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Abstract 

This paper presents a robust ABAQUS® plug-in called Virtual Data Generator (VDGen) for 

generating virtual data for identifying the uncertain materials properties in unidirectional 

lamina through artificial neural networks (ANN). The plug-in supports the 3D finite element 

models of unit cells with square and hexagonal fibre arrays, uses Latin-Hypercube sampling 

methods and robustly imposes periodic boundary conditions. Using the data generated from 

the plug-in, ANN is demonstrated to explicitly and accurately parameterise the relationship 

between fibre mechanical properties and fibre/matrix interphase parameters at microscale and 

the mechanical properties of a UD lamina at macroscale. The plug-in tool is applicable to 

general unidirectional lamina and enables easy establishment of high-fidelity micromechanical 

finite element models with identified material properties. 

Keywords: Plug-in; Unidirectional lamina; Artificial neural networks; Periodic boundary 

conditions; Finite element modelling. 

1. Introduction 

Fibre-reinforced polymer (FRP) composite laminates have been widely used in aerospace, 

automotive and wind energy industry due to their excellent material properties such as high 

stiffness to mass ratio, high strength and light weight. Applications of FRP composite laminates 

to create engineering structure models fundamentally require mechanical properties as inputs. 

Experimental tests are ideal solutions to evaluate the mechanical properties of a composite 

lamina. However, it must be repeated whenever the constituents (fibre and matrix) and/or 

microstructure characteristics (fibre volume fraction) are altered. This procedure may, for 

instance, cost millions of dollars and last for years to generate the experimental data of 

mechanical properties for the design of aircraft structures [1].  

To overcome the aforementioned drawbacks associated with experimental tests, various 

micromechanical approaches have been proposed to establish a closed-form relationship 

between elastic properties at the lamina scale and the elastic properties at the constituent scale. 

These methods fall generally into two categories, i.e., analytical and numerical methods. 

Analytical methods, such as the Rule of Mixture method [2], the Halpin-Tsai semi-empirical 

method [3], the Mori-Tanaka method [4] and the Chamis method [5], facilitate the calculation 
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of elastic properties by a direct mathematical, empirical expression between constituent 

properties and elastic properties of the lamina. However, these methods have an inherent 

limitation in describing the stress and strain fields at microstructural scale mainly due to 

neglecting fibre interaction.  

With the development of computing capacities, numerical methods, in particular the finite 

element method (FEM), have become widely used tools for studying the behaviour of 

composites, including inverse analysis [6-8], elastic moduli [9], failure of composite lamina 

[10-12] and the effective coefficients of thermal expansion [13]. Inverse analysis has been used 

to identify fibre mechanical properties, fibre thermal expansion coefficient and evaluate the 

factors of analytical methods, and so on. [8] determined the elastic and thermal properties of 

graphite fibre using inverse analysis. [14] predicted fibre properties using finite element 

analysis of hexagonal and random representative volume element (RVE) through inverse 

analysis. Similarly, [15] conducted an inverse analysis to predict fibre mechanical properties. 

However, they used quasi-analytical gradients derived from analytical models such as Chamis 

or Haplin-Tsai to reduce the computational cost. [7] utilised an inverse method to identify the 

mechanical properties of T300 carbon fibre as well as the interphase region parameters based 

on a computational homogenisation approach together with experimental results and Kriging 

metamodelling. [6] carried out an inverse analysis in the framework of FEM to estimate the 

reinforcement parameter ξ of the Halpin-Tsai models which is used to calculate transverse 

stiffness E2. A total number of 67 FE models of 2D square, 2D hexagonal and 3D random fibre 

distributions were used to obtain a new value of ξ with a high level of confidence.  

Regardless of the inverse methods used or the purpose they are used for, a large number of FE 

analyses are required for converged solutions. However, constructing a micromechanical FE 

model is not a straightforward task and requires special treatments to impose boundary 

conditions, generate microstructures including fibre distribution and fibre/matrix interphase, 

and extract outputs, etc. These complexities impose a barrier of using inverse analysis by 

engineers and researchers. Recently, several ABAQUS plug-ins have been developed for the 

ease of creating micromechanical FE models. These plug-ins were developed either by the 

functions available in ABAQUS or by external software. An ABAQUS plug-in named 

MultiMech was developed to perform multiscale finite element analysis (FEA) with the 

capability of simulating nonlinear behaviours of composites [16]. Another ABAQUS plug-in 

for multilevel modelling of linear and nonlinear behaviour of composite structures [17, 18]. 

The plug-in developed using Python scripts for analysing an RVE at microscopic level to obtain 

macroscopic parameters for structural analysis by user-defined FORTRAN subroutines in 

ABAQUS. Composite MicroMechanics (COMM) toolbox was developed in Matlab for 

micromechanical analysis of composites [19]. The toolbox creates an input file that can be read 

by ABAQUS which performs the FEA. Recently, EasyPBC plug-in was developed for 

ABAQUS to estimate effective elastic properties of a pre-prepared and meshed RVE [20]. 

While the ABAQUS plug-in proposed by [21] is capable of generating an RVE with random 

fibre distribution using Random Sequential Adsorption (RSA) technique.  

The aforementioned plug-ins have shown outstanding benefits and capabilities to create and 

simulate complex RVEs of unidirectional (UD) FRP composite lamina. However, they are 

designed to generate and analyse a single model. Therefore, this paper aims to develop an open-

source ABAQUS plug-in named Virtual Data Generator (VDGen) that automates the time-
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consuming manual task requires to create a large number of virtual data for inverse analysis. 

The plug-in uses Latin-Hypercube (LH) sampling methods and support the unit cell of square 

and hexagonal fibre arrays. In addition, the plug-in incorporates Artificial Neural Networks 

(ANN) to explicitly parameterise the relationship between fibre mechanical properties and 

fibre/matrix interphase parameters and the mechanical properties of a UD lamina. The data 

required here were created in advance by the plug-in and used to train the ANN model. 

2. Main plug-in GUI 

The concept of the plug-in arises from the need for a tool that helps to perform a large number 

of micromechanical FE simulations in a few simple steps. ABAQUS has different ways to 

increase its capabilities such as subroutines and/or adding new plug-ins.  ABAQUS/CAE plug-

in is one of the most powerful tools that can be used to perform pre- and post-processing via 

functions written in Python programming language in the kernel. The current plug-in operates 

through a series of user-friendly GUI commands send to the kernel to carry out tasks. The plug-

in interface is shown in Fig. 1. It consists of six tab items that allow the user to navigate between 

them to edit input and output commands. For computational micromechanics modelling, the 

plug-in supports square and hexagonal unit cell fibre arrays. Despite fibres are usually 

randomly distributed in the matrix, it has been concluded by [22] that micromechanical 

modelling of the unit cell is accurate enough to predict the elastic properties of a UD lamina 

while an RVE with randomly distributed fibres is essential to compute the local failure.  
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Fig. 1 The graphical user interface (GUI) of the plug-in. 

Fig. 2 shows a typical 3D unit cell of square and hexagonal fibre arrays of the fibre reinforced 

composite that the plug-in supports. The mechanical properties of each constituent, i.e., fibre, 

matrix and interphase, can be modified in the material section. There are two ways to input the 

value of constituent properties, either by a single value or using a domain of lower and upper 

bounds (lower - upper). A material property assigned with a single value remains unchanged 

throughout simulations. While for others, a random value in the range of (lower – upper) is 

generated at each training point using Latin Hypercube sampling technique.  
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Fig. 2 3D unit cell models of regular fibre arrays: (a) Square and (b) Hexagonal. 

The fibres and matrix are meshed using eight-node brick element with reduced integration 

(C3D8R). There were also a relatively small amount of six-node linear triangular prism 

elements (C3D6) due to the free meshing technique used. The interphase region is meshed with 

eight-node cohesive elements (COH3D8). To maintain matched meshes between the cohesive 

elements and the fibres and matrix elements, a suitable number of nodes are seeded to the 

interphase and its neighbours. The elastic behaviour of the cohesive elements is written in terms 

of a stiffness matrix that relates the nominal stresses to the nominal strains across the 

interphase. The nominal traction stress vector t consists of three components, tn, ts, tt, which 

represent the normal and two shear tractions, respectively. The corresponding separations are 

denoted by δn, δs, and δt, and the original thickness of the cohesive element is denoted by T. 

Then the nominal strains can be defined as 

                              휀𝑛 =
𝛿𝑛

𝑇
, 휀𝑠 =

𝛿𝑠

𝑇
, 휀𝑡 =

𝛿𝑡

𝑇
 (1) 

Therefore, the elastic behaviour of the cohesive element can be written in Eq. (1). For simplicity 

of computation, uncoupled behaviour between the normal and shear components is desired, so 

the off-diagonal terms in the elasticity matrix are set to be zero and the stiffness in the two 

shear directions are assumed to be equal [11, 23]. 

                               𝑡 = {

𝑡𝑛
𝑡𝑠
𝑡𝑡

} = [
𝐾𝑛𝑛 𝐾𝑛𝑠 𝐾𝑛𝑡

𝐾𝑛𝑠 𝐾𝑠𝑠 𝐾𝑠𝑡

𝐾𝑛𝑡 𝐾𝑠𝑡 𝐾𝑡𝑡

 ] {
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} = 𝐾휀. (2) 

Matrix 

Interphase 

Fibre 

Fibre 

Matrix 

Interphase 

(a) 

(b) 

Height (L2) 

Width (L1) 
Depth (L3) 

1 

2 

3 



 6 

The plug-in imposes Periodic Boundary Conditions (PBC) on the corresponding surfaces of 

the unit cell to ensure the compatibility of strain and stress at the macroscale level. These 

consist of a series of constraints in which the deformation of each pair of nodes on the opposite 

surfaces of the unit cell is subject to the same amount of displacements. The PBCs are 

expressed in terms of the displacement vectors �⃗⃗� 1 , �⃗⃗� 2 , and �⃗⃗� 3  that are related to the 

displacements between the opposite surfaces by: 

                                  {

�⃗� (0, 𝑥2, 𝑥3) − �⃗� (𝐿1, 𝑥2, 𝑥3) = �⃗⃗� 1

�⃗� (𝑥1, 0, 𝑥3) − �⃗� (𝑥1, 𝐿2, 𝑥3) = �⃗⃗� 2

�⃗� (𝑥1, 𝑥2, 0) − �⃗� (𝑥1, 𝑥2, 𝐿3) = �⃗⃗� 3

 (3) 

where L1, L2, and L3 are the lengths of the unit cell along with three orthogonal directions, 

respectively. PBC requires matching nodes on opposite sides of the unit cell. Hence, elements 

of equal size are assigned to the edges of the unit cell to ensure periodic mesh required for 

PBC. 

The Output tab allows the user to select appropriate results that suits the work. The macroscopic 

normal and shear strain components are calculated by: 

                                   휀𝑖𝑖 =
�⃗⃗� 𝑖
𝐿𝑖

 
 

(Normal strain) (4) 

                                  휀𝑖𝑗 =
�⃗⃗� 𝑖
𝐿𝑗

+
�⃗⃗� 𝑗

𝐿𝑖
 (𝑖 ≠ 𝑗) (Shear strain) (5) 

The macroscopic stress is calculated as: 

     𝜎𝑖𝑗 =
∑𝐹𝑖

𝐴𝑗
 (6) 

where Fi  is the resultant force on the ith surface which represents the reaction force at a 

reference point where the displacement is applied, and A is the area of the surface. Therefore 

Young’s modulus, Poisson’s ratio and shear modulus are, respectively calculated from Eqs. 

(7), (8) and  (9): 

                              𝐸𝑖𝑖 =
𝜎𝑖𝑖

휀𝑖𝑖
 (7) 

                             𝐺𝑖𝑗 =
𝜎𝑖𝑗

휀𝑖𝑗
 (8) 

                             𝜈𝑖𝑗 = −
휀𝑖𝑗

휀𝑖𝑖
  (9) 

The flowchart of the pre‑ and post-processing procedure of the plug-in is described in Fig. 3. 

The user is to define the analysis data and the required outputs, as given in Fig. 3. When the 

‘OK’ or ‘Apply’ push button is clicked, the plug-in creates three files to be called in the 

subsequent steps. ExperimentNAME.dat file contains all input commands which are given by 
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the user in the GUI interface. These commands are vital to creating the FE model. Also, this 

file provides an opportunity to modify the input commands by using exact plug-in keywords 

in the file. ~Temp.txt is dedicated to storing the experiment name the user wants to run. Material 

properties values created by Latin-hyper cube are stored in a tabular format in 

ExperimentNAME.csv file, which makes them easier to read and process by external software. 

Once these files are created, the Python script (Execute.py) can be submitted for analysis from 

ABAQUS command environment using either dos (‘abaqus cae script=Execute.py’) or dos 

(‘abaqus cae noGUI=Execute.py’) command. It is strongly recommended to execute it using 

the latter in which ABAQUS/CAE runs commands in Execute.py without the added expense 

of running a GUI display. Whichever option adopted to perform the analysis, the plug-in 

continuously provides the user with useful information e.g., number of jobs done, number of 

jobs remain and approximate time to complete. Upon running, the plug-in instantly creates two 

files to store outputs after completion of each job and to record errors that occurred during the 

analysis.     

 

 

Fig. 3 Flowchart of the plug-in. 

3. Numerical example: prediction of effective elastic properties 

To validate the newly developed plug-in, the effective elastic properties of carbon fibre/epoxy 

(T300/PR-319) and glass fibre/epoxy (E-Glass/MY750) were determined and compared with 

EasyPBC plug-in developed by [20] as well as the experimental data [24]. The mechanical 

properties of the fibre, matrix and interphase are given in Table1. Since T300 carbon fibre is 

classified as a transversely isotropic material, the elastic properties highlighted by an asterisk 

* symbol in the table are obtained by applying the following relations: 
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file 
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 file 
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or 

Dos(‘abaqus cae noGUI=Execute.py’) 

 

Output-ExperimentNAME.dat 

file 

~Temp.txt  

file 
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Post-processing 
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Experiment name, RVE size, 
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Error-ExperimentNAME.txt 
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                                 𝐺𝑓12 = 𝐺𝑓13,  𝐺𝑓23 =
𝐸𝑓2

2(1 + 𝜈𝑓23)
 

(10) 

 

The E-glass is considered as isotropic material. It is important to note that the input data for the 

interphase region are not accurately known as they are difficult to measure from simple 

laboratory experiments. However, an initial stiffness Ki of 105 GPa/mm is used in [25-28] to 

simulate the elastic behaviour of the RVE model. In this paper, the elastic parameters from [7] 

are used to for the interphase as an approximation. 

Table1 Elastic properties of fibre, matrix [24] and interphase [7]. 

Fibre elastic property T300 carbo fibre  E-Glass fibre 

Longitudinal modulus, Ef1 (GPa) 231 74 

Transverse modulus, Ef2 (GPa) 15 74 

Through-thickness modulus, Ef3 (GPa) 15 74 

In-plane Poisson’s ratio, νf12 0.2 0.2 

Major transverse Poisson’s ratio. νf13 0.2 0.2 

Through-thickness Poisson’s ratio, νf23 0.07143* 0.2 

In-plane shear modulus, Gf12 (GPa) 15 30.8 

Transverse shear modulus, Gf13 (GPa) 15* 30.8 

Through-thickness shear modulus, Gf23 (GPa) 7 30.8 

Matrix elastic property  PR-319  MY750 matrix 

Elastic modulus, Em (GPa) 4.0 3.35 

Poisson’s ratio, vm 0.35 0.35 

Interphase region parameters Interphase  Interphase 

Thickness, T (µm) 0.139 0.139 

Normal stiffness, Knn (GPa/mm) 846.8 846.8 

Tangent stiffness, Kss (GPa/mm) 535.6 535.6 
f: stands for fibre, m: stands for matrix 

Table 2 shows the comparison of the predicted effective elastic properties determined by 

VDGen and EasyPBC plug-ins. It is noted among the prediction results that VDGen provides 

reliable results that are identical to those from EasyPBC. However, an obvious discrepancy 

exists between experimental results and those predicted by the two plug-ins. This is mainly due 

to the inaccurate parameters used for the interphase region.   
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Table 2 Comparison of predicted effective elastic properties determined by VDGen, EasyPBC and 

experimental data [7, 24]. 

 T300/PR-319 E-Glass/MY750 

Elastic 

propert

y 

VDGen EasyPBC Experimen

tal data 

VDGen EasyPBC Experimenta

l data 

E11 

(GPa) 

127.54 127.54 138 42.11 42.11 45.6 

E22 

(GPa) 

3.97 3.97 11 14.86 14.86 16.2 

E33 

(GPa) 

3.98 3.98 11 14.87 14.87 16.2 

ν12 0.24 0.24 0.28 0.24 0.24 0.278 

ν13 0.24 0.24 0.28 0.24 0.24 0.278 

ν23 0.25 0.25 0.4 0.25 0.25 0.4 

G12 

(GPa) 

1.36 1.36 5.5 4.52 4.52 5.83 

G13 

(GPa) 

1.36 1.36 5.5 4.52 4.52 5.83 

G23 

(GPa) 

0.89 0.89 3.9 3.21 3.21 5.7 

Fig. 4a shows the stress contours of a loaded unit cell under transverse and Fig. 4b shows the 

stress contours for in-plane shear loading conditions. It can be seen the periodic stress contours 

distribution is additional verification of the PBC.     

 

Fig. 4 Stress contour plot of the unit cell under (a) Transverse loading and (b) In-plane shear loading. 

(a) σ22  (b) τ12  1 

3 
2 
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4. Application: identifying fibre and interphase parameters using 

ANN  

4.1 Background  

In this section, a machine learning (ML) technique Artificial Neural Network (ANN) is used 

to construct a relationship between fibres and interphase parameters and effective elastic 

properties of the lamina. It is inspired by the animal brain’s structure and function, which learns 

from former examples. ANN consists of three main layers: an input layer, one or more hidden 

layers and an output layer. Each layer has several neurons which are responsible for 

transmitting weight and biases (equivalent to chemical and electric signals in the animal brain) 

between two layers. Fig. 5 illustrates a typical structure of single neurons where each input (x) 

comes from the previous layer multiplied with its individual weight of the connection (wi) and 

then summed up with biases [29]. Then this sum is composed with activation function (f), 

resulting in another vector (a) as: 

𝑎 = 𝑓(𝑥𝑖. 𝑤𝑖 + 𝑏)                                                                     (11) 

Another key step of ANN is a defined objective function that is to be minimised during the 

training process. Mean Squared Error (MSE) and Sum Squared Error (SSE) among others are 

examples of functions used to assess the network’s behaviour by measuring the errors between 

the output and the target. The errors are reduced through tuning the values of the weight and 

biases by so-called back-propagation. Back-propagation is widely recognised as a powerful 

tool for the training of ANN very efficiently. Several algorithms have been proposed to address 

the slow convergence associated with the back-propagation. However, it is quite difficult to 

decide which algorithm is more computationally efficient as it depends on many factors. 

Readers may refer to a comparative study carried out by researchers to evaluate accuracy and 

convergence time for different algorithms [30, 31].  

 

Fig. 5 A typical one neuron structure of the ANN. 
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4.2 ANN model to identify micro parameters 

ANN model is developed to identify the micro parameters, e.g., fibre and fibre/matrix 

interphase parameters. The relationship between micro and macro properties in UD lamina is 

fairly complex and is nonlinear. Moreover, the number of micro parameters to be identified is 

usually more than the number of macro properties, which makes the ANN a complicated task. 

Therefore, to ease the training process, the micro parameters are set to be the input layer of the 

neural networks model and the macro properties are of the output layer. However, the 

calculation of optimal micro parameters becomes difficult when they are in the input layer as 

it is not possible to obtain an analytical inverse response solution with the ANN model that has 

multiples neurons in the hidden layer. This issue is overcome by using trained ANN to enlarge 

the dataset. Details of model building are explained in the following section.   

4.2.1 Model building 

The whole procedure of the fibre and interphase parameters identification using ANN is 

illustrated in Fig. 6. Firstly, a total of n=500 FE models were created by VDGen using the 

procedure outlined in Section 3. In each model, a random value of the parameters to be 

identified is created by LH sampling within the range given in Table 3. The remaining fibre 

properties were obtained by applying the transversely isotropic material relationships: 

                 𝐸𝑓3 = 𝐸𝑓2, 𝑣𝑓13 = 𝑣12𝑓 ,  𝐺𝑓13 = 𝐺𝑓12, 𝐺𝑓23 =
𝐸𝑓2

2(1 + 𝜈𝑓23)
 (12) 

Ef1 remained unchanged in all samples and its value was 230GPa. For all samples, the fibre 

volume fraction is 60% and matrix properties are given in Table1. By the end of this phase 

(Step 1), a dataset of 500 samples containing the inputs (x = [Ef2, νf12, νf23, Gf12, Ti, Knn, Kss]) 

and the targets (t = [E11, E22, ν12, ν23, G12]) required to train ANN is obtained.  

Table 3 Ranges of fibre and interphase elastic properties. 

Elastic property T300 carbon fibre 

Ef2 (GPa) 1 – 100 

vf12 0.01 - 0.45 

vf23 0.01 - 0.45 

Gf12 (GPa) 1 - 200 

 Interphase 

T (µm) 0.009 – 0.2 

Knn (GPa/mm) 1 – 1000 

Kss (GPa/mm) 1 – 1000 
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Fig. 6 Fibre and interphase parameters identification through ANN. 
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Step 2 
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In Step 2, the ANN was built and trained using the dataset created in the previous step. The 

training, testing and validation of the ANN model were conducted by MATLAB R2015a 

software. By MATLAB default, 70%, 15% and 15% of the original dataset were used for 

training, validation and testing, respectively. Nonlinear tangent sigmoid and linear functions 

were employed as the activation functions in the hidden layers and the output layer, 

respectively:   

𝑓(𝑥) = 2 (1 + 𝑒−2𝑥) − 1⁄  tansig (Tangent sigmoid activation function) 
(13) 

𝑓(𝑥) = 𝑥 purelin (Linear activation function). 

Selecting a best representative ANN structure plays an important role in output prediction. In 

this study, two hidden layers were used and the number of neurons in each hidden layer was 

changed until the best possible prediction was obtained. Initially, the number of neurons in the 

first hidden layer (nh1) was set to 20 then increased by one whereas the total number of neurons 

in both hidden layers (nh) was retained at 100. Usually, the data is randomly divided into three 

subsets (training, validation and testing) and different initial weight and bias values are used in 

each time the neural networks is trained. As a result, different neural networks trained for the 

same problem may give different outputs for the same inputs. In this study, therefore, 20 runs 

were performed on each ANN architecture to ensure inclusion of different data for each subset. 

MSE, which is the average squared difference between the output (y) vectors and the target (t) 

vectors, was used to compute the difference and back-propagated though the networks to 

update weights and biases: 

                                  𝑀𝑆𝐸 =
1

𝑛
∑(𝑦 − 𝑡)2

𝑛

𝑖=1

 (14) 

Levenberg-Marquardt (LM) back-propagation algorithm was adopted in this study. This 

function uses back propagation scheme to update weights and biases according to Levenberg-

Marquardt optimization algorithm, which can accurately achieve results with fewer data 

comparing with its counterparts. 
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Fig. 7 ANN scheme for fibre and interphase parameters identification. 

In order to decide which is the best ANN taking into account the fact of dividing the input data 

into three main subsets (training, validation and testing) during the training process, the sum 

of correlation coefficient (R-value) between the target and the output of the entire dataset was 

used to attain the optimal ANN structure:   

max𝑅(𝑥) = 𝑅𝑣
𝐸11 + 𝑅𝑣

𝐸22 + 𝑅𝑣
𝑣12 + 𝑅𝑣

𝑣23 + 𝑅𝑣
𝐺12 (15) 

where 𝑅𝑣
𝐸11, 𝑅𝑣

𝐸22, 𝑅𝑣
𝑣12, 𝑅𝑣

𝑣23and 𝑅𝑣
𝐺12 are the regressions of the dataset of E11, E22, ν12, ν23 and 

G12, respectively. The optimal ANN was then used to extend the dataset and creating new N 

samples required to accurately identify fibre and interphase parameters. This was conducted 

by using LHS to create N random samples of the inputs within the range given in Table 3. 

These samples are then passed through the trained ANN to obtain the output. LH sampling 

method is appropriate for this work as it ensured a full coverage of the input sample space. A 

denser space is constructed by selection more points, which results in more reliable results. The 

optimum carbon fibre and interphase parameters were selected based on the smallest value 

obtained from Eq. (16):   

min 𝐹(𝑥) =
|𝐸11

𝑡 − 𝐸11
𝐴𝑁𝑁|

𝐸11
𝑡 +

|𝐸22
𝑡 − 𝐸22

𝐴𝑁𝑁|

𝐸22
𝑡 +

|𝑣12
𝑡 − 𝑣12

𝐴𝑁𝑁|

𝑣12
𝑡 +

|𝑣23
𝑡 − 𝑣23

𝐴𝑁𝑁|

𝑣23
𝑡 +

|𝐺12
𝑡 − 𝐺12

𝐴𝑁𝑁|

𝐺12
𝑡  (16) 

where 𝐸11
𝑡 , 𝐸22

𝑡 , 𝑣12
𝑡 , 𝑣23

𝑡  and 𝐺12
𝑡  are the experimental effective elastic properties given in Table 

2. 𝐸11
𝐴𝑁𝑁 , 𝐸22

𝐴𝑁𝑁 , 𝑣12
𝐴𝑁𝑁 , 𝑣23

𝐴𝑁𝑁  and 𝐺12
𝐴𝑁𝑁 are corresponding effective elastic properties predicted 

by the ANN.  

Finally, the identified parameters were used to calculate the effective elastic properties using 

the plug-in (Step 3) and results were compared with experimental data.  

   



 15 

4.3 Results and Discussion 

The ANN which can predict fibre and fibre/matrix interphase parameters from 

micromechanical FE modelling dataset is designed. The number of total samples created by 

micromechanical FE modelling to train the ANN is 500.  350 of them is randomly assigned for 

training, 75 for validation set and the rest used for testing. The ANN is built and validated as 

explained in Section 4.2.1.   

Table 4 presents some architecture samples used to verify the performance of the ANN in terms 

of R-value. Since 20 runs are performed within each ANN structure to ensure the use of 

different data for each subset and due to the space restrictions of the paper, the table shows 

only the best performance run from the 20 runs. It can be seen from the table that the maximum 

R-value is attained when 42 neurons at the first hidden layer and 48 neurons at the second 

hidden layer are used. 

Table 4 Verification cases of the ANN architecture in terms of R-value for each output element. 

ANN 

architecture 
𝑅𝑣

𝐸11 𝑅𝑣
𝐸22 𝑅𝑣

𝑣12 𝑅𝑣
𝑣23 𝑅𝑣

𝐺12 
ƩR 
(Eq. 15) 

7-38-52-5 0.998 0.948 0.995 0.933 0.815 4.689 

7-39-51-5 0.998 0.961 0.997 0.957 0.688 4.601 

7-40-50-5 0.994 0.949 0.997 0.942 0.740 4.623 

7-41-49-5 0.998 0.932 0.997 0.931 0.768 4.626 

7-42-48-5 0.997 0.958 0.996 0.954 0.865 4.771 

7-43-47-5 0.998 0.944 0.997 0.955 0.723 4.617 

7-44-46-5 0.980 0.923 0.979 0.946 0.796 4.624 

7-45-45-5 0.998 0.933 0.996 0.929 0.727 4.584 

7-46-44-5 0.999 0.964 0.998 0.954 0.690 4.605 

7-47-43-5 0.998 0.943 0.995 0.918 0.751 4.605 

Fig. 8 shows the regression graphs for the target and the output of the verification data set only. 

This figure shows the closeness among the output data predicted by the ANN and the target 

data obtained from FEM. The dashed line in each subfigure represents the perfect results when 

the outputs equal targets. It can be seen that E11, E22, ν12 and ν23 are well predicted by ANN 

with an R-value between 0.91-0.99 and a regression slope (m) between 0.81-0.96. G12 is 

slightly less well predicted comparing to other effective elastic properties with an R-value and 

a regression slope of 0.86 and 1.08, respectively. Hence the selected ANN is capable of 

providing a good correlation between the target and the output.  

After training the ANN, the selected model with the highest R-value is used to generate N 

samples. It is found that 10,000 samples of the random input parameters generated by the LH 

sampling method are sufficient to produce a dense space. These new input data (Ef2, νf12, νf23, 

Gf12, Ti,  Knn, Kss) are then processed by the ANN to obtain and the outputs (E11, E22, ν12, ν23, 

G12). The closest point of the new output to the experimental data is found through Eq. (16). 

The corresponding carbon fibre and interphase parameters of the closest point are given in 

Table 5.   
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Fig. 8 ANN predictions versus FEM results for (a) E11 (b) E22 (c) ν12 (d) ν23 and (e) G12. 

Table 5 Identified parameters for fibre and interphase region. 

Ef2 (GPa) vf12 vf23 Gf12 (GPa) T (µm) Knn (GPa/mm) Kss (GPa/mm) 

23.66 0.249 0.437 59.57 0.121 829.81 132.50 
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Finally, the identified fibre and interphase parameters (micro parameters) obtained from 

the ANN are used as input for the FE model to predict the effective properties of the UD 

lamina, i.e., macroscale level properties. The effective elastic properties calculated by the FE 

model using the identified parameters are given in Table 6 (second column). The table also 

shows a comparison between these properties and those predicted by the ANN and the 

experimental data. It can be seen that the effective elastic properties agree well with the 

experimental data with a maximum error of about 6%. This error is mainly due to the using 

fixed value for E11 in the training of ANN.  

Table 6: Macro-level properties predicted by ANN, FE model using identified parameters and 

experimental data  [7]. 

Predicted by ANN  Predicted by FE model  

using identified parameters 

Experimental data 

E11 E22 ν12 ν23 G12 E11 E22 ν12 ν23 G12 E11 E22 ν12 ν23 G12 

129.46 10.81 0.279 0.386 5.24 129.61 11.54 0.279 0.402 5.71 138 11 0.28 0.4 5.5 

5. Conclusions and future improvement 

An ABAQUS® plug-in (VDGen) has been developed for generating virtual data for identifying 

the uncertain materials properties in unidirectional (UD) lamina. In combination with artificial 

neural networks (ANN), the data generated from the plug-in enables the determination of the 

relationship between fibre mechanical properties and fibre/matrix interphase parameters at 

microscale and the mechanical properties of a UD lamina at macroscale. Application of the 

plug-in to a T300/PR-319 UD lamina has shown very good agreement between the predictions 

and the experimental data when using the identified constituent properties. 

A few improvements of the plug-in should be considered in the future. The current plugin is 

designed to support the square and hexagonal unit cell fibre arrays. Micromechanical FE 

modelling of randomly distributed fibres in the matrix is essential when studying the failure of 

the composite lamina. However, using random fibre distribution causes arbitrary meshing 

condition on opposite RVE edges [32, 33]. Further development of the plug-in to support RVEs 

with randomly fibre distribution and capable of generating periodic mesh on the opposite edges 

is under investigation by the authors.    

At this stage, the plug-in is only designed to calculate the effective elastic properties of a 

lamina. We aim to develop it further so that it will be capable of conducting failure analysis 

under uniaxial, biaxial and multiaxial loading conditions.  

The effect of fibre shape has recently been subjected to intensive studies by means of 

computational micromechanics [34, 35]. The current core Python scripts of the plug-in will be 

developed further, so that RVEs with different fibre shapes can be automatically generated. 
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