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Abstract—Modern large-scale computing systems distribute jobs into multiple smaller tasks which execute in parallel to accelerate job
completion rates and reduce energy consumption. However, a common performance problem in such systems is dealing with straggler
tasks that are slow running instances that increase the overall response time. Such tasks can significantly impact the system’s Quality
of Service (QoS) and the Service Level Agreements (SLA). To combat this issue, there is a need for automatic straggler detection and
mitigation mechanisms that execute jobs without violating the SLA. Prior work typically builds reactive models that focus first on
detection and then mitigation of straggler tasks, which leads to delays. Other works use prediction based proactive mechanisms, but
ignore heterogeneous host or volatile task characteristics. In this paper, we propose a Straggler Prediction and Mitigation Technique
(START) that is able to predict which tasks might be stragglers and dynamically adapt scheduling to achieve lower response times. Our
technique analyzes all tasks and hosts based on compute and network resource consumption using an Encoder
Long-Short-Term-Memory (LSTM) network. The output of this network is then used to predict and mitigate expected straggler tasks.
This reduces the SLA violation rate and execution time without compromising QoS. Specifically, we use the CloudSim toolkit to
simulate START in a cloud environment and compare it with state-of-the-art techniques (IGRU-SD, SGC, Dolly, GRASS, NearestFit and
Wrangler) in terms of QoS parameters such as energy consumption, execution time, resource contention, CPU utilization and SLA
violation rate. Experiments show that START reduces execution time, resource contention, energy and SLA violations by 13%, 11%,
16% and 19%, respectively, compared to the state-of-the-art approaches.

Index Terms—Straggler Prediction, Straggler Mitigation, Cloud Computing, Deep Learning, Surrogate Modelling.
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1 INTRODUCTION

Emerging applications of Cloud Data-Centers (CDCs) in do-
mains such as healthcare, agriculture, smart cities, weather
forecasting and traffic management produce large volumes
of data, which is transferred among different devices using
various kinds of communication modes [1]. Due to this
continuous increase in data volume and velocity, large-
scale computing systems may be utilized [2]–[4], which
exacerbates the need for scalable, automated scheduling and
intelligent task placement methods. This work focuses on
this problem by studying, in particular, strategies to mitigate
straggler tasks. Stragglers are tasks within a job that take
much longer to execute than other tasks and can cause a
significant increase in response time due to the need for
synchronizing the outputs of the tasks. Their presence can
lead to the so-called Long Tail Problem [5].

More precisely, the Long Tail Problem occurs when the
completion time of a particular job is significantly affected

• S. Tuli, G. Casale and N. R. Jennings are with the 1Department of
Computing, Imperial College London, United Kingdom.

• N. R. Jennings is also with 5Loughborough University, United Kingdom.
• S.S. Gill is with the 2School of Electronic Engineering and Computer

Science, Queen Mary University of London, United Kingdom.
• P. Garraghan is with the 3School of Computing and Communications,

Lancaster University, United Kingdom.
• R. Buyya is with the 4Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, University of Melbourne, Australia.
E-mail: s.tuli20@imperial.ac.uk, s.s.gill@qmul.ac.uk,
p.garraghan@lancaster.ac.uk, rbuyya@unimelb.edu.au,
g.casale@imperial.ac.uk, n.r.jennings@lboro.ac.uk.

Manuscript received —; revised —.

by a small number of straggler tasks in a negative way. Task
stragglers can occur within any highly parallelized system
that processes jobs consisting of multiple tasks. Google’s
MapReduce framework [6] or the Hadoop framework [7]
are examples of such systems, where solutions for straggler
prevention are common [1], [8], [9]. Both MapReduce and
Hadoop allow for scalability of the system to vast clusters of
commodity servers. The parallel execution of tasks increases
the speed of execution and handles the failures automati-
cally without human intervention following the principles
of IBM’s autonomic model [10], [11]. However, stragglers
can still occur because of software/hardware faults as au-
tonomic models are often slow in handling failures and
can result in long down-times in resource-constrained de-
vices [1]. These lead to unexpected delays in task execution
due to resource unavailability or data loss and cause such
tasks to hog resources which in non-preemptive execution
leads to higher response times. Thus, efficient techniques
are required to mitigate stragglers to prevent high response
times and SLA violations. We now discuss what types of
failures lead to stragglers tasks.

There are two types of failures that can occur during
the execution of jobs: task failures and node failures. The
former occurs when a specific task within a job fails, due
to diverse sources of software and hardware faults [12]. The
latter occurs when one of the resources of a specific node,
which executes the job’s task, fails [1]. This can be caused
by a myriad of possible OS or hardware level faults. As
an example of straggler mitigation techniques, MapReduce
attempts to mitigate task failures by relaunching the task
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once it fails [13]. In terms of a node failure, MapReduce
re-executes all the tasks that were originally scheduled to
be executed on that node. In terms of node failures, when
the performance of a node degrades, either due to an OS
or hardware fault or the node completely fails, a specific
task’s (straggler) execution time can be bloated, causing any
other tasks that depend on it to wait for its completion [14].
At the job level, for the job to be considered complete, all
the tasks comprising the job must finish. If a straggling task
prevents other sibling tasks from successfully completing,
the job will not be complete until all the straggler tasks are
complete [15]. Furthermore, straggler tasks can keep other
tasks dependent on their output waiting and hence consume
additional resources, further impacting the performance of
the computing system.

Stragglers not only affect performance but also deploy-
ment costs. Popular cloud service providers such as Ama-
zon, Google, Netflix and Apple face the challenge of strag-
gler tasks leading to delayed response or resource wastage.
This requires avoidable scaling-up of the cloud infrastruc-
tures, which in turn increase the deployment costs [14],
[16]. The high latency episodes called “tail-tolerant” or
“latency-tail-tolerant”, also affect the performance of cloud
services [17]. Latency tail-tolerant jobs reduce resource uti-
lization and increase energy consumption. Characterization
studies such as [1], [2], [5], [6], [10], [12], [18], show that
resource contention is the main reason for stragglers, occur-
ring when different jobs are waiting for shared resources.
Different applications executing on different nodes may also
contend for shared global resources [17].

Prior work [19], [20] focuses on solving the problem
of straggler tasks by detecting and mitigating which tasks
are stragglers only after the jobs are executed. Straggler
mitigation refers to the prevention of any impact of straggler
tasks on QoS or SLA. This not only requires continuous
computation resources, but these monitoring tasks them-
selves can be so data-intensive that they can themselves
lead to resource contention, delays and prevent scalability
of the system [21]. However, modern technologies like deep
learning allow us to build scalable models to not only detect,
but predict beforehand, which tasks might be straggler
and run mitigation algorithms to save time and improve
QoS. Here, straggler prediction means the prediction of
straggler tasks before execution. In particular, [22], [23] use
deep learning based solutions to predict straggler tasks and
efficiently manage them.

Deep learning based straggler prediction methods face
large prediction errors due to two major problems. First,
these models ignore the underlying distribution of task
execution times which is crucial to determine straggler
tasks [1], [2]. Specifically, diversity in task execution times
leads to the presence of tasks with extremely high or low
execution times. This makes the state space of the neural
network very large when modelling the distribution of task
response times and hence it is often omitted in practical
approaches [22], [23]. Second, these approaches ignore the
heterogeneous host capabilities, which can also lead to
poor scheduling or mitigation decisions [21]. Therefore, a
new method is required which can both proactively predict
straggler tasks and efficiently mitigate them. As an exam-
ple of a heterogeneous execution environment, fog-cloud

environments leverage resource capabilities from both edge
devices and cloud nodes [21]. This leads to high diversity in
the computational resources among host devices in the same
environment. This host heterogeneity impacts the response
time as scheduling in a constrained device may significantly
increase its response time.

These issues motivate us to develop a novel online
SLA-aware STrAggler PRediction and MiTigation (START)
technique. START uses a machine learning model in tan-
dem with an underlying distribution or task response time
for automatic and accurate straggler prediction. To allow
mapping of heterogeneous environments, encoder networks
have shown to be a promising solution [24]. Moreover,
prior works also show that in dynamic environments, Long-
Short-Term-Memory (LSTM) based neural networks help
to adapt to environment changes [25]. Hence, we use an
Encoder-LSTM network to analyze the state of a cloud envi-
ronment. Here, the state of the cloud setup is characterized
as a set of host and task parameters like SLA, CPU, RAM,
Disk and bandwidth consumption. These parameters are
motivated by prior work [26]. Further, as prior work has
shown that response times of tasks in large-scale cloud
setups follow a Pareto distribution [1], we use the Encoder-
LSTM network to predict this distribution in advance to
alleviate the straggler problem proactively.

START also uses speculation and rerun-based ap-
proaches for Straggler Mitigation during the execution of
jobs. Prediction allows early mitigation, reducing the SLA
violation rate and execution time and maintaining QoS at
the required level. Our performance evaluation is carried
out using CloudSim 5.0 [27] and compares our technique
with well-known existing techniques (SGC [9], Dolly [20],
GRASS [8], NearestFit [6], Wrangler [17], and IGRU-SD [22])
in terms of QoS parameters such as energy consumption, ex-
ecution time, resource contention, CPU utilization and SLA
violation rate. Experimental results demonstrate that START
gives lower execution time and SLA violations than existing
techniques, also offering low computational overhead.

The rest of the paper is structured as follows. Section
2 presents related work. Section 3 details START. Sections
4 and 5 describe the evaluation setup and experimental
results. Finally, Section 6 concludes and outlines future
research directions.

2 RELATED WORK

Existing straggler analysis and mitigation techniques can be
mainly divided into two main categories: detection and mit-
igation [1], [2]. The former primarily identify stragglers from
utilization metrics and traces from a job execution environ-
ment like a CDC. Most of these techniques leverage offline
analytics and real-time monitoring methods. Examples of
such techniques include NearestFit [6] and SMT [28]. Within
this category, other techniques use prediction models to a-
priori determine the set of tasks in a job that might be strag-
glers. Examples include RPPS [23] and IGRU-SD [22]. When
considering mitigation, approaches either avoid straggler
tasks or prevent high response times by methods such as re-
scheduling, balancing load or running job replicas (clones).
Examples of such strategies include Dolly [20], GRASS [8],
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Table 1
Comparison of existing models with START

Technique Straggler Detection Straggler Mitigation Proactive Mechanism Straggler Prediction Impact on QoS and Utilization Dynamic Heterogeneous Environment

Detection Only Methods

NearestFit [6] X X
SMT [28] X X
SMA [14] X
RDD [19] X

Mitigation Only Methods

LATE [29] X X X
Dolly [20] X X
GRASS [8] X X X
Dolly [20] X X
GRASS [8] X X X
Wrangler [17] X X

Prediction based Mitigation Methods

SGC [9] X X X X X X
IGRU-SD [22] X X X X X
START (this work) X X X X X X X

LATE [29] and Wrangler [17]. Table 1 summarizes the com-
parison of START with prior approaches. The table shows
which works use straggler prediction, mitigation and/or
detection. Further, proactive mechanism shows if methods
use prediction data to proactively mitigate straggler tasks
or wait till completion of other tasks. Impact on QoS and
Utilization shows whether these methods utilize QoS and
host utilization metrics as feedback to improve prediction
or mitigation performance. Dynamic refers to whether these
methods are able to adapt to changing host/task character-
istics. Heterogeneous environment refers to whether a method
assumes resources to have the same computational charac-
teristics.

Straggler Detection. The NearestFit strategy aims at im-
proving the performance of distributed computing systems
by resolving data skewness and detecting straggler tasks or
unbalanced load. Through this model, [6] proposes a fully-
online nearest neighbor regression method that uses statis-
tical techniques to profile the tasks running in the system.
This model gathers profiles using efficient data streaming
algorithms and acts as a progress indicator and it is therefore
suited to applications with long run times. Even though this
indicator is able to profile complex and large-scale systems,
it is not suitable for heterogeneous resource types as it
does not differentiate hosts on the basis of computational
capacities. Further, it does not take into account task failures
or load on each host.

Straggler Prediction. The work in [23] proposes a re-
source prediction and provisioning scheme (RPPS) using
the Autoregressive Integrated Moving Average (ARIMA)
model, which is a statistical model for the prediction of
future workload characteristics of various tasks running in
a CDC. The work in [22] very recently proposed a tech-
nique called Improved Gated Recurrent Unit with Stragglers
Detection (IGRU-SD) to predict average resource requests
over time. They use this prediction scheme to then run
detection algorithms for predicting which tasks might be a
straggler. However, they do not consider host heterogeneity,
nor do they consider the underlying task distribution, both
of which are crucial for predicting if a task is likely to
become a straggler.

Straggler Mitigation. The work in [20] explores straggler
mitigation techniques and proposes, Dolly, a speculative
execution-based approach that launches multiple clones of

expected straggler tasks and takes the results of the clone,
which finishes execution first without waiting for the other
ones to complete execution. However, there needs to be a
careful balance maintained as over-cloning requires extra
resources and could lead to contention. On the other hand,
under-cloning could lead to slower task execution and no
effective improvement. The authors designed and experi-
mented with short workloads with a small number of jobs.
They identify that the cloning of a small number of jobs
that have short execution times improves reliability without
using too much additional resources. Dolly introduces a
budgeted cloning strategy to only give an excess of 5%
resource consumption for a total of up to 46% improvement
in average job response time.

The work in [8] proposes a strategy called Greedy and
Resource Aware Speculative Scheduling (GRASS). GRASS
uses a similar strategy to Dolly, of spawning multiple
clones of slow tasks but also uses greedy speculation to
approximate which tasks need to be cloned, and dedicate
speculation resources to improve the average deadline-
bound job response time by up to 47% and error-bound
jobs by up to 38%. The work in [29] explores the MapRe-
duce framework to investigate the occurrence of straggler
tasks and optimizes its performance in a heterogeneous
cloud environment. Further, the work in [5] proposes the
Longest Approximate Time to End (LATE) scheduling algo-
rithm, which uses heuristics to search for the optimum task
scheduling policy with latency and cost estimates. They also
estimate the response times of all tasks of a job and assume
that the one with the longest time is a straggler and execute
a copy on a powerful host to reduce overall job response
time. However, these works [5], [8], [29] do not adapt to
dynamic environments.

The work in [17] proposes a proactive straggler manage-
ment approach called Wrangler. The underpinning predic-
tive model uses a statistical learning technique on cluster
utilization counter-data. To overcome modeling errors and
maintain high reliability, Wrangler computes confidence
bounds on the predictions and exploits them in the straggler
management process. Specifically, Wrangler relies on a Gan-
glia based node monitoring to delay the execution of tasks
on nodes that have straggler confidence above a threshold
value. Experiments on a Hadoop-based EC2 cluster show
that Wrangler is able to reduce response times by as much
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as 61%, with 55% less resources when compared to other
speculative cloning based strategies. However, we show
in our experiments that in certain load regimes, e.g., with
low resource utilisations or with highly volatile workloads,
Wrangler suffers from lower accuracy.

Straggler Prediction and Mitigation. The work in [9]
presents a Stochastic Gradient Coding (SGC) based ap-
proach which uses approximate gradient coding to reduce
the occurrence of straggler tasks. They utilize a pair-wise
balanced scheme to determine the jobs to run as a clone or
redundant tasks. The SGC algorithm runs in a distributed
fashion, sharing a datapoint with multiple hosts to compute
independent gradients on the data which is aggregated by
the master. This approach prevents the straggler analysis
itself from becoming slow and hence is appropriate for
volatile environments. However, in large-scale setups, mon-
itoring data across all host machines is inefficient and can
create network bandwidth contention, negatively impacting
job response times. The work in [30] proposes a task repli-
cation approach for job scheduling to minimize the effect of
the Long-Tail problem. The authors analyze the impact of
this approach in a heterogeneous platform. Their algorithm
predicts the mean service times for single and multi-fork
scenarios and chooses the optimal forking level. This allows
their model to run multiple instances in datacenters with
powerful computational resources. However, the approach
can handle only a single job system with the same workload
characteristics and fails in the presence of diverse workloads
as pointed by [30].

3 SYSTEM MODEL

We now describe the system model, which predicts the
number of straggler tasks to avoid the Long Tail prob-
lem. The prediction problem requires a model to know
beforehand which tasks, or at least what number of tasks
may adversely impact the performance of the system. This
depends on not only the types of job being executed on the
CDC, but also the characteristics of the physical machines.
We first discuss a Pareto distribution based model that
is able to predict the number of straggler tasks based on
user specifications and hyper-parameters. Later, we describe
another deep learning (DL) based approach that generates
these hyper-parameters of the Pareto distribution based on
the characteristics of the jobs and physical cloud machines.

A summary of our system model components and inter-
action is shown in Figure 1. Here, the Cloud Environment con-
sists of a cloud scheduler and host machines. The scheduler
allocates tasks onto the hosts, which are then executed and
utilization metrics are captured by the resource monitoring
service of the cloud environment. The utilization metrics
of hosts and active tasks are then used to develop feature
vectors by the Feature Extractor. The user also provides
new jobs for which the feature vectors are instantiated as
0. The host and task feature vectors are then combined
to form matrices that are then forwarded to a Straggler
Prediction module. The expected tasks flagged as stragglers
by the prediction module are then mitigated using a task
speculation or a re-run strategy as we describe later.

We consider a bag-of-tasks job model where a bounded
timeline is divided into equal sized scheduling intervals.

Figure 1. START System Architecture

At the start of each interval, the model receives a set of
independent jobs. SLA deadlines are defined for each job
at the time it is sent to the model. Each job consists of q
dependent or independent tasks, where 0 < q ≤ q′. We now
describe the modeling of the response times of tasks using
the Pareto distribution.

3.1 Pareto Distribution Model
As observed in prior work such as [1], [2], [5], the task
execution times in a cloud computing environment can
be assumed to follow a Pareto Distribution for which the
Cumulative Distribution Function (CDF) is

FX(x) =

{
1− ( xβ )

−α x ≥ β
0 x < β,

(1)

where β is the least time taken among tasks, and α is the tail
index parameter (α, β > 0). X1, X2, . . . , Xq are the times
taken by q tasks of a particular job running on the Cloud
Environment. The Log-Likelihood Estimate [31] is then

log(L(X1, . . . , Xq)) = q log(α)+q α log(β)−(α+1)

q∑
i=1

log(Xi),

(2)
where L is the likelihood function for the random variables
X1, . . . , Xq .

As α > 0, to maximize the log likelihood, β is obtained
as the largest possible value such that Xi > β, ∀ i. Thus,
β = mini(Xi). For α, if we set a partial derivative of the
likelihood with respect to α as 0, we get

α =
q∑q

i=1 log(Xi)− q log(β)
. (3)

For a given job execution, the task execution times de-
termine the (α, β) parameters of the assumed distribution.
Thus, at the time of training, we run multiple jobs and
fit the parameters using Equation 3. These parameters are
then used to predict the number of straggler tasks based
on a straggler parameter K, by calculating the number of
tasks which in expectation could have completion times
greater than K. Thus, for α > 1 (for a well defined mean
of the distribution) and q tasks, q · (1 − FX(K)) gives us
the expected number of straggler tasks, where FX is the cu-
mulative distribution function. For mathematical simplicity,
we keep the straggler parameter as a multiple of the mean
execution time, given as K = kαβ/(α− 1). This gives the
expected number of straggler tasks (ES),

ES = q

(K
β

)−α
(4)
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Figure 2. Empirical results for different hyper-parameter values compar-
ing F1 scores of straggler classification on test data. k, I and T are
defined in Sections 3.1 and 3.2. F1 score is defined as per Eq. 5.

(a) MH (b) MT

Figure 3. Matrix Representation of Model Inputs

Empirically1, we find that k = 1.5 strikes a good balance
between the cases and hence this value is used in the
experiments, but can be changed as per user requirements.
Figure 2 demonstrates results corresponding to simple grid
search on the three parameters k, I and T . The latter two
parameters are defined in Section 3.2. For k = 1.5, the
prediction performance (F1 score) is the highest. For each
task in the system, we check whether the predicted class is
true or not, i.e., if the completion time of the task is > K. The
number of correct class labels is denoted as tp and incorrect
ones as fp, then the F1 score is defined as

tp

tp+ 1
2 (fp+ tp)

. (5)

For k < 1.5 the model has high false negatives, whereas for
k > 1.5, the model has high false positives.

3.2 Encoder Network

The previous subsection shows how the Pareto distribution
can be used to determine the expected number of straggler
tasks in a job. However, the parameters (α, β) are not known
beforehand for a job. As motivated in Section 1, to predict
these parameters, we use an encoder network that analyzes
the tasks and the workloads at different machines in the
CDC for a finite amount of time.

1. As given in Figure 2, based on the method described in [17] and a
dataset extracted from traces on a desktop system with 64-bit Ubuntu
18.04 operating system, which is equipped with the Intel® Core™ i7-
10700K processor (No. of Cores = 8, Processor Base frequency = 3.80
GHz and turbo frequency = 5.10 GHz), 64 GB of RAM, and 1 TB NVMe
storage. We have used Hadoop MapReduce for manage and execute
word count application.

Figure 4. Straggler prediction model

We first identify a job j as a set of tasks {Ti}qi=1, where
q < q′ if less than q′ tasks then rest q′ − q rows are 0. For
each task Ta, p feature values are used to form a feature
vector. Similarly, for each host out of n hosts {Hi}ni=1, m
feature values are used. The features used for hosts include
utilization and capacity of CPU, RAM, Disk and network
bandwidth. The feature vector also includes the cost, power
characteristics, and the number of tasks to which this host
is allocated. The features used for tasks include CPU, RAM,
Disk and bandwidth requirements and the host assigned
in the previous interval. These were used to characterize
the system state for deep learning models as is common
in prior art [32]–[34]. These feature vectors of hosts (MH )
and tasks (MT ), as shown in Figure 3, are then used to
predict the Pareto parameter values. The neural network
model and the working of the system is shown in Figure
4. The input matrices are first passed through an encoder
network, the output of which is sent to a Long Short Term
Memory (LSTM) network [35]. To prevent the LSTM model
from diverging, we take an exponential moving average of
each matrix using a 0.8 weight to the latest resource matrix
(as in [36]). For time-series prediction, multiple machine
learning models could be used, including Echo State Net-
works (ESN) or LSTMs [37]. However, as ESNs control the
degree of delays using a manually chosen constant (leaking
rate), this typically lowers the generalization ability when
applied to different load traces [38]. Hence, we use LSTMs
to develop our parameter estimation model.

The Encoder network is a 4 layer fully-connected net-
work with the following details (adapted from prior art [24],
[32], [33]):
• Input layer of size |MH |+ |MT |. The non-linearity used

here is softplus2 as in [32]. The matrices are flattened,
concatenated and given as an input to the encoder
network.

• Fully connect layer of size 128 with softplus activation.
• Fully connect layer of size 128 with softplus activation.
• Fully connect layer of size 32 with softplus activation.
We run inference using a neural network model for

each job. Specifically, for each job j, we provide the model
with the inputs MH for host characteristics and MT for all
running tasks in j. For each job, we generate α, β param-
eters of the Pareto distribution to evaluate the number of
straggler tasks. The LSTM network has 2 layers with size 32
nodes. The predicted output of the LSTM network becomes
an input for a fully connected layer with 2 nodes, which

2. The definitions of these activation functions can be seen at the Py-
Torch web-page: https://pytorch.org/docs/stable/nn.html
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Table 2
Notation

Symbol Meaning

q Maximum number of tasks in a job
α, β Parameters of the Pareto distribution
K Straggler parameter in START
ES Expected number of straggler tasks
I Time-period of START inference in seconds
T Time-duration of START inference in seconds
n Number of hosts

outputs the (α, β) values after a Rectified Non-linear Unit
(ReLU) so that these values are positive (with addition of 1
to α so that the mean of the distribution is defined). This
is sent to the LSTM Network. To implement the proposed
approach, we use PyTorch Autograd package [39] to run
the back-propagation procedure for network training. We
keep sending the input matrices for a finite time of T ,
periodically after every I seconds. The LSTM cell takes in
two inputs, the hidden state of the previous interval and
the output of the encoder network. Considering the output
of the previous iteration, i.e., the hidden state ηt−1 and the
output of the encoder network λ, the output for the current
interval becomes ηt = LSTM(ηt−1, λ) (see Figure 4). Here,
η0 = 0 and t ∈ {0, I, 2 · I, . . . , T }. Using grid-search, for
the experiments we set I = 1 and T = 5, which empirically
gives the best results1.

The output of LSTM network gives us the parameters for
the Pareto distribution, which are then used to find expected
straggler tasks (ES). This constitutes the Straggler Prediction
module in Figure 1. The objective of the model training
is to predict the appropriate distribution parameters using
the utilization metrics and use this distribution to calculate
the expected number of straggler tasks as described in
Section 3.1. ES determines the number of tasks to mitigate
using rerun/speculation-based methods, as explained in the
next subsection. Out of the q tasks, first the parameters (α, β)
are calculated after T time-steps and then bESc tasks are
mitigated. This ensures that if ES is very small (< 1), we
do not mitigate any tasks, saving computational resources.
Hence, after execution of q−bESc tasks, we apply mitigation
techniques on the remaining tasks to prevent delays in result
generation. Compared to other methods, our model nearly
eliminates the detection time and hence is able to provide a
faster response to users (as shown in Section 5). The main
symbols and their meanings are summarized in Table 2.

3.3 Speculation and Task Rerun

To mitigate the Long Tail problem, we use the following two
strategies (as in prior work [1], [30]) for the straggler tasks
detected by our prediction model.

1) Speculation: We run a copy of the straggler task on a
separate node and use the results we get first. This is
crucial for deadline driven tasks that need results as
soon as possible. Thus, this method gives us the least
response time at the cost of running multiple nodes.

2) Re-Run Task: We stop execution of the straggler task on
the respective node and run a new instance of the same
task in a new node. This method is suitable for tasks

Algorithm 1 Straggler Prediction and Mitigation Algorithm
Inputs:

1: J ← Set of all jobs being executed currently [j1, j2, ..., jr]
2: Tnm ← Set of tasks of job jn where m ∈ {1, 2, 3...q}
3: Mtime ←Max allocated time to release the resource.

Variables:
4: Jn ← Set of normal jobs ⊆ J without straggler tasks
5: Js ← Set of jobs ⊆ J with > 0 straggler tasks

Procedure PREDICTSTRAGGLER(job)
6: for time t from 0 to T with step I
7: q ← Number of tasks in input job
8: Extract feature vectors of host machines as MH

9: Extract feature vectors of tasks of input job as MT

10: Predict (α, β) using the Neural network

11: Find ES as q
(
K
β

)−α
12: Run job till completion of q − bESc tasks
13: return incomplete tasks
14: Procedure SPECULATION(task list)
15: for task t in task list
16: Run a copy of t on a different node
17: Procedure RERUNSTRAGGLERTASK(task list)
18: for task t in task list
19: Run the same task t on different node
20: Begin
21: for job ji in J
22: stragglerTasks← PREDICTSTRAGGLER(ji)
23: if stragglerTasks is empty
24: add ji to Jn
25: continue
26: else
27: add ji to Js
28: Wait for specific time (Mtime), if ji does not

respond then generate alert for action
29: if ji is deadline oriented
30: SPECULATION(stragglerTasks)
31: else
32: RERUNSTRAGGLERTASK(stragglerTasks)

Figure 5. Comparison of START with detection based approaches.

that are not deadline critical as it runs only one copy of
the task at a time which reduces energy consumption
and prevents congestion.

The choice of the separate or new node is performed
by the underlying scheduling scheme (further details in
Section 4). We do not consider task cloning as it has sig-
nificant overheads in large-scale environments [40]. In both
approaches mentioned above, we select the new node that
has the lowest moving average of the number of straggler
tasks for the current time-step. Algorithm 1 describes in
detail the complete approach of straggler prediction and
mitigation and is run periodically to eliminate the long tail
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problem. As shown, START first determines the host and
task feature matrices for every job (lines 8 and 9), which
are then analyzed for T time-steps to predict the number of
straggler tasks (line 13). For each job which has bESc > 0,
mitigation techniques are run for remaining tasks when only
bESc of them are left (lines 30 and 32). Figure 5 shows
how START is able to provide much lower response times
compared to existing detection based algorithms by nearly
eliminating the detection time as it predicts early-on the
number of tasks that are highly likely to be stragglers. This
constitutes the Straggler Mitigation module in Figure 1.

4 EVALUATION SETUP

4.1 Evaluation Metrics

We use common evaluation metrics [1], [8], [9]. We assume
there are n host and q jobs currently in the system.
1) Energy Consumption: The cumulative energy consumed
for a given time is given by

E = ECPU + EDisk + EMemory + ENetwork + EMisc, (6)

where ECPU is the total energy consumed by all the
processors, which includes dynamic energy as CV 2f ,
short-circuit energy, leakage energy, and idle energy
consumption [10]. EDisk is the energy consumed for all
read/write operations plus the idle energy consumed
by all the disks. EMemory is the energy consumed by
all memories (RAM and Cache) in the computational
nodes. ENetwork is sum of energies consumed by network
devices which include routers, gateways, LAN cards
and switches. EMisc is energy consumed by other
components like motherboard and port connectors.
However, in simulation it is difficult to find out each
energy component separately, so we calculate maximum
and minimum energy consumption (Emax, Emin) by
hardware profiling as per Equation 6 and using Standard
Performance Evaluation Corporation (SPEC) benchmarks
https://www.spec.org/cloud_iaas2018/results/.
We then use Equation 7 to get total energy consumption
in CloudSim at time t. Here, U tk is the total host resource
utilization (sum of all workloads) of host k. This is a
common practice [27]. Thus,

Ettotal =
n∑
k=1

U tk · (Emax − Emin) + Emin. (7)

2) Execution Time: The average execution time is

T execavg =
1

q

q∑
i=1

(TCi − TSi ) +
q∑
i=1

Ri. (8)

This is the total time taken to successfully execute an
application, on average, for all tasks. Here TCi , TSi and Ri
are the completion, submission and restart time of task i.
3) Resource Contention: Resource contention occurs when one
workload shares the same resource during the execution
[20]. This may be due to unavailability of the required
number of resources, or because there are a large number

of workloads with urgent deadlines. Resource contention is
quantified as

Conresourcetotal =
n∑
k=1

qk∑
i=1

Reqresourcei,k ·1(resourcei overloaded),

(9)
where qk is the number of tasks being executed at resource
k and Reqresourcei,k is the resource requirement of ith task at
node k. Also, 1() denotes the indicator function.
4) Memory Utilization: The memory utilization of host k in
percentage terms is

Umemoryk =
P totalk − (Fk +Bk + Ck)

P totalk

× 100, (10)

where P totalk , Fk, Bk, Ck are the total physical, free, buffer
and cache memory respectively.
5) Disk Utilization: The disk utilization of host k in percent-
age terms is

Udiskk =
Total Used

Total HDSize
× 100. (11)

6) Network Utilization: The network utilization of host k in
percentage terms is

Unetworkk =
Bitsrxtotal +Bitstxtotal

BWk × SI
× 100, (12)

where Bitsrxtotal and Bitstxtotal are the total bits received and
transmitted in an interval. BWk is the bandwidth of host k
and SI is the size of the interval.
7) SLA Violation Rate: For q tasks we have q SLAs. Each SLA
has a weight (ith SLA having weight wi). The total SLA
violation rate is

SLAviolationtotal =
1

q

q∑
i=1

wi · 1(SLAi is violated). (13)

We also use other metrics including Resource contention, CPU
utilization and Completion times as defined in [41].

As per prior work [1], the metric for comparing pre-
diction accuracy is the Mean Average Percentage Error
(MAPE) which is defined as the mean percentage error of
the predicted value (number of straggler tasks for each job)
from the actual value and given by Equation 14. To obtain
the actual value, we only perform straggler prediction and
compare MAPE of START, IGRU-SD and RPPS [23] as other
baselines do not perform straggler prediction. We use this
to calculate the number of straggler tasks using maximum-
likelihood estimation (see Equation 4). Thus,

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − y′tyt

∣∣∣∣ , (14)

where yt and y′t are the actual and predicted number of
straggler tasks and n is the number of scheduling intervals
for the complete simulation.

4.2 Workload Model
Our evaluation uses CloudSim toolkit and real-time work-
load traces are derived from PlanetLab systems [42]. This
dataset contains traces of CPU, RAM, disk, and network
bandwidth requirements from over 1000 PlanetLab tasks
collected during 10 random days. These traces are collected
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Table 3
Configuration Details of simulated Physical machines

CPU RAM and Storage Core count Operating System Number of Virtual Nodes

Intel Core 2 Duo - 2.4 GHz 6 GB RAM and 320 GB HDD 2 Windows 12
Intel Core i5-2310- 2.9GHz 4 GB RAM and 160 GB HDD 4 Linux 6
Intel XEON E 52407-2.2 GHz 2 GB RAM and 160 GB HDD 4 Linux 2

using a scheduling interval size of 300 seconds. The virtual
machines are located at more than 500 places across the
globe. The data was collected on 2880 intervals each, thus
each trace was of this size [43]3. In this dataset, 50% of the
traces are deadline driven and 50% are not. We get similar
results on other distributions. A collection of 2 to 10 tasks is
defined as a job. We use data for 800 tasks as our training
set and 100 tasks’ data as the test set. As in prior work [32],
a Poisson Distribution Poisson(λ), with λ = 1.2 jobs, is
selected for the number of jobs to be created periodically.
This is because all the workloads/tasks of different jobs
are independent of each other. The requests submitted by
users are considered as cloudlets, which have three specific
requirements (CPU, memory and task length).

4.3 CloudSim Simulation Environment

We evaluate the performance of START using a simulated
cloud environment. We implement our straggler detection
and mitigation technique by introducing the different kinds
of faults using an event-driven module. The neural network
and back-propagation through time code were implemented
using PyTorch library in Python. As in prior work [44], we
have used a Weibull Distribution to model failure character-
istics. The failure distribution is given by

f(x; k, λ) =
k

λ

(x
λ

)k−1
, (15)

where x is the time-to-failure. We assign the parameters
k = 1.5, λ = 2 as in [44], [45]. The introduced fault
types are (1) host faults (memory faults and faults in the
processing elements), (2) Cloudlet faults (due to network
faults) and (3) VM creation faults. We consider task faults
where the underpinning applications need to rerun due to
task breakdown. For host failure, all tasks running in that
host need to restart. We consider only ephemeral host faults,
i.e., our hosts are offline for a short duration of time (up to 4
intervals in our experiments) instead of being permanently
down. Other faults considered in the system include un-
availability of memory space, disk page faults and network
packet drops that increase the response time of running
tasks. Every change in the states of VMs and hosts should be
realized by the cloud datacenter through the cloud broker.
Further, the broker uses a cloudlet specification to request
the creation of VM and scheduling of cloudlets. We have
designed a Fault Injection Module to create a fault injector
thread by simulating the cloudlet faults, host faults and VM
creation faults. A failed node can return to service only after
a downtime as defined in [44].

3. The traces from the PlanetLab systems can be downloaded from
https://www.planet-lab.org/planetlablogs.

Table 4
Simulation Parameters for experiments

Parameter Value

Number of VMs (n) 400
Number of Cloudlets (Workloads) 5000
Host Bandwidth 1 -2 KB/S
CPU IPS (in millions) 2000
Cloud Workload size 10000 ± 3000 MB
Cloud Workload cost 3 - 5 C$
Memory Size 2-12 GB
Input File size 300 ± 120 MB
Output File size 300 ± 150 MB
Power Consumption (KW) 108 - 273 KW
Latency of hosts 20-90 Seconds
Size of Cache memory 4 - 16 MB
CPU Power Consumption 130 - 240W
RAM Power Consumption 10 - 30W
Disk Power Consumption 3 - 110W
Network Power Consumption 70 - 180W
Power Consumption of other Components 2 - 25W

The Fault injector thread uses a Weibull Dis-
tribution and generates events which execute com-
mands such as “sendNow(dataCenter.getId(), FaultEvent-
Tags.HOST FAILURE, host);” [44]. The Fault Injection Mod-
ule contains three entities such as FaultInjector, FaultEvent
and FaultHandlerDatacenter. FaultInjector extends the SimEn-
tity class of CloudSim and start simulation to insert fault
events randomly using the Weibull Distribution. FaultEvent
extends the SimEvent class of CloudSim, which describes
the type of faults such as create VM failure, cloudlet failure
and host failure. FaultHandlerDatacenter extends the Data-
center class and processes fault events sent by the FaultGen-
erator and handles VM migration. In this simulation setup,
four Physical Machines (PMs) characteristics (CPU, RAM,
Disk and Bandwidth capabilities) are used with a various
number of virtual nodes as shown in Table 3. Since straggler
tasks are particularly common in resource-constrained de-
vices [1], we use devices with low core count and RAM for
our experiments. The test setup is similar to prior work [41]
.

Table 4 details the values of the simulation parameters
used in the performance evaluation, collected from the exist-
ing literature and empirical studies [10], [46]–[48]. We keep
the parameters I and T fixed as 1 and 5 seconds respectively
throughout the simulation. We dynamically change the k
value based on empirical results for the data up till the
current interval with the initial value as 1.5 (as described
in Section 1).

4.4 Model Training
To train the Encoder-LSTM network, we use the PlanetLab
dataset and divide the workloads of 1000 tasks into 80%
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training dataset and the rest as the test dataset. For training
and test sets too, we keep the 50-50 ratio of tasks that are
deadline-driven to those that are not. Further, we use a
scheduler that selects tasks at random and schedules them
randomly to any host using a uniform distribution. The
random scheduler allows us to obtain diverse host and
task characteristics for model training, which is crucial to
prevent under-fitting of the neural network. The response
time histogram was generated and compared against the
(α, β) output of the Encoder-LSTM network. The model was
trained using Mean-Square-Error Loss between the values
based on the predicted distribution and the actual data. We
used a learning rate of 10−5 and the Adam optimizer to
train the network [49].

4.5 VM Scheduling Policy
We use the A3C-R2N2 policy which schedules workloads
using a policy gradient based reinforcement learning strat-
egy which tries to optimize an actor-critic pair of agents [32].
This approach uses Residual Recurrent Neural Networks
(R2N2) to predict the expected reward for each action (i.e
scheduling decision) and tries to optimize the cumulative
reward signal. The A3C-R2N2 policy has been shown to
outperform other policies in terms of response time and SLA
violations [32]; hence, it is our choice of scheduling method
for comparing straggler mitigation techniques.

4.6 Baseline Algorithms
We have selected six baseline techniques NearestFit, Dolly,
GRASS, SGC, Wrangler and IGRU-SD which are the most re-
cent among prior works (see Section 2 for details). We have
chosen recent and relevant techniques from the literature to
validate our technique against state-of-the-art techniques.
1) NearestFit: uses a statistical curve fitting approach to

detect stragglers. The function a+ b ·xc is fitted with x as
the size of the input file for a task [6]. However, vanilla
NearestFit is not able to mitigate the detected stragglers,
so we use speculation on the detected tasks.

2) Dolly: is a straggler mitigation technique that forks tasks
into multiple clones which are executed in parallel within
their specified budget. The number of clones are calcu-
lated based on the Upper-Confidence-Bound as in [20]
using the CPU utilization of tasks.

3) GRASS: is straggler mitigation framework, which uses
the concept of speculation to mitigate stragglers reac-
tively. It is implemented using two algorithms, one for
greedy speculation and the other for resource-aware
scheduling.

4) SGC: is an approach using distributed gradient calcula-
tion to utilize a pair-wise balancing scheme for running
clones of tasks.

5) Wrangler: is a proactive straggler mitigation technique,
which uses linear modelling approach to reduce the
utilization of excess resources by delaying the start of
tasks predicted as straggler.

6) IGRU-SD: is a GRU neural network based resource re-
quirement prediction technique which uses detection
mechanisms on the predicted future characteristics [22].
As it only predicts straggler tasks and does not mitigate
them, we use the same re-run and speculation strategy
(based on deadline requirements) for fair comparison.

5 PERFORMANCE EVALUATION

5.1 Experimental Observations
As in prior work [1], [30], we used QoS parameters to
evaluate the performance of START as compared to the
existing techniques. We run our experiments for 24 hours,
i.e., 288 scheduling intervals. We average over 5 runs and
use diverse workload types to ensure statistical significance.

5.1.1 Variation of Resource Utilization
We consider 4 types of reserved utilization for CPU, disk,
memory and network, where utilization is blocked inten-
tionally (20%, 40%, 60% and 80%) to test the performance of
the proposed technique. Figure 6 shows the comparison of
QoS parameters such as Execution Time, Energy, Resource
Contention and SVR with different values of CPU, disk,
network and memory utilization.

Figure 6(a) shows the value of execution time for dif-
ferent straggler management techniques with variation in
the value of CPU, disk, network and memory utilization.
The value of execution time increases with the increase
in the value of reserved utilization, but START performs
better than the existing techniques because it tracks the
states of the resources dynamically for efficient decisions.
The value of execution time in START is 11.47-17.4% less
than the baseline methods. Figure 6(b) shows the variation
of resource contention with different values of utilization.
The value of resource contention increases as the value of
utilization increases. The value of resource contention in
START is 12.34-15.19% less than the baseline methods. This
is due to the execution time variation across various tasks
and resources due to the filtered resource list obtained from
the resource provisioning unit (see Section 2).

Figure 6(c) shows the energy consumption for different
values of utilization and we observe that energy consump-
tion increases with the utilization for all straggler manage-
ment techniques. However, START performs better than the
prior art as it avoids over or under-utilization of resources
during scheduling. The value of energy consumption in
START is between 18.55% and 22.43% less than the baseline
methods. Figure 6(d) shows the variation of SLA violation
rate with different values of utilization and value of SLA vi-
olation rate is increasing as the value of utilization increases.
The value of SLA violation rate in START is between 21.34%
and 26.77% less than the baseline methods. This occurs
because START uses admission control and a reservation
mechanism for execution of workloads in advance.

5.1.2 Variation of Number of Workloads
In this section we evaluate the value of various performance
parameters as we increase the number of workloads.

Figure 7(a) shows the variation of execution time with
different numbers of workloads. The value of execution time
in START is 19.74-23.84% less than the baseline methods.
The interpretation of resource contention for different num-
bers of workloads is shown in Figure 7(b) which shows the
value of resource contention increases with the increase in
the number of workloads. START performs better than ex-
isting techniques; the average value of resource contention
in START is 19.12-24.84% less than the baseline methods.
Figure 7(c) shows the variation of energy consumption
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Figure 6. Comparison of QoS parameters with different value of CPU, disk, network and memory Utilization: a) Execution Time, b) Resource
Contention, c) Energy Consumption and d) SLA Violation Rate
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Figure 7. Comparison of performance parameters with different value of workloads: a) Execution Time, b) Resource Contention, c) Energy
Consumption, d) SLA Violation Rate, e) Network Utilization, f) CPU Utilization, g) Disk Utilization and h) Memory Utilization

with different numbers of workloads and the value of
energy consumption in START is 13.71-18.01% less than
the baseline methods. The variation of SLA violation rate
for different number of workloads is shown in Figure 7(d)
and the value of SLA violation rate is increasing with the
increase in number of workloads but START performs better
than existing techniques. The average value of resource
contention in START is 9.26-12.92% less than the baseline
methods. The reduced execution times (and hence energy
consumption and SLA violations) are due to efficient and
proactive mitigation of stragglers by START. Further, using
the Pareto distribution allows START to identify stragglers
prior to their completion, which reduces resource usage and
hence contention.

Figure 7(e) shows that the variation of network utiliza-
tion with a different number of workloads for START and
the baseline methods. All the utilization metrics presented
in the figure are averaged across the completed tasks. The
experimental results show that the average value of network
utilization in START is between 18.6% and 25.67% more
than the baseline methods. The variation of CPU utilization
with different numbers of workloads is shown in Figure
7(f) and it shows the value of CPU utilization is decreasing
with the increase in the number of workloads but START
performs better than existing techniques. The value of CPU

utilization in START is between 16.61% and 17.29% more
than the baseline methods. Figure 7(g) shows the variation
of disk utilization with a different number of workloads for
all methods. The experimental result show that the average
value of disk utilization in START is 13.25-15.34% more than
the baseline methods. The variation of memory utilization
with a different number of workloads is shown in Figure
7(h) and indicates that the value of memory utilization is
decreasing with the increase in the number of workloads but
START performs better than existing techniques. The value
of memory utilization in START is 7.92-17.54% more than
the baseline methods. The reduction in usage of resources
in case of START is because of the conservative execution
of tasks based on straggler prediction. Instead of run-
ning/speculating straggler tasks in advance, START waits
for the completion of q − bEsc (refer Algorithm 1). Thus,
if the predicted straggler tasks do complete earlier than
expected, they are not cloned, avoiding resource wastage.

5.2 Straggler Analysis

Figure 8 shows the variation of completion time of different
workloads for different straggler management techniques
with different utilization percentages of CPU, disk, memory
and network. The line plots show the completion time across
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Figure 8. Comparison of performance based on execution time for different utilization: a) utilization limit = 20%, b) utilization limit = 40%, c) utilization
limit = 60% and d) utilization limit = 80%

the workloads sorted by their creation time and the bar plots
show the variation in the completion time. A higher vari-
ance of completion time implies a higher number of tasks
that cause a delay in job completion. Thus, a simple measure
for comparison is the variance of execution times across
different tasks. Figures 8(a), 8(b), 8(c) and 8(d) show the
comparison of START with existing straggler management
techniques for 20%, 40%, 60% and 80% reserved utilization
respectively. The observed improvement occurs because
START is very effective in the detection and mitigation of
stragglers at run-time. It is also identified that the comple-
tion time is increasing with the increase in utilization limit
from 20% to 80%. Figure 8(d) shows that START has more
variation in job completion time with an 80% utilization
limit, but START performs better than existing techniques
while detecting and mitigating stragglers more efficiently.

5.3 Prediction Accuracy Comparison

To demonstrate the efficacy of the prediction model, we
show that the prediction error is minimized in our model.
To evaluate prediction error, we use the same environment
as before with diverse task requirements and heterogeneous
hosts with host failures. We use the MAPE metric for this.
For ease of comparison, we consider only 2 physical host
types with processors: i5 and Xeon as given in Table 3. We
keep a total 200 VMs out of which the number of VMs
on the Xeon host are changed with time (the variation
is not smooth due to injected VM failures in the model).
As shown in Figure 9(d), as the number of VMs on the
Xeon host change, the percentage prediction error is higher
for RPPS and IGRU-SD than START. This is because these
models do not consider the heterogeneity of VM resource
capabilities. Clearly, when the number of VMs in the Xeon
host change, the heterogeneity changes dynamically, leading
to different probabilities of tasks becoming stragglers. Thus,
the models in IGRU-SD and RPPS are unable to predict
straggler tasks accurately. In contrast, START is able to
analyze host resource capabilities with the task allocation
to correctly predict straggler tasks.

5.4 Overhead Comparison

Figure 10 shows a comparison of run-times of the START
and baseline approaches (including scheduling of re-run or
speculated tasks) amortized over the average task execution
times. As can be seen, the methods proposed in the prior
art are faster at detecting straggler tasks. However, as seen
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Figure 9. Comparison of prediction accuracy of START with IGRU-ISD
and RPPS. (a) Number of VMs in Xeon host out of total 400 VMs,
(b) Comparison of percentage prediction error, (c) MAPE values for
modified environment with changing host resources (d) MAPE values
for initial setup described in Section 5.
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Figure 10. Overhead comparison

earlier, they do not perform well. START has a slightly
higher (0.09%) run-time than the best approach among the
prior work (IGRU-SD).

6 CONCLUSIONS AND FUTURE WORK

We proposed a novel straggler prediction and mitigation
technique using an Encoder-LSTM Model for large-scale
cloud computing environments. This technique allows us to
reduce response time and provide better results with fewer
SLA violations compared to prior works. Thanks to the
prediction models based on maximum likelihood estimation
from a Pareto distribution and recurrent encoder network,
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our model is able to predict straggler tasks beforehand and
mitigate them early on using speculation and re-run meth-
ods. Unlike prior prediction based approaches, START is
able to analyze tasks with host characteristics and utilize the
underlying Pareto distribution for more accurate prediction
and mitigation leading to higher performance than state-of-
the-art mechanisms. It is clear that for different workload
levels, START performs better giving lower execution time,
resource contentions, energy consumption and SLA viola-
tion rate. When compared with different levels of workload
on the cloud system, again START outperforms the baseline
approaches. START has higher CPU, network, RAM and
disk utilization. This is because many jobs, and hence,
tasks complete quickly which leads to more tasks being
finished in a period of time compared to other approaches.
This implies that START is able to leverage resources in a
more efficient manner leading to faster job completion and
hence also saving energy, even with slightly higher resource
utilization for the same number of tasks.

As part of future work, we plan to implement START in
real-life settings using fog frameworks such as PRISM [12]
or COSCO [26]. This will help in making the model more
robust to task and workload stochasticity in real scenarios.
Moreover, we can also fine-tune our neural network models
and Pareto distribution parameters using a larger dataset
which includes diverse fog and cloud applications.
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