the output of the CheckHistory function (number of successes in

the History of Tasks Hω), se′ will be set by the current state. Moreover, by assigning

p′ and θ to agent ω, the new target will be τe′ (Line 15 to Line 21). At the end, the

created e′ will be added to E′θω , and the process repeats until |E′θω | = N .
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Estimation

To assist the φ agent to have better decision-making, it is required to estimate a

parameter vector and type for each ω ∈ Ω. Therefore, at each iteration, after doing

evaluation and generation, it is time to do the estimation step. First, based on

the current sets of estimators, the probability distribution over the possible types

is measured. For calculating the probability of agent ω having type θ, P(θ)ω, the

success rate ce of all estimators of the corresponding type θ is applied. That is, for

each ω ∈ Ω, the non-negative success rates ce of all estimators in Eθ
ω of each type θ

are added up:

kθω =
∑
e∈Eθω

max(0, ce) (6.1)

It means that I want to find out which set of estimators is the most successful in

estimating correctly the tasks that the corresponding non-learning agent completed.

In the next step, the calculated kθω is normalised to convert it to a probability

estimation:

P(θ)ω =
kθω∑

θ′∈Θ k
θ′
ω

(6.2)

After measuring the probability distribution over types for each ω ∈ Ω, some of

the aggregation rules like median, mode, or mean is used across all parameter vectors

pe of each set of estimators Eθ
ω. As a result, there will be one estimated parameter

vector p per θ ∈ Θ for each ω ∈ Ω.

Update

As stated earlier, there is a possible issue that might arise in the estimation process.

The problem will appear when a non-learning agent is targeting a particular task τ .

However, before completing it, the agent will notice that its target task is accomplished
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by any of the team members (including agent φ). Consequently, whenever the ω agent

in any state (s) notices that its task is not existing anymore, it will attempt to choose

a different task at the same state. Hence, s would be a new Choose Target State for

the agent ω. This problem would affect all estimators as well. Therefore, once a task

τ is completed by any agent in the team, every τe in all sets Eθ
ω for all non-learning

agents (ω ∈ Ω) that have not just completed τ , will be assessed to evaluate whether

there is any estimator e that predicts the same task as τ . If there is any e with the

same task, the state s will be considered as the Choose Target State se of e, and its

target task τe will be updated accordingly based on the current parameters of the

estimator pe and the type θ of the set.

6.3 Example

For a better understanding of the method, I will explain every step with a simple

example. Let us consider a foraging domain [2], [102], in which there are a set of

agents in a grid-world environment as well as some items. Agents in this domain are

supposed to collect items displaced in the environment.

I demonstrate a simple scenario in Figure 6.5, in which there are one learning

agent φ, two non-learning agents ω1, ω2, and four items, which are in two sizes. As in

all foraging problems, each task is defined as collecting a particular item, so in this

scenario, there are four tasks τ i. In addition, all non-learning agents could have two

possible types θ1 and θ2, and two different parameters (p1, p2), where p1, p2 ∈ [0, 1]. To

keep the example simple, I consider that only p1 affects the decision-making process

of ω1 at each state, and its behaviour is as follows:

• If the type is θ1, and p1 ≥ 0.5, then ω1 goes towards the smallest and farthest

item (τ 0).
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∀p
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τ 2τ 2τ 2

φ

Figure 6.5: Example showing the learning agent φ thinking about the ω agents’

behaviour, when performing foraging.

• If the type is θ1, and p1 < 0.5, then ω1 goes towards the smallest and closest

item (τ 1).

• If the type is θ2, ∀p1 ∈ [0, 1], ω1 goes towards the biggest and closest item (τ 2).

Accordingly, in the example scenario, there are four sets of estimators, two for

each non-learning agent: Eθ1
ω1

, Eθ2
ω1

, Eθ1
ω2

, Eθ2
ω2

. I assume that the total number of

estimators in each set is 5 (N = 5). Additionally, I suppose that the true type of the

ω1 agent is θ1, and the true parameter vector is (0.2, 0.5). Here, I will focus on the

set of estimators for agent ω1.

First step is the Initialisation step, where I start creating random estimators, as

indicated in Table 6.1. To make the example simple, I define the state as only the

position of agent ω1. Therefore, I set each se with the initial position of ω1, which

is (3, 4). Afterwards, I create the parameter vectors pe by randomly sampling from

the uniform distribution, which should be done separately for both p1 and p2. After

generating the parameter vector, the φ agent simulates ω1’s task decision-making
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process for each estimator in the sets Eθ1
ω1

and Eθ2
ω1

, and obtain the corresponding

target task τe based on the type and parameter of each estimator. In addition, all

fe and ce will be initialised as zero. All initial estimators for both sets are shown in

Table 6.1.

pe(p1, p2) se τe ce fe

(0.4, 0.6) (3, 4) τ 1 0 0

(0.5, 0.3) (3, 4) τ 0 0 0

(0.6, 0.2) (3, 4) τ 0 0 0

(0.2, 0.5) (3, 4) τ 1 0 0

(0.9, 0.8) (3, 4) τ 0 0 0

(a) Initial estimators for type θ1

pe(p1, p2) se τe ce fe

(0.1, 0.3) (3, 4) τ 2 0 0

(0.8, 0.7) (3, 4) τ 2 0 0

(0.3, 0.5) (3, 4) τ 2 0 0

(0.6, 0.9) (3, 4) τ 2 0 0

(0.2, 0.1) (3, 4) τ 2 0 0

(b) Initial estimators for type θ2

Table 6.1: Estimator sets Eθ1
ω1

, Eθ2
ω1

after Initialisation step.

After some iterations, based on the true type and parameters of the agent ω1, it

gets the item that corresponds to the task τ 1. As I previously stated, whenever a

task is done by an agent the process of estimation will start. The process starts with

the Evaluation step, where all estimators of two sets Eθ1
ω1

, Eθ2
ω1

will be evaluated. If

the task τ of any estimator e equals to τ 1 then its success counter ce increases by 1,

otherwise it decreases. Moreover, in failure cases, the counter of consecutive failures

fe increases with one unit. All new values are shown in the Table 6.2.

If we suppose that the threshold for removing estimators is equal to one (ξ = 1),

then there will be two surviving estimators at Eθ1
ω1

and no one in Eθ2
ω1

. The results are

displayed in Table 6.3. Hence, the bags for θ1 are: Bθ1,1
ω1

= {0.4, 0.2}; Bθ1,2
ω1

= {0.6, 0.5}

but the ones for θ2 are empty.
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pe(p1, p2) se τe ce fe

(0.4, 0.6) (3, 4) τ 1 1 0

(0.5, 0.3) (3, 4) τ 0 -1 1

(0.6, 0.2) (3, 4) τ 0 -1 1

(0.2, 0.5) (3, 4) τ 1 1 0

(0.9, 0.8) (3, 4) τ 0 -1 1

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe

(0.1, 0.3) (3, 4) τ 2 -1 1

(0.8, 0.7) (3, 4) τ 2 -1 1

(0.3, 0.5) (3, 4) τ 2 -1 1

(0.6, 0.9) (3, 4) τ 2 -1 1

(0.2, 0.1) (3, 4) τ 2 -1 1

(b) Estimators for type θ2

Table 6.2: Estimator sets Eθ1
ω1

, Eθ2
ω1

after updating ce and fe.

pe(p1, p2) se τe ce fe

(0.4, 0.6) (3, 4) τ 1 1 0

(0.2, 0.5) (3, 4) τ 1 1 0

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe

(b) Estimators for type θ2

Table 6.3: Estimator sets Eθ1
ω1

, Eθ2
ω1

after Evaluation step.

After Evaluation step, it is time for the Generation step. By supposing m = 3,

then (1− 1
3
)× (5− 2) = 2 new estimators are generated by randomly sampling from

these bags, while 1
3
× (5− 2) = 1 estimator is generated randomly from the uniform

distribution. Hence, I may create new estimators with the following parameters:

(0.4, 0.5); (0.2, 0.6); (0.8, 0.7), where the last vector is fully random. For Eθ2
ω1

, as all

estimators were removed then the corresponding bags are empty. Consequently, the

whole set Eθ2
ω1

will be generated using the uniform distribution as in the initialisation

process.

Note that ω1’s new position will be (5, 4), next to the box τ 1 it has just collected

(Figure 6.6). Therefore, the current state will be the new Choose Target State for

the agent ω1, and all se for all estimators of both sets will be updated by the current

state. Now as I have Choose Target State, type and parameter vector of the agent ω1,
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it is possible to find a new target τe for each estimator in the sets Eθ1
ω1

and Eθ2
ω1

. All

new estimators and updated values are shown in Table 6.4.

pe(p1, p2) se τe ce fe

(0.4, 0.6) (5, 4) τ 3 1 0

(0.2, 0.5) (5, 4) τ 3 1 0

(0.2, 0.5) (5, 4) τ 3 0 0

(0.2, 0.6) (5, 4) τ 3 0 0

(0.6, 0.7) (5, 4) τ 0 0 0

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe

(0.1, 0.3) (5, 4) τ 2 0 0

(0.8, 0.7) (5, 4) τ 2 0 0

(0.3, 0.5) (5, 4) τ 2 0 0

(0.6, 0.9) (5, 4) τ 2 0 0

(0.2, 0.1) (5, 4) τ 2 0 0

(b) Estimators for type θ2

Table 6.4: Eθ1
ω1

, Eθ2
ω1

sets after Generation step.

ω1

ω2

θ1 and

p < 0.5

θ1 and

p < 0.5

θ1 and

p < 0.5

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

τ 0τ 0τ 0 τ 3τ 3τ 3

θ2 andθ2 andθ2 and

∀p∀p∀p

τ 2τ 2τ 2

φ

Figure 6.6: Updated scenario when agent ω1 completes task τ 1.

After Generation step, it is time to update the History of Tasks Hω1 for agent

ω1. As the agent ω1 completed the task τ1, which was chosen in state (3, 4), I add

((3, 4), τ 1) to Hω1 . Now I can do the Estimation step to have a probability distribution

over types, and one parameter vector per type of ω1. At this step, to find the
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probability of being either θ1 or θ2, I apply the Equation 6.1. By considering the

non-negatives ce of all estimators, I have:

kθ1 = 2, kθ2 = 0,

Finally, to find the probability of each type, I use the Equation 6.2. Accordingly,

the probabilities are:

P′(θ1) =
2

2 + 0
= 1,P′(θ2) =

0

2 + 0
= 0,

which means that the probability of being θ1 is higher. After having the probability for

each type, I use Eθ1
ω1

for estimating parameters. Assuming aggregation by averaging,

the parameter p1 will be estimated as:

p1 = (0.4 + 0.2 + 0.2 + 0.2 + 0.6)/5 = 0.32,

and for p2 will be:

p2 = (0.6 + 0.5 + 0.5 + 0.6 + 0.7)/5 = 0.58.

Concerning Eθ2
ω1

, the aggregation for estimating parameters are:

p1 = (0.1 + 0.8 + 0.3 + 0.6 + 0.2)/5 = 0.4

p2 = (0.3 + 0.7 + 0.5 + 0.9 + 0.1)/5 = 0.5

Thus, for type θ1, the estimated parameter vector is (0.32, 0.58) and for θ2, it is

(0.4, 0.5). For deciding on the next action, in the root of the MCTS tree, agent φ will

sample the type of ω1 from the calculated type probabilities, which are {1.0, 0.0}, and

get the corresponding parameter vector.
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Note that the estimators of agent ω2 also need to be updated, even though it did

not collect any item. Some estimators in Eθ1
ω2

and Eθ2
ω2

may have τ1 as the estimated

task τe, and that is not a valid task anymore since it was already completed by ω1.

Hence, for each estimator e where τe = τ 1, agent φ will again simulate ω2’s task

decision-making process, assuming the parameters in e, and the current state. Note

that for these estimators, both the target task τe and the Choose Target State se need

to be updated.

6.4 Analysis

I show that as the number of tasks goes to infinite, OEATA perfectly identifies the

type and parameters of all agents ω, given some assumptions. First, I consider that

parameters have a finite number of decimal places. This is a light assumption, as

any real number x can be closely approximated by a number x′ with finite precision,

without much impact in a real application (e.g., any computer has a finite precision).

Hence, as each element pi in the parameter vector is in a fixed range, there is a finite

number of possible values for it. To simplify the exposition, I consider ψ as possible

values per element (in general they can have different sizes). Let n be the dimension

of the parameter space.

I will consider three different aggregation rules: mean, median, and mode. For

each aggregation rule, different assumptions are necessary. Let p∗ be the correct

parameter, and θ∗ be the correct type of a specific ω agent. I define θ− 6= θ∗, and

p− 6= p∗, representing wrong types and parameters, respectively. I will also use

tuples (p, θ) to represent a pair of parameter estimation and type. Here we have two

assumptions:

Assumption 1: Aggregation by mode needs the lightest assumption. I just require

that any (p, θ−), and any (p−, θ∗) has a lower probability of making a correct task
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estimation than (p∗, θ∗). This assumption is very light because if a certain pair (p, θ−)

or (p−, θ∗) has a higher probability of making correct task predictions, then it should

indeed be the one used for planning, and could be considered at the correct parameter

and type pair.

Assumption 2: For the mean and median, I further assume that any (p, θ−), and

any (p−, θ∗) will not succeed infinitely often. That is, as |T | → ∞ there will be cases

where it successfully predicts the task, but the number of cases is limited by a finite

constant c.

Additionally, I will consider the case with the lack of previous knowledge, so

parameters and types will be initially sampled from the uniform distribution. As

before, I denote the estimated probability of a certain agent having type θ by P(θ),

but I drop the subscript ω for clarity.

Theorem 1. OEATA estimates the correct parameter for all agents as |T | → ∞.

Regarding type estimation, if Assumption 1 holds, P(θ∗) > P(θ−) (for a sufficiently

large N). Furthermore, if Assumption 2 holds, P(θ∗)→ 1.

Proof. Because of the mutation proportion m, we always have new estimators with

random pe (since wrong parameters eventually reach the failure threshold, so new

ones are generated). As we sample from the uniform distribution, p∗ will be sampled

with probability 1/ψn > 0. Hence, eventually it will be generated as |T | → ∞. As

the generation defines a Bernoulli experiment, from the geometric distribution, we

have that in expectation we need ψn trials.

Therefore, eventually, there will be an estimator with the correct parameter

vector p∗. Furthermore, since (p∗, θ∗) has the highest probability of making correct

predictions (Assumption 1), it has the lowest probability of reaching the failure

threshold ξ. Hence, as |T | → ∞, there will be more estimators (p∗, θ∗), than

any other estimator. Therefore, when considering mode aggregation, OEATA will

correctly estimate p∗ when assuming type θ∗.

For mean and median, any (p−, θ∗) will eventually reach the failure threshold, and
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will be discarded, since it succeeds at most c times by Assumption 2. Hence, when

|T | → ∞ the mean or median across Eθ∗
ω will be p∗.

Concerning type estimation, in the case of mode, I refer the reader to Proposition

1, which shows that OEATA gives a higher probability to θ∗ when we consider only

the Assumption 1.

When we consider the stronger Assumption 2 (for mean and median), then the

probability of the correct type P(θ∗) → 1. That is, we have that ce → ∞ in the set

Eθ∗
ω . Hence, kθ

∗
ω →∞, while ce < c for θ− (by assumption). Therefore:

P(θ∗) =
kθ
∗
ω∑

θ′∈Θ k
θ′
ω

→ 1,

while P(θ−)→ 0, as |T | → ∞.

When Assumption 2 does not hold, we may have that kθ
−
ω → ∞. However, as

mentioned, I can still show that the correct type will receive a higher probability:

Proposition 1. If a parameter estimation in the wrong type θ− succeeds infinitely

often, OEATA still gives a higher probability to the correct type θ∗, for a sufficiently

large N .

Proof. As I mentioned earlier, the parameter estimation in the correct type will

eventually converge to the true parameter. Hence, as the correct parameter estimation

in θ∗ succeeds more frequently than parameter estimations in θ− for sufficiently large

N, kθ
∗
ω would be bigger than kθ

−
ω . If I consider kθω(x) to denote kθω for x tasks. Then:

kθ
∗

ω (x+ 1)− kθ∗ω (x) > kθ
−

ω (x+ 1)− kθ−ω (x)

By applying the Stolz–Cesàro theorem, the limit of P(θ) as |T | → ∞ is:

lim
|T |→∞

kθω(|T |+ 1)− kθω(|T |)∑
θ′∈Θ k

θ′
ω (|T |+ 1)−

∑
θ′∈Θ k

θ′
ω (|T |)

Therefore:

lim
|T |→∞

P(θ∗) > lim
|T |→∞

P(θ−)
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We saw in Theorem 1 that a random search from the mutation proportion takes

ψn trials in expectation. OEATA, however, finds p∗ much quicker than that, since a

proportion of estimators are sampled from the corresponding bags Bθ,i
ω . To simplify

the exposition, I will denote the bags by Bi, since I focus on a particular agent ω,

and the correct type θ∗.

To show my result formally, I make the following assumptions: (i) a correct value

p∗i in any position i may still predict the task incorrectly (since other vector positions

may be wrong), but it will eventually predict at least one task correctly in at most t

trials, where t is a constant; (ii) a wrong value p−i in any position i may still predict the

task correctly (since other vector positions may be correct), but that would happen

at most b times for each bag, across all wrong values. Furthermore, b� ψ.

That is, if one of the vector positions i is correct, p will not fail infinitely, even

though other elements may be incorrect. That is valid in many applications, as in

some cases only one element is enough to make a correct prediction. E.g., if a task

were nearby, for almost any vision radius it would be predicted as the next one if

the vision angle were correct. On the other hand, the wrong values will not always

succeed. That is also true in many applications: although by the argument above

wrong values may make correct predictions, these are a limited number of cases in the

real world. E.g., eventually, all tasks nearby will be completed, and a correct vision

radius estimation becomes more important to make correct predictions. As usually ψ

would be large (e.g., they may approximate real numbers), we would have b� ψ.

Proposition 2. In expectation, OEATA finds p∗ in O(n× ψ × (b + 1)n).

Proof. Sampling the correct value for element pi would take ψ trials in expectation.

Once a correct value is sampled, it will be added to Bi if it makes at least one correct

task prediction. It may still make incorrect predictions because of wrong values in

other elements, and it would be removed if it reaches the failure threshold ξ. However,

for a constant number of trials t × ψ, it would be added to Bi. Similarly, sampling
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at least one time the correct value for all n dimensions would take n × ψ trials in

expectation, and in at most t× n× ψ trials all Bi would have at least one sample of

the correct value in position i. The bags store repeated values, but in the worst case,

there is only one correct example at each Bi, leading to at least 1/(b+ 1) probability

to sample the correct value per bag. Hence, given the bag sampling operation, we

would find p∗ with at most t× n× ψ × (b + 1)n trials in expectation.

Hence, the complexity is close to O(ψ), instead of O(ψn) as the random search

(since b� ψ).

6.5 Ad-hoc Team with Partial Observability

Assuming full visibility for the learning agent is a strong presupposition, and it rarely

occurs in a real application (due to data or technology limitations). Thus, to make the

application more realistic, I will consider now that the agent φ has limited visibility

of the environment. Therefore, I formalise my problem as a Partially Observable

Markov Decision Process (POMDP). Similar to the MDP model, I define a single

agent POMDP model, which will allow me to adapt POMCP [89] with my Online

Estimators for Ad-hoc Task Allocation. As before, the pdfs of non-learning agents will

define the transition and reward functions.

In this section, I will outline the main changes compared to my previous MDP

model (Section 4) and how I designed my POMCP-based solution to the distributed

task allocation scenario.

6.5.1 POMDP model

My POMDP model also considers one agent φ acting in the same environment as

a set of non-learning agents (ω ∈ Ω), and the agent φ tries to maximise the team

performance without any initial knowledge about ω agents’ types and parameters.
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Figure 6.7: In foraging domain, I can assume an agent with a visibility region, like a

circular sector, with a certain radius and angle, centred on the agent’s position.

I consider the same set of states S, action A, transition probability P and reward

functionR defined previously. Additionally, the φ agent’s objective is still to maximise

the expected sum of discounted rewards. However, now the agent φ has a set of

observations O. Every action a produces an observation o ∈ O, which is the visible

environment in φ agent’s point of view (all of the environment within the visibility

region, in the state s′ reached after taking action a). I assume the agent φ can

perfectly observe the environment within the visibility region, but it cannot observe

anything outside the visibility region. Hence, my POMDP model does not require an

observation probability function. As before, agents’ true types and parameters are

not observable.

Hence, the current state cannot be observed directly by the agent φ, so it builds

a history H instead. H consists of a set of collected information ht from the initial

timestamp t = 0 until the current time. Each ht is an action and observation pair

ao, representing the action a taken at time t, and the corresponding observation o

that was received. The current agent history will define its belief state, which is a

probability distribution across all possible states. Therefore, the agent φ must find
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the optimal action, for each belief state.

6.5.2 POMCP modification

POMCP [89], which is described in more detail in Section 2.8, is an extension of UCT

for problems with partial observability. The algorithm applies an unweighted particle

filter to approximate the belief state at each node in the UCT tree, and requires a

simulator, which can sample a state s′, reward r and observation o, given a state and

action pair.

Each time I traverse the tree, a state is sampled from the particle filter of the root.

Given an action a, the simulator samples the next state s′ and the observation o. The

pair ao defines the next node n in the search tree, and for the current iteration, the

state of the node will be assumed to be s′. This sampled state s′ is added to node n’s

particle filter, and the process repeats recursively down the tree. I refer the reader to

Silver and Veness (2010) [89] for a detailed explanation.

However, as in the UCT case, we do not know the true transition and reward

functions, since they depend on the pdfs of the non-learning agents (ω ∈ Ω).

Therefore, I employ the same strategy as previously: at each time I go through

the search tree, I sample a type for each agent from the estimated type probabilities,

and use the corresponding estimated parameters. These remain fixed for the whole

traversal, until I re-visit the root node for the next iteration. Note that these sampled

types and parameters are also going to be used in the POMCP simulator, when I

sample a next state, a reward and an observation after choosing an action in a certain

node.

As stated previously, POMCP has been modified before to sample transition

functions [44]. Here, however, I am employing a technique that is commonly used

in UCT (for MDPs) in ad-hoc teamwork [2], [18], but now in a partial observability

scenario, which allows me to work on the type/parameter space instead of directly on
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the complex transition function space. I can then employ OEATA for the type and

parameter estimation.

I employ the same OEATA algorithm described earlier in this chapter, but I must

handle the cases where any agent ω ∈ Ω is outside the φ agent’s visibility region.

Therefore, it is not observable when the ω agent is trying to complete its tasks. To

do so, I sample a particle from the POMCP root, which corresponds as sampling a

state from the belief state. Beside the belief state, I assume that the agent φ knows

when the non-learning agent has completed a task, even if it is outside our visibility

region. The sampled state is then used as the current state in OEATA, and it can

then be executed as normal. Therefore, states that are considered more likely will be

sampled with a higher probability for the OEATA algorithm.
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6.6 Evaluating OEATA

I will compare my novel algorithm (OEATA) against two state-of-the-art parameter

estimation approaches in ad-hoc teamwork: AGA and ABU [2] (Section 4.5.1 and

Section 4.5.2). As I mentioned before, in both of these approaches, for estimating

parameters and types, I sample sets of parameters (for a gradient ascent step or a

Bayesian estimation), which is similar to set of estimators in the OEATA. Therefore,

for better comparing OEATA with these methods, I use the same set size as estimator

sets (N). Note that Albrecht and Stone (2017) also introduced an approach called

Exact Global Optimisation (EGO) [2]. I do not include it in my experiments since it

is significantly slower than the ABU/AGA, without outperforming them in terms of

prediction performance.

Additionally, I compare my approach against using POMCP-based estimation

(Section 4.5.3) for type and parameter estimations. As I described earlier, in

estimation with POMCP, I assume that the agent φ can see the whole environment.

However, the team-mates’ type and parameters are not observable. Hence, agent φ

applies POMCP’s particle filter for estimation. I use N×|Ω|×|Θ| particles, matching

the total number of estimators in my approach (since I have N per agent, for each

type). I executed random scenarios in level-based foraging domain (Section 4.6) for

a different number of items, agents and environment size for all estimation methods.

Every run was repeated 20 times, and I plot the average results and the confidence

interval (ρ = 0.01). When I say that a result is significant, I mean statistically

significant considering ρ ≤ 0.01, according to a t-test.

Configuration values for parameters of OEATA in my experiments are as follows:

the number of estimators N is 100, the threshold for removing estimators ξ is 2 and

mutation rate m is 0.2. Moreover, I will use mean for aggregation of estimator sets.

For UCT-H [102], I ran 100 iterations per time step, and the maximum depth is 100.
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Type and parameters of agents in Ω are chosen uniformly randomly. The skill level

for agent φ is also randomly selected. However, skill levels are randomly chosen in a

way that incentivises collaborations.

That is, in the created scenarios, I manage the values for the skill level of agents

and weight of items in a way that all items can be collected by them individually

or with their cooperation. Additionally, I design the scenario generator to increase

the likelihood of collaborations being required in order to complete the scenarios. In

details, the scenario generation considers the following rules:

• For less than four agents in the environment (|Ω ∪ φ| < 4):

– The level of each agent is given by a uniform distribution sample between

0.5 and 1.

– The weight of each task is given by a uniform distribution sample between

the highest level in the agent’s set and the max weight value (equal to 1.0).

• For four or more agents in the environment (|Ω ∪ φ| ≥ 4):

– The level of each agent is given by a uniform distribution sample between

0.1 and 1.

– The weight of each task is given by a uniform distribution sample between

the sum of 2 levels randomly sampled from the agents’ set and the lowest

value in the agents’ level combination set.

The agent’s set is the collection of all agents in the environment, including φ. The

agents’ level combination set represents the set of |Ω ∪ φ|!/(4!(|Ω ∪ φ| − 4)!) values

between 0.4 and 1.0, consisting of the sum of all possible 4-combinations of |Ω ∪ φ|

levels in the agent’s set (constrained to the maximum 1.0 value).

These rules make cooperation highly likely in the generated scenarios since the

weight of the task considers a lower bound that, for most of the agents’ skill levels,
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may require collaboration between two or more agents. The rule changing with the

number of agents in the environment is due to the available positions to complete a

task in the defined discrete domain (North, South, West and East). Thus, I aimed at

creating tasks that may require four agents when four or more agents are available.

My approach could increase the requirement for collaboration without generating

scenarios impossible to solve when agents choose to pursue a specific task. Note,

however, that the collaboration is not strictly guaranteed, and there are some cases

where an agent would be able to complete a task individually.

Additionally, every task is created in random positions, but I exclude the scenario’s

borders. That allows agents to set up their positions to perform the load action from

any direction (i.e., North, South, East, West). Therefore, it is always possible for four

or fewer agents to simultaneously load an item, which guarantees that all scenarios

are solvable (given the tasks weights as defined above).

First, I fix the number of possible types as two (L1, L2), and later I demonstrate

the impact of increasing the number of types. For each scenario, I assume one of the

four estimation methods ABU/AGA/POMCP/OEATA to be an agent φ’s estimation

method. I kept a history of estimated parameters and types for all iterations of each

run and calculated the errors by having true parameters and true types in hand.

Then, I evaluate the mean absolute error for the parameters, and 1− P(θ∗) for type;

and what I show in the plots is the average error across all parameters. Additionally,

since I am aggregating several results, I calculate and plot the average error across all

iterations.

However, before showing these aggregated results, I will first show examples of the

parameter and type estimation error for |Ω| = 7 (Figure 6.8 and Figure 6.9) across all

iterations. In this example, the scenario size is 20×20, and the number of items is 20.

As shown in Figure 6.8, my parameter estimation error is consistently significantly

lower than the other algorithms from the second iteration, and it monotonically
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decreases as the number of iterations increases. AGA, ABU, and POMCP, on the

other hand, do not show any sign of converging to a low error as the number of

iterations increases. We can also see that type estimation with OEATA becomes

quickly better than the other algorithms, significantly overcoming them after a few

iterations.
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Figure 6.8: Parameter estimation errors for |Ω| = 7
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Figure 6.9: Type estimation errors for |Ω| = 7
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6.6.1 Multiple numbers of items

Now, I display the results for different numbers of items. Therefore, I fixed the scenario

size as 20× 20 and the number of agents ω to 5 (|Ω| = 5). Then, I ran experiments

for a varying number of items (20, 40, 60, 80) and the plots are shown in Figure 6.10,

Figure 6.11 and Figure 6.12. As we can observe in Figures 6.10 and 6.11, OEATA

has consistently lower error than the other algorithms, both in terms of parameters

and type estimation. In fact, OEATA is significantly better than AGA, ABU and

POMCP in terms of parameter and type estimation error for all numbers of items.

The only exception is parameter estimation error for 80 items in comparison with

POMCP (where significance holds with ρ ≤ 0.024). I also figure out that OEATA can

complete all tasks faster for all numbers of items, and is significantly better in almost

all cases (except for AGA with 80 items, where significance holds with ρ ≤ 0.04).
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Figure 6.10: Parameter estimation errors for a varying number of items with full

observability.
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Figure 6.11: Type estimation errors for a varying number of items with full

observability.

It is interesting to note that type estimation error with OEATA significantly drops

for a very large number of items (80), as OEATA gets a larger number of observations.

We can also note that the algorithm scales well to the number of the items and my

performance (Figure 6.12) actually significantly improves with more than 20 items.

It happens because OEATA gets observations more frequently for a larger number of

items.
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Figure 6.12: Performance for a varying number of items with full observability.

6.6.2 Multiple numbers of agents

After comparing with multiple numbers of items, I ran experiments for different

numbers of agents. Here, I fixed the number of items to 40 and the scenario size

to 20× 20. Then, I ran experiments for a different number of agents (3, 5, 7, 10) and

the plots are presented in Figures 6.13, 6.14 and 6.15. The figures tell us that again

in various numbers of agents, OEATA has consistently lower error than the other

algorithms, in all plots. As it is clear in Figure 6.15, the performance of the team

by using OEATA is also significantly better than others. Regarding parameters and

type estimation errors (Figure 6.13 and Figure 6.14), OEATA is significantly better

than AGA, ABU and POMCP in almost all cases, except for parameters error with

10 agents, where ρ ≤ 0.47, ρ ≤ 0.3, and ρ ≤ 0.05, against ABU, AGA, and POMCP,

respectively. The reason for increasing the OEATA’s parameter estimation error for a

large number of agents is that, there is a lower number of observations for each agent,
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as the number of items is now fixed.
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Figure 6.13: Parameter estimation errors for a varying number of agents with full

observability.
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Figure 6.14: Type estimation errors for a varying number of agents with full

observability.
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Figure 6.15: Performance for a varying number of agents with full observability.
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6.6.3 Multiple scenario sizes

Following the comparison of multiple numbers of items and agents, I ran experiments

for diverse scenario sizes to study the scalability of OEATA to harder problems. For

that, I adjusted the number of items to 40 and the number of ω agents to 5 (|Ω| = 5).

Afterwards, I ran experiments for a differing scenario size (30× 30, 35× 35, 40× 40,

45× 45) and the plots are displayed in Figures 6.16, 6.17 and 6.18.

As we can see, OEATA has consistently lower error than the other algorithms, both

in terms of parameters and type estimation. In fact, OEATA significantly surpasses

AGA, ABU and POMCP in respect of type estimation error for all scenario sizes.

Regarding parameter estimation error (Figure 6.16), OEATA significantly exceeds

the other algorithms, except for scenario sizes 30 × 30 and 40 × 40 against ABU,

where ρ ≤ 0.24 and ρ ≤ 0.17, respectively. Additionally, in Figure 6.18, OEATA is

able to accomplish all tasks faster for all team sizes and significantly surpasses in all

cases.

It is interesting to note that the type estimation (Figure 6.17) error for OEATA sig-

nificantly decreases with scenario size. It may happen because the difference between

L1 and L2 decision-making might be more evident in larger scenarios. Interestingly,

performance of OEATA actually significantly improves in larger scenarios (ρ ≤ 0.02,

when comparing 45 × 45 against 30 × 30), which may be caused by the better type

estimations.
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Figure 6.16: Parameter estimation errors for various environment sizes with full

observability.
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Figure 6.17: Type estimation errors for various environment sizes with full

observability.
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Figure 6.18: Performance for various environment sizes with full observability.

6.6.4 Multiple number of items for partial observability

I demonstrate the results for partially observable scenarios in Figures 6.19, 6.20 and

6.21. Here, the agent φ has partial observability of the environment and employs

the POMCP modification for handling that, as described in Section 6.5.2. In these

experiments, the number of ω agents is 5 and the environment size is 20× 20, but the

variation of items is 20, 40, 60, 80. The radius of the agent φ’s view cone is 7 and the

view angle is 360°.

Note that AGA/ABU results for partial observability are not shown in Albrecht

and Stone (2017) [2], and thus are presented in my research for the first time. Hence,

I applied the modified POMCP version, following the approach described in Section

6.5.2 to solve the POMDP model of the φ agent when it has a partial observation.

However, by POMCP as an estimation method, I mean the POMCP-based estimation

(Section 4.5.3), as before, which does not embed the ad-hoc teamwork algorithms for
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type and parameter estimation.

Again, I obtain significantly lower type estimation error than previous approaches

(Figure 6.20). In the case of parameter estimation error (Figure 6.19), OEATA is

significantly better, except only for 60 and 80 items. For 60 items, OEATA exceeds

POMCP, but with ρ ≤ 0.38; and the differences with other methods are significantly

better with ρ ≤ 0.02. In the case of 80 items, OEATA surpasses AGA with ρ ≤ 0.029,

and for all other cases, OEATA is significantly better.

Similarly, in Figure 6.21, as seen, OEATA obtain a significantly higher performance

than previous approaches in 40 and 60 items. For 80 items, OEATA is still significantly

better than the other methods, but against AGA and ABU, OEATA has ρ ≤ 0.03.

Unlike the large numbers of items, for 20 items, all methods get almost the same

results.
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Figure 6.19: Parameter estimation errors for a varying number of items with partial

observability.
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Figure 6.20: Type estimation errors for a varying number of items with partial

observability.
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Figure 6.21: Performance for a varying number of items with partial observability.
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6.6.5 Experiments with larger numbers of types

Besides trying two types (L1 and L2), I also run experiments for a larger number

of potential types (|Θ|). First, I tried with four types (L1, L2, L3, L4). Results,

displayed in Figure 6.22, demonstrates parameters error, where OEATA exceeds all

other methods for all number of items with ρ ≤ 0.09. It is clear from the results in

Figure 6.23 that OEATA is always significantly better in estimating the type of the

team-mates for all number of items. In the case of performance, as demonstrated in

Figure 6.24, OEATA is significantly better against all algorithms for all number of

items, but for 60 items, OEATA surpasses with ρ ≤ 0.06.
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Figure 6.22: Parameter estimation errors for a varying number of items, with agents

types selected randomly among 4 types.
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Figure 6.23: Type estimation errors for a varying number of items, with agents types

selected randomly among 4 types.
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Figure 6.24: Performance for a varying number of items, with agents types selected

randomly among 4 types.
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After studying four different types for the ω agents, I experimented with six

potential types (L1, L2, L3, L4, L5, L6). The results are shown in Figures 6.25, 6.26

and 6.27. Considering parameters error, OEATA is better than the other approaches

with ρ ≤ 0.07. Taking type estimation error into account, OEATA is significantly

better in all numbers of items, except for 40 items, where OEATA is significantly

better than ABU and POMCP, but against AGA, OEATA exceeds with ρ ≤ 0.08.

For performance, with 20 items OEATA is better than POMCP with ρ ≤ 0.02 and

significantly outperforms other algorithms. For other item numbers, the performance

of OEATA seems better than all other algorithms, but only with ρ ≤ 0.5.
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Figure 6.25: Parameter estimation errors for a varying number of items, with agents

types selected randomly among 6 types.
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Figure 6.26: Type estimation errors for a varying number of items, with agents types

selected randomly among 6 types.
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Figure 6.27: Performance for a varying number of items, with agents types selected

randomly among 6 types.

116



Chapter 6. OEATA 6.6. Evaluating OEATA

Consequently, in Figures 6.28,6.29 and 6.30, I display a summary of the results

for the different methods across different numbers of types θ that ω agents might

have in the team. Each bar shows the average across all numbers of items for a

specific method with each number of types (2, 4, 6). As demonstrated in Figure

6.30, regarding the performance of the team, as the number of types increases, it

gets worse, but not significantly: 2 types are better than 4 types with ρ ≤ 0.3, and

better than 6 types with ρ ≤ 0.09. However, for other methods, there is a significant

increase in the number of iterations as the number of types grows. Likewise, in Figure

6.28, 6.29, concerning parameters and type estimation, results of the OEATA are not

significantly different in all numbers of types, but other methods get significantly worse

as the number of types raises (in particular from 2 to 4 types, although sometimes

there is a decrease from 4 to 6). I suppose that the decrease from 4 to 6 might be

caused by types L5 and L6 being easier to be learned correctly by these methods than

the other types.
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Figure 6.28: Parameter estimation errors for different number of types.
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Figure 6.29: Type estimation error for different number of types.
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Figure 6.30: Performance for different number of types.

6.6.6 Wrong types

I also study my method’s behaviour when the agent φ does not have full knowledge

of the possible types of its team-mates. That is, I run experiments where all agents

in Ω have a type which is not in Θ. In these experiments, I assume that the agent

φ is only aware of type L1 and L2, but I assign L3 and L4 to the ω agents as their
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type (sampled uniformly randomly). I ran experiments with 5 agents and fixed the

size of the scenario to 20× 20, with various numbers of items (20, 40, 60, 80). Figure

6.31 demonstrates the performance of the team. As the figure illustrates, even without

knowing the possible types that the team-mates might have, OEATA is outperforming

other methods in all numbers of items. For 80 and 60 items, OEATA is significantly

better than other approaches, with the only exception for 80 items against AGA,

where OEATA is better with ρ ≤ 0.1; and for 60 items against ABU, where OEATA

is better with ρ ≤ 0.08. Additionally, for 40 items, OEATA is significantly better

than the other methods, but against POMCP, OEATA has ρ ≤ 0.3. In the case of 20

items, OEATA is only significantly better than AGA, as compared against the other

methods, OEATA has ρ ≤ 0.4.
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Figure 6.31: Performance of the ad-hoc team for a varying number of items without

having information of correct potential team-mates types.
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6.6.7 Comparing Mode, Median and Mean in OEATA

Finally, as I mentioned in Section 6.2, in Estimation step of OEATA, to have one

estimated parameter vector p per θ ∈ Θ for each ω ∈ Ω, I can use different

aggregation rules like median, mode, or mean across all parameter vectors pe of each

set of estimators Eθ
ω. As a result, I will have one estimated parameter vector p per

θ ∈ Θ for each ω ∈ Ω. To check the differences between aggregation methods, I did

experiments in scenario size 20×20, applying 3, 5, and 7 agents ω to collect 20 items.

As we notice in Figures 6.32, 6.33 and 6.34, Mean and Median are not significantly

different, as ρ ≤ 0.65. However, both Mean and Median are significantly better than

Mode in almost all iterations.
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Figure 6.32: Parameter estimation errors across different aggregation rules for 3 team-

mates (|Ω| = 3).
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Figure 6.33: Parameter estimation errors across different aggregation rules for 5 team-

mates (|Ω| = 5).
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Figure 6.34: Parameter estimation errors across different aggregation rules for 7 team-

mates (|Ω| = 7).

6.7 Conclusion

This chapter describes a novel algorithm, On-line Estimators for Ad-hoc Task

Allocation (OEATA), which is designed to learn about the team-mate’s future

behaviour in a type-based ad-hoc team setting. OEATA is an algorithm for estimating
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types and parameters of team-mates in problems where there is a set of tasks to be

completed in a scenario in a decentralised fashion. Experimental evaluation of my

algorithm has been conducted in the level-based foraging domain. In my analysis,

there were many different scenarios, a growing amount of items, a growing number of

agents, and different-sized scenarios with various types.

Furthermore, my study evaluated how OEATA can improve the team’s per-

formance even if the correct type is not in the set of potential types of team-

mates. Moreover, I investigated the impact of dealing with learning agents with

partial observability. By using OEATA in the estimation of parameters and types,

I demonstrate with statistical significance that it outperforms previous methods in

nearly all cases.

On the other hand, having a large number of types will make it difficult since the

number of estimators will increase, and in turn, evaluating them will take much more

time. Furthermore, we know that the evaluation of estimators begins when a task is

completed. However, there may be situations where we are unsure whether or not a

task has been completed. Due to this, it becomes more difficult for the learning agent

to determine when to start the process. Nevertheless, applying OEATA help us to

improve the overall performance of the team comparing to the state-of-the-art.
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7.1 Discussion

I showed in this work that by focusing on distributed task allocation problems, where

agents can autonomously decide which task to perform, I can obtain better type

and parameter estimations in ad-hoc teamwork than previous works in the literature,

which leads to a better performance of the team. Although not all problems can

be modelled as a set of tasks to be completed, it does encompass a great range of

challenges. For instance, apart from the obvious warehouse management, we could

think about situations such as rescuing victims after a natural disaster or even during

some hazard and demining.

Although I employed both of my contributions to solve a task-based problem,

UCT-H can be applied to any challenge that could be modelled as an MDP where an

action can lead to a large number of potential next states.

Regarding learning other team members, note that different team-mates do not

need to share the same representation of the problem, and run algorithms that

explicitly “choose” tasks. That is, they could have been programmed with different

paradigms, without using any explicit task representation. However, their external
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behaviour would still need to be understood as solving tasks distributed in an

environment from the point of view of our ad-hoc agent. Hence, we need problems and

team-mates that fit the decentralised task allocation representation for the learning

agent, but the actual team-mates’ internal models could be different.

Another interesting characteristic of my learning algorithm is that it allows

learning from scratch at every run in an on-line manner, following the inspiration

from Albrecht and Stone (2017) [2]. Therefore, I can quickly adapt to different

teams and different situations, without requiring a significant pre-training. Neural

network-based models, on the other hand, would require thousands (even millions)

of observations, and although they may show some generalisability, eventually re-

training may be required as the test situation becomes significantly different than the

training cases.

On the other hand, it is true that my algorithm requires a set of potential types to

be given. In the case where this set cannot be created from domain knowledge, then

some training may be required to initialise this set. Afterwards, however, I would

be able to learn on-line at every run, without carrying further knowledge between

executions. Albrecht and Stone (2017) [2] also follow the same paradigm, and directly

assumes a set of potential parametrisable types, without showing exactly how they

could be learned. There are several examples of learning types in ad-hoc teamwork,

but they still ignore the possibility of parametrisation. For instance, PLASTIC-Model

[19] employs a supervised learning approach, and learns a probability distribution over

actions given a state representation using C4.5 decision trees.

In order to better understand the impact of this assumption, I also run experiments

where the set of types considered by the ad-hoc agent does not include the real types

of team-mates. In these challenging situations, I find that my performance is either

similar to the other works in the literature, or significantly better, depending on each

case.
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I have also shown that my algorithm scales well to a range of different variables,

as I increase the number of items, number of agents, scenario sizes, and number of

types. Usually, models based on neural networks (e.g., [46], [73]) are not yet able to

show such scalability and present only restricted cases. A similar issue happens with

I-POMDP based models (e.g., [29], [35], [42], [48]) which tend to show experiments in

simplified scenarios due to the computational constraints. Therefore, by focusing on

distributed task allocation scenarios, I am able to propose a light-weight algorithm,

which could be more easily applied across a range of different situations.

Concerning partial observability scenarios, my algorithm still expects knowledge of

which agents completed a particular task, even if outside my controlled agent visibility

region. Hence, in a real application, I would still require some hardware in addition

to the agent sensors, such as radio transmitters connected to the boxes that must

be collected. Removing this assumption in task-based ad-hoc teamwork under partial

observability is one of the exciting potential avenues for future work.

Considering the scenario to solve the problem of robots in an emergency situation,

I could give a first step towards solving this problem assuming each robot as an

agent. Different types of agents can be assumed various responsibilities and missions

to save lives. I still have to apply my novel methods to real robots and real scenarios

to determine how well they work. There may be some adjustments to the methods

based on some issues that could arise in real-world scenarios. Additionally, we may

need to have continuous action space instead of the discrete one that we applied in

this research.

7.2 Conclusion

In this research, I worked on the online planning and learning of type-based ad-hoc

teams. My main focus was to create novel methods to improve the performance of the
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ad-hoc team. Therefore, I have presented two novel techniques, On-line Estimators

for Ad-hoc Task Allocation (OEATA) for learning the team-mates future behaviours

in a type-based ad-hoc team; and UCT-H for better online planning in larger ad-hoc

teams.

OEATA is a new algorithm for estimating types and parameters of team-mates,

and it is specifically designed for problems where there is a set of tasks to be completed

in a scenario. By focusing on decentralised task allocation, I can obtain a lower

error in parameter and type estimation than previous works, leading to better overall

performance. The alternatives for my novel method are AGA, ABU and POMCP-

based estimation. These approaches do not consider their history of successes in their

future calculation. However, OEATA keeps successful parameters that have better

estimations during the whole scenario and rate them.

I also study my algorithm theoretically, showing that it converges to zero error as

the number of tasks increases (under some assumptions), and I experimentally verify

that the error does reduce with the number of iterations. My theoretical analysis

also shows the importance of having parameter bags in my method, as it significantly

decreases the computational complexity.

I experimentally evaluated my algorithm in the level-based foraging domain. I

considered a range of situations, an increasing number of items, number of agents,

scenario sizes, and number of types. Additionally, I evaluated the impact of having

an erroneous set of potential types, and the impact of handling situations with partial

observability of the scenarios. I show that in almost all cases, I outperform previous

works with statistical significance. Furthermore, I find that my method scales better

to an increasing number of types, and can show robustness to wrong type models, as

I still overcome previous works in these challenging cases.

Concerning UCT-H, My approach introduces a more compact representation, by

representing each node as a history instead of a state. As well as OEATA, I perform
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several experiments in the level-based foraging domain for evaluating UCT-H. I show

that my approach achieves a better performance than the current state-of-the-art,

using roughly the same amount of computational time, and the difference tends to

increase as the number of agents grows.

Furthermore, I evaluate the memory usage of UCT-H and the state-of-the-art. I

found that my approach tends to use a roughly constant amount of memory, while the

memory usage of the state-of-the-art grows exponentially with the number of agents.

Hence, my approach has better scalability, and better handles larger team sizes.

As an additional contribution, I provide a fully open-source version of my system

to the community, making it easier for other researchers to use level-based foraging

as an important benchmark problem for ad-hoc teamwork. For the interested readers

that may want to explore and further extend this work,UCT-H and OEATA, my

source code for both algorithms is available at https://github.com/ElnazShy/

MultiAgents/releases/tag/oeata.

7.3 Future Works

I present a task-base ad-hoc team in this work with one learning agent collaborating

with multiple non-learning agents without any prior coordination. I introduced two

different contributions, UCT-H and OEATA, which assist in the improvement of

the team. I did the evaluations in a level-based foraging domain. I believe these

contributions can be extended to be applicable in different domains. In this section,

I will discuss some possible future works to advance my current research.

Solving real-world problems I believe there are plenty of real-world problems

that can be solved by applying my works on multi-agent systems. My contributions

can be employed in various real problems like Search and Rescue Teams. We can
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consider that there are different types of robots, including UAVs [103], vehicles, etc

without any prior knowledge about each other trying to save a victim. Robots here

have various sensors to observe the environment, and there are more uncertainties

which cause more complications in the problem.

Existing of an adversary agent in the team In the team of agents, most of the

time, there is a possibility of existing an adversary in the team, which attempts to

avoid other agents to reach their goals. Hence, the learning agent must also estimate

who might be an adversary in an on-line manner, and plan its actions accordingly.

Therefore, adversary would need to be added as one of the possible types of team-

mates. As the algorithm that the adversary agent would follow is not a static one (like

what I have in this work for the non-learning agents), it would be quite challenging

to recognise the adversary type while it has a quite different nature than others.

Having multiple learning agents in the team Another extension would be

having more than one learning agent in the team, which are all trying to reason about

other team-mates to improve the team performance. The learning agents that I have

encountered can either communicate or not. Whenever there is no communication,

each learning agent will have its own set of estimators and independently attempt

to learn the team-mate’s type and parameters. Therefore, in accordance with each

agent’s understanding of its team-mates, each of them takes the best steps for

improving team performance.

Nevertheless, having the opportunity to communicate will allow them to share

their estimators. In this way, the learning agents can share their experiences and gain a

better understanding of the team. Additionally, in the case of communication, we can

apply Multi-agent Reinforcement Learning [70] techniques to solve decision-making

the problem. The goal of MARL is to enable a team of agents to collaboratively
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determine the global optimal policy that maximises the sum of their local accumulated

rewards. As agents communicate with one another, they obtain information about

the global state and action of the team. This is because their states and rewards are

generally affected by the actions of their peers.
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[59] Maja J. Matarić, Gaurav S. Sukhatme, and Esben H. Østergaard. “Multi-

robot task allocation in uncertain environments”. In: Autonomous Robots 14.2-

3 (2003), pp. 255–263.

[60] Francisco S. Melo and Alberto Sardinha. “Ad hoc teamwork by learning

teammates’ task”. In: Autonomous Agents and Multi-Agent Systems 30.2

(2016).

[61] Donald Michie, David J. Spiegelhalter, C. C. Taylor, et al. “Machine learning”.

In: Neural and Statistical Classification 13.1994 (1994), pp. 1–298.

136



References References

[62] Andreza Bastos Mourão and José Francisco Magalhães Netto. “SIMROAA
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