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Abstract. In this paper we study the lattice of restricted subalgebras of a

restricted Lie algebra. In particular, we consider those algebras in which this
lattice is dually atomistic, lower or upper semimodular, or in which every

restricted subalgebra is a quasi-ideal. The fact that there are one-dimensional

subalgebras which are not restricted results in some of these conditions being
weaker than for the corresponding conditions in the non-restricted case.

1. Introduction

The relationship between the structure of a group and that of its lattice of
subgroups is highly developed and has attracted the attention of many leading
algebraists. According to Schmidt ([18]), the origin of the subject can be traced
back to Dedekind, who studied the lattice of ideals in a ring of algebraic integers; he
discovered and used the modular identity, which is also called the Dedekind law, in
his calculation of ideals. Since then modularity and lattice conditions related to it
have been studied in a number of contexts. The lattice of submodules of a module
over a ring is modular, and hence so is the lattice of subgroups of an abelian group.
The lattice of normal subgroups of a group is also modular, but the lattice of all
subgroups is not in general.

The study of the subalgebra lattice of a finite-dimensional Lie algebra was pop-
ular in the 1980’s and in the 90’s (see, for example, [3, 7, 8, 9, 10, 11, 13, 14, 25,
26, 27, 28, 29, 30]), but interest then waned. The likely reason is that most of
the conditions under investigation were too strong and so few algebras satisfied
them. However, the lattice of restricted subalgebras of a restricted Lie algebra is
fundamentally different; for example, not every element spans a one-dimensional
restricted subalgebra. Thus, one could expect more interesting results to hold for
restricted algebras and, as we shall see, this is indeed the case.

In Section 2 we fix some notation and terminology and introduce some results
that are needed later. In Section 3 we study restricted Lie algebras that are dually
atomistic; that is, such that every restricted subalgebra is an intersection of maximal
restricted subalgebras. We show that such algebras over an algebraically closed
field of positive characteristic are solvable or semisimple, and then characterise the
solvable ones more precisely. It turns out that they are more abundant than in the
non-restricted case. We then investigate those restricted Lie algebras all of whose
subalgebras (not necessarily restricted) are intersections of maximals. It is shown
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that if the ground field is algebraically closed then there are no such algebras that
are perfect.

The objective in Section 4 is to study restricted Lie algebras L in which every
restricted subalgebra is a restricted quasi-ideal; that is, such that [S,H] ⊆ S+H for
all restricted subalgebras S,H of L. These are characterised over an algebraically
closed field of characteristic different from 2, and the nilpotent ones more generally
over a perfect field of characteristic different from 2. In this regard, we also mention
that restricted Lie algebras over perfect fields all of whose restricted subalgebras
are ideals were characterized by the second author in [19]. Section 5 then goes on
to consider J-algebras and lower semimodular restricted Lie algebras. The main
result here is the same as for the corresponding situation as in the non-restricted
case if the underlying field is algebraically closed, but it is pointed out that the
assumption of algebraic closure cannot be omitted.

The final section is devoted to studying upper semimodular restricted Lie alge-
bras. It is shown that, over an algebraically closed field, such an algebra is either
almost abelian or nilpotent of class at most 2. This is proved by considering first up-
per semimodular restricted Lie algebras that are generated by their one-dimensional
restricted subalgebras. It is also shown that over such fields the conditions that
L is modular, L is upper semimodular and every restricted subalgebra of L is a
quasi-ideal are equivalent.

2. Preliminaries

Here we fix some notation and terminology and introduce some results that will
be needed later. Unless otherwise stated, throughout the paper all algebras are
supposed finite-dimensional. Let L be a Lie algebra over a field F. As usual, the
derived series for L is defined inductively by L(0) = L, L(k+1) = [L(k), L(k)] for
k ≥ 0, L(∞) = ∩k≥0L

(k); L is solvable if L(∞) = 0. Similarly, the lower central
series is defined inductively by L1 = L, Lk+1 = [Lk, L] for k ≥ 1; L is nilpotent if
Lk = 0 for some k ≥ 1. Also, L is said to be supersolvable if it admits a complete
flag made up of ideals of L, that is, there exists a chain

0 = L0 ( L1 ( · · · ( Ln = L

of ideals of L such that dimLj = j for every 0 ≤ j ≤ n. The centre of L is denoted
by Z(L), and CB(A) = {x ∈ B : [x,A] = 0} denotes the centraliser in a subalgebra
B of another subalgebra A. Also, the ascending central series is defined inductively
by C1(L) = Z(L), Cn+1(L) = {x ∈ L : [x, L] ⊆ Cn(L)}. The nilradical N(L) is
defined to be the maximal nilpotent ideal, and the solvable radical, denoted by
R(L), is defined to be the maximal solvable ideal. For every x ∈ L, the adjoint
map of x is defined by ad(x) : L→ L, a 7→ [x, a]. If S is a subalgebra of L, then the
largest ideal of L contained in S is called the core of L and is denoted by SL. The
Frattini subalgebra F (L) of L is the intersection of all maximal subalgebras of L;
the Frattini ideal of L is φ(L) = F (L)L. The abelian socle, Asoc(L), is the sum of
the minimal abelian ideals of L. We will denote algebra direct sums by ⊕, whereas
direct sums of the vector space structure alone will be written as +̇.

We say that L is dually atomistic if every subalgebra of L is an intersection
of maximal subalgebras of L. The Lie algebra L is said to be almost abelian if
L = Fx+̇A, where A is an abelian ideal of L and ad(x) acts as the identity map on
A. Scheiderer proved in [17] that, over a field of characteristic zero, every dually



ON THE SUBALGEBRA LATTICE OF A RESTRICTED LIE ALGEBRA 3

atomistic Lie algebra is abelian, almost abelian or simple. Here we establish a
slightly weaker version of this which is valid over any field.

Proposition 2.1. If L is a dually atomistic Lie algebra over any field then L is
either abelian, almost abelian or semisimple.

Proof. Let L be dually atomistic and suppose that L is not semisimple. Then
Asoc(L) 6= 0 and L splits over Asoc(L), by [24, Theorem 7.3]. Furthermore, the
minimal abelian ideals of L are one-dimensional, by [17, Lemma 1], so we can write
L = (Fa1 ⊕ · · · ⊕ Fan)+̇B, where Fai is a minimal ideal of L for each 1 ≤ i ≤ n, B
is a subalgebra of L, and n ≥ 1.

Let M be a maximal subalgebra of L with a1 6∈M . We shall show that L(∞) ⊆
M . Now L = Fa1 + M , so M has codimension one in L. It follows that L/ML is
as described in [2, Theorems 3.1 and 3.2]. Also, [Fa1,ML] ⊆ Fa1 ∩M = 0. We
consider the three cases given in [2, Theorem 3.1] separately.

Case (a): Here L/ML is one-dimensional, so M = ML and L2 ⊆M .
Case (b): Here L/ML is two-dimensional, so L = Fa1 + Fm + ML where m ∈

M \ML. Now L2 ⊆ Fa1 +ML and L(2) ⊆ML ⊆M .
Case (c): Here L/ML ' Lm(Γ). If m is odd then Lm(Γ) is simple. But (Fa1 +

ML)/ML is a one-dimensional ideal of L/ML, which is a contradiction. Hence
m is even, in which case Lm(Γ) = Fx + Lm(Γ)2, where Lm(Γ)2 is simple. Put
L/ML = L̄, and so on. Then L̄ = Fā1 ⊕ L̄2 and [L̄, ā1] = 0̄; that is, [L, a1] ⊆ ML,
whence L2 ⊆M .

In any case we have established that, for any maximal subalgebra M of L,
either a1 ∈ M or L(∞) ⊆ M . Suppose that L(∞) 6= 0. Then L(∞) 6= Fa1 (since
(Fa1)2 = 0), so there is an element x ∈ L(∞) \Fa1. Let M be a maximal subalgebra
containing x+ a1. Then either a1 ∈M or L(∞) ⊆M . In each case, Fx+Fa1 ⊆M .
It follows that F(x+ a1) cannot be an intersection of maximal subalgebras of L, a
contradiction. Hence, L(∞) = 0 and L is solvable. The result now follows from [17,
Lemma 1]. �

We shall need the following result which is due to Grunewald, Kunyavskii,
Nikolova and Plotkin for p > 5. However, the same proof works for p > 3 by
using the Corollary in page 180 of [20]. A. Premet has pointed out that the result
is also valid for p = 3, but that it relies on results that have not yet been published,
so we omit this case.

Lemma 2.2. Every simple Lie algebra L over an algebraically closed field F of
characteristic p > 3 contains a subalgebra S with a quotient isomorphic to sl(2,F).

Proof. The proof is the same as for [12, Lemma 3.2] with the reference to [31, Part
II, Corollary 1.4] replaced by [20, page 180, Corollary]. �

In what follows we shall be studying the lattice of restricted subalgebras of a
restricted Lie algebra. Let L be a restricted Lie algebra over a field of characteristic
p > 0. For a subset S of L, we denote by 〈S〉p the restricted subalgebra generated
by S. We say that L is cyclic if L = 〈x〉p for some x ∈ L. An element x ∈ L is

said to be semisimple if x ∈ 〈x[p]〉p and toral if x[p] = x. An abelian restricted Lie
algebra consisting of semisimple elements is called a torus. An element x ∈ L is said
to be p-nilpotent if x[p]n = 0 for some n > 0 (in this case, the minimal n with such a
property is called the order of x), and L is said to be p-nilpotent if there exists n > 0
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such that x[p]n = 0 for every x ∈ L. We also introduce as “restricted analogues”
of earlier concepts, Fp(L), the Frattini p-subalgebra of L, to be the intersection of
the maximal restricted subalgebras of L, and φp(L), the Frattini p-ideal of L, to be
the largest restricted ideal of L which is contained in Fp(L). The abelian p-socle,
Apsoc(L), is the sum of the minimal abelian restricted ideals of L. To avoid tedious
repetition we shall therefore often omit the word ’restricted’.

3. Dually atomistic Lie algebras

We say that a restricted Lie algebra L is dually atomistic if every restricted
subalgebra of L is an intersection of maximal restricted subalgebras of L. It is easy
to see that if L is dually atomistic then so is every factor algebra of L, and if L is
dually atomistic then it is φp-free.

Lemma 3.1. Let L be a dually atomistic restricted Lie algebra. Then:

(i) N(L) is abelian;
(ii) M ∩N(L) is a restricted ideal of L for every maximal restricted subalgebra

M of L; and
(iii) for every subspace S of N(L), 〈S〉p is a restricted ideal of L.

Proof. (i) N(L)2 ⊆ φp(L) = 0 by [24, Theorem 6.5] and [15, Theorem 3.5].
(ii) The result is clear if N(L) ⊆ M , so suppose that N(L) 6⊆ M . Then L =

N(L) +M and

[L,N(L) ∩M ] = [N(L) +M,N(L) ∩M ]

⊆ N(L)2 +N(L) ∩M2 ⊆ N(L) ∩M,

using (i).
(iii) By (i), every subspace of N(L) is a subalgebra of L. Let S be any subspace

of N(L). Then

〈S〉p = 〈S〉p ∩N(L) =

( ⋂
M∈M

M

)
∩N(L) =

⋂
M∈M

(M ∩N(L)),

whereM is the set consisting of all maximal restricted subalgebras of L containing
〈S〉p. Therefore, 〈S〉p is an intersection of restricted ideals of L, by (ii), and so is
itself a restricted ideal of L. �

Proposition 3.2. Let L be a dually atomistic restricted Lie algebra over an alge-
braically closed field F. Then L is solvable or semisimple.

Proof. Suppose that L is not semisimple. Then L = N(L)+̇B = A1⊕ · · · ⊕An+̇B,
where B is a restricted subalgebra of L and A1 ⊕ · · · ⊕An = Apsoc(L) 6= 0, by [15,
Theorems 3.4 and 4.2]. If B = 0, then L is nilpotent and we are done. Assume
therefore that B 6= 0.

Suppose first that N(L) = Z(L). Then, L = Z(L) ⊕ B and L2 ⊆ B. Then we
must have that N(L) = R(L). For, otherwise, there is a minimal ideal A/N(L) of
L/N(L) with A ⊆ R(L). But A is nilpotent, which is a contradiction. Thus, B is
semisimple and Z(L) 6= 0. Let M be a maximal restricted subalgebra of L. If Z(L)
is not contained in M then M+Z(L) is a restricted subalgebra properly containing
M , so L = M + Z(L) and 〈B2〉p = 〈L2〉p ⊆M , since L2 ⊆M and M is restricted.
Hence, either Z(L) or 〈B2〉p is inside M .
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Let z ∈ Z(L) and b ∈ 〈B2〉p, and let M be a maximal restricted subalgebra
containing 〈z + b〉p. Then z, b ∈ M , so we must have 〈z〉p + 〈b〉p = 〈z + b〉p. But

then b =
∑n
i=0 λi(b

[p]i + z[p]i), so b =
∑n
i=0 λib

[p]i and
∑n
i=0 λiz

[p]i = 0. If b is
not semisimple, then λ0 = 1 which implies that z is semisimple, from the second
sum. This must hold for every choice of z ∈ Z(L), so Z(L) is a torus of L, by [23,
Chapter 2, Theorem 3.10]. A similar argument shows that if z is not semisimple
then every b must be, in which case 〈B2〉p is a torus of L. Hence, either Z(L) or
〈B2〉p is a torus. In the latter case, 〈B2〉p is abelian, contradicting the fact that
B is semisimple. In the former case, both Z(L) and 〈B2〉p have a toral element: z
and b, say. But then 〈z〉p + 〈b〉p = Fz + Fb 6= F(z + b) = 〈z + b〉p, a contradiction.

Therefore suppose that N(L) 6= Z(L). Then there is a minimal restricted ideal A
with A ⊆ N(L) and A∩Z(L) = 0. Moreover, if a ∈ A, we have that a[p] ∈ A∩Z(L),
so A = Fa with a[p] = 0, by Lemma 3.1(iii). Let M be a maximal restricted
subalgebra of L such that a /∈ M . We have L = M+̇A, by [15, Lemma 2.1], so
M has codimension one in L, and, as in Proposition 2.1, 〈L(∞)〉p ⊆ M . It follows

that 〈L(∞)〉p ∩ A = 0. Choose x ∈ 〈L(∞)〉p. Then [x, a] ∈ L(∞) ∩ A = 0. If

〈x+ a〉p = 〈x〉p + 〈a〉p, then we have a =
∑n
i=0 λi(x+ a)[p]i = λ0a+

∑n
i=0 λix

[p]i .
Hence λ0 = 1 and x is semisimple. It follows from [23, Chapter 2, Theorem 3.10]
that 〈L(∞)〉p is abelian. But this means that L is solvable. �

For a field F of characteristic p > 0, we will denote by F[t, σ] the skew polynomial
ring over F in the indeterminate t with respect to the Frobenius endomorphism σ
of F. We recall F[t, σ] is the ring consisting of all polynomials f =

∑
i≥0 αit

i with
respect to the usual sum and multiplication defined by the condition t ·α = αpt for
every α ∈ F.

Proposition 3.3. Let L be a solvable restricted Lie algebra over any field F. If L
is dually atomistic then

L ' (L/〈f̄1〉p ⊕ · · · L/〈f̄r〉p ⊕ Fxr+1 ⊕ · · · ⊕ Fxn)+̇Fb,
where r ≥ 0, but r 6= n, b is toral, L = 〈x〉p is a free cyclic restricted Lie algebra and

f̄i =
∑s
k=0 αkx

[p]k is an element of L such that fi =
∑s
k=0 αkt

k is an irreducible
element of the ring F[t, σ].

Proof. The nilradical N(L) of L is non-zero and abelian by Lemma 3.1(i). As
L is φp-free, L = N(L)+̇B for some restricted subalgebra B of L, and N(L) =
Apsoc(L) := A, by [15, Theorems 3.4 and 4.2]. Let a ∈ A. Then CB(A) is a
restricted ideal of L and CB(A)∩A = 0, so CB(A) = 0 and B acts faithfully on A.
Also ad2(a) = 0 and so ad(a[p]) = 0, whence a[p] ∈ Z(L) for all a ∈ A.

We can write A = A1 ⊕ · · · ⊕An, where Ai is a minimal abelian restricted ideal
of L for 1 ≤ i ≤ n. Moreover, Ai ' L/〈f̄i〉p, where f̄i =

∑
k≥0 αkx

[p]k is an element

of L such that fi =
∑
k≥0 αkt

k is an irreducible element of the ring F[t, σ], by

Lemma 3.1(iii) and [16, Proposition 3.1]. Let A1 ⊕ · · · ⊕ Ar = Z(L), where we
allow that r could be 0. Since B acts faithfully on A we cannot have r = n. Then
[B,A] = Ar+1⊕· · ·⊕An = Fxr+1⊕· · ·⊕Fxn. Now CB(xi) is a restricted ideal of L,
so CB(xi) = 0 for each r+ 1 ≤ i ≤ n. Let b1, b2 ∈ B. Then [bi, xn] = λixn for some
0 6= λi ∈ F, i = 1, 2. But then [λ2b1 − λ1b2, xn] = 0, whence b1 and b2 are linearly
dependent and B is one-dimensional. Choose B = Fb such that [b, xn] = xn. Let
b[p] = µb. Then

xn = [b[p], xn] = µ[b, xn] = µxn,
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so µ = 1 and b is toral. �

We introduce another piece of notation before presenting the following results.
We say that a Lie algebra is restricted dually atomistic if it is restricted and every
subalgebra is an intersection of maximal subalgebras.

Proposition 3.4. Let L be a perfect restricted dually atomistic Lie algebra over
any field F of characteristic p > 0. Then every subalgebra of L is restricted.

Proof. Arguing as in [15, Lemma 3.7], it is immediate to prove that every maximal
subalgebra of L is self-idealising. It follows from [15, Lemma 3.9] that every maximal
subalgebra of L is restricted. The result now follows from the fact that L is dually
atomistic. �

Theorem 3.5. There are no perfect restricted dually atomistic Lie algebras over
an algebraically closed field.

Proof. Suppose that L is a counterexample of minimal dimension. By Proposi-
tion 3.4, L is simple as a Lie algebra, and hence its absolute toral rank is just the
dimension of a maximal torus T (cf. [22, §1.2]). Given two linearly independent
elements x, y ∈ T , Proposition 3.4 forces 0 6= (x+ λy)[p] ∈ F(x+ λy) for all λ ∈ F,
but this cannot happen since F is algebraically closed. Hence, L has absolute toral
rank 1.

Now, if F has characteristic p = 2, 3, then [21, Theorem 6.5] yields that L is
solvable or isomorphic to sl(2,F) or to psl(3,F). Otherwise, L has a restricted sub-
algebra with a quotient isomorphic to sl(2,F), by Lemma 2.2 and Proposition 3.4.
But both sl(2,F) and psl(3,F) have elements which are neither semisimple nor
p-nilpotent, which clearly contradicts Proposition 3.4. �

As well as the three-dimensional non-split simple Lie algebra, which is dually
atomistic in the characteristic zero case, there exist other perfect dually atomistic
simple restricted Lie algebras over a perfect field which is not algebraically closed.
For example, let L be the seven-dimensional simple Lie algebra over a perfect field
of characteristic 3 constructed by Gein in [8, Example 2]. This algebra L can
be endowed with a [p]-mapping such that every element is semisimple. Any two
linearly independent elements of L generate a three-dimensional non-split restricted
subalgebra which is maximal in L. Any second-maximal restricted subalgebra is
then one-dimensional, and every one-dimensional restricted subalgebra S is inside
more than one maximal restricted subalgebra whose intersection is S.

We finish this section by studying the so-called atomistic restricted Lie alge-
bras, those in which every restricted subalgebra is generated by minimal restricted
subalgebras.

Proposition 3.6. Let F be an algebraically closed field of characteristic p > 0. A
restricted Lie algebra L over F is atomistic if and only if every p-nilpotent cyclic
restricted subalgebra is one-dimensional.

Proof. Note that L is atomistic if and only if all its cyclic restricted subalgebras
are atomistic. Consider the cyclic restricted subalgebra C, whose semisimple ele-
ments form a torus T , and whose p-nilpotent elements form a p-nilpotent restricted
subalgebra P . By [23, Chapter 2, Theorem 3.6], T is atomistic. From [23, Chapter
2, Theorem 3.5], it follows that C = T ⊕ P , so C is atomistic if and only if P is
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atomistic. But this is equivalent to requiring that dimP = 1 ([16, Theorem 3.8]).
The result follows. �

4. Restricted quasi-ideals

A restricted subalgebra S of L is called a restricted quasi-ideal of L if [S,H] ⊆
S + H for all restricted subalgebras H of L. Clearly, every restricted subalgebra
that is a quasi-ideal is also a restricted quasi-ideal.

Denote by L[p] the restricted subalgebra generated by all the elements x[p], with
x ∈ L.

Lemma 4.1. If S is a restricted subalgebra of L, then SL is a restricted ideal of L

Proof. Simply note that (SL)[p] is an ideal of L inside S. �

Proposition 4.2. If F is perfect then L[p] is a restricted quasi-ideal if and only if
it is an ideal of L.

Proof. Suppose that L[p] is a restricted quasi-ideal of L. Then, for all x ∈ L
[L[p], x] ⊆ L[p] + 〈x〉p = L[p] + Fx,

so L[p] is a quasi-ideal. Suppose that L[p] is not an ideal of L, and factor out (L[p])L,
so we can assume that L[p] is core-free. Then, by [1, Theorem 3.6], there are three
possibilities which we will consider in turn.

Suppose first that L[p] has codimension 1 in L. Define (L[p])i as in [2, (5)]. Then
every element x ∈ L can be written as x = xs + xn, where xs is semisimple and
xn is p-nilpotent, by [23, Theorem 3.5]. Moreover, all semisimple elements belong

to L[p], so L = L[p] + Fx for some p-nilpotent element x. Suppose that x[p]k = 0.
Now (L[p])i = {y ∈ L[p] | [y,i x] ∈ L[p]} for i ≥ 0, by [2, Lemma 2.1(b)]. Hence

[y,ph x] = [y, x[p]h ] = 0 for h ≥ k. Also, (L[p])0 = L[p] and (L[p])i+1 ⊆ (L[p])i for

i ≥ 0, so (L[p])L = ∩∞i=0(L[p])i = L[p], by [2, Lemma 2.1], contradicting the fact
that L[p] is not an ideal of L.

On the other hand, [1, Theorem 3.6(c)] cannot hold, as the three-dimensional
simple Lie algebra W (1, 2)2 over a field of characteristic 2 is not restrictable. To
see this simply note that the derivation ad2(x) is not inner.

Finally, suppose that [1, Theorem 3.6(d)] holds. Then L = L2 +Fy where ad(y)
acts as the identity map on L2 and L[p] = Fy. Let x ∈ L2. We have adp(y) = ad(y)
and adp(x) = 0 for every x ∈ L2. Therefore, as L is centerless, the p-mapping of
L is determined by the conditions y[p] = y and x[p] = 0. This implies L[p] = L, a
contradiction.

The converse is straightforward. �

Proposition 4.3. Let L be a restricted Lie algebra such that every restricted sub-
algebra of L is a restricted quasi-ideal. Then L2 ⊆ L[p]. It follows that L3 = Lp+1;
in particular, if L is nilpotent, then L has nilpotency class at most 2.

Proof. By Proposition 4.2, L[p] is a restricted ideal. Put L = L/L[p]. Then L[p] = 0
and every subalgebra of L is a quasi-ideal. If L is not abelian then it is almost
abelian, by [1, Theorem 3.8], so L = L2 + Fy, where ad(y) acts as the identity
map on L2. But then, if 0 6= x ∈ L2, then 0 = [y[p], x] = x, a contradiction. It
follows that L2 = 0, so L2 ⊆ L[p]. Now, if p 6= 2, then we are done. Assume then
that p = 2, and suppose, by contradiction, that L has nilpotency class n > 2. Set
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H = L/Cn−3(L), which has nilpotency class 3. By [4, Chapter 16, Proposition 1.1],
H does not satisfy the second Engel condition, and therefore there exist x, y ∈ H
such that [x, y[2]] = [[x, y], y] 6= 0. Set x̃, ỹ to be preimages of x, y in L, and note

that x̃[2]2 , ỹ[2]2 , [x̃[2], ỹ[2]] ∈ Cn−3(L). Then, by hypothesis we can write [x, y[2]] =
λ1x+ λ2x

[2] + λ3y
[2] for some λi ∈ F, i = 1, 2, 3. Also, we have that [[x, y[2]], z] = 0

for any z ∈ H. For z = y[2] we obtain that λ1 = 0, for z = x we have λ3 = 0 and,
finally, for z = y we get [x[2], y] = 0. Now, write [x, y] = λ4x+λ5x

[2] +λ6y+λ7y
[2],

for some λi ∈ F, i = 4, . . . , 7. But then [x, y[2]] = [[x, y], y] = λ4[x, y], and 0 =
[[x, y], y[2]] = λ4[x, y[2]]. Consequently, λ4 = 0 and [x, y[2]] = 0, a contradiction. �

Lemma 4.4. Let L be a restricted Lie algebra over an algebraically closed field of
characteristic p > 0 in which every restricted subalgebra is a restricted quasi-ideal.
If H is a Cartan subalgebra of L, then L has root space decomposition

L = H+̇(⊕α∈Φ(Lα+̇L−α)⊕β∈Ψ Lβ),

where Φ is the set of roots α for which −α is also a root, and Ψ is the remaining
set of roots.

Proof. Let T be a maximal torus, H = CL(T ) and let L = H+̇α∈ΠLα be the
corresponding root space decomposition. Then

[xα, xβ ] = λxα + µxβ + h for some h ∈ H,

since L
[p]
α ⊆ H for all α ∈ Π, by [23, Corollary 4.3]. But [Lα, Lβ ] ⊆ Lα+β , so,

either [Lα, Lβ ] = 0 or [Lα, Lβ ] ⊆ H and α+ β = 0. If [Lα, Lβ ] = 0 for α 6= β then
[L−α, Lβ ] = 0 also, giving the root space decomposition claimed. �

Suppose that every restricted subalgebra of L is a restricted quasi-ideal. Let S
be the subspace spanned by the semisimple elements of L and let P be the subspace
spanned by the p-nilpotent elements of L. Then S and P are subalgebras of L, since
[x, y] ∈ 〈x〉p + 〈y〉p, and, if F is perfect, L = S + P . Moreover, both are restricted,
since

(λx+ µy)[p] = λpx[p] + µpy[p] +

p−1∑
i=1

si(x, y),

and x[p], y[p] are semisimple (respectively, p-nilpotent) if so are x, y, and si(x, y) ∈
〈x, y〉p.

Proposition 4.5. Let L be a nilpotent restricted Lie algebra over a perfect field of
characteristic different from 2. Then every restricted subalgebra of L is a restricted
quasi-ideal of L if and only if L = S ⊕ P , where S is a toral ideal and P is a
p-nilpotent ideal in which every restricted subalgebra is a restricted quasi-ideal.

Proof. Suppose that every restricted subalgebra of L is a restricted quasi-ideal
of L . By Proposition 4.3, L3 = 0 and L[p] ⊆ Z(L). Then, for all x, y ∈ L,
(x + y)[p] = x[p] + y[p], so S, P are just the sets of semisimple and p-nilpotent
elements of L respectively. Then S ∩ P = 0 and S ⊆ Z(L). It follows that
L = S ⊕ P and that S is toral.

The converse is straightforward. �

Corollary 4.6. Let L be a restricted Lie algebra over an algebraically closed field
of characteristic different from 2 in which every restricted subalgebra of L is a
restricted quasi-ideal of L. Then L has a Cartan subalgebra H such that H = S⊕P
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where S is a torus and P is the set of p-nilpotent elements in H, and L = S+̇N
where N is an ideal, N3 = 0 and N [p] ⊆ Z(H).

Proof. We have that L has the form given in Lemma 4.4 and H = S ⊕ P , by
Proposition 4.5. Now L2

α = L2
−α = L2

β = 0 since 2α, −2α and 2β are not roots.

For every h ∈ H, α ∈ Π = Φ ∪ Ψ, we have that [h, xα] ∈ (〈h〉p + 〈xα〉p) ∩ Lα, so

[h, xα] = λxα for some λ ∈ F; that is, h acts semisimply on Lα. Also α(x
[p]
α ) = 0,

by [23, Chapter 2, Corollary 4.3 (4)]. It follows that [x
[p]
α , x−α] = 0. Similarly,

[x
[p]
−α, xα] = 0. Now [xα, x−α] ∈ 〈x[p]

α 〉p+〈x[p]
−α〉p, so, if N = P +

∑
α∈Φ(Lα+L−α)+∑

β∈Ψ Lβ we have N3 = 0 and N [p] ⊆ Z(H). �

5. J-algebras and lower semimodular restricted Lie algebras

For this section, it will be useful to handle the following result.

Lemma 5.1. Let L be a restricted Lie algebra over an algebraically closed field of
characteristic p > 0. If L is supersolvable, then L admits a complete flag made up
of restricted ideals of L.

Proof. Plainly, it is enough to show that L has a one-dimensional restricted ideal,
from which the conclusion will follow by induction. Suppose dimL > 1, the claim
being trivial otherwise. Consider a complete flag

0 = L0 ( L1 ( · · · ( Ln = L

of ideals of L. If the ideal L1 is restricted, then we are done. Thus we can suppose
that there exists x ∈ L1 such that x[p] /∈ L1. As L1 is an abelian ideal, the restricted
subalgebra H generated by x[p] is contained in the centre of L. Since the ground
field is algebraically closed, by [23, Chapter 2, Theorem 3.6] we see that H contains
a toral element t. We conclude that I = Ft is a one-dimensional restricted ideal of
L, as desired. �

Note that the assumption that the ground field is algebraically closed is essential
for the validity of Lemma 5.1. In fact, over arbitrary fields of positive characteristic,
there can be cyclic restricted Lie algebras of arbitrary dimension with no non-zero
proper restricted subalgebras (cf. [16, Proposition 3.1]).

Let L be a restricted Lie algebra. A restricted subalgebra U of L is called lower
semimodular in L if U ∩B is maximal in B for every restricted subalgebra B of L
such that U is maximal in 〈U,B〉p. We say that L is lower semimodular if every
restricted subalgebra of L is lower semimodular in L.

If U , V are restricted subalgebras of L with U ⊆ V , a J-series (or Jordan-
Dedekind series) for (U, V ) is a series

U = U0 ( U1 ( . . . ( Ur = V

of restricted subalgebras such that Ui is a maximal subalgebra of Ui+1 for 0 ≤ i ≤
r − 1. This series has length equal to r. We shall call L a J-algebra if, whenever U
and V are restricted subalgebras of L with U ⊆ V , all J-series for (U, V ) have the
same finite length, d(U, V ). Put d(L) = d(0, L).

Proposition 5.2. For a solvable restricted Lie algebra L over an algebraically
closed field of characteristic p > 0 the following are equivalent:

(i) L is lower semimodular;



10 PILAR PÁEZ-GUILLÁN, SALVATORE SICILIANO, AND DAVID A. TOWERS

(ii) L is a J-algebra; and
(iii) L is supersolvable.

Proof. (i)⇒(ii): This is just a lattice theoretic result (see [6, Theorem V3]).
(ii)⇒(iii): We first show by induction on dimL that there exists a series of re-
stricted subalgebras from 0 to L having length dimL. Suppose L 6= 0. As L is

solvable, it holds that 〈L(1)〉p 6= L; otherwise, L(1) = 〈L(1)〉(1)
p = L(2) 6= 0, a contra-

diction. Then the inductive hypothesis ensures the existence of a series of restricted
subalgebras

U = U0 ( U1 ( . . . ( Ur = 〈L′〉p
with dimUi = i for all 0 ≤ i ≤ r. Moreover, as L/〈L′〉p is abelian, Lemma 5.1
yields the claim.

Now, by hypothesis, all J-series of restricted subalgebras from 0 to L have length
dimL, and consequently all maximal restricted subalgebras have codimension one
in L. On the other hand, if H is a maximal subalgebra of L which is not restricted,
then pick an element x of H such that x[p] /∈ H. Then H + Fx[p] is a subalgebra
of L properly containing H, so H + Fx[p] = L by the maximality of H. Therefore,
every maximal subalgebra has codimension one in L, which allows to conclude that
L is supersolvable, by [5, Theorem 7].

(iii)⇒(i): Let U,B be restricted subalgebras of L such that U is maximal in
〈U,B〉p. By Lemma 5.1, U has codimension 1 in 〈U,B〉p, which forces 〈U,B〉p =
U + B. It follows that dim(B/(U ∩ B)) = dim((U + B)/U) = 1, whence U ∩ B is
maximal in B, completing the proof. �

Note that the assumption of solvability is actually needed in the previous result.
In fact, consider the restricted Lie algebra L = sl(2,F) over an algebraically closed
field F of characteristic p > 2. Then all J-series of restricted subalgebras of L have
length 3, despite the fact that L is simple.

6. Upper semimodular restricted Lie algebras

Let L be a restricted Lie algebra. We say that a restricted subalgebra S of L is
upper semimodular in L if S is maximal in 〈S, T 〉p for every restricted subalgebra T
of L such that S ∩ T is maximal in T . The restricted Lie algebra L is called upper
semimodular if all of its restricted subalgebras are upper semimodular in L.

This section is devoted to study the structure of upper semimodular restricted
Lie algebras over algebraically closed fields. In particular, our main aim of this
section is to prove the following result:

Theorem 6.1. Let L be a restricted Lie algebra over an algebraically closed field.
The following conditions are equivalent:

(i) L is upper semimodular;
(ii) L is modular;
(iii) every restricted subalgebra of L is a restricted quasi-ideal.

Moreover, if one of the previous statements holds, then L is either almost abelian
or nilpotent of class at most 2.

We start with some preliminary results.
Let L be an almost abelian Lie algebra over a field F of characteristic p > 0.

Then L = Fx+̇A, where A is an abelian ideal and ad(x) acts as the identity map on
A. It is immediate to check that L is restrictable and also centerless, so it admits
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a unique p-mapping by [23, Chapter 2, Corollary 2.2]. Explicitly, this p-mapping is
given by a[p] = 0 for all a ∈ A and x[p] = x.

Lemma 6.2. Let L be an upper semimodular restricted Lie algebra over an al-
gebraically closed field of characteristic p > 0. If L is generated by two distinct
one-dimensional restricted subalgebras X and Y , then L is two-dimensional.

Proof. Let Z be a nonzero proper restricted subalgebra of L. Assume first that
X ⊆ Z, Y 6⊆ Z. As X ∩ Y = 0 is maximal in Y , X must be maximal in L,
yielding Z = X. Assume now that X,Y 6⊆ Z and take a one-dimensional restricted
subalgebra Z ′ of Z. By the previous case, 〈X,Z ′〉p = L. Since X ∩ Z ′ = 0 is
maximal in X, Z ′ is maximal in L and Z = Z ′. Thus, all nonzero proper restricted
subalgebras of L are one-dimensional, and it follows from [32, Lemma 1.6] that L
is two-dimensional. �

Lemma 6.3. Let F be an algebraically closed field of characteristic p > 0. Let L
be a non-abelian upper semimodular restricted Lie algebra over F generated by three
one-dimensional restricted subalgebras. Then, L is centerless.

Proof. Let Fx, Fy, Fz be three distinct one-dimensional restricted subalgebras gen-
erating L and suppose, by contradiction, that Z(L) 6= 0. Note that we can take x to
be either toral or such that x[p] = 0. By Lemma 6.2 and without loss of generality,
we may also assume x ∈ Z(L) and that 〈y, z〉p is almost abelian, with [y, z] = z,

y[p] = y and z[p] = 0. If x[p] = 0, then 〈x + z〉p ∩ Fy = 0 is maximal in 〈x + z〉p,
but Fy is not maximal in 〈x+ z, y〉p = L, a contradiction. On the other hand, if x
is toral, then

x ∈ 〈x− z〉p ⊆ 〈x+ y, y + z〉p,
so 〈x + y, y + z〉p = L. Now 〈x + y〉p ∩ 〈y + z〉p = 0 is maximal in 〈x + y〉p, but
〈y + z〉p is not maximal in L, a contradiction. �

Proposition 6.4. Let F be an algebraically closed field of characteristic p > 0. Any
upper semimodular restricted Lie algebra L over F generated by its one-dimensional
restricted subalgebras is either abelian or almost abelian.

Proof. By Lemma 6.2, all the restricted subalgebras of L generated by two one-
dimensional restricted subalgebras are abelian or almost abelian. Suppose that
〈y, x1〉p is almost abelian, where Fy,Fx1 are restricted subalgebras of L with [y, x1] =

x1, y[p] = y and x
[p]
1 = 0. Write L = 〈y, x1, . . . , xs〉p, where y, x1, . . . , xs are linearly

independent.We claim that 〈y, xi〉p is almost abelian for i = 2, . . . , s. Suppose oth-
erwise that [y, xi] = 0 for some i 6= 1. By Lemma 6.3, we must have [x1, xi] 6= 0.
Then 〈x1, xi〉p would be almost abelian and [x1, xi] = λx1 for some λ ∈ F, λ 6= 0.
But then y + λ−1xi ∈ Z(〈y, x1, xi〉p) = 0 by Lemma 6.3, a contradiction. Note

also that [y, xi] /∈ Fy, as otherwise y[p] = 0. Therefore, we can clearly assume that
[y, xi] = xi. For i 6= j write [xi, xj ] = αijxi + βijxj . We have

0 = [[y, xi], xj ] + [[xi, xj ], y] + [[xj , y], xi]

= αijxi + βijxj − αijxi − βijxj + αijxi + βijxj

= αijxi + βijxj ,

hence αij = βij = 0.
Therefore, L = 〈x1, . . . , xs〉p+̇Fy is an almost abelian restricted Lie algebra of

dimension s+ 1, as desired. �
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Note that the hypothesis of F being algebraically closed is essential for our re-
sults. Indeed, the Lie algebra L over a perfect field of characteristic 3 given by Gein
in [8, Example 2], with the p-mapping indicated in Section 3, is upper semimod-
ular, generated by its minimal restricted subalgebras and semisimple. The reader
could ask if, ruling out the hypothesis of F being algebraically closed, any upper
semimodular restricted Lie algebra generated by its minimal restricted subalgebras
would be abelian, almost abelian or semisimple, in a way somehow similar to the
situation in the ordinary Lie algebra setting (see [10]). However, this is not the case
either: the restricted Lie algebra Fx⊕L, with x[p] = 0, is generated by its minimal
restricted subalgebras and it is upper semimodular, but it is neither abelian, nor
almost abelian, nor semisimple. Furthermore, it is even possible to pick a modular
restricted subalgebra of Fx⊕ L which does not lie in any of these three cases.

Proposition 6.5. Let F be an algebraically closed field of characteristic p > 0, and
let L be an upper semimodular restricted Lie algebra over F. Let B be the restricted
subalgebra generated by the one-dimensional restricted subalgebras of L. If B is
almost abelian, then L = B.

Proof. Assume L 6= B. By Proposition 3.6, there exists a p-nilpotent element x ∈ L
of order 2. Write B = A+̇Fy, where A is a strongly abelian restricted ideal of B,
and y is a toral element which acts as the identity map on A. Since x[p] ∈ A, we have
adp(x)(y) = [x[p], y] = −x[p]. Set w = adp−1(x)(y), and note that [x,w] = −x[p]

and [x[p], w] = [x,w[p]] = 0.
As 〈x〉p ∩ 〈x[p], y〉p = Fx[p] is maximal in 〈x[p], y〉p = Fx[p] + Fy, one has that

〈x〉p must be maximal in 〈x, x[p], y〉p = 〈x, y〉p. We have

〈x〉p ( 〈x,w〉p ⊆ 〈x, y〉p.
It follows that y ∈ 〈x,w〉p = 〈x〉p + 〈w〉p, from which [x, y] = λ[x,w] = −λx[p], for
some λ ∈ F. But then

−x[p] = adp(x)(y) = −λadp−1(x)(x[p]) = 0,

a contradiction. Therefore, L = B and L is almost abelian. �

Theorem 6.6. Let F be an algebraically closed field of characteristic p > 0. Any
upper semimodular restricted Lie algebra L over F is either abelian, almost abelian
or of the form

L = 〈x1, . . . , xr, B〉p,
where xi is p-nilpotent of order ni > 1 for all i = 1, . . . , r, B is an abelian restricted
subalgebra and [L,L] ⊆ 〈x1, . . . , xr〉p.

Proof. Let B be the restricted subalgebra generated by the one-dimensional re-
stricted subalgebras of L. By Proposition 6.4, B is either abelian or almost abelian.
If L 6= B, then B is abelian by Proposition 6.5, and every xi /∈ B is p-nilpotent of
order ni > 1 by Proposition 3.6.

To prove that [L,L] ⊆ 〈x1, . . . , xr〉p, it suffices to see that [xi, b] ∈ 〈xi〉p, for
i = 1, . . . , r and b ∈ B such that 〈b〉p is one-dimensional. Take such a b ∈ B. If
b ∈ 〈xi〉p, then we are done. Otherwise, 〈xi〉p ∩ 〈b〉p = 0 is maximal in 〈b〉p = Fb,
and then 〈xi〉p must be maximal in 〈xi, b〉p. Write w = adr−1(xi)(b) 6= 0, where r
is such that adr(xi)(b) = 0. We have the following chain of inclusions

〈xi〉p ⊆ 〈xi, w〉p ( 〈xi, b〉p.
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Then, w ∈ 〈xi〉p. Assume now that adr−k(xi)(b) ∈ 〈xi〉p for some k > 1, and set

w′ = adr−k−1(xi)(b). Again, it is clear that

〈xi〉p ⊆ 〈xi, w′〉p ⊆ 〈xi, b〉p,

where one inclusion has to be an equality. By assumption, if b ∈ 〈xi, w′〉p =
〈xi〉p + 〈w′〉p, then [xi, b] ∈ 〈xi〉p. Therefore w′ ∈ 〈xi〉p, and by induction we have
that [xi, b] ∈ 〈xi〉p. �

Note that, although any abelian or almost abelian restricted Lie algebra is upper
semimodular, the converse of Theorem 6.6 does not hold, as the following example
shows.

Example 6.7. Let L = 〈x, y, z〉p with x[p]2 = y[p] = z[p] = 0 and [x, y] = z as

the only non-zero product. Then the restricted subalgebra B = Fx[p] ⊕ Fy ⊕ Fz
generated by all the one-dimensional restricted subalgebras is abelian. However,
L is not upper semimodular, as 〈x〉p ∩ Fy = 0 is maximal in Fy, but 〈x〉p is not
maximal in 〈x, y〉p = L.

Proposition 6.8. Let F be an algebraically closed field of characteristic p > 0, and
let L be an upper semimodular restricted Lie algebra over F. Then, L is almost
abelian or nilpotent.

Proof. Assume that L is not almost abelian. Let T be a torus of L. By [23,
Chapter 2, Theorem 3.6], T has a basis consisting of toral elements and therefore
T ⊆ B, in the notation of Theorem 6.6. Consequently, every semisimple element of
L belongs to B, and the restricted subalgebra T formed by the semisimple elements
of L is the unique maximal torus of L. Suppose, by contradiction, that L is not
nilpotent. Consider the Cartan subalgebra H = CL(T) and the associated root
space decomposition L = H+̇(

∑
α∈Φ Lα). Then there exists α ∈ Φ and a toral

element t ∈ T such that α(t) 6= 0. Let x ∈ Lα, x 6= 0. By [23, Chapter 2, Corollary
4.3(1)], we have [t, x] = α(t)x and α(t) ∈ GF(p). Thus one has

(t+ x)[p] = t+ x[p] + α(t)p−1x = t+ x[p] + x.

Moreover, by [23, Chapter 2, Corollary 4.3(3)] we have that x[p] ∈ H and so
[t, x[p]] = 0. By induction, it follows that

(1) (t+ x)[p]n = t+

n∑
i=0

x[p]n

for every n > 0. Now, by [23, Chapter 2, Theorem 3.4] we see that (t+x)[p]n ∈ T for
some sufficiently large n, and so we deduce from (1) that x ∈ H, a contradiction. �

Corollary 6.9. Let F be an algebraically closed field of characteristic p > 0, and
let L be an upper semimodular restricted Lie algebra over F. Then, L is also lower
semimodular and a J-algebra.

Proof. It follows from Proposition 6.8 and Proposition 5.2. �

Proposition 6.10. Let F be an algebraically closed field of characteristic p > 0,
and let L be an upper semimodular restricted Lie algebra over F. Then, every
restricted subalgebra of L is a restricted quasi-ideal.
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Proof. By Proposition 6.8, L is either almost abelian or nilpotent. If L is almost
abelian, then we are done, so suppose that it is nilpotent. Let x, y ∈ L. If x, y
are semisimple, then we have that x, y ∈ B and [x, y] = 0. If x is semisimple
and y is p-nilpotent, then x ∈ B and we get that [x, y] ∈ 〈y〉p as in the proof of
Theorem 6.6. If x, y are p-nilpotent, we claim that [x, y] ∈ 〈x〉p + 〈y〉p. Indeed, let
s be the sum of their orders of p-nilpotency. We will proceed by induction on s.
If s = 2, then x, y ∈ B and therefore 〈x, y〉p ⊆ 〈x〉p + 〈y〉p. Fix now s > 2, and

assume that x[p] 6= 0. If x ∈ 〈x[p], y〉p, it holds that 〈x, y〉p = 〈x[p], y〉p is contained

in 〈x[p]〉p + 〈y〉p by induction. Otherwise, 〈x[p]〉p = 〈x〉p ∩ 〈x[p], y〉p is maximal

in 〈x〉p, so 〈x[p], y〉p is maximal in 〈x, y〉p. Then 〈x[p], y〉p has codimension one in

〈x, y〉p and 〈x, y〉p = 〈x〉p + 〈x[p], y〉p. But by induction, 〈x[p], y〉p ⊆ 〈x[p]〉p + 〈y〉p.
Now take x, y two arbitrary elements in L and consider their Jordan-Chevalley

decompositions, x = xs + xn and y = ys + yn. The above arguments show that

[x, y] ∈ 〈xn〉p + 〈yn〉p. Since x
[p]r

s ∈ 〈x〉p and y
[p]t

s ∈ 〈y〉p for r and t large enough
and xs, ys are semisimple, we get that xn ∈ 〈x〉p and yn ∈ 〈y〉p. It follows that
[x, y] ∈ 〈x〉p + 〈y〉p. �

The following simple lemma is all what is left to prove Theorem 6.1. We need
an easy consideration first.

Let X be a restricted quasi-ideal of a restricted Lie algebra L. Then, for every
restricted subalgebra Y of L, it holds thatX+Y = 〈X,Y 〉p is a restricted subalgebra
of L.

Lemma 6.11. Let L be a restricted Lie algebra in which every restricted subalgebra
is a restricted quasi-ideal. Then, L is modular, and consequently, upper semimod-
ular and lower semimodular.

Proof. Let X, Y and Z be restricted subalgebras of L such that X ⊆ Z. Take
z ∈ 〈X,Y 〉p ∩Z = (X + Y )∩Z, and write z = x+ y for some x ∈ X, y ∈ Y . Then
x ∈ Z, yielding that y ∈ Y ∩ Z. Therefore, z ∈ X + (Y ∩ Z) = 〈X,Y ∩ Z〉p. Then,
L is modular. �

It is now a simple matter to prove the main result of this section:

Proof of Theorem 6.1. It follows from the combination of Proposition 6.8, Propo-
sition 6.10, Proposition 4.3 and Lemma 6.11. �
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