
Generalised 2-Circulant Inequalities

for the Max-Cut Problem

Konstantinos Kaparis∗ Adam N. Letchford† Ioannis Mourtos‡

To appear in Operations Research Letters

Abstract

The max-cut problem is a fundamental combinatorial optimisa-
tion problem, with many applications. Poljak and Turzik found some
facet-defining inequalities for the associated polytope, which we call
2-circulant inequalities. We present a more general family of facet-
defining inequalities, an exact separation algorithm that runs in poly-
nomial time, and some computational results.

Keywords: max-cut problem, polyhedral combinatorics, cutting planes

1 Introduction

In the max-cut problem (MCP), we are given a (simple, loopless) undirected
graph, along with a (rational) weight for each edge. The task is to partition
the vertex set into two subsets, called “shores”, in a way that maximises the
sum of the weights of the edges that cross from one shore to the other.

The MCP is a much-studied problem in combinatorial optimisation, with
a wide range of applications (see, e.g., [3, 11, 16]). Unfortunately, it is also
strongly NP-hard [13]. At present, even the best exact algorithms can solve
only instances with up to 120 nodes or so (e.g., [5, 21, 23]).

The convex hull of feasible solutions to the MCP is called the cut polytope
[4]. This polytope has been studied in depth, and many families of strong
valid linear inequalities are known for it (e.g., [4, 6, 10, 17, 18, 22]). For
some of those families, efficient separation algorithms are known (e.g., [4, 5,
14, 15, 17, 19, 20]).

A 2-circulant is a graph with vertex set {1, . . . , p}, where p ≥ 5, and
edges {i, i+1} and {i, i+2} for i = 1, . . . , p, where indices are taken modulo

∗Quantitative Methods & Decision Analytics Lab, Department of Business Adminis-
tration, University of Macedonia, Thessaloniki, Greece, k.kaparis@uom.edu.gr

†Department of Management Science, Lancaster University, Lancaster, UK,
a.n.letchford@lancaster.ac.uk

‡Department of Management Science & Technology, Athens University of Economics
and Business, Athens, Greece, mourtos@aueb.gr

1

Figure 1: A 2-circulant with p = 7.

p. See Figure 1 for an example. Poljak & Turzik [22] showed that any
2-circulant with p ≡ 1 mod 4 yields a facet-defining inequality for the cut
polytope. We will follow [15] in calling these inequalities 2-circulant (2C)
inequalities. Separation algorithms for them are given in [15, 19, 20].

In this paper, we derive a more general family of facet-defining inequali-
ties, which we call generalised 2-circulant (G2C) inequalities. We then show
how to extend the separation algorithm in [15], in order to separate exactly
over a family of valid inequalities that includes all G2C inequalities. We also
present some computational results.

The paper has a simple structure. The literature is reviewed in Section 2.
The new inequalities are presented in Section 3. The separation algorithm
is described in Section 4, and the computational results are in Section 5.

Throughout the paper, we assume that the reader is familiar with the
polyhedral approach to combinatorial optimisation (see, e.g., [8]). We also
use the following notation and terminology. We let Kn =

(
Vn, En

)
denote

the complete graph on n nodes, where Vn = {1, . . . , n}. Given a set S ⊆ V ,
the set of edges having exactly one end-node in S is called a cut and denoted
by δ(S). A set C ⊂ En is called a cycle if it induces a connected subgraph in
which all nodes have even degree. A cycle is called a circuit if all nodes in the
subgraph have degree 2. Given two sets S, T ⊆ Vn, the set (S∪T)\(S∩T) is
called the symmetric difference of S and T , and is denoted by S4T . Given
a vector x ∈ [0, 1]En and an edge e = {i, j} ∈ En, we sometimes write xij
or x(i, j) instead of xe. Finally, we assume n ≥ 5 throughout the paper, to
avoid trivial or “degenerate” cases.

2 Literature Review

We now briefly review the relevant literature. We refer the reader to [11, 16]
for comprehensive surveys on the MCP.

2

2.1 The cut polytope

For a given n and a given edge-weight vector w ∈ QEn , the MCP can be
formulated as follows:

max
∑

1≤i<j≤nwijxij

s.t. xij + xik + xjk ≤ 2 (1 ≤ i < j < k ≤ n) (1)

xij − xik − xjk ≤ 0
(
{i, j} ∈ En; k ∈ Vn \ {i, j}

)
(2)

xe ∈ {0, 1}
(
e ∈ En

)
.

Here, xe takes the value 1 if and only if edge e lies in the cut. The inequalities
(1) and (2) are called triangle inequalities.

The convex hull of feasible x vectors is called the cut polytope and is
denoted by CUTn. In [4], the triangle inequalities are shown to define facets
of CUTn, along with several other inequalities, such as the odd bicycle wheel
(OBW) inequalities. Since then, many more families have been discovered
(see Part V of [11]). Here, we focus on the 2-circulant inequalities [22],
which take the form ∑

e∈F
xe ≤ 3(p− 1)/2,

where the edge set F ⊂ En induces a 2-circulant in Kn, with p ≡ 1 mod 4.
We will also need the following result from [4]: given any circuit C ⊂ En,

and any D ⊆ C with |D| odd, the co-circuit inequality∑
e∈D

xe −
∑

e∈C\D

xe ≤ |D| − 1

is implied by the triangle inequalities.

2.2 Switching and collapsing

It is shown in [4] that, if the inequality λTx ≤ γ is valid (or facet-defining)
for CUTn, then the ‘switched’ inequality∑

e∈En\δ(S)

λexe −
∑
e∈δ(S)

λexe ≤ γ −
∑
e∈δ(S)

λe

is also valid (or facet-defining), for any S ⊂ Vn. This operation is called
switching [11]. One can check the following facts: (i) switching on S is
equivalent to switching on V \ S, (ii) switching on S and then switching on
T is equivalent to switching on S4T , (iii) if we take a triangle inequality of
the form (1) and switch on node k, then we obtain a triangle inequality of
the form (2).

We will also need the following fact from [9]. Let αTx ≤ β be valid for
CUTn, and let {i, j} be an edge in En. We can obtain a valid inequality for

3

CUTn−1 as follows. The edge {i, j} is contracted, by identifying j with i.
For any k ∈ {1, . . . , n} \ {i, j}, the coefficient of xik in the new inequality is
set to αik + αjk. The coefficients for the edges that were not incident on i
and j remain unchanged. This operation is called collapsing.

2.3 Separation

Separation algorithms for the cut polytope can be found in, e.g., [5, 11, 14,
15, 19, 20]. Poljak & Turzik [22] conjectured that separation for the 2C
inequalities is NP-hard. As far as we know, this conjecture remains open.
On the other hand, polynomial-time separation algorithms are known for
various families of valid inequalities that include the 2C inequalities.

Letchford [19] showed that every switched OBW or 2C inequality is
implied by triangle inequalities and a simple disjunction of the form

(
xe =

0
)
∨
(
xe = 1

)
. Let us call inequalities that can be derived in this way simple

disjunctive cuts (SDCs). Using results in [2], one can separate over all SDCs
by solving

(
n
2

)
linear programs (LPs), each with O

(
n3
)

variables and O
(
n2
)

constraints.
A faster separation algorithm was provided by Letchford & Sørensen

[20]. They defined a family of “
{

0, 12
}

-cuts” for the cut polytope (see [7]),
and showed that it includes the switched OBW and 2C inequalities. They
then showed how to separate over the

{
0, 12
}

-cuts in O
(
n5
)

time.
An alternativeO

(
n5
)

separation algorithm was given in Kaparis & Letch-
ford [15]. It separates over not only the switched 2C inequalities, but all
inequalities that can be obtained from them via the collapsing operation.

3 More Facets from 2-Circulants

In this section, we derive and analyse the G2C inequalities. In Subsection
3.1, the inequalities are derived and the effect of switching is analysed. In
Subsection 3.2, the G2C inequalities are shown to be intermediate in general-
ity between the switched 2C inequalities and the SDCs. Then, in Subsection
3.3, the G2C inequalities are shown to define facets of CUTn.

3.1 Derivation and the effect of switching

Before presenting our new inequalities, we will need the following two lem-
mas.

Lemma 1 Given any ordered triple (i, j, k) of distinct vertices in Vn, the

4

“weakened triangle” inequalities

xij + xjk + 2xik ≤ 3 (3)

xij − xjk − 2xik ≤ 0 (4)

−xij + xjk − 2xik ≤ 0 (5)

−xij − xjk + 2xik ≤ 1 (6)

are valid for CUTn.

Proof. The first inequality is the sum of the triangle inequality (1) and the
trivial upper bound xik ≤ 1. The other three inequalities can be obtained
from the first by switching on k, i and j, respectively. �

Lemma 2 Let C ⊂ En be a circuit, and let D be an arbitrary subset of C.
If x is the incidence vector of a cut, then the quantity∑

e∈C\D

xe −
∑
e∈D

xe

is an even integer.

Proof. This follows trivially from the fact that every cut intersects every
circuit an even number of times. �

The following theorem introduces the new inequalities.

Theorem 1 Let p be an odd integer with 5 ≤ p ≤ n. Let v1, . . . , vp be
distinct vertices in Vn. Define the set S = {1, . . . , p}, and let S+ be an
arbitrary (possibly empty) subset of S. Let S− denote S \S+, and define the
sets

S++ =
{
i ∈ S+ : i+ 1 ∈ S+

}
,

S+− =
{
i ∈ S+ : i+ 1 ∈ S−

}
,

S−+ =
{
i ∈ S− : i+ 1 ∈ S+

}
,

S−− =
{
i ∈ S− : i+ 1 ∈ S−

}
,

where indices are taken modulo p. If 3
∣∣S++

∣∣ +
∣∣S−−∣∣ ≡ 3 mod 4, then the

“generalised 2-circulant” (G2C) inequality∑
i∈S+

x
(
vi, vi+1

)
−
∑
i∈S−

x
(
vi, vi+1

)
+

∑
i∈S++∪S−−

x
(
vi, vi+2

)
−

∑
i∈S+−∪S−+

x
(
vi, vi+2

)
≤
(

3
∣∣S++

∣∣+
∣∣S−−∣∣− 3

)
/2 (7)

is valid for CUTn (indices taken modulo p).

5

Proof. We assume w.l.o.g. that vi = i for i = 1, . . . , p, and we let L denote
the left-hand side of (7). By Lemma 1, the following inequalities are valid:

x(i, i+ 1) + x(i+ 1, i+ 2) + 2x(i, i+ 2) ≤ 3
(
i ∈ S++

)
x(i, i+ 1)− x(i+ 1, i+ 2)− 2x(i, i+ 2) ≤ 0

(
i ∈ S+−)

−x(i, i+ 1) + x(i+ 1, i+ 2)− 2x(i, i+ 2) ≤ 0
(
i ∈ S−+

)
−x(i, i+ 1)− x(i+ 1, i+ 2) + 2x(i, i+ 2) ≤ 1

(
i ∈ S−−

)
.

Summing these inequalities, we obtain:

2L ≤ 3
∣∣S++

∣∣+
∣∣S−−∣∣.

Dividing by two and rounding down the right-hand side, we obtain:

L ≤

⌊
3
∣∣S++

∣∣+
∣∣S−−∣∣

2

⌋
. (8)

Now, observe that L can be written as the sum of two components:

(a)
∑
i∈S+

x(i, i+ 1)−
∑
i∈S−

x(i, i+ 1);

(b)
∑

i∈S++∪S−−

x(i, i+ 2)−
∑

i∈S+−∪S−+

x(i, i+ 2).

By Lemma 2, each of these two components must be an even integer. Thus,
if the right-hand side of (8) is odd, we can subtract one while maintaining
validity. �

Figure 2 gives a graphical representation of a G2C inequality with p = 7,
S = {1, . . . , 7} and S+ = {1, 2, 3, 5}. Solid and dotted lines indicate edges
whose variables have a coefficient of 1 and −1, respectively. Note that,
for this example, S− = {4, 6, 7}, S++ = {1, 2} and S−− = {6}. Thus,
3
∣∣S++

∣∣+
∣∣S−−∣∣ = 6 + 1 = 7. Thus, the right-hand side is (7− 3)/2 = 2.

The following proposition will turn out to be useful in the following two
subsections.

Proposition 1 Consider a fixed G2C inequality of the form (7), and let
k be any element of S. Switching the G2C inequality on {vk} is equiva-
lent to changing S+ to S+4{k, k − 1} (and adjusting S−, S++ and so on
accordingly).

Proof. Suppose initially that
{
vk−2, . . . , vk+2

}
⊆ S+. Consider the modi-

fied G2C inequality that is obtained by removing vk and vk−1 from S+. The
coefficients of x

(
vk−2, vk

)
, x
(
vk−1, vk

)
, x
(
vk, vk+1

)
and x

(
vk, vk+2

)
change

from 1 to −1, and the right-hand side decreases by 4. Thus, the modified
G2C inequality can be obtained from the original by switching on {vk}. A
similar argument applies if some of vk−2, . . . , vk+2 do not lie in S+, as one
can verify by an easy (but tedious) enumeration of cases. �

6

1

2

3

4

5

6

7

≤ 2

Figure 2: G2C inequality with S = {1, . . . , 7} and S+ = {1, 2, 3, 5}.

3.2 Relationship with other inequalities

We now compare the G2C inequalities with some other known inequalities.
Let us say that an inequality is a switched 2-circulant (S2C) inequality if it
is either a 2C inequality, or can be obtained from one by switching. The
next lemma will be used to show that the S2C inequalities are a special case
of the G2C inequalities.

Lemma 3 A G2C inequality has p ≡ 1 mod 4 if and only if |S+| is odd and
|S−| is even.

Proof. Theorem 1 states that any G2C inequality must satisfy 3
∣∣S++

∣∣ +∣∣S−−∣∣ ≡ 3 mod 4. Moreover, by definition, we have
∣∣S+−∣∣ =

∣∣S−+∣∣, which
implies 3

∣∣S+−∣∣+
∣∣S−+∣∣ ≡ 0 mod 4. Put together, these imply

3
∣∣S++ ∪ S+−∣∣+

∣∣S−+ ∪ S−−∣∣ ≡ 3 mod 4,

or, equivalently, 3|S+| + |S−| ≡ 3 mod 4. Now, p = |S+| + |S−|, which
implies that p + 2|S+| ≡ 3 mod 4. Given that p is odd, there are only
two possibilities: either p ≡ 1 mod 4, |S+| is odd and |S−| is even, or p ≡
3 mod 4, |S+| is even and |S−| is odd. �

Proposition 2 A valid inequality for CUTn is an S2C inequality if and
only if it is a G2C inequality with p ≡ 1 mod 4.

Proof. One can check that a 2C inequality is nothing but a G2C inequality
with p ≡ 1 mod 4 and S+ = S. (Indeed, in this case, we have S++ = S
and S+− = S−+ = S−− = ∅, and the right-hand side of (7) reduces to
3(p − 1)/2.) Now, switching a 2C inequality on some set T ⊆ {v1, . . . , vp}
is equivalent to switching on each node in T consecutively, in any order.
Proposition 1 then implies that any S2C inequality is a G2C inequality.

7

1

2

3

4

5

6

7

≤ 2

Figure 3: “Simple” G2C inequality with p = 7.

To complete the proof, consider a G2C inequality with p ≡ 1 mod 4.
Suppose |S−| ≥ 2, and recall from Lemma 3 that |S−| is even. Let vk, v`
be two elements of S−, with k < `. If we switch the inequality on the
set

{
vk+1, . . . , v`

}
, the effect is that vk and v` move from S− to S+. This

operation can be repeated until S+ = S, at which point we have a 2C
inequality. �

Before presenting our next result, we will need the following definition:

Definition 1 A G2C inequality will be called “simple” if S = {1, . . . , p},
p ≡ 3 mod 4 and S+ = ∅.

One can check that a simple G2C inequality takes the form:

−
p∑
i=1

x(i, i+ 1) +

p∑
i=1

x(i, i+ 2) ≤ (p− 3)/2. (9)

See Figure 3 for a representation of a simple G2C inequality with p = 7.
One can check that every G2C inequality with p ≡ 3 mod 4 is either simple,
or can be obtained from a simple inequality by switching.

We can now present our next result.

Proposition 3 Every G2C inequality is an SDC.

Proof. Since the result was already shown for switched 2C inequalities in
[19], it suffices to show it for the G2C inequalities with p ≡ 3 mod 4. By re-
labelling the nodes, if necessary, we can assume that vk = k for k = 1, . . . , p.
Now, the set of triangle inequalities (1), (2) is closed under switching, which
implies that the set of SDCs is closed under switching as well. Accordingly,
we can assume that our G2C inequality is simple.

To complete the proof, we show that the simple G2C inequalities (9) are
implied by the triangle inequalities together with the simple disjunction(

x1p = 0
)
∨
(
x1p = 1

)
.

8

To this end, we consider two cases.

Case 1: x1p = 0. In this case, we obtain the inequality (7) by summing
together (a) the triangle inequalities

−x(i, i+ 1)− x(i+ 1, i+ 2) + x(i, i+ 2) ≤ 0 (10)

for i ∈ {2, 4, . . . , p− 1} ∪ {p}; (b) the co-circuit inequality

(p−5)/2∑
i=1

x(2i+ 1, 2i+ 3) + x(1, 3) + x(p− 2, p)− x(1, p) ≤ (p− 3)/2;

and (c) the inequality 2x1p ≤ 0.

Case 2: x1p = 1. In this case, we obtain the inequality (7) by summing
together (a) the triangle inequalities (10) for i = 1, 3, . . . , p − 2; (b) the
triangle inequalities x1p+x12+x2p ≤ 2 and x(1, p)+x(1, p−1)+x(p−1, p) ≤
2; (c) the co-circuit inequality

(p−3)/2∑
i=1

x(2i, 2i+ 2) + x(1, 2)− x(1, p)− x(p− 1, p) ≤ (p− 3)/2;

and (d) the inequality −4x1p ≤ −4. �

We remark that one of the inequalities mentioned in [1], which defines
a facet of CUT7, can be derived as a G2C inequality with p = 7. (That
inequality is called a parachute inequality in [11].) In other words, the G2C
inequalities with p = 7 are not completely new. On the other hand, the
G2C inequalities with p = 11, 15, . . . did not appear before in the literature.

To end this subsection, we use the collapsing operation to define some
more families of inequalities. Let us say that an inequality is an extended 2-
circulant (E2C) inequality if it is either a 2C inequality, or can be obtained
from one via collapsing. We define extended switched 2-circulant (ES2C)
and extended generalised 2-circulant (EG2C) inequalities analogously. One
can check that EG2C inequalities can be written in the form (7), the only
change being that the vertices v1, . . . , vp are no longer required to be distinct.

Figure 4 shows the resultant hierarchy of inequalities. An arrow from
one class to another indicates that the former is a subset of the latter. (One
can easily show that all inclusions are strict. We omit details for brevity.)
This hierarchy will prove useful in the next section.

3.3 Facet proof

In this subsection, we will show that every G2C inequality defines a facet.
We will need the following standard lemma.

9

2C S2C G2C

E2C ES2C EG2C

{
0, 12
}

SDC

Figure 4: Hierarchy of inequalities.

Lemma 4 [4, Lemma 2.5] Let aTx ≤ b be a valid inequality for CUTn, and
let i, j be distinct nodes in Kn. If there is W ⊂ Vn \ {i, j} such that the
incidence vectors of δ(W), δ

(
W ∪{i}

)
, δ
(
W ∪{j}

)
and δ

(
W ∪{i, j}

)
satisfy

aTx = b, then aij = 0.

Theorem 2 Every G2C inequality defines a facet of CUTn.

Proof. If p ≡ 1 mod 4, then the G2C inequality is a switched 2C inequality,
which is known to define a facet. So suppose that p ≡ 3 mod 4. By rela-
belling the nodes, if necessary, we can assume that vk = k for k = 1, . . . , p.
Also, since the property of being facet-defining is preserved under switching,
we can assume that S+ = ∅. In other words, we can suppose that the G2C
inequality is simple. Let us call edges of the form {i, i + 1} and {i, i + 2}
‘outer’ and ‘inner’, respectively.

We follow the proof strategy of [22, Theorem 4.1]. We say that a set
R ⊂ S is a ‘root’ if the incidence vector of the cut δ(R) satisfies the simple
G2C inequality at equality. That is, R is a root if and only if the number
of inner edges in δ(R) exceeds that of its outer edges by (p− 3)/2. We also
let [m] stand for {1, 2, . . . ,m}.

Assume an arbitrary but fixed inequality (9) and let F denote the face of
CUTn it defines, i.e., the convex hull of the incidence vectors of all it roots.
As CUTn is full-dimensional, F cannot coincide with CUTn. Consider the
following roots that show also the non-emptiness of F :

• R1 =
⋃
k∈
[
p−7
4

]{4k + 1, 4k + 2} ∪ {1, p− 1, p},

• S1 =
⋃
k∈
[
p−3
4

]{4k − 1, 4k} ∪ {1, p}, and

• T =
⋃
k∈
[
p−3
4

]{4k, 4k + 1} ∪ {1}.

Simple counting shows that δ(R1) contains p−3
2 outer and p − 3 inner

edges, while both δ(S1) and δ(T) contain p+1
2 outer and p−1 inner edges. In

10

fact, each of δ(S1) and δ(T) contains all inner edges of the circulant except
for {1, 3} and {2, p}, respectively. Let us also observe that:

• R1 contains {1, 2} and {1, 3} but not {1, p} and {1, p− 1};

• S1 contains {1, 2} and {1, p− 1} but not {1, 3} and {1, p};

• and T contains all four edges incident to node 1.

Note also that switching node 1 to the opposite side of the cut in any of
these three roots (i.e., deleting 1 from R1 or S1 or T) yields another root of
(9) that we call the “{1}-switch” of the starting root. For example, deleting
1 from R1 results in the following changes to the cut: (a) the outer edge
{1, 2} is removed, (b) the outer edge {1, p} is added, (c) the inner edge
{1, 3} is removed, and (d) the inner edge {1, p−1} is added. Thus, the total
number of inner and outer edges in δ

(
R1 \ {1}

)
remains as in δ(R1).

Let x1 and x̂1 denote the incidence vectors of R1 and its {1}-switch, y1

and ŷ1 the vectors of S1 and its {1}-switch, and z1 and ẑ1 the vectors of T
and its {1}-switch. For i ∈ S, one can define the roots Ri and Si by ‘shifting’
by i positions the nodes in R1 and T1, thus obtaining also the corresponding
{i}-switches and the vectors xi, x̂i, yi and ŷi.

To show that F is a facet of CUTn, we prove that any equality aTx = b
satisfied by all roots in F has ae = α for any inner e, ae = −α for any outer
e, and ae = 0 for any other edge. That is, we show that any such inequality
is a scalar multiple of (9).

As both xi and x̂i satisfy aTx = b, we have aTxi = aT x̂i. Thus,

ai(i+1) + ai(i+2) = ai(i−1) + ai(i−2).

Similarly, we have aT yi = aT ŷi, which yields

ai(i+1) + ai(i−2) = ai(i−1) + ai(i+2).

Adding the two shows that ai(i+1) = ai(i−1) and, therefore, ai(i+2) = ai(i−2).
This implies (by the rotational symmetry of the circulant) that ae = α for
any inner e and ae = β for any outer e. Moreover, aT z1 = aT ẑ1, which
yields

a12 + a13 + a1p + a1(p−1) = 0.

Combined with the above, this shows that β = −α.
It remains to show that ae = 0 for any other edge e = {i, j}, using

Lemma 4. If neither of i and j belongs to S, any subset of S that is a root
can play the role of W in Lemma 4. If only i belongs to S, one can set W to
Ri \ {i}. Finally, if both i and j belong to S, we can assume without loss of
generality that i = 1. This in turn implies that j ∈ {4, 5, . . . , p − 3, p − 2},
given that {i, j} is not an edge of the circulant. If j is congruent to 0 or 3
mod 4, then j is not in R1, and therefore we can set W to R1\{1}; otherwise,
j is not in S1, and we can set W to S1 \ {1}. �

11

4 The New Separation Algorithm

When considering separation, it helps to refer once again to Figure 4. Recall
that the algorithms in [19] and [20] separate over the {0, 12}-cuts and the
SDCs, respectively. One can also check that the separation algorithm in [15]
separates over the ES2C inequalities.

We now present an O
(
n5
)

separation algorithm for the EG2C inequali-
ties. The algorithm is based on the following definition and lemma.

Definition 2 Given any ordered triple (i, j, k) of nodes in Vn, define

∆++(i, j, k) = 3 − xij − xjk − 2xik

∆+−(i, j, k) = −xij + xjk + 2xik

∆−+(i, j, k) = −xij + xjk + 2xik

∆−−(i, j, k) = 1 + xij − xjk − 2xik.

Note that these quantities are the slacks of the inequalities (3)-(6).

Lemma 5 The G2C inequalities (7) can be written as∑
i∈S++

∆++
(
vi, vi+1, vi+2

)
+

∑
i∈S+−

∆+−(vi, vi+1, vi+2

)
+

∑
i∈S−+

∆−+
(
vi, vi+1, vi+2

)
+

∑
i∈S−−

∆−−
(
vi, vi+1, vi+2

)
≥ 3,

where indices are again taken mod p.

Proof. Multiply the inequality (7) by minus two, add 3
∣∣S++

∣∣ +
∣∣S−−∣∣ to

both sides, and re-arrange the left-hand side. �

We remark that the EG2C inequalities can also be written as in the
above lemma, the only change being that the vertices v1, . . . , vp are no longer
required to be distinct.

Now, assume that we have been given a point x∗ ∈ [0, 1]En that we wish
to separate. We construct an auxiliary graph, called G̃, as follows. For
each ordered pair (i, j) of nodes in V , we insert two nodes into G̃, labelled
“(i, j)+” and “(i, j)−”. For each ordered triple (i, j, k) of nodes in V , we
include edges in G̃ as follows:

• an edge between node (i, j)+ and node (j, k)+, with “weight” of ∆++(i, j, k)
(evaluated at x∗) and a “charge” of 3;

• an edge between node (i, j)+ and node (j, k)−, with weight ∆+−(i, j, k)
and charge 0;

12

• an edge between node (i, j)− and node (j, k)+, with weight ∆−+(i, j, k)
and charge 0;

• an edge between node (i, j)− and node (j, k)−, with weight ∆−−(i, j, k)
and charge 1.

It then follows from Lemma 5 that, if x∗ violates a G2C inequality, there
is a circuit in G̃ that (a) has total weight less than 3, and (b) has a total
“charge” congruent to 3 mod 4. It can also be shown, using the remark
following Lemma 5, that x∗ violates an EG2C inequality if and only if there
is such a circuit in G̃.

To detect whether such a circuit exists, we use an idea from [4, 15]. We
construct another graph, called G+, which is four times larger than G̃. For
each pair (i, j), and for c = 0, . . . , 3, we have a node labelled “(i, j)+c ” and
a node labelled “(i, j)−c ”. The index c represents the cumulative “charge”,
and is taken modulo 4. For each triple (i, j, k), and for c = 0, . . . , 3, we
have an edge between (i, j)+c and (j, k)+c+3 with weight ∆++(i, j, k), an edge
between (i, j)+c to (j, k)−c with weight ∆++(i, j, k), and so on.

We can now solve the separation problem by solving O
(
n2
)

shortest-path
problems in G+. Specifically, for each pair (i, j), we find the minimum-
weight path from (i, j)+0 to (i, j)+3 , and the minimum-weight path from
(i, j)−0 to (i, j)−3 . If the path has a total weight less than 3, we have found
a violated inequality.

Note thatD+ has O
(
n2
)

nodes and O
(
n3
)

arcs, and it can be constructed
in O

(
n3
)

time. Moreover, under the assumption that our fractional point
x∗ satisfies all of the weakened triangle inequalities, each arc in A+ will
have non-negative weight. Thus, we can use Dijkstra’s algorithm to solve
the shortest-path problems. Using the Fibonacci heap variant of Dijkstra’s
algorithm [12], one can solve each shortest-path problem in O

(
n3
)

time.
This leads to a total running time of O

(
n5
)
.

A running time of O
(
n5
)

is still rather high. The algorithm can be made
faster by exploiting the sparsity of x∗. Define the edge set F =

{
e ∈ E :

0 < x∗e < 1
}

. (The “F” stands for “fractional”.) Proposition 3 implies that,
if x∗ satisfies all triangle inequalities, then an EG2C inequality cannot be
violated unless

(
vi, vi+1

)
∈ F for i = 1, . . . , p.

To exploit this fact, we assume that x∗ satisfies all triangle inequalities.
We then only include the nodes (i, j)+c and (i, j)−c in G+ if x∗ij is fractional.

This reduces the number of nodes and edges in G+ to O
(
|F |
)

and O
(
n|F |

)
,

respectively. Each shortest-path computation then takes only O
(
n|F |

)
time,

and the number of shortest-path calls reduces to O
(
|F |
)
. The total time

reduces to O
(
n|F |2

)
.

Although the running time of O
(
n|F |2

)
is still rather high, note that the

algorithm can generate several violated inequalities in a single call.
We remark that our auxiliary graph G+ has half as many nodes and

13

edges as the one in [15], despite the fact that it separates over a larger
family of inequalities.

5 Computational Results

To explore the potential of EG2C inequalities, we modified the cutting-plane
algorithm described in [15], and ran it on the same instances. The test set
is composed of two sets of fully dense instances, called “MC A” and “MC B”.
For the instances in MC A, each edge weight is a random integer uniformly
selected from {1, . . . , 10}. For the instances in MC B, each edge weight is set
to either +1 or −1, with equal probability. Each set contains ten instances
for each value of n in {35, 45, 55}.

The code was written in C and calls on the callable library of CPLEX

(v.12.8). We use primal simplex to solve the initial LP and dual simplex
to re-optimise after adding cutting planes. The experiments were run on an
Intel i5 processor at 3.40GHz × 4, under Ubuntu 18.04, with 8GB of RAM.

We considered three versions of the cutting-plane algorithm. In version
(a), we separate triangle inequalities alone. In version (b), we separate over
the ES2C inequalities, using the algorithm in [15], when triangle separation
fails. In version (c), we separate over the (more general) EG2C inequalities,
using the algorithm in this paper, when triangle separation fails.

For each instance and each version of the cutting-plane algorithm, we
stored the total computing time and the upper bound obtained. We also
calculated the gap between each upper bound and the optimum, expressed
as a percentage of the optimum.

Table 1 shows the average computing times, in seconds. Each row cor-
responds to a batch of ten instances. It is apparent that the cutting-plane
algorithm converges much more quickly when our separation algorithm is
used rather than the one in [15], despite the fact that our separation algo-
rithm separates over a more general family of inequalities than the one in
[15]. Table 2 shows the average percentage gaps for the same instances. We
observe that the ES2C and EG2C inequalities close an impressive propor-
tion of the integrality gap, especially for the MC B instances. Remarkably
though, the numbers in the last two columns are identical. In fact, versions
(b) and (c) of the cutting-plane algorithm produced identical upper bounds
for every one of our 60 instances. In an attempt to understand this phe-
nomenon better, we inspected the primal and dual LP solutions obtained
when the cutting-plane algorithm terminates. Recall that an inequality with
zero slack is called binding. It turned out that, regardless of whether ver-
sion (b) or (c) was used, the majority of the binding inequalities were ES2C
inequalities with p = 5 (which is the smallest value that p can take). There
were some other binding ES2C and EG2C inequalities, but they all had zero
dual price.

14

|V | (a) (b) (c)

35 0.72 1120 119
MC A 45 0.97 3760 449

55 2.34 10383 1320

35 0.34 425 94
MC B 45 1.34 4965 1501

55 5.05 24076 6161

Table 1: Average running times (in seconds) for three versions of the cutting-
plane algorithm.

|V | (a) (b) (c)

35 15.37 3.83 3.83
MC A 45 17.83 5.63 5.63

55 21.33 7.35 7.35

35 33.90 0.00 0.00
MC B 45 55.74 0.37 0.37

55 78.89 3.89 3.89

Table 2: Average percentage integrality gaps for three versions of the
cutting-plane algorithm.

15

Another strange phenomenon is that, for almost all instances, the num-
ber of binding EG2Cs when version (c) was used was significantly smaller
than the number of binding ES2Cs when version (b) was used. We suspect
that this odd behaviour is due to the fact that all of our instances were fully
dense.

An interesting topic for future work is the integration of EG2C inequal-
ities (perhaps together with other known inequalities) in a branch-and-cut
framework. Another interesting topic is to determine whether any other
arrows should be added to Figure 4. In particular, can EG2C inequalities
be derived as {0, 12}-cuts, and can {0, 12}-cuts be derived as SDCs?

References

[1] P. Assouad (1984) Sur les inégalités valides dans L1. Eur. J. Combina-
torics, 5, 99–112.

[2] E. Balas, S. Ceria & G. Cornuéjols (1993) A lift-and-project cutting
plane algorithm for mixed 0-1 programs. Math. Program., 58, 295–324.

[3] F. Barahona, M. Jünger & G. Reinelt (1989) Experiments in quadratic
0-1 programming. Math. Program., 44, 127–137.

[4] F. Barahona & A.R. Mahjoub (1986) On the cut polytope. Math. Pro-
gram., 36, 157–173.

[5] T. Bonato, M. Jünger, G. Reinelt & G. Rinaldi (2014) Lifting and
separation procedures for the cut polytope. Math. Program., 146, 351–
378.

[6] E. Boros & P.L. Hammer (1993) Cut-polytopes, Boolean quadric
polytopes and nonnegative quadratic pseudo-Boolean functions. Math.
Oper. Res., 18, 245–253.

[7] A. Caprara & M. Fischetti (1996) {0, 1/2}-Chvátal-Gomory cuts. Math.
Program., 74, 221–235.

[8] M. Conforti, G. Cornuéjols & G. Zambelli (2014) Integer Programming.
Cham, Switzerland: Springer.

[9] C. De Simone, M.M. Deza & M. Laurent (1994) Collapsing and lifting
for the cut cone. Discr. Math., 127, 105–130.

[10] M.M. Deza & M. Laurent (1992) Facets for the cut cone I. Math. Pro-
gram., 56, 121–160.

[11] M.M. Deza & M. Laurent (1997) Geometry of Cuts and Metrics. Berlin:
Springer.

16

[12] M.L. Fredman & R.E. Tarjan (1987) Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34, 596–615.

[13] M.R. Garey, D.S. Johnson & L.J. Stockmeyer (1976) Some simplified
NP-complete graph problems. Theoret. Comput. Sci., 1, 237–267.

[14] A.M.H. Gerards (1985) Testing the odd bicycle wheel inequalities for
the bipartite subgraph polytope. Math. Oper. Res., 10, 359–360.

[15] K. Kaparis & A.N. Letchford (2018) On the 2-circulant inequalities for
the max-cut problem. Oper. Res. Lett., 46, 443–447.

[16] M. Laurent (1997) Max-cut problem. In M. Dell’Amico, F. Maffoli &
S. Martello (eds.) Annotated Bibliographies in Combinatorial Optimiza-
tion, pp. 241–259. Chichester: Wiley.

[17] M. Laurent & S. Poljak (1995) On a positive semidefinite relaxation of
the cut polytope. Lin. Alg. Appl., 223/224, 439–461.

[18] M. Laurent & S. Poljak (1996) Gap inequalities for the cut polytope.
Eur. J. Combinatorics, 17, 233–254.

[19] A.N. Letchford (2001) On disjunctive cuts for combinatorial optimiza-
tion. J. Combin. Optim., 5, 299–315.

[20] A.N. Letchford & M.M. Sørensen (2014) A new separation algorithm
for the Boolean quadric and cut polytopes. Discr. Optim., 14, 61–71.

[21] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi & A. Wiegele (2012)
Computational approaches to max-cut. In M.F. Anjos & J.B. Lasserre
(eds.) Handbook on Semidefinite, Conic and Polynomial Optimization,
pp. 821–847. Boston, MA: Springer US.

[22] S. Poljak & D. Turzik (1992) Max-cut in circulant graphs. Discr. Math.,
108, 379–392.

[23] F. Rendl, G. Rinaldi & A. Wiegele (2010) Solving max-cut to opti-
mality by intersecting semidefinite and polyhedral relaxations. Math.
Program., 121, 307–335.

17

