
[lecture notes]

 IEEE SIGNAL PROCESSING MAGAZINE [166] juLy 2013 1053-5888/13/$31.00©2013IEEE

LECTURENOTES

Amadou Gning, Branko Ristic, 
Lyudmila Mihaylova, and 

Fahed Abdallah

An Introduction to Box Particle Filtering

R
esulting from the synergy 
between the sequential 
Monte Carlo (SMC) method 
[1] and interval analysis [2], 
box particle filtering is an 

approach that has recently emerged [3] 
and is aimed at solving a general class of 
nonlinear filtering problems. This 
approach is particularly appealing in 
practical situations involving imprecise 
stochastic measurements that result in 
very broad posterior densities. It relies 
on the concept of a box particle that 
occupies a small and controllable rectan-
gular region having a nonzero volume in 
the state space. Key advantages of the 
box particle filter (box-PF) against the 
standard particle filter (PF) are its 
reduced computational complexity and 
its suitability for distributed filtering. 
Indeed, in some applications where the 
sampling importance resampling (SIR) 
PF may require thousands of particles to 
achieve accurate and reliable perfor-
mance, the box-PF can reach the same 
level of accuracy with just a few dozen 
box particles. Recent developments [4] 
also show that a box-PF can be inter-
preted as a Bayes’ filter approximation 
allowing the application of box-PF to 
challenging target tracking problems [5].

Although the box-PF has appealing 
properties, its widespread use seems to 
be hindered by the signal processing 
community’s unfamiliarity with interval 
analysis techniques. The aim of this 
lecture note is to present the box-PF in 
a concise, simple, and appealing way, 
via Bayesian formulation and a grad-
ual introduction to interval analysis. 
Readers should have some familiarity 
with PFs.

RelevAnce
State estimation of stochastic dynamic 
systems plays a crucial role in many 
engineering systems, from navigation, 
autonomous vehicles, and guidance to 
finance and bioinformatics [6]. The non-
linear nature of dynamic and observation 
models and the presence of non-Gauss-
ian noises makes it difficult to accurately 
represent the posterior density. 

In recent years, sequential Bayesian 
estimation has become the dominant 
framework for recursive state estimation. 
This trend is mainly due to the invention 
of the PF [1], which provides a numerical 
(simulation-based) solution for a large 
class of nonlinear filtering problems. 
Traditional Bayesian estimation deals 
with stochastic but precise measure-
ments and measurement models. Inter-
val measurements are convenient for 

modeling bounded errors with unknown 
distributions and unknown measure-
ment biases [7], [8]. In circumstances 
where the measurements are intervals, 
the optimal Bayes’ filter for state estima-
tion can be formulated using random set 
theory [9]. The SMC methods then 
require a massive number of particles to 
approximate the posterior state probabil-
ity density function (pdf). To reduce the 
number of particles, the concept of a 
box-PF was recently introduced in [3]. 
The key idea is to replace a particle by a 
multidimensional interval or box of non-
zero volume in the state space. While the 
potential to reduce the required number 
of particles to approximate the posterior 
is a strong motivation, we will see that 
the use of box-PFs also introduces new 
challenges. An illustration of the box-PF 
in action is given in Figure 1.
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[FIG1] Snapshot of an example of the trajectory of the box-PF. The box particles 
over time show the estimated and true trajectories. Details of the experiment and 
the box-PF can be seen in [5].
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PReRequISITeS
This article assumes only a familiarity 
with state- space representation, discrete 
time signal processing, probability the-
ory- and Bayesian estimation.

PRoBlem STATemenT
Consider the following system:
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where :f R Rn nx x$  is in general a non-
linear transition function defining the 
state vector xk 1+  at time k 1+  from the 
previous state xk perturbed by an additive 
independent identically distributed (iid) 
process noise sequence vk and nx is the 
dimensions of the state; :g R Rn nx z$  
defines the relationship between the state 
and the measurement ,zk 1+  with wk 
being an additive iid measurement noise 
sequence; nz is the dimension of the 
measurement. The states and the mea-
surements up to time k are represented, 
respectively, by { , , , }k1X xk , f= =,  
and { , , , } .k1Z zk , f= =,  Within the 
Bayesian framework, the posterior state 
pdf ( | )p X Zk k1 1+ +  provides a complete 
description of the state up to time instant 

,k 1+  given the measurements .Zk 1+  In 
many applications, the marginal of the 
posterior pdf ( | ),p x Zk k1 1+ +  also provides 
sufficient information and is given by

( | )p x Zk k1 1+ +

( | ) ( | ),p p1 x Z z x
k

k k k k
1

1 1 1
a

=
+

+ + +  (2)

( | )p x Zk k1+

( | ) ( | ) ,p p dx x x Z xk k k k k1
Rnx

= +#  (3)

where ( | )p x xk k1+  is the transitional 
density, ( | )p z xk k1 1+ +  is the likelihood 
function and

 ( | ) ( | )p p dz x x Z x
k

k k k k k

1

1 1 1 1
Rnx

a

=

+

+ + + +#
is a normalization factor. The recursion 
is initialized with a prior pdf ( ),p x0  e.g., 
with a uniform pdf over some region of 
the state space. Equation (3) corresponds 
to the time update or the prediction step 
while (2) represents the measurement 
update step.

SoluTIon
In general, the recursive equations (2) 
and (3) of the posterior density cannot 
be determined analytically, e.g., in pres-
ence of a highly nonlinear model or non-
Gaussian multimodal pdfs. In the next 
section, an approximation solution is 
proposed based on box particles.

Box Particle  
Filtering illustration
Figure 2 presents the similarities and 
differences between the PF and the 
box-PF. Figure 2(a) illustrates the four 
main steps of the PF, while Figure 2(b) 
illustrates the five main steps of the box-
PF. The likelihood Step 2 of the PF is 
replaced by Steps 2 and 3 in the box-PF. 
Here, the additional step that appears in 
the box-PF removes the values in the box 
particles that are not consistent with the 
measurement. Another important differ-
ence is that inclusion functions are nec-
essary in the box-PF because, when 
propagated via a continuous nonlinear 
function, the image of the box particle is 
not necessarily a box.

The next several sections give details 
about the five box-PF steps in compari-
son with the PF, emphasizing the inter-
val analysis tools needed in the box-PF 
algorithm, and also give a Bayesian 
interpretation of each step.

Box-PF time uPdate steP
In the time update step of the PF, the 
posterior pdf at time ,k  represented by 
a set of N  weighted particles, denoted 
by , ,w xk

i
k
i

i
N

1=^ h" ,  is propagated to the 
next time .k 1+  In the importance 
sampling scheme, the particles are 
sampled according to a proposal pdf. If 
the proposal pdf is chosen to be the 
transition prior, the updated particles 
at time k 1+  are sampled according to 
{ ( ) } ,x f x v|k k

i
k
i

k
i

i
N

1 1= ++ =  where vk
i  i s 

a noise realization corresponding to 
the particle .xk

i  The new weights are 
equal to the previous weights, i.e., 

.w w|k k
i

k
i

i
N

1 1=+ =
" ,  For simplicity, wk

i  is 
used instead of .w |k k

i
1+  for the remain-

der of this article.
For the box-PF, the posterior at time 

k is represented by a set of N  weighted 
box particles denoted by , .w xk

i
k
i

i
N

1=^ h6 @" ,  

In the time update step, each box parti-
cle xk

i6 @ is propagated through the transi-
tion prior using the tools of interval 
analysis: interval arithmetic and inclu-
sion functions.

INtERvAL ARIthMEtIC 
ANd INCLuSION FuNCtIONS
A real interval, [ ] ,x x x=

-

-6 @, is defined as 
a closed and connected subset of the set 
R of real numbers with x

-
 and x- denoting 

respectively the lower and the upper 
bounds of [ ] .x  In Table 1, notations, basic 
definitions, and interval tools are sum-
marized. More details can be found in [2]. 
In the case when 0 belongs to [ ],y  the 
division operator, given in Table 1, is 
straightforwardly extended by replac-
ing R with { , }R , 3 3-  and by defin-
ing intervals of the form [ , ], [ , ]x x3 3-

-

-
 

and [ , ] .3 3

Inclusion functions have a key role in 
the derivation of the box-PF. For the 
box-PF, the time update step is similar to 
the corresponding time update step 
of the generic SIR PF, with the differ-
ence that the transition function has to 
be applied to a box. However, if a contin-
uous function is applied to a box, in gen-
eral, there is no guarantee that the 
result of the function will also be a box 
(see Figure 3 for an illustration). To cope 
with this issue, inclusion functions are 
applied; they guarantee that the predic-
tion of box particles always results in 
(new) box particles.

dEFINItION 1
Let f be a function from Rn to .Rm  An 
“interval function” [ ]f  from IRn to IRm is 
said to be an inclusion function for f if 
([ ]) [ ] ([ ]), [ ] .forf x f x x IRn63 !

Inclusion functions may be very 
“pessimistic’’ in the sense that the 
resulting bounding box is larger than 
necessary, as shown in Figure 3. An 
inclusion function [ ]f  is minimal if, for 
any [ ],x  [ ] ([ ])f x  is the interval hull of 
([ ]) .f x  The minimal inclusion function 

for f  is unique and is denoted by [ ] .f *  
The minimal inclusion function [ ]f * 
satisfies [ ] ([ ]) [{ ( ) | [ ]}] .f x f x x x!=

Finding inclusion functions that 
can be evaluated with a convenient 
computational time and such that [ ] ([ ])f x  
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is as close as possible to [ ] ([ ]),f x*  for 
most [ ],x  is one of the main purposes of 
interval analysis [2]. Different algorithms 
have been proposed to reduce the size of 
boxes enclosing ([ ]),f x  e.g., inclusion 
functions for elementary functions such 
as ,exp  ,ln  ,tan  cos, and ,sin  are well stud-
ied and known. One interesting property 
is that, if f is continuous and monotonic, 
then [ ] ([ ])f x  is simply equal to ([ ])f x  (for 

instance, [ ] ([ ]) [ ( ), ( )]exp exp expx x x=
-

- ). 
For nonmonotonic continuous func-
tions, however, the computation of [ ]f  is 
usually not straightforward.

BOx PARtICLE PREdICtION 
uSING INCLuSION FuNCtIONS 
Knowing the set of box particles 
{[ ]}xk

i
i
N

1=  at time step k and assuming 
that the system noise is known to be 

enclosed in [ ],vk  the boxes are propa-
gated using an inclusion function [ ]f  
of the transition function f  in (1), i.e., 
{[ ] [ ] ([ ]) [ ])} .x f x v|k k

i
k
i

k i
N

1 1= ++ =  T h i s 
step brings an interesting property of 
the box-PF: instead of propagating 
each particle using one realization 
of the noise ,vk  the uncertainty due 
to noise is also propagated for each 
box particle.

[FIG2] Pictorial representations of the (a) PF and (b) box-PF. 

(a)

(b)

Time

k + 1

k

1) Predicted Particles at k + 1

State space

4) Resampled Particles: Duplication
    Strategy

3) Reweighted Particles

2) Likelihood Measurement Function

1) Predicted Particles at k

Time

Time

k + 1

k

1) Predicted Box Particles at k + 1

1) Predicted Box Particles at k

5) Resampled Box Particles: Subdivision Strategy

4) Reweighted Box Particles

3) Likelihood: Ratio Between the
    Contracted and the Predicted Box
    Particle Volumes

State Space

Measurement Space

2) Contraction Steps Using the
     Measurement Box

Inclusion Function [g]

Measurement
Box

In
cl

us
io

n 
F

un
ct

io
n 

[f]



 IEEE SIGNAL PROCESSING MAGAZINE [169] juLy 2013

BAyESIAN INtERPREtAtION  
FOR thE BOx-PF tIME uPdAtE
In [4], it is shown that the box-PF can be 
seen as an approximation of the Bayes’ 
filter by interpreting each box particle as 
a uniform pdf (with the limits of the box 
particle defining its support). The set of 
box particles is then interpreted as a 
mixture of uniform pdfs.

Assume the posterior pdf at time k is 
approximated by a mixture of uniform 
pdfs. With the notations in Table 2, the 
time update equation (3) can be approxi-
mated in the form

( | )

( | ) ( )

( | ) ( ) .

p

p w U d

w p U d

x Z

x x x x

x x x x

[ ]

[ ]
[ ]

k k

k k k
i

k k
i

N

k
i

i

N

k k k k

1

1
1

1
1

x

x
x

Rn k
i

k
i

k
i

x
.

=

+

+

=

=

+

/

/

#

#
  (4)

Consider an inclusion function [ ]f  for 
the transition model ,f  and assume that 
noise ,vk  at time ,k 1+  is bounded in 
the box [ ] .vk  Then, by definition of the 
inclusion functions, for , , ,i N16 f=  if 

[ ]x xk k
i!  then [ ] ([ ]) [ ]) .x f x vk k

i
k1 ! ++  

Thus, for all , ,i N1 f=  we can write

( | ) ( )p U 0x x x[ ]k k k1 x i
k$ =+

[ ] ([ ]) [ ] .for x f x vk k
i

k16 " ++  (5)

Equation (5) shows that for any 
transition function ,f  using interval 
analysis techniques, the support for the 
pdf terms ( | ) ( )p U dx x x x[ ]

[ ]
k k k k1 x

x
k
i

k
i +#  

can be approximated by [ ] ([ ]) [ ]) .f x vk
i

k+  
In the box-PF algorithm, each pdf term 

( | ) ( )p U dxx x x[ ]
[ ]

k k k k1 x
x

k
i

k
i +#  in  (4)  i s 

modeled by one uniform pdf component 
having as  support  the interval 
[ ] ([ ], [ ]),f x vk

i
k  i.e.,

( | ) ( )p U dx x x x[ ]
[ ]

k k k k1 x
x

k
i

k
i +#

   ( ).U x[ ]([ ]) [ ] k 1f x vk
i

k. + +  (6)

Combining (4) and (6) gives

( | ) ( )p w Ux Z x[ ]([ ]) [ ]k k k
i

k
i

N

1 1
1

f x vk
i

k.+ + +

=

/

 ( ) .w U x[ ]k
i

k
i

N

1
1

x |k k
i

1= +

=
+/  (7)

The box-PF strategy of approximat-
ing each pdf ( | ) ( )p U dx x x x[ ]

[ ]
k k k k1 x

x
k
i

k
i +#  

using one uniform pdf component may 
not be accurate enough. However, as for 
the PF, it is sufficient to approximate the 
first moments of the pdf as shown experi-
mentally in [3]. If a more accurate repre-
sentation is required, then each term can 
be approximated as a mix-
ture of uniform pdfs as 
shown in [4].

Box-PF 
measurement 
uPdate steP
Similarly to the PF, the 
weights of the predicted 
box particles have to be 
updated using the new 
measurement. For this 
purpose, likelihood fac-
tors need to be calculated 
using the innovation 
quantities. In the case of 

the standard PF, the innovation for par-
ticle i  is ,r z zk

i
k k

i
1 1 1= -+ + +  where 

, , ,i N1 f=  and ( )z g x |k
i

k k
i

1 1=+ +  is the 
ith predicted measurement. Next, using 
the probabilistic model pw for the 
measurement noise ,wk  the likeli-
hood of each particle is calculated 
as ( | ) ( )p pz x z z|k k k

i
k k

i
1 1 1 1w= - =+ + + +  

( ) .p rk
i

1w +

A reasonable assumption for the box-
PF is that the measurement likelihood 
function has a bounded support that we 
call here the measurement likelihood 
box. In the bounded error context, the 
likelihood for each box particle is calcu-
lated using the following idea: a box par-
ticle whose corresponding predicted 
measurement does not intersect with the 
measurement likelihood box should be 
assigned a likelihood factor equal to 
zero. In contrast, a box particle whose 
corresponding predicted measurement is 

[TABle 1] InTeRvAl AnAlySIS ToolS.

noTATIonS DeFInITIonS
Interval [ ] [ , ] { | }x x x x x x xR! # #= =

-

-

-

- closed and connected subset of R
the set of Intervals {[ ] }xIR R1=

Interval length | . | | [ ] |x x x= -
-

-

Interval hull [.] [ ],S  for any set S In R the smallest Interval enclosIng S
set theoretIc operator 9 [ ] [ ] [[ ] [ ]]x y x y9 9= Interval hull of the resultIng set

+ [ ] [ ]x y+

unIon . [ ] [ ] [ ] [ ]x y x y,. = 6 @ Interval hull of [ ] [ ]x y,
bInary operator ? [ ]  [ ] {  | [ ], [ ]}x y x y x x y y? ? ! != 6 @

+ [ ] [ ] [ , ]x y x y x y+ = + +
- -

- -
- [ ] [ ] [ , ]x y x y x y- = - -

- -

--
# [ ] [ ] [ ( , , , ), ( , , , )]min maxx y xy xy xy xy xy xy xy xy# =

-- -

- --

-- -

- -

-

- -r If the value [ ]y0 "
/ [ ] [ ] [ ]x xx n1 # #g= set of vectors of Rn

box [ ] / [ ] [ ] [ / , / ]x y x y y1 1#=
-

-
box volume | . | | [ ] |x
box set theoretIc operator 9 [ ] [ ] ([ ] [ ]) ([ ] ])x y x yx y n n1 1 # #g9 9 9=

box bInary operator ? [ [ ] ([ ] [ ]) ([ ] [ ])x y x yx y n n1 1 # #g? ? ?=

[FIG3] Inclusion functions obtained after applying the 
function f to a box [x]. The resulting image is not 
necessarily a box. A pessimistic inclusion function [f] 
and the minimal inclusion function [f]*are presented.
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[f]([x])

[f]*([x])

[x]
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included in the measurement likelihood 
box should have a likelihood equal to 
one. To calculate such a likelihood, the 
box-PF incorporates a new step called 
the contraction step. In the PF algo-
rithm, each particle is propagated with-
out any information about the variance 
of its position. In contrast, in the 
bounded error context, each box particle 
takes into account the imprecision 
caused by the model errors. Therefore, to 
preserve an appropriate size of each box, 
a contraction step is performed that 
allows the elimination of the inconsis-
tent part of the box particles with respect 
to the measured box. The contraction 
step for the box is analogous to the vari-
ance matrix measurement update step 
that appears in Kalman filtering. This 
contraction step utilizes interval analysis 
methods described in the next section.

INtERvAL CONtRACtION MEthOdS 
A major challenge for interval methods 
is to solve systems of equations involving 
initial conditions falling into boxes. The 
next section yields a formulation of such 
classes of problems. Table 3 introduces 
notations and definitions needed for the 
introduction of interval contraction 
concepts. In Table 3, the set S is not 
necessary a box. Within the interval 
framework, solving a constraint satisfac-
tion problem (CSP) H implies finding 
the smallest box [ ] [ ]x x1l  constituting 
an outer approximation of ,S  such that 

[ ] [ ] .S x x3 3l

dEFINItION 2
Contracting H  means replacing [ ]x  
by a smaller domain [ ]x l such that 

[ ] [ ] .S x x3 3l  A contractor C  for H 
is any operator that can be used to 
contract .H

Several methods for building contrac-
tors are described in [2, Ch. 4], including 
the Gauss elimination, Gauss-Seidel algo-
rithms, and linear programming. Each of 
these methods can be suitable for differ-
ent types of CSP. An attractive contractor 
method is the so-called Constraints Prop-
agation (CP) technique [2]. The main 
advantage of the CP method is its effi-
ciency in the presence of high redun-
dancy of data and constraints. The CP 
method is also simple and, most impor-
tantly, independent of nonlinearities. The 
CP method proceeds by contracting H 
with respect to each variable, appearing 
in each constraint, until convergence to a 
minimal domain. A simple illustration is 
given in the section “Example 1.” A 
detailed description of the CP algorithm 
can be found in [2].

ExAMPLE 1
Consider a three-dimensional CSP with a 
single constraint ( )expz x y=  and an 
initial domain [ ] [ , ],z 0 3=  [ ] [ , ]x 1 7=  
and [ ] [ , ] .y 0 1=  The CP algorithm 
alternates between two phases com-
monly called forward propagation (FP) 
and backward propagation (BP).

 ■ FP1: [ ] [ ] ([ ] [ ] ([ ])expz z x y! + # = 
[ , ] [ , ] [ , ] [ , ],e0 3 1 7 1 1 3+ # =

 ■ BP2: [ ] [ ] ([ ] / [ ] ([ ]))expx x z y! + =

[ , ] [ , ] / [ , ] [ , ],e1 7 1 3 1 1 3+ =

 ■ B P 3 :  [ ] [ ] [ ] ([ ] / [ ])lny y z x! + = 
[ , ] [ ] [ , ] / [ , ]) [ , ] .ln0 1 1 3 1 3 0 1+ =

FP1 above contracted the domain of ,z  
while BP2 and BP3, using an inversion of 
the constraint, contracted the domains of 
x and .y  Thus, after one forward-back-
ward propagation cycle, the domains of 
the variables have been reduced to 
[ ] [ , ],z 1 3=  [ ] [ , ]x 1 3=  and [ ] [ , ] .y 0 1=

BAyESIAN INtERPREtAtION 
OF thE CONtRACtION StEP
Assume that, at time instant ,k 1+  an 
approximation of the time update pdf 

( | )p x Zk k1+  by a mixture of N  uniform 
pdfs with interval supports [ ]x |

( )
k k
i

1+  and 
weights wk

i  is available and that the mea-
surement update step is to be performed. 
Next, for the box-PF, a probabilistic model 
pw for the measurement noise wk is also 
available. It is assumed in general that pw 
can be expressed by using a mixture of 
uniform pdfs. For simplicity and without 
loss of generality, pw is considered here to 
be a single uniform pdf, such that the box 
measurement [ ]zk 1+  contains all realiza-
tions of ( ) .g x wk k1 ++  Then we have 

( | ) ( ( ))p Uz x g x[ ]k k k1 1 1zk 1=+ + ++  a n d 
according to (2), the measurement 
update is

( | )p x Zk k1 1+ +

( | ) ( | )p p1 xz x Z
k

k k k k
1

1 1 1
a

=
+

+ + +

( ( )) ( )U w U1 g x x] [ ][
k

k k
i

i

N

k
1

1
1

1Z xk k k
i

1 1a
=

+
+

=

+;+ +/

( ( )) ( ).w U U1 g x x[ ] [ ]
k

k
i

i

N

k k
1 1

1 1z xk k k
i

11a
=

+ =

+ +;++/
 (8)

Each of the terms ( ( ))U g x[ ] k 1zk 1 ++  
( )U x[ ] k 1x |k k

i
1 ++  is also a constant function 

with a support being the following set 
,S Ri

nx1  where

[TABle 3] conSTRAInT SATISFAcTIon PRoBlemS.

noTATIonS DeFInITIonS

real-valued constraInt f  on Rn ( ) ( , , ) ,f f x x 0x n1 f= =  wIth ( , , )x xx n1 f= n varIables xi In ,R  { , , }i n1 f!  lInked by f
set of constraInts
constraInt satIsfactIon problem H

( , , , )f f ff m
T

1 2 f=   
: ( ( ) , [ ])H x 0f x x!=

 
problem of fIndIng the smallest [ ]xl  
enclosIng the set of all x In [ ]x  satIsfyIng f

the solutIon set of H { [ ] ( ) }f 0S x x x!= =

[TABle 2] mIXTuRe oF unIFoRm PDFs.

noTATIonS DeFInITIonS
U[ ]x the unIform pdf wIth the box [ ]x  as support 

( ) ( ),p w Ux x[ ]
i

i

N

1 x i=
=
/ mIxture of N unIform pdf components specIfIed by boxes 

{[ ]}xi
i
N

1=  and normalIzed weIghts { }wi
i
N

1=   

( | ) ( )p w Ux Z x[ ]k k k
i

ki
N

1 xk
i.

=
/ posterIor pdf ( | )p x Zk k  approxImated at tIme k by a 

mIxture of unIform pdfs
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[ ] ( ) [ ] .|S x x g x z|i k k k
i

k k1 1 1 1! != + + + +" ,
  (9)

Equation (9) defines a CSP, and from 
its expression we can deduce that pre-
dicted supports [ ],x |k k

i
1+  from the time 

update pdf ( | )p x Zk k1+  approximation, 
have to be contracted with respect to the 
measurement [ ] .zk 1+  These contraction 
steps result in the new box particles 
denoted [ ],xk

i
1+u  which approximate the 

posterior pdf ( | )p x Zk k1 1+ +  at time .k 1+

BAyESIAN dERIvAtION 
OF thE LIkELIhOOd
Following the definition of the sets Si in 
(9), we can write

 ( ( )) ( )U Ug x x[ ] [ ]k k1 1z x |k k k
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By combining (8) and (10), and keeping 
in mind that [ ] [ ]Sxk

i
i1 =+u  (i.e., by defini-
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Weight uPdate
In the SIR PF, each particle weight is 
updated by a factor equal to the likelihood 

( | ),p z x |k k k
i

1+  followed by normalization 
of weights. In the box-PF, this step is very 
similar, i.e., after contracting each box 
particle [ ]x |k k

i
1+  into [ ],xk

i
1+u  according to 

(11) the weights are updated by the ratio 
|[ ]| / |[ ] |.L x x |k

i
k
i

k k
i

1 1= + +u  In summary, 
( | )p x Zk k1 1+ +  is  approximated by 

{( , [ ])} ,w xk
i

k
i

i
N

1 1 1+ + =u u  where wk
i

1 ?+u  .w Lk
i

k
i$

resamPling Box Particles
Similar to the SIR PF algorithm, the resa-
mpling step is added to the box-PF to pre-
vent degeneracy of box particles. Different 
resampling algorithms can be used [10]. 
In the standard PF algorithm, the particles 

characterized by high weights have a good 
chance of multiplying during the resam-
pling step, and then to propagate to the 
future time with artificial noise added to 
increase their diversity. The same strategy 
can be used for box particles, with artificial 
noise added to each box to increase diver-
sity. However, alternative techniques in 
the resampling step of the box-PF are also 
possible. For instance, to increase the 
“resolution” in the regions of the state 
space where the posterior pdf has high val-
ues, a box particle that has been selected n 
times during resampling can be parti-
tioned into n disjoint smaller boxes. In 
fact, the manipulation of interval data 
always yields a very pessimistic solution as 
a result of the basic rules of the interval 
arithmetic and the wrapping effect when 
boxes are propagated via models [2]. Note 
that the wrapping effect will be more 
important if one has to propagate large-
size boxes. Thus, the division of a box into 
several subboxes will make possible to 
refine the solution for the following steps.

The efficiency of this box-particle 
resampling strategy is empirically con-
firmed in [3].

leSSonS leARneD, FuRTheR 
ReADInG, AnD FuTuRe AvenueS
This lecture note summarizes a new 
method for sequential nonlinear estima-
tion based on a combination of particle 
filtering and interval analysis. The 
method is based on a new concept of box 
particles for the purpose of reducing the 
number of random samples required by 
the standard particle filter. The box-PF 
algorithm is presented through the prism 
of the Bayesian inference using mixtures 
of uniform pdfs with boxed supports. 
More details about the box-PF and its 
implementation can be found in [3]–[5].

Numerous challenges remain for 
future work. Many theoretical results are 
still missing, such as convergence results, 
better proposal densities and theoretical 
justification of resampling with partition-
ing. The significant reduction of the num-
ber of particles opens opportunities for 
distributed nonlinear and nonparametric 
state estimation problems. One important 
question that should be answered in future 
works is how to determine the number of 

uniform pdfs involved in the approxima-
tion of the posterior, and how to merge 
and combine closed uniform distributions.
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