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The Elliptical Ornstein-Uhlenbeck Process

Adam Sykulski∗, Sofia Olhede, and Hanna Sykulska-Lawrence

We introduce the elliptical Ornstein-Uhlenbeck (OU) pro-
cess, which is a generalisation of the well-known univari-
ate OU process to bivariate time series. This process maps
out elliptical stochastic oscillations over time in the complex
plane, which are observed in many applications of coupled
bivariate time series. The appeal of the model is that ellip-
tical oscillations are generated using one simple first order
stochastic differential equation (SDE), whereas alternative
models require more complicated vectorised or higher or-
der SDE representations. The second useful feature is that
parameter estimation can be performed semi-parametrically
in the frequency domain using the Whittle Likelihood. We
determine properties of the model including the conditions
for stationarity, and the geometrical structure of the ellipti-
cal oscillations. We demonstrate the utility of the model by
measuring periodic and elliptical properties of Earth’s polar
motion.

Keywords and phrases: Oscillations, Complex-valued,
Widely Linear, Whittle Likelihood, Polar Motion.

1. INTRODUCTION

Complex-valued representations of bivariate time series
are widely used in statistics [17, 40, 42], signal processing
[30, 34], and numerous application disciplines [2, 13, 43].
A key advantage of the complex-valued representation is
that it can be conveniently used to separate structures in
coupled bivariate time series that are circular or noncircu-

lar when viewed in the complex plane. In signal process-
ing, this dichotomy is sometimes referred to as proper or
improper, when specifically describing the geometry of the
second-order structure of time series [30]. A type of non-
circularity of particular interest is that of elliptical oscilla-
tions in a bivariate time series trajectory, which are observed
across numerous applications including oceanography [18],
seismology [32], and planetary geophysics [4].

We introduce a process that can model such elliptical
oscillations in continuous time. Specifically, we propose the
elliptical OU process given by the following first order SDE

(1) dz(t) = (−α1+iβ1)z(t)dt+(−α2+iβ2)z
∗(t)dt+dW (t),

where z(t) = x(t)+ iy(t), i ≡
√
−1, and z∗(t) is the complex

conjugate of z(t). The parameters {α1, β1, α2, β2} are real-
valued, and we shall place constraints on these parameters
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which ensure z(t) is stationary in Section 2. In (1),W (t) is a
complex Wiener process, whose increments follow a complex
normal distribution such that B = {W (t+δ)−W (t)}/

√
δ ∼

CN (0, σ2, r), where σ2 = E(BB∗) defines the variance of the
complex normal, and r = E{B2} defines the pseudo-variance
and is a complex-valued quantity in general [30].

If we set α2 = β2 = r = 0 in (1) then we recover the
complex OU process, introduced by Arató et al. [1], which
is a circular and proper complex-valued process. A proper
process formally means that the complementary covariance
defined by rz(τ) = E{z(t)z(t + τ)} is zero for all τ , where
the autocovariance of a complex-valued process is defined
by sz(τ) = E{z(t)z∗(t + τ)}. Setting α2 = β2 = r = 0
in (1), and hence rz(τ) = E{z(t)z(t + τ)} = 0, has the
effect of ensuring the complex OU of [1] maps out stochastic
circular oscillations with frequency β1 and damping α1 > 0.
The complex OU was proposed by [1] specifically to study
the Chandler wobble—a small oscillatory deviation in the
Earth’s axis of rotation, but has also been used in numerous
other physical applications including physical oceanography
[33], magnetic fields, and reaction-diffusion systems [2].

The purpose of this paper is to study equation (1) in the
more general case α2 6= β2 6= r 6= 0. In Section 2 we derive
properties including conditions for stationarity, the analyt-
ical form of the power spectral density, and the geometrical
relationship between the SDE parameters and the properties
of the elliptical oscillations (e.g. the eccentricity and orien-
tation). In Section 3 we provide computationally-efficient
techniques for fitting parameters of our model to sampled
time series, either using a fully parametric approach, or a
semi-parametric approach when the model is misspecified at
certain frequencies. Finally, in Section 4 we demonstrate the
applicability of our model by studying the elliptical oscilla-
tions contained within Earth’s polar motion, thus extending
the earlier analyses of Arató et al. [1] and Brillinger [5] who
restricted findings to capturing the properties of strictly cir-
cular oscillations.

1.1 Relationship to Literature

The literature on stochastic modelling of noncircular
and improper complex-valued time series has primarily fo-
cused on linear filters of discrete-time processes, see e.g.
[23, 28, 32]. To create noncircularity/impropriety these fil-
ters take a widely linear form by applying autoregressive
and moving average terms to complex-valued processes and



their complex conjugates, taking the general form

(2) zt =

p
∑

j=1

gjzt−j +

p
∑

j=1

hjz
∗

t−j +

q
∑

j=0

kjǫt−j +

q
∑

j=0

ljǫ
∗

t−j ,

where ǫt is i.i.d complex-proper noise. In this context our
generating SDE of (1) can be interpreted as the continuous-
time analogue of the AR(1) version of (2) (with p = 1, q = 0)
studied in [32]. This is consistent with OU processes be-
ing considered the continuous-time analogue of AR(1) pro-
cesses in general. However, as shall see, the mapping between
(1) and (2) is non-trivial meaning the processes are worth
studying separately in their own right—as has been shown
to generally be the case between CARMA (continuous-time
ARMA) and discrete-time ARMA models [6, 8].

In this paper we focus on continuous-time processes, as
in many physical applications it is preferable to model the
evolution of a time series in continuous time using SDEs,
rather than discrete-time filters. This is because SDE rep-
resentations allow explicit connections to be made with un-
derlying dynamical equations (see e.g. [2, 38]), and also pro-
vide a more robust modelling framework to deal with high
frequency data [7]. In the context of complex-valued time
series, continuous-time models have been considered in [27]
who use Karhunen-Loève expansions to generate improper
continuous-time nonstationary time series. Here we focus
on a stationary model and go into depth in terms of un-
derstanding its statistical properties, as well as providing
techniques for parameter estimation, and a demonstration
of its applicability to a real-world problem.

2. PROPERTIES OF THE ELLIPTICAL OU
PROCESS

2.1 Process Realisations

In Fig. 1 we show two realisations of the elliptical OU pro-
cess under two different sets of parameter values, along with
their empirical periodogram estimates to the power spec-
tral density from sampled observations. The time series are
generated using the Euler-Maruyama scheme. These realisa-
tions explain the use of the term “elliptical” to describe the
process, as stochastic elliptical paths are being traced out
over time. For complex-valued time series, the periodogram
is in general asymmetric over positive and negative frequen-
cies, as directions of spin are separated in complex-valued
time series modelling. Negative frequencies correspond to
clockwise oscillations and positive frequencies correspond to
anti-clockwise oscillations. In each panel we overlay the the-
oretical power spectral density whose functional form will
be derived in Section 2.3, where we also include the effect of
aliasing from sampling. As demonstrated in the figure, the
process accomplishes generating elliptical oscillations using
a simple first order model. These elliptical oscillations are
seen to have differing eccentricities, orientations, and rates of

damping in each example. The oscillations create two peaks
of different magnitude in the power spectral density, located
at the same corresponding negative and positive frequency.

Equation (1) specifies the evolution or dynamics of z(t).
If we try to decompose z(t + δt) given z(t), then as dW (t)
is not predictable, we have that

z(t+ δt)− z(t) =

∫ t+δt

t

{(−α1 + iβ1)z(t
′)dt′(3)

+(−α2 + iβ2)z
∗(t′)dt′ + dW (t′)} .

We see directly from this equation that the increment is
a widely linear transformation of z(t) to produce z(t + δt).
Starting from the notion of complex geometry [20, Ch. 1], we
can describe the linear vector space mapped out by complex
vectors. In this space the notion of a line has been replaced
by an ellipse. This ellipse can collapse to a line or a circle
under special circumstances, if perturbed by dW (t′), as we
shall shortly show.

Thus at every time point t′, a modification is formed
by adding an ellipse to the current position z(t) to get to
z(t+ δt). And as z(t) is fixed, if we view the process condi-
tionally on its starting point, then (3) maps out a sequence of
superimposed ellipses. To understand the geometry of this
ellipse we consider a deterministic version of (1) and (3)
where dW (t) = 0. Expressing this in terms of x(t) and y(t)
we have that

dx(t) + idy(t) = {−(α1 + α2)x(t) + (β2 − β1)y(t)} dt
(4)

+ i {(β1 + β2)x(t) + (α2 − α1)y(t)} dt,

such that the parameter α1 sets the damping of the pro-
cess in both x(t) and y(t) if it is greater than zero—as is
the case with the regular real-valued OU process. The pa-
rameters {α2, β1, β2} set the geometry of the ellipse of the
deterministic motion as they cause asymmetric interactions
between x(t) and y(t). As discussed already, the ellipse be-
comes a circle if α2 = β2 = 0, and this can be clearly seen
from (4) when the damping α1 is set to zero. The other ex-
treme is when the ellipse becomes a line which occurs when
β2
1 = α2

2 + β2
2 . To show this is the case, consider (4) where

linear motion occurs when x(t) = Cy(t) (where C is some
constant). Setting the damping α1 = 0 again, from (4) we
then solve for the simultaneous equations −α2 = C(β2−β1)
and β1+β2 = Cα2 which yields β2

1 = α2
2+β

2
2 for the special

case of linear motion. These special cases will be verified in
Section 2.2 where we formally derive the eccentricity of the
elliptical oscillations of the stochastic process of (1).

This geometric structure can be related to time delay em-
bedding plots [16]. In an embedding plot, ℜ{z(t)} would be
plotted against ℑ{z(t)} across time, and this will capture the
dynamics of the SDE as encapsulated by the ellipse geome-
try. Finally, note that (3) is a continuous-time specification.
It demonstrates that increments in the process z(t) associ-
ated with arbitrary increments δt are arrived at by a widely
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Figure 1. The top row displays two realisations of the elliptical OU process of (1) with {α1, β1, α2, β2, σ
2, r} =

{0.02, 1,−0.5,−0.3, 2, 0.6 + i} (left) and {α1, β1, α2, β2, σ
2, r} = {0.002, 0.5, 0.3, 0.3, 0.15,−0.09 − 0.09i} (right). The time

series z(t) is in black, and the {x(t), y(t)} components are in grey. We simulate from t = 0 to t = 1000 but plot from t = 900
to t = 1000. In the bottom row we display empirical periodograms in black (on a decibel scale) of the full series sampled at
integer values of t, and we overlay the theoretical power spectral density from (13) in red, with the aliased version in green.

linear operation with some noisy offset. Equation (3) also
shows that z(t) will trace out a continuous-time trajectory
in the plane, as specified by {x(t), y(t)}.

2.2 Process Properties

To further understand the properties of (1), we first define
a circular real-valued bivariate OU process (see also [38])
given by

(5)

[

dx̃(t)
dỹ(t)

]

=

[

−α −β
β −α

] [

x̃(t)
ỹ(t)

]

dt+
A√
2

[

dW1(t)
dW2(t)

]

,

where α > 0 ensures stationarity, β ∈ R sets the fre-
quency of the circular oscillation, and dW1(t) and dW2(t)
are independent real-valued Wiener process increments such
that {W1(t + δ) −W1(t)}/

√
δ ∼ N (0, 1) and {W2(t + δ) −

W2(t)}/
√
δ ∼ N (0, 1). We refer the reader to [37] for a

more general overview of multivariate OU processes. Set-
ting z̃(t) = x̃(t) + iỹ(t) recovers the complex OU process of
[1]. In other words, (1) and (5) are equivalent when α1 = α,
β1 = β, σ2 = A2, and α2 = β2 = r = 0.

We now transform (5) to create elliptical oscillations by
defining a new process
(6)
[

x(t)
y(t)

]

= QP

[

x̃(t)
ỹ(t)

]

, Q =

[

cosψ − sinψ
sinψ cosψ

]

, P =

[

1

ρ 0

0 ρ

]

.

The parameter ρ is a stretching parameter, and ψ is a rota-
tion parameter, which respectively set the eccentricity and
orientation of the elliptical oscillations. For uniqueness we
restrict 0 < ρ ≤ 1 and −π/2 ≤ ψ ≤ π/2. Note that P must
be applied first in (6) for Q to have an effect. We can in-
terpret (6) as a physical deformation of the circular process
of (5).

We now express [x(t) y(t)]T as a self-contained bivariate
SDE by combining (5) and (6) such that

(7)

[

dx(t)
dy(t)

]

= QP

{

ΩP−1QT
[

x(t)
y(t)

]

dt+
A√
2

[

dW1(t)
dW2(t)

]}

,

where we use that Q−1 = QT and where we define

Ω =

[

−α −β
β −α

]

.

Equation (7) is a complicated vectorised expression for
generating elliptical oscillations, which we contrast with the
simpler expression given in (1) using the complex represen-
tation. However, (7) is useful for understanding the dynam-
ics of, and placing parameter constraints on (1), as we shall
now show. Specifically, we set z(t) = x(t) + iy(t) and show
that (7) can then be written in the form of (1). To do this

The Elliptical Ornstein-Uhlenbeck Process 3



Table 1. This table provides a mapping between the parameters of the elliptical OU process of (1) and the bivariate process
of (7). The function atan2 is the four quadrant inverse tangent and sgn is the signum function.

Bivariate SDE to Elliptical OU Elliptical OU to Bivariate SDE

α1 = α α = α1

β1 = β
2

(

ρ2 + 1
ρ2

)

β = sgn(β1)
√

β2
1 − α2

2 − β2
2

α2 = β
2

(

ρ2 − 1
ρ2

)

sin 2ψ ρ =

(

|β1|−
√

α2

2
+β2

2

|β1|+
√

α2

2
+β2

2

)1/4

β2 = β
2

(

ρ2 − 1
ρ2

)

cos 2ψ ψ = sgn(−β1)
2

atan2(α2, sgn(−β1)β2)

σ2 = A2

2

(

ρ2 + 1
ρ2

)

A2 = σ2

√
β2

1
−α2

2
−β2

2

|β1|

we define the relationship

(8)

[

x(t)
y(t)

]

=
1

2
T

[

z(t)
z∗(t)

]

, T =

[

1 1
−i i

]

.

By combining (7) and (8) we then obtain

(9)

[

dz(t)
dz∗(t)

]

=
1

2
THLT

[

z(t)
z∗(t)

]

dt+ THQP
A√
2

[

dW1(t)
dW2(t)

]

,

where L = QPΩP−1QT . The elliptical OU SDE is then
obtained from expanding (9) and taking the top row, such
that we obtain

dz(t) =

(

−α+ i
β

2

{

1

ρ2
+ ρ2

})

z(t)dt

(10)

+
β

2

{

1

ρ2
− ρ2

}

(sin 2ψ − i cos 2ψ)z∗(t)dt+ dW (t),

where the increment process dW (t) is defined by

σ2 =
A2

2

(

1

ρ2
+ ρ2

)

, r =
A2

2

(

1

ρ2
− ρ2

)

ei2ψ.

By equating the parameters in (1) and (10) we can ob-
tain an exact one-to-one mapping between the parameter set
{α1, β1, α2, β2, σ

2} of the complex SDE of (1), and the pa-
rameter set {α, β, ρ, ψ,A2} of the bivariate SDE of (7). The
mapping in each direction is given in Table 1. The parame-
ter r, which sets the pseudo-variance of the complex-valued
increment process dW (t), is redundant and should be set as

r = −σ
2

β1
(β2 + iα2),

such that the elliptical OU process is reduced to five free
parameters from mapping to an elliptically transformed bi-
variate OU process. Setting ρ = 1 in (10) (and Table 1)
recovers the three-parameter complex OU of [1] and (5).

In the more general setting, we observe from Table 1
the simple relationship that α1 = α, meaning α1 sets the
damping rate of the oscillations in (1), and we thus require
α1 > 0 for the elliptical OU process to be stationary. The
parameters {β1, α2, β1} jointly determine {β, ρ, ψ} (the os-
cillation frequency, eccentricity and orientation) and we re-
quire |β1| >

√

α2
2 + β2

2 to create a valid mapping between
the two processes. The eccentricity of the oscillations is given
by

ε =
√

1− ρ4 =

√

2
√

α2
2 + β2

2

|β1|+
√

α2
2 + β2

2

,

such that larger values of α2 and β2 create more eccentric os-
cillations. This formally establishes the geometric properties
of the elliptical oscillations and verifies the results from Sec-
tion 2.1 that the oscillations are circular when α2 = β2 = 0,
and collapse to a line as α2

2 + β2
2 approaches β2

1 . In the next
section we derive the power spectral density of the elliptical
OU process which will provide yet further intuition on the
effect of the different parameters.

Overall, we see that complex-valued modelling provides a
much more straightforward SDE representation of elliptical
oscillations than bivariate modelling, as shown in (1) and
Fig. 1. However, mapping to an underpinning bivariate pro-
cess, as in (7), allows us to further understand the geometry
and dynamics of the elliptical oscillations, as well as place
necessary parameter constraints.

A similar mapping analysis was performed with discrete-
time models in [32] by equating a widely linear autore-
gressive AR(1) process to a corresponding bivariate AR(1)
process. The mappings between the parameters are signifi-
cantly different here as compared with those found in [32]
for discrete time. There are two reasons why these map-
pings are so different. First, although an AR(1) process
can generally be interpreted as a discrete-time analogue of
an OU process, there is no simple transformation between
their sets of parameters in the widely linear case, as we
show in Appendix A. This is consistent with [6, 8] who dis-
cuss the nontrivial relationship between sampled CARMA
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(continuous-time ARMA) models and regular discrete-time
ARMA models. Secondly, the elliptical OU of (1) has coef-
ficients given in Cartesian form, whereas the coefficients of
the widely linear AR(1) are given in polar form (see (19)
in Appendix A). These parameterizations in each case make
sense as the mappings between the OU and AR processes are
then straightforward in the regular (non widely linear) case,
see (20) in Appendix A. However, these choices of parame-
terizations cause further departures in the parameter map-
pings in the widely linear case. As a result, the conditions
for stationarity, and the geometrical properties of elliptical
oscillations, are entirely different in the continuous-time el-
liptical OU proposed in this paper, and the discrete-time
AR(1) proposed in [32].

2.3 The Power Spectral Density

For stationary complex-valued processes the power spec-
tral density can in general be defined from the autocovari-
ance sequence of the process, such that

(11) Sz(ω) =

∫

sz(τ)e
−iωτdτ, sz(τ) = E{z(t)z∗(t+ τ)},

where the frequency ω will always be given in radians in this
paper. The power spectral density of the complex OU of [1]
is given by [33]

(12) Sz̃(ω) =
σ2

α2
1 + (ω − β2)2

=
A2

α2 + (ω − β)2
,

which we have provided both in terms of the parameteri-
zation of (1) (with α2 = β2 = r = 0), and of the circular
bivariate process of (5). Note that despite being a proper
process, the spectral density will contain energy at both neg-
ative and positive frequencies, decaying at rate ω−2 from the
peak frequency.

The power spectral density of the elliptical OU process is
given by

(13) Sz(ω) = A2











(

1

ρ + ρ
)2

α2 + (ω − β)2
+

(

1

ρ − ρ
)2

α2 + (ω + β)2











,

which is given in terms of the parameterization of the ellip-
tical bivariate process of (6). Then to find the power spec-
tral density in terms of (1) one simply substitutes using the
transformations in the right column of Table 1. The deriva-
tion of (13) is provided in Appendix B.

Intuition is gained by examining (13). While (12) has just
one peak in the spectral density located at ω = β, (13) has
two peaks located at ω = ±β. The rate of damping of both
peaks is determined by α, and the ratio of magnitudes of
the two peaks is determined by ρ. Note that the orientation
parameter ψ does not feature in the power spectral density.
When (13) is represented using the parameters of (1) then
we see that α1 defines the damping of the two peaks, and

{β1, α2, β2} together determine the peak locations and their
relative magnitudes. We have overlaid the power spectral
density of (13) over the periodogram of the simulated series
in Fig. 1, where we have also included the aliased spectral
density given by S̃z(ω) =

∑

∞

k=−∞
Sz(ω + 2πk/∆) which

accounts for the departures at high frequency between the
periodogram and spectral density, caused by sampling the
time series at regular intervals of ∆.

To fully specify the properties of the elliptical OU process,
we need to derive the complementary spectrum defined by

Rz(ω) =

∫

rz(τ)e
−iωτdτ, rz(τ) = E{z(t)z(t+ τ)}.

The complex OU of [1] is a proper process and therefore
Rz(ω) = rz(τ) = 0. The elliptical OU process has a comple-
mentary spectrum given by

Rz(ω) =
A2

4

(

1

ρ2
− ρ2

)

(14)

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

ei2ψ,

which is dependent on ψ, as well as all the other parameters.
We see that as long as ρ < 1 thenRz(ω) is non-zero such that
rz(τ) is also non-zero and the elliptical OU is an improper
process as intended. The derivation of (14) can also be found
in Appendix B. We note that full specification of the power
spectral density and complementary spectrum allows for an
exact method of simulating the process at a fixed sampling
rate, based on circulant embedding and Fourier transforms,
as an alternative to Euler-Maruyama, see [35] for details.

3. PARAMETER ESTIMATION

The elliptical OU of (1) is an improper process, as we
have shown. Therefore to estimate parameters using a max-
imum likelihood approach from an observed complex-valued
time series, we would need to invert large matrices con-
taining both autocovariance and complementary covariance
terms, which will be computationally intensive for large sam-
ple sizes. In this section we detail how inference for complex-
valued time series can be done in the frequency domain
using the Whittle Likelihood and computationally-efficient
Fourier transforms, see [34] for a comprehensive review.

The Whittle likelihood is a pseudo-maximum likelihood
approach which has been shown, for large classes of pro-
cesses, to converge at the optimal O(1/

√
n) rate to the true

parameter values as the sample size n increases [12]. The
classical assumptions made on the process require bounded-
ness (from above and below) and twice differentiability of
the spectral density with respect to ω (the frequency) and
θ ∈ Θ (the parameter vector), as well as the true parameters
lying in the interior of the parameter space. The elliptical
OU process indeed has a spectral density that is bounded
from above and below, and is twice differentiable (with ω

The Elliptical Ornstein-Uhlenbeck Process 5



and θ ∈ Θ), therefore as long as the true parameters do
not lie on the boundary (e.g. linear motion when ρ = 0)
then we can expect Whittle likelihood to perform well for
the elliptical OU process with large enough samples.

Consider a length-n observed complex-valued time series
Z = [Z1, . . . , Zn] where the time series is regularly sampled
at intervals denoted by ∆. To perform inference we need
two objects, the first is the Discrete Fourier Transform of
the data Z and its conjugate Z

∗, denoted JC(ω) and given
by

JC(ω) =

[

JZ(ω)
JZ∗(ω)

]

=

√

∆

N

n
∑

t=1

[

Zt
Z∗

t

]

e−iωt∆,

and the second is the spectral matrix of the model family,
denoted SC(ω;θ), and given by

SC(ω;θ) =

[

Sz(ω;θ) Rz(ω;θ)
R∗

z(ω;θ) Sz(−ω;θ)

]

,

where for the elliptical OU process, Sz(ω;θ) and Rz(ω;θ)
are as defined in (13) and (14) respectively. The ef-
fect of aliasing can be incorporated by using S̃z(ω;θ) =
∑K
k=−K Sz(ω + 2πk/∆;θ) and R̃z(ω;θ) =

∑K
k=−K Rz(ω +

2πk/∆;θ) in place of Sz(ω;θ) and Rz(ω;θ) respectively,
where the computation becomes exact as K → ∞, but due
to the relatively fast ω−2 decay in frequency, setting a value
of K = 10 was found to have practically converged.

To obtain parameter estimates we maximise the following
pseudo-likelihood over the parameter space θ ∈ Θ,
(15)

ℓW (θ) = −1

2

∑

ω∈Ω

{

log |SC(ω;θ)|+ JH

C(ω)S
−1
C (ω;θ)JC(ω)

}

,

where H denotes the Hermitian transpose, and Ω is the set
of Fourier frequencies given by

(16) Ω =
2π

n∆
(−⌈n/2⌉+ 1, . . . ,−1, 0, 1, . . . , ⌊n/2⌋) .

The maximisation of ℓW (θ) is performed over the parameter
vector θ = {α, β, ρ, ψ,A2}, and the parameter estimates cor-
responding to (1) are then found using the right column of
Table 1. This approach can be adapted to irregularly spaced
observations using the techniques described in [22].

A semi-parametric alternative is to fit a simpler pseudo-
likelihood to only the power spectral density as given by

(17) ℓS(θ) = −
∑

ω∈Ω

{

logSz(ω;θ) +
IZ(ω)

Sz(ω;θ)

}

,

where IZ(ω) = |JZ(ω)|2 is the periodogram, and the com-
plementary spectrum Rz(ω;θ) is not used in the fit. The
aliased spectral density S̃z(ω;θ) can be used in place of
Sz(ω;θ). This semi-parametric approach has some advan-
tages in terms of robustness to model misspecification and

smaller sample sizes, as we shall shortly discuss. This para-
metric fit, however, can only be performed over the parame-
ter vector θ = {α, β, ρ,A2} as ψ is not present in the power
spectral density of (13). To estimate ψ we observe from (14)
that arg{Rz(ω)} = 2ψ, from which we can derive the fol-
lowing non-parametric estimate

(18) ψ̂ =
1

2
[arg{JZ(ωmax)}+ arg{JZ(−ωmax)}] ,

the full derivation of which is given in Appendix C, where
ωmax refers to the location of the peak in the spectral den-
sity, which can be approximated from the periodogram if
unknown. As with (15), the parameter estimates from (17)
and (18) can be expressed in the form of the parameters
of (1) using the right column of Table 1.

Both likelihood procedures (15) and (17) can be made fur-
ther semi-parametric by only including a subset of frequen-
cies from (16) in the respective summations (see also [29]).
This is useful when the Fourier transform is contaminated
by high frequency noise (and high frequencies should be ex-
cluded from the fit), or the chosen model is known to only
be correct in a narrow range of frequencies, perhaps because
an aggregation of effects has been observed. Indeed we shall
employ such procedures in Section 4 to separate the annual
and Chandler wobble oscillations of Earth’s polar motion.

Other modifications to Whittle likelihood including ta-
pering and differencing the time series, or debiasing the es-
timates to account for spectral blurring (see [31] for a re-
view). We did not find such modifications to be needed for
the elliptical OU process. This is because the process has
a relatively small dynamic range, owing to the ω−2 decay
in (13), such that there is only a small amount of spectral
blurring present in the periodogram.

3.1 Simulation Study

We now perform a simulation study to compare the bias
and root-mean-square error (RMSE) of the parameter esti-
mates of the elliptical OU process over 1,000 Monte Carlo
replicated time series of the model presented in the left
panel of Figure 1. These parameter values were chosen as
they are of similar magnitude to those observed in our ap-
plication to Earth’s polar motion in the next section. We
compare four Whittle likelihood approaches: the full para-
metric likelihood of (15), the marginal semi-parametric like-
lihood of (17) (combined with the non-parametric estimate
of ψ in (18)), and semi-parametric versions of each where
only a narrowband of 49 Fourier frequencies located around
each of the positive and negative peak frequencies are used
(ω ∈ ±[0.725, 0.897]). The sample size is set to match the
application in the next section with n = 1759. Therefore
the semi-parametric approach uses only 98/1759 ≈ 5% of
the Fourier frequencies available in the Fourier transform,
but at the frequencies where most information about the
process is contained. For the first two methods we use the
approximated aliased spectral density with K = 10.
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Table 2. Bias and RMSE (expressed as a percentage of the true parameter value) for 4 different Whittle inference methods of
the elliptical OU process, computed using 1,000 Monte Carlo replicated time series of length n = 1759

α1 = 0.02 β1 = 1 α2 = −0.5 α2 = −0.3 σ2 = 2
Method Frequencies Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

eq. (15) ω ∈ [−π, π] 5.40 19.17 0.01 0.52 -0.04 1.00 0.01 1.42 3.88 5.55
eq. (15) ω ∈ [−π, π] 5.15 19.09 -0.08 1.42 0.25 4.15 0.41 4.98 3.86 5.92
eq. (17) ω ∈ ±[0.725, 0.897] 18.01 30.02 0.01 0.61 -0.04 1.13 -0.02 1.55 19.02 24.31
eq. (17) ω ∈ ±[0.725, 0.897] 4.68 26.66 0.08 0.70 -0.24 1.82 -0.09 3.44 3.69 22.61

The results are shown in Table 2. We display bias and
RMSE (relative to the true value, expressed as a percent-
age) for each of the parameters of the elliptical OU pro-
cess: {α1, β1, α2, β2, σ

2}. The two approaches, (15) and (17),
perform very similarly (RMSE in the range of c.0.5-20%),
though the full likelihood of (15) does slightly better in es-
timating {β1, α2, β2}, which are the parameters that define
the shape of the ellipse—this is as expected as more informa-
tion content in the complementary spectrum has been used
to fit the parameters. However, the most challenging param-
eters to estimate are the damping and amplitude {α1, σ

2}
(RMSE c.5-20%) and both approaches perform similarly
here. As we reduce the range of frequencies used (third and
fourth rows), then both approaches have slightly worse fits
as expected, though the increase in RMSE is mainly ob-
served in the amplitude parameter {σ2} (RMSE c.20-25%)
as this is the only parameter that lives at all frequencies—
information about {α1, β1, α2, β2} (which define the damp-
ing, frequency, orientation and eccentricity of the oscilla-
tions) live at frequencies in and around the peak frequency,
which is why the semi-parametric fits generally perform very
well. In Figure 2 we display the kernel density estimate plots
of the parameter estimates for each parameter of the ellip-
tical OU process using (17) and ω ∈ [−π, π] (i.e. the second
row of Table 2). The parameter estimates are approximately
Gaussian, and often within 10% of the true parameter value
(except for α1), suggesting the inference technique is robust,
at least for the parameters and sample size considered.

The motivation behind proposing two estimation tech-
niques, (15) and (17), is because a) two distinct methods
provide a validation tool for numerical optimisers that may
sometimes converge differently, thus flagging parameter es-
timates which may be stuck at boundaries or local optima;
and b) we found that both methods will (inevitably) break-
down and struggle to identify all parameters when focus-
ing on a particularly narrowband signal. In general we have
found optimising using (17) to be more robust in such set-
tings as only four parameters are fitted rather than five.

3.2 Parameter Standard Errors

Parameter standard errors and confidence intervals can
be obtained from fitting a single time series using boot-
strap resampling procedures developed in [11]. This sim-
ple procedure, developed for Whittle likelihood estimates,
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Figure 2. Kernel density estimates of the distribution of
parameter estimates from (17) using ω ∈ [−π, π]. Parameter

estimates expressed as a percentage of the true value.

creates bootstrapped periodograms by multiplying a spec-
tral density estimate by standard independent exponentially
distributed random variables at each Fourier frequency, and
then re-estimating parameters with each bootstrapped pe-
riodogram to obtain parameter standard errors and confi-
dence intervals.

In Table 3 we report the parameter standard errors from
the Monte Carlo simulation of Table 2 from (17) and ω ∈
[−π, π]. We also provide the average bootstrapped param-
eter standard errors using two spectral density estimators:
the raw periodogram and a smoothed periodogram using the
Epanečnikov kernel (bandwidth = 0.07 radians). The num-
ber of bootstrap replicates per time series is set to 100. The
results are displayed in Table 3. Both bootstrap approaches
provide good estimates of the standard errors. In the appli-
cation section we will use the periodogram-based estimator
as it is more conservative (caused by the higher variability
in the periodogram yielding larger bootstrap variability).

Table 3. Parameter standard errors (as a percentage of the
true value), using the same simulation setup as Table 2

Technique α1 β1 α2 β2 σ2

Monte Carlo 17.64 1.36 3.89 4.82 4.04
Bootstrap: Periodogram 17.42 2.69 7.77 7.79 3.84
Bootstrap: Epanečnikov 11.78 1.99 5.68 5.69 2.81
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Figure 3. (Left) Earth’s polar motion from Dec 1845 to Oct 2021, measured in regular intervals of 0.1 years. (Right) The
periodogram of Earth’s polar motion of Fig. 3 when represented as a complex-valued time series. The red band of frequencies

corresponds to the annual oscillation, and the blue band to the Chandler wobble.

4. EARTH’S POLAR MOTION

Polar motion measures the deviation of Earth’s rotational
axis relative to its crust. In the left panel of Fig. 3 we plot
Earth’s polar motion from 1845 to 2021 in orthogonal x and
y directions, as measured in milliarcseconds (mas), where
100mas corresponds to a deviation of approximately 3 me-
tres at the Earth’s surface. This data is publicly available
from the International Earth Rotation and Reference Sys-
tems Service Earth Orientation products1. We observe a
slow drift in the time series, especially in the y axis, coupled
with clear oscillatory motion. We are motivated to study this
dataset in particular because [1] also studied Earth’s polar
motion when proposing the complex OU process. Here we
can make use of over 50 years’ worth of new data to provide
updated parameter estimates, and test for the presence of
ellipticity using our elliptical OU process of (1).

In the right panel of Fig. 3 we plot the periodogram of
the complex-valued time series z(t) = x(t) + iy(t). We de-
tect three clear peaks in the periodogram. The largest at
frequency zero is due to the drift. The smallest, at (nega-
tive) one cycle per year, is the annual oscillation. The third,
at approximately -0.84 cycles per year is the Chandler wob-
ble, discovered by astronomer Seth Carlo Chandler in 1891.

We will study the properties of both oscillations using
the elliptical OU of (1). To do this we cannot simply look at
the precise values and locations of the peaks in the spectral
density—we also need to consider frequencies in the vicinity
of the peaks, such that we can estimate the damping pa-
rameter α1 of the oscillations. We have marked in blue and
red in the right panel of Fig. 3 (respectively) the frequen-
cies we will use to model the Chandler and Earth wobble
oscillations respectively. Specifically, the Chandler Wobble

1www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop

is considered in the range -0.97 to -0.70 cycles per year,
and the annual oscillation in the range -1.03 to -0.97 cycles
per year. We have also marked the corresponding positive
frequencies, which will contain some elevated power if this
component of the time series has elliptical structure.

For visualisation, we bandpass filter the polar motion
time series with boxcar filters and display the resulting time
series in Fig. 4. The left panel uses the blue frequencies
from Fig. 3 and therefore corresponds to the Chandler wob-
ble motion, and the right panel uses the red frequencies and
therefore corresponds to the annual oscillation. The pres-
ence of damping can be seen in both oscillations, especially
the Chandler wobble, which motivated the construction of
the complex OU by Arató et al. in [1]. No clear ellipticity
is seen in the Chandler wobble oscillations, but there ap-
pears to be some present in the annual oscillations. We will
study this in more detail by fitting complex and elliptical
OU processes to this data. Note that the filtering procedure
performed here (and choice of filter) is purely for visuali-
sation, and does not impact the parameter estimation, as
the periodogram of the unfiltered time series is used in the
Whittle likelihood.

First, we consider the Chandler Wobble over negative fre-
quencies only and fit the complex OU of [1], which corre-
sponds to the elliptical OU of (1) when α2 = β2 = r = 0. We
fit the parameters using the semi-parametric Whittle likeli-
hood of (17), using only negative frequencies in the interval
ω ∈ [−0.97,−0.7]. The fit of the power spectral density of
the complex OU in (12) to the periodogram is displayed
in the left panel of Fig. 5. Although the periodogram is
variable, it lies within the 95% pointwise confidence inter-
vals of the modelled power spectral density almost every-
where. Confidence intervals are estimated using the asymp-
totic exponential distribution of the periodogram. The esti-
mated parameters (to 3 significant figures) are α1 = 0.0425
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Figure 4. (Left) The Chandler wobble over time, which has been bandpass filtered from Fig. 3 with a boxcar filter using the
blue frequencies highlighted in the periodogram. (Right) The annual oscillation which has been bandpass filtered from Fig. 3

with a boxcar filter using the red frequencies highlighted in the periodogram.

(in units of years−1), β1 = −0.842 (cycles per year) and
σ2 = 204. Using the bootstrap procedure described in Sec-
tion 3.2 we obtain 95% confidence intervals of [0.0168, 0.103]
for α1, [−0.874,−0.835] for β1, and [119, 269] for σ2. In this
section we increase the number of bootstrap replicates to
10,000 such that the approximated confidence intervals con-
verge to the resolution provided.

Arató et al. [1], in their 1962 analysis, found α1 = 0.06
and β1 = −0.839, but the 95% confidence range for α1 was
found to be [0.008, 0.13] which is overall consistent with our
estimates and confidence intervals, but we find a slightly
lower damping parameter after utilising over 50 years’ worth
of new data. However, information about the damping pa-
rameter lies over very few frequencies, and is therefore a
challenging parameter to estimate, as also observed by [1]
and in our simulation studies of Section 3.1. In other lit-
erature, Brillinger [5] also uses a complex OU process like
Arató et al., but makes some seasonal corrections, and also
finds α1 = 0.06 cycles per year with a 95% confidence range
of [0.006, 0.114]. More broadly, there still remains an ac-
tive research debate on the rate of damping of the Chandler
wobble [39], where a variety of geophysical models have been
employed to measure this, but a more detailed comparison
with this literature is beyond the scope of this paper.

We next fit the elliptical OU process to the Chandler wob-
ble over negative and positive frequencies ω ∈ ±[0.7, 0.97],
using (17). The fits are displayed in the right panel of Fig. 5.
Clearly the fit to positive frequencies is poor, with no ob-
servable peak in the periodogram at the expected oscilla-
tion frequency of the Chandler wobble, and several values
lying outside of the 95% pointwise confidence intervals of
the modelled spectrum. Fitting parameters using (15) which
incorporates the complementary spectrum did not improve
the fits. Overall, there is insufficient evidence to support the
presence of a positive-frequency peak in the Chandler wob-
ble corresponding to an elliptical oscillatory motion. This

is consistent with the literature where the Chandler wobble
motion has been described as “quasi-circular” with a very
low eccentricity in the range [0.1, 0.23] in [15]. In our case,
the periodogram of the time series is too variable and con-
taminated by other artefacts at positive frequencies, so our
model is unable to detect this low eccentricity in the Chan-
dler wobble oscillation.

Finally, we fit the elliptical OU process to the an-
nual oscillation over negative and positive frequencies ω ∈
±[0.97, 1.03] using (17), where we fix the peak frequency β to
be 1 cycle per year, leaving just three parameters {α, ρ,A2}
to be estimated. This simplification was required to make
the optimisation feasible as our effective sample size is only
44 (11 positive and 11 negative Fourier frequencies each con-
taining an amplitude and phase) due to the narrow mod-
elling interval. Inference using (15) was not possible in this
example, as parameters converged to boundary values. The
fitted spectra using (17) are displayed in Fig. 6, and this
time the model is a good fit, and the periodogram comfort-
ably lies withing the 95% confidence interval bands at all
modelled frequencies. The estimated parameters of the el-
liptical OU and their 95% confidence intervals are given in
Table 4. Due to the narrowband nature of the annual signal,
the use of this model and the estimated parameter values
should be interpreted with some caution, as reflected by the
wide confidence intervals. The orientation parameter ψ was
estimated non-parametrically using (18) to be ψ = 0.125,
and the eccentricity of the annual oscillation was estimated
to be ε =

√

1− ρ4 = 0.782 (with a 95% confidence interval
of [0.639,0.915]). This is in broad agreement but somewhat
different from [15] who discover a “significantly elliptic an-
nual motion” in the range [0.26, 0.49]. For comparison, a
simple non-parametric estimate using (see [32])

ε̂ =
2
√

|JZ(ωmax)JZ(−ωmax)|
|JZ(ωmax)|+ |JZ(−ωmax)|

,

The Elliptical Ornstein-Uhlenbeck Process 9
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Figure 5. Semi-parametric Whittle fits of modelled spectra (red) to the observed periodogram (black) of Earth’s polar motion.
In the left panel we fit the complex OU spectrum of (12) in the frequency interval of -0.96 to -0.73 cycles per year which
captures the Chandler wobble. In the right two panels we fit the elliptical OU spectrum of (13) in the frequency intervals of
-0.96 to -0.73 and 0.73 to 0.96 cycles per year. In all panels 95% pointwise confidence intervals of the power spectral density

are in red shading.
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Figure 6. Semi-parametric Whittle fits of the elliptical OU
spectral density of (13) (red) to the observed periodogram

(black) of Earth’s polar motion. Fits performed over
frequency intervals of -1.035 to -0.965 and 0.965 to 1.035
cycles per year, thus capturing the annual oscillation. 95%
pointwise confidence intervals of the power spectral density

are in red shading.

yields ε̂ = 0.530. The higher values of eccentricity we esti-
mate as compared with [15] are likely due to their approach
of time-windowing into small intervals, versus our approach
of considering the entire time series as one stochastic pro-
cess. Again, a more detailed analysis is beyond the scope
of this paper, however our example here serves as a simple
proof-of-concept of the potential applications of our novel
elliptical OU SDE model.

Table 4. Elliptical OU parameter estimates and 95%
confidence intervals

α1 β1 α2 β2 σ2

estimate 0.0245 -1.11 0.122 0.476 28.4
lower CI 0.0091 -1.44 0.0659 0.258 11.4
upper CI 0.0929 -1.03 0.257 1.00 74.7

5. DISCUSSION AND CONCLUSION

Oscillations are key features of natural and human-made
phenomena. Often we observe linked oscillations that map
out the same periodic phenomenon. For deterministic phe-
nomena, such have been studied in [19, 25], and for stochas-
tic phenomena in [33, 32]. Continuous-time time series that
are improper are, as we have shown, challenging to describe
but possess interpretable multidimensional dynamics [19].
The aim of this paper has been to introduce a structured
form of multivariate dependence so that stochastic elliptical
trajectories are mapped out, just like single oscillations can
be conceptualised as mapping out circles. Complex-valued
models, such as the elliptical OU process, provide rich struc-
tural information as we can recover the geometric features
of the ellipse directly from the observations and estimated
parameters.

Multivariate stochastic processes have been the focus of
intensive research in the last decade [3, 9, 10, 14, 24]. There
is much advantage to modelling underlying geometry in time
series [26], but that viewpoint exactly corresponds as to how
the underlying structure in the observations evolves over
time. Oscillations are natural as a modelling starting point
when studying stationary phenomena. The multivariate gen-
eralisation of an oscillation is an observed trajectory from an
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ellipse [19]. This puts an emphasis on the classes of models
starting from oscillations, broadening to partially observed
trajectories on the ellipse.

A number of questions remain unresolved. Our generali-
sation of the OU model is just one example of a statistical
model of temporal structure. The differential equation link-
age has been discussed further for other applications includ-
ing random fields by [21]. We envision that similar exten-
sions could be done to their model classes. This would build
on the non-parametric statistical work of [41]. Furthermore,
we can seek similar extensions to trivariate and multivariate
time series, building stochastic analogues to the determinis-
tic approaches taken in [19].

Finally, inspired by the works of [1, 2, 5], the applicability
of the elliptical OU process has been demonstrated by the
analysis of polar motion and the Chandler wobble. Polar mo-
tion data has been collected from more planets than Earth
and our understanding of the model would be significantly
enhanced by analysing such data and testing our model on
real data structures such as Mars [36], especially as richer
datasets become available from future missions making such
analysis more feasible. The challenges of real data examples
will stress test our model, and show us what new features
and geometrical structures require incorporating into the
model framework.

APPENDIX A: RELATIONSHIP BETWEEN
THE OU AND AR(1) PROCESSES

Consider the widely linear complex autoregressive process
of [32] given by

(19) Z(t) = λeiζZ(t− 1) + γeiφZ∗(t− 1) + ǫt,

with noise variance σ2
AR and pseudo-variance rAR. Let us

now contrast this with the elliptical OU process of (1). In
the simple (proper) case of γ = α2 = β2 = r = rAR = 0 then
a sampled complex OU (at intervals ∆) is like a complex
AR(1) where

λ = e−α1∆,(20)

σ2
AR = σ2 (1− e−2α1∆)

2α1

,

ζ = β1,

thus providing a simple mapping between the processes.
These relationships can be derived by considering an Euler-
Maruyama expansion of the OU:

z(t+ 1/x) ≈ (1− α1/x+ iβ1/x)z(t) +
√

A2/xB,

where x is large and B is a draw from a N (0, 1) such that
repeating x∆ times we have

z(t+∆)(1−α1/x+iβ1/x)
x∆z(t)+

√

A2/x

x∆−1
∑

k=0

(1−α1/x)
kB,

and then taking x→ ∞ we get the relationships above.
In the general case γ 6= α2 6= β2 6= r 6= rAR 6= 0 then the

Euler-Maruyama expansion becomes

z

(

t+
1

x

)

≈
(

1− α1

x
+
iβ1
x

)

z(t)−
(

α2

x
− iβ2

x

)

z∗(t)

+

√

1

x
B,

where B is a draw from CN (0, σ2, r). Then repeating x∆
times and taking x→ ∞ we observe that

λeiζ = lim
x→∞

x∆/2
∑

k=0

(

1− α1

x
+
iβ1
x

)x∆−2k (
α2

x
− iβ2

x

)2k

×
(

x∆

2k

)

,

γeiφ = lim
x→∞

x∆/2
∑

j=1

(

1− α1

x
+
iβ1
x

)x∆−2j+1 (

α2

x
− iβ2

x

)2j−1

×
(

x∆

2j − 1

)

,

which have no clear analytical solutions, such that we can
observe the nontrivial mapping between the processes in the
widely linear case.

APPENDIX B: POWER SPECTRAL
DENSITY DERIVATION

To derive the power spectral density of the elliptical OU
process, we start from the power spectral density of the com-
plex OU in (12) and convert to Cartesian forms using the
relationships given in [34]

Sx̃(ω) =
1

4
{Sz̃(ω) + Sz̃(−ω)}+

1

2
R{Rz̃(ω)},

Sỹ(ω) =
1

4
{Sz̃(ω) + Sz̃(−ω)} −

1

2
R{Rz̃(ω)},

Sx̃ỹ(ω) =
1

2
I{Rz̃(ω)}+

i

4
{Sz̃(ω)− Sz̃(−ω)},

where Sx̃ỹ(ω) is the cross-spectral density between x̃(t) and
ỹ(t), and R{·} and I{·} denote the real and imaginary part
respectively. Substituting in (12), and using that Rz̃(ω) = 0
as the complex OU is a proper process, we obtain

Sx̃(ω) =
A2

4

{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

,(21)

Sỹ(ω) =
A2

4

{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

,(22)

Sx̃ỹ(ω) =
iA2

4

{

1

α2 + (ω − β)2
− 1

α2 + (ω + β)2

}

.(23)

Note that Sx̃(ω) = Sỹ(ω). Next we find the power spectral
densities of the elliptically transformed bivariate OU process
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of (7). First we note by expanding (6) that

x(t) =
1

ρ
x̃(t) cosψ − ρỹ(t) sinψ,

y(t) = ρỹ(t) cosψ +
1

ρ
x̃(t) sinψ.

This clarifies the geometric interpretation of P and Q in (6).
It then follows that

Sx(ω) =
cos2 ψ

ρ2
Sx̃(ω) + ρ2 sin2 ψSỹ(ω)− cosψ sinψSx̃ỹ(ω)

(24)

− cosψ sinψS∗

x̃ỹ(ω),

Sy(ω) =
sin2 ψ

ρ2
Sỹ(ω) + ρ2 cos2 ψSx̃(ω) + cosψ sinψSx̃ỹ(ω)

(25)

+ cosψ sinψS∗

x̃ỹ(ω),

Sxy(ω) =
cosψ sinψ

ρ2
Sx̃(ω)− ρ2 cosψ sinψSỹ(ω)

(26)

+ cos2 ψSx̃ỹ(ω)− sin2 ψS∗

x̃ỹ(ω),

where we have used that Sỹx̃(ω) = S∗

x̃ỹ(ω). Substituting
(21)–(23) into (24)–(26) we obtain

Sx(ω) =
A2

4

(

cos2 ψ

ρ2
+ ρ2 sin2 ψ

)

(27)

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

,

Sy(ω) =
A2

4

(

sin2 ψ

ρ2
+ ρ2 cos2 ψ

)

(28)

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

,

Sxy(ω) =
A2

4

(

cosψ sinψ

ρ2
− ρ2 cosψ sinψ

)

(29)

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

+
iA2

4

{

1

α2 + (ω − β)2
− 1

α2 + (ω + β)2

}

.

We then convert back to complex using the relationships
given in [34]

Sz(ω) = Sx(ω) + Sy(ω) + 2I{Sxy(ω)},(30)

Rz(ω) = Sx(ω)− Sy(ω) + 2iR{Sxy(ω)}.(31)

Substituting (27)–(29) into (30)–(31) we obtain

Sz(ω) =
A2

4

(

1

ρ2
+ ρ2

){

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

+
A2

2

{

1

α2 + (ω − β)2
− 1

α2 + (ω + β)2

}

,

Rz(ω) =
A2

4

(

1

ρ2
− ρ2

)

(cos2 ψ − sin2 ψ)

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

+
iA2

2

(

1

ρ2
− ρ2

)

cosψ sinψ

×
{

1

α2 + (ω − β)2
+

1

α2 + (ω + β)2

}

,

which simplify to the forms given in (13) and (14).

APPENDIX C: NON-PARAMETRIC
ESTIMATION OF THE ORIENTATION

Here we derive the form of the non-parametric estimate
given in (18). From (14) we have that arg{Rz(ω)} = 2ψ,
from which we can form the direct estimate

2ψ̂ =arg{R̂Z(ω)} = arg{JZ(ω)J∗

Z∗(ω)}
=arg{JZ(ω)}+ arg{J∗

Z∗(ω)}
=arg{JZ(ω)}+ arg{JZ(−ω)},

where we have used the cross-periodogram estimator given
by R̂Z(ω) = JZ(ω)J

∗

Z∗(ω) to estimate Rz(ω). We evalu-
ate the above expression at ω = ωmax where ωmax is the
known/estimated location of the peak in the power spectral
density of the elliptical OU process, which in the application
to the annual oscillation of Earth’s polar motion this peak
occurs at ωmax = 1 cycle per year.
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