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Abstract 

 

This thesis concerns fractional-order (non-integer) methods for control system design. 

Although fractional-order calculus has a long history in mathematics and engineering, the 

uptake of relevant fractional-order concepts in control systems research has been relatively 

slow, and interest in the topic remains comparatively low—albeit with some important 

exceptions, as highlighted by the literature review of this thesis. 

The first part of the thesis considers fractional-order methods for modelling and control in quite 

broad terms, before later focusing on one particular approach from the control systems 

literature, namely Fractional-order Generalised Predictive Control (FGPC). The FGPC 

approach is of particular interest here because of its relationship with the well-known, 

conventional control algorithm, namely Generalised Predictive Control (GPC). Both 

algorithms have a relatively straightforward implementation form, making them attractive to 

practitioners. 

Hence, one contribution of the thesis is to use worked examples in MATLAB as an introduction 

to GPC and FGPC design methods, in part for tutorial reasons. More significantly, the thesis 

demonstrates how fractional-order methods are utilised to increase control design flexibility. 

In this regard, the thesis investigates both conventional GPC and FGPC methods using various 

simulation examples. The robustness of control systems is investigated via Monte Carlo 

simulation, with consideration of model mismatch and unmeasured disturbances. These results 
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are utilised to develop recommendations for how to optimise the extra design coefficients 

introduced in the fractional-order case. 

The comparative study is extended to a laboratory example, namely the control of airflow in a 

1 m by 2 m by 2 m forced ventilation environmental test chamber. To facilitate further uptake 

of FGPC methods in the future, the algorithms developed are prepared as a MATLAB toolbox, 

i.e. a collection of functions that calculate and implement the FGPC approach and subsequently 

measure the performance of the controller.  
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Chapter 1 Introduction 
 

This thesis concerns fractional-order control (FOC) system design, with a focus on Fractional-

order Generalised Predictive Control (FGPC). Although fractional-order calculus has a long 

history in mathematics and engineering, the uptake of relevant fractional-order concepts in 

control systems research has been relatively slow, and interest in the topic remains 

comparatively low—albeit with some important exceptions, as highlighted by the literature 

review of this thesis. In fact, one aim of the thesis is to use worked examples in MATLAB as 

a tutorial introduction to the topic for interested control engineers. Besides, the thesis aims to 

demonstrate how FOC methods can be utilised to increase the design flexibility of a well-

known conventional control algorithm, namely Generalised Predictive Control (GPC). The 

thesis considers both conventional GPC and fractional-order GPC methods using simulation 

and laboratory examples. These results are used to make recommendations for how to utilise 

the extra design coefficients in the fractional-order case.  

 

1.1 Motivation 

There is no doubt that science is often developing and control theory is no exception. Recently, 

the control systems community has seen an increased interest in the field of fractional-order 

calculus, filling in the blanks towards developing differential equation (or difference equation 

in the discrete-time case) controllers in fractional-order. During the last decade, the fractional-

order concept has appeared much more frequently in the control systems literature, in various 
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articles and conferences proceedings. This includes articles about controlling fractional-order 

plants using traditional integer-order controllers (e.g. Romero et al., 2007, 2008), but with other 

articles introducing fractional-order controllers, such as Fractional-order Proportional Integral 

Derivative (FOPID) control (Podlubny, 1999) and FGPC (Romero et al., 2010a, 2010b), 

building on conventional PID and GPC (Clarke et al. 1987a, 1987b) control respectively. An 

increasing number of articles present various comparisons, together with applications and 

tuning methods for FOC. Such developments have led to a new view of controlling plants, with 

additional control coefficients arising because of the fractional-order framework, i.e. additional 

parameters for tuning that potentially yield improved precision and robustness of the controller. 

Every physical system has a desired output that can be achieved in more than one way. Take 

the analogy of building a car: it can be either a complex process or a simple one and both will 

lead to the desired output, building a car. A simple process will be buying a used car, which 

will be cheaper, but you will have no control over the car’s specifications. A complex process 

involves going to a dealer and stating the exact specifications needed to the seller and waiting 

for the car to be built the exact way you desire. The output of both processes is the same; 

however, the difference is major. In the first case (the simple process), you have no control 

over the car’s colour, the type of transmission, or how fast can it go and you may need to adjust 

a few things; however, your adjustments will be limited. The second case (the complex process) 

gives you more degrees of freedom to communicate with the seller and ask to have your exact 

requirements fulfilled. In the same manner, the conventional controller might get the job done, 

whereas the fractional-order controller offers the opportunity for a more precise result, with 

more degrees of freedom i.e. to adjust or tune the parameters and hence the response 

characteristics. 
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The main purpose of introducing a fractional-order version of an existing conventional 

controller is to achieve a better response (Chen et al., 2009) (in terms of robustness, faster 

response, precise response, etc.)  and ideally to reach peak performance for the system. To shed 

more light on this, the classical PID controller can be tuned utilising (at most) three tuning 

terms (assuming there is a solution) which are the proportional, the integral, and the derivative 

terms, whereas in the Fractional-order PID (FOPID) case we have five terms (see 

Chapter 2) that can potentially provide better performance for the system. This provides 

motivation to pursue research on FOC. To provide focus, however, the present thesis primarily 

concerns the FGPC approach, by means of a new simulation and laboratory study of both GPC 

and FGPC, comparing the results to illustrate the differences between the fractional-order and 

its counterpart, the integer-order controller. 

 

1.2 Research Objectives 

This thesis makes novel research contributions in four main areas, as follows: 

• A specific, comparative simulation study of GPC and FGPC for several different 

scenarios, including model mismatch and the disturbance response, i.e. with the 

robustness of the controllers investigated using Monte Carlo (MC) simulation 

(Chapter 4). The aim here is to draw recommendations for how to design and apply 

FGPC methods to different types of plant. In addition, the methods are compared in 

terms of their eigenvalues or poles location on the unit circle (Chapter 5). These 

comparisons between GPC and FGPC aim to investigate differences between the two 

approaches and how fractional-order methods can benefit the design process. 

• Application of FGPC to a laboratory example, namely the control of ventilation rate in 

an environmental test chamber. To the authors’ knowledge, this represents one of the 
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first implementations of FGPC design to a physical system in a laboratory context 

(Chapter 5). 

 

 

1.3 Thesis Outline 

The rest of the thesis is organised as follows. Chapter 2 presents the literature review, which 

covers the fractional-order controller background, including the key mathematical concepts, as 

necessary to provide the foundation for the later topics in the thesis. Next, Chapter 3 revises 

the fundamentals of Model Predictive Control (MPC), especially the ubiquitous GPC 

algorithm, and builds on this to explain the FGPC approach. The aim is to provide a full 

understanding of the concept of FGPC, which is the core of later research. 

Chapter 4 introduces several simulation examples and uses these to develop a systematic 

comparison between the conventional GPC approach and FGPC, i.e. in terms of the closed-

loop responses for each plant. The criteria for comparison include, for example, the response 

time, overshoot, and Monte Carlo analysis for robustness. Subsequently, Chapter 5 illustrates 

how the two extra coefficients in the FGPC case affect the locations of the poles within the unit 

circle. Furthermore, a comparison is established between GPC and FGPC in terms of these 

eigenvalues. The penultimate chapter, Chapter 6 considers a practical laboratory application to 

test FGPC in comparison to GPC, using the forced ventilation chamber in the Engineering 

Department at Lancaster University (Taylor, 2004). The ventilation chamber is a nonlinear 

application, which is a good challenge for FGPC to demonstrate its effectiveness in comparison 

with GPC. Finally, Chapter 7 presents the conclusions, a discussion of the limitations of the 

research, and recommendations for future research. 
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1.4 Articles Arising 

The following peer-reviewed conference articles have arisen as a result of the research 

described in this thesis: 

• Y. Alarfaj, A practical example of fractional-order generalised predictive control: 

forced ventilation in a micro-climate test chamber, IFAC-PapersOnLine 52 (11), 

pp. 97-102, 2019 (DOI: 10.1016/j.ifacol.2019.09.124). This paper was presented at the 

5th IFAC International Conference on Intelligent Control and Automation Science 

(ICON), Belfast, UK. Nominated as one of the best articles at the conference, the 

present author received a ‘Best Young Author’ certificate. The article is based on 

Chapter 6 of this thesis. 

• Y. Alarfaj and C. J. Taylor, Eigenvalue analysis and case study examples for fractional-

order generalised predictive control, published by IEEE Xplore (DOI: 

10.23919/IConAC.2019.8895068). Presented at the 25th International Conference on 

Automation and Computing (ICAC), Lancaster, UK, 2019. The article is based on 

Chapters 4 and 5 of this thesis. 
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Chapter 2 Literature Review 
 

The idea of fractional calculus was born in 1695 when G.W Leibniz suggested that there is a 

possibility for fractional-order differentiation (Caponetto et al., 2010). Since then, the topic of 

fractional-order calculus has been drawing increasing attention, since it offers the possibility 

of representing the system more accurately without (or with minimal) approximation. 

Moreover, this approach is a suitable tool to analyse fractional dimension systems, with long-

term "memory" and chaotic behaviour (Gutierrez et al., 2010), and it is an advantage to model 

the behaviour of a process with the fractional-order as the response will include many values 

that have been neglected by integer-order due to approximations (Podlubny,1994). 

The lack of solution methods for differential equations was the main reason for using integer 

order instead of the more general representation, namely the non-integer (fractional) order. 

Recently, there are numerous methods for the approximation of fractional-order derivative and 

integral calculus, which ease the handling of non-integer systems. Thus, FOC systems have 

become one of the hottest topics in control engineering (Ladaci and Bensafia, 2015; Malek et 

al., 2013; Razminia et al., 2013).  

Some examples of recent fractional-order controllers that have achieved promising results are 

active FOC for the Magnetic Levitation Train (MAGLEV) suspension system (Yu et al., 2015); 

the optimal design of a robust fractional-order flight control system (Kumar et al., 2015); FOC 

of a hydraulic thrust system for a tunnelling boring machine (Fei et al., 2013); fractional-order 
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human arm dynamics (Tejado et al., 2013); and FOC of a Hexapod Robot (Silva et al., 2004). 

These and other applications will be further discussed in section 2.7. 

As a control engineer, building a better system is what matters. According to Monje et al. 

(2010), based on a comparison of multiple simulations, it has been shown that using the best 

available fractional-order controller yields better results, in terms of robustness, fast response 

and minimal overshoot, compared to using the best integer controller for the same system. 

Although fractional-order controllers will be widely accepted in the future, many reasons are 

holding back the replacement of integer controllers with non-integer controllers. One of these 

reasons is that the improvement of performance that non-integer controllers provide has not 

been fully characterised yet. Also, some additional functionalities that are well established for 

integer controllers (e.g. PID design) have not been fully developed for non-integer controllers 

yet (Chen et al., 2004). 

This chapter provides a comprehensive literature review of fractional-order controllers. The 

engineering literature about fractional-order methods is relatively sparse since engineers and 

researchers have shown great interest in the topic only recently. However, it is worth 

mentioning that the existing control literature tends to focus on FOPID methods rather than 

describing the fractional-order problem in general; thus, most of the sections within this chapter 

will also concern FOPID. The rest of the chapter is organised as follows. Section 2.1 discusses 

the history behind the topic. Section 2.2 discusses why we should consider the fractional-order 

of a system. Section 2.3 explains the fundamentals behind the fractional-order methods, 

including fractional-order calculus. Section 2.4 deals with PID tuning techniques. Section 2.5 

briefly introduces the fractional-order generalised predictive controller. Section 2.6 presents 

some implementation and design tools for MATLAB and LabVIEW. Section 2.7 contains some 

real-life applications of fractional-order systems, to illustrate its effectiveness on the overall 
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performance of the control system. The chapter ends with the conclusions in section 2.8. 

 

2.1 Historical background of Fractional-Order Control 

The very first theoretical contributions to the field of fractional-order calculus were made by 

Euler and Lagrange in the 1800s, while Abel was the first to use the fractional-order calculus 

on an application in 1823. The first systematic studies have been done between 1900 and 1950 

by Liouville, Riemann and Holmgren. The nth-order series has been defined by Liouville who 

has also expanded the functions in a series of exponentials. Riemann presented a different 

approach which involved a definite integral. After that, Grunwald and Krug unified the results 

of Liouville and Riemann (Oldham and Spanier, 2006; Miller and Ross, 1993).  

The need for solving a major design problem of a feedback amplifier was the key step towards 

engineers introducing fractional-order calculus methods. Bode presented an elegant solution 

for design a feedback loop for the amplifier so that the performance of the closed-loop will 

resist the changes in the gain of the amplifier (Monje et al., 2010). The solution was called 

“ideal cut-off characteristic” by Bode himself, which is known as “Bode’s ideal loop transfer 

function” nowadays. The characteristic of this frequency is very useful in the robustness of the 

system to parameter changes or uncertainties. 

The step Bode took has encouraged other engineers and curious mathematicians to adopt the 

concept of fractional-order and helped to motivate new contributions in FOC systems, 

including both theory and applications. Over the last decades of the twentieth century, there 

was a growth of the practical application of fractional calculus, mainly in the engineering fields 

of feedback control, signal processing and system theory.  
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Manabe (1961) introduced a new application of FOC. Oustaloup has studied the algorithms of 

FOC of the dynamic systems and developed a PID controller called “CRONE” (Command 

Robust d’Ordre Non-Entier) which means non-integer order robust control (Oustaloup, 1991). 

A generalisation of PID control has been presented by Podlubny (Podlubny, 1999).  He was 

the first one to come up with the general form of 𝑃𝑃𝐼𝐼𝜆𝜆𝐷𝐷𝜇𝜇, where the integrator and the 

differentiator come with the order of 𝜆𝜆 and 𝜇𝜇, respectively. Also, Podlubny has demonstrated 

a comparison in terms of response between fractional-order PID against classical PID, as used 

to control fractional-order systems (Podlubny, 1999). In the next section, we shall understand 

why we need to use fractional-order controllers instead of conventional integer-order ones. 

 

2.2 Benefits of using FOC (FOPID) 

The most commonly used controller in the industry field is PID controller which is a special 

case of a more general form PIλDµ. The fractional-order PID controller is just an approach of 

the family of fractional-order controllers. This general form contains two more extra 

parameters (λ and µ) which, according to Faieghi and Nemati, (2011), adds more control 

reliability to the model. The transfer function of such a controller can be presented as: 

 
𝐺𝐺𝑐𝑐(𝑠𝑠) =  

𝑈𝑈(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=  𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠λ + 𝐾𝐾𝐷𝐷𝑠𝑠𝜇𝜇  , (λ, μ > 0) (2.1) 

 

where Gc(s) is the transfer function of the controller (the ratio of output and input of the 

controller, as U(s) and E(s) are the output of the controller and the error respectively.  

The time-domain representation is as follows: 

 𝑁𝑁(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝑇𝑇𝑖𝑖𝐷𝐷𝑡𝑡−λ𝑒𝑒(𝑡𝑡) + 𝑇𝑇𝑖𝑖𝐷𝐷𝑡𝑡
𝜇𝜇𝑒𝑒(𝑡𝑡).        �𝐷𝐷𝑡𝑡

(∗) ≡0 𝐷𝐷𝑡𝑡
(∗)� (2.2) 
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It is known from basic control theory that feedback PID control systems will affect the 

controlled system behaviour in certain actions, which are Proportional, Derivative and Integral. 

The main effects on those parameters over the controlled system behaviour are (Astrom and 

Murray, 2008):  

• Proportional parameter: Increase or decrease the response speed and decrease the 

steady-state error and relative stability by adjusting the value of the gain. 

• Integral parameter: Decrease or increase the relative stability and eliminating the 

steady-state error. 

• Derivative parameter: Increase or decrease sensitivity to noise and relative stability. 

The fractional-order controller has 5 parameters to tune instead of 3 which provides more 

flexibility to the dynamic properties of the fractional-order system. According to Monje et al. 

(2005), the following  parameters are noted to provide promising results when using fractional-

order controllers:  

i. No steady-state error. 

ii. More robustness to variations in the gain of the plant. 

iii. Better output disturbance rejection. 

iv. More robustness to high-frequency noise 

In the next section, the fundamentals of the fractional-order approach are presented. 

 

2.3 Fundamentals of FOC and approaches for FOC 

The idea of fractional-order calculus is as old as the integer (conventional) order calculus. This 

fact can be seen from the letter written by Leibniz to L'Hopital in 1695 (Xue et al., 2006). Since 
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then, attention has been drawn to this topic by various mathematicians such as: Euler; Laplace; 

Fourier; Abel; Liouville; Riemann; and Laurent. Analytically, the fractional-order calculus is 

nothing but a generalisation representation of the integer order calculus: 

 

𝐷𝐷𝛼𝛼 =

⎩
⎪
⎨

⎪
⎧

𝑑𝑑𝛼𝛼

𝑑𝑑𝑡𝑡𝛼𝛼
𝛼𝛼 > 0,

1 𝛼𝛼 = 0,

� (𝑑𝑑𝑑𝑑)−𝛼𝛼
𝑡𝑡

𝛼𝛼
𝛼𝛼 < 0

 

 

(2.3) 

               with 𝛼𝛼 ∈  ℜ. 

• Although integer-order is sufficient to solve many engineering problems, many natural 

phenomena can be better described if fractional-order calculus is used. The reason for 

this is that fractional-order models can model higher order integer systems that FO can 

take into account larger periods of past behaviour and it is compact when expressing 

high-order dynamics (Xue et al., 2006; Magin and Ovadia, 2006). According to 

Cafagna (2007) and Ortigueira et al. (2005), there are common definitions of fractional-

order calculus that have been used in the literature which are mentioned below in 

equations (2.2-2.7). I have used the Grunwald-Letnikov definition, i.e. equation (2.4), 

in the later chapters of this thesis to define FGPC systems. 

 

• Riemann-Liouville: 

Integral:                       

 
𝐼𝐼𝑎𝑎𝑓𝑓(𝑡𝑡) =

1
Γ(𝑎𝑎)�

𝑓𝑓(𝑑𝑑)
(𝑡𝑡 − 𝑑𝑑)1−𝑎𝑎 𝑑𝑑𝑑𝑑,

𝑡𝑡

𝑐𝑐
 (2.4) 

 

Derivative: 
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𝐷𝐷𝑎𝑎𝑓𝑓(𝑡𝑡) =

𝑑𝑑𝑚𝑚

𝑑𝑑𝑡𝑡𝑚𝑚 �
1

Γ(𝑚𝑚− 𝑎𝑎)�
𝑓𝑓(𝑑𝑑)

(𝑡𝑡 − 𝑑𝑑)𝑎𝑎+1−𝑚𝑚 𝑑𝑑𝑑𝑑
𝑡𝑡

0
�, (2.5) 

   𝑚𝑚 ∈ 𝕫𝕫+,𝑚𝑚 − 1 < 𝑎𝑎 ≤ 𝑚𝑚,  

 

• Grunwald-Letnikov: 

Integral: 

 

𝐷𝐷−𝑎𝑎 = lim
ℎ→0

ℎ𝑎𝑎 �
Γ(𝑎𝑎 + 𝑖𝑖)
𝑖𝑖! Γ(𝑎𝑎) 𝑓𝑓(𝑡𝑡 − 𝑖𝑖ℎ),

(𝑡𝑡−𝑎𝑎)
ℎ�

𝑖𝑖=0

 (2.6) 

 

Derivative: 

 
𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡) = lim

ℎ→0
ℎ−𝛼𝛼�(−1)𝑖𝑖 �𝛼𝛼𝑖𝑖 � 𝑓𝑓(𝑡𝑡 − 𝑖𝑖ℎ)

∞

𝑖𝑖=0

 (2.7) 

 

• Caputo: 

 
𝐷𝐷∗𝑎𝑎𝑓𝑓(𝑡𝑡) =

1
Γ(𝑚𝑚 − 𝑎𝑎)

�
𝑓𝑓(𝑚𝑚)(𝑑𝑑)

(𝑡𝑡 − 𝑑𝑑)𝑎𝑎+1−𝑚𝑚
𝑑𝑑𝑑𝑑,

𝑡𝑡

0
 (2.8) 

 

• Cauchy: 

 
𝑓𝑓+

(𝑎𝑎) = �𝑓𝑓 (𝑑𝑑)
(𝑡𝑡 − 𝑑𝑑)−𝑎𝑎−1

Γ(−a) 𝑑𝑑𝑑𝑑, 

 

(2.9) 

The notation "Γ(𝑎𝑎)" is the generalisation of fractional function (Oldham and Spanier, 2006) 

which is defined as a restriction of 𝑥𝑥: 

 
Γ(𝑥𝑥) ≡ � 𝑦𝑦𝑥𝑥−1𝑒𝑒−𝑦𝑦𝑑𝑑𝑦𝑦,

∞

0
     𝑥𝑥 > 0 (2.10) 
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Or with no restriction for 𝑥𝑥: 

 
Γ(𝑥𝑥) ≡ lim

𝑁𝑁→∞
�

𝑁𝑁!𝑁𝑁𝑥𝑥

𝑥𝑥(𝑥𝑥 + 1)(𝑥𝑥 + 2)⋯ (𝑥𝑥 + 𝑁𝑁)
� (2.11) 

 

Depending on the designer and the application, any of those applications can be used. 

As for the continuous-time dynamic system of non-integer order, it can be represented as 

follows (Monje et al., 2010):  

 𝐻𝐻(𝐷𝐷𝑎𝑎0𝑎𝑎1𝑎𝑎2⋯𝑎𝑎𝑚𝑚)(𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑙𝑙) = 𝐺𝐺�𝐷𝐷𝛽𝛽0𝛽𝛽1𝛽𝛽2⋯𝛽𝛽𝑛𝑛�(𝑁𝑁1,𝑁𝑁2,⋯ ,𝑁𝑁𝑘𝑘), (2.12) 

 

As 𝑦𝑦𝑖𝑖 ,𝑁𝑁𝑖𝑖 are functions of time and 𝐻𝐻(∙),𝐺𝐺(∙) are the combination of laws of the non-integer 

derivative operator. For the single variable case of the Linear Time-Invariant (LTI), the 

following equations can be seen:  

 𝐻𝐻(𝐷𝐷𝑎𝑎0𝑎𝑎1𝑎𝑎2⋯𝑎𝑎𝑎𝑎)𝑦𝑦(𝑡𝑡) = 𝐺𝐺�𝐷𝐷𝛽𝛽0𝛽𝛽1𝛽𝛽2⋯𝛽𝛽𝑚𝑚�𝑁𝑁(𝑡𝑡), (2.13) 

↓ 

 
𝐻𝐻(𝐷𝐷𝑎𝑎0𝑎𝑎1𝑎𝑎2⋯𝑎𝑎𝑎𝑎) = �𝑎𝑎𝑘𝑘𝐷𝐷𝑎𝑎𝑘𝑘;    𝐺𝐺�𝐷𝐷𝛽𝛽0𝛽𝛽1𝛽𝛽2⋯𝛽𝛽𝑚𝑚� = �𝑏𝑏𝑘𝑘𝐷𝐷𝛽𝛽𝑚𝑚,

𝑚𝑚

𝑘𝑘=0

𝑎𝑎

𝑘𝑘=0

 (2.14) 

 

where 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 ∈  ℜ. 

The system will be of commensurate-order if all the orders in equation (2.12) of derivation are 

integer multiples of a base order, 𝑎𝑎 that is, 𝑎𝑎𝑘𝑘 ,𝛽𝛽𝑘𝑘 = 𝑘𝑘𝑎𝑎,𝑎𝑎𝑎𝑎ℜ+, so that equation (2.12) will be: 
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�𝑎𝑎𝑘𝑘𝐷𝐷𝑎𝑎𝑘𝑘𝑦𝑦(𝑡𝑡) = �𝑏𝑏𝑘𝑘𝐷𝐷𝛽𝛽𝑚𝑚𝑁𝑁(𝑡𝑡),

𝑚𝑚

𝑘𝑘=0

𝑎𝑎

𝑘𝑘=0

 (2.15) 

 

As if 𝑎𝑎 = 1 𝑞𝑞�  , 𝑞𝑞 ∈ 𝕫𝕫+, then the system will be of rational order. 

To sum up, for the LTI systems, it can be categorised as follows: 

𝐿𝐿𝑇𝑇𝐼𝐼 𝑆𝑆𝑦𝑦𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠 �𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐼𝐼𝑁𝑁𝑡𝑡𝑒𝑒𝐼𝐼𝑒𝑒𝐼𝐼 �𝐶𝐶𝑁𝑁𝑚𝑚𝑚𝑚𝑒𝑒𝑁𝑁𝑠𝑠𝑁𝑁𝐼𝐼𝑎𝑎𝑡𝑡𝑒𝑒      � 𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑁𝑁𝑎𝑎𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑁𝑁𝑎𝑎𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐶𝐶𝑁𝑁𝑚𝑚𝑚𝑚𝑒𝑒𝑁𝑁𝑠𝑠𝑁𝑁𝐼𝐼𝑎𝑎𝑡𝑡𝑒𝑒                 

𝐼𝐼𝑁𝑁𝑡𝑡𝑒𝑒𝐼𝐼𝑒𝑒𝐼𝐼                                                                             
 

The theory of stability states that the LTI system is stable if the characteristic polynomial's 

roots are negative or have negative real parts if they are complex conjugate. This means they 

are located in the left half of the complex plane. The stability of the same system in fraction 

order is different. A stable fractional system may have roots in the right half of the complex 

plane. Figure 2.1 will illustrate more about the stability region of fractional-order systems 

(Chen et al., 2009). 

While in the discrete-time systems, an approximation can be made for the definition of 

fractional-order operator defined by Grunwald–Letnikov (Monje et al., 2010): 

 𝑎𝑎𝑎𝑎∆ℎ
𝑎𝑎𝑛𝑛𝑦𝑦(𝑡𝑡) + 𝑎𝑎𝑎𝑎−1∆ℎ

𝑎𝑎𝑛𝑛−1𝑦𝑦(𝑡𝑡) + ⋯+ 𝑎𝑎0∆ℎ
𝑎𝑎0𝑦𝑦(𝑡𝑡)

= 𝑏𝑏𝑚𝑚∆ℎ
𝛽𝛽𝑚𝑚𝑁𝑁(𝑡𝑡) + 𝑏𝑏𝑚𝑚−1∆ℎ

𝛽𝛽𝑚𝑚−1𝑁𝑁(𝑡𝑡) + ⋯+ 𝑏𝑏0∆ℎ
𝛽𝛽0𝑁𝑁(𝑡𝑡). 

 

(2.16) 
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Figure 2.1: Stability region of LTI fractional-order systems with order 0<q≤1 (Monje et al., 

2010). 

 

By applying the Laplace transform to equation (2.14), the input-output representations of 

fractional-order systems can be found. Below is an illustration of both continuous and discrete-

time transfer functions: 

• The continuous-time transfer function form: 

 
𝐺𝐺(𝑠𝑠) =

𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

=
𝑏𝑏𝑚𝑚𝑠𝑠𝛽𝛽𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝛽𝛽𝑚𝑚−1 + ⋯+ 𝑏𝑏0𝑠𝑠𝛽𝛽0
𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑛𝑛 + 𝑎𝑎𝑎𝑎−1𝑠𝑠𝑎𝑎𝑛𝑛−1 + ⋯+ 𝑎𝑎0𝑠𝑠𝑎𝑎0

 (2.17) 

 

• The discrete-time transfer function form: 

 
𝐺𝐺(𝑧𝑧) =

𝑏𝑏𝑚𝑚(𝜔𝜔(𝑧𝑧−1))𝛽𝛽𝑚𝑚 + 𝑏𝑏𝑚𝑚−1(𝜔𝜔(𝑧𝑧−1))𝛽𝛽𝑚𝑚−1 + ⋯+ 𝑏𝑏0(𝜔𝜔(𝑧𝑧−1))𝛽𝛽0
𝑎𝑎𝑎𝑎(𝜔𝜔(𝑧𝑧−1))𝑎𝑎 + 𝑎𝑎𝑎𝑎−1(𝜔𝜔(𝑧𝑧−1))𝑎𝑎−1 + ⋯+ 𝑎𝑎0(𝜔𝜔(𝑧𝑧−1))0

 (2.18) 

 

In the engineering industry, the focus is more on closed-loop control systems. There are four 

types of closed-loop control systems based on their order (integer or fraction) of its plant and 

its controller. The first type is to have both the plant and the controller in integer-order. The 

second type is to have integer order plant with the fractional-order controller. The third one is 
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to have a fractional-order plant with an integer-order controller. The final type is to have both 

the plant and the controller in fractional-order (Chen, 2006). 

Some typical fractional-order controllers have been used since the early attempts of finding a 

solution for fractional-order systems; such as Tilted Integral Derivative (TID) and CRONE 

(Xue and Chen, 2002).  

• TID controller is a feedback control system that is considered to be a compensator of 

the PID controller, where the compensator's proportional component is replaced with a 

tilted component with a transfer function 𝑠𝑠−1 𝑎𝑎� . The entire compensator transfer 

function will more closely approximate an optimal loop transfer function which leads 

to improvement in the performance of feedback control, simpler tuning, better noise 

rejection and smaller effects on plant parameter variations on the closed-loop response 

compared to conventional PID (Chen et al., 2009). Figure 2.2 below shows a block 

diagram of a system that uses the TID controller. 

 

Figure 2.2: Reconstructed block diagram of a system that uses TID controller with  0 ≤ α ≤ 1 

 adopted from Xue and Chen (2002)  

 

• CRONE control was first presented by Oustaloup who was seeking fractional 

robustness. The term "fractional robustness" is used to describe the iso-damping and 
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the vertical sliding form of frequency template in the Nicholas chart (Oustaloup, 1995). 

There are several real-life applications of CRONE controllers such as the flexible 

transmission and car suspension control (Oustaloup et al., 1996). Figure 2.3 shows a 

block diagram of a system that uses the CRONE controller. 

 

Figure 2.3: Reconstructed block diagram of a system that uses CRONE controller with 0 ≤ α 

≤ 1 and 0 ≤ μ ≤ 1 adopted from Xue and Chen (2002)  

 

In Moreau and Daou, (2014), a comparison between three types of controllers (integer-order 

PID, generalised 𝑃𝑃𝐼𝐼λ𝐷𝐷𝜇𝜇, and CRONE) has been made. These controllers have been 

implemented to control a hydro electromechanical system and the observed output 

performances were promising. The experiment illustrates that the output simulations of the 

CRONE controller show more robustness than the other two controllers. 

 

In the next section, I will address the different approaches for tuning FOC and as stated earlier, 

the literature focuses on FOPID which means that most of the approaches will be tuning 

FOPID. 
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2.4 Tuning methods and approaches of FOC 

As interest in FOC has been increasing recently, researchers and engineers have put their efforts 

into create tuning methods that can be used to design the FOC based on various specific 

designs. 

 

2.4.1 Tuning by minimization 

Monje et al. (2004) proposed an optimisation method for tuning FOC to fulfil a certain 

desirable behaviour expected from the controller. There are six criteria which describe the 

desirable dynamics in this method: 

 

1. No steady-state error 

To achieve steady-state error cancellation, a fractional-order integrator of order 𝑘𝑘 + 𝜆𝜆, 𝑘𝑘 ∈ 𝑁𝑁, 

0 < 𝜆𝜆 < 1 is implemented which is as good as integer order integrator of order 𝑘𝑘 + 1. 

2. Gain cross-over frequency (ωcg) specification 

 �𝐺𝐺𝑐𝑐�𝑗𝑗𝜔𝜔𝑐𝑐𝑐𝑐�𝐺𝐺(𝑗𝑗𝜔𝜔𝑐𝑐𝑐𝑐� = 0𝑑𝑑𝑑𝑑 (2.19) 

 

3. Phase margin (𝜑𝜑𝑚𝑚) specification 

 −𝜋𝜋 + 𝜑𝜑𝑚𝑚 = arg �𝐺𝐺𝑐𝑐�𝑗𝑗𝜔𝜔𝑐𝑐𝑐𝑐�𝐺𝐺(𝑗𝑗𝜔𝜔𝑐𝑐𝑐𝑐)� (2.20) 

 

4. Gain margin (𝐼𝐼𝑚𝑚) and phase crossover frequency (𝜔𝜔𝑐𝑐𝑝𝑝) specifications 

see Chen and Moore(2005) and Chen et al. (2004) 

 
�
𝑑𝑑(𝐴𝐴𝐼𝐼𝐼𝐼�𝐶𝐶(𝑗𝑗𝜔𝜔)𝐺𝐺(𝑗𝑗𝜔𝜔)�)

𝑑𝑑𝜔𝜔
�
𝜔𝜔=𝜔𝜔𝑐𝑐𝑐𝑐

= 0 (2.21) 
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This condition will force the phase to be flat at 𝜔𝜔𝑐𝑐𝑐𝑐 and constant within an interval around 𝜔𝜔𝑐𝑐𝑐𝑐, 

which immunises the system against changes, and the overshoot of the response within the 

interval is almost constant. 

5. Robustness to variation in plant's gain 

 
�𝑇𝑇(𝑗𝑗𝜔𝜔) =

𝐺𝐺𝑐𝑐(𝑗𝑗𝜔𝜔)𝐺𝐺(𝑗𝑗𝜔𝜔)
1 + 𝐺𝐺𝑐𝑐(𝑗𝑗𝜔𝜔)𝐺𝐺(𝑗𝑗𝜔𝜔)

� < 𝐴𝐴𝑑𝑑𝑑𝑑∀𝜔𝜔 ≥ 𝜔𝜔𝑡𝑡 → |𝑇𝑇(𝑗𝑗𝜔𝜔)| = 𝐴𝐴𝑑𝑑𝑑𝑑 (2.22) 

 

where A is the desired noise attenuation for frequency 𝜔𝜔 ≥ 𝜔𝜔𝑡𝑡 𝐼𝐼𝑎𝑎𝑑𝑑/𝑠𝑠. 

 

6. Robustness to noise in high frequency 

 �𝑆𝑆(𝑗𝑗𝜔𝜔) =
1

1 + 𝐶𝐶(𝑗𝑗𝜔𝜔)𝐺𝐺(𝑗𝑗𝜔𝜔)�𝑑𝑑𝑑𝑑
≤ 𝑑𝑑𝑑𝑑𝑑𝑑, (2.23) 

 ∀𝜔𝜔 ≤ 𝜔𝜔𝑠𝑠𝐼𝐼𝑎𝑎𝑑𝑑/𝑠𝑠 → |𝑆𝑆(𝑗𝑗𝜔𝜔𝑠𝑠)|𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑 

where B is the desired value of the sensitivity function for frequency 𝜔𝜔 ≥ 𝜔𝜔𝑠𝑠 𝐼𝐼𝑎𝑎𝑑𝑑 𝑠𝑠� . 

Five of those six criteria can be achieved by the closed-loop system because the FOC has 5 

parameters which can be tuned. The specifications from 2 to 6 (if achieved) can ensure a robust 

response of the controlled system against gain variation and noises, whereas the no steady-state 

error is achieved just with the introduction of integral action. 

From these, constraints (2 to 6), 5 nonlinear equations with 5 unknown parameters 

(𝐾𝐾𝑝𝑝, 𝜆𝜆,𝐾𝐾𝐼𝐼 , 𝜇𝜇,𝐾𝐾𝐷𝐷) are obtained. One of the proposed solutions for those equations is using the 

MATLAB function "fmincon" to find the optimised solution with minimum error. In Monje et 

al. (2004), the specification in criteria number 2 has been taken to be the main function to 

minimise, and the rest of the specifications (criteria 3-6) are used as constraints for the 

minimisation, which are all subject to the optimisation parameters defined within the 

MATLAB function "fmincon". 
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This tuning technique has proven its effectiveness in practice; however, the major limitation of 

this technique is the dependence on the initial estimation of the parameters provided. If the 

initial estimation was not good enough then the solution may be unfeasible or lead to unstable 

loops. Only well-chosen initial estimations of the parameters will provide acceptable solutions. 

 

2.4.2 Ziegler-Nichols type tuning rules 

Valerio and Costa (2006) have been motivated by the drawbacks of the previous tuning 

technique which is the dependence on the initial estimations, and they introduced some Ziegler-

Nichols-type tuning rules for FOPID. The tuning rules are only applicable for systems with an 

s-shape response for the step input. The simplest S-shaped response system for the step input 

is 

 𝐺𝐺(𝑠𝑠) =
𝐾𝐾

𝑇𝑇𝑠𝑠 + 1
𝑒𝑒−𝑠𝑠𝑠𝑠 (2.24) 

 

With K=1 and several values of L and T, Valerio and Costa have employed the minimisation 

tuning technique on the plant and found that the parameters of FOPID obtained vary regularly. 

By formulating this regularity, some rules have been obtained for specific desired responses. 

 

1. The first set of rules 

The first set of rules is presented in Table 2.1 and Table 2.2. These are to be read as: 

𝑃𝑃 = −0.0048 + 0.2664𝐿𝐿 + 0.4982𝑇𝑇 + 0.0232𝐿𝐿2 − 0.0720𝑇𝑇2 − 0.0348𝑇𝑇𝐿𝐿,.... and so on. 

They can be used if 0.1 ≤ 𝑇𝑇 ≤ 50, 𝐿𝐿 ≤ 2 and were designed as per the following specifications 

according to Valerio and Costa (2006): 

𝜔𝜔𝑐𝑐𝑐𝑐 = 0.5𝐼𝐼𝑎𝑎𝑑𝑑/𝑠𝑠,𝜑𝜑𝑚𝑚 = 2
3
𝐼𝐼𝑎𝑎𝑑𝑑,  𝜔𝜔𝑡𝑡 = 10𝐼𝐼𝑎𝑎𝑑𝑑/𝑠𝑠,  𝜔𝜔𝑠𝑠 = 0.01𝐼𝐼𝑎𝑎𝑑𝑑/𝑠𝑠, 𝐴𝐴 = −10𝑑𝑑𝑑𝑑,𝑑𝑑 = −20𝑑𝑑𝑑𝑑  
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Table 2.1: Parameters FOPID for the first set of rules when 0.1≤T≤5 (Valerio and Costa, 2006) 

 𝑘𝑘𝑃𝑃 𝑘𝑘𝐼𝐼 𝜆𝜆 𝑘𝑘𝐷𝐷 𝜇𝜇 

1 -0.0048 0.3254 1.5766 0.0662 0.8736 

𝐿𝐿 0.2664 0.2478 -0.2098 -0.2528 0.2746 

𝑇𝑇 0.4982 0.1429 -0.1313 0.1081 0.1489 

𝐿𝐿2 0.0232 -0.1330 0.0713 0.0702 -0.1557 

𝑇𝑇2 -0.0720 0.0258 0.0016 0.0328 -0.0250 

𝐿𝐿𝑇𝑇 -0.0348 -0.0171 0.0114 0.2202 -0.0323 

 

Table 2.2: Parameters FOPID for the first set of rules when 5 ≤ T ≤ 50 (Valerio and Costa, 

2006) 

 𝑘𝑘𝑃𝑃 𝑘𝑘𝐼𝐼 𝜆𝜆 𝑘𝑘𝐷𝐷 𝜇𝜇 

1 2.1187 -0.5201 1.0645 1.1421 1.2902 

𝐿𝐿 -3.5207 2.6643 -0.3268 -1.3707 -0.5371 

𝑇𝑇 -0.1563 0.3453 -0.0229 0.0357 -0.0381 

𝐿𝐿2 1.5827 -1.0944 0.2018 0.5552 0.2208 

𝑇𝑇2 0.0025 0.0002 0.0003 -0.0002 0.0007 

𝐿𝐿𝑇𝑇 0.1824 -0.1054 0.0028 0.2630 -0.0014 

 

2. The second set of rules 

Table 2.3 shows the second set of rules which can be applied for 0.1 ≤ 𝑇𝑇 ≤ 50 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿 ≤ 0.5. 

As the range of values of L these rules cope with is reduced, only one set of parameters is 

needed. The rules were designed based on the following specifications: 

𝜔𝜔𝑐𝑐𝑐𝑐 = 0.5𝑟𝑟𝑎𝑎𝑎𝑎/𝑠𝑠,𝜑𝜑𝑚𝑚 = 1 𝑟𝑟𝑎𝑎𝑎𝑎,  𝜔𝜔𝑡𝑡 = 10𝑟𝑟𝑎𝑎𝑎𝑎/𝑠𝑠,  𝜔𝜔𝑠𝑠 = 0.01𝑟𝑟𝑎𝑎𝑎𝑎/𝑠𝑠, 𝐴𝐴 = −20𝑎𝑎𝑑𝑑,𝑑𝑑 =

−20𝑎𝑎𝑑𝑑  
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Table 2.3: Parameters FOPID for the second set of rules (Valerio and Costa, 2006) 

 𝑘𝑘𝑃𝑃 𝑘𝑘𝐼𝐼 𝜆𝜆 𝑘𝑘𝐷𝐷 𝜇𝜇 

1 -1.0574 0.6014 1.1851 0.8793 0.2778 

𝐿𝐿 24.5420 0.4025 -03464 -15.0846 -2.1522 

𝑇𝑇 0.3544 0.7921 -0.0492 -0.0771 0.0675 

𝐿𝐿2 -46.7325 -0.4508 1.7317 28.0388 2.4387 

𝑇𝑇2 -0.0021 0.0018 0.0006 -0.0000 -0.0013 

𝐿𝐿𝑇𝑇 -0.3106 -1.2050 0.0380 1.6711 0.0021 

 

2.4.3 The Padula and Visioli method 

Another set of tuning rules has been presented by Padula & Visioli (2011) for FOC. The idea 

of this tuning technique has been conceived from a First-Order Plus Dead-Time (FOPDT) 

model by minimising the Integrated Absolute Error (IAE). This is achieved by applying a 

constraint on the maximum sensitivity.   

To illustrate the concept of the technique, consider a system with a transfer function as 

mentioned in (2.24). 

   

The plant dynamics can be characterised by the normalised dead time and represented as: 

 𝜏𝜏 =
𝐿𝐿

𝐿𝐿 + 𝑇𝑇
 (2.25) 

 

which shows a measure of difficulty in controlling the plant. The proposed tuning rules have 

been set for the normalised dead time 0.05 ≤ 𝜏𝜏 ≤ 0.8. Frankly, for 𝜏𝜏 < 0.05 the dead time can 

be neglected and the controller design is rather trivial, whereas, for 𝜏𝜏 > 0.8, the plant will be 
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significantly ruled by the dead time; thus dead time compensator must be employed. Padula 

and Visioli (2011) developed a method to model FOC by the following transfer function: 

 
𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑃𝑃

𝐾𝐾𝑖𝑖𝑠𝑠𝜆𝜆 + 1
𝐾𝐾𝑖𝑖𝑠𝑠𝜆𝜆

𝐾𝐾𝑑𝑑𝑠𝑠𝜇𝜇 + 1
𝐾𝐾𝑑𝑑
𝑁𝑁 𝑠𝑠𝜇𝜇 + 1

 (2.26) 

 

This FOPID transfer function has an additional first-order filter employed to make the 

controller proper and that is the major difference between this transfer function and the original 

FOPID transfer function. The 𝑁𝑁 parameter is chosen to be 𝑁𝑁 = 𝑇𝑇(𝜇𝜇−1). The performance index 

is IAE which is defined as: 

 
𝐼𝐼𝐴𝐴𝐼𝐼 = � |𝑒𝑒(𝑡𝑡)|𝑎𝑎𝑡𝑡

∞

0
 (2.27) 

 

Using this equation as a performance index will lead to low overshoot and faster settling time 

(Shinskey, 1994). According to Astrom and Hagglund (1995), maximum sensitivity is defined 

as: 

 𝑀𝑀𝑠𝑠 = 𝑚𝑚𝑎𝑎𝑚𝑚 �
1

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)
� (2.28) 

 

This represents the inverse of the maximum distance of the Nyquist plot from the critical point 

(-1,0). The higher 𝑀𝑀𝑠𝑠, the less robustness against uncertainties. The tuning rules have been 

obtained based on the typical values of 𝑀𝑀𝑠𝑠=1.4 and 𝑀𝑀𝑠𝑠=2. If the only concern is load 

disturbance rejection then: 

 𝐾𝐾𝑝𝑝 =
1
𝐾𝐾

(𝑎𝑎𝜏𝜏𝑏𝑏 + 𝑐𝑐) (2.29) 

 
𝐾𝐾𝑖𝑖 = 𝑇𝑇 �𝑎𝑎 �

𝐿𝐿
𝑇𝑇�

𝑏𝑏

+ 𝑐𝑐� (2.30) 
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𝐾𝐾𝑑𝑑 = 𝑇𝑇 �𝑎𝑎 �

𝐿𝐿
𝑇𝑇�

𝑏𝑏

+ 𝑐𝑐� (2.31) 

 

where the values of the parameters can be found in the following tables based on the value of 

𝑀𝑀𝑠𝑠: 

Table 2.4: Tuning rules for Kp,Ki,Kd,λ and µ when Ms = 1.4 

 𝑎𝑎 𝑏𝑏 𝑐𝑐 

𝑘𝑘𝑃𝑃 0.2776 -1.097 -0.1426 

𝑘𝑘𝐷𝐷 0.6241 0.5573 0.0442 

𝑘𝑘𝐼𝐼 0.4793 0.7469 -0.0239 

𝜆𝜆 𝜇𝜇 

1 

1.0 if 𝜏𝜏 < 0.1 

1.1 if 0.1 ≤ 𝜏𝜏 < 0.4 

1.2 if 0.4 ≤ 𝜏𝜏 

 

Table 2.5: Tuning rules for Kp,Ki,Kd,λ and µ when Ms = 2 

 𝑎𝑎 𝑏𝑏 𝑐𝑐 

𝑘𝑘𝑃𝑃 0.164 -1.449 -0.2108 

𝑘𝑘𝐷𝐷 0.6426 0.8069 0.0653 

𝑘𝑘𝐼𝐼 0.597 0.5568 0.0954 

𝜆𝜆 𝜇𝜇 

1 

1.0 if 𝜏𝜏 < 0.2 

1.1 if 0.2 ≤ 𝜏𝜏 < 0.6 

1.2 if 0.6 ≤ 𝜏𝜏 
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2.4.4 Tuning using Particle Swarm Optimisation (PSO)  

Particle Swarm Optimisation is widely used for tuning controllers. In Maiti et al. (2008), this 

tuning methodology has been introduced to be used in the FOPID controller. To illustrate its 

effectiveness in tuning FOC, Figure 2.4 below shows a simulation comparison between a  

conventional PID controller and a FOPID controller which have both been tuned using the PSO 

technique. 

 

 

Figure 2.4: adapted from Maiti et al. (2008). The difference between FOPID and PID 

controller after using the PSO method for tuning 
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This simulation was the result of an illustrative example that is mentioned in Deepyaman et al. 

(2008). The example was for a fractional-order model with a transfer function as follows: 

 1
0.8𝑠𝑠2.2 + 0.5𝑠𝑠0.9 + 1

 (2.32) 

 

There were some specifications for designing a controller for this plant such as: 𝑀𝑀𝑝𝑝 = 10% 

and 𝑡𝑡𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑟𝑟 = 0.3 𝑠𝑠𝑒𝑒𝑐𝑐. 

The same algorithm has been used by Bingul and Karahan (2011) to enhance the controlling 

of robot trajectory.  

 

2.4.5 The graphical tuning method 

In Zheng et al. (2014), a very recently developed graphical tuning method is introduced when 

the analytical model of the plant suffers from interval uncertainties. The solution proposed is 

to solve the problem of robustly stabilising an interval fractional-order plant using a fractional-

order PID controller.  

2.4.6 Tuning based on Genetic Algorithm (GA) 

Zhang and Li (2011) have presented a new approach using a genetic algorithm to tune the 

FOPID controller which provides promising results in comparison to conventional PID.  

 

2.5 Fractional-order GPC 

There is an expanding enthusiasm for utilising fractional calculus applied to control theory to 

create a generalisation of the classical controller. Romero et al., 2010a & 2010b) have used 

fractional-order operators and applied it to GPC and its cost function to derive a generalised 

form of GPC which is known as Fractional-order Generalised Predictive Control "FGPC". 
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Romero and his team have successfully generated a fractional-order cost function that can be 

seen as a potential generalisation of GPC with the use of fractional-order parameters that have 

added two extra coefficients that will be useful for tuning. More details and in-depth analysis 

of this will be discussed in Chapter 3.  

 

2.6 Implementation and design of FOC 

To digest and understand the concepts and basics of FOC systems, simulations and practical 

demonstrations are needed.  

There are different methods for designing fractional-order controllers. In Dormido et al. (2012), 

two interactive tools have been presented to design non-integral controllers. The first one deals 

with the time and frequency domain of Fractional-order PID controllers, which gives the 

benefit for the user to identify the effects of changing user-chosen parameters. Both set-point 

and load disturbance step responses of the control system are shown in the time domain. 

Besides, the effect of measurements noise will be shown. The bode diagrams of all the critical 

closed-loop transfer functions are plotted in the frequency domain. The second tool will give 

the user the liberty to automatically determine the controller's parameters by applying a loop 

shaping technique, namely, by mapping a point in the process Nyquist plot to a target point of 

the loop transfer function Nyquist plot with a predefined value of its derivative (Dormido et 

al., 2012). 

There are a handful of simulation tools for the fractional-order which have various limitations. 

Good examples of these tools are Fractional-order Modelling & Controlling (FOMCON) for 

MATLAB and Simulink which is introduced by Aleksei (2012), and Fractional-order discrete 

State-Space system Simulink Toolkit (FSST) for MATLAB Simulink by Sierociuk (2010). 

This is considered to be the first toolkit that has a flexible optimisation tool that suits fractional-
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order PID control design. Due to the nature of the fractional-order controllers (5 parameters to 

be adjusted), using this tool will give more strategies of tuning to provide more accuracy as 

illustrated in Figure 2.5. This tool is eligible to be used for both fractional and integer plants. 

 

Figure 2.5: Adopted from Aleksei (2012), variety options of fractional-order PID coefficients  

 

The second tool is FSST which is used for fractional-order discrete state-space which is a 

powerful toolkit that is compatible with MATLAB SIMULINK where the functions used are 

represented by blocks. 

Other notable toolboxes used in MATLAB are: Ninteger and CRONE which are useful for 

designing fractional-order controllers (Aleksei, 2012). 

In addition, fractional-order systems have been introduced using LabVIEW software in Jin et 

al. (2009) where the software has been used for a fast prototyping experimental setup to 

validate the fractional-order advantages over conventional integer-order in motion control 

systems. 
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2.7 Applications of FOC 

Silva et al. (2004) presented a performance comparison between FOC and integer-order control 

for the joint leg control of a hexapod robot. This comparison is achieved by implementing joint 

leg actuator and transmission models that consolidate dynamical attributes to estimate how the 

controllers will respond to non-ideal joint actuators and transmissions. To analyse the system 

performance, several quantitative measures have been set on the dynamics and hip trajectory 

errors of the system. The analysis along with the experiment have illustrated that FOC (𝑃𝑃𝐷𝐷𝜇𝜇) 

has a better response compared to the conventional PD controller in terms of robustness. 

Another application of FOC is the electro-hydraulic controller for Tunnelling Boring Machines 

(TBMs) introduced by Fei et al. (2013). It's known that hydraulic systems have the 

characteristics of complexity, nonlinearity and variable loads, which make them good 

candidates for performing a comparison between the FOPID controller and conventional PID 

controller. Fei et al. (2013) introduced a comparison between the FOPID controller and PID 

controller to control pressure and flow of double shield TBM. The simulation models have 

been built using Adaptive Modelling Environment for Simulation (AMESim) and 

MATLAB/SIMULINK. Figure 2.6 shows the flow rate response for both FOPID and PID 

controllers. 
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Figure 2.6: Adopted from Fei et al. (2013),  flow rate response for FOPID and PID 

 

After analysing the simulations, Fei et al. (2013) concluded that FOPID can make the controller 

parameters track the set values faster, steadily, and with less oscillation compared to the PID 

controller. 

Fractional-order controllers have played a major role in energy conversion. According to 

Tejado et al. (2013), using FOC for wind turbines has improved the performance of disturbance 

attenuation and system robustness. 

The MAGLEV train constitutes a fast-developing field around the world because of its 

advantages (lower noise, less maintenance cost, environment-friendly, and other features) 

which make it one of the best options available for urban transportation. Until now, two 

commercial routes and several test routes have been built around the world (Yu et al., 2015). 

The suspension control system is one of the most important systems in the MAGLEV train, 

which is considered to be a nonlinear system in practice. Furthermore, the electromagnetic 

force produced by the constant current is inversely proportional to the square of the levitation. 
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Those facts will lead to an unstable system. It's a challenging task to design an ideal practicable 

control system which can satisfy the dynamic performance when the train is running under the 

actual environment. The authors (Yu et al., 2015) have presented a closed-loop fractional-order 

PID controller and compared this with an integer order closed-loop Linear Quadratic Regulator 

(LQR) controller. The simulation comparison is shown in Figure 2.7 and 2.8 below. The 

fractional-order controller has shown better dynamic performance and robustness. 

 

Figure 2.7: Adopted from Yu et al. (2015) Step response of the closed-loop system with 

fractional-order PID 

 

Figure 2.8: Adopted from Yu et al. (2015) Step response of the closed-loop system with a 

conventional PID controller. 
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Kumar et al. (2014) have introduced FOC on one of the benchmark application tests in the 

control engineering which is the inverted pendulum. The authors have validated the advantages 

of the fractional-order PID controller over the conventional PID controller by conducting 

simulations to illustrate the enhancements that fractional-order PID has achieved in the sense 

of robustness. 

                              

2.8 Concluding Remarks 

This chapter has discussed the historical background of FOC, the features and advantages of 

using FOC, and has highlighted some of the design methodologies and tuning techniques 

available in the literature, with a focus on FOPID control. Furthermore, several Toolkits have 

been suggested for implementing the fractional-order controllers for design and simulation 

purposes. The literature about FOC is relatively small but growing fast recently with a narrow 

focus on fractional-order PID. Nonetheless, this literature suggests that fractional-order 

methods (in particular FOPID) have promising results compared to conventional PID, 

especially in robustness, noise rejection, and in reaching the desired output faster with 

minimum overshoot. These all provide good motivation for further research into fractional 

order methods. The next chapter will focus on the FGPC approach selected for study in this 

thesis. In addition, Chapter 3 will introduce the new FGPC MATLAB platform program which 

is created by the present author and a numerical worked example that illustrates the use of this 

toolbox. 
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Chapter 3 FGPC Fundamentals 
 

 

Chapter 3 introduces the fundamentals of Fractional-order Generalised Predictive Control 

(FGPC), which is the method chosen as the focus of the simulation and application study in 

this thesis (see Chapter 1). It will illustrate the basis on which FGPC is built, the mathematical 

derivation of FGPC and the key differences between FGPC and conventional Generalised 

Predictive Control (GPC). To provide background content, the chapter first considers the 

Model-based Predictive Controller or Model Predictive Control (MPC) in general terms. 

Sections 3.1, 3.2, and 3.3 discuss MPC, GPC, and FGPC, respectively. This is followed by a 

brief review of the differences between GPC and FGPC (section 3.4), the MATLAB functions 

and worked example (section 3.5), and concluding remarks (section 3.6). 

 

3.1 MPC Review 

The philosophy of MPC is to take advantage of the system model's current state measurements 

or estimates to predict the future behaviour of the system by minimising a given cost function. 

MPC is one of the most widely known aspects of modern control theory in both academia and 

industry. Thanks to its receding horizon implementation, it offers a practical compromise 

between optimality and fast calculation (Bitmead, 1990).  
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Historically, by the end of the 1970s, a growing interest in predictive control was noticed 

especially in the industrial field. This interest was reflected by many articles that contributed 

to the MPC family, for instance, Richlet and his team (1976; 1978) presented Model Predictive 

Heuristic Control (MPHC) which became known as Model Algorithmic Control (MAC) later 

on. In addition, Cutler and Ramaker (1980) introduced Dynamic Matrix Control (DAC). 

 

3.1.1 MPC Elements    

All model predictive controllers have common elements which are the basis of any MPC. These 

elements have different options to choose from, which constitute different algorithms 

(Camacho & Bordons, 2004). These elements can be summarised as follows: 

• Predictive model 

• Objective function 

• Obtaining the control law. 

The basic idea of the predictive controllers is at each instant of time "present state" (𝑡𝑡), the 

future process (𝑡𝑡 + 𝑘𝑘|𝑡𝑡) is predicted within a time window defined by 𝑘𝑘 = 1,2,3, … ,𝑁𝑁 using 

the plant model of this controller.   

The notation used here (𝑡𝑡 + 𝑘𝑘|𝑡𝑡), indicates the value of the variable calculated in the future 

time and 𝑁𝑁 is the forecasting horizon (De Keyser, 1992; Camacho & Bordones, 2004). This 

can be seen graphically in Figure 3.1. The structure block diagram of the MPC can be found in 

Figure 3.2. 

This approach also defines a reference trajectory, 𝑟𝑟(𝑡𝑡 + 𝑘𝑘|𝑡𝑡). The trajectory describes the path 

of the process output from its current value at the point (𝑡𝑡) towards the future point, 𝑤𝑤(𝑡𝑡 + 𝑘𝑘|𝑡𝑡), 

throughout the horizon prediction within the time window defined by 𝑘𝑘.  
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Figure 3.1: Model-based prediction methodology 

 

 

Figure 3.2: Model-Based Predictive Controller block diagram structure 

 

Future input is calculated based on the minimisation of a determined objective function, 

known as the cost function, which relies on errors to predict the future. 
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3.1.2 MPC cost function 

MPC algorithms utilise distinctive cost functions to obtain control. The basic principle is to 

contain the errors between the prediction of the process and the reference trajectory, on one 

hand, and the control, on the other hand. As we are focusing on GPC, we will consider the GPC 

cost function (Clarke et al., 1987a):   

 
𝐽𝐽(∆𝑢𝑢, 𝑡𝑡) = 𝐼𝐼 �� 𝛾𝛾(𝑗𝑗)[𝑟𝑟(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) − 𝑦𝑦(𝑡𝑡 + 𝑗𝑗|𝑡𝑡)]2 + �𝜆𝜆(𝑗𝑗)[∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗 − 1|𝑡𝑡)]2

𝑁𝑁𝑢𝑢

𝑗𝑗=1

𝑁𝑁2

𝑗𝑗=𝑁𝑁1

� (3.1) 

 

where: 

• E{-} indicates the expectation operator 

• 𝑟𝑟(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) is the future reference trajectory 

• 𝑦𝑦(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) is the optimal prediction of output 𝑗𝑗 steps forward, calculated using 

data known at time 𝑡𝑡. 

• ∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) is the increment of the control signal calculated with predictions 

made at time 𝑡𝑡, where ∆ indicates 1 − 𝑧𝑧−1. 

•  𝑁𝑁1 and 𝑁𝑁2 are the lower and upper-cost horizon respectively. These 

parameters are used to define the number of predictions made (N), where: 𝑁𝑁 =

𝑁𝑁2 − 𝑁𝑁1 + 1. 

• 𝑁𝑁𝑢𝑢 is the control horizon. It is determined by 𝑁𝑁2 ≤ 𝑁𝑁𝑢𝑢 and it quantifies the 

number of degrees of freedom of the control signal. Also, this parameter 

influences the controller behaviour, as a larger value of 𝑁𝑁𝑢𝑢 will result in more 

aggressive control which, in some cases, can destabilise the system. 

• 𝛾𝛾(𝑗𝑗) represents the future error weighting sequences. 
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•  𝜆𝜆(𝑗𝑗) represents control weighting sequences. 

• The notation 𝑚𝑚(𝑗𝑗|𝑡𝑡) represents the predicted value of 𝑚𝑚(𝑗𝑗) at time instant 𝑡𝑡, 

where "𝑚𝑚" represents any variable (for instance 𝛾𝛾 or 𝜆𝜆). 

 

3.1.3 Prediction equation 

The predicted output of the process is the sum of two effects, as shown in Figure 3.3 and 

described in the following expression: 

 𝑦𝑦(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝑦𝑦𝑐𝑐(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) + 𝑦𝑦𝑓𝑓(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) (3.2) 

 

where 

• 𝑦𝑦𝑐𝑐 is the controlled response which depends on future control actions 𝑢𝑢(𝑡𝑡 +

𝑘𝑘|𝑡𝑡), which is to be determined. 

• 𝑦𝑦𝑓𝑓 is the free-response, assuming no future control actions and, therefore, the 

control remains at the value it has at time 𝑡𝑡 (hence 𝑦𝑦0). 

 

Figure 3.3: Effects that contributes to the total process response 
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It is essential to note that the prediction equations are formulated usually in terms of ∆𝑢𝑢(𝑡𝑡 +

𝑘𝑘|𝑡𝑡) due to the nature of the disturbance models used. 

According to De Keyser, (1992) and Camacho, (2004), the general case for the prediction 

equation takes the form: 

 𝑦𝑦�(𝑡𝑡) = 𝑦𝑦𝑓𝑓���(𝑡𝑡) + 𝐺𝐺∆𝑢𝑢����(𝑡𝑡) (3.3) 

 

Equation (3.3) can be extended to be: 

 
𝑦𝑦�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝑦𝑦𝑓𝑓���(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) + �𝑔𝑔𝑖𝑖∆𝑢𝑢����(𝑡𝑡 + 𝑘𝑘 − 𝑖𝑖|𝑡𝑡)

𝑁𝑁

𝑖𝑖=1

 (3.4) 

where  

• 𝑦𝑦�(𝑡𝑡) is the general matrix of the output 𝑦𝑦(𝑡𝑡) 

• G is a matrix containing the coefficients 𝑔𝑔𝑖𝑖 of the step response process 

𝐺𝐺 = �

𝑔𝑔1 0 ⋯ 0
𝑔𝑔2 𝑔𝑔1 ⋯ 0
⋮
𝑔𝑔𝑁𝑁

⋮
𝑔𝑔𝑁𝑁−1

⋯
⋯

⋮
𝑔𝑔𝑁𝑁−𝑁𝑁𝑢𝑢+1

� 

• 𝑔𝑔𝑖𝑖  are the sampled output values for the step input, as shown in Figure 3.4 

• ∆𝑢𝑢����(𝑡𝑡) is the general matrix of the control signal 

• 𝑦𝑦𝑓𝑓���(𝑡𝑡) is the general matrix of the free response 𝑦𝑦𝑓𝑓 (i.e 𝑦𝑦0) 



FGPC Fundamentals 

 
39 

 

 

Figure 3.4: Adopted from Camacho (2004), step response 

 

3.1.4 Obtaining the control law 

To obtain the control low, we need to define the error vector first: 

 𝐼𝐼� = [𝑒𝑒(𝑡𝑡 + 1|𝑡𝑡), 𝑒𝑒(𝑡𝑡 + 2|𝑡𝑡), 𝑒𝑒(𝑡𝑡 + 3|𝑡𝑡), … , 𝑒𝑒(𝑡𝑡 + 𝑁𝑁|𝑡𝑡) ]′ (3.5) 

 

where 

 𝑒𝑒(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝑟𝑟(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) − 𝑦𝑦(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) (3.6) 

 

Substituting equation (3.4) into equation (3.6): 

 
𝑒𝑒(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝑟𝑟(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) − [𝑦𝑦𝑓𝑓���(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) + �𝑔𝑔𝑖𝑖∆𝑢𝑢����(𝑡𝑡 + 𝑘𝑘 − 𝑖𝑖|𝑡𝑡)

𝑁𝑁

𝑖𝑖=1

] (3.7) 

 

Rearranging, 

 𝑒𝑒(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = �𝑟𝑟(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) − 𝑦𝑦𝑓𝑓���(𝑡𝑡 + 𝑘𝑘|𝑡𝑡)� − 𝐺𝐺∆𝑢𝑢����(𝑡𝑡) (3.8) 
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As per equation (3.7) and equation (3.6), 

 𝐼𝐼� = 𝐼𝐼0��� − 𝐺𝐺∆𝑢𝑢����(𝑡𝑡) (3.9) 

 

Noting that: 

 𝐼𝐼0��� = �𝑟𝑟(𝑡𝑡 + 1|𝑡𝑡) − 𝑦𝑦𝑓𝑓(𝑡𝑡 + 1|𝑡𝑡), 𝑟𝑟(𝑡𝑡 + 2|𝑡𝑡) − 𝑦𝑦𝑓𝑓(𝑡𝑡 + 2|𝑡𝑡), … , 𝑟𝑟(𝑡𝑡 + 𝑁𝑁|𝑡𝑡)

− 𝑦𝑦𝑓𝑓(𝑡𝑡 + 𝑁𝑁|𝑡𝑡)�      
(3.10) 

 

And the incremental control law has the following expression: 

 ∆𝑢𝑢����(𝑡𝑡) = [∆𝑢𝑢(𝑡𝑡|𝑡𝑡),∆𝑢𝑢(𝑡𝑡 + 1|𝑡𝑡),∆𝑢𝑢(𝑡𝑡 + 2|𝑡𝑡), … ,∆𝑢𝑢(𝑡𝑡 + 𝑁𝑁 − 1|𝑡𝑡)]′ (3.11) 

 

Now substituting into the cost function, equation (3.1), to obtain the general form of the cost 

function: 

 𝐽𝐽(∆𝑢𝑢����, 𝑡𝑡) = ∆𝑢𝑢����′[𝐺𝐺′𝛤𝛤𝐺𝐺 + 𝛬𝛬]∆𝑢𝑢���� − 2𝐼𝐼0���
′𝛤𝛤𝐺𝐺∆𝑢𝑢���� + 𝐼𝐼0���′𝛤𝛤𝐼𝐼0��� (3.12) 

 

where 

• 𝛤𝛤 is a diagonal matrix containing weight factor 𝛾𝛾(𝑗𝑗) in the multivariate general 

case. 

• 𝛬𝛬 is a diagonal matrix containing weight factor 𝜆𝜆(𝑗𝑗) in the general case. 

The sequence of optimal control, ∆𝑢𝑢����∗, is obtained by minimising the general cost function (i.e 

equation (3.11)): 

 ∆𝑢𝑢����∗ = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑖𝑖𝑎𝑎∆𝑢𝑢����(𝐽𝐽(∆𝑢𝑢����, 𝑡𝑡)) (3.13) 

where 

• "arg" is a mathematical function stands for "argument" which operates on a 

complex number. 
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• "min" is a mathematical function stands for "minimum" which is used to return 

the minimum of a function. 

In this minimisation process, it is normally assumed that the control signal, 𝑢𝑢(𝑡𝑡), remains 

constant from time 𝑡𝑡 + 𝑁𝑁𝑢𝑢. 

According to De Keyser (1991), it is possible to analytically obtain the optimal control 

sequence if the following conditions apply: 

• The cost function (𝐽𝐽) is quadratic for the independent variables. 

• The model equations are linear. 

• No constrains on the control. 

 ∆𝑢𝑢����∗ = (𝐺𝐺′𝛤𝛤𝐺𝐺 + 𝛬𝛬)−1𝐺𝐺′𝛤𝛤𝐼𝐼0��� = 𝐾𝐾𝐼𝐼0��� (3.14) 

 

where 𝐾𝐾 = (𝐺𝐺′𝛤𝛤𝐺𝐺 + 𝛬𝛬)−1𝐺𝐺′𝛤𝛤. 

Equation (3.14) represents the time-invariant linear control law, formed by controller matrix 

gain "𝐾𝐾" and multiplied by the vector 𝐼𝐼0. Since 𝐾𝐾 is invariant over time, it can be calculated 

offline, and it will remain constant as long as there are no changes to the system.  

 

3.2 Generalised Predictive Controller Review 

Generalised predictive control is a member of the MPC family, which is known as GPC, and 

developed in the mid-1980s, within the academic field, by D.W Clarke (Clarke et al., 1987a,b). 

GPC shares many aspects with an earlier version of predictive control known as Dynamic 

Matrix Control (DMC) (Cutler & Ramaker, 1979). However, DMC has a completely 

deterministic formulation and therefore does not explicitly include any model of disturbances 

(Morari & Lee, 1997). On the other hand, stochastic aspects play an important role in GPC. 
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The vast majority of predictive control algorithms have been developed according to discrete 

methodology; however, there are continuous implementations of predictive control, e.g. 

Continuous-time Generalised Predictive Control (CGPC) (Demircioğlu & Gawthrop, 1991), 

which is a continuous interpretation of the discrete GPC algorithm. However, in this chapter, I 

will be using discrete-time only.  

 

3.2.1 Prediction equation 

 The formulation of GPC is based on a stochastic model known as ARIMAX or CARIMA. The 

abbreviation ARIMAX is a special case of ARIMA which stands for Autoregressive Integrated 

Moving Average. When other time series included as input variables to ARIMA, then it is 

known as ARIMAX. As for CARIMA, it stands for Controlled Auto-Regressive Integrated 

Moving Average. When using these models, the mathematical model will be as follows:  

 
𝐴𝐴(𝑧𝑧−1)𝑦𝑦(𝑘𝑘) = 𝑑𝑑(𝑧𝑧−1)𝑢𝑢(𝑡𝑡) +

𝑇𝑇(𝑧𝑧−1)
∆

𝜉𝜉(𝑘𝑘) (3.15) 

 

where  

• 𝐴𝐴(𝑧𝑧−1) is a polynomial that is defined appropriately which represents the 

discrete expression of the denominator of the transfer function of the plant. 

The general form of the polynomial can be: 

1 + 𝑎𝑎1𝑧𝑧−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑧𝑧−𝑛𝑛 

• 𝑑𝑑(𝑧𝑧−1) is a polynomial that is defined appropriately which represents the 

discrete expression of the numerator of the transfer function of the plant. The 

general form of the polynomial can be: 

𝑏𝑏1𝑧𝑧−1 + ⋯+ 𝑏𝑏𝑚𝑚𝑧𝑧−𝑚𝑚 
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• 𝑇𝑇(𝑧𝑧−1) is a polynomial that is defined appropriately which represents the pre-

filter used to improve the robustness of the system by rejecting noise and 

disturbance. 

• ∆ is the difference operator and it is defined by 1 − 𝑧𝑧−1. 

• 𝜉𝜉(𝑘𝑘) is the uncorrelated zero-mean white noise (unmeasurable disturbance) 

The predictor is obtained by solving the following Diophantine equation: 

 𝑇𝑇(𝑧𝑧−1) = 𝐼𝐼𝑗𝑗(𝑧𝑧−1)∆𝐴𝐴(𝑧𝑧−1) + 𝑧𝑧−1𝐹𝐹𝑗𝑗(𝑧𝑧−1) (3.16) 

 

This leads to the following prediction equation: 

 𝑦𝑦(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) =
𝐹𝐹𝑗𝑗
𝑇𝑇
𝑦𝑦(𝑡𝑡) +

𝐼𝐼𝑗𝑗𝑑𝑑
𝑇𝑇

∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) (3.17) 

 

The expression in equation (3.17) is a function of signals of known values at time 𝑡𝑡 also, the 

function of values of the future control values that have to be determined. To distinguish the 

past and future controls, a second Diophantine equation is proposed:  

 𝐼𝐼𝑗𝑗(𝑧𝑧−1)𝑑𝑑(𝑧𝑧−1) = 𝐺𝐺𝑗𝑗(𝑧𝑧−1)𝑇𝑇(𝑧𝑧−1) + 𝑧𝑧−𝑗𝑗Ф𝑗𝑗(𝑧𝑧−1) (3.18) 

 

which leads to the following prediction equation: 

 𝑦𝑦(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) = 𝐺𝐺𝑗𝑗∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) + Ф𝑗𝑗𝑢𝑢𝑓𝑓(𝑡𝑡) + 𝐹𝐹𝑗𝑗𝑦𝑦𝑓𝑓(𝑡𝑡) (3.19) 

 

where  



FGPC Fundamentals 

 
44 

 

• the polynomial 𝐺𝐺𝑗𝑗 contains the first 𝑗𝑗 coefficient of the step response to the plant 

𝑑𝑑(𝑧𝑧−1)
∆𝐴𝐴(𝑧𝑧−1)� . For further details, refer to Bitmead et al. (1990) 

• 𝑢𝑢𝑓𝑓(𝑡𝑡) is ∆𝑢𝑢(𝑡𝑡) filtered by 𝑇𝑇(𝑧𝑧−1) 

• 𝑦𝑦𝑓𝑓(𝑡𝑡) is 𝑦𝑦(𝑡𝑡) filtered by 𝑇𝑇(𝑧𝑧−1) 

𝑇𝑇(𝑧𝑧−1) has known values at the instant time which can be represented by the following 

expression:  

 
�𝑢𝑢

𝑓𝑓(𝑡𝑡) = 𝑇𝑇−1(𝑧𝑧−1)∆𝑢𝑢(𝑡𝑡)
𝑦𝑦𝑓𝑓(𝑡𝑡) = 𝑇𝑇−1(𝑧𝑧−1)𝑦𝑦(𝑡𝑡)

 (3.20) 

 

From equation (3.19), it easily verified that the free response of the system is given by: 

 𝑦𝑦𝑓𝑓(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) = Ф𝑗𝑗𝑢𝑢𝑓𝑓(𝑡𝑡) + 𝐹𝐹𝑗𝑗𝑦𝑦𝑓𝑓(𝑡𝑡) (3.21) 

where 

• 𝑦𝑦𝑓𝑓(𝑡𝑡 + 𝑗𝑗|𝑡𝑡) is the free-response on equation (3.19) 

which supports the general expression in equation (3.2). 

 

3.2.2 Controller Adjustment recommendation 

 Horizons and factors of weight play a major role in shaping the characteristics of the operation 

of the controller and cover a wide range of possibilities (refer to equation (3.1)). These 

parameters have a decisive influence on the behaviour and stability of the closed-loop 

controller, so their proper choice is of vital importance. Therefore, a set of standard "default" 

settings, which have proven to be suitable for most processes, have been recommended (Clarke 

et al., 1987b): 
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• 𝑁𝑁1: If system delay "𝑎𝑎" is known, then 𝑁𝑁1 ≥ 𝑎𝑎 must be taken to avoid 

superfluous calculations. If it is unknown or variable, then the value 𝑁𝑁1 = 1 is 

valid, defining the model so that it can encompass the maximum delay of the 

process. 

• 𝑁𝑁2: If the sampling period is adequate, a value of 10 is usually sufficient. 

• 𝑁𝑁𝑢𝑢: Must be taken equal to or greater than the number of unstable or poorly 

damped poles of the process. For most industrial processes, and generally for 

stable open-loop processes, a value of 𝑁𝑁𝑢𝑢 = 1 usually produces an acceptable 

control action. 

• 𝜆𝜆: Values other than 0 that contribute to improving the robustness of the 

optimization algorithm (Clarke & Mohtadi, 1989). In general, small values, of 

the order of 10−6, are sufficient unless the application requires greater damping 

of the control signal (for example, in the identification phase of the models and 

the tuning of the controller) 

• 𝛾𝛾: It is usually 1, although it can take different values depending on the type of 

application. 

 

3.2.3 Closed-loop GPC 

In the case where there are no active constraints, the control law will be linear time-invariant; 

therefore, a transfer function can be obtained. The closed-loop control system is shown in 

Figure 3.5 below, where 𝑅𝑅, 𝑆𝑆, and 𝑇𝑇 are specific polynomials that define the controller, known 

as forward path, feedback path, and prefilter polynomial. 
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Figure 3.5: General diagram of the control loop 

According to the above Figure, the closed-loop discrete transfer function is: 

 𝑦𝑦(𝑡𝑡)
𝑟𝑟(𝑡𝑡)

=
𝑇𝑇𝑑𝑑

𝑅𝑅(𝑧𝑧−1)∆𝐴𝐴 + 𝑆𝑆(𝑧𝑧−1)𝑑𝑑
 (3.22) 

 

And the characteristic equation of the system, obtained from equation (3.22), is: 

 𝑅𝑅(𝑧𝑧−1)∆𝐴𝐴 + 𝑆𝑆(𝑧𝑧−1)𝑑𝑑 = 0 (3.23) 

 

From Figure 3.5, it is obvious to establish the following: 

 𝑅𝑅(𝑧𝑧−1)∆𝑢𝑢(𝑡𝑡) = 𝑇𝑇𝑟𝑟(𝑘𝑘) − 𝑆𝑆(𝑧𝑧−1)𝑦𝑦(𝑘𝑘) (3.24) 

 

To define the controller polynomials 𝑅𝑅, 𝑆𝑆 and 𝑇𝑇, we need to define equation (3.24) in the 

same way we defined equation (3.14): 

 𝑘𝑘1 = [1 0 … 0]𝐾𝐾 (3.25) 

 

As we take the upper row (𝑘𝑘1) of the matrix 𝐾𝐾. 
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The first component of the optimal controller vector is: 

 ∆𝑢𝑢∗(𝑡𝑡|𝑡𝑡) = 𝑘𝑘1𝐼𝐼�0(1) = 𝑘𝑘1 �𝑤𝑤(1) − 𝑦𝑦𝑓𝑓(1)� (3.26) 

 

Substituting the free-response expression of GPC (𝑦𝑦𝑓𝑓), which is given in equation (3.21): 

 ∆𝑢𝑢 = 𝑘𝑘1(𝑟𝑟 − Ф𝑢𝑢𝑓𝑓 − 𝐹𝐹𝑦𝑦𝑓𝑓) (3.27) 

 

where Ф and 𝐹𝐹 are matrices formed by the polynomials Ф𝑗𝑗 and 𝐹𝐹𝑗𝑗 respectively. Applying the 

definition of  𝑢𝑢𝑓𝑓 and 𝑦𝑦𝑓𝑓 according to equation (3.20): 

 ∆𝑢𝑢 = 𝑘𝑘1(𝑟𝑟 − Ф𝑇𝑇−1∆𝑢𝑢 − 𝐹𝐹𝑇𝑇−1𝑦𝑦)

= � 𝑘𝑘1𝑖𝑖𝑟𝑟(𝑡𝑡 + 𝑖𝑖) − � 𝑘𝑘1𝑖𝑖
Ф𝑖𝑖

𝑇𝑇
∆𝑢𝑢(𝑡𝑡) − � 𝑘𝑘1𝑖𝑖

𝐹𝐹𝑖𝑖
𝑇𝑇
𝑦𝑦(𝑡𝑡)

𝑁𝑁2

𝑖𝑖=𝑁𝑁1

𝑁𝑁2

𝑖𝑖=𝑁𝑁1

𝑁𝑁2

𝑖𝑖=𝑁𝑁1

 

 

(3.28) 

 

This leads to the following equation: 

 
�𝑇𝑇 + � 𝑘𝑘𝑖𝑖Ф𝑖𝑖

𝑁𝑁2

𝑖𝑖=𝑁𝑁1

�∆𝑢𝑢(𝑡𝑡) = �𝑇𝑇 � 𝑘𝑘𝑖𝑖𝑧𝑧−𝑁𝑁2+𝑖𝑖
𝑁𝑁2

𝑖𝑖=𝑁𝑁1

� 𝑟𝑟(𝑡𝑡 + 𝑁𝑁2) − �� 𝑘𝑘𝑖𝑖𝐹𝐹𝑖𝑖

𝑁𝑁2

𝑖𝑖=𝑁𝑁1

� 𝑦𝑦(𝑡𝑡) (3.29) 

 

Comparing with equation (3.24) to obtain 𝑅𝑅(𝑧𝑧−1) and 𝑆𝑆(𝑧𝑧−1) : 

 
𝑅𝑅(𝑧𝑧−1) =

𝑇𝑇 + ∑ 𝑘𝑘1𝑖𝑖Ф𝑖𝑖
𝑁𝑁2
𝑖𝑖=𝑁𝑁1

∑ 𝑘𝑘1𝑖𝑖𝑧𝑧−𝑁𝑁2+𝑖𝑖
𝑁𝑁2
𝑖𝑖=𝑁𝑁1

  ,             𝑆𝑆(𝑧𝑧−1) =
∑ 𝑘𝑘1𝑖𝑖𝐹𝐹𝑖𝑖
𝑁𝑁2
𝑖𝑖=𝑁𝑁1

∑ 𝑘𝑘1𝑖𝑖𝑧𝑧−𝑁𝑁2+𝑖𝑖
𝑁𝑁2
𝑖𝑖=𝑁𝑁1

 (3.30) 
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It can be concluded from equation (3.15) and equation (3.24) that the closed-loop transfer 

function can be formed as follow: 

 (𝐴𝐴∆𝑅𝑅(𝑧𝑧−1) + 𝑑𝑑𝑆𝑆(𝑧𝑧−1))𝑦𝑦(𝑡𝑡) = 𝑑𝑑𝑇𝑇𝑟𝑟(𝑡𝑡 + 𝑁𝑁2) + 𝑇𝑇𝑅𝑅(𝑧𝑧−1)𝜉𝜉(𝑡𝑡) (3.31) 

 

3.3 Fractional-order Generalised Predictive Controller 

As stated in Chapter 2, most approaches used for general fractional calculus are based on 

Grunwald-Letnikov (GL) and Riemann-Liouville (RL). In the world of engineering 

applications, usually, RL is used for algebraic manipulation and GL for numerical simulation 

and integration (Podlubny, 1999). 

The idea of Fractional-order Generalised Predictive Controller was born from combining 

fractional calculus with GPC to create a generalisation of GPC. As shown in the previous 

sections, the GPC law is obtained from minimising the cost function found in equation (3.1), 

as GPC is using the CARIMA model found in equation (3.15). FGPC will follow the same path 

to formulate its control law.  

There are two approaches to defining FGPC. In the following subsections, we will demonstrate 

both ways. 

 

3.3.1 First approach of deriving FGPC 

Romero and his team (Romero et al., 2010b) have created FGPC by using the defined fractional 

integral operator. This new controller is based on the GPC predictive controller, which is used 

as a generalised fractional integral operator to redefine its cost function. 
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To get to FGPC, a series of mathematical equations shall be explained and illustrated. The 

following series of derivation is essential to understanding where the FGPC equation came 

from (Romero at al., 2010b). 

We will give a discrete method to evaluate  

 
� 𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
 (3.32) 

 

The notation g and 𝑙𝑙 are chosen to be multiples of the sampling time ∆𝑡𝑡 and 𝛼𝛼 ∈ ℜ. The 

fractional derivative 𝐷𝐷𝛼𝛼 can be evaluated using the GL definition (Ortigueira et al., 2005), 

recalling equation (2.5)  

     
                                        𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡) = lim

ℎ→0
ℎ−𝛼𝛼�(−1)𝑖𝑖 �𝛼𝛼𝑖𝑖 � 𝑓𝑓(𝑡𝑡 − 𝑖𝑖ℎ)

∞

𝑖𝑖=0

  

where 

• ℎ ∈ ℜ+ 

• 𝛼𝛼 ∈ ℜ 

Substituting equation (2.5) to equation (3.32): 

 
� 𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
= � �∆𝑡𝑡−𝛼𝛼�(−1)𝑖𝑖 �𝛼𝛼𝑖𝑖 � 𝑓𝑓(𝑡𝑡 − 𝑖𝑖∆𝑡𝑡)

∞

𝑖𝑖=0

� 𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
 (3.33) 

 

As ℎ = ∆𝑡𝑡, equation (3.33) can be expanded to  
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� 𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
= ∆𝑡𝑡−𝛼𝛼 �� (−1)0 �𝛼𝛼0� 𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡 +

𝑙𝑙

𝑐𝑐
� (−1)1 �𝛼𝛼1� 𝑓𝑓(𝑡𝑡 − ∆𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐

+ � (−1)2 �𝛼𝛼2� 𝑓𝑓(𝑡𝑡 − 2∆𝑡𝑡)𝑎𝑎𝑡𝑡 + ⋯
𝑙𝑙

𝑐𝑐
� 

(3.34) 

 

Using the standard notation 𝜔𝜔𝑥𝑥 ≡ (−1)𝑥𝑥 �𝛼𝛼𝑚𝑚�, equation (3.34) can be rewritten as: 

 
� 𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
= ∆𝑡𝑡−𝛼𝛼 �� 𝜔𝜔0𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡 +

𝑙𝑙

𝑐𝑐
� 𝜔𝜔1𝑓𝑓(𝑡𝑡 − ∆𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐

+ � 𝜔𝜔2𝑓𝑓(𝑡𝑡 − 2∆𝑡𝑡)𝑎𝑎𝑡𝑡 + ⋯
𝑙𝑙

𝑐𝑐
� 

(3.35) 

 

As noticed earlier, equation (3.35) is nothing but an infinite summation of definite integrals: 

 
𝜔𝜔𝑝𝑝 � 𝑓𝑓(𝑡𝑡 − 𝑝𝑝∆𝑡𝑡)

𝑙𝑙

𝑐𝑐
𝑎𝑎𝑡𝑡 (3.36) 

 

which can be evaluated as 

 
𝜔𝜔𝑝𝑝 � 𝑓𝑓(𝑡𝑡 − 𝑝𝑝∆𝑡𝑡)

𝑙𝑙

𝑐𝑐
𝑎𝑎𝑡𝑡 = 𝜔𝜔𝑝𝑝�𝐹𝐹𝑝𝑝(𝑙𝑙) − 𝐹𝐹𝑝𝑝(𝑔𝑔)� (3.37) 

where 𝐹𝐹𝑝𝑝 is a primitive function of 𝑓𝑓(𝑡𝑡 − 𝑝𝑝∆𝑡𝑡). 

Applying the GL definition (i.e., equation (2.5)) to expand the expression 
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𝜔𝜔𝑝𝑝 � 𝑓𝑓(𝑡𝑡 − 𝑝𝑝∆𝑡𝑡)
𝑙𝑙

𝑐𝑐
𝑎𝑎𝑡𝑡

= 𝜔𝜔𝑝𝑝 ��∆𝑡𝑡�(−1)𝑖𝑖 �−1
𝑖𝑖 � 𝑓𝑓

(𝑙𝑙 − (𝑖𝑖 + 𝑝𝑝)∆𝑡𝑡)
∞

𝑖𝑖=0

�

− �∆𝑡𝑡�(−1)𝑖𝑖
∞

𝑖𝑖=0

�−1
𝑖𝑖 � 𝑓𝑓

(𝑔𝑔 − (𝑖𝑖 + 𝑝𝑝)∆𝑡𝑡)�� 

(3.38) 

 

Now, equation (3.38) can be evaluated for each value of 𝑝𝑝, which will lead to the following 

general term: 

𝜔𝜔𝑝𝑝 � 𝑓𝑓(𝑡𝑡 − 𝑝𝑝∆𝑡𝑡)
𝑙𝑙

𝑐𝑐
𝑎𝑎𝑡𝑡

= 𝜔𝜔𝑝𝑝∆𝑡𝑡[𝑓𝑓(𝑙𝑙 − 𝑝𝑝∆𝑡𝑡) − 𝑓𝑓(𝑔𝑔 − 𝑝𝑝∆𝑡𝑡) + 𝑓𝑓(𝑙𝑙 − (2 + 𝑝𝑝)∆𝑡𝑡)

− 𝑓𝑓(𝑔𝑔 − (2 + 𝑝𝑝)∆𝑡𝑡) + 𝑓𝑓(𝑙𝑙 − (3 + 𝑝𝑝)∆𝑡𝑡) − 𝑓𝑓(𝑔𝑔 − (3 + 𝑝𝑝)∆𝑡𝑡)

+ ⋯ ] 

(3.39) 

 

Equation (3.35) can be summed as: 

 
� 𝐷𝐷𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡 = ∆𝑡𝑡1−𝛼𝛼 .𝑘𝑘�. 𝑓𝑓̅
𝑙𝑙

𝑐𝑐
 (3.40) 

 

where ∆𝑡𝑡1−𝛼𝛼 came from equation 3.33 as ∆𝑡𝑡 has been taken as a common factor out of the 

summation and then multiplied by ∆𝑡𝑡−𝛼𝛼 (which was there already as a result of GL definition) 

which led to the term  ∆𝑡𝑡1−𝛼𝛼. 
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𝑘𝑘� = (… ,𝜔𝜔𝐿𝐿+1 + 𝜔𝜔𝐿𝐿 + ⋯+ 𝜔𝜔𝐺𝐺+2 ,𝜔𝜔𝐿𝐿 + 𝜔𝜔𝐿𝐿−1 + ⋯+ 𝜔𝜔𝐺𝐺+1,𝜔𝜔𝐿𝐿−1 + 𝜔𝜔𝐿𝐿−2 + ⋯

+ 𝜔𝜔𝐺𝐺 , … ,𝜔𝜔𝐿𝐿−𝑛𝑛+1 + 𝜔𝜔𝐿𝐿−𝑛𝑛 + ⋯+ 𝜔𝜔𝐺𝐺−𝑛𝑛+2,𝜔𝜔𝐿𝐿−𝑛𝑛 + 𝜔𝜔𝐿𝐿−𝑛𝑛−1 + ⋯

+ 𝜔𝜔𝐺𝐺−𝑛𝑛+1, … ,𝜔𝜔1 + 𝜔𝜔0,𝜔𝜔0) 

(3.41) 

 

where; 𝐺𝐺 = 𝑔𝑔
∆𝑡𝑡� ,   𝐿𝐿 = 𝑙𝑙

∆𝑡𝑡� ,   𝑎𝑎 = 𝐿𝐿 − 𝐺𝐺  

 𝑓𝑓̅ = �… ,𝑓𝑓(−∆𝑡𝑡), 𝑓𝑓(0), 𝑓𝑓(∆𝑡𝑡), … , 𝑓𝑓(𝑔𝑔 − ∆𝑡𝑡),𝑓𝑓(𝑔𝑔), … , 𝑓𝑓(𝑙𝑙 − ∆𝑡𝑡),𝑓𝑓(𝑙𝑙)� (3.42) 

 

Since 𝑓𝑓 ̅ and 𝑘𝑘� have an infinite number of terms, the integral in equation (3.40) has infinite 

memory. However, in practice, only a finite number of terms is needed due to the short memory 

principle (Ortigueira et al., 2005). 

After establishing the foundations of the mathematical derivation, FGPC cost function can be 

defined easily by comparing with MPC (GPC) cost function (equation 3.1). For the sake of 

simplicity, the expectation operator "𝐼𝐼" and the notation "|𝑡𝑡" have not been explicitly written: 

 
𝐽𝐽𝐹𝐹𝐺𝐺𝑃𝑃𝐹𝐹(∆𝑢𝑢, 𝑡𝑡) = � 𝐷𝐷𝛼𝛼[𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)]2𝑎𝑎𝑡𝑡 + � 𝐷𝐷𝛽𝛽[∆𝑢𝑢(𝑡𝑡 − 1)]2𝑎𝑎𝑡𝑡

𝑁𝑁𝑢𝑢

1

𝑁𝑁2

𝑁𝑁1
 (3.43) 

 

As noticed, the notation 𝑗𝑗 is not mentioned in equation (3.43) as the summation operator has 

been replaced with the integral operator.  

Substituting equation (3.40) into equation (3.43): 

 𝐽𝐽𝐹𝐹𝐺𝐺𝑃𝑃𝐹𝐹(∆𝑢𝑢, 𝑡𝑡) = (∆𝑡𝑡1−𝛼𝛼 . �̅�𝑒. �̅�𝛾. �̅�𝑒 ′) + �∆𝑡𝑡1−𝛽𝛽 .∆𝑢𝑢����. �̅�𝜆.∆𝑢𝑢����′� (3.44) 
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where: 

• �̅�𝛾 represents the future error weighting sequences. The bar notation indicates it 

is a matrix and it is square with infinite dimension 

• �̅�𝜆 represents the control weighting sequences. The bar notation indicates it is a 

matrix and it is square with infinite dimension. 

• 𝛼𝛼 and 𝛽𝛽 are fractional-order coefficients. 

By truncating equation (3.44) to consider just the future values of 𝑒𝑒 and ∆𝑢𝑢 in the intervals of 

interest, [𝑁𝑁1,  𝑁𝑁2] and [1,𝑁𝑁𝑢𝑢], respectively. The truncated version, final value, of equation 

(3.44) can be obtained as follows: 

 𝐽𝐽𝐹𝐹𝐺𝐺𝑃𝑃𝐹𝐹 = 𝑒𝑒𝛾𝛾(𝛼𝛼,∆𝑡𝑡)𝑒𝑒′ + ∆𝑢𝑢𝜆𝜆(𝛽𝛽,∆𝑡𝑡)∆𝑢𝑢′ (3.45) 

where 

• 𝛾𝛾(𝛼𝛼,∆𝑡𝑡) and 𝜆𝜆(𝛽𝛽,∆𝑡𝑡) are defined in equations (3.46) and (3.47) respectively. 

𝛾𝛾(𝛼𝛼,∆𝑡𝑡)

=

⎝

⎜⎜
⎛

𝜔𝜔ℎ + 𝜔𝜔ℎ−1 + ⋯𝜔𝜔𝑁𝑁1−1
0
0
⋮
0
0

0
𝜔𝜔ℎ−1 + 𝜔𝜔ℎ−2 + ⋯𝜔𝜔𝑁𝑁1−2

0
⋮
0
0

0
0

𝜔𝜔ℎ−2 + 𝜔𝜔ℎ−3 + ⋯𝜔𝜔𝑁𝑁1−3
⋮
⋯
⋯

⋯
⋯⋯
⋯⋯
⋯

0
0
0
⋮

𝜔𝜔1 + 𝜔𝜔0
0

0
0
0
⋮
0
𝜔𝜔0⎠

⎟⎟
⎞

 
(3.46) 

 

and ℎ = 𝑁𝑁2 − 𝑁𝑁1  

𝜆𝜆(𝛽𝛽,∆𝑡𝑡)

=

⎝

⎜⎜
⎛

𝜔𝜔𝑁𝑁𝑢𝑢−1 + 𝜔𝜔𝑁𝑁𝑢𝑢−2 + ⋯𝜔𝜔1
0
0
⋮
0
0

0
𝜔𝜔𝑁𝑁𝑢𝑢−2 + 𝜔𝜔𝑁𝑁𝑢𝑢−3 + ⋯𝜔𝜔0

0
⋮
0
0

0
0

𝜔𝜔𝑁𝑁𝑢𝑢−3 + 𝜔𝜔𝑁𝑁𝑢𝑢−4 + ⋯𝜔𝜔0
⋮
⋯
⋯

⋯
⋯⋯
⋯⋯
⋯

0
0
0
⋮

𝜔𝜔1 + 𝜔𝜔0
0

0
0
0
⋮
0
𝜔𝜔0⎠

⎟⎟
⎞

 
(3.47) 
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By defining those equations, we have identified a classical GPC formulation with weighting 

sequences 𝛾𝛾 and 𝜆𝜆 given by the sampling time ∆𝑡𝑡 and the fractional-order of derivation 𝛼𝛼 and 

𝛽𝛽. The optimal control law can be derived by minimising equation (3.44) using conventional 

GPC techniques (Camacho & Bordones, 2004; Clarke, 1987a; 1987b; 1988; Maciejowski, 

2002; Rossiter, 2003). 

 

3.3.2 Second approach of deriving FGPC 

Another possible solution for driving FGPC is using the definition of a fractional definite 

integral operator, which will lead to a slightly different formula for FGPC concluded in the 

previous equation (Romero et al., 2010a; 2012). The definition of the definite fractional 

integral operator is as follows:   

 
� 𝐷𝐷1−𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
 (3.48) 

 

Using the GL definition, equation (2.5), and applying to  𝐷𝐷1−𝛼𝛼 to the equation 

 
� 𝐷𝐷1−𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
= � �∆𝑡𝑡𝛼𝛼−1�(−1)𝑖𝑖 �1 − 𝛼𝛼

𝑖𝑖 � 𝑓𝑓(𝑡𝑡 − 𝑖𝑖∆𝑡𝑡)
∞

𝑖𝑖=0

� 𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐
 (3.49) 

 

which can be expanded to  
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� 𝐷𝐷1−𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐

= ∆𝑡𝑡𝛼𝛼−1 �� (−1)0 �1 − 𝛼𝛼
0 � 𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡

𝑙𝑙

𝑐𝑐

+� (−1)1 �1 − 𝛼𝛼
1 � 𝑓𝑓(𝑡𝑡 − ∆𝑡𝑡)𝑎𝑎𝑡𝑡

𝑙𝑙

𝑐𝑐

+ � (−1)2 �1 − 𝛼𝛼
2 � 𝑓𝑓(𝑡𝑡 − 2∆𝑡𝑡)𝑎𝑎𝑡𝑡 + ⋯

𝑙𝑙

𝑐𝑐
� 

(3.50) 

 

Using the standard notation 𝜔𝜔𝑥𝑥 ≡ (−1)𝑥𝑥 �1 − 𝛼𝛼
𝑚𝑚 �, equation (3.50) can be rewritten as 

� 𝐷𝐷1−𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐

= ∆𝑡𝑡𝛼𝛼−1 �� 𝜔𝜔0𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡 +
𝑙𝑙

𝑐𝑐
� 𝜔𝜔1𝑓𝑓(𝑡𝑡 − ∆𝑡𝑡)𝑎𝑎𝑡𝑡
𝑙𝑙

𝑐𝑐

+ � 𝜔𝜔2𝑓𝑓(𝑡𝑡 − 2∆𝑡𝑡)𝑎𝑎𝑡𝑡 + ⋯
𝑙𝑙

𝑐𝑐
� 

(3.51) 

 

Following the same steps from the first approach which yields: 

 
� 𝐷𝐷1−𝛼𝛼𝑓𝑓(𝑡𝑡)𝑎𝑎𝑡𝑡 = ∆𝑡𝑡𝛼𝛼 .𝑘𝑘�. 𝑓𝑓̅
𝑙𝑙

𝑐𝑐
 (3.52) 

where: 

∆𝑡𝑡𝛼𝛼 appeared from equation (3.48) as ∆𝑡𝑡 has been taken as a common factor out of the 

summation and then multiplied by ∆𝑡𝑡𝛼𝛼−1 (which was there already as a result of the GL 

definition) which led to the term  ∆𝑡𝑡𝛼𝛼. 

Now, the truncated FGPC equation can be rewritten as 
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 𝐽𝐽𝐹𝐹𝐺𝐺𝑃𝑃𝐹𝐹(∆𝑢𝑢, 𝑡𝑡) = 𝑒𝑒𝛤𝛤(𝛼𝛼,∆𝑡𝑡)𝑒𝑒 ′ + ∆𝑢𝑢𝛬𝛬(𝛽𝛽,∆𝑡𝑡)∆𝑢𝑢′ (3.53) 

 

where: 

 𝛤𝛤(𝛼𝛼,∆𝑡𝑡) = ∆𝑡𝑡𝛼𝛼𝑎𝑎𝑖𝑖𝑎𝑎𝑔𝑔( 𝜔𝜔𝑚𝑚 𝜔𝜔𝑚𝑚−1 … 𝜔𝜔1 𝜔𝜔0) (3.54) 

and, 

• 𝑚𝑚 = 𝑁𝑁2 − 𝑁𝑁1 

• 𝜔𝜔𝑙𝑙 = (−1)𝑙𝑙 �−𝛼𝛼𝑙𝑙 �, and 𝜔𝜔𝑙𝑙 = 0 for ∀𝑙𝑙 < 0 

 𝛬𝛬(𝛽𝛽,∆𝑡𝑡) = ∆𝑡𝑡𝛽𝛽𝑎𝑎𝑖𝑖𝑎𝑎𝑔𝑔(𝜔𝜔𝑁𝑁𝑢𝑢−1 𝜔𝜔𝑁𝑁𝑢𝑢−2 …𝜔𝜔1 𝜔𝜔0) (3.55) 

 

and, 

• 𝜔𝜔𝑙𝑙 = (−1)𝑙𝑙 �−𝛽𝛽
𝑙𝑙
�, and 𝜔𝜔𝑙𝑙 = 0 for all 𝑙𝑙 < 0 

 

 

3.3.3 Obtaining the control law 

 By minimising the cost function 𝐽𝐽𝐹𝐹𝐺𝐺𝑃𝑃𝐹𝐹 , the values of the control law 𝑢𝑢(𝑡𝑡 + 𝑗𝑗|t) can be 

obtained. The first step is to replace the cost function with the equation of prediction (equation 

(3.2) with the omission on the notation "|𝑡𝑡" for simplification): 

𝑦𝑦(𝑡𝑡 + 𝑘𝑘) = 𝑦𝑦𝑐𝑐(𝑡𝑡 + 𝑘𝑘) + 𝑦𝑦𝑓𝑓(𝑡𝑡 + 𝑘𝑘) 

Due to the nature of the terms that form part of the function, the following notation is used: 

"→" for predicted future values and "←" for the past values. Thus, for FGPC we are going to 

present all its vectorial variables in terms of past values and predicted future values as follows: 
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• Control "∆𝑢𝑢" and error "𝑒𝑒" vectors:     

 

∆𝑢𝑢 = �
∆𝑢𝑢(←)
−  −
∆𝑢𝑢(→)

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⋮
∆𝑢𝑢(𝑘𝑘 − 3)
∆𝑢𝑢(𝑘𝑘 − 2)
∆𝑢𝑢(𝑘𝑘 − 1)
−  −  −  −
∆𝑢𝑢(𝑘𝑘)

∆𝑢𝑢(𝑘𝑘 + 1)
⋮

∆𝑢𝑢(𝑘𝑘 + 𝑁𝑁𝑢𝑢 − 1)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.56) 

 

𝑒𝑒 = �
𝑒𝑒(←)
−  −
𝑒𝑒(→)

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⋮
𝑒𝑒(𝑘𝑘 − 2)
𝑒𝑒(𝑘𝑘 − 1)
𝑒𝑒(𝑘𝑘)

−  −  −  −
𝑒𝑒(𝑘𝑘 + 1)
𝑒𝑒(𝑘𝑘 + 2)

⋮
𝑒𝑒(𝑘𝑘 + 𝑁𝑁2)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.57) 

 

• System reference "𝑟𝑟" and output "𝑦𝑦" 

 

𝑟𝑟 = �
𝑟𝑟(←)
−  −
𝑟𝑟(→)

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⋮
𝑟𝑟(𝑘𝑘 − 2)
𝑟𝑟(𝑘𝑘 − 1)
𝑟𝑟(𝑘𝑘)

−  −  −  −
𝑟𝑟(𝑘𝑘 + 1)
𝑟𝑟(𝑘𝑘 + 2)

⋮
∆𝑢𝑢(𝑘𝑘 + 𝑁𝑁2)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.58) 

 

𝑦𝑦 = �
𝑦𝑦(←)
−  −
𝑦𝑦(→)

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⋮
𝑦𝑦(𝑘𝑘 − 2)
𝑦𝑦(𝑘𝑘 − 1)
𝑦𝑦(𝑘𝑘)

−  −  −  −
𝑦𝑦(𝑘𝑘 + 1)
𝑦𝑦(𝑘𝑘 + 2)

⋮
𝑦𝑦(𝑘𝑘 + 𝑁𝑁2)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.59) 
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• Weight sequence "𝛤𝛤 and 𝛬𝛬" 

 

𝛤𝛤 = �
𝛤𝛤(←) 0

0 𝛤𝛤(→)
� =

⎣
⎢
⎢
⎢
⎢
⎡
⋱   
 𝛾𝛾−1  
  𝛾𝛾0

0

0
𝛾𝛾1   
 ⋱  
  𝛾𝛾𝑁𝑁2⎦

⎥
⎥
⎥
⎥
⎤

 (3.60) 

 

𝛬𝛬 = �
𝛬𝛬(←) 0

0 𝛬𝛬(→)
� =

⎣
⎢
⎢
⎢
⎢
⎡
⋱   
 𝜆𝜆−1  
  𝜆𝜆0

0

0
𝜆𝜆1   
 ⋱  
  𝜆𝜆𝑁𝑁𝑢𝑢−1⎦

⎥
⎥
⎥
⎥
⎤

 (3.61) 

             

Using this new notation, equation (3.52) can be re-written as a discrete FGPC cost function as 

follows: 

𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝑡𝑡,∆𝑢𝑢(→)� = [𝑒𝑒′(←) | 𝑒𝑒′(→)] �
𝛤𝛤(←) 0

0 𝛤𝛤(→)
� �
𝑒𝑒(←)
−
𝑒𝑒(→)

�

+ [∆𝑢𝑢′(←) | ∆𝑢𝑢′(→)] �
𝛬𝛬(←) 0

0 𝛬𝛬(→)
� �
∆𝑢𝑢(←)
− −
∆𝑢𝑢(→)

�

= �𝑒𝑒′(→)𝛤𝛤(→)𝑒𝑒(→) + ∆𝑢𝑢′(→)𝛬𝛬(→)∆𝑢𝑢(→)�

+ �𝑒𝑒′(←)𝛤𝛤(←)𝑒𝑒(←) + ∆𝑢𝑢′(←)𝛬𝛬(←)∆𝑢𝑢(←)� ≡ 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(→) + 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(←) 

(3.62) 

 

Following the same steps taken in obtaining the control low of MPC (refer to section 3.1.4) 

and substituting into equation (5.53): 

 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = �∆𝑢𝑢′(→)�𝐺𝐺 ′𝛤𝛤(→)𝐺𝐺 + 𝛬𝛬(→)�∆𝑢𝑢(→) − 2𝐸𝐸0(→)𝛤𝛤(→)𝐺𝐺∆𝑢𝑢(→)

+ 𝐸𝐸0(→)𝛤𝛤(→)𝐸𝐸0(→)� + �𝑒𝑒′(←)𝛤𝛤(←)𝑒𝑒(←) + ∆𝑢𝑢′(←)𝛬𝛬(←)∆𝑢𝑢(←)� 

 

(3.63) 
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With no active constraints, the optimal control law will be as follows: 

 ∆𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∗ (𝑡𝑡) = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚∆𝑢𝑢𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝐺𝐺 ′𝛤𝛤(𝑓𝑓)𝐺𝐺 + 𝛬𝛬(→))−1𝐺𝐺′𝛤𝛤(→)𝐸𝐸0(→) ≡ 𝐾𝐾𝐸𝐸0(→) (3.64) 

 

The same expression has been obtained for GPC (Clarke, 1987a,b); however, in FGPC, the 

weighting sequences (𝜆𝜆 and 𝛾𝛾) are defined by high-level tuning fractional-order parameters (𝛼𝛼 

and 𝛽𝛽) using the previously defined equations. 

 

Without any active constraints, the minimisation of 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 will lead to an LTI control law, which 

can be calculated in advance.  

 

3.4 Key differences between FGPC and GPC 

The first difference that can be noticed on the number of predicted errors that each one of those 

controllers is taking into account. Considering the error function on GPC, 

 𝐸𝐸𝑜𝑜 ≡ �𝑒𝑒𝑜𝑜(𝑡𝑡 + 𝑁𝑁1), … , 𝑒𝑒𝑜𝑜(𝑡𝑡 + 𝑁𝑁2)�′ (3.65) 

 

 

whereas in FGPC the error function is  

 𝐸𝐸𝑜𝑜 ≡ �𝑒𝑒𝑜𝑜(𝑡𝑡 + 1), … , 𝑒𝑒𝑜𝑜(𝑡𝑡 + 𝑁𝑁2)�′ (3.66) 

 

Assuming that 𝑁𝑁1 > 1, GPC is taking into account 𝑁𝑁1 and 𝑁𝑁2 regardless of the value of 𝑁𝑁1, 

hence equation (3.65), whereas FGPC will always assume that 𝑁𝑁1 = 1, hence equation (3.66). 

Thus, it can be easily observed that FGPC is taking into account more elements than GPC. 
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The second difference is regarding the way that FGPC and GPC define the weighting 

sequences. In GPC, the weighting sequences are defined directly from the cost function, 

recalling equation (3.1): 

𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹(∆𝑢𝑢, 𝑡𝑡) = � 𝛾𝛾[𝑟𝑟(𝑡𝑡 + 𝑘𝑘) − 𝑦𝑦(𝑡𝑡 + 𝑘𝑘)]2 + �𝜆𝜆𝑖𝑖∆𝑢𝑢(𝑡𝑡 + 𝑘𝑘)2
𝑁𝑁𝑢𝑢

𝑘𝑘=1

𝑁𝑁2

𝑘𝑘=𝑁𝑁1

 

On the other hand, FGPC defines the weighing sequences through 𝛼𝛼 and 𝛽𝛽 as shown in the 

previous section. The key thing here is that the weighting sequences in GPC are constant and 

nonnegative in most cases whereas, in FGPC, the weighting sequences are defined using 𝛼𝛼 and 

𝛽𝛽. Thus, they can be negative and not necessarily constant. Although having negative weights 

in predictive control is an unusual case, it cannot be ignored, as there are some situations where 

the controller gives its maximum potential in such a case (Romero et al., 2010a). 

The third and most important difference is that FGPC and GPC are not defining the same set 

of controllers. In other words, for each system, there will be three different types of controllers 

as stated by Romero et al. (2010b). Figure 3.6 demonstrates these. 

 

Figure 3.6: The three sets of controllers 

 

Referring to the figure above, the system either has a type 1 controller (GPC), a type 2 

controller (GPC or FGPC), or a type 3 controller (FGPC). As stated earlier in this chapter, 

FGPC is a more general case of GPC and this can be observed in the previous figure. The main 
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difference between GPC and FGPC is that FGPC is considering 𝛬𝛬 whereas GPC doesn't. This 

parameter will give FGPC the privilege to calculate the controller's weightings with negative 

sequences which are ignored by GPC. Back to the figure, a type 1 controller is a pure GPC 

controller that has no negative weightings and has no (or a very small value that can be ignored) 

𝛬𝛬 and a unity 𝛤𝛤. A type 2 controller can be considered as GPC or FGPC, for which 𝛬𝛬 and 𝛤𝛤 

can be calculated and still have positive values. Finally, a type 3 controller is purely FGPC 

with negative values of 𝛬𝛬 and 𝛤𝛤. The key point that can convert FGPC to pure GPC is to find 

a value of 𝛼𝛼 and 𝛽𝛽 that can define 𝛤𝛤 as unity and 𝛬𝛬 is zero (or a very small fraction that can be 

ignored).  

 

3.5 MATLAB implementation  

To implement the FGPC formula in MATLAB, we need to understand the basis of the 

mathematical equations used and measure their compatibility to be applied in MATLAB. For 

example, to apply the standard notation 𝜔𝜔𝑥𝑥 ≡ (−1)𝑥𝑥 �𝜑𝜑𝑥𝑥�, we need to understand what �𝜑𝜑𝑥𝑥� 

means and how it can be computed. 

The term �𝜑𝜑𝑥𝑥� is the binomial coefficient and it reads as " 𝜑𝜑 choose 𝑥𝑥". There are several ways 

to solve this mathematical term. It can be computed using one of the following methods (Gross, 

2009): 

• Recursive formula: 

 �𝜑𝜑𝑥𝑥� = �𝜑𝜑 − 1
𝑥𝑥 − 1� + �𝜑𝜑 − 1

𝑥𝑥 � (3.67) 

 

for all integers 𝜑𝜑, 𝑥𝑥: 1 ≤ 𝑥𝑥 ≤  𝜑𝜑 − 1 
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• Factorial formula: 

 �𝜑𝜑𝑥𝑥� =
𝜑𝜑!

𝑥𝑥! (𝜑𝜑 − 𝑥𝑥)!
 (3.68) 

 

for 0 ≤ 𝑥𝑥 ≤ 𝜑𝜑 

• Newton's generalised formula: 

�𝜑𝜑𝑥𝑥� =
𝜑𝜑𝑥𝑥

𝑥𝑥!
=
𝜑𝜑(𝜑𝜑 − 1)(𝜑𝜑 − 2) … (𝜑𝜑 − (𝑥𝑥 − 1))

𝑥𝑥(𝑥𝑥 − 1)(𝑥𝑥 − 2) … 1
= �

𝜑𝜑− (𝑥𝑥 − 𝑚𝑚)
𝑚𝑚

𝑥𝑥

𝑖𝑖=1

= �
𝜑𝜑 + 1 − 𝑚𝑚

𝑚𝑚

𝑥𝑥

𝑖𝑖=1

 

 

(3.69) 

 

Here the symbol 𝜑𝜑𝑥𝑥 is expressed as a falling factorial power. This formula can be used 

to compute an arbitrary number 𝜑𝜑 (a real, complex, or negative number). 

 

We have used the latter formula (i.e. equation (3.69)) as it is the most general and compatible 

with the characteristics of 𝜑𝜑 which can be any arbitrary number. The code has been divided 

into functions to compute each mathematical equation separately for error tracking and 

debugging.  The first function created was a function “gamma” that uses Newton’s binomial 

formula to compute the values of the first weighting element of FGPC (i.e. 𝛾𝛾(𝛽𝛽,∆𝑡𝑡)) using 

equations (3.46). The second function created was the function "lambda" which is created to 

compute the second weighting element in FGPC (𝜆𝜆(𝛼𝛼,∆𝑡𝑡)) using equation (3.47). The third 

and last function was the function "FOGPC" which carries out all the numerical calculations 

to compute the expectation equation of FGPC (i.e. equation (3.45)). The FGPC output and 

control law are simulated using the "Captain" toolbox created by Taylor et al. (1999). 
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3.5.1 Worked example 

To shed more light on the ideas in this chapter, a detailed worked simple example is considered 

in this section for tutorial purposes. We will go through the example and apply both GPC and 

FGPC controllers on the model and compare the responses of each controller. The comparison 

will illustrate the difference between the two responses. Equation (3.70) represents a model 

that is discretised by ∆𝑡𝑡 = 1.  

 
𝐺𝐺(𝑧𝑧−1) =

1 − 3𝑧𝑧−1

1 − 0.75𝑧𝑧−1
 (3.70) 

 

According to the recommendations stated in section 3.2.2 and (Rossiter, 2003), 𝑁𝑁𝑢𝑢 and 𝑁𝑁2 need 

to be chosen sufficiently large for this kind of plant. Therefore, we will assume the following: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 25 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• For FGPC, 2 different values for (𝛼𝛼,𝛽𝛽) which result from 2 different sets of 

values for 𝛾𝛾 and 𝜆𝜆, according to equation (3.46) and equation (3.47), 

respectively. The choice of (𝛼𝛼,𝛽𝛽) is based on an initial guess and observation 

of the FGPC response. The first initial guess will be based on achieving the same 

response as GPC. The second guess will aim to get a faster response to achieve 

the desired output with minimum overshoot. After several simulations, the 
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following values of (𝛼𝛼,𝛽𝛽) have been chosen to achieve a similar response to 

GPC: 

 

1. (𝛼𝛼,𝛽𝛽) = (1.5,2), referring to equation (3.46) & (3.47), respectively, and 

using the MATLAB code created, we obtained the following values: 

𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

2.5239
0
0
0
0
0
0
0
0
0

0
3.3385

0
0
0
0
0
0
0
0

0
0

3.1421
0
0
0
0
0
0
0

0
0
0

2.9326
0
0
0
0
0
0

0
0
0
0

2.7070
0
0
0
0
0

0
0
0
0
0

2.4609
0
0
0
0

0
0
0
0
0
0

2.1875
0
0
0

0
0
0
0
0
0
0

1.8750
0
0

0
0
0
0
0
0
0
0

 1.5      
0

0
0
0
0
0
0
0
0
0
1⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

𝜆𝜆 = �1 0 
0 1� 

After running those parameters in the code created in MATLAB (2017a) on a laptop (using 

Windows 10, with an Intel(R) i5-4200u CPU processor and 8GB RAM), the following control 

polynomials were derived (i.e. forward path polynomial 𝑅𝑅(𝑧𝑧−1) and feedback 𝑆𝑆(𝑧𝑧−1)) for both 

GPC and FGPC. The control polynomials of both controllers are as follows: 

 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = −2.78 − 6.78𝑧𝑧−1 (3.71) 

 𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = 2.7 − 1.7𝑧𝑧−1 (3.72) 

 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = −2.73 − 6.7𝑧𝑧−1 (3.73) 

 𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = 2.7 − 1.7𝑧𝑧−1 (3.74) 

Comparing equation (3.71) to equation (3.73) and equation (3.72) to equation (3.74), GPC and 

FGPC have almost identical control polynomials which will yield very similar closed-loop 

responses. 
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 In addition, the responses of the plant to the different controllers (GPC and FGPC) were 

demonstrated. In the following Figure 3.7, matching responses of both GPC and FGPC can be 

observed: 

 

Figure 3.7: Response of both GPC and FGPC with the parameters chosen above. 

We notice that the response is quite similar which indicates that this is a type 2 controller where 

FGPC is behaving like GPC as stated in section 3.4  

The second choice of (𝛼𝛼,𝛽𝛽) has yielded the following corresponding values of 𝛾𝛾 and 𝜆𝜆: 

 

2. (𝛼𝛼,𝛽𝛽) = (0.8,0.9) 

𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−0.2525
0
0
0
0
0
0
0
0
0

0
0.7559

0
0
0
0
0
0
0
0

0
0

0.7655
0
0
0
0
0
0
0

0
0
0

0.7766
0
0
0
0
0
0

0
0
0
0

0.7897
0
0
0
0
0

0
0
0
0
0

0.8058
0
0
0
0

0
0
0
0
0
0

0.8265
0
0
0

0
0
0
0
0
0
0

0.8550
0
0

0
0
0
0
0
0
0
0

 0.9000     
0

0
0
0
0
0
0
0
0
0
1⎠

⎟
⎟
⎟
⎟
⎟
⎞
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𝜆𝜆 = �−0.2 0 
0 1� 

 

As GPC parameters have not been changed, the control polynomials for GPC remains the 

same (i.e., the same equations (3.71) and (3.72)), whereas FGPC controller polynomials 

are changed due to the change in both 𝛼𝛼 and 𝛽𝛽. 

 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = −1.81 − 5.84𝑧𝑧−1 (3.75) 

 𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑧𝑧−1) = 2.46 − 1.46𝑧𝑧−1 (3.76) 

 

Comparing the new calculated control polynomials to GPC ones, an obvious difference can 

be noticed, despite the way in which they are  both using the same design horizons (i.e 𝑁𝑁1, 

𝑁𝑁2 and 𝑁𝑁𝑢𝑢). Figure 3.8 illustrates both GPC and FGPC responses to the new values of 𝛼𝛼 

and 𝛽𝛽. 

 

Figure 3.8: Response of both GPC and FGPC with the parameters chosen. 
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We notice that the response is different which indicates that this is a type 3 controller 

where FGPC can response in a different way (faster in this case) to GPC as stated in 

section 3.4 

In the second plot, an interesting observation can be seen, i.e. with (𝛼𝛼,𝛽𝛽) changed, the response 

of FGPC changed. The next chapter will include further examples and detailed analysis for the 

responses of GPC and FGPC in a more rigorous comparison. 

 

3.6 Concluding Remarks 

The present chapter has reviewed MPC, GPC, and FGPC in terms of their respective 

mathematical numerical derivations and control algorithm equations. GPC is a special case of 

MPC, whilst FGPC is presented here as a generalised case of GPC. A worked example at the 

end of the chapter has briefly demonstrated the potential difference between GPC and FGPC 

in terms of their responses to the same model using the same horizons in their design (but with 

several different settings for the extra FGPC design terms). The following Chapter  builds on 

this, to consider different models and simulation scenarios, such as the disturbance response 

and model mismatch. 
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Chapter 4 FGPC Simulation Study 
 

Chapter 4 considers the performance of FGPC for various case study examples. The responses 

of FGPC are compared to conventional GPC in terms of the rise time, robustness and settling 

time for several different models. A trial and error approach is utilised to set the GPC tuning 

coefficients for each example, whilst the conventional GPC settings, such as the various 

forecasting horizons, are the same for both GPC and FGPC. However, in the case of FGPC, 

the additional tuning coefficients 𝛼𝛼 and 𝛽𝛽 are investigated by simulation, i.e. how can these be 

used to modify the closed-loop characteristics? Note that the FGPC tuning method (i.e. 𝛼𝛼 and 

𝛽𝛽 choice) was proposed by Romero et al. (2011), based on a previously developed method used 

for tuning fractional-order 𝑃𝑃𝐼𝐼𝜆𝜆𝐷𝐷𝜇𝜇 systems (Monje et al., 2004; Chen et al., 2006; Monje et al., 

2008). This latter methodology is based on an optimisation tool presented in the MATLAB 

platform. Here, the function fmincon (Romero et al., 2013) is used to solve the corresponding 

optimisation problem (a similar function has been used in Chapter 5 section 5.5.1). 

For this chapter, simulations are performed for each case study using MATLAB 2017a installed 

on a laptop (Windows 10, with an Intel(R) i5-4200u CPU processor and 8GB RAM). The 

CAPTAIN Toolbox for MATLAB (Taylor et al., 1999) is used for conventional GPC design, 

whilst the new functions developed by the present author (see section 3.5) are used to solve the 

FGPC problem. The chapter aims to demonstrate the features and advantages of FGPC over 

GPC design. Sections 4.1 to 4.3 consider each case study example, in turn, followed by the 

discussion and conclusions in sections 4.4 and 4.5 respectively. 
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4.1 Case study 1 (First Order model) 

The key advantage of FGPC over GPC is that FGPC provides more freedom for tuning by 

introducing extra parameters that can set the controller in the fractional-order (i.e. 𝛼𝛼 and 𝛽𝛽). 

The effect of 𝛼𝛼 and 𝛽𝛽 on FGPC is huge as the selection of these two coefficients will affect 

directly the values of 𝛾𝛾 and 𝜆𝜆 respectively which, in turn, will influence the response of the 

controller. To examine this further, we will conduct systematic simulations of FGPC with 

different values of 𝛼𝛼 and 𝛽𝛽 to observe the effect of changing their values on the controller 

(FGPC) behaviour. The first case study concerns a first-order model. We will use trial and error 

to find the best response of FGPC in terms of the fastest response and with minimum overshoot 

by adjusting the 𝛼𝛼 and 𝛽𝛽 coefficients only (the other settings are chosen a priori: see below). 

The following model will be used in this case study: 

 
𝐺𝐺(𝑧𝑧−1) =

1 − 2𝑧𝑧−1

1 − 0.9𝑧𝑧−1
 (4.1) 

 

 The tuning parameters for controlling this model are the following:  

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• For GPC, constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

After several simulations, we have chosen 𝛼𝛼 = 0.77 and 𝛽𝛽 = 1 to be our reference values for 

those coefficients. This yields the following values of 𝛾𝛾 and 𝜆𝜆, respectively: 
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𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−0.5020
0
0
0
0
0
0
0
0
0

0
0.5111

0
0
0
0
0
0
0
0

0
0

0.5262
0
0
0
0
0
0
0

0
0
0

0.5441
0
0
0
0
0
0

0
0
0
0

0.5657
0
0
0
0
0

0
0
0
0
0

0.5930
0
0
0
0

0
0
0
0
0
0

0.6292
0
0
0

0
0
0
0
0
0
0

0.6815
0
0

0
0
0
0
0
0
0
0

 0.7700      
0

0
0
0
0
0
0
0
0
0
1⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

𝜆𝜆 = � 0 0 
 0 1� 

Figure 4.1 below shows the responses of GPC and FGPC, showing both the system outputs and 

the control input variables. 

 

Figure 4.1: GPC and FGPC responses along with their input variables 

From Figure 4.1, we can notice that FGPC (when adjusted using 𝛼𝛼 and 𝛽𝛽) reaches the set point 

faster than GPC, with no overshoot. However, this comes at the expense of a large deviation 

from the setpoint at the second sample.  
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After setting our reference values (i.e. 𝛼𝛼 = 0.77 and 𝛽𝛽 = 1), we will start analysing the effect 

of 𝛼𝛼 and 𝛽𝛽 over FGPC response to the same model by simulating FGPC with different values 

of 𝛼𝛼 and 𝛽𝛽. 

 

4.1.1 Changing 𝜶𝜶 with fixed 𝜷𝜷 

Like any tuning parameters, 𝛼𝛼 and 𝛽𝛽  has a limitation of tuning, as after a certain range of value 

they will cause an unstable response. Indeed, the range of those values can be defined by 

analytical methods by using mathematical equations mentioned in the previous chapter (i.e., 

equations 3.46 and 3.47); however, in this section and the throughout this chapter, the goal is 

to determine the effects of 𝛼𝛼 and 𝛽𝛽 by fixing one parameter and running various values to the 

other to observe the effect on the response. Thus, different values of 𝛼𝛼 will be tried while 𝛽𝛽 

remains constant at 1. The critical point of 𝛼𝛼 before the controller is unstable is 0.38, hence we 

have assigned the lowest value 𝛼𝛼 = 0.5 in Figure 4.2, with increments of 0.1 for 10 iterations, 

all with 𝛽𝛽 = 1. Figure 4.2 illustrates the different responses of FGPC compared to the GPC 

response. 



FGPC Simulation Study 

 
72 

 

 

Figure 4.2: Responses of FGPC with 𝛼𝛼 varied from 0.5 to 1.4 by an increment of 0.1 

combined and 𝛽𝛽 = 1 with GPC response 

By observing Figure 4.5, we notice that by increasing 𝛼𝛼 the response of FGPC tends to be 

slower with a smaller overshoot and longer settling time. There is a direct relationship between 

the value of 𝛼𝛼 and the response of FGPC; thus, the value of 𝛼𝛼 needs to be chosen carefully to 

fulfil the required specifications of the system. Table 4.1 below represents a tabular 

comparison.  

Table 4.1 A comparison between different 𝛼𝛼 values in terms of response time and overshoot 

percentage for case study 1. 

 𝛼𝛼=0.
5 

𝛼𝛼=0.
6 

𝛼𝛼=0.
7 

𝛼𝛼=0.
8 

𝛼𝛼=0.
9 

𝛼𝛼=1 
𝛼𝛼=1.

1 
𝛼𝛼=1.

2 
𝛼𝛼=1.

3 
𝛼𝛼=1.

4 
Response 

time 
[seconds] 

2.73 2.81 2.94 3.86 4.48 4.9
6 

6.32 6.52 6.78 7.09 

Overshoo
t [% of 
step up] 

%146 %56 %17 %0 %0 %0 %0 %0 %0 %0 
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4.1.2 Changing 𝜷𝜷 with fixed 𝜶𝜶 

In this section, we are interested in discussing the effect of 𝛽𝛽 on the FGPC response to the 

model by increasing 𝛽𝛽 from 0.5 by a fixed value of 0.3 for 10 iterations with constant 𝛼𝛼 =

0.77. The value 0.5 is set to 𝛽𝛽 as the lower values will cause the response to be unstable. Figure 

4.3 shows the different responses of FGPC with different 𝛽𝛽's. 

 

 

Figure 4.3: Responses of FGPC with 𝛽𝛽 varied from 0.5 to 3.2 by an increment of 0.3 and  

𝛼𝛼 = 0.77 with GPC response 

 

Figure 4.3 demonstrates the effect of 𝛽𝛽 on the FGPC response and, as we can see, larger 𝛽𝛽 

yields smaller overshoot of the FGPC response. However, the response of FGPC is tending to 

be slower with bigger 𝛽𝛽. Thus, both 𝛼𝛼 and 𝛽𝛽 play an important role in the design of FGPC. 

Table 4.2 shows the comparison. 
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Table 4.2 A comparison between different 𝛽𝛽 values in terms of response time and overshoot 

percentage for case study 1. 

 𝛽𝛽=0.
5 

𝛽𝛽=0.
8 

𝛽𝛽=1.
1 

𝛽𝛽=1.
4 

𝛽𝛽=1.
7 

𝛽𝛽=2 𝛽𝛽=2.
3 

𝛽𝛽=2.
6 

𝛽𝛽=2.
9 

𝛽𝛽=3.
2 

Response 
time 

[seconds] 
2.83 2.91 2.94 3.86 3.87 3.91 4.01 4.13 4.27 4.32 

Overshoo
t [% of 
step up] 

%78 %23 %0.5 %7 %7 %1
9 

%19 %20 %19 %19 

 

4.1.3 Monte Carlo Analysis 

One of the most vital considerations in practical implements of any control system is the 

robustness of the control system to uncertainty arising from both model parameter estimation 

and stochastic disturbance inputs to the system. There are many ways to handle this problem; 

however, with modern technology and the ability to access powerful desktop computers, MC 

analysis is one of the easiest, non-complicated and most appealing approaches to the problem. 

MC analysis is a computerised simulation that is built using repeated random samples and 

statistical analysis, probability distribution, to process the outcome. In other words, MC 

methodology is very closely related to random experiments, where the results are not known 

in advance (Raychaudhuri, 2008). 

Here, the closed-loop system is repeatedly simulated with the model parameters for each such 

realisation selected randomly from the estimated joint probability distribution.  

Consider the following: 

 
𝐺𝐺(𝑧𝑧−1) =

𝐵𝐵(𝑧𝑧−1)𝑧𝑧−1

𝐴𝐴(𝑧𝑧−1)
 (4.2) 
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where: 

 𝐵𝐵(𝑧𝑧−1) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + 𝑏𝑏2𝑧𝑧−2 + ⋯+ 𝑏𝑏𝑛𝑛𝑧𝑧−𝑛𝑛 

𝐴𝐴(𝑧𝑧−1) = 𝑎𝑎0 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 + ⋯+ 𝑎𝑎𝑛𝑛𝑧𝑧−𝑛𝑛 
(4.3) 

 

Then, according to equation (4.1): 

𝑏𝑏0 = 1,            𝑏𝑏1 = −2,  

𝑎𝑎0 = 1,            𝑎𝑎1 = −0.9 

As the MC analysis uses a set of random samples, we will limit the samples to be between the 

following sets: 

𝑏𝑏1 = {1.5,2.5}     ,     𝑎𝑎1 = {0.4,1.4}                                             4.1 

By limiting the range of random numbers between those intervals we have created a normal 

distribution around 𝑏𝑏1 and 𝑎𝑎1 as shown in Figure 4.4 and Figure 4.5 

 

Now after defining the range of the random samples, MC analysis can be performed for the 

GPC and FGPC controllers that are applied in the example in the previous section as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

Figure 4.5: a normal distribution of 𝑏𝑏1 
around 2, its actual value 

Figure 4.4: a normal distribution of 𝑎𝑎1 
around 0.9, its actual value 
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• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• GPC weighting parameter 𝜆𝜆 = 10−6 

For this example, we have chosen  𝛼𝛼 = 0.77 and 𝛽𝛽 = 1 for FGPC. 

 

Figure 4.6: The top plot is GPC (𝑁𝑁𝑢𝑢 = 2,𝑁𝑁1 = 1,𝑁𝑁2 = 10, 𝜆𝜆 = 10−6, 𝛾𝛾 = 1). The bottom 

plot is FGPC (𝑁𝑁𝑢𝑢 = 2,𝑁𝑁1 = 1,𝑁𝑁2 = 10,𝛼𝛼 = 0.77,𝛽𝛽 = 1) 

 

Within the context of the assumptions made above, FGPC provides a generalisation of the GPC 

cost function weights, which ultimately determine the numerical values of the control gains. 

Hence, the value of the approach appears dependent on whether the extra design flexibility 

provided by FGPC can be utilised to meet control objectives that are not achievable using 

standard GPC; and whether FGPC provides a straightforward to tune control algorithm – for 
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example, that the use of _ and _ in this way provides a meaningful or convenient approach to 

solving practical control problems. More discussion and illustration will be presented in the 

discussion section of this chapter. 

 

4.2 Case study 2 (Higher-order model) 

In this section, a higher-order model is simulated to test the effect of the 𝛼𝛼 and 𝛽𝛽 in the FGPC. 

The goal is not to optimise the response, the goal is to illustrate how these parameters can be 

utilised by studying their behaviour. Thus, a trial and error methodology is adopted to assign 

the values of  𝛼𝛼 and 𝛽𝛽. The initial guess of the values will be 𝛼𝛼 = 𝛽𝛽 = 0.5 and then the values 

will be increased or decreased systematically (i.e., increased or decreased by 0.1) and the 

results will be observed and compared. Consider the following high order plant: 

 
𝐺𝐺(𝑧𝑧−1) =

1−3𝑧𝑧−1 + 5𝑧𝑧−2+0.3𝑧𝑧−3

1 − 0.6𝑧𝑧−1 − 𝑧𝑧−2 + 1.5𝑧𝑧−3
 (4.5) 

 

The model in equation 4.5 will be controlled by the following set of parameters which have 

been chosen as a reference for both GPC and FGPC based on Rossiter’s (2003) 

recommendations: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, a constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 
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• For FGPC, (𝛼𝛼,𝛽𝛽) as 𝛼𝛼 = 𝛽𝛽 = 0.5, which result in the following values for  

𝛾𝛾 and 𝜆𝜆, according to equation 3.46 and equation 3.47 respectively 

𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−0.8145
0
0
0
0
0
0
0
0
0

0
0.1964

0
0
0
0
0
0
0
0

0
0

0.2095
0
0
0
0
0
0
0

0
0
0

0.2256
0
0
0
0
0
0

0
0
0
0

0.2461
0
0
0
0
0

0
0
0
0
0

0.2734
0
0
0
0

0
0
0
0
0
0

0.3125
0
0
0

0
0
0
0
0
0
0

0.3750
0
0

0
0
0
0
0
0
0
0

 0.5000      
0

0
0
0
0
0
0
0
0
0
1⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

𝜆𝜆 = �−0.5 0 
0 1� 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 40 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

The simulation result can be seen in Figure 4.7 below: 

 

Figure 4.7: GPC and FGPC responses combined with a subplot of the input variable for both 

controllers 
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In Figure 4.7 we notice that the GPC response is faster. However, GPC has overshoot reached 

to 1.16 and has not reached the set point asymptotically till sample number 26. On the other 

hand, FGPC has a slower rise time at sample number 17 and its response has no overshoot 

compared to GPC. In addition, FGPC response reached the set point asymptotically at sample 

number 18. These values of 𝛼𝛼 and 𝛽𝛽 can be used for certain types of application that consider 

that overshoot is not acceptable and may affect its performance. 

In the next sub-section, the effect of 𝛼𝛼 and 𝛽𝛽 will be tested individually by changing the value 

of one parameter while the other one remains constant. 

 

4.2.1 Changing 𝜶𝜶 with fixed 𝜷𝜷 

 In this section, we will be doing some adjustments on the coefficients 𝛼𝛼 and 𝛽𝛽 by increasing 

𝛼𝛼 by a fixed value of 0.1 for 15 iterations with fixed 𝛽𝛽 = 0.5. For this example, the initial value 

of 𝛼𝛼 has been set to 0.15. The purpose of assigning 𝛼𝛼 to 0.15 that, when we tried to assign 𝛼𝛼 to 

a lower value, the of FGPC was unstable and it makes no sense to include such value in the 

study. The responses are combined and illustrated in Figure 4.8 
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Figure 4.8: This plot illustrates the influence of 𝛼𝛼 with fixed 𝛽𝛽 over the response of FGPC 

 

Clearly, from the observation of Figure 4.8, when 𝛼𝛼 increases, FGPC tends to have a faster 

response with faster rising time. However, the bigger 𝛼𝛼 gets, the larger the overshoot will be 

and there is a longer settling time. This result proves that adjusting 𝛼𝛼 will give a different 

response based on the application specifications and requirements. On the other hand, smaller 

values of 𝛼𝛼 will lead to a slower response of the FGPC controller, with longer rise time, and 

eventually, the FGPC will have an unstable response (i.e., for 𝛼𝛼 < 0.135). In addition, it is 

notable from Figure 4.8 above that, when 𝛼𝛼 = 1.05, the response of FGPC was almost the same 

as GPC. This result supports the fact that FGPC is a more general case of GPC and it can be 

tuned to have the same responses as GPC with the same model. Table 4.3 below summarises 

the findings. 
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Table 4.3 A comparison between different 𝛼𝛼 values in terms of response time and overshoot 

percentage for case study 2 

 𝛼𝛼= 
0.35 

𝛼𝛼= 
0.45 

𝛼𝛼= 
0.55 

𝛼𝛼= 
0.75 

𝛼𝛼= 
0.95 

𝛼𝛼= 
1.05 

𝛼𝛼= 
1.15 

𝛼𝛼= 
1.25 

𝛼𝛼= 
1.45 

𝛼𝛼= 
1.55 

Response 
time 

[seconds] 
33.7 27.31 16.4 11.7 9.83 9.61 9.54 9.27 7.78 7.16 

Overshoot 
[% of step 

up] 
0% 0% 0.7% 9% 13% 16% 17% 19% 23% 29% 

 

4.2.2 Changing 𝜷𝜷 with fixed 𝜶𝜶 

In this section, we will be investigating the effect of 𝛽𝛽 on the response of FGPC by setting 𝛽𝛽 =

0 and increasing it by a fixed value of 1 for 15 iterations (as increasing 𝛽𝛽 with a small fraction 

will not have that much of effect in this model) with a fixed 𝛼𝛼 = 0.45. The responses are 

illustrated in the following Figure 4.9. 

 

Figure 4.9: This plot illustrates the combined response of FGPC resulted from increasing 𝛽𝛽 

with fixed 𝛼𝛼 
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From Figure 4.9, we can observe that increasing 𝛽𝛽 has not affected the response much; 

however, we can still see that increasing 𝛽𝛽 will reduce the rising time and the FGPC controller 

will reach the desired point slower. Compared to the effect we observed by adjusting 𝛼𝛼, 

adjusting 𝛽𝛽 has made no significant (minimal) impact on the FGPC response. Thus, a 

comparison table would make no sense. 

 

4.2.3 Changing 𝜶𝜶 and 𝜷𝜷 together 

In this section, we will try to find the best response of FGPC to achieve the fastest response 

with the minimum overshoot by adjusting both 𝛼𝛼 and 𝛽𝛽 coefficients only with the conventional 

GPC tuning parameters remaining constant (i.e., 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢). The methodology will be based 

on trial and error to achieve a better behaviour of FGPC in terms of the fastest responses with 

minimum overshoot. After several simulations, we have achieved a fast response with a 

reasonably low overshoot by adjusting 𝛼𝛼 = 1.7 and 𝛽𝛽 = 300. Figure 4.10 below illustrates the 

response: 
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Figure 4.10: The best response of FGPC (𝛽𝛽 = 300 and 𝛼𝛼 = 1.7) in terms of the fastest 

responses with minimum overshoot 

Figure 4.10 shows that the rise time for FGPC is faster than GPC and the overshoot of FGPC 

is lower than GPC. On the negative side, FGPC seems to oscillate more that GPC before it 

settles. The values of 𝛼𝛼 and 𝛽𝛽 can be optimised to achieve a better result of FGPC using the 

fmincon function in Matlab (a similar function has been used "fminsearch" in the next chapter 

5.6.1). 

 

4.3 Case study 3 (Marginally stable plant) 

Consider the following marginally stable plant: 

 
𝐺𝐺(𝑧𝑧−1) =

−𝑧𝑧−2 + 2𝑧𝑧−3

1 − 1.7𝑧𝑧−1 + 𝑧𝑧−2
 (4.6) 
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In this case study, we will compare the response of GPC and FGPC on the marginally stable 

plant (4.6). For that the following parameters have been set: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, a constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 

• For FGPC, We have chosen 𝛼𝛼 and 𝛽𝛽 randomly and assign initial values to them 

as 𝛼𝛼 = 0.05, 𝛽𝛽 = 1. The basis that we have chosen 𝛼𝛼 and 𝛽𝛽 on were to have a 

reasonable response of FGPC with no specifications at all, which result in the 

following values for 𝛾𝛾 and 𝜆𝜆, according to equation (3.46) and equation (3.47), 

respectively 

𝛾𝛾 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−0.9936
0
0
0
0
0
0
0
0
0

0
0.0071

0
0
0
0
0
0
0
0

0
0

0.0081
0
0
0
0
0
0
0

0
0
0

0.0093
0
0
0
0
0
0

0
0
0
0

0.0111
0
0
0
0
0

0
0
0
0
0

0.0137
0
0
0
0

0
0
0
0
0
0

0.0179
0
0
0

0
0
0
0
0
0
0

0.0262
0
0

0
0
0
0
0
0
0
0

 0.0500      
0

0
0
0
0
0
0
0
0
0
1⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

𝜆𝜆 = �0 0 
0 1� 

• The simulation ended at the final sample 𝑇𝑇𝑓𝑓 = 25 with a sampling time 𝑇𝑇𝑠𝑠 = 1 
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The response of both controllers along with their input variables can be found in the following 

Figure: 

 

Figure 4.11: GPC and FGPC response for the plant in case study 3 plotted with the step input 

The plot shown in Figure 4.11 illustrates that FGPC can have a different response by adjusting 

𝛼𝛼 and 𝛽𝛽 with other design criteria remains constant (i.e., 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢). Although 𝛼𝛼 and 𝛽𝛽 of 

FGPC have been chosen arbitrarily for illustrative purposes (with a reasonably steady 

response), we can still notice that FGPC has a faster rising time than GPC. On the other hand, 

GPC has no overshoot, whereas FGPC has an overshoot.  

Like in the previous sections, we will analyse the impact of 𝛼𝛼 and 𝛽𝛽 on the response of FGPC 

for this particular model with other criteria remains constant (i.e., 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢). 

 

4.3.1 Changing 𝜶𝜶 with fixed 𝜷𝜷  

As demonstrated in the previous sections, 𝛼𝛼 has an impact on the response of FGPC. To 

illustrate this response we will be using different values of 𝛼𝛼 with a fixed value of 𝛽𝛽. The value 
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of 𝛼𝛼 will start at 0.05 and will increase systematically by a fixed value of 0.01 for 20 iterations. 

The responses were combined in one plot. Figure 4.12 shows the responses:  

 

Figure 4.12 shows the effect of 𝛼𝛼 on the response of FGPC with fixed 𝛽𝛽 

It's noticeable that when 𝛼𝛼 increases FGPC is tending to have less overshoot. When 𝛼𝛼 = 0.15 

the overshoot was almost zero and the rising time was found to be faster than GPC. In this 

model, we have chosen to increase 𝛼𝛼 by a very small value (i.e., 0.01) in contrast to the previous 

case studies when we increased 𝛼𝛼 by 0.1 and the reason for that is because this model is 

marginally stable and 𝛼𝛼 has a close response on it. In addition, we observe that as 𝛼𝛼 increases, 

its effect is reduced as the response of FGPC tends to be very close. Table 4.4 below 

summarises the results. 
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Table 4.4 A comparison between different 𝛼𝛼 values in terms of response time and overshoot 

percentage. 

 𝛼𝛼= 
0.05 

𝛼𝛼= 
0.07 

𝛼𝛼= 
0.09 

𝛼𝛼= 
0.11 

𝛼𝛼= 
0.13 

𝛼𝛼= 
0.15 

𝛼𝛼= 
0.17 

𝛼𝛼= 
0.19 

𝛼𝛼= 
0.21 

𝛼𝛼= 
0.25 

Response 
time 

[seconds] 
33.7 27.31 16.4 11.7 9.83 9.61 9.54 9.27 7.78 7.16 

Overshoot 
[% of step 

up] 
0% 0% 0.7% 9% 13% 16% 17% 19% 23% 29% 

 

 

4.3.2 Changing 𝜷𝜷 with fixed 𝜶𝜶  

Now, we will try to investigate the effect of 𝛽𝛽 by increasing it’s value  systematically while the 

value of 𝛼𝛼 remains constant at 0.05. The initial value of 𝛽𝛽 will be 0.5 and the ratio of increment 

will be 0.3 for 20 iterations. Figure 4.13 shows the combined plots of FGPC responses with 

different 𝛽𝛽s. 

 

Figure 4.13: Illustration of the effect of changing the value of 𝛽𝛽 on FGPC response 
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From the Figure above we can observe that 𝛽𝛽 has an impact on changing the response of FGPC. 

The interesting outcome of this result is that FGPC has the same shape of response from 𝛽𝛽 =

1.7 (i.e the fifth iteration) through to 𝛽𝛽 = 6.5 (i.e., the twentieth iteration), whereas FGPC has 

different responses for the first 4 iterations of 𝛽𝛽. This indicates that, after a certain value of 𝛽𝛽, 

FGPC tends to take a certain shape of the response. In addition, we notice that, when 𝛽𝛽 is 

bigger, the overshoot decreases and the rise time decreases as well. Obviously, 𝛽𝛽 has a big 

impact on this model unlike the other models in the previous study cases. Table 4.5 below 

summarises the findings. 

 

Table 4.5 A comparison between different 𝛽𝛽 values in terms of response time and overshoot 

percentage for case study 3. 

 𝛽𝛽=0.
5 

𝛽𝛽=0.
8 

𝛽𝛽=1.
1 

𝛽𝛽=1.
4 

𝛽𝛽=1.
7 

𝛽𝛽=2 
𝛽𝛽=2.

3 
𝛽𝛽=2.

6 
𝛽𝛽=2.

9 
𝛽𝛽=3.

2 
Response 

time 
[seconds] 

2.83 2.91 2.94 3.86 3.87 3.91 4.01 4.13 4.27 4.32 

Overshoo
t [% of 
step up] 

78% 23% 0.5% 7% 7% 19
% 19% 20% 19% 19% 

 

 

4.3.3 Changing 𝜶𝜶 and 𝜷𝜷 

In this section, we will use the facts found in the previous sections (4.3.2 and 4.3.3) to optimise 

both 𝛼𝛼 and 𝛽𝛽 in an attempt to find the best response of FGPC compared to GPC based on the 

speed of response (rising time) with minimum overshoot, keeping in mind that the design 

parameters for both GPC and FGPC will be the same (i.e 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢) and remain constant (𝑁𝑁1 =
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1,𝑁𝑁2 = 10,𝑁𝑁𝑢𝑢 = 2). The optimisation will be based on trial and error for both 𝛼𝛼 and 𝛽𝛽. We 

will try several simulations with different values of 𝛼𝛼 and 𝛽𝛽 till we find the fastest response 

with minimum overshoot. Figure 4.14 shows the best match of those criteria: 

 

Figure 4.14 shows GPC and FGPC responses combined along with their input variables 

 

After several simulations, we have identified 𝛼𝛼 and 𝛽𝛽 to be 0.077 and 2.25 respectively. 

Although the responses seem to be very close, FGPC managed with those values of 𝛼𝛼 and 𝛽𝛽 to 

have slightly faster responses with no overshoot. On the other hand, the input variable of FGPC 

seems to be much smoother than GPC.   

 

4.3.4 Monte Carlo analysis 

To test the robustness of the controller, we will perform MC analysis for both controllers by 

assigning model mismatch for both of them. As mentioned in section 4.1.3, we will vary the 

model parameters in an attempt to create a model mismatch then we will try to control the 
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model using both GPC and FGPC. This process will be done for 50 iterations which means 50 

different models to control and that will allow us to create an envelope for both GPC and FGPC 

and then we will comment on the results based on the observation. The designing parameters 

will remain the same as stated in the previous sections and for FGPC we will use the optimised 

values of 𝛼𝛼 and 𝛽𝛽 we found in the previous section (i.e 𝛼𝛼 = 0.077 and 𝛽𝛽 = 2.25). Figure 4.15 

shows the resulting plots: 

 

Figure 4.15 Illustration of MC analysis for both GPC and FGPC using the same designing 

parameters (i.e., 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢) 

 

From the observation of the two plots, FGPC has an interesting response which illustrates the 

power of the extra tuning parameters. One particular result summarises the outcome of MC 

analysis of the controllers, which is the response in the very bottom of both controllers. We can 

see that FGPC has a faster and smoother response to that case whereas GPC is trying to catch 

up. In contrast to conventional GPC, some of the FGPC closed-loop responses overshoot the 

setpoint; however, what matters here is the overall response to model mismatch.  
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4.4 Discussion 

The previous sections of this chapter show the utility of the FGPC approach, including some 

promising results that may lead to a new understanding of fractional-order controllers and their 

usage among both the academic and industrial sectors. In the first case study, we have used a 

simple first-order model to demonstrate the different responses of FGPC over GPC. This case 

study confirms the importance of selecting appropriate 𝛼𝛼 and 𝛽𝛽 values and shows how they 

affect the design of the FGPC controller and hence the closed-loop response. Since the 𝛼𝛼 and 

𝛽𝛽 coefficients do not exist in GPC, they provide a benefit for FGPC. In some cases, the ability 

to change or tune the forecasting horizons (i.e. 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢) is quite limited; hence 𝛼𝛼 and 𝛽𝛽  will 

provide more ‘space’ in which to tune the controller to meet the system requirements without 

adjusting these horizons. This result has been confirmed by the following two case studies. The 

interesting fact here is that the impact of 𝛼𝛼 and 𝛽𝛽 on the closed-loop response and robustness 

properties of the controller differ according to the model. For example, different values of 𝛽𝛽 

with fixed 𝛼𝛼 had a much more significant impact on the closed-loop response in case study 3 

compared to case study 2. As discussed in Chapter 3, 𝛼𝛼 and 𝛽𝛽 are used to calculate 𝛾𝛾 and 𝜆𝜆 

using equations (3.46) and (3.47) respectively. As a result, when we assign  𝛼𝛼 = 𝛽𝛽 = 1 as a 

special case, this will not necessarily  lead to the equivalence between FGPC and GPC, since 

we are tuning 𝛼𝛼 and 𝛽𝛽, not 𝛾𝛾 and 𝜆𝜆. In practical applications, GPC is usually based on 𝛾𝛾 = 1 

and 𝜆𝜆 is set to be as minimal as possible (and in some designs is assumed to be zero). In 

addition, for FGPC, 𝛾𝛾 and 𝜆𝜆 are defined as matrices not scalar as is (most typically) the case 

for GPC.  

In the following figures, we have optimised 𝛼𝛼 and 𝛽𝛽 in such a way to ensure an FGPC response 

approximately equal to the GPC response, for each case study example. 
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Figure 4.16: Case study 1 where 𝛼𝛼 = 1.6 and 𝛽𝛽 = 1.5 

 

 

Figure 4.17 Case study 2 where 𝛼𝛼 = 1.1 and 𝛽𝛽 = 0.45 
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Figure 4.18 Case study 3 where 𝛼𝛼 = 0.8 and 𝛽𝛽 = 0.5 

 

The methodology used to find the matched responses of GPC and FGPC in Figures 4.16 to 

4.18 is trial and error, based on the experience obtained from the simulation study concerning 

the effect of 𝛼𝛼 and 𝛽𝛽 on each model. Note that the values of 𝛼𝛼 and 𝛽𝛽 differ for each case study, 

supporting the conclusion that 𝛼𝛼 and 𝛽𝛽 affect the response in a manner that depends on the 

model itself, in addition to the various control settings. 

Another point of interest is the MC simulation analysis concerning the robustness of the GPC 

and FGPC designs. The results might suggest that FGPC is more robust than conventional 

GPC, at least for the three case study problems under study here. However, it is not possible to 

generalise from these examples, and further research is required (see Chapter 7). 
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4.5 Concluding Remarks 

This chapter has investigated GPC and FGPC design via a simulation study for three case study 

models. Evidence has been provided that 𝛼𝛼 and 𝛽𝛽 play an important role in the design process 

of FGPC. In this chapter, the selection of 𝛼𝛼 and 𝛽𝛽 was based on trial an error. However, it can 

be done automatically using specific MATLAB functions (please refer to the next chapters for 

further illustration). These coefficients can be utilised to help meet the control system 

requirements, either instead of or in addition to the use of the forecasting horizons and other 

parameters. The MC analysis has provided encouraging results that suggest FGPC could be 

more robust than GPC in some scenarios, but further research including practical experiments 

are required to support this result. In this regard, the following Chapter 5 addresses the practical 

implementation of FGPC design. 
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Chapter 5  Closed-Loop Eigenvalues 
 

 

In this chapter, we will set another comparison between GPC and FGPC but from a different 

perspective. We will examine the eigenvalues of the GPC and FGPC closed-loop system. The 

aim is to determine how FGPC changes the eigenvalues of the system and how this will affect 

the time response. The following sections 5.1 and 5.2 provide a brief introduction to 

eigenvalues and illustrate their importance for applications in different sectors. Sections 5.3 to 

5.5 consider three case study examples. Finally, the discussion and conclusions are presented 

in sections 5.7 and 5.8. 

 

5.1 Introduction 

Eigenvalues are a set of scalars associated with equations in a linear system. The eigenvector 

is the vector corresponding to the eigenvalue (Hoffman and Kunze, 1971). By computing 

eigenvalues and eigenvectors, we are one step closer towards understanding the linear 

transformation of a system. The importance of eigenvalues and eigenvectors in physics and 

engineering arises in common applications, such as stability analysis, the physics of rotating 

bodies, and small oscillations and vibrating systems. Some applications of eigenvalues and 

eigenvectors are: 
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1. Communication systems 

Claude Shannon has used the eigenvalues in his famous "information theory" to 

determine the limit of the information that can be transmitted through a communication 

medium (theoretically), such as a telephone line or through the air. Shannon used a 

water-filling algorithm (this algorithm is known in the communication community and 

is used for equalisation strategies on communication channels) on the communication 

channel's eigenvalues which represent the gains of the fundamental modes of the 

channel (Shannon, 1993). 

 

2. Designing bridges 

Eigenvalues are used in structural stability analysis design to analyse the vibrations on 

the bridge to prevent it from collapsing. This objective can be achieved by determining 

the eigenvalues of the framework and by applying several tests in both full loads and 

freeload on the proposed design (Masur, 1984). 

 

3. Electrical engineering (Kalman Filter) 

Using higher order of Kalman filter has its drawbacks. For instance, there will be a lack 

of insight into the nature of observability of the system. Determining the eigenvalues 

and the eigenvectors of the error covariance matrix will provide useful information that 

could assist in providing a proper vision of the nature of the observability of the system 

(Ham and Brown, 1983) 

 

4. Control systems 

Eigenvalues play a major role in control theory as they represent the system poles of 

the transfer function in LTI systems. Determining the system's poles is essential to 
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measure the system stability; thus, it is significant to understand and find the 

eigenvalues of a control system. 

 

5.2 Eigenvalue significance in control theory 

As stated in the introduction to this chapter, the eigenvalues are essential in designing control 

systems. 

In this chapter, we have determined the differences between GPC and FGPC in terms of the 

poles' locations which subsequently affect the response of the system to the controller. This has 

been achieved by running a Monte Carlo analysis using the design of different parameters, such 

as: 𝑁𝑁2, 𝑁𝑁𝑢𝑢 and the fractional-order coefficients 𝛼𝛼 and 𝛽𝛽. In Chapter 4, I studied the effect of α 

and β on the system by manipulating their values, which had an impact on the output. For the 

sake of consistency and to link the ideas of the thesis together, we have employed the same 

examples in the present chapter. 

In discrete systems, as we are using discrete systems throughout the thesis, the locations of the 

poles in the z-plane (eigenvalues) shape the response of the control system. For example, if any 

poles are located outside the unit circle, the system will be considered unstable (Franklin et al., 

2008). Even if all the poles of the system are within the unit circle, the location of the pole will 

determine the shape of the response e.g. the damping. As is well-known, the z-plane can be 

divided into 4 quarters, upper right, upper left, lower right, and lower left. Each quarter has a 

different response if the pole is located in them. To shed more light on the topic, Figure 5.1 

below illustrates the response of a sine wave in different pole locations. 
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5.1: Sine responses for different poles locations within and outside the unit circle 

 

The following case studies will provide us with an in-depth understanding of the influence of 

poles locations on the controller responses. 

 

5.3 Case Study 1 (Simple Model) 

Recalling the following simple system from the earlier chapter (equation (4.1)) 

𝐺𝐺(𝑧𝑧−1) =
1 − 2𝑧𝑧−1

1 − 0.9𝑧𝑧−1
𝑧𝑧−1 

Assuming the parameters set for controlling this model are the following:  
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• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.77 

• The fractional-order coefficient 𝛽𝛽 = 1 

We have chosen these values for the control parameters based on the Chapter 4 simulations as 

these values showed (based on trial and error technique) the best response for FGPC compared 

to GPC in terms of fast response and settling time. Thus, we were comparing the locations of 

the poles of FGPC and GPC based on the best response of FGPC. 

 

5.3.1 Observing the effect of the output forecasting horizon (𝑵𝑵𝟐𝟐) 

Based on trial and error, we have varied the value of the output forecasting horizon 𝑁𝑁2 to start 

from 4 and increased by a fixed value of 1 for 100 iterations. These values were chosen in order 

to achieve a stable response for both controllers; for instance, if 𝑁𝑁2= 3, FGPC response will 

have huge overshoot. The other control's parameters remain constant as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.77 

• The fractional-order coefficient 𝛽𝛽 = 1 
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𝑁𝑁2 cannot be less than 3 as the matrix dimensions will not match. Figure 5.1 shows the response 

of both GPC and FGPC to the model, whereas Figure 5.2 shows the simulated result of the 

poles' locations for both GPC and FGPC. 

 

Figure 5.2: FGPC and GPC responses with 𝑁𝑁2 varying from 3 to 103 by a fixed value of 1 

 

Figure 5.3: Poles locations comparison between FGPC and GPC with 𝑁𝑁2 varying from 4 to 

104 
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As the figure indicates, FGPC's poles have no imaginary parts. Another observation from the 

figure is that FGPC has most of its poles on the left-hand side of the unit circle and much closer 

to the origin, which subsequently affects the response to the model. 

 

5.3.2 Observing the effect of input forecasting horizon (𝑵𝑵𝒖𝒖) 

In this section, we have observed the effect of the input forecast horizon 𝑁𝑁𝑢𝑢 on the pole's 

locations of both GPC and FGPC. 𝑁𝑁𝑢𝑢 has been assigned to 1 initially, and to be increased by a 

fixed value of 1 for 10 iterations, while the other design parameters remain constant as follows: 

• Input forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.77 

• The fractional-order coefficient 𝛽𝛽 = 1 

By definition, we can't assign 𝑁𝑁𝑢𝑢 to be greater than 𝑁𝑁2 and it can't be assigned to zero as well. 

Figure 5.3 shows the responses of both GPC and FGPC to varying 𝑁𝑁𝑢𝑢 and Figure 5.4 shows 

the simulated result of the poles' locations for both GPC and FGPC. 
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Figure 5.4: FGPC and GPC responses with 𝑁𝑁𝑢𝑢 varying from 1 to 10 by a fixed value of 1 

 

Figure 5.5 Poles locations comparison between FGPC and GPC with 𝑁𝑁𝑢𝑢 varying from 1 to 10 

 

As Figure 5.5 indicates, all of the GPC's poles are on the right-hand side. Some of the GPC's 

poles have imaginary parts. In addition, all FGPC’s poles have no imaginary part. 
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5.3.3 Observing the effect of the fractional-order weighting (𝜶𝜶) 

In this sub-section, we have studied the effect of 𝛼𝛼 on the pole locations. We have assigned 

an initial value for 𝛼𝛼 = 0.5 and increased it by a fixed value of 0.01 for 100 iterations. The 

other parameters were assigned as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛽𝛽 = 1 

Figure 5.5 illustrates the response of both GPC and FGPC while Figure 5.6 illustrates the pole 

locations corresponding to the responses. 

 

Figure 5.6: FGPC and GPC responses to the model with 𝛼𝛼 varying from 0.5 to 1.5 with a 

fixed value of 0.01 
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Figure 5.7: Poles locations for both GPC and FGPC with 𝛼𝛼 varying from 0.5 to 1.5 with a 

fixed value of 0.01 

 

The Figures above show that 𝛼𝛼 has a direct effect on the pole locations which subsequently 

affect the response of FGPC on the model. Lower values of 𝛼𝛼 yield a pole on the left-hand side 

and, as 𝛼𝛼 increases, the pole location moves toward the right-hand side. In addition, we noticed 

that the change of 𝛼𝛼 has no effect of introducing imaginary parts (at least in this case). 

 

5.3.4 Observing the effect of the fractional-order weighting (𝜷𝜷) 

As we have observed in the previous sub-section, 𝛼𝛼 has a direct effect on the pole location as 

well as the response to the model. This sub-section is dedicated to inspecting the effect of 𝛽𝛽 on 

the response to the model and the location of the poles. We have assigned 𝛽𝛽 = 1 and increased 

it by a fixed value of 0.1 for 50 iterations. The other design parameters were left constant as 

follows: 
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• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.77 

Figures 5.7 and 5.8 shows the response of the model to the varying 𝛽𝛽 and the poles' locations 

corresponding to that response respectively. 

 

Figure 5.8: FGPC and GPC responses to the model with 𝛽𝛽 varying from 1 to 6 with a fixed 

value of 0.1 
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Figure 5.9: Poles locations for both GPC and FGPC with 𝛽𝛽 varying from 1 to 6 with a fixed 

value of 0.1 

 

Figures 5.7 and 5.8 suggest 𝛽𝛽 affects both the response to the model and the pole locations 

corresponding to the response. The initial value of 𝛽𝛽 has a pole located in the very far left-hand 

side. As 𝛽𝛽 = 1, the poles are located in the origin; however, when 𝛽𝛽 is set more than 1 (i.e., 

1.1), the poles have started to develop an imaginary part.   

 

5.4 Case study 2 (Higher-order model) 

In this section, we have used a higher-order plant to observe the effect of design parameters 

(i.e., 𝑁𝑁2,𝑁𝑁𝑢𝑢 and fractional-order coefficients 𝛼𝛼 and 𝛽𝛽) on the pole locations and their 

corresponding responses. Recalling the plant used in the earlier chapter, equation (4.5): 

𝐺𝐺(𝑧𝑧−1) =
1−3𝑧𝑧−1 + 5𝑧𝑧−2+0.3𝑧𝑧−3

1 − 0.6𝑧𝑧−1 − 𝑧𝑧−2 + 1.5𝑧𝑧−3
 



Closed-Loop Eigenvalues 

 
107 

 

with the following design parameters: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, a constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 

• For FGPC coefficients, We have chosen 𝛼𝛼 and 𝛽𝛽 based on trial and error to find 

the best response for FGPC to this specific model in terms of fastest response 

with minimum settling time; thus, we have assigned an initial value as 𝛼𝛼 = 1.9, 

𝛽𝛽 = 0.5. 

We have chosen those parameters of FGPC coefficients based on Chapter 4, which shows the 

optimal response for FGPC. 

 

5.4.1 Observing the effect of the output forecasting horizon (𝑵𝑵𝟐𝟐) 

As we did in the previous case study, we have varied the value of the output forecasting horizon 

𝑁𝑁2 to start from 4 and increased by a fixed value of 1 for 5 iterations while the other control 

parameters remain constant as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 80 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 1.9 
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• The fractional-order coefficient 𝛽𝛽 = 0.5 

𝑁𝑁2 can't be less than 4 as the matrix dimensions will not match. Figure 5.9 shows the responses 

of both GPC and FGPC to the model. Figure 5.10 shows the simulated result of the locations 

of the corresponding poles for both GPC and FGPC. 

 

Figure 5.10: FGPC and GPC responses with 𝑁𝑁2 varying from 4 to 8 by a fixed value of 1 

 

Figure 5.11: Poles locations comparison between FGPC and GPC with 𝑁𝑁2 varying from 4 to 

8 
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By observing Figure 5.10, we notice that when 𝑁𝑁2= 8, FGPC showed a better response than 

GPC in terms of no overshoot and faster steady state time. Besides, we have noticed that most 

of FGPC's poles have imaginary parts, in contrast to GPC which shows the effect of the 

fractional-order coefficients 𝛼𝛼 and 𝛽𝛽. 

 

5.4.2 Observing the effect of the input forecasting horizon (𝑵𝑵𝒖𝒖) 

In this section, we have observed the effect of the input forecast horizon 𝑁𝑁𝑢𝑢 on the pole's 

locations of both GPC and FGPC. 𝑁𝑁𝑢𝑢 has been assigned to 2 initially, and to be increased by a 

fixed value of 1 for 8 iterations, while the other design parameters remain constant as follows: 

• Input forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 1.9 

• The fractional-order coefficient 𝛽𝛽 = 0.5 

By definition, we can't assign 𝑁𝑁𝑢𝑢 to be greater than 𝑁𝑁2 and it can't be assigned to zero as well. 

Figure 5.11 shows the responses of both GPC and FGPC to the varying 𝑁𝑁𝑢𝑢 and Figure 5.12 

shows the simulated result of the poles' locations for both GPC and FGPC. 
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Figure 5.12: FGPC and GPC responses with 𝑁𝑁𝑢𝑢 varying from 2 to 9 by a fixed value of 1 

 

Figure 5.13: Poles locations comparison between FGPC and GPC with 𝑁𝑁𝑢𝑢 varying from 2 to 

9 

By observing the findings in Figure 5.11 and 5.12, we have found that FGPC was more robust 

than GPC even with the marginally stable poles. In addition, most of the FGPC's poles were 

found to have imaginary parts, whereas most of the GPC ones didn't have imaginary parts. 
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5.4.3 Observing the effect of the fractional-order weighting (𝜶𝜶) 

In this sub-section, we have studied the effect of 𝛼𝛼 on the pole locations. To do so, we have 

assigned an initial value for 𝛼𝛼 = 0.5 and increased it by a fixed value of 0.1 for 100 iterations 

Whereas, the other parameters were assigned as the following: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 80 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛽𝛽 = 0.5 

Figure 5.13 illustrates the response of both GPC and FGPC while Figure 5.14 illustrates the 

poles' locations corresponding to the responses. 

 

5.14: FGPC and GPC responses to the model with 𝛼𝛼 varying from 0.5 to 10.5 with a fixed 

value of 0.1 
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Figure 5.15: Poles locations for both GPC and FGPC with 𝛼𝛼 varying from 0.5 to 10.5 with a 

fixed value of 0.1 

 

Based on the observation on Figures 5.13 and 5.14, we have found that when the value of  𝛼𝛼 is 

getting larger, the poles tend to move further towards the border of the unit circle, and 

eventually will be located outside the unit circle, which causes the instability of the controller. 

Also, we have noticed that changing the value of 𝛼𝛼 will increase the value of the imaginary 

part. 

 

5.4.4 Observing the effect of the fractional-order weighting (𝜷𝜷) 

As we have concluded in the previous sub-section, 𝛼𝛼 has a direct effect on the pole locations 

as well as the response to the model. This sub-section considers the effect of 𝛽𝛽 on the response 

to the model and the pole locations. We have assigned 𝛽𝛽 = 0 and increased it by a fixed value 

of 0.1 for 100 iterations. The other design parameters were left constant as follows: 
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• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 80 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 1.9 

Figures 5.15 and 5.16 shows the response of the model to the varying 𝛽𝛽 and the pole locations 

corresponding to that response respectively. 

 

5.16 FGPC and GPC responses to the model with 𝛽𝛽 varying from 0 to 10 with a fixed value 

of 0.1 
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Figure 5.17 Poles locations for both GPC and FGPC with 𝛽𝛽 varying from 0 to 10 with a fixed 

value of 0.1 

 

Figures 5.15 and 5.16 illustrate that changing the value of 𝛽𝛽 has minimal (almost none) effect 

on the response. However, we have noticed that the poles with no imaginary part have started 

to move away from the origin and towards the border of the unit circle and eventually outside 

the unit circle with a higher value of 𝛽𝛽. 

 

5.5 Case study 3 (Marginally stable plant) 

Recalling the plant from the earlier chapter (equation (4.6)): 

𝐺𝐺(𝑧𝑧−1) =
−𝑧𝑧−2 + 2𝑧𝑧−3

1 − 1.7𝑧𝑧−1 + 𝑧𝑧−2
 

With the following design parameters: 
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• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 0 

• For FGPC coefficients, we have chosen 𝛼𝛼 and 𝛽𝛽 based on trial and error to find 

the best response for FGPC to this specific model in terms of fastest response 

with minimum overshoot and settling time; thus, we have assigned an initial 

value as 𝛼𝛼 = 0.08, 𝛽𝛽 = 2.1. 

Similar to the previous sections, we have studied the effect of various design parameters on the 

response to the model and their corresponding pole locations. 

 

5.5.1 Observing the effect of the output forecasting 𝑵𝑵𝟐𝟐 

We have examined the effect of the output forecasting horizon 𝑁𝑁2 by varying the value of it 

from 6, and increased by a fixed value of 1 for 6 iterations while the other control parameters 

remain constant as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 50 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.05 

• The fractional-order coefficient 𝛽𝛽 = 2.1 
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𝑁𝑁2 can't be less than 3 as the matrix dimensions will not match and we have assigned an initial 

value of 6 (since when we assigned it to 5, both controllers were unstable). Figure 5.17 shows 

the responses of both GPC and FGPC to the model. Figure 5.18 shows the simulated result of 

the corresponding poles' locations for both GPC and FGPC. 

 

Figure 5.18: FGPC and GPC responses with 𝑁𝑁2 varying from 6 to 11 by a fixed value of 1 

 

Figure 5.19: Poles locations comparison between FGPC and GPC with 𝑁𝑁2 varying from 6 to 

11 
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As Figure 5.17 above indicated, FGPC’s poles are spreading more on the positive real part. In 

addition, FGPC has faster responses associated with these poles than GPC, in terms of reaching 

the desired set point.  

 

5.5.2 Observing the effect of the input forecasting horizon (𝑵𝑵𝒖𝒖) 

We have studied the effect of the input forecast horizon 𝑁𝑁𝑢𝑢 on the pole locations of both GPC 

and FGPC by assigning 𝑁𝑁𝑢𝑢  to 2 initially, and to then increasing it by a fixed value of 1 for 10 

iterations, while the other design parameters remain constant as follows: 

• Input forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 50 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.05 

• The fractional-order coefficient 𝛽𝛽 = 2.1 

By definition, we can't assign 𝑁𝑁𝑢𝑢 to be greater than 𝑁𝑁2 and it can't be assigned to zero as well. 

Figure 5.19 shows the responses of both GPC and FGPC to the varying 𝑁𝑁𝑢𝑢 and Figure 5.20 

shows the simulated result of the poles' locations for both GPC and FGPC. 
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Figure 5.20: FGPC and GPC responses with 𝑁𝑁𝑢𝑢 varying from 2 to 10 by a fixed value of 1 

 

Figure 5.21: Poles locations comparison between FGPC and GPC with 𝑁𝑁𝑢𝑢 varying from 2 to 

10 
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We observed from the above figures that FGPC’s poles are almost on the edge of the unity 

circle, which makes the controller marginally stable. This has been reflected on the FGPC’s 

responses associated with those poles. 

 

5.5.3 Observing the effect of the fractional-order weighting  (𝜶𝜶) 

In this sub-section, we have studied the effect of 𝛼𝛼 on the model response and its corresponding 

pole locations. To do so, we have assigned an initial value for 𝛼𝛼 = 0 and increased it by a fixed 

value of 0.01 for 100 iterations, whereas the other parameters were assigned asfollows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 50 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛽𝛽 = 2.1 

Figure 5.21 illustrates the response of both GPC and FGPC while Figure 5.22 illustrates the 

poles' locations corresponding to the responses. 
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Figure 5.22: FGPC and GPC responses to the model with 𝛼𝛼 varying from 0.5 to 10.5 with a 

fixed value of 0.1 

 

Figure 5.23: Pole locations for both GPC and FGPC with 𝛼𝛼 varying from 0.5 to 10.5 with a 

fixed value of 0.1 
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When we assigned 𝛼𝛼 to 0, we found a pole near the border of the unit circle and as 𝛼𝛼 increased, 

the location of the poles shifted toward the origin in trajectory path. We have observed that 

when 𝛼𝛼 = 1, FGPC's poles have (more or less) the same locations of GPC poles which reflected 

on the response of FGPC to the model to act as GPC response. 

 

5.5.4 Observing the effect of the fractional-order weighting (𝜷𝜷) 

As we concluded in the previous sub-section, 𝛼𝛼 has a direct effect on the pole location as well 

as the response to the model. This sub-section concerns the effect of 𝛽𝛽 on the response to the 

model and the pole locations. We have assigned 𝛽𝛽 = 0.5 and increased it by a fixed value of 

0.1 for 100 iterations. The other design parameters were left constant as follows: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 80 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

• The fractional-order coefficient 𝛼𝛼 = 0.05 

Figures 5.23 and 5.24 show the response of the model to the varying 𝛽𝛽 and the poles' locations 

corresponding to that response, respectively. 
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Figure 5.24: FGPC and GPC responses to the model with 𝛽𝛽 varying from 0 to 10 with a fixed 

value of 0.1 

 

Figure 5.25: Poles locations for both GPC and FGPC with 𝛽𝛽 varying from 0 to 10 with a 

fixed value of 0.1 
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Figures 5.23 and 5.24 summarised the effect of 𝛽𝛽 on the response of the model along with the 

corresponding poles. As seen in Figure 5.24, the poles are tending to form half a circle as  𝛽𝛽 

increases. Clearly, from Figure 5.23, 𝛽𝛽 affects the response of the plant as it was increasing. 

 

5.6 Optimisation of 𝜶𝜶 and 𝜷𝜷 for a specific FGPC response 

As observed in the case studies in the previous sections, the fractional-order coefficients 𝛼𝛼 and 

𝛽𝛽 are playing a major role on the poles' locations which directly influence the response of 

FGPC controller to the system. Thus, we have designed a MATLAB script that can adjust the 

fractional-order coefficients through the use of a built-in function in the MATLAB platform 

known as "fminsearch". This function uses the Nelder-Mead method (please refer to Mathews 

and Fink (2004) for more details) to directly search for the minimum of an unconstrained 

multivariable function.  

The designed script is used to fulfil a specific requirement by the user of the system. For 

instance, if the user demands the fastest response regardless anything else, then the script can 

be adjusted as per the user requirements and the function will find the optimised value of 𝛼𝛼 and 

𝛽𝛽 for the system to achieve this goal. In this section, we will test the fastest response of FGPC 

by applying the script to several case studies. The case studies used are the same models that 

have been used throughout the thesis specifically in Chapter 4 and Chapter 5.  

 

5.6.1 Case study 1 (Simple model) 

Recalling equation (4.1) 

𝐺𝐺(𝑧𝑧−1) =
1 − 2𝑧𝑧−2

1 − 0.9𝑧𝑧−1
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Assuming the parameters set for controlling this model are the following:  

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10 

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• The simulation ended at the final time 𝑇𝑇𝑓𝑓 = 20 with a sampling time 𝑇𝑇𝑠𝑠 = 1 

Those parameters have been chosen to be matched with the Chapter 4 example. The newly 

designed function which uses "fminsearch" in MATLAB has chosen the following values for 

𝛼𝛼 and 𝛽𝛽 respectively:  

• 𝛼𝛼 = 0.7  

• 𝛽𝛽 = 0.75 

These values should correspond to the fastest response of FGPC regardless of anything else. 

Figure 5.26 below illustrates the findings 

 

Figure 5.26: shows the fastest response of FGPC which has been achieved by changing  𝛼𝛼 

and 𝛽𝛽 only. 
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We notice that the FGPC response here has achieved the desired point at 2.771 samples, 

whereas in comparison to the response we had from Chapter 4 which has been designed using 

trial and error for the values of 𝛼𝛼 and 𝛽𝛽 (0.77 and 1, respectively) the FGPC response has 

reached the desired point at 3 samples.  

 

5.6.2 Case study 2 (Higher-order model) 

Recalling equation (4.5) 

(𝑧𝑧−1) =
1−3𝑧𝑧−1 + 5𝑧𝑧−2+0.3𝑧𝑧−3

1 − 0.6𝑧𝑧−1 − 𝑧𝑧−2 + 1.5𝑧𝑧−3
 

The following parameters have been used to control this model: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• No model mismatch 

• For GPC, constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10−6 

The fractional-order controller coefficients 𝛼𝛼 and 𝛽𝛽 have been calculated using the optimisation 

function designed.  

• 𝛼𝛼 = 5.67 

• 𝛽𝛽 = 0.26 

By testing the response of FGPC on this model using the provided values of 𝛼𝛼 and 𝛽𝛽, we have 

found the fastest response of FGPC which is shown in Figure 5.27 below. 
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Figure 5.27: shows the FGPC fastest response using values of 𝛼𝛼 and 𝛽𝛽 determined by the 

optimisation function designed 

 

As illustrated in the Figure, FGPC has responded to the desired input at 5.749 samples, whereas 

in Chapter 4 the response to the desired input was at 16.12 samples. 

 

5.6.3 Case study 3 (Marginally stable)  

In this case study, we will compare the response of GPC and FGPC on the same marginally 

stable plant as used in Chapter 4 (equation (4.6)).  

𝐺𝐺(𝑧𝑧−1) =
−𝑧𝑧−2 + 2𝑧𝑧−3

1 − 1.7𝑧𝑧−1 + 𝑧𝑧−2
 

The following parameters have been set: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 2 

• Output forecasting horizon 𝑁𝑁1 = 1 
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• Output forecasting horizon 𝑁𝑁2 = 10  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• For GPC, a constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 0 

The values of 𝛼𝛼 and  𝛽𝛽 have been determined by the optimisation function to be found as: 

• 𝛼𝛼 = 0.05  

• 𝛽𝛽 = 0.47 

Figure 5.28 below illustrates the response of FGPC at those points of 𝛼𝛼 and 𝛽𝛽. 

 

Figure 5.28: shows the response of FGPC at 𝛼𝛼 = 0.08 and  𝛽𝛽 = 0.54 

  

The response to the model was at 8.503 samples, whereas the response of FGPC for the same 

model in Chapter 4 was at 9 samples. 
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5.7 Discussion 

In the previous sections of this chapter, we have studied the effect of various design parameters 

(𝑁𝑁2,𝑁𝑁𝑢𝑢,𝛼𝛼,𝛽𝛽) on both conventional GPC and Fractional-order FGPC in terms of the pole 

locations. It is worth mentioning that the pole locations of GPC and FGPC of the same plant 

with the same parameters will never be the same as long as the fractional-order coefficient (𝛼𝛼 

and 𝛽𝛽) values have not been assigned to force the FGPC response to behave like the GPC 

response. We have started with a simple case study (the same example used in Chapter 4) where 

all the design parameters have played a crucial role in terms of the response to the model or the 

corresponding pole locations. In this example, we have noticed that both FGPC parameters 

have affected the pole locations, with each parameter affecting particular poles in a particular 

way. This fact has been confirmed in the following case studies, as 𝛼𝛼 and 𝛽𝛽 have a major effect 

not only on the response to the model but on the pole locations as well (as would be expected, 

since the two are linked). In case 3 particularly, when we varied 𝛽𝛽, the responses look almost 

the same; however, the pole locations have changed. From these facts, we conclude that the 

FGPC poles are located differently to the GPC ones and that 𝛼𝛼 and 𝛽𝛽 are the key factors behind 

these pole locations. 

In addition, we have introduced a new optimisation function that uses the built-in MATLAB 

function "fminsearch". This optimisation function is designed to determine the values of 𝛼𝛼 and 

𝛽𝛽 for a specific design. For instance, we have used this function to determine the values of 𝛼𝛼 

and 𝛽𝛽 to obtain the fastest possible response in FGPC by changing these parameters only (𝛼𝛼 

and 𝛽𝛽) without changing the other design parameters (i.e 𝑁𝑁1,𝑁𝑁2,𝑁𝑁𝑢𝑢...etc). 

It is important to stress that, as demonstrated in this chapter, the FGPC approach can yield 

closed-loop poles with negative real components. For completeness, these are included in the 

simulation results shown. For example, they are plotted on Figures 5.3, 5.7, 5.11, 5.13, 5.15, 
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and 5.25. The closed-loop responses associated with these poles are commented on in the text 

above. However, it should be reiterated here that, whilst the existence of FGPC poles on the 

negative real axis in the z-plane may be mathematically justified, there are practical 

ramifications of this and such locations should always be avoided in a practical realisation of 

the approach. For example, such closed-loop poles are typically associated with a “bang-bang” 

closed loop response, where the output jumps between extreme values from sample to sample. 

Clearly such a response is undesirable in practice and the associated FGPC design should not 

be implemented. In these cases, the FGPC settings (e.g., forecasting horizons) should be 

adjusted to obtain closed loop poles inside the unit circle on the right hand side of the complex 

z-plane, as also shown in the examples above. 

 

5.8 Concluding Remarks 

In this chapter, we have presented three case studies for which we have investigated the pole 

locations. All the studies have shown that the design parameters (i.e., 𝑁𝑁2, 𝑁𝑁𝑢𝑢, 𝛽𝛽 and 𝛼𝛼) have 

affected the model response and the corresponding pole locations for each response. The focus 

in this chapter has been on the fractional-order coefficients 𝛼𝛼 and 𝛽𝛽. The key conclusion is that 

the fractional-order coefficients 𝛼𝛼 and 𝛽𝛽 play a major role in the pole locations, which 

subsequently affect the time response. Based on this fact, 𝛼𝛼 and 𝛽𝛽 may be used in pole 

placement or auto-tuning for FGPC. However, further research is required into these topics. 

The next chapter will present a real-life application that compares the performance of FGPC 

and GPC. This comparison will be an extension of this chapter which compared the 

performance of GPC and FGPC in simulation basis. 
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Chapter 6 Laboratory Application  
 

 

In the previous chapters, we have compared the simulated responses of GPC and FGPC; the 

next step for any control system is to be tested and evaluated for a real-life application, for 

which unpredicted, uncalculated and nonlinear effects may appear. On this basis, we have 

applied the fractional-order generalised predicted controller developed in previous chapters to 

a laboratory example. In this chapter, FGPC is evaluated using the forced ventilation chamber 

located in the Engineering building at Lancaster University. The aim is to experiment with the 

various control settings and observe the behaviour of FGPC in a real-life application, focusing 

on the effect of the fractional-order parameters 𝜆𝜆 and 𝛾𝛾 by adjusting the coefficients 𝛽𝛽 and 𝛼𝛼, 

respectively. Section 6.1 introduces the laboratory equipment, section 6.2 describes the 

methodology, and section 6.3 presents the results. Finally, sections 6.4 and 6.5 present the 

discussion and conclusions, respectively. 

 

6.1 Introduction to the ventilation chamber 

It is well known that the ventilated airspace in agricultural buildings and the man-made 

environment are poorly mixed. As a result of imperfect mixing, stratification of environmental 

variables will occur, such as humidity, temperature, dust, gas, and air velocity, which all affect 

the surrounding micro-environment of the animals or plants. Thus, engineers and 
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mathematicians should bear in mind these factors when designing control systems. This 

provides come of the motivation for research using the forced ventilation test chamber (for 

further details refer to Taylor (2004)). In the following sub-sections, we will describe the 

hardware and software setup of the chamber. 

 6.1.1 Hardware setup 

The chamber is a 2 𝑚𝑚2 by 2 𝑚𝑚2 cost-effective box with 320 Watts inlet and outlet fan which 

are powered by 0-240 volts AC supply (Taylor, 2004), as shown in Figure 6.1. In this thesis, 

the outlet and inlet fans are called the control fan and disturbance fan, respectively. The space 

between the inlet and outlet fans is filled with sensors to analyse the airflow of the chamber 

which is of interest in this experiment. It is worth mentioning that the hardware framework for 

the chamber has been recently updated (Tsitsimpelis and Taylor, 2015). 

 

Figure 6.1: An overview of the ventilation chamber.  
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In Figure 6.1, the fan with wooden frame is the outlet (control) fan and the inlet 

(disturbance) fan is installed in the lower part of the chamber's box. 

 

6.1.2 Software used 

The ventilation chamber is equipped with a Personal Computer (PC) workstation that 

establishes a communication channel between the chamber and the user through a software 

package which is Laboratory Virtual Instrument Engineering Workbench or is known as 

LabVIEW. This software package is a graphical-based platform which means that it depends 

on building blocks rather than writing code as most of the engineering design software. 

However, LabVIEW allows direct communication with MATLAB software and translates its 

codes to interact with LabVIEW's blocks. Thus, we have used MATLAB to design and set up 

our controller's parameters and then transmitted it to LabVIEW which in turn sends it to the 

chamber and records the data from the chamber and stores it in a file that is readable by 

MATLAB and with a certain function, can be translated into a plot that represents the 

controller's response. 

 

6.2 Methodology 

As stated in the previous section, the author has designed a script to set a suitable platform for 

reading the data from the assigned sensors inside the confinement of the chamber (Figure 6.2) 

using a homogeneous blend of MATLAB code and LabVIEW building blocks. The script will 

record the readings from the sensors for data extraction. This step is done to extract the best 

models to form the most suitable transfer function. It is important to note that the results 

extracted from the chamber are non-linear due to the relationship between the voltage and the 



Laboratory Application 

 
133 

 

airspeed, which raises a problematic issue with the controllers being used, as the controllers to 

be tested are linear controllers and this type of linearity in the system cannot be avoided. Thus, 

we have chosen the most linear region in the power curve plot that shows the relation between 

the applied voltage to the control fan and the steady-state ventilation rate as shown in Figure 

6.2 below. 

 

 

Figure 6.2: A schematic interactive diagram of the chamber that shows the temperature 

readings being collected from the thermal sensors 
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Figure 6.3: Power curve  

 

Figure 6.3 shows the relationship between applied voltage to the control fan (Voltage) and the 

steady-state ventilation rate (m/s). The intersected lines indicate the selected area of operation. 

 

As illustrated in Figure 6.3, the chosen region in this study was between the voltages (2, 2.5) 

which corresponds to ventilation rates approximately (2.6, 4.5) m/s. The sample rate used is 

one sample per second which result in Figure 6.4. 

 

Figure 6.4: The voltage input to the ventilation chamber alongside the measured and the 

estimated response for the transfer function 
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To estimate the model to be used from the ventilation chamber, an algorithmic MATLAB toolbox 

(i.e., "Captain toolbox") has been used. The toolbox is using the Instrumental Variable approach. 

In particular, the toolbox utilises the recursive and en-block Refined Instrumental Variable (RIV) 

and Simplified Refined Instrumental Variable (SRIV) algorithms, as well as more conventional 

least-squares approaches.  

Based on a user-specified model structure, the toolbox provides an estimation of transfer 

functions. However, for a given physical system, an appropriate model structure first needs to be 

identified, i.e., the most appropriate values for the time delay and the orders of the numerator and 

denominator polynomials. The two main statistical measures utilised here are the coefficient of 

determination (𝑅𝑅2), based on the response error, which is a simple measure of model fit (where 

unity indicates perfect fit) and the more sophisticated Young Identification Criterion (YIC) 

(Young, 2011), which provides a combined measure of fit and parametric efficiency with large 

negative values indicating a model which explains the output data well, without over-

parameterisation. 

 
 Using the "Captain" toolbox (Taylor et al., 2018), we have obtained the best 20 models from 

the estimated transfer functions, in terms of the denominator "m", numerator "n", time delay, 

YIC and 𝑅𝑅2. 
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Table 6.1: 20 Best matching models 

m n Time delay YIC 𝑅𝑅2 

1 1 1 -8.447 0.605598 

1 1 2 -8.430 0.607550 

1 1 0 -8.428 0.601088 

1 1 3 -8.367 0.607219 

2 1 0 -7.535 0.73171 

2 1 1 -7.127 0.702681 

2 1 2 -6.374 0.657145 

2 1 3 -5.548 0.606432 

2 2 2 -5.527 0.776114 

2 2 3 -5.467 0.720439 

2 3 0 -4.882 0.722538 

2 2 1 -4.277 0.762398 

2 3 1 -4.103 0.660324 

2 2 0 -3.514 0.729221 

2 3 2 -3.268 0.577366 

1 3 3 -2.368 0.608509 

1 3 2 -2.334 0.613291 

1 3 1 -2.208 0.617896 

1 3 0 -2.061 0.620596 

1 2 0 -1.757 0.613720 

 

We have found that [1,1,3] (i.e., [m,n,time delay]) is a good candidate for developing control 

systems. The following transfer function is to be used in the design of GPC and FGPC for the 

sake of comparison between the two responses in an attempt to validate the hypothesis stating 

that FGPC has better controllability in terms of various specifications such as robustness, 

rising, and settling time, etc. 
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𝐺𝐺(𝑧𝑧−1) =

0.5325𝑧𝑧−1

1 − 0.847𝑧𝑧−3
 (6.1) 

 

Now, using the equations and MATLAB toolbox discussed earlier in Chapter 3, the author 

designed a GPC controller with the following parameters to be tested in the ventilation chamber 

using this transfer function in 6.1, keeping in mind that those parameters have been chosen 

based on trial and error within the chamber: 

• Input forecasting horizon 𝑁𝑁𝑢𝑢 = 5 

• Output forecasting horizon 𝑁𝑁1 = 1 

• Output forecasting horizon 𝑁𝑁2 = 20  

• Pre-filter (noise polynomial) 𝑇𝑇(𝑧𝑧−1) = 1 

• For GPC, a constant values for (𝛾𝛾, 𝜆𝜆), as 𝛾𝛾 = 1, 𝜆𝜆 = 10 

   

Similar to the previous chapter, the same parameters will be used for designing FGPC except 

for (𝛾𝛾, 𝜆𝜆) values, as their values will be derived depending on the values of (𝛽𝛽,𝛼𝛼), respectively. 

Figure 6.4 shows screenshots of one of the examples used in the experiment to observe the 

responses of the controllers. 

Looking at Figure 6.5, it can be seen that the control platform is built using LabVIEW blocks 

which is connected to the ventilation fan. For instance; “Main fan outlet”, “Main fan inlet”, 

and a function that calls the MATLAB code from the simulation. These blocks represent the 

functions used in FGPC/GPC (Figure 3.5). This indicates that LabVIEW programming is very 

straightforward and user-friendly. 
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Figure 6.5: Example of the LabVIEW block diagram interface 

 

The mechanism of testing the controllers will be based on observing the responses of the 

controller without any disturbance by switching off the inlet (disturbance) fan. The effect of 𝛼𝛼 

and 𝛽𝛽 will be witnessed by manipulating their values and observing the effects on the FGPC 

response, then comparing it to the GPC response. 

After testing both controllers in the chamber, the author will extract the data collected and plot 

a graph using MATLAB scripts: these call the data files recorded which will represent the 

response of the controller on the ventilation chamber.  
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6.3 Results 

In this section, we will illustrate the response of each controller (i.e., GPC and FGPC) in 

separate sub-sections and show the effect of changing 𝛼𝛼 and 𝛽𝛽 on the response of FGPC. 

 

6.3.1 GPC vs. FGPC response 

Starting with the response of GPC using the parameters given in the previous section, GPC 

measured and simulated responses are illustrated in Figure 6.6. 

 

6.6: GPC Simulated and Measured responses from the model extracted from the ventilation 

chamber, along with the simulated control input. 

 

As seen in Figure 6.6, the real-life application has a different response than the simulated 

response. Indeed, the non-linearity of the chamber is the essential reason for the difference in 
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responses. Furthermore, in the simulated response, everything is ideal and there are no 

environmental or external factors influencing the results. 

To see the response of FGPC, we need to choose a value for each of the two extra design 

parameters in Fractional-order GPC (i.e. 𝛼𝛼 and 𝛽𝛽). With the manipulation of the fractional-

order weighting coefficients (𝛼𝛼,𝛽𝛽), FGPC had a shorter settling time and smaller overshoot 

response. To investigate the effect of each one of these parameters, the author has followed the 

same principles as in Chapter 4, which is keeping one coefficient constant and changing the 

other just to observe the effect of it on the FGPC response. The following two sub-sections will 

be a chain of cases in which the author investigates the effect of each coefficient separately.  

As concluded in the previous chapter, changing the fractional-order weighting coefficients will 

affect the response of FGPC. The response will be affected depending on the model; in some 

cases, changing 𝛼𝛼 will have a huge impact on the response and the design engineer can easily 

manipulate it to achieve the required design specifications (i.e. fast response, smaller overshoot 

etc.). The same rule applies to the other coefficient 𝛽𝛽. By contrast, in some other models, the 

effect of one of these coefficients (or both of them) is limited and the designer will have to look 

at modifying other parameters. We need to study the effect of those parameters (𝛼𝛼 and 𝛽𝛽) on 

the response and choose the most suitable values i.e., to yield the best response we can get 

while (in this illustrative case) keeping the forecasting horizon parameters constant (i.e 𝑁𝑁1 =

1,𝑁𝑁2 = 20,𝑁𝑁𝑢𝑢 = 5). 

 

6.3.2 α affects on FGPC response 

Following the same approach used in the previous chapters to investigate the effect of 𝛼𝛼 on 

the FGPC response, we will keep all the parameters constant including 𝛽𝛽 while changing the 
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value of 𝛼𝛼. The values of 𝛼𝛼 are chosen to start at 0.1 and increase with a fixed value of, 

whereas the value of  𝛽𝛽 is set to 1.5 and remains constant. Figure 6.8 and Figure 6.9 

illustrates the response of FGPC when 𝛼𝛼 is set to 0.1 and 0.7 respectfully. 

 

6.7: FGCP response for both simulated and measured from the ventilation chamber when 𝛼𝛼 

=0.1 and 𝛽𝛽 = 1.5 

  

6.8: FGCP response for both simulated and measured from the ventilation chamber when 𝛼𝛼 

=0.7 and 𝛽𝛽 = 1.5  
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To shed more light on the effect of 𝛼𝛼 on the FGPC response, we have observed the response 

for more values of 𝛼𝛼 which are shown in Figure 6.9. Bear in mind that these values have been 

arbitrarily chosen just for observation and studying the behaviour of FGPC. 

𝛼𝛼 = 0.2 𝛼𝛼 = 0.3 

𝛼𝛼 = 0.4 𝛼𝛼 = 0.5 

6.9: A comparison of FGBC responses with different 𝛼𝛼 values while keeping 𝛽𝛽 value at 1.5 

 

According to the comparison we have made for the different responses, we can see that, with 

the value of 𝛼𝛼 changing, the response of FGPC changes. Thus, we need to see the effect of 𝛽𝛽 

on the response before we can optimise their values. The next sub-section will study the effect 

of 𝛽𝛽 on the behaviour of the FGPC controller by trying different values of 𝛽𝛽 while the other 
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design parameters (including 𝛼𝛼) remain constant. Table 6.1 below summarises the comparison 

between different values of 𝛼𝛼. 

 

Table 6.2: Comparison between different 𝛼𝛼 

 𝛼𝛼 = 0.1 𝛼𝛼 = 0.2 𝛼𝛼 = 0.3 𝛼𝛼 = 0.4 𝛼𝛼 = 0.5 𝛼𝛼 = 0.7 

Response time [seconds] 18 14 11 10 8 8 

Overshoot [% of step up] 0.8% 2% 3.2% 3.2% 5.6% 9.6% 

Rise time [ seconds] 5 4 4 2 4 1 

 

 

6.3.3  𝜷𝜷 affects on FGPC response 

Similar to the previous sub-section, we will keep all the design parameters constant apart from 

𝛽𝛽 which will be changing to study its effect on FGPC response. In this case, 𝛼𝛼 has been set to 

0.5 and all the horizons have been remaining the same. The following two figures illustrate two 

different values of 𝛽𝛽 (i.e., 1.2 and 3.2, respectively) along with their input signals.  
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6.10: FGCP response for both simulated and measured from the ventilation chamber when 𝛼𝛼 

=0.5 and 𝛽𝛽 = 1.2  

 

6.11: FGCP response for both simulated and measured from the ventilation chamber when 𝛼𝛼 

=0.5 and 𝛽𝛽 = 3.2  
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To shed more light on the effect of 𝛽𝛽 on FGPC response, we have observed the response for 

more values of 𝛽𝛽 which are shown in the combined Figure below. Bear in mind that those 

values have been chosen arbitrarily just for observation and studying the behaviour of FGPC 

concerning the changes in 𝛽𝛽 values. 

 

 

𝛽𝛽 = 1.2 

 

𝛽𝛽 = 1.4 

 

𝛽𝛽 = 2.2 

 

𝛽𝛽 = 3.2 

6.12: A comparison of FGBC responses with different 𝛽𝛽 values while keeping 𝛼𝛼 value at 0.5 

 

Based on the responses above, we have observed that higher values of 𝛽𝛽 will yield more stable 

responses. However, we need to be careful when choosing the values to compromise between 
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𝛽𝛽 and 𝛼𝛼 to obtain the best response of FGPC compared to GPC, as shown in Figure 6.6. Table 

6.2 below summarises the comparisons between different values of 𝛽𝛽. 

 

Table 6.3: Comparison between different 𝛽𝛽 

 𝛽𝛽 = 1 𝛽𝛽 = 1.2 𝛽𝛽 = 1.3 𝛽𝛽 = 1.4 𝛽𝛽 = 2.2 𝛽𝛽 = 3.2 

Response time [seconds] 8 7 8 9 12 21 

Overshoot [% of step up] 9.1% 8.8% 8.8% 9% 4.4% 0.1% 

Rise time [ seconds] 4 4 4 4 3 4 

 

The next sub-section will show the optimised values of 𝛼𝛼 and 𝛽𝛽 to obtain a faster and better-

damped response of FGPC based on a trial and error method. 

 

6.3.4 FGPC response with optimised 𝜶𝜶 and 𝜷𝜷  

In the previous sub-sections, we have observed the effect of 𝛼𝛼 and 𝛽𝛽 on the FGPC response 

and based on that observation we will choose optimised values for both 𝛼𝛼 and 𝛽𝛽. After several 

trials, Figure 6.7 shows the response of FGPC to the same model and under the same horizon 

parameters (𝑁𝑁1 = 1,𝑁𝑁2 = 20,𝑁𝑁𝑢𝑢 = 5), and with 𝛼𝛼 =0.14 and 𝛽𝛽 =2.32. The values of 𝛼𝛼 and 

𝛽𝛽 have been set based on studying the behaviour of FGPC concerning 𝛼𝛼 and 𝛽𝛽 changing. The 

author has chosen the most suitable response (less overshoot and more stable) on that basis. 
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6.13: The Simulated and Measured responses of FGPC using the same horizon parameters of 

GPC with manipulation of the weighting values (𝛼𝛼,𝛽𝛽); (0.14,2.32) 

 

We conclude that FGPC has a much closer response to the simulated version of the model than 

the GPC response. In addition, FGPC has fewer oscillations and more smoothly follows the 

setpoint change than the GPC response. 

 

6.4 Discussion 

As it has been mentioned on numerous occasions throughout the thesis, fractional-order GPC 

potentially is a generalised form of the conventional GPC. This section will illustrate how 

FGPC has extra degrees of freedom for tuning than GPC by establishing a comparison between 

FGPC and GPC based on their responses to the ventilation chamber.  
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Before starting the comparison between the two controllers, it is worth recalling that FGPC has 

two extra parameters (from the fractional-order part) than GPC. Those parameters are known 

as  𝛼𝛼 and 𝛽𝛽. It has been demonstrated in section 6.3 that the effect of 𝛼𝛼 and 𝛽𝛽 on the behaviour 

and how the response of FGPC to the ventilation chamber is changed accordingly. 

The extra parameters will add more complexity to the controller design; however, the extra 

effort is worthwhile for some control systems, i.e., to obtain better performance. The extra 

parameters will provide more ‘space’ for tuning the controller. In addition, FGPC can be 

created and designed exactly as GPC with the addition of the fractional-order part (for further 

details, please refer to Chapter 3 of the thesis). 

Based on the results obtained in the previous section, we have considered some parameters to 

create a better-defined comparison between GPC and FGPC, according to their responses to 

the ventilation chamber. These parameters are defined in Figure 6.14, and Table 6.4 below. 

 

6.14: illustrates response for both GPC and FGPC for comparison purposes. 
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Table 6.4: Comparison of the system responses for both GPC and FGPC 

 GPC FGPC 

Response time [seconds] 11 14 

Overshoot [% of step up ] 4.4% 0% 

Rise time [ seconds] 4 4 

 

FGPC has less oscillation response than GPC. Note that FGPC uses the same parameters as 

GPC (𝑁𝑁1,  𝑁𝑁2 and 𝑁𝑁𝑢𝑢) in addition to the fractional-order parameters 𝛼𝛼 and 𝛽𝛽 to obtain this 

response. Hence, changing the values of 𝛼𝛼 and 𝛽𝛽 for the FGPC response will change the 

response accordingly to fit the design requirements. 

Table 6.5: Comparison summary of GPC and FGPC 

 GPC FGPC 

Advantages 

• Relatively simple compared to 

FGPC. 

• Has many tuning techniques. 

• Well researched in the 

literature. 

• Has 2 extra parameters which 

provide more flexibility for 

designing and tuning. 

• Can be tuned easily to fit any 

design specifications using the 

fractional-order parameters. 

• Can control fractional-order 

systems precisely. 

Disadvantages 

• Has fewer tuning parameters 

compared to FGPC. 

• Tuning has its limits and can't 

fit fractional-order plants 

without being approximated. 

• Fractional-order systems need 

to be approximated before they 

can be controlled 

• Complex design compared to 

GPC. 

• Limited tuning techniques so 

far. 

• Has limited research in the 

literature. 
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To summarise this discussion, we have created a table of comparison that states the advantages 

and disadvantages of each controller (GPC and FGPC) based on the responses obtained in the 

present chapter. 

 

6.5 Concluding Remarks 

This chapter aimed to establish a comparison between GPC and FGPC for a practical example. 

The focus has been on the control of the ventilation rate in a forced ventilation test chamber. 

These results represent one of the first practical implementations of the FGPC approach for a 

laboratory example. In addition to the standard tuning terms for GPC, the FGPC approach 

involves 𝛼𝛼 and 𝛽𝛽 matrices that provide additional design freedom and potentially improved 

closed-loop performance. For the ventilation rate case study example under consideration in 

this chapter, the results demonstrate how to optimise (by trial and error experimentation) values 

for both 𝛼𝛼 and 𝛽𝛽, to achieve a better performance of FGPC in terms of minimum overshoot 

and settling time. 

FGPC has shown encouraging performance for this example and the comparison. However, 

choosing to control a system with fractional-order methods mainly depends on the output 

expectations for the system being controlled, as the design process includes some additional 

complications (compared to the GPC design) due to the fractional-order part. 

In the next chapter, we will return to the simulation study, but with a new focus on the closed-

loop eigenvalues, i.e., to investigate the role of the fractional-order parameters in determining 

the pole locations. 
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Chapter 7 Conclusions & Future Research 
 

 

The main motivation behind the research in this thesis is the growing interest in the literature 

on fractional-order controllers. The research scope covered Fractional-order Generalised 

Predictive Control (FGPC), with a particular goal to implement this approach for a practical 

application. With such an example, the author hopes that researchers in both academia and 

industry will be motivated to investigate fractional-order methods. Section 7.1 of the present 

chapter briefly summarises the research outputs, while Section 7.2 provides a further discussion 

on the key results and suggestions for further research. 

 

7.1 Summary 

Chapter 1 stated the motivation of starting this research, the aims and objectives of the thesis 

that we are looking forward to achieving, alongside the articles arising based on some chapters 

of the thesis. While Chapter 2 presented the literature review, which covered most of the 

background on fractional-order controllers, including some of the key mathematical concepts 

(i.e., the various definitions of the fractional-order), with a specific focus on FPID. In addition, 

the chapter included some of the tuning techniques that have been used in the litreture to 

optimise the fractional-order controller, in order to get the maximum benefit of the fractional-

order parameters. Chapter 3 revised the fundamentals of Model Predictive Control, especially 

the ubiquitous GPC algorithm, to establish the foundations needed to derive the FGPC 
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approach. Furthermore, the last sections of this chapter included a detailed explanation to 

demonstrate how to apply FGPC using MATLAB. Finally, the chapter is concluded with an 

illustrative example that compares GPC and FGPC output to provide a complete picture of 

applying FGPC using MATLAB. These preliminary chapters aimed to provide a full 

understanding of the concept of FOC in general, but with a focus on FGPC, which is the core 

of the research. 

 

Hence, alluding to the research objectives stated in Chapter 1, the main novel contributions of 

the thesis followed in Chapters 4 through to Chapter 6. Chapter 4 investigated the effectiveness 

of the two extra parameters that exist because of the fractional-order GPC (i.e., 𝛼𝛼 and 𝛽𝛽). This 

was achieved by applying both GPC and FGPC to several plants with various degrees of 

complexity. The simulation results were compared and the differences highlighted in the thesis. 

This chapter highlighted the behaviour of FGPC resulting from different values of the fractional 

order coefficient. We have noticed that even though when the horizons (i.e., 𝑁𝑁1, 𝑁𝑁2 and 𝑁𝑁𝑢𝑢) 

are kept constant in tuning both GPC and FGPC, FGPC could get a different response by 

manipulating these fractional coefficients. Hence extra degrees of freedom. Design 

recommendations for FGPC were outlined at the end of Chapter 4, together with a summary of 

the benefits of using FGPC over GPC. Subsequently, Chapter 5 brought another kind of 

comparison between GPC and FGPC, namely the eigenvalues of the closed-loop system (i.e., 

pole locations within the unit circle). The numerical results in this chapter showed that the new 

tuning coefficients 𝛼𝛼 and 𝛽𝛽 can indeed be used to potentially be on the left hand side of the 

complex z–plane (with the closed-loop eigenvalues) and still develop a stable response 

compared to the more constrained GPC approach. However, there are certain limits of 

manipulating 𝛼𝛼 and 𝛽𝛽. Thus, we have used the trial and error approach to explore these limits 

and try to maintain a reasonable output for illustrative purposes though the research. This 
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conclusion led us to believe that, even with fractional-order controllers, there are some 

limitations. Chapter 6 implemented the ideas from Chapter 4 on a real-life application. The 

application chosen was an experimental ventilation chamber that is located within the 

engineering workshop at Lancaster University. The chapter focused on implementing both 

GPC and FGPC on the chamber, to validate the simulation results achieved in Chapter 4. We 

have observed that FGPC produced promising results in controlling the chamber compared to 

GPC in terms of fast response and lower overshoots. The approach used in choosing fractiona-

order coefficients 𝛼𝛼 and 𝛽𝛽 was again trial and error.  

  

 7.2 Suggestions for Further Research 

In general terms, model-based design (e.g., pole placement, GPC, FGPC) provides a 

quantitative method for determining the gains of the control system, based on the ‘desired’ 

performance of the closed-loop system. For the pole assignment method, performance relates 

to the poles of the closed-loop system; for GPC and FGPC it is the minimisation of the relevant 

predictive control cost function. As explained in this thesis, the cost function for FGPC includes 

two scalar hyper-parameters, 𝛼𝛼 and 𝛽𝛽. 

 

Of course, various different model-based design approaches can all produce the same outcome 

if the design criteria are ‘correctly’ set (Wilson et al. 2019). For example, a conventional pole 

assignment can be utilised to set the closed-loop poles corresponding to the poles that minimise 

the GPC or FGPC cost (once these are known). Hence, it can be argued that the choice of 𝛼𝛼 

and 𝛽𝛽 is somewhat arbitrary. Indeed, Romero et al. (2010, 2012, 2013) who originally 

developed FGPC methods, provide no academic justification for why a fractional-order cost 
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function should be used nor any physically-based (engineering) reasons for how to select 𝛼𝛼 and 

𝛽𝛽, with trial and error via simulation being the implicit suggestion, as used in the present thesis.  

 

Hence, within the context of the assumptions made above, FGPC provides a generalisation of 

the GPC cost function weights, which ultimately determines the numerical values of the control 

gains. As a result, the value of the FGPC approach appears dependent on whether the extra 

design flexibility provided by FGPC can be utilised to meet control objectives that are not 

achievable using standard GPC; and whether FGPC provides a straightforward to tune control 

algorithm – for example, that the use of 𝛼𝛼 and 𝛽𝛽 in this way provides a meaningful or 

convenient approach to solve practical control problems. 

 

The first of these issues were considered by the simulation study in Chapters 4 and 6. The 

numerical results show that the new tuning coefficients 𝛼𝛼 and 𝛽𝛽 can indeed be used to provide 

more design flexibility than the conventional GPC approach. However, whether or not the 

increased range of eigenvalues, and hence potential time responses and other closed-loop 

characteristics, could facilitate a better control algorithm (e.g., for a given practical application 

and set of control objectives) requires further research. 

 

The second issue was considered in Chapter 6, regarding the control of airflow in a forced 

ventilation chamber. In this case, a straightforward trial and error FGPC tuning yields a 

satisfactory response for this laboratory system. However, it would be true to say that the same 

applies to conventional GPC design, pole assignment, and various other model-based 

approaches. Hence, future research should consider the relative robustness and performance of 

the FGPC algorithm in comparison to GPC for additional laboratory scenarios and other 

examples. Indeed, there is a wide scope for research into other applications and the relationship 
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between the FGPC approach of the present thesis and other recent research into predictive 

control using fractional-order concepts. For example, Zou et al. (2016) apply fractional-order 

predictive functional control to industrial processes, whilst Shi et al. (2018) apply fuzzy 

generalised predictive control to a fractional-order nonlinear hydro-turbine regulating system. 

In addition, testing fractional-order models with fractional-order controllers and comparing its 

response to the conventional controllers is one of the areas that we are keen to explore.  
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