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Abstract

For a stochastic difference equation Dn = AnDn−1 + Bn which sta-
bilises upon time we study tail distribution asymptotics for Dn under the
assumption that the distribution of log(1 + |A1|+ |B1|) is heavy-tailed, that
is, all its positive exponential moments are infinite. The aim of the present
paper is three-fold. Firstly, we identify the asymptotic behaviour not only of
the stationary tail distribution but also of Dn. Secondly, we solve the prob-
lem in the general setting when A takes both positive and negative values.
Thirdly, we get rid of auxiliary conditions like finiteness of higher moments
introduced in the literature before.

MSC: 60H25; 60J10

1 Introduction

Let (A,B) be a random vector in R2 such that E log |A| = −a < 0. Let (Ak, Bk),
k ∈ Z, be independent copies of (A,B). Consider the following stochastic differ-
ence equation

Dn = AnDn−1 +Bn (1)

= Πn
1D0 +

n∑
k=1

Πn
k+1Bk, n ≥ 1,

where D0 is independent of (Ak, Bk)’s, Πn
k := Ak · . . . · An for k ≤ n and

Πn
n+1 = 1. The process Dn clearly constitutes a Markov chain and satisfies the

following equality in distribution

Dn =st Π−1−nD0 +
−1∑

k=−n
Π−1k+1Bk.
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If a < ∞ then, by the strong law of large numbers applied to the logarithm of
|Π|, with probability 1, e−2an ≤ Πn

1 ≤ e−an/2 ultimately in n, hence the process
Dn, n ≥ 1, is stochastically bounded if and only if E log(1 + |B|) < ∞. If
P{A = 0} > 0 which implies a =∞, then the processDn is always stochastically
bounded. In both cases, the Markov chain Dn is stable, its stationary distribution
is given by the following random series

D∞ :=
−1∑

k=−∞
Π−1k+1Bk =st

∞∑
k=1

Πk−1
1 Bk

and Dn weakly converges to the stationary distribution as n → ∞; in the context
of financial mathematics such random variables are called stochastic perpetuities.
Stability results for Dn are dealt with in [17], see also [2]; the case where E log |A|
is not necessarily finite is treated in [9].

Both perpetuities and stochastic difference equations have many important ap-
plications, among them life insurance and finance, nuclear technology, sociology,
random walks and branching processes in random environments, extreme-value
analysis, one-dimensional ARCH processes, etc. For particularities, we refer the
reader to, for instance, Embrechts and Goldie [5], Rachev and Samorodnitsky [15]
and Vervaat [17] for a comprehensive survey of the literature.

If A ≥ 0 and P{A > 1} > 0, then EAγ → ∞ as γ → ∞, so EAβ > 1 for
some β < ∞. If in addition B ≥ 0, then it follows from the stationary version
of the recursion (1) that EDβ

∞ ≥ EDβ
∞EAβ which implies that EDβ

∞ = ∞, in
other words, with necessity, not all moments of D∞ are finite; see [8] for a similar
conclusion for signed A and B. It was proven in the seminal paper by Kesten
[11, Theorem 5], see also [7], that if E|A|β = 1 for some β > 0, then a power
tail asymptotics for the stationary distribution holds, P{|D∞| > x} ∼ c/xβ as
x→∞, for some c > 0.

The problem we address in this paper is about the tail asymptotic behaviour of
Dn and of its stationary version D∞ in the case where the distribution of log |A|
is heavy-tailed, that is, all positive exponential moments of log |A| are infinite, in
other words, E|A|γ = ∞ for all γ > 0. It can only happen if the random variable
|A| has right unbounded support.

The only result in that direction we are aware of is that by Dyszewski [4] where
in the context of iterated random functions it is proven that the stationary tail dis-
tribution is asymptotically equivalent to

1

a

∫ ∞
x

P{logC > y}dy as x→∞,

where C := max(A,B), provided A, B ≥ 0, the integrated tail distribution of
logC is subexponential and under additional moment condition that E logγ C <∞
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for some γ > 1. In the case of a signedB, only lower and upper asymptotic bounds
are derived in [4]. An alternative approach to lower and upper bounds for the tail
distribution of D∞ is developed in [3] in the case of positive A and B.

The aim of the present paper is three-fold. Firstly, we identify the asymptotic
behaviour not only of the stationary tail distribution but also for Dn in the heavy-
tailed case. Secondly, we solve the problem in the general setting when A takes
both positive and negative values. Thirdly, we get rid of auxiliary conditions like
finiteness of higher moments.

Our approach to the problem is based on reduction of Dn – roughly speaking
by taking the logarithm of it – to an asymptotically homogeneous in space Markov
chain with heavy-tailed jumps and on further analysis of such chains. Namely, we
define a Markov chain Xn on R as follows

Xn :=

{
log(1 +Dn) if Dn ≥ 0,

− log(1 + |Dn|) if Dn < 0,
(2)

hence the distribution tail of Dn may be computed as

P{Dn > x} = P{Xn > log(1 + x)} for x > 0. (3)

At any state x ≥ 0, the jump of the Markov chain Xn is a random variable dis-
tributed as

ξ(x) =

{
log(1 +A(ex−1) +B)− x if A(ex−1) +B ≥ 0,

− log(1 + |A(ex−1) +B|)− x if A(ex−1) +B < 0,
(4)

and at any state x ≤ 0,

ξ(x) =

{
log(1 +A(1−e−x) +B)− x if A(1−e−x) +B ≥ 0,

− log(1 + |A(1−e−x) +B|)− x if A(1−e−x) +B < 0.
(5)

Also define a sequence of independent random fields ξn(x), x ∈ R, which are
independent copies of ξ(x). Then the recursion (1) may be rewritten as

Xn+1 = Xn + ξn(Xn).

The Markov chain Xn is asymptotically homogeneous in space, that is, the dis-
tribution of its jump ξ(x) weakly converges to that of ξ := logA as x → ∞;
it is particularly emphasised in [7, Section 2]. Let us underline that, in general,
log(A + (1 − A + B)e−x) may not converge to ξ as x → ∞ in total variation
norm.

Asymptotically homogeneous in space Markov chains are studied in detail in
[1, 13] from the point of view of their asymptotic tail behaviour in subexponen-
tial case. However, that results for general asymptotically homogeneous in space
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Markov chains are not directly applicable to stochastic difference equations as it
is formally assumed in [1, Theorem 3] that the distribution of a Markov chain
Xn converges to the invariant distribution in the total variation norm which is not
always true for stochastic difference equations. Secondly, stochastic difference
equations possess some specific properties that allow us to find tail asymptotics in
a simpler way than it is done in [1, Theorem 3] or in [4, Theorem 3.1]; we explore
that below however our approach still follows some ideas of the proof for Markov
chains in [1].

Let us recall some relevant classes of distributions needed in our analysis of
the heavy-tailed case.

Definition 1. A distribution H with right unbounded support is called long-
tailed, H ∈ L , if, for each fixed y, H(x + y) ∼ H(x) as x → ∞; hereinafter
H(x) = H(x,∞) is the tail of H .

A random variable A has slowly varying at infinity distribution if and only if
the distribution of ξ := log(A+) is long-tailed.

Definition 2. A distribution H on R+ with unbounded support is called subex-
ponential, H ∈ S , if H ∗H(x) ∼ 2H(x) as x→∞. Equivalently, P{ζ1 + ζ2 >
x} ∼ 2P{ζ1 > x}, where random variables ζ1 and ζ2 are independent with com-
mon distribution H . A distribution H of a random variable ζ on R with right-
unbounded support is called subexponential if the distribution of ζ+ is so.

As well-known (see, e.g. [6, Lemma 3.2]) the subexponentiality of H on R+

implies long-tailedness of H . In particular, if the distribution of a random variable
ζ ≥ 0 is subexponential then ζ is heavy-tailed.

For a distribution H with finite mean, we define the integrated tail distribution
HI generated by H as follows:

HI(x) := min
(

1,

∫ ∞
x

H(y)dy
)
.

Definition 3. A distribution H on R+ with unbounded support and finite mean
is called strong subexponential, H ∈ S ∗, if∫ x

0
H(x− y)H(y)dy ∼ 2mH(x) as x→∞,

where m is the mean value of H . It is known that if H ∈ S ∗ then both H and HI

are subexponential distributions, see e.g. [6, Theorem 3.27].
In what follows we use the following notation for distributions: we denote
(i) the distribution of log(1 + |A|+ |B|) by H;
(ii) the distribution of log(1 + |A|) by F ;
(iii) the distribution of log(1 + |B|) by G;
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(iv) the distribution of log(1 +B+) by G+;
(v) the distribution of log(1 +B−) by G−.
The paper is organised as follows. In Sections 2, 4 and 5 we assume that

log |A| has finite negative mean and successively investigate three different cases
in the order of increasing difficulty: (i) both A and B are positive, see Theorem 1;
(ii)A is positive andB is a signed random variable, see Theorem 6; (iii) bothA and
B are signed, see Theorem 7. In the case (i) we also explain in Theorem 4 the most
probable way by which large deviations of Dn can occur – it is a version of the
principle of a single big jump playing the key role in the theory of subexponential
distributions. The aim of Section 3 is to explain what happens if the distribution of
A has an atom at zero; in that case the tail asymptotics ofDn is essentially different
from what we observe if A has no atom at zero.

2 Positive stochastic difference equation

In this section we consider a positive Dn, so A > 0, B ≥ 0 – we exclude the
case where A has an atom at zero as then the tail asymptotics of Dn are essentially
different, see the next section. Then the Markov chain Xn := log(1 + Dn) is
positive too. As above, we denote ξ := logA and the distribution of the random
variable log(1 +A+B) by H .

Theorem 1. Suppose that A > 0, B ≥ 0, Eξ = −a ∈ (−∞, 0) and E log(1 +
B) <∞, so that Dn is positive recurrent.

If the integrated tail distribution HI is long-tailed, then

P{D∞ > x} ≥ (a−1 + o(1))HI(log x) as x→∞. (6)

If, in addition, the distribution H is long-tailed itself, then

P{Dn > x} ≥ 1+o(1)

a

∫ log x+na

log x
H(y)dy as x→∞ uniformly for all n ≥ 1.

(7)

If the integrated tail distribution HI is subexponential then

P{D∞ > x} ∼ a−1HI(log x) as x→∞. (8)

If moreover the distribution H is strong subexponential then

P{Dn > x} ∼ 1

a

∫ log x+na

log x
H(y)dy as x→∞ uniformly for all n ≥ 1.

(9)
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The main contribution of Theorem 1 is (9) that states uniform asymptotic be-
haviour for all n ≥ 1. It is much stronger than a rather simple conclusion that (9)
holds for a fixed n demonstrated by Dyszewski in [4, Theorem 3.3] by induction
argument that clearly does not work for the tail asymptotics for the entire range of
n ≥ 1.

In [4], a sufficient condition for the asymptotics (8) is formulated in terms of the
distribution of log max(A,B) instead ofH . Let us show that these two approaches
are equivalent. Indeed, for any two positive random variables A and B, since

max(log(1 +A), log(1 +B)) ≤ log(1 +A+B)

≤ log(1 + 2 max(A,B))

< log 2 + max(log(1 +A), log(1 +B)),

it follows that
(i) the distribution H is long-tailed/subexponential/strong subexponential if

and only if the distribution of max(log(1 + A), log(1 + B)) is long-tailed/sub-
exponential/strong subexponential respectively;

(ii) the distribution HI is subexponential if and only if the integrated tail distri-
bution of max(log(1 +A), log(1 +B)) is so.

Denote the distribution of log(1 +A) by F and that of log(1 +B) by G. In the
next result we discuss some sufficient conditions for subexponentiality and related
properties of H .

Lemma 2. Let A and B be any two positive random variables such that either of
the following two conditions holds:

(i) the distribution H of log(1 +A+B) is long-tailed or
(ii) the random variables A and B are independent.
Then if the distribution (F +G)/2 is subexponential or strong subexponential,

then the distribution H is subexponential or strong subexponential respectively.
If the integrated tail distribution (FI + GI)/2 is subexponential, then HI is

subexponential too.

Proof. First assume that (i) holds. On the one hand,

H(x) = P{log(1 +A+B) > x}

≥ P{log(1 +A) > x}+ P{log(1 +B) > x}
2

=
(
F (x) +G(x)

)
/2 (10)

and thus, for all sufficiently large x,

HI(x) ≥
(
FI(x) +GI(x)

)
/3. (11)
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On the other hand,

H(x) ≤ P{log(1 + 2A) > x}+ P{log(1 + 2B) > x}
≤ F (x− log 2) +G(x− log 2). (12)

If (F +G)/2 is subexponential then it is long-tailed and hence

H(x) ≤ (1 + o(1))
(
F (x) +G(x)

)
as x→∞. (13)

If (FI +GI)/2 is subexponential then similarly

HI(x) ≤ (1 + o(1))
(
FI(x) +GI(x)

)
as x→∞. (14)

The two bounds (13) and (10) in the case of long-tailed H allow us to apply The-
orem 3.11 or 3.25 from [6] and to conclude subexponentiality or strong subexpo-
nentiality of H respectively provided (F +G)/2 is so.

The two bounds (14) and (11) in the case of long-tailed HI allow us to apply
Theorem 3.11 from [6] and to conclude subexponentiality of HI provided (FI +
GI)/2 is so.

Now let us consider the case where A and B are independent which yields the
following improvement on the lower bound (10). For all x > 0,

H(x) ≥ P{log(1 +A) > x}+ P{log(1 +A) ≤ x}P{log(1 +B) > x}
= F (x) + F (x)G(x)

∼ F (x) +G(x) as x→∞.

Therefore, H inherits the tail properties of the distribution (F +G)/2, and HI the
tail properties of (FI +GI)/2.

Proof of Theorem 1. At any state x ≥ 0, the Markov chain Xn has jump

ξ(x) = log(1 +A(ex − 1) +B)− x
= log(A+ e−x(1−A+B))

≥ log(A− e−xA),

as B ≥ 0. Fix an ε > 0. Choose x0 sufficiently large such that log(1 − e−x0) ≥
−ε/2. Then the family of jumps ξ(x), x ≥ x0, possesses an integrable minorant

ξ(x) ≥ ξ + log(1− e−x0)

≥ ξ − ε/2 =: η. (15)
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On the other hand, since A > 0 and B ≥ 0, the family of jumps ξ(x), x ≥ x0,
possesses an integrable majorant ζ(x0) := log(A+e−x0(1+B)). For a sufficiently
large x0,

E log(A+ e−x0(1 +B)) ≤ Eξ + ε, (16)

owing to the dominated convergence theorem which applies because firstly log(A+
e−x0(1 +B))→ logA = ξ a.s. as x0 →∞ and secondly, by the concavity of the
function log(1 + z),

log(A+ e−x0(1 +B)) < log(1 +A+ e−x0(1 +B))

≤ log(1 +A) + log(1 + e−x0(1 +B)),

which is integrable by the finiteness of Eξ and E log(1 +B).
Let us first prove the lower bound (6) following the single big jump technique

known from the theory of subexponential distributions. Since Dn is assumed con-
vergent, the associated Markov chain Xn is stable, so there exists a c > 2 such
that

P{Xn ∈ (1/c, c]} ≥ 1− ε for all n ≥ 0.

Let us consider an event

Ω(k, n, c) := {ηk+1 + . . .+ ηk+j ≥ −c− n(a+ ε) for all j ≤ n}, (17)

where ηk are independent copies of η defined in (15). By the strong law of large
numbers, there exists a sufficiently large c such that

P{Ω(k, n, c)} ≥ 1− ε for all k and n. (18)

It follows from (15) that any of the events

{Xk−1 ≤ c, Xk > x+ c+ (n− k)(a+ ε), Ω(k, n− k, c)} (19)

implies Xn > x and they are pairwise disjoint. Therefore, by the Markov property
and (18),

P{Xn > x}

≥
n∑
k=1

P{Xk−1 ≤ c, Xk > x+ c+ (n− k)(a+ ε)}P{Ω(k, n− k, c)}

≥ (1− ε)
n∑
k=1

P{Xk−1 ∈ (1/c, c], Xk > x+ c+ (n− k)(a+ ε)}.
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The kth probability on the right hand side equals∫ c

1/c
P{Xk−1 ∈ dy}P{y + ξ(y) > x+ c+ (n− k)(a+ ε)}

=

∫ c

1/c
P{Xk−1 ∈ dy}P{log(1 +A(ey − 1) +B) > x+ c+ (n− k)(a+ ε)}.

For all y > 1/c,

log(1 +A(ey − 1) +B) ≥ log(1 +A(e1/c − 1) +B)

≥ log(1 +A+B) + log(e1/c − 1),

because e1/c− 1 <
√
e− 1 < 1. Therefore, the value of the last integral is not less

than

P{Xk−1 ∈ (1/c, c]}P{log(1 +A+B) > x+ c1 + (n− k)(a+ ε)},

where c1 := c− log(e1/c − 1). Hence, due to the choice of c,

P{Xn > x} ≥ (1− ε)2
n∑
k=1

H(x+ c1 + (n− k)(a+ ε)).

Since the tail is a decreasing function, the last sum is not less than

1

a+ ε

∫ n(a+ε)

0
H(x+ c1 + y)dy. (20)

Letting n → ∞ we obtain that the tail at point x of the stationary distribution of
the Markov chain X is not less than

(1− ε)2

a+ ε

∫ ∞
0

H(x+ c1 + y)dy =
(1− ε)2

a+ ε
HI(x+ c1)

∼ (1− ε)2

a+ ε
HI(x) as x→∞,

due to the long-tailedness of the integrated tail distribution HI . Summarising alto-
gether we deduce that, for every fixed ε > 0,

lim inf
x→∞

P{D∞ > x}
HI(log x)

≥ (1− ε)2

a+ ε
,

which implies the lower bound (6) due to the arbitrary choice of ε > 0.
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If the distribution H is long-tailed itself, then the integral in (20) is asymptoti-
cally equivalent to the integral∫ x+n(a+ε)

x
H(y)dy as x→∞ uniformly for all n ≥ 1,

which implies the second lower bound (7).
Now let us turn to the asymptotic upper bound under the assumption that the

integrated tail distribution HI is subexponential. Fix an ε ∈ (0, a). Let x0 be
defined as in (16), so Eζ(x0) ≤ −a+ ε. Let J be the distribution of ζ(x0). Since

log(1 +A+B)− x0 ≤ ζ(x0) ≤ log(1 +A+B),

we have H(x+ x0) ≤ J(x) ≤ H(x). Then subexponentiality of HI yields subex-
ponentiality of the integrated tail distribution JI and JI(x) ∼ HI(x) as x→∞.

By the construction of ζ(x0),

x+ ξ(x) ≤ y + ζ(x0) for all y ≥ x ≥ x0. (21)

Also, by the positivity of A,

x+ ξ(x) = log(1 +A(ex − 1) +B)

≤ log(1 +A(ex0 − 1) +B)

= x0 + ξ(x0) ≤ x0 + ζ(x0) for all x ≤ x0. (22)

Consider a random walk Zn delayed at the origin with jumps ζ(x0):

Z0 := 0, Zn := (Zn−1 + ζn(x0))
+,

where ζn(x0) are independent copies of ζ(x0). The upper bounds (21) and (22)
yield that the two chains Xn and Zn can be constructed on a common probability
space in such a way that, with probability 1,

Xn ≤ x0 + Zn for all n, (23)

so Xn is dominated by a random walk on [x0,∞) delayed at point x0. Since the
integrated tail distribution JI is subexponential, the tail of the invariant measure of
the chain Zn is asymptotically equivalent to JI(x)/(a − ε) ∼ HI(x)/(a − ε) as
x→∞, see, for example, [6, Theorem 5.2]. Thus, the tail of the invariant measure
of Xn is asymptotically not greater than HI(x − x0)/(a − ε) which is equivalent
to HI(x)/(a− ε), since HI is long-tailed by subexponentiality. Hence,

lim sup
x→∞

P{D∞ > x}
HI(log x)

≤ 1

a− ε
.
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Due to arbitrary choice of ε > 0 and the lower bound proven above this completes
the proof of the first asymptotics (8).

The same arguments with the same majorant (23) allow us to conclude the
finite time horizon asymptotics for D∞ if we apply Theorem 5.3 from [6] instead
of Theorem 5.2.

Theorem 1 makes it possible to identify a moment of time after which the tail
distribution of Dn is equivalent to that of D∞, in some particular strong subexpo-
nential cases.

Corollary 3. Suppose that E logA = −a < 0, B > 0 and E log(1 +B) <∞.
If the distribution H of log(1 + A + B) is regularly varying at infinity with

index α < −1, then P{Dn > x} ∼ P{D∞ > x} as n, x → ∞ if and only if
n/ log x→∞.

If H(x) ∼ e−x
β

for some β ∈ (0, 1), then P{Dn > x} ∼ P{D∞ > x} as n,
x→∞ if and only if n/ log1−β x→∞.

We conclude this section by a version of the principle of a single big jump for
Dn. For any c > 1 and ε > 0 consider events

Ωk := {1/c < Xk−1 ≤ c, Xk > log x+ c+ (n− k)(a+ ε),

|Xk+j −Xk + aj| ≤ c+ jε for all j ≤ n− k
}

or, in terms of Dn,

ΩD
k := {1/c < Dk−1 ≤ c, Ak/c+Bk > xec+(n−k)(a+ε),

e−c−j(a+ε) ≤ Dk+j/Dk ≤ ec−j(a−ε) for all j ≤ n− k
}
.

Roughly speaking, it describes a trajectory such that, for large x, the Dk−1 is nei-
ther too far away from zero nor too close, then a single big jump occurs, both Ak
andBk may contribute to that big jump, and then the logarithm ofDk+j , j ≤ n−k,
moves down according to the strong law of large numbers with drift −a. As stated
in the next theorem, the union of all these events describes more precisely than the
lower bound of Theorem 1 the most probable way by which large deviations of Dn

do occur.

Theorem 4. Let the distribution H of log(1 + A + B) be strong subexponential.
Then, for any fixed ε > 0,

lim
c→∞

lim
x→∞

inf
n≥1

P{∪n−1k=0Ωk | Dn > x} = 1.

Proof. The events Ω(k), k ≤ n, are pairwise disjoint and any of them implies
{Xn > log x}. Then similar arguments as in the proof of lower bound in Theorem
1 apply.
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3 Impact of atom at zero

In this section we demonstrate what happens if the distribution of A has an atom
at zero. It turns out that then the tail asymptotics of Dn are essentially different –
they are proportional to the tail of H which is lighter than given by the integrated
tail distributionHI in the case whereA > 0 – because the chain satisfies Doeblin’s
condition, see e.g. [14, Ch. 16]. As above, we denote by H the distribution of the
random variable log(1 +A+B). For simplicity, we assume that B > 0.

Theorem 5. Suppose that A ≥ 0, B > 0 and p0 := P{A = 0} ∈ (0, 1). If the
distribution H is long-tailed and D0 > 0, then

P{Dn > x} ≥
(1− (1− p0)n

p0
+ o(1)

)
H(log x) (24)

as x→∞ uniformly for all n ≥ 1. In particular,

P{D∞ > x} ≥ (p−10 + o(1))H(log x) as x→∞. (25)

If the distribution H is subexponential, D0 > 0 and {D0 > x} = o(H(x))
then

P{Dn > x} ∼ 1− (1− p0)n

p0
H(log x) (26)

as x→∞ uniformly for all n ≥ 1. In particular,

P{D∞ > x} ∼ p−10 H(log x) as x→∞. (27)

Proof. Let H0 be the distribution of log(1+A+B) conditioned on A > 0 and G0

be the distribution of log(1 + B) conditioned on A = 0, then H = p0G0 + (1 −
p0)H0.

Let us decompose the event Xn > x according to the last zero value of Ak,
which gives equality

P{Xn > x} = P{A1, . . . , An > 0, Xn > x}

+
n∑
k=1

P{Ak = 0, Ak+1 > 0, . . . , An > 0, Xn > x}

= (1− p0)nP{Xn > x | A1, . . . , An > 0}

+p0

n∑
k=1

(1− p0)n−kP{Xn > x | Ak = 0, Ak+1, . . . , An > 0}

= (1− p0)nP{Xn > x | A1, . . . , An > 0}

+p0

n−1∑
k=0

(1− p0)kP{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0},
(28)
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by the Markov property. In particular, the sum from 0 to n − 1 on the right hand
side is increasing as n grows as all terms are positive. For that reason, for the lower
bounds for P{Dn > x} it suffices to prove by induction that, for any fixed k ≥ 0
and γ > 0, there exists a c <∞ such that

P{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0}
≥ (1− γ)

(
G0(x+ c) + kH0(x+ c)

)
, (29)

P{Xk+1 > x | A1, . . . , Ak+1 > 0} ≥ (1− γ)(k + 1)H0(x+ c) (30)

for all sufficiently large x, because then

P{Xn > x} ≥ (1− γ)

(
(1− p0)nnH0(x+ c)

+p0

n−1∑
k=0

(1− p0)k
(
G0(x+ c) + kH0(x+ c)

))
= (1− γ)(

(
1− (1− p0)n

)(
G0(x+ c) +

1− p0
p0

H0(x+ c)
)

= (1− γ)
1− (1− p0)n

p0
H(x+ c),

with further application of long-tailedness of H .
To prove (29), first let us note that the induction basis k = 0 is immediate,

since the distribution of X1 conditioned on A1 = 0 is G0. Now let us assume that
(29) is true for some k. Denote

Gk(dy) := P{Xk+1 ∈ dy | A1 = 0, A2, . . . , Ak+1 > 0}, k ≥ 0,

which is a distribution on (0,∞). Then

Gk+1(x) =

∫ ∞
0

P{log(1 +A(ey − 1) +B) > x | A > 0}Gk(dy)

≥
∫ 1/ε

ε
P{log(1 +Aδ +B) > x | A > 0}Gk(dy)

+

∫ ∞
x+1/ε

P{log(A(ey − 1)) > x | A > 0}Gk(dy)

=: I1 + I2,

for any ε ∈ (0, 1/2] where δ = eε − 1 <
√
e− 1 < 1. Let us observe that then

P{log(1 +Aδ +B) > x | A > 0} = P{log(1/δ +A+B/δ) > x− log δ | A > 0}
≥ H0(x− log δ).
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Therefore,

I1 ≥ H0(x− log δ)Gk(ε, 1/ε].

The second integral may be bounded below as follows:

I2 ≥ P{log(A(ex+1/ε − 1)) > x | A > 0}Gk(x+ 1/ε)

≥ P{log(Aex+1/2ε) > x | A > 0}Gk(x+ 1/ε)

= P{A > e−1/2ε | A > 0}Gk(x+ 1/ε),

for all sufficiently large x. Letting ε→ 0 we obtain that, for any fixed γ > 0, there
exists a c <∞ such that the following lower bound holds

Gk+1(x) ≥ (1− γ)
(
H0(x+ c) +Gk(x+ c)

)
for all sufficiently large x, which implies the induction step.

The second lower bound, (30), follows by similar arguments provided D0 > 0.
Let us now proceed with a matching upper bound under the assumption that H

is a subexponential distribution. Since A, B ≥ 0,

ξ(x) = log(A+ e−x(1−A+B)) (31)

≤ log(1 +A+B) for all x > 0. (32)

Let η and ζ be random variables with the following tail distributions

P{η > x} = min

(
1,

P{log(1 +A+B) > x}
P{A = 0}

)
,

P{ζ > x} = min

(
1,

P{log(1 +A+B) > x}
P{A > 0}

)
, x > 0.

Both are subexponential random variables provided log(1 +A+B) is so, see e.g.
[6, Corollary 3.13]. It follows from (31) that, for all x > 0,

P{ξ(x) > y | A = 0} ≤ P{η > y},
P{ξ(x) > y | A > 0} ≤ P{ζ > y},

which implies that

P{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0} ≤ P{η + ζ1 + . . .+ ζk > x},

where ζi’s are independent copies of ζ independent of η. Then standard technique
based on Kesten’s bound for convolutions of subexponential distributions, see e.g.
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Theorem 3.39 in [6], allows us to deduce from (28) that, for any fixed γ > 0,

P{Xn > x}

≤ (1 + γ)
(

(1− p0)nnG0(x) + p0

n−1∑
k=0

(1− p0)k(G0(x) + kH0(x)
)

for all n ≥ 1 and sufficiently large x. Therefore,

P{Xn > x} ≤ (1 + γ)
1− (1− p0)n

p0
H(x),

which together with the lower bound proves (26).

4 The case of positive A and signed B

In this section we consider the case where Dn takes both positive and negative
values because of singedB, whileA is still assumed positive in this section,A > 0.
The Markov chain Xn is defined as in (2).

As B is no longer assumed positive, it makes the tail behaviour of D quite
different if no further assumptions are made on dependency between A and B.
For example, in the extreme case where B = −cA for some c > 0, so Dn+1 =
An+1(Dn − c), we have that Dn is eventually negative if stable, hence D∞ < 0
with probability 1.

More generally, if B = Aη where η is independent of A and takes values of
both signs, then we conclude similar to (6) that, as x→∞,

P{D∞ > x} ≥
(

1

a

∫
R
P{η > −c}P{D∞ ∈ dc}+ o(1)

)
FI(log x),

provided the distribution FI is long-tailed. However, the technique used in Section
2 for proving the matching upper bound does not work in such cases as the Lindley
majorant returns the coefficient a−1 which is greater than that in the lower bound
above. For that reason we restrict further considerations to the case where A and
B are independent.

Theorem 6. Suppose that A > 0, A and B are independent, Eξ = −a ∈ (−∞, 0)
and E log(1 + |B|) <∞.

If the integrated tail distributions FI and G+
I are long-tailed, then

P{D∞ > x} ≥ (a−1+o(1))
(
P{D∞ > 0}FI(log x) +G+

I (log x)
)

as x→∞.
(33)
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If, in addition, the distributions FandG+ are long-tailed itself, then, as x, n→∞,

P{Dn > x}

≥ 1+o(1)

a

(
P{D∞ > 0}

∫ log x+na

log x
F (y)dy +

∫ log x+na

log x
G+(y)dy

)
.(34)

If P{D∞ = 0} = 0, the integrated tail distributions FI , G+
I and G−I are

long-tailed, G−I (z) = O(FI(z) +G+
I (z)) and HI is subexponential then

P{D∞ > x} ∼ a−1
(
P{D∞ > 0}FI(log x) +G+

I (log x)
)

as x→∞.(35)

If moreover the distributions F , G+ and G− are long-tailed, G−(z) = O(F (z) +
G+(z)) and H is strong subexponential then, as x, n→∞,

P{Dn > x} ∼ 1

a

(
P{D∞ > 0}

∫ log x+na

log x
F (y)dy +

∫ log x+na

log x
G+(y)dy

)
.

(36)

Proof. Fix an ε > 0. As follows from (4), for x ≥ 0,

ξ(x) ≥
{

log(A(1− e−x)− e−xB−) if A(ex − 1) +B ≥ 0,
− log(1 +A+ |B|) if A(ex − 1) +B < 0,

where the second line follows due to A > 0. The minorant on the right hand side
is stochastically increasing as x grows, therefore, there exists a sufficiently large
x0 and a random variable η such that

ξ(x) ≥ η for all x ≥ x0 and Eη > −a− ε/2. (37)

As in the last proof, we start with the lower bound (33) following the single
big jump technique. Since Dn is assumed to be convergent, the associated Markov
chain Xn is stable, so there exist n0 and c > 2 such that

P{Xn ∈ (1/c, c]} ≥ (1− ε)P{D∞ > 0} for all n ≥ n0,
P{|Xn| ≤ c} ≥ 1− ε for all n,

and also P{A ≤ c} ≥ 1−ε, P{|B| ≤ c} ≥ 1−ε. For all k, n and c, let us consider
the events Ω(k, n, c) defined in (17) and satisfying (18). It follows from (37) that
any of the events (19) implies Xn > x and they are pairwise disjoint. Therefore,
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by the Markov property and (18),

P{Xn > x}

≥
n∑
k=1

P{Xk−1 ≤ c, Xk > x+ c+ (n− k)(a+ ε)}P{Ω(k, n− k, c)}

≥ (1− ε)
n∑
k=1

P{Xk−1 ≤ c, Xk > x+ c+ (n− k)(a+ ε)}, (38)

The kth term of the sum is not less than(∫ 0

−c
+

∫ c

0

)
P{Xk−1 ∈ dy}P{y + ξ(y) > zn−k}

=

∫ 0

−c
P{Xk−1 ∈ dy}P{log(1 +A(1− e−y) +B) > zn−k}

+

∫ c

0
P{Xk−1 ∈ dy}P{log(1 +A(ey − 1) +B) > zn−k}

=: I1 + I2,

where zk = x+ c+k(a+ε). For all y ∈ [−c, 0] and z > 0, owing to the condition
A > 0 and independence of A and B

P{log(1 +A(1− e−y) +B) > z} ≥ P{log(1−Aec +B) > z}
≥ P{A ≤ c}P{log(1− cec +B) > z}
≥ P{A ≤ c}G+(z + 1)

for all sufficiently large z which yields that

I1 ≥ P{A ≤ c}P{Xk−1 ∈ [−c, 0]}G+(zn−k + 1)

≥ (1− ε)P{Xk−1 ∈ [−c, 0]}G+(zn−k + 1), (39)

due to the choice of c. For all y > 0,

P{log(1 +A(ey − 1) +B) > z}
≥ P{|B| ≤ c}P{log(1 +A(ey − 1)− c) > z}+ P{log(1 +B) > z},

which yields that

I2 ≥ P{|B| ≤ c}
∫ c

1/c
P{log(1 +A(ey − 1)− c) > zn−k}P{Xk−1 ∈ dy}

+G+(zn−k)P{Xk−1 ∈ (0, c]}
≥ (1− ε)P{log(1 +A(e1/c − 1)− c) > zn−k}P{Xk−1 ∈ (1/c, c]}

+G+(zn−k)P{Xk−1 ∈ (0, c]}.
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Therefore, by the choice of c, for all sufficiently large x and k > n0,

I2 ≥ (1− ε)2P{D∞ > 0}F (zn−k + 1) +G+(zn−k)P{Xk−1 ∈ (0, c]}.
(40)

Substituting (39) and (40) into (38) we deduce that

P{Xn > x} ≥ (1− ε)2
n∑

k=n0+1

(
P{D∞ > 0}F (x+ c+ 1 + (n− k)(a+ ε))

+G+(x+ c+ 1 + (n− k)(a+ ε))
)

Since the tail is a non-increasing function, the last sum is not less than

1

a+ ε

∫ (n−n0−1)(a+ε)

0

(
P{D∞ > 0}F (x+ c+ 1 + y) +G+(x+ c+ 1 + y)

)
dy.

(41)

Letting n → ∞ we obtain that the tail at point x of the stationary distribution of
the Markov chain X is not less than

(1− ε)2

a+ ε

∫ ∞
0

(
P{D∞ > 0}F (x+ c+ 1 + y) +G+(x+ c+ 1 + y)

)
dy

=
(1− ε)2

a+ ε

(
P{D∞ > 0}FI(x+ c+ 1) +G+

I (x+ c+ 1)
)

(42)

∼ (1− ε)2

a+ ε

(
P{D∞ > 0}FI(x) +G+

I (x)
)

as x→∞,

due to the long-tailedness of the integrated tail distributions FI and G+
I . Sum-

marising altogether we deduce that, for every fixed ε > 0,

lim inf
x→∞

P{D∞ > x}
P{D∞ > 0}FI(log x) +G+

I (log x)
≥ (1− ε)2

a+ ε
,

which implies the lower bound (33) due to the arbitrary choice of ε > 0.
If the distributions F and G+ are long-tailed itself, then the integral in (41) is

asymptotically equivalent to the integral∫ x+n(a+ε)

x

(
P{D∞ > 0}F (y) +G+(y)

)
dy as x, n→∞,

and the second lower bound (34) follows too.
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To prove matching upper bounds let us first observe that

|Dn+1| ≤ An|Dn|+ |Bn| for all n, (43)

where the right hand side is increasing in Dn. Hence, |Dn| ≤ D̃n, where D̃n is a
positive stochastic difference recursion,

D̃n+1 = AnD̃n + |Bn|.

Since HI is subexponential, Theorem 1 applies to D̃n, so

P{D̃∞ > x} ∼ a−1HI(log x) as x→∞,

and hence

P{|D∞| > x} ≤ (a−1 + o(1))HI(log x) as x→∞,

It follows from (12) that

H(x) ≤ P{log(1 +A) > x− 1}+ P{log(1 + |B|) > x− 1}.

Integrating the last inequality we get an upper bound

HI(x) ≤ FI(x− 1) +G−I (x− 1) +G+
I (x− 1) (44)

∼ FI(x) +G−I (x) +G+
I (x) as x→∞,

because all three distributions, FI , G−I and G+
I are assumed long-tailed. Hence the

following upper bound holds for the tail of |D∞|, as x→∞:

P{|D∞| > x} ≤ (a−1+o(1))
(
FI(log x) +G−I (log x) +G+

I (log x)
)
. (45)

The long-tailedness of FI and G−I similarly to (33) implies that

P{D∞ < −x} ≥ (a−1 + o(1))
(
P{D∞ < 0}FI(log x) +G−I (log x)

)
,

and the two lower bounds together imply that, as x→∞,

P{|D∞| > x} ≥ (a−1 + o(1))
(
FI(log x) +G+

I (log x) +G−I (log x)
)
,

because P{D∞ = 0} = 0. Together with the upper bound (45) it yields that

P{D∞ > x} = a−1
(
P{D∞ > 0}FI(log x) +G+

I (log x)
)

+ o(HI(log x)),

and the first asymptotics (35) follows by the condition G−I (z) = O(FI(z) +

G+
I (z)).

The second asymptotics (36) follows along similar arguments.
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5 Balance of negative and positive tails in the case of signed
A

In this section we turn to the general case where Dn takes both positive and neg-
ative values, with A taking values of both signs. Denote ξ := log |A| and the
distribution of log(1 + |A|) by F . Recall that the distribution of log(1 + |B|) is
denoted by G and the distribution of log(1 + |A|+ |B|) by H .

The Markov chain Xn is defined as above in (2).

Theorem 7. Suppose that P{D∞ = 0} = 0,

0 < P{A > 0} < 1, (46)

A and B are independent, Eξ = −a ∈ (−∞, 0) and E log(1 + |B|) <∞.
If the integrated tail distribution HI is long-tailed, then

P{D∞ > x} ≥ (1/2a+ o(1))HI(log x) as x→∞. (47)

If, in addition, the distribution H is long-tailed itself, then

P{Dn > x} ≥ 1 + o(1)

2a

∫ log x+na

log x
H(y)dy as n, x→∞. (48)

If the integrated tail distribution HI is subexponential then

P{D∞ > x} ∼ 1

2a
HI(log x) as x→∞. (49)

If moreover the distribution H is strong subexponential then

P{Dn > x} ∼ 1

2a

∫ log x+na

log x
H(y)dy as n, x→∞. (50)

Proof. The same arguments based on the single big jump technique used in the last
section for proving (42) show that, for any fixed ε > 0, there exists a c < ∞ such
that

P{|X∞| > x} ≥ 1− ε
a

(
P{D∞ 6= 0}FI(x+ c+ 1) +GI(x+ c+ 1)

)
for all sufficiently large x. Similar to (44),

HI(x) ≤ FI(x− 1) +GI(x− 1)
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for all sufficiently large x, which together with the condition P{D∞ = 0} = 0
implies that

P{|X∞| > x} ≥ 1− ε
a

HI(x+ c+ 2)

∼ 1− ε
a

HI(x) as x→∞,

due to the long-taileness of the distribution HI . Therefore,

P{|X∞| > x} ≥ (a−1 + o(1))HI(x) as x→∞. (51)

At any time epoch n large absolute value of Xn changes its sign with asymptotic
(as x → ∞) probability p− = P{A < 0} and keeps its sign with asymptotic
probability p+ = P{A > 0}, so sign change may be asymptotically described as a
Markov chain with transition probability matrix(

p+ p−

p− p+

)
,

whose asymptotic distribution is (1/2, 1/2), owing to the condition (46). For that
reason, the probability of a large positive value of Xn is approximately at least one
half of the right hand side of (51), and the proof of (47) is complete. The proof of
(48) follows the same lines.

To prove the upper bound (49), similar to (43) we first note that

|Dn+1| ≤ |An||Dn|+ |Bn| for all n,

which allows to conclude the proof as it was done in the last section.
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