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Abstract—Hand images are of paramount importance within
critical domains like security and criminal investigation. They
can sometimes be the only available evidence of an offender’s
identity at a crime scene. Approaches to person identification
that consider the human hand as a complex object composed
of many components are rare. The approach proposed in this
paper fills this gap, making use of knuckle creases and fingernail
information. It introduces a framework for automatic person
identification that includes localisation of the regions of interest
within hand images, recognition of the detected components,
segmentation of the region of interest using bounding boxes,
and similarity matching between a query image and a library of
available images. The following hand components are considered:
i) the metacarpohalangeal, commonly known as base knuckle; ii)
the proximal interphalangeal joint commonly known as major
knuckle; iii) distal interphalangeal joint, commonly known as
minor knuckle; iv) the interphalangeal joint, commonly known
as thumb’s knuckle, and v) the fingernails. A key element of the
proposed framework is the similarity matching and an important
role for it is played by the feature extraction. In this paper, we
exploit end-to-end deep convolutional neural networks to extract
discriminative high-level abstract features. We further use Bray-
Curtis (BC) similarity for the matching process. We validated the
proposed approach on well-known benchmarks, the ’11k Hands’
dataset and the Hong Kong Polytechnic University Contactless
Hand Dorsal Images known as ’PolyU HD’. We found that the
results indicate that the knuckle patterns and fingernails play
a significant role in the person identification. The results from
the 11K dataset indicate that the results for the left hand are
better than the results for the right hand. In both datasets,
the fingernails produced consistently higher identification results
than other hand components, with a rank-1 score of 93.65%
on the ring finger of the left hand for the ’11k Hands’ dataset
and rank-1 score of 93.81% for the thumb from the ’PolyU HD’
dataset.

I. INTRODUCTION

In recent years, considerable attention has been paid to
biometric recognition and its suitability to play a major role
in person identification. Biometrics augmented by advanced
machine learning techniques is a field of study aiming to
recognize and identify subjects based on their characteristics.

Examples of biometric identifiers are the face [1], iris [2], ear
[3], hand [4], and footprint [5]. Each type has its strengths and
weaknesses [6].

More recently, there has been growing attention to the
investigation of the hand as a biometric identifier. The hand
plays an important role in our daily activities, including the
way we interact with the world [7]. The hand has specific
characteristics which can identify an individual [8] and has
many advantages as a biometric reservoir. The process of
acquiring hand data is user-friendly, simple, cost-efficient, and
time-efficient [9], [4]. The hands have many characteristic
components such as knuckle creases (including the metacar-
pophalangeal (MCP) joints known as the base knuckle, proxi-
mal interphalageal (PIP) joint known as the major knuckle, the
distal interphalangeal (DIP) joint known as the minor knuckle,
and interphalangeal (IP) joint known as the major knuckle of
the thumb), fingernails, hand shape, fingerprints, hand veins
and palm creases [4].

The finger knuckle has a specific pattern, which includes
creases, curves, lines, and textures. A knuckle pattern is a
discriminating feature that has the potential for identification.
Utilising knuckle creases as a biometric trait could be of value
for human identification in different scenarios, such as criminal
investigations [9].

The present paper presents a novel framework for automatic
person identification based on different hand components
including the knuckles and fingernails of the hands. This
framework includes detection, and segmentation of the various
regions. It involves feature extraction using the pretrained
CNN model known as the DenseNet201, dissimilarity measur-
ing using the Bray-Curtis distance metric to find the best match
between individuals for person identification in a forensic
application.

The biometric framework for person identification typically
consist of several stages including image acquisition, image
pre-processing, image segmentation, feature extraction, simi-



larity evaluation, and ranking the results. In the next two sub-
sections, we will present these stages in more detail.

A. Knuckle creases and fingernail detection

Image pre-processing may include many techniques such as
image enhancement, filtering, normalization, and illumination
correction. [6]. In addition, image segmentation and localisa-
tion of regions-of-interests (ROIs) may play an important role
in the efficiency of the overall framework. In general, detection
and region localisation methods of the hand elements can be
divided into two main categories. In the first category, several
algorithms have been designed to extract low-level features,
such as edges, texture, convexity and colour [10], [11], en-
hancing the colour and contrast information [12]. In the second
category, some research papers have been published which
propose that convolutional neural networks (CNN) models are
trained on manually annotated data of knuckles, and use part
of the trained CNN as abstract features. An example of this
approach is the method proposed in [13] to train a state-of-
the-art region-based CNN using different bounding boxes as
ground truths for segmenting the PIP (major knuckles). The
same method was extended to segment the PIP and DIP (minor
knuckles), and fingernails [14].

Many papers have focused on the PIP [13], [14]. However,
in real-world scenarios, knuckles must be extracted from the
hand image with various rotations or quality variations [15].
A framework to localise and recognise different regions of the
hand for person identification was presented in [15] in which
a faster region-based convolutional neural network (R-CNN)
and DenseNet201 models were trained on annotated data of
DIP, PIP, and MCP (base knuckles) from hand images from
the ’11k Hands’ and ’PolyU HD’ datasets. The trained R-
CNN model was used to localise and recognise different hand
regions. However, the paper did not consider the fingernails or
the thumb. The study [14] reports the use of the DIP, PIP and
fingernails based on the Hong Kong Polytechnic University
finger knuckle image (FKI) database [16], which consists of
raw images of middle fingers only. This data is then passed
through a Siamese network to identify individuals.

Most methods for deep-learning-based segmentation require
extensive labelling of data for training the network, which is
often hard to fulfil for sizeable datasets [17]. It has to be
stressed that to date, the study of fingernails from hand images
has not attracted attention within biometric systems research.
One reason may be that fingernails are prone to change.

B. Feature extraction and matching

Feature extraction and selection play a fundamental role in
pattern recognition problems. Features define the data space,
and together with the distance metric used, are vital for
the effectiveness of further analysis, including the matching
stage. The typical algorithms for knuckle crease recognition
can be categorised into coding methods [18], [19], subspace
methods [20], [21] and texture analysis methods [22]. These
are analysed and examples explored in this survey [6].

To the best of our knowledge, the first study to focus on
the PIP for person identification problems is [23]. The author
applied a 2D Gabor filter to extract orientation information
around the finger knuckle pattern (FKP) to represent the
features. To the best of our knowledge, the first study sug-
gesting that minor finger knuckle patterns are instrumental for
human identification is [8]. The author in this study compared
different methods, including LBP, ILBP and 1D log Gabor
filter. An attempt to investigate the holistic information on
the dorsal surface of the hand was presented in [24]. An
investigation conducted for the recovery and matching task
of endpoint and bifurcation minutiae patterns of the finger
knuckle from 120 different subjects was reported in [25]. [15]
investigated the base, major, and minor knuckles of the four
fingers to identify individuals. The fine-tuning of DenseNet201
deep learning was been utilised for feature extraction and the
cosine distance used for matching.

On a brief review of the feature extraction methods of the
hand, the studies did not consider feature extraction via deep
learning without the need of retraining. Therefore, this paper
focuses on utilising a pre-trained deep learning model as a
feature extractor.

C. Contributions and outline of this paper

The contributions of this paper can be summarised as
follows:

1) A novel framework for person identification is intro-
duced using deep CNN to extract high level discrimi-
native features. The proposed framework consists of de-
tecting key hand components, recognition by automatic
labelling, and similarity matching per component.

2) A segmentation method is proposed based on an exten-
sion of the state-of-the-art multi-view bootstrapping [7],
which was extended to extract regions of the human
hand’s keypoints and made use of the automatic la-
belling. The hand’s detected locations include the MCP,
PIP, DIP, and the fingernails of the five fingers of the
left and right dorsal surface of the hands.

3) The developed framework uses the four components,
which are the MCP, PIP, DIP, and fingernails of all
fingers from both right and left hands. To the best of our
knowledge there is no publication that uses the thumb
knuckles and fingernails.

4) We employ Bray-Curtis similarity to compare the ex-
tracted features. To the best of our knowledge, this is
the first work to use this metric for feature comparison
in a biometric application.

The rest of this paper is organized as follows: Section II
introduces the design of the proposed framework for person
identification based on f ingernails and knuckle patterns local-
isation from hand images (PIFK). Section III describes the
experimental results and evaluation, and section IV presents
the conclusion and outlines future research.



II. THE PROPOSED PIFK FRAMEWORK

Figure 1 depicts the schematic diagram of the proposed
PIFK framework. The proposed system consists of two phases:
i) acquisition, and ii) identification. In the acquisition phase,
a person presents the dorsal hand to capture images using
the acquiring device. The captured images are then passed
to pre-processing and generate cropped sub-images of the
hand’s keypoints as shown in figure 1. Each hand comprises
19 different components, namely:

1) 5 base knuckles or MCP,
2) 4 major knuckles or PIP,
3) 4 minor knuckles or DIP,
4) 1 major knuckle of the thumb or IP, as well as
5) 5 fingernails.
These are then stored in the relevant data-store dn (n ∈
{1, 19}) as explained in sub-section III-B. A pre-trained
deep neural network is then used to extract abstract high-
level features from each finger’s component, as described in
more detail in sub-section II-B. These extracted features are
sophisticated and instrumental to discriminate each sub-image.

Fig. 1: The schematic diagram of the proposed framework for
person identification based on f ingernails and dorsal knuckle
patterns (PIFK) from the hand image.

The proposed PIFK framework consists of the following
phases (see figure 1):
• pre-processing: the knuckles and fingernails segmenta-

tion,
• feature extraction,
• (dis-) similarity evaluation and decision (matching).

These stages are detailed in the following subsections.

A. Detection and segmentation of knuckle and fingernail key-
points

In the pre-processing phase, firstly the original image of the
hand was resized to 224 by 224 pixels. Each image was then
segmented based on the detected keypoints. Then rescaling
(normalization) of these sub-images was conducted to speed

up the process of extracting features. The original pixel values
of the sub-images range from 0 to 255. By rescaling, the pixel
values are transformed to the interval from 0 to 1. In this paper,
unlike other published approaches, segmentation of five types
of region of interest was considered, namely: MCP, PIP, DIP,
IP as well as the fingernail from both the left and right hands.
The keypoints of these elements were obtained using the multi-
view bootstrapping method for hand pose estimation [7].

The method reported in [7] was extensively trained on
large datasets of annotated hand keypoints including challenge
occlusion using a multi-camera setup to capture a multi-
view of the hand. These datasets are the MPII human pose
dataset [26], and images from the New Zealand sign language
(NZSL) exercises of the Victoria university of Wellington [27].
Therefore, the method in this framework has not been trained
on new data because it is already pre-trained for the hand
regions localisation using the mentioned databases.

The basic concept of this method [7] is to use multiple views
of multiple frames of the hand. The method can detect and
project the position of the 3D keypoints. The method utilises
a keypoint detector d(.), which converts a cropped input image
patch of a hand I ∈ IR w×h×3 to P component x locations
as follows:

d(I) 7→ {(xp, cp) for p ∈ [1...P ]}, (1)

where confidence cp is associated with each detection; a
location point p matches one component, such as PIP or DIP;
w denotes vertical and h denotes horizontal dimension of the
image and 3 corresponds to the RGB channels.

Each location was detected using a pre-trained deep neu-
ral network. The detector was pre-trained on the previously
mentioned databases with corresponding keypoint annotations,
(If , {yfp}, where f indicates an image frame, and the anno-
tated keypoints for the image I are in the set {yp ∈ IR2}.

The purpose of utilising this method was to estimate the
approximate centre of the hand components. Each detected
keypoint has a coordinate location xp, a confidence score cp,
and an associated index. In this paper, the associated index
p ∈ [1...P ] was used to support the labelling of each of the
19 ROI automatically with the confidence measure cp ∈ [0, 1]
ranging from the lowest to highest score.

In this paper, we used the image of the hand represented by
one frame and one view of the hand: f = 1, and v = 1,
respectively. The confidence score c for the view v and
keypoint p is considered as the degree of certainty, where
combined with the training of the keypoints.

We extend the detection method to segment each component
of the hand. The segmentation was conducted by determining
the dimensions of a bounding box of each region empirically
based on the detected centre-point. Therefore, the segmenta-
tion of the required region can be conducted in two stages:
firstly, identifying the centre of the segmented part using the
mult-iview bootstrapping method; and secondly, defining the
bounding box by specifying a fixed height and width per type
of component in regards to the centre-point. The dimensions



of the five types of ROI (MCP, PIP, DIP, IP and fingernails)
were defined. Figure 2 displays the stages of the segmentation.

Fig. 2: Example of the localisation including
keypoints/landmarks detection and bounding boxes for
all fingernail and knuckle crease regions.

The following steps demonstrate the detection of the ROI
and related bounding box estimation for image segmentation.
Because the detection method requires a fixed size of the
input image with dimensions 224 by 224 pixels, each detected
keypoint assigned as (x′, y′) should be mapped to the same
keypoint position denoted as (x, y) on the original high
dimensional image. The image was resized and the coordinates
transformed accordingly.

Fig. 3: An illustration of forming the bounding box around an
identified keypoint.

Thirdly, we identify the bounding box to generate a sub-
image Sn of the region:

Suppose a centre location of a keypoint is (x′′, y′′), to
identify a bounding box, an estimated margin of pixels defined
by the user assigned as a and b is added to both positive
and negative sides of the y-, and x-axis, respectively. Figure
3 illustrates this concept using a patch of the knuckle area.

B. Feature extraction phase

Many image processing techniques consider low-level char-
acteristics, such as edges, shapes, geometries, and lighting
changes. However, these techniques often require extensive
human intervention in the designing stages. By contrast, deep
learning and specifically CNNs, started to be widely used as
a common mechanism for extracting features and learning

the pattern representation from high dimensional data such
as images [28]. These are usually pre-trained on large image
sets, such as ImageNet [29].

A deep neural network model pre-trained on one domain can
transit the representation of learned data to another domain
or task using a technique called transfer learning [30]. It
offers an architecture that enables extracting abstract and high-
level features [29], which usually represent the outputs of
the final fully connected (FC) layer in a vector form, the
dimensions of which vary depending on the pre-trained model.
In this paper, we did not do fine-tuning for the original model
of DenseNet201. Instead, we used the original DenseNet201
model [31] that was trained on the popular ’ImageNet’ dataset
[29] as a feature extractor. The model has a more complex
architecture which makes it a more powerful feature extractor.
The architecture of the model [31] considers specific layer
connectivity for data flow. In traditional CNNs, each layer has l
inputs, which are feature-maps from all previous convolutional
blocks. Instead, in the DenseNet201 network, each layer l,
receives data inputs from all previous layers, maps them into
features, and forwards them to all succeeding layers. The
output layer is denoted as xl. A layer achieves a concatenation
of features by applying l(l+1)

2 connections, compared to a
typical CNN architecture that only uses a l layer network. The
DenseNet201 network requires fewer parameters compared to
other CNNs, enhancing data flow and gradients through the
model. Figure 4 shows the network layout with three dense
blocks.

Fig. 4: DenseNet201 architecture with three dense blocks.

The feature-maps from all preceding layers are received as
input to the lth layer as follows:

xl = Hl([x0, x1, ..., xl−1]), (2)

where [x0, x1, ..., xl−1] denotes feature-map concatenation
output in layers 0, ..., l − 1, and Hl(.) refers to compound
operation that comprises of batch normalization, followed by
a rectified linear unit and a 3 × 3 convolution [31]. The
segmented sub-images were resized to 224 by 224 pixels to be
compatible with this network for feature extraction. The sub-
images were rescaled to a new value domain ranging from 0
to 1. In this way, all features are given an equal weight, which
is useful for feature extraction and the similarity metric [32].

C. Similarity estimation and matching

Similarity metrics can play an essential role in biometric
systems. In this paper, the Bray-Curtis distance metric
[33] was used to identify the dissimilarity or distance



among different ROI as part of the decision phase of the
person identification task. After exploring the matching
results among other distances like cosine and euclidean, the
Bray-Curtis performed better. BC distance between vectors
a = (a1, a2, ..., ap) and b = (b1, b2, ..., bp) is denoted as
dBC(a, b) and can be defined as follows:

dBC(a, b) =

∑P
i=1 |ai − bi|∑P
i=1 |ai + bi|

, (3)

The similarity between two vectors is the opposite to the
distance (the lower the distance between two vectors the higher
the degree of similarity and vice versa) and can be defined as:

SimBC(a, b) = 1− dBC(a, b) (4)

The ID is assigned to the closest match determined through
the Bray-Curtis similarity as follows:

ˆID = argmin{dBC} = argmax{SimBC} (5)

D. Experimental protocol

In our experiments we consider a valid recognition the one
that matches two different sub-images taken from the same
person and vice versa. We used rank-1 recognition rate which
is computed as follows:

rank–1 =
Ni

N
× 100, (6)

where Ni denotes the number of images correctly assigned to
the right individual, and N indicates the overall number of
images attempted to be identified.

In order to demonstrate the overall performance we also
used the cumulative matching characteristic (CMC) which
shows the accuracy performance in terms of rank − n [34].
The description of the datasets used to evaluate the proposed
method, and the results, will be demonstrated in the next
section.

III. EXPERIMENTAL RESULTS AND EVALUATION

This section reports the results of the evaluation of the
proposed PIFK on the ’11k Hands’ dataset [35].

A. Datasets description

First, we used the ’11-k Hands’ dataset [35], which consists
of RGB images of the dorsal and palm surface of the right and
left hands of 190 subjects (in this study, we focused on the
dorsal only). Each image has a resolution 1600×1200 pixels.

Next, we consider the Hong Kong Polytechnic University
Contactless Hand Dorsal Images Database [24], which consists
of 4650 surfaces of right-hand dorsal images in a flat position
from 501 subjects. These images with the same resolution
(1600× 1200 pixels) are captured using mobile and handheld
cameras.

B. Pre-processing phase

The pre-processing phase (see figure 1) was described
in sub-section II. In this sub-section, the specifics of PIFK
regarding this phase will be detailed.

Step 1: Fingernail and knuckle crease detection:
This was described in sub-section II and illustrated in figures

1 and 3.
Step 2: Recognition of knuckle creases and fingernails:
PIFK uses an automatic indexing of each ROI; for example,

index 1 and index 2 support labelling of the MCP and IP of
the thumb, respectively (see figure 2).

Step 3: Bounding box estimation and segmentation:
The estimated dimension of the bounding box in terms of

(width, height) was predefined in both datasets as follows:
(150, 168) pixels for the MCP, (150, 160) for the PIP and for
the IP, (150,140) for the DIP, and (160, 184) for the fingernails.
These values were found through experimentation.

Step 4: Splitting the data into two data sets:
In this phase, we split the sub-images into two data sets:
• a query data set, and
• a library data set.
In this study, we used the Leave-One-Out Cross-Validation

(LOOCV) evaluation method since the number of images
is not very large. The method assessed the performance of
the proposed algorithm. In LOOCV, each fold has only one
sample, and random partitioning of the data into training
and testing does not exist. Also, every prediction in the
identification problem is independent of each other because
the samples are independent [36].

Therefore, we consider a single individual subject in the
query at a time (and vary this averaging the results at the end)
and the remaining individuals in the library set (also replacing
one at a time). In addition, we have for each individual images
of both, left and right hand and 19 ROI per image. In the
’11k Hands’ dataset, due to false detection of keypoints, we
ignored 87 images of left hands and 6 images of right hands.
After segmentation due to the erroneous detection, 428 sub-
images of left hands’ components were removed and 573 of
right hands’ components. As a result, the total number of sub-
images in the query set for all components of the left hands
were 3,589 and 3,609 for the right hands. Finally, the total
number of images in the library set for all components of the
left and right hands were 48,780 and 50,795, respectively. In
the ’PolyU HD’ dataset, the total number of removed sub-
images are 5, 733 out of 88, 392. Therefore, the total sub-
images in the query set are 9, 411, whereas the library set is
73, 248.

C. Pre-trained deep learning based feature extractor

In regards to the feature extraction, in this study we utilised
a DenseNet201 neural network pre-trained on the ImageNet
dataset. We considered the outputs of the last fully connected
(FC) layer which has dimension (1 × 1920), namely FC2 as
a vector that represents the abstract high-level features.

The evaluation of the proposed algorithm is a subject-
independent manner. The data used to train the original



DenseNet201 model is the ’ImageNet’ dataset. It is different
from the data used to evaluate the proposed method. We used
’11khands’ and ’PolyU’ datasets.

D. Similarity estimation and matching

The matching process includes estimating the similarity
between two sub-images of the same hand element (one from
the query and one from the library). BC distance was used
to estimate the similarity between pairs of sub-images as
detailed in equations (3), (4) and (5) from sub-section II-C.

TABLE I: The rank-1 recognition rate (shown in %) for the
’11k Hands’ and ’PolyU HD’ datasets

Region Finger 11k Hands-L 11k Hands-R PolyU-R

Fingernail Thumb 87.83 84.21 93.81

Index 89.42 88.95 90.40

Middle 90.48 89.47 87.65

Ring 93.65 91.58 85.10

Little 84.13 80.00 87.30

Minor Knuckle Index 84.66 76.84 72.47

DIP Middle 85.19 82.11 68.92

Ring 84.13 77.89 71.46

Little 81.48 76.84 78.43

Major Knuckle Thumb 85.71 84.21 76.83

PIP Index 82.45 83.16 79.71

Middle 85.11 82.54 76.64

Ring 80.95 83.68 83.23

Little 83.07 75.79 82.06

Base Knuckle Thumb 87.30 85.26 58.35

MCP Index 78.84 81.58 64.34

Middle 80.95 77.37 67.27

Ring 80.42 77.37 66.47

Little 84.13 80.53 67.94

In figure 5, the CMC of the major knuckles of the left (chart
a)) and right (chart b)) hands and fingernails of the left (chart
c)) and right (chart d)) hands from the ’11k Hands’ dataset
are shown, respectively.

Interestingly, as indicated by the results (see table I and
figure 5), the left hand—including the fingernails and knuckles
from ’11K Hands’- is more identifiable than the right hand for
the majority of the fingers.

We also observed that the recognition using fingernail sub-
images from both hands and both datasets is higher than that of
all knuckle sub-images, which can clearly be seen in table I for
both data sets and visualized in figure 7 for the ’11K Hands’
dataset. In particular, we achieved the best performance results
on the left fingernails, with rank-1 accuracies of 93.65% on the
ring finger, 90.48% on the middle, and 89.42% on the index
from ’11K Hands’. Among the right fingernails, the highest
performance -as demonstrated by table I- was achieved by
using the ring, middle, and index, with accuracies of 91.58%,
89.47%, and 88.95%, respectively. The best results for the

Fig. 5: The CMC of the proposed PIFK; a) major knuckles
of the left hands; b) major knuckles of the right hands; c)
fingernails of the left hands; d) fingernails of the right hands
from the ’11k Hands’ dataset.

’PolyU HD’ dataset were also achieved for the fingernails with
rank-1 accuracies 93.81% and 90.40% for the thumb and the
index finger, respectively. These results may be linked to the
fact that the fingernails have a more rigid and defined shape
[14] than the knuckle creases.

In addition, we can observe that the MCP are relatively
insignificant compared to the other components of the hand.



Fig. 6: The recognition accuracy for the left and right hands
from ’11K Hands’ dataset based on fingernails (left) and the
major knuckles, PIP (right).

Fig. 7: The performance of fingernail regions is compared to
the knuckle regions for: a) the left, and b) the right hands in
the ’11k Hands’.

The PIP perform slightly better than the DIP, particularly on
the thumb and middle fingers of the left hands, with rank-
1 accuracies 85.71% and 85.11%, respectively for the ’11K
hands’ dataset. Among the right-hand parts, the IP and the
PIP obtain better results, with rank-1 accuracies 84.21% and
83.68% respectively for the same dataset. This observation is
also valid for the ’PolyU HD’ dataset with rank-1 accuracies
83.23% and 82.06% for the ring and little fingers, respectively.
This may refer to the fact that the PIP patterns contain more
discriminative creases, which might increase the identification
performance over the DIP patterns.

The results also revealed that the IP and MCP of both
thumbs achieved higher results than the other fingers from
’11k Hands’ dataset; the IP (major knuckles) of the left and
right thumb obtained rank-1 accuracies 85.71% and 84.21%,
respectively, while the MCP of the left and right thumb
obtained rank-1 accuracies 87.30% and 85.26%, respectively.

In this study, for the first time, we study 19 components

of human hands at the same time and the results are shown
in table I. The comparison of the results with existing state-
of-the-art approaches is complicated by the fact that there
are no publications that use the full variety of components.
However, we validated our approach on two different datasets.
Furthermore, we made a general comparison with another
state-of-the-art approach, namely [14] which only used the
PolyU FKI [16] and PolyU FKP [4] databases. In this study the
PolyU FKI [16] database was used to segment 15 components,
namely the fingernails, PIP (major knuckles), and DIP (minor
knuckles) from finger images. However, the study did not
mention on which finger these components where located.
Furthermore, the ’11k Hands’ dataset contains the hand images
of both hands and is larger than the PolyU FKI database. The
PolyU FKP [4] dataset only contains the right and left PIP and
it is not clear from which finger or hand these images were
captured.

The performance using the FKIMNet method [14] achieved
a rank-1 score 94.83% for the fingernail, 90.52% for the
PIP and 88.73% for the DIP using the PolyU FKI dataset.
These results are similar in magnitude to the results we report.
However, our results are on a larger and more complex dataset
and clearly indicate where the keypoints are located.

Furthermore, we report interesting observations confirmed
on two different datasets that fingernails provide better results
than other hand components. In addition, we also observed that
the left hands achieved higher results than the right hands.

IV. CONCLUSION

This paper introduces a framework for automated human
identification for a forensic application, where the hand image
might be the only existing evidence to identify offenders at a
crime scene. The framework used the dorsal surface of the five
components of the hand (fingernails, MCP, PIP, DIP, and IP of
the five digits). The proposed approach is the first of its kind
to utilise all 19 hand components for identifying individual
subjects. The framework begins with the localisation and
identifying of these 19 components from the input hand image.
It further automatically labels them and builds bounding boxes
around identified keypoints. In this study, we evaluated the
proposed method using two popular datasets (’11k Hands’ and
’PolyU HD’) and compared our results with another study
[14]. We observed interesting findings that concern fingernails
and the consistent difference of results between the left and
the right hand in favour of the left hand. The best-performing
elements were shown to be the fingernails for both datasets. In
addition, the framework extracted abstract and discriminating
features using a pre-trained CNN model DenseNet201. Fur-
ther, we employed Bray-Curtis distance metric for the match-
ing process. The proposed method achieved high-performance
results. We will improve the proposed framework in our future
work by investigating different similarity metrics and CNN
models for feature extraction.
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