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Abstract

We introduce a novel weighted least squares approach to estimate daily realized co-

variation and microstructure noise variance using high-frequency data. We provide an

asymptotic theory and conduct a comprehensive Monte Carlo simulation to demonstrate

the desirable statistical properties of the new estimator, compared with existing estima-

tors in the literature. Using high-frequency data of 27 DJIA constituting stocks over a

period from 2014 to 2020, we confirm that the new estimator performs well in comparison

with existing estimators. We also show that the noise variance extracted based on our

method can be used to improve volatility forecasting and asset allocation performance.
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1 Introduction

Asset pricing, portfolio allocation, and risk management all require the precise estimation of

assets’ return moments, such as volatilities and covariances. Starting from Andersen et al. (2001)

and Barndorff-Nielsen and Shephard (2002), a large body of the literature over the last twenty

years uses high-frequency data and intraday information to construct more precise financial risk

measures, including realized volatilities and realized covariances. However, using high-frequency

data is associated with two main challenges, i.e., the market microstructure (MMS) noise effects,

and the non-synchronic trading. The upward bias on realized volatilities due to the MMS noise

and the downward bias on realized covariances due to the asynchronicity (Epps effect, Epps

(1979)), can partially or even fully offset the incremental benefits of using intraday information,

and hence may render the use of high-frequency data practically unattractive. Several existing

studies have already proposed different approaches to mitigate these issues.1

In this paper, we introduce a new approach to estimate integrated covariation based on

a weighted least squares (WLS) method, which extends the least squares-based estimators

by Curci and Corsi (2012) and Nolte and Voev (2012). We show that when the regression

weights are chosen appropriately, the WLS estimator is asymptotically equivalent to the multi-

scale estimator of Zhang (2006) and Bibinger and Mykland (2016) which attains the optimal

convergence rate and is simple to implement in practice. Interestingly, the WLS approach also

simultaneously produces a consistent estimator for the MMS noise (co)variance.

Our theoretical analysis suggests that the WLS estimator of integrated covariation is con-

sistent in the presence of observation asynchronicity and endogenous noise, but is in general

biased when the noise is serially correlated or heteroscedastic. We quantify the asymptotic

biases due to correlated or heteroscedastic noise and propose corrections to these biases for the

WLS estimator. To understand the finite sample properties of the new estimator, we conduct a

comprehensive Monte Carlo simulation analysis. We demonstrate the impact of tuning param-

eters and provide guidance on how to choose them adaptively in practice. Then we compare

our estimator with adaptive choices of tuning parameters against a few well-known estimators2

1For example, Aı̈t-Sahalia et al. (2010); Barndorff-Nielsen et al. (2011a); Bibinger and Mykland (2016); Chris-

tensen et al. (2010); Clinet and Potiron (2019); Hautsch et al. (2015); Lunde et al. (2016); Shephard and Xiu

(2017); Varneskov (2016); Zhang (2011), among others.
2The competing estimators include the composite realized kernel of Lunde et al. (2016), the flat-top realized

kernel of Varneskov (2016), the pre-averaged Hayashi-Yoshida estimator of Christensen et al. (2013) and the

muti-scale realized covariance of Bibinger (2011, 2012).
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in the literature. We show that our estimator is frequently ranked among the least biased

estimators of all estimators and as a top-three performer in terms of root mean squared error

(RMSE) under different assumptions on the dependence of MMS noise. We also demonstrate

the validity of the WLS method for the estimation of noise variance. Our noise variance es-

timate achieves the smallest bias and RMSE in almost all cases compared to other methods,

such as the ReMeDI estimator of Li and Linton (2021).

In the empirical analysis, we estimate the daily integrated covariance matrices of 27 Dow

Jones Industrial Average (DJIA) stocks based on high-frequency intraday data from 2014 to

2020 using our WLS estimator alongside with the competing estimators in the simulation. Based

on the HAR-DRD model of Oh and Patton (2016); Bollerslev et al. (2018), we compare the

predictive power of the integrated covariance estimators using a five-minute subsampled realized

covariance forecasting target. We find that the WLS estimator has very similar in-sample and

out-of-sample forecasting performance in comparison with its competitors. More importantly,

we show that including the WLS estimator of daily noise variances into the HAR-DRD model

leads to more accurate forecasts regardless of which integrated covariance estimator is used in

the HAR-DRD model. The forecasting improvement is concentrated in periods with high noise

variance. The statistical forecasting improvement can also be translated into economic value

through asset allocation, as noise-augmented portfolio strategies consistently obtain positive

performance fees relative to the benchmark portfolios without using the noise variance.

The above result suggests that the integrated covariance of asset returns may depend on

past MMS noise variance, which provides new insights into the relation between the MMS

noise and volatility. To better understand this result, we further explore the potential infor-

mation content of the noise variance. By examining the correlation between the noise variance

and several microstructure variables, we confirm the existing literature (see e.g. Roll (1984);

Glosten and Harris (1988); Harris (1991); Hu et al. (2013)) that noise can to some extent be

interpreted as a measure of market friction or illiquidity. However, including these variables

along with noise in the forecasting regression does not completely subsume the predictive power

of the noise variance. Instead, we show that an interaction between noise variance and real-

ized variance plays an important role, similarly to the realized quarticity (RQ) in the HARQ

model by Bollerslev et al. (2016). We further show that the predictive power of noise variance

remains after controlling for realized quarticity and jump variations, highlighting its distinctive

information content. Overall, our findings suggest that both illiquidity-based and error-based
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interpretations may jointly explain the predictive power of the noise variance.

The overall contribution of this paper is two-fold. First, we enrich the vast literature on the

estimation of the integrated covariation matrix by introducing a novel WLS-based estimator.

We establish asymptotic properties of our WLS estimator under general setup on the observation

scheme and the MMS noise structure, and prove a one-to-one mapping between the WLS

estimator and the multi-scale realized covariance estimator of Bibinger (2011, 2012); Bibinger

and Mykland (2016). These results to a large extent strengthen the theoretical results in Curci

and Corsi (2012) and Nolte and Voev (2012) and provide new insights into the properties of

the multiscale estimators under more general settings.

Second, we also add to the growing literature on the intersection of MMS noise and volatil-

ity modelling. The problem of noise variance estimation is considered in e.g. Hansen and Lunde

(2006); Nolte and Voev (2012); Ikeda (2015); Jacod et al. (2017); Li and Linton (2021), and

several papers attempt to understand the interaction between return and MMS noise (for ex-

ample, Diebold and Strasser (2013); Clinet and Potiron (2019); Andersen et al. (2021)). We

provide a new WLS-based method which extracts noise variance in a multivariate setup. We

not only provide evidence that microstructure noise is linked to a set of microstructure vari-

ables reflecting market illiquidity but also offer both statistical and economic evidence that

incorporating the extracted noise into the forecasting model can improve volatility forecasting

and asset allocation performance.

The remaining of the paper is structured as follows: Section 2 defines the WLS estimator

and summarizes its theoretical properties. Rigorous econometric analyses of the theoretical

properties are provided in Section 3. Section 4 presents a comprehensive Monte Carlo simulation

analysis about the finite sample properties of the estimator. Section 5 conducts empirical

analysis using high-frequency data of DJIA stocks. Section 6 concludes.

2 The Weighted Least Square Estimator

This section introduces our novel weighted least square (WLS) estimators for integrated covari-

ation and noise covariances and provides a succinct summary about their theoretical properties.

The interested readers are referred to Section 3 for a rigorous econometric analysis of the es-

timator, which can be skipped without much loss of continuity. Our notation largely follows

from the general notation in Aı̈t-Sahalia and Jacod (2014).
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We begin with an assumption on a bivariate price process, which is the object of inter-

est. On a filtered probability space (Ω,F , (Ft)t∈[0,1],P), the latent efficient log-prices of two

financial assets X = (Xt)t∈[0,1] and Y = (Yt)t∈[0,1] are assumed to be a bivariate continuous

semi-martingale specified as follows:

dXt = µXt dt+ σXt dB
X
t ,

dYt = µYt dt+ σYt dB
Y
t ,

(1)

where BX and BY are two standard Brownian motions satisfying d[BX , BY ]t = ρtdt, and µ
X
t ,

µYt , σ
X
t , σ

Y
t , ρt are continuous, bounded and optional stochastic processes. The spot volatilities

σXt and σYt are assumed to be strictly positive. One of the main inference targets of this paper

is the integrated covariation between X and Y on [0, 1], defined as ⟨X, Y ⟩ :=
∫ 1

0
ρtσ

X
t σ

Y
t dt,

where the interval [0, 1] is normalized to represent a trading day.

We do not observe X and Y directly on [0, 1]. Instead, we observe contaminated versions

of X and Y on strictly increasing and possibly asynchronous observation times {tXn }n=0:NX
1

and {tYn }n=0:NY
1
understood as transaction times of X and Y , where NX

t :=
∑∞

n=1 1l {tXn ≤t} and

analogously for NY
t count the number of observations of X and Y up to time t. The observed

price processes X̃ and Ỹ are realized as:

X̃tXn
= XtXn

+ ϵXtXn , ỸtYn = YtYn + ϵYtYn , (2)

where ϵXtXn and ϵYtYn are the corresponding measurement errors of X̃ and Ỹ at time tXn and tYn ,

commonly known as the market microstructure (MMS) noise. They are assumed to be zero

mean processes with finite eighth moments, but are allowed to be autocorrelated, endogenous

and heteroscedastic (see Sections 3.1 and 3.2).

To deal with asynchronous observations, we adopt the pseudo-aggregation algorithm of

Bibinger (2011, 2012) to synchronize the prices. We introduce the notion of interpolated sam-

pling times and the refresh time synchronization:

Definition 1. For any s ∈ [0, 1], denote the next-tick and previous-tick interpolations of sampling

times for X as:

tX+ (s) := min
n=1:NX

1

{tXn : tXn ≥ s}, tX− (s) := max
n=1:NX

1

{tXn : tXn ≤ s}, (3)

and tY+(s) and tY−(s) are defined analogously. The refresh time synchronization of Barndorff-

Nielsen et al. (2011b) for {tXn }n=0:NX
1

and {tYn }n=0:NY
1
can be expressed as:

T0 = max{tX+ (0), tY+(0)}, Tn = max{tX+ (Tn−1), t
Y
+(Tn−1)}, n ∈ {1, . . . , N}. (4)
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Intuitively, the nth refresh time Tn is the time that we observe at least one transaction

from both assets since Tn−1. Based on the refresh times, we can obtain a synchronized dataset

{X̃Tn , ỸTn}n=1:N , and it is the synchronization scheme with minimal data loss (Aı̈t-Sahalia

et al., 2010). At the refresh times, we define the next-tick and previous-tick interpolations for

X̃ as X̃±
Tn

:= X̃tX± (Tn) and analogously Ỹ ±
Tn

:= ỸtY±(Tn). For example, whenever Tn belongs to

{tXn }n=0:NX
1
, we must have X̃±

Tn
= X̃Tn , otherwise X̃

+
Tn

(resp. X̃−
Tn
) returns the transaction price

right before (resp. after) time Tn in the local sampling grid {tXn }n=0:NX
1
. In a univariate setting

when X̃ = Ỹ , we clearly have Tn = tXn , ∀n, and thus X̃±
Tn

= X̃tXn
,∀n.

Based on the pseudo-aggregation algorithm, Bibinger (2011, 2012) propose the (general-

ized) subsampled RC estimator with a sampling interval of m refresh time ticks:

[X̃, Ỹ ](m) =
1

m

N∑
n=m

(X̃+
Tn

− X̃−
Tn−m

)(Ỹ +
Tn

− Ỹ −
Tn−m

), (5)

which interpolates the refresh time observations ofXTn and YTn to their local observation grids to

mitigate the impact of observation asynchronicity. The effective sampling frequency of [X̃, Ỹ ](m)

is defined as N (m) = N−m+1
m

, which counts the number of returns used in the construction of

[X̃, Ỹ ](m) scaled by 1/m.

We are now in the position to introduce our WLS estimator, which is developed from the

least squared-based estimators of Curci and Corsi (2012) and Nolte and Voev (2012) combined

with [X̃, Ỹ ](m). To begin with, we choose some integers Q < M and collect the RC estimators

{[X̃, Ỹ ](m)}m∈{Q,...,M}, where Q and M represents the smallest and largest sampling intervals of

RC estimators in collection. We consider the following deterministic linear regression problem3:

[X̃, Ỹ ](m) = β0 + β1 ·N (m) + em, m ∈ {Q, . . . ,M}. (6)

Pick a continuous and positive weight function w(x) : [0, 1] 7→ (0,∞), we can estimate β0 and

β1 by solving the following WLS problem:

{β̂(WLS)
0 , β̂

(WLS)
1 } := argmin

β0,β1

M∑
m=Q

m

M2
w
(m
M

)
([X̃, Ỹ ](m) − β0 − β1N

(m))2. (7)

The solution to the above problem is available in closed-form, which we present in Propositions

1 and 2.

3In our simulation and empirical analysis, we replace the constant regressor in Eq. (6) by mN (m)/N , which

corrects for a small finite sample bias of [X̃, Ỹ ](m) in the spirit of Zhang et al. (2005) but does not affect the

asymptotic properties of the WLS estimator discussed in Section 3.
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The WLS regression is motivated by the fact that, assuming independent and identically

distributed (i.i.d.) MMS noise and synchronous observations, as N → ∞ we have (see Eq. (35)

of Zhang et al. (2005) in a univariate setting):

E[[X̃, Ỹ ](m)|X, Y ] → ⟨X, Y ⟩+ 2N (m) E[ϵXn ϵ
Y
n ], (8)

where E[·|X, Y ] is the expectation operator conditional onX and Y processes. As each [X̃, Ỹ ](m)

has an asymptotic bias proportional to N (m) times the (unknown) covariance of the MMS noise,

it is natural to regress [X̃, Ỹ ](m) onN (m) using Eq. (6), and the estimates of β0 and β1 correspond

to estimators of ⟨X, Y ⟩ and 2E[ϵXn ϵ
Y
n ], respectively. However, due to the heteroscedasticity in

[X̃, Ỹ ](m), OLS regressions used in Curci and Corsi (2012) and Nolte and Voev (2012) do not

provide an estimator with the optimal convergence rate, which motivates the use of the WLS

approach in this paper. To emphasis the estimated quantity, we re-label the estimated regression

coefficients as ⟨X̂, Y ⟩(WLS) := β̂
(WLS)
0 and Ê[ϵXϵY ]

(WLS)

:= β̂
(WLS)
1 /2.

The choices of w(x), M and Q play a crucial role in shaping the theoretical properties of

⟨X̂, Y ⟩(WLS), which we summarize in what follows. First, Q, M and w(x) jointly determine

the convergence rate and the asymptotic properties of ⟨X̂, Y ⟩(WLS) as N → ∞. To achieve

the optimal convergence rate N
1
4 (see Varneskov (2016) and the reference therein), we need to

choose Q = O(1), M = O(
√
N), and some w(x) which grows at a linear or faster rate around

zero. We formalize the relation between w(x) and the convergence rates of ⟨X̂, Y ⟩(WLS) in

Theorem 2.

Second, when ⟨X̂, Y ⟩(WLS) achieves the optimal convergence rate, we show that it is

asymptotically equivalent to the multiscale realized covariance (MSRC) of Bibinger and Myk-

land (2016), which is in turn asymptotically equivalent to the non-flattop realized kernel

(RK) estimator. We establish the link between the choice of w(x) and the corresponding

MSRC weight function in Theorem 1. In particular, ⟨X̂, Y ⟩(WLS) with wcubic(x) = x and

wparzen(x) = 3x1l {x≤0.5} +
3(1−x)x
3x−1

1l {x>0.5} are asymptotically equivalent to a non-flattop realized

kernel with a cubic and a Parzen kernel, respectively. We use the subscripts ⟨X̂, Y ⟩(WLS)
cubic and

⟨X̂, Y ⟩(WLS)
parzen to distinguish between the two choices of w(x). For these two cases, we also ex-

plain the optimal choice of M at the end of Online Appendix A based on the results of realized

kernels.

Third, the choice of Q determines the asymptotic bias of ⟨X̂, Y ⟩(WLS) introduced by au-

tocorrelated MMS noise. Specifically, ⟨X̂, Y ⟩(WLS) is only asymptotically unbiased if the MMS

noise is autocorrelated up to Q−1 lags. As the MMS noise is believed to be autocorrelated with
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a fast decaying autocorrelation structure (Jacod et al., 2017; Li and Linton, 2021), we propose

to choose Q large enough such that the estimated MMS noise autocorrelation is approximately

zero. The detailed procedure is explained in Online Appendix B.

Fourth, we show that ⟨X̂, Y ⟩(WLS) is robust to endogenous noise, but it is asymptotically

biased when the MMS noise is heteroscedastic, a scenario studied in Kalnina and Linton (2008).

We derive a simple heteroscedasticity-corrected WLS estimator in Section 3.2, which we denote

by ⟨X̂, Y ⟩(WLS,∗). However, our simulation shows that ⟨X̂, Y ⟩(WLS,∗) and ⟨X̂, Y ⟩(WLS) have

largely similar performances, thus the correction is immaterial from a practical perspective,

which is consistent with the findings in Kalnina and Linton (2008).

As discussed earlier on, Ê[ϵXϵY ]
(WLS)

estimates the short-run MMS noise (co)variance.

Under optimally chosen M and w(x), Ê[ϵXϵY ]
(WLS)

achieves the optimal
√
N -convergence rate,

and it is also robust to dependent, endogenous, and heteroscedastic noise. It is worth noting

that in the univariate case, Ê[(ϵX)2]
(WLS)

and Ê[(ϵY )2]
(WLS)

are estimates of the short-run tick-

by-tick MMS noise variance for X and Y , while in the bivariate case Ê[ϵXϵY ]
(WLS)

estimates

the short-run MMS noise covariance around the refresh times due to the pseudo-aggregation

algorithm. One of the key contributions of this paper is to exploit the information embedded

in the MMS noise variance estimates for forecasting realized (co)variances.

3 Theoretical Properties of the WLS estimator

Following the approach of Bibinger and Mykland (2016), we establish theoretical results of the

WLS estimator first in the simpler setting with synchronous observations and i.i.d. exogenous

MMS noise and then generalize the findings to more realistic settings. We start with the

assumption about the observation times and MMS noise:

Assumption 1. The efficient prices X and Y as defined in Eq. (1) are discretely observed on a

grid of synchronized deterministic sampling times:

X̃n = Xtn + ϵXn , Ỹn = Ytn + ϵYn , (9)

where 0 ≤ t0 < t1 < . . . < tN ≤ 1 satisfies supn(tn − tn−1) = O(N−1). The bivariate MMS

noise process {ϵXn , ϵYn }′n=1:N is assumed to be i.i.d. with zero mean and finite eighth moment

independent of X and Y .
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Note that throughout this paper, we deal with infill asymptotics by letting N → ∞ while

fixing the time span [0, 1]. Assumption 1 is a simplified version of Assumption 1 in Bibinger and

Mykland (2016) which guarantees the consistency and rate-optimality of the MSRC estimator.

As it is closely related to our WLS estimator, we provide a succinct review of some properties

of the MSRC estimator.

For a choice of sampling interval m, we construct the subsampled RC estimator [X̃, Ỹ ](m)

based on Eq. (5), and note that in the synchronized setting it has the following simpler form:

[X̃, Ỹ ](m) =
1

m

N∑
n=m

(X̃tn − X̃tn−m)(Ỹtn − Ỹtn−m).

We give a definition of the MSRC estimator, which is a weighted sum of [X̃, Ỹ ](m) with sampling

intervals ranging from Q to M :

⟨X̂, Y ⟩(MS) :=
M∑

m=Q

α(m)[X̃, Ỹ ](m), (10)

where the weights α(m) satisfy the following two conditions:

Condition 1.
∑M

m=Q α
(m) = 1.

Condition 2.
∑M

m=Q α
(m)N (m) = 0.

By virtue of Eq. (8), the two conditions above ensure that E[⟨X̂, Y ⟩(MS)|X, Y ] → ⟨X, Y ⟩ so that

⟨X̂, Y ⟩(MS) is asymptotically unbiased. Choosing some Q = O(1) andM = O(
√
N), ⟨X̂, Y ⟩(MS)

is a consistent rate-optimal estimator of ⟨X, Y ⟩ under Assumption 1 (Bibinger, 2011). To be

specific, as N → ∞, we have:

⟨X̂, Y ⟩(MS) p→ ⟨X, Y ⟩, N
1
4 (⟨X̂, Y ⟩(MS) − ⟨X, Y ⟩) = Op(1). (11)

To understand the asymptotic distribution of ⟨X̂, Y ⟩(MS), it is convenient work with the

following decomposition:

⟨X̂, Y ⟩(MS) =
M∑

m=Q

a(m)[X̃, Ỹ ](m) + E(m), (12)

where a(m) = α(m) +O(N−1) is a slightly altered4 version of α(m) that satisfies:

Condition 1′.
∑M

m=Q a
(m) = 1.

Condition 2′.
∑M

m=Q(a
(m)/m) = 0.

One can verify that
∑M

m=Q a
(m)[X̃, Ỹ ](m) has an asymptotic bias of −2E[ϵXn ϵ

Y
n ], which is cor-

rected by E(m). In the literature, E(m) is know as the end-effect correction of the MSRC

4See Eq. (11) of Zhang (2006) for a possible choice of a(m) given α(m).
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estimator. The standard choice of a(m) is to set a(m) = m
M2 (h(

m
M
) + O(M−1)), where the

O(M−1) term can be found in Eq. (24) of Zhang (2006). The function h(x) is a twice continu-

ously differentiable function (called the MSRC weight function) satisfying
∫ 1

0
xh(x)dx = 1 and∫ 1

0
h(x)dx = 0. Importantly, the weights α(m) affect the asymptotic distribution of ⟨X̂, Y ⟩(MS)

through the choice of h(x) only.

As to the choice of h(x), Zhang (2006) provides the optimal MSRC weight function of

h(x) = 12(x − 1/2) which minimizes the asymptotic variance of ⟨X̂, Y ⟩(MS) attributable to

MMS noise. Furthermore, Bibinger and Mykland (2016) show that ⟨X̂, Y ⟩(MS) with the weight

function h(x) is asymptotically equivalent to a non-flattop realized kernel5 (RK) with the kernel

function k(x) satisfying k′′(x) = h(x). This implies that h(x) = 12(x− 0.5) corresponds to an

RK with a cubic kernel and motivates the use of a Parzen kernel-implied MSRC weight function

h(x) = 12(3x − 1)1l {x≤0.5} + 12(1 − x)1l {x>0.5}, which is overall more efficient than the cubic

kernel.

We return to the discussion of the WLS estimator and its relation to the MSRC estimator.

To this end, we define a class of WLS weight functions:

Definition 2 (WLS weight function). Let w(x) : [0, 1] 7→ (0,∞] denote a continuous and positive

function bounded on (0, 1]. Define dw ∈ R that satisfies w(x)/xdw = O(1) + O(x) as x → 0+.

We call dw the dominating exponent of w(x).

Intuitively, dw controls for the rate of increase or decrease of w(x) at x = 0. When dw ≥ 0,

w(0) is well-defined and w(x) increases locally around the origin, while when dw < 0, w(0) = ∞

and w(x) explodes at the origin. For example, w(x) = sin(x) has dw = 1 since w(x)/x = 1+o(x)

as x → 0+. The choice of dw plays a crucial role in determining the convergence rate of the

WLS estimator as it determines the weights applied to the RC estimators sampled at the highest

frequency. A complete analysis for the impact of dw on the convergence rate is presented in

Theorem 2.

Our first result concerns an MSRC representation of the WLS estimator:

Proposition 1. The WLS estimator ⟨X̂, Y ⟩(WLS) has the following MSRC representation:

⟨X̂, Y ⟩(WLS) =
M∑

m=Q

ϕ(m)[X̃, Ỹ ](m), (13)

5For conciseness we do not provide the full definition of the RK estimator and the kernel function k(x), which

can be found in Section 2.1 of Bibinger and Mykland (2016).
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where:

ϕ(m) =
m

M2

w(m
M
)(C−1 − C0N

(m))

C1C−1 − C2
0

, (14)

in which C1, C0, C−1, are constants that depend on Q, w(x), M and N whose expressions can

be found in Eq. (C.5). The weights ϕ(m) satisfy Conditions 1 and 2.

The above result implies that ⟨X̂, Y ⟩(WLS) is by definition an MSRC estimator with the

weights ϕ(m) that satisfy conditions 1 and 2 regardless of the choices of Q,M and w(x), thus we

can conclude that ⟨X̂, Y ⟩(WLS) is asymptotically unbiased. Furthermore, ϕ(m) has the following

asymptotic structure:

Theorem 1. Choose some Q = O(1) and M = O(N δ) with δ ∈ (0, 1). As N → ∞, it holds for

all m ∈ {Q, . . . ,M} that:

ϕ(m) = φ(m) +O(N−1), (15)

in which:

φ(m) :=
m

M2

w(m
M
)(C−1 + C0 − (C0 + C1)N

(m))

C1C−1 − C2
0

, (16)

and φ(m) satisfies conditions 1′ and 2′. Suppose also that dw ≥ 1, then φ(m) has the following

asymptotic structure:

φ(m) =
m

M2

(
h
(m
M

)
+O(M−1)

)
, (17)

where:

h(x) :=
w(x)(W−1 −W0/x)

W1W−1 −W 2
0

, Wd :=

∫ 1

0

xdw(x)dx. (18)

The function h(x) satisfies
∫ 1

0
xh(x)dx = 1 and

∫ 1

0
h(x)dx = 0.

Notice that h(x) is a valid MSRC weight function, which means that φ(m) has the same

asymptotic structure as a(m) in Eq. (12) if we choose w(x) and h(x) that satisfy Eq. (18). As

a result,
∑M

m=Q φ
(m)[X̃, Ỹ ](m) and

∑M
m=Q a

(m)[X̃, Ỹ ](m) have the same asymptotic distribution

and convergence rate by properties of the MSRC estimator, which is a key step towards the

asymptotic equivalence between ⟨X̂, Y ⟩(WLS) and ⟨X̂, Y ⟩(MS) that we establish in Corollary 1.

The following choices of h(x) are commonly used in the literature as they correspond

to rate-optimal realized kernel estimators. Here we derive6 the associated w(x) that satisfies

Eq. (18) and denote them based on their corresponding kernel names:

6Computing h(x) given w(x) is straightforward, but solving for w(x) based on a general h(x) may not be

analytically tractable (for example, the Tukey-Hanning kernel-implied MSRC weights). In this case, one needs

to solve a system of integral equations numerically for W−1, W0, and W1 and plug them back into Eq. (18) to

obtain w(x).
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1. (Cubic Kernel): hcubic(x) = 12(x− 0.5), wcubic(x) = x.

2. (Parzen Kernel): hparzen(x) = 12(3x− 1)1l {x≤0.5} + 12(1− x)1l {x>0.5},

wparzen(x) = 3x1l {x≤0.5} +
3(1−x)x
3x−1

1l {x>0.5}.

It is worth noting that both wcubic(x) and wparzen(x) have dw = 1. Here we provide some

intuition on why this leads to an optimal convergence rate for the WLS estimator. Under

Assumption 1, the dependent variable in Eq. (6) has the following asymptotic expansion (see

Zhang et al. (2005), Eq. (52)):

[X̃, Ỹ ](m) = ⟨X, Y ⟩+ 2N (m) E[ϵXn ϵ
Y
n ] +Op(

√
N/m2)︸ ︷︷ ︸

due to noise

+ Op(
√
m/N)︸ ︷︷ ︸

due to discretization

, (19)

and the Op(
√
N/m2) term due to MMS noise dominates the variance of [X̃, Ỹ ](m) (conditional

on X and Y ) for m small relative to N . Therefore, the linear weight function wcubic(x) = x

is optimal in the WLS sense as it completely offsets the heteroscedasticity in the regression

residuals due to noise, which leads to the optimal MSRC weight hcubic(x) as in Zhang (2006).

Ignoring other factors of heteroscedasticity, this leads to a
√
M -consistent β̂

(WLS)
0 by properties

of the least square estimator, which translates into the optimal N
1
4 -convergence rate with

M = O(
√
N). As wcubic(x) does not account for heteroscedasticity due to discretization or the

correlation structure of the regressand, the linear weight can be inferior to other WLS weights in

terms of overall efficiency, such as wparzen(x) which is linear on [0, 0.5] but decreases on [0.5, 1].

From the above discussion, we see that the WLS weight function w(x) should have dw = 1

to counterbalance the noise-induced variance for small m. The following result provides more

insights into the impact of dw on the convergence rate of the WLS estimator:

Theorem 2. Under Assumption 1 as N → ∞ with M = O(N δ) for δ ∈ (1
3
, 1), the relation

between the convergence rate of ⟨X̂, Y ⟩(WLS) and the dominating exponent dw of its WLS weight

function w(x) is summarized in Table 1.

Theorem 2 shows that the convergence rate is completely characterized by dw. In general,

the convergence rate becomes slower as dw decreases further, since we are putting more weights

on the fastest scale of the subsampled RC estimator which has a larger variance. The result

in Table 1 can be reconciled with several findings in the literature. First, an N
1
5 -consistent

estimator can be constructed with dw = 1/6, which implies δ = 3/5, in line with the optimal

bandwidth of a positive-definite non-flattop realized kernel (Barndorff-Nielsen et al., 2011b).
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Range of dw Optimal Order of M Convergence Rate

dw > 1
2 M = O(N

1
2 ) N

1
4

dw = 1
2 M = O(N

1
2 ln(N)

1
4 ) (N/ lnN)

1
4

dw ∈ (0, 12) M = O(N
2

3+2dw ) N
1+2dw
6+4dw

dw = 0 M = O((N/ lnN)
2
3 ) N

1
6 ln(N)

1
3

dw ∈ (−1, 0) M = O(N
2
3 ) N

1
6

dw = −1 M = O((N lnN)
2
3 ) N

1
6 ln(N)−

1
3

dw < −1 — Inconsistent

Table 1: The dominating exponent dw and the convergence rate of the WLS estimator

Second, the convergence rate of the estimator in Nolte and Voev (2012) is recovered with dw = 0

and w(x) = 1. The N
1
6 case is found with dw ∈ (−1, 0), which shares the same convergence

rate and choice of M as the estimators in Zhang et al. (2005); Barndorff-Nielsen et al. (2008).

Interestingly, our result implies that the estimator in Curci and Corsi (2012) has the slowest

possible convergence rate with w(x) = x−1 and dw = −1. For any dw < −1, the WLS estimator

diverges as the variance of the measurement errors explodes in the limit.

Moving on to the WLS estimator of noise (co)variance Ê[ϵXϵY ]
(WLS)

, we have the following

result:

Proposition 2. Under Assumption 1, Pick Q = O(1), M = O(
√
N), and some w(x) with dw ≥ 1

and construct Ê[ϵXϵY ]
(WLS)

, which has the following explicit form:

Ê[ϵXϵY ]
(WLS)

=
1

2

M∑
m=Q

θ(m)[X̃, Ỹ ](m), (20)

where θ(m) = ϕ(m) − φ(m). It holds as N → ∞ that:

Ê[ϵXϵY ]
(WLS) p→ E[ϵXn ϵ

Y
n ],

√
N(Ê[ϵXϵY ]

(WLS)

− E[ϵXn ϵ
Y
n ]) = Op(1). (21)

Therefore, under the i.i.d. exogenous setting with synchronous observations, Ê[ϵXϵY ]
(WLS)

is a consistent and rate-optimal estimator of the noise covariance E[ϵXn ϵ
Y
n ]. Adding to the

findings in Nolte and Voev (2012), we show that a different linear combination of [X̃, Ỹ ](m) can

be used to extract the short-run covariance of the MMS noise process. Interestingly, Proposition

2 suggests the following decomposition for ⟨X̂, Y ⟩(WLS) in the spirit of Eq. (12):

⟨X̂, Y ⟩(WLS) =
M∑

m=Q

φ(m)[X̃, Ỹ ](m) + 2Ê[ϵXϵY ]
(WLS)

, (22)
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therefore ⟨X̂, Y ⟩(WLS) uses 2Ê[ϵXϵY ]
(WLS)

as its end-effect correction, which is different from

that of ⟨X̂, Y ⟩(MS).

We conclude this section by proving the asymptotic equivalence between ⟨X̂, Y ⟩(WLS) and

⟨X̂, Y ⟩(MS) in Corollary 1, which is a direct result of Theorem 1, Proposition 2 and Eq. (22):

Corollary 1. Suppose Assumption 1 holds true. Use the choices of Q, M and w(x) as in

Proposition 2. Construct ⟨X̂, Y ⟩(WLS) based on w(x) and ⟨X̂, Y ⟩(MS) based on h(x) which

satisfy Eq. (18), then as N → ∞:

N
1
4 (⟨X̂, Y ⟩(WLS) − ⟨X̂, Y ⟩(MS)) = op(1). (23)

Corollary 1 implies that under Assumption 1, ⟨X̂, Y ⟩(WLS) is also a consistent and rate-

optimal estimator of ⟨X, Y ⟩ in view of Eq. (11), and its asymptotic distribution is readily

available from ⟨X̂, Y ⟩(MS), or the corresponding non-flattop RK with the kernel function k′′(x) =

h(x). The asymptotic equivalence in fact holds in a much more general setting as the two

estimators only differ asymptotically in how they deal with the end-effects, which converges at

a much faster rate than the estimator of ⟨X, Y ⟩ itself. This is an intriguing result, because we

show that the MSRC estimator also emerges from a WLS-based estimator of ⟨X, Y ⟩ based on a

quite different principle. The result also suggests a simple approach to choose h(x) by exploiting

Eq. (18), in addition to the method proposed in Zhang (2006). As an interesting future research

question, it may be possible to design an optimal w(x) in the regression setting to minimize

the asymptotic variance of the WLS estimator based on the theory of generalized least squares,

which is similar to the optimal kernel design problem as studied in Barndorff-Nielsen et al.

(2008, 2011b).

3.1 Observation Asynchronicity and Dependent Noise

It is well-known that trades arrive asynchronously into the market, which generates the Epps’

effect (Epps and Epps, 1976) that biases the realized covariance estimator downwards. Also, it is

well-documented that the MMS noise of tick-by-tick transaction prices are autocorrelated (Aı̈t-

Sahalia et al., 2011; Ikeda, 2015; Jacod et al., 2017; Li and Linton, 2021). Empirical findings

in Voev and Lunde (2007); Griffin and Oomen (2011) point out possible lead-lag relations

between pairs of MMS noises. Varneskov (2016) shows that synchronization algorithms can

produce artificial noise persistence in a multivariate setting. These results all suggest that

Assumption 1 is unlikely to hold in practice.
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In this section, we relax Assumption 1 to allow for observation asynchronicity and depen-

dent MMS noise and discuss their implications to the consistency7 of the WLS estimator. To

this end, we replace Assumption 1 by Assumptions 2 and 3 below:

Assumption 2. The efficient prices X and Y as defined in Eq. (1) are observed on determin-

istic and strictly increasing asynchronous observation times {tXn }n=0:NX
1

and {tYn }n=0:NY
1
. The

sampling times are assumed to be regular, that is:

sup
n=1:NX

1

(tXn − tXn−1, t0, 1− tXNX
1
) = O(N−1)

sup
n=1:NY

1

(tYn − tYn−1, t0, 1− tYNY
1
) = O(N−1)

. (24)

Assumption 3. Let {ϵXTn , ϵ
Y
Tn
}n=0:N denote the MMS noise processes associated with X̃ and

Ỹ synchronized at the refresh times {Tn}n=0:N , which is constructed from {tXn }n=0:NX
1

and

{tYn }n=0:NY
1
according to Definition 1. We assume that:

1. {ϵXTn , ϵ
Y
Tn
}n=0:N is a strictly stationary bivariate process with zero mean and finite eighth

moments.

2. For some non-negative integer q, {ϵXTn , ϵ
Y
Tn
}n=0:N is q-dependent, that is, ϵXTn and ϵYTn are

independent of ϵXTn−j
and ϵYTn−j

for every n and j > q.

3. It holds that ϵXTn = ϵXt±(Tn)
and ϵYTn = ϵYt±(Tn)

for every 0 ≤ n ≤ N , so that the MMS noise

remains unchanged after interpolation at the local observation times.

Following Barndorff-Nielsen et al. (2011b), we specify the noise dynamics in refresh time

to simplify our analysis. Intuitively, the above assumption states that the MMS noise is only

dependent up to q observations in refresh time. As q can be chosen arbitrarily large, this

assumption provides a flexible dynamic structure to capture the empirical dependence of the

bivariate noise processes. It is worth noting that ϵXTn = ϵXt±(Tn)
holds true whenever Tn belongs

to {tXn }n=0:NX
1

and likewise for Y , so condition 3 already holds true for half of the cases. We

expect that it still approximately holds when Tn does not belong to the local observation times

given that the tick-by-tick MMS noise is known to be highly positively autocorrelated at the

first lag (Jacod et al., 2017; Li and Linton, 2021).

7As we are mostly interested in the first-order behaviour of the WLS estimator under more general settings, we

do not discuss its asymptotic variance in these settings, which is left for future research.
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We firstly discuss the impact of observation asynchronicity in the context of Assumption

2. We adopt the pseudo-aggregation algorithm of Bibinger (2011) to deal with asynchronicity.

In detail, when the prices are asynchronous, we utilize the generalized subsampled RC defined

in Eq. (5) in the construction of ⟨X̂, Y ⟩(WLS). As changing the definition of [X̃, Ỹ ](m) does not

affect the results in Corollary 1, ⟨X̂, Y ⟩(WLS) is still asymptotically equivalent to ⟨X̂, Y ⟩(MC)

coupled with the pseudo-aggregation algorithm, which is a consistent and rate-optimal estimator

in the presence of i.i.d. and exogenous MMS noise (Bibinger and Mykland, 2016). We also note

that the deterministic observation times can be further weakened by allowing stochastic and

endogenous sampling times in view of Corollary 3.5 of Bibinger and Mykland (2016), which we

omit for brevity.

The effects of dependent MMS noise as specified in Assumption 3 on the consistency of the

WLS estimator are summarized in Proposition 3:

Proposition 3. Suppose Assumptions 2 and 3 hold true. Pick w(x) with dw ≥ 1. Construct

⟨X̂, Y ⟩(WLS) and Ê[ϵXϵY ]
(WLS)

with some Q = O(1) and M = O(N δ) for δ ∈ (1
3
, 1). As

N → ∞, it holds that:

⟨X̂, Y ⟩(WLS) − ⟨X, Y ⟩ p→ −
M∑

m=Q

ϕ(m)

m
N (m)Γm = 1l {Q≤q} ·O(N1−2δ),

Ê[ϵXϵY ]
(WLS)

− E[ϵXTnϵ
Y
Tn ]

p→ −1

2

M∑
m=Q

θ(m)

m
N (m)Γm = O(N−δ),

(25)

where Γm := E[ϵXTnϵ
Y
Tn−m

+ ϵYTnϵ
X
Tn−m

] satisfies Γm = 0,∀m > q.

Several important conclusions can be drawn from Proposition 3. First, in the case when

δ = 1/2 and Q ≤ q, ⟨X̂, Y ⟩(WLS) has a bias of order O(1) which does not vanish in the

limit. This result is unexpected in the literature of multiscale estimators, as Section 6.2 of

Aı̈t-Sahalia et al. (2011) shows that the multiscale realized variance with Q = 1 is robust to

exponentially mixing noise with a bias that is of the order O(M−1), which contradicts our

results. After careful examination, we find that Aı̈t-Sahalia et al. (2011) missed a factor of

N in the first equation of Section 6.2, causing the bias to have a much smaller asymptotic

order. Therefore, one can only achieve consistency and optimal convergence rate if Assumption

3 holds and we choose Q > q, otherwise ⟨X̂, Y ⟩(WLS), and hence ⟨X̂, Y ⟩(MS), are inconsistent.

We conjecture that in the presence of a general noise dependence structure, a consistent version

of ⟨X̂, Y ⟩(WLS) can be constructed by letting Q diverge at a suitable rate following the flat-top

realized kernel of Varneskov (2016, 2017) while still maintaining the optimal N
1
4 convergence
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rate. Theoretical analysis along this line is beyond the scope of this paper. Nevertheless, from

a practical perspective, one should choose Q large enough such that Γm ≈ 0 to avoid bias

introduced by the cross-correlated (or autocorrelated in the univariate case) noise.

Second, the asymptotic order of the bias for the general δ ∈ (1
3
, 1) case is in line with

the leading bias of the realized kernel in the presence of dependent noise (see e.g. Lemma 2 of

Varneskov (2016)). This also rationalizes the choice of sub-optimal choices of δ to deal with

dependent noise (such as δ = 2/3 in Barndorff-Nielsen et al. (2011b)), which ensures that the

asymptotic bias due to Γm vanishes in the limit.

Last, Ê[ϵXϵY ]
(WLS)

remains a consistent estimator of E[ϵXTnϵ
Y
Tn
] for any Q = O(1) and

δ ∈ (1
3
, 1) under Assumption 3. This result can be strengthened to cover general dependent

noise with absolutely summable Γm, and the asymptotic order of the bias remains O(N−δ). In

a univariate setting, Proposition 3 implies that Ê[(ϵX)2]
(WLS)

is a consistent estimator of the

MMS noise variance which is robust to autocorrelation in the noise dynamics.

3.2 Endogenous and Heteroscedastic Noise

Kalnina and Linton (2008) emphasize the importance of endogenous and heteroscedastic noise

in the estimation of integrated variance, which is further studied by Varneskov (2016, 2017)

in the construction of flat-top realized kernel estimators. As the impact of these features is

not yet analyzed for the class of multiscale estimators, we provide some primitive theoretical

considerations. To simplify exposition, we focus on the univariate process X and omit the

superscript for X in the observation times whenever no confusion is caused. The following

assumption replaces Assumption 3:

Assumption 4. Use the setting in Assumption 2. The noise process ϵXn is assumed to have the

following structure:

ϵXn = ω(tn)∆t
− 1

2
n ∆Wn, (26)

where ∆tn = tn − tn−1, ∆Wn = Wtn − Wtn−1, W = (Wt)t∈[0,1] is a standard Brownian mo-

tion satisfying d[BX ,W ]t = ξdt, and ω : [0, 1] 7→ R+ is a bounded Lipschitz function. The

deterministic sampling times {tn}n=0:N are assumed to be generated from tn = τ(n/N) where

τ(t) =
∫ t
0
λ2(u)du for some strictly positive and right continuous function λ(t).

The factor ∆t
− 1

2
n ensures that ϵXn = Op(1), similar to the design in Varneskov (2017).

The heteroscedasticity of ϵXn is captured by the function ω(t), and ξ ∈ [−1, 1] measures the
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degree of endogeneity. One can further generalize this specification by adding a fully exogenous

component, but the influence on the WLS estimator remains qualitatively unchanged. We

do not consider dependent noise in this case as it can be dealt with by choosing some large

Q based on our discussion in the previous section. The construction of τ(t) is adapted from

Barndorff-Nielsen et al. (2011b) to simplify the expression of limiting quantities with irregular

sampling times but does not play a substantial role otherwise. Alternatively, one can define the

asymptotic quadratic variation of time (e.g. Mykland and Zhang (2006)) which serves the same

purpose.

We deduce the following result under Assumptions 2 and 4:

Proposition 4. Suppose Assumptions 2 and 4 hold true. Pick w(x) with dw ≥ 1. Construct

⟨X̂,X⟩(WLS) and Ê[(ϵX)2]
(WLS)

with Q = O(1) and M = O(N δ) for δ ∈ (1
3
, 1). As N → ∞,

the following result holds:

⟨X̂,X⟩(WLS) − ⟨X,X⟩ p→ 2

∫ 1

0

ω(τ(u))2du− (ω(0)2 + ω(1)2),

Ê[(ϵX)2]
(WLS) p→

∫ 1

0

ω(τ(u))2du.

(27)

Three important conclusions can be drawn from Proposition 4. First, the endogeneity

of the noise itself does not introduce an asymptotic bias to ⟨X̂,X⟩(WLS), as the bias is not a

function of ξ. Intuitively, this is because the cross term between the efficient price and the noise

satisfies E[[X, ϵX ](m)|X] = O(
√
N), which vanishes with the order O(N− 1

2 ) after we average

across all scales. An in-depth analysis can be found in the proof of the proposition.

Second, ⟨X̂,X⟩(WLS) (and thus ⟨X̂,X⟩(MS)) is not robust to heteroscedastic MMS noise

with an asymptotic bias 2
∫ 1

0
ω(τ(u))2du− (ω(0)2 + ω(1)2). This bias is generated by the same

mechanism that generates the bias of the TSRV as explained Kalnina and Linton (2008), which

can be interpreted as the approximation error of the integral 2
∫ 1

0
ω(τ(u))2du by the one-interval

trapezoidal rule ω(0)2 + ω(1)2. Therefore, the bias vanishes when ω(t)2 is linear in t, but is in

general non-zero. For a U-shaped ω(t) as documented in Kalnina and Linton (2008), this bias

is negative.

Third, the proof of the proposition shows that Ê[(ϵX)2]
(WLS)

is asymptotically equivalent

to 1
N+1

∑N
n=0(ϵ

X
n )

2 that consistently estimates
∫ 1

0
ω(τ(u))2du, which is also robust to serially

dependent noise in view of Proposition 3. However, we are unable to decompose the total noise

variance into endogenous and exogenous components, as ξ is unidentified in this setup.
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A simple heteroscedasticity correction for ⟨X̂,X⟩(WLS) can be formulated in the same spirit

of Kalnina and Linton (2008):

Corollary 2. Under the setup of Proposition 4, the following estimator of ⟨X,X⟩ is consistent:

⟨X̂,X⟩(WLS,∗) :=
M∑

m=Q

φ(m)[X̃, X̃](m) + (X̃, X̃){Q}, (28)

where φ(m) is defined in Eq. (16) and:

(X̃, X̃){Q} :=
1

2(M −Q+ 1)

∑
n∈[Q,M ]∪[N−M+Q,N ]

(X̃n − X̃n−Q)
2. (29)

In view of the decomposition in Eq. (22), (X̃, X̃){Q} can be seen as a different end-effect

correction term which consistently estimates w(0)2 + w(1)2. The parameter Q in (X,X){Q}

plays the same role as in ⟨X̂,X⟩(WLS) to mitigate the impact of dependent noise, which does

not introduce any additional tuning parameters.8

For the bivariate case, the impact of endogenous and heteroscedastic noise on ⟨X̂, Y ⟩(WLS)

is qualitatively unchanged under a suitable bivariate extension to Assumption 4. This can be

analysed analogously following the proof of Proposition 4, which we omit for conciseness. The

corresponding heteroscedasticity-corrected WLS estimator is constructed as:

⟨X̂, Y ⟩(WLS,∗) :=
M∑

m=Q

φ(m)[X̃, Ỹ ](m) + (X̃, Ỹ ){Q}, (30)

in which:

(X̃, Ỹ ){Q} :=
1

2(M −Q+ 1)

∑
n∈[Q,M ]∪[N−M+Q,N ]

(X̃+
Tn

− X̃−
Tn−Q

)(Ỹ +
Tn

− Ỹ −
Tn−Q

). (31)

3.2.1 Jumps

Eq. (1) implies continuous paths of efficient prices, which precludes jumps in the model. In

the presence of jumps, ⟨X̂, Y ⟩(WLS) delivers a consistent estimator of the total quadratic co-

variation between X and Y which includes both covariation from the continuous and the jump

components, as is discussed in Bibinger (2012), while Ê[ϵXϵY ]
(WLS)

is robust to jumps from the

WLS design. From a portfolio allocation point of view, it is reasonable to consider the total

8Alternatively, one can also follow Barndorff-Nielsen et al. (2008) and jitter the endpoint of X̃, which diminishes

the impact of ω(0)2 and ω(1)2. Consequently, the correction term (X̃, X̃){Q} is no longer needed. However, this

introduces an additional tuning parameter for the jittering rate, which is not pursued here.
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quadratic covariance as a measure of covariance between assets, which is what we pursue in our

empirical analysis.

However, one may be interested in disentangling the jump covariation, or co-jumps, from

the total quadratic covariation, which is an important risk factor of asset prices (Todorov and

Bollerslev, 2010; Gilder et al., 2014; Caporin et al., 2017). Existing approaches include the

truncated RC estimator of Mancini and Gobbi (2012) and the truncated pre-averaged Hayashi-

Yoshida estimator of Koike (2016), both based on the truncation principle of Mancini (2009).

Following this lead, a natural jump-robust extension to the WLS estimator is to replace each

RC estimators [X̃, Ỹ ](m) by their truncated counterparts.

4 Simulation

In this section, we conduct a Monte Carlo simulation study to verify the theoretical results

derived in the previous sections and provide guidance on the choice of Q and M . We also

compare the finite sample performance of the WLS estimators against various commonly used

estimators in the literature. Finally, we verify that the WLS estimators can provide valid

inference for the short-run variance of the MMS noise.

4.1 Simulation Design

The simulation setting closely follows Barndorff-Nielsen et al. (2011b); Christensen et al. (2010);

Varneskov (2016). The data generating process of (X, Y ) is assumed to be a bivariate one-factor

stochastic volatility model:dXt

dYt

 = µdt+ φ

σXt dWX
t

σYt dW
Y
t

+
√

1− φ2

σXt
σYt

 dBt,

σXt
σYt

 =

exp(b0 + b1ν
X
t )

exp(b0 + b1ν
Y
t )

 ,
dνXt
dνYt

 = a

νXt
νYt

 dt+
dWX

t

dW Y
t

 , Bt ⊥⊥ WX
t ⊥⊥ W Y

t .

(32)

Here Bt, W
X
t and W Y

t are standard Brownian motions capturing systematic and idiosyncratic

risks in X and Y , respectively. The parameters of our simulation are: µ = 0.03, b1 = 0.125,

a = −0.025, φ = −0.3 and b0 = (b1)
2/(2a). This parametrization ensures that E[⟨X,X⟩] =

E[⟨Y, Y ⟩] = 1.

19



We simulate 1000 realizations of (X, Y ) on the interval [0, 1] representing a typical 6.5-hour

trading day in the US stock market. The values of X and Y are firstly computed using Euler

approximation with a step size of 0.1 seconds, or 1/234000. We then generate asynchronous

observation times {tXn } and {tYn } as independent Poisson processes with intensity parameters λX

and λY capturing the average number of observations per second. In the simulation we consider9

(λX , λY ) ∈ {(1, 1/2), (1/5, 1/10)}, so that X on average has twice as many observations as Y

with 23400 and 4680 observations per day, respectively.

The observed prices {X̃tXn
} and {ỸtYn } are generated according to Eq. (2), with the following

MMS noise process:

ϵXn = ψ(IQX
1 )

1
4ω(tn)ε

X
n , ϵYn = ψ(IQY

1 )
1
4ω(tn)ε

Y
n , (33)

where IQX
t :=

∫ t
0
(σXs )

4ds is the integrated quarticity of X and IQY
t is defined analogously. The

noise-to-signal ratio parameter ψ determines the overall size of noise variance. We consider

ψ2 ∈ {0.005, 0.015}, representing the low and high noise cases. The function ω(x) is strictly

positive and bounded continuous satisfying
∫ 1

0
ω(x)2dx = 1 which controls the degree of het-

eroscedasticity. We use the simple specifications ω(x) =
√

1 + cos(2πx)/2, which generates a

U-shaped pattern as documented in Kalnina and Linton (2008). The processes εXn and εYn are

independent of X, Y and each other satisfy E[εXn ] = E[εYn ] = 0 and Var[εXn ] = Var[εYn ] = 1.

Specifically, εXn is assumed to follow an ARMA(1,1) process with unit variance:

εXn = ϕXεXn−1 + θXuXn−1 + uXn , uXn ∼ i.i.d. N
(
0,

1− (ϕX)2

1 + 2ϕXθX + (θX)2

)
, (34)

and εYn is defined analogously with parameters ϕY and θY . The following parameters are chosen

for the simulation of MMS noises:

� DGP 1: MA(1) noise. ϕX = ϕY = 0, θX = −0.5, θY = −0.3.

� DGP 2: Positive AR(1) noise. ϕX = 0.7, ϕY = 0.5, θX = θY = 0.

� DGP 3: Negative AR(1) noise. ϕX = −0.7, ϕY = −0.5, θX = θY = 0.

We focus on the following WLS estimators of ⟨X, Y ⟩, ⟨X,X⟩ or ⟨Y, Y ⟩ with optimal convergence

rates: ⟨·̂, ·⟩(WLS)
cubic with wcubic(x); ⟨·̂, ·⟩(WLS)

parzen with wparzen(x); the heteroscedasticity-corrected ver-

sions of the first two estimators as defined in Eq. (30), denoted as ⟨·̂, ·⟩(WLS,∗)
cubic and ⟨·̂, ·⟩(WLS,∗)

parzen .

9In unreported results we also consider a smaller sample size with (λX , λY ) = (1/15, 1/30), and our findings are

robust.
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For these estimators, we need to choose two tuning parameters: Q and M . We discuss the

influence and provide guidance on the choices of the two parameters in the next section. In

particular, we choose Q first and set M = ⌈c
√
N⌉ + Q − 1 for some constant c, where Q − 1

appears in the choice of M to ensure a constant regression size. Clearly, any fixed Q ensures

that M = O(
√
N), which gives the optimal convergence rate of the above estimators.

As competing estimators, we construct: (1) The 15-minute equidistant subsampled RC

estimator, ⟨·̂, ·⟩(sub)15 ; (2) the generalized MSRC estimator of Bibinger and Mykland (2016) using

the fastest scales, ⟨·̂, ·⟩(MS); (3) the pre-averaged Hayashi-Yoshida estimator10 of Christensen

et al. (2013), ⟨·̂, ·⟩(PHY ); (4) the composite realized kernel of Lunde et al. (2016), ⟨·̂, ·⟩(CRK)
parzen ; (5)

the flat-top realized kernel of Varneskov (2016) with a Parzen kernel, ⟨·̂, ·⟩(FTRK)
parzen . Definition

and construction of these estimators are presented in Online Appendix A.

4.2 Simulation Results

We firstly examine the impacts of Q and c on the performances of the WLS estimators for

⟨X, Y ⟩, ⟨X,X⟩, and ⟨Y, Y ⟩. For illustration purposes, we present the result of ⟨·̂, ·⟩(WLS)
parzen and its

univariate versions with ψ2 = 0.005 and (λX , λY ) = (1/5, 1/10) in the main text. The impacts

of Q and c on the heteroscedasticity-corrected WLS estimators are highly similar to the original

versions because the correction term is numerically very small, and is omitted from the paper.

For each simulated path of (X, Y ), we estimate ⟨·̂, ·⟩(WLS)
parzen based on 5 × 20 different com-

binations of Q and c. As the MSRC is asymptotically equivalent a realized kernel whose MSE

optimal bandwidth choices c∗ are well-studied in the literature (Barndorff-Nielsen et al., 2008,

2011b; Ikeda, 2015; Varneskov, 2017), for each path we also estimate this optimal bandwidth,

denoted by ĉ∗. Detailed construction of ĉ∗ is documented in Online Appendix A.

We firstly present the bias and the root mean squared error (RMSE) of ⟨X̂, Y ⟩(WLS)
parzen and

its univariate versions in Figure 1. Panel 1 of the figure shows that ⟨X̂, Y ⟩(WLS)
parzen has a small

(<1%) finite sample bias which increases slightly in magnitude as c and Q increase. A larger Q

inflates the bias and variance of ⟨X̂, Y ⟩(WLS)
parzen , and in this case the optimal choice of Q appears

to be Q = 1. An optimal choice of c which minimizes RMSE is visible, and we see that the

estimated optimal bandwidth ĉ∗ for the realized kernel works well in approximating the optimal

10We choose the pre-averaged Hayashi-Yoshida estimator of Christensen et al. (2013) instead of the modulated

RC estimator of Christensen et al. (2010) as the former does not require a bias correction.
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Figure 1: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
parzen with (λX , λY ) = (1/5, 1/10) and ψ2 = 0.005. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a Parzen kernel.
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c of the WLS estimator.

The impact of Q on the bias is much more pronounced in Panels 2 and 3 of Figure 1 in the

univariate setting. Firstly, it is clear that with the MA(1) noise, ⟨X̂,X⟩(WLS)
parzen and ⟨Ŷ, Y ⟩(WLS)

parzen

are largely biased downwards due to the negative first-order autocorrelation in the noise, and

the bias is eliminated by taking any Q > 1, which results in a large improvement of MSE for

small choices of c. In the presence of AR(1) noises, a bias is present for any choice of Q whose

sign depends on the sign of the noise autocorrelation, and the noise-induced bias diminishes as

Q and c increases. In this setting, globally optimal choices of Q and c are less obvious, but ĉ∗

remains a reasonable estimator for the unknown true optimal c for larger choices of Q.

The findings in Figure 1 are qualitatively unchanged for ⟨X̂, Y ⟩(WLS)
cubic and its univariate

versions and are robust to changes in the observation scheme or the noise variance, which is

supported by Figures D.1 to D.7 in Online Appendix D. By comparing Figure 1 with D.2,

we see that for any fixed Q and c, the biases of ⟨X̂,X⟩(WLS)
parzen and ⟨Ŷ, Y ⟩(WLS)

parzen induced by the

dependent noise does not decay (it in fact becomes more pronounced) when we sample more

frequently, which confirms our discussion in Proposition 3. Also, autocorrelations in the noise

alone do not bias the estimators of ⟨X, Y ⟩ due to the independence assumption between the

two noise processes. The average estimated optimal bandwidth E[ĉ∗] are all close to the choice

of c that provides minimum RMSEs.

The above results suggest that ĉ∗ provides a reliable choice of c for the WLS estimator,

which is adopted in our empirical analysis. As to the choice of Q, an RMSE optimal choice

appears difficult to derive analytically. However, since the WLS estimator is robust to the first

Q lags of noise autocorrelation according to Proposition 3, we can set Q large enough to avoid

most of the noise autocorrelation to reduce the bias of the WLS estimator in the finite sample.

Based on this principle, we design a simple algorithm to choose the value of Q using Jacod

et al.’s (2017) estimator of noise autocorrelation, which is presented in Online Appendix B.

Intuitively, the algorithm chooses some Q̂ as the smallest Q such that the noise autocorrelation

becomes close enough to zero at lag Q. Descriptive statistics of Q̂ for the simulation is presented

in Table B.1.

Using the optimally chosen ĉ∗ and Q̂, we proceed to compare the performances of the WLS

estimators with other competing estimators. The results for the case (λX , λY ) = (1/5, 1/10)

are presented in Table 2, while Tables D.1 presents the case (λX , λY ) = (1, 1/2) which has

qualitatively similar findings.
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Targets ⟨X,Y ⟩ ⟨X,X⟩ ⟨Y, Y ⟩

Estimators DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

Panel 1: ψ2 = 0.005, (λX , λY ) = (1/5, 1/10)

⟨·̂, ·⟩(WLS)
cubic -0.0016 -0.0036 -0.0044 0.0038 0.0744 0.0073 -0.0164 -0.0001 -0.0028

⟨·̂, ·⟩(WLS,∗)
cubic -0.0012 -0.0033 -0.0041 0.0092 0.0809 0.0146 -0.0105 0.0067 0.0038

⟨·̂, ·⟩(WLS)
parzen -0.0014 -0.0030 -0.0035 0.0036 0.0476 0.0059 -0.0173 0.0022 0.0008

⟨·̂, ·⟩(WLS,∗)
parzen -0.0011 -0.0027 -0.0031 0.0091 0.0541 0.0132 -0.0113 0.0089 0.0073

Bias ⟨·̂, ·⟩(sub)15 -0.0347 -0.0346 -0.0340 0.0633 0.0653 0.0650 0.1487 0.1507 0.1504

⟨·̂, ·⟩(MS) 0.0016 0.0052 0.0005 -0.5361 2.0925 -0.5897 -0.3358 0.9036 -0.4274

⟨·̂, ·⟩(PHY ) -0.0117 -0.0117 -0.0114 -0.0021 0.1049 -0.0033 -0.0389 -0.0050 -0.0368

⟨·̂, ·⟩(CRK)
parzen -0.0023 0.0368 -0.0051 0.0272 0.1412 0.0205 0.0120 0.0717 0.0048

⟨·̂, ·⟩(FTRK)
parzen 0.0004 -0.0022 0.0004 0.0200 0.0698 0.0195 -0.0031 0.0034 -0.0074

⟨·̂, ·⟩(WLS)
cubic 0.1226 0.1511 0.1257 0.1771 0.6234 0.2638 0.2073 0.3012 0.2195

⟨·̂, ·⟩(WLS,∗)
cubic 0.1228 0.1512 0.1261 0.1768 0.6271 0.2697 0.2051 0.2993 0.2163

⟨·̂, ·⟩(WLS)
parzen 0.1188 0.1473 0.1219 0.1774 0.4569 0.2670 0.2076 0.2949 0.2160

⟨·̂, ·⟩(WLS,∗)
parzen 0.1190 0.1472 0.1223 0.1816 0.4612 0.2722 0.2053 0.2940 0.2144

RMSE ⟨·̂, ·⟩(sub)15 0.3105 0.3117 0.3125 0.5572 0.5567 0.5571 2.3906 2.4049 2.4023

⟨·̂, ·⟩(MS) 0.1143 0.1706 0.1145 1.0446 4.4209 1.2135 0.6318 1.5228 0.7621

⟨·̂, ·⟩(PHY ) 0.1118 0.1536 0.1106 0.2542 0.5374 0.2483 0.2440 0.2737 0.2584

⟨·̂, ·⟩(CRK)
parzen 0.1398 0.1812 0.1365 0.2887 0.4938 0.2781 0.2460 0.3178 0.2497

⟨·̂, ·⟩(FTRK)
parzen 0.1695 0.1718 0.1696 0.3080 0.3696 0.3119 0.2703 0.2966 0.2798

Panel 2: ψ2 = 0.015, (λX , λY ) = (1/5, 1/10)

⟨·̂, ·⟩(WLS)
cubic 0.0037 -0.0036 -0.0006 0.0027 0.0771 0.0075 -0.0124 -0.0089 0.0030

⟨·̂, ·⟩(WLS,∗)
cubic 0.0041 -0.0034 -0.0005 0.0183 0.0932 0.0250 0.0024 0.0066 0.0207

⟨·̂, ·⟩(WLS)
parzen 0.0042 -0.0033 0.0002 0.0040 0.0386 -0.0004 -0.0096 -0.0115 0.0097

⟨·̂, ·⟩(WLS,∗)
parzen 0.0046 -0.0030 0.0004 0.0196 0.0544 0.0179 0.0046 0.0045 0.0268

Bias ⟨·̂, ·⟩(sub)15 -0.0355 -0.0357 -0.0352 0.2988 0.2998 0.2959 0.3842 0.3852 0.3813

⟨·̂, ·⟩(MS) 0.0047 0.0042 0.0063 -1.6296 6.1936 -1.7696 -0.9912 2.7443 -1.2845

⟨·̂, ·⟩(PHY ) -0.0071 -0.0198 -0.0110 -0.0113 0.2622 -0.0041 -0.0410 0.0211 -0.0373

⟨·̂, ·⟩(CRK)
parzen 0.0164 0.0854 0.0087 0.0676 0.2781 0.0533 0.0652 0.1987 0.0505

⟨·̂, ·⟩(FTRK)
parzen 0.0037 0.0022 0.0013 0.0332 0.1657 0.0325 0.0067 0.0447 -0.0010

⟨·̂, ·⟩(WLS)
cubic 0.1340 0.1863 0.1507 0.2429 0.5794 0.3064 0.2544 0.3443 0.2720

⟨·̂, ·⟩(WLS,∗)
cubic 0.1348 0.1866 0.1512 0.2495 0.5884 0.3143 0.2521 0.3434 0.2630

⟨·̂, ·⟩(WLS)
parzen 0.1311 0.1829 0.1466 0.2390 0.5236 0.3047 0.2497 0.3233 0.2600

⟨·̂, ·⟩(WLS,∗)
parzen 0.1314 0.1832 0.1470 0.2523 0.5257 0.3135 0.2471 0.3200 0.2556

RMSE ⟨·̂, ·⟩(sub)15 0.3162 0.3162 0.3150 0.8183 0.8117 0.7915 2.7725 2.7690 2.7403

⟨·̂, ·⟩(MS) 0.1498 0.3364 0.1662 3.3024 13.0784 3.6625 1.7658 4.5792 2.2743

⟨·̂, ·⟩(PHY ) 0.1254 0.2537 0.1150 0.2884 0.7433 0.2721 0.2697 0.3747 0.2963

⟨·̂, ·⟩(CRK)
parzen 0.1562 0.2430 0.1463 0.3517 0.6470 0.3203 0.2666 0.4577 0.2679

⟨·̂, ·⟩(FTRK)
parzen 0.1745 0.1944 0.1755 0.3335 0.5284 0.3261 0.2814 0.3101 0.3021

Table 2: Simulation results for 9 estimators of ⟨X,Y ⟩, ⟨X,X⟩ and ⟨Y, Y ⟩. DGP refers to the data generating process of MMS noises.

For each estimator, DGP and inference target, we compute the bias and root mean squared error (RMSE) of the 9 estimators based

on 1000 simulated paths. The WLS estimators are constructed with adaptively chosen ĉ∗ and Q̂. For each DGP and inference

target, the top three (resp. one) estimators with the smallest absolute bias and smallest MSE are in bold (resp. underlined).

From Table 2, we first see that the WLS estimators are frequently the least biased among

all estimators for all three DGPs and inference targets. This is due to the adaptive choice

of Q̂ which avoids most of the bias induced by noise autocorrelation. As to the biases of the

competing estimators, ⟨·̂, ·⟩(PHY ) and ⟨·̂, ·⟩(FTRK)
parzen are largely comparable to the WLS estimators

in most of the cases, which demonstrates their consistency under dependent and heteroscedastic

noise. The bias of ⟨·̂, ·⟩(CRK)
parzen is slightly larger than ⟨·̂, ·⟩(PHY ) and ⟨·̂, ·⟩(FTRK)

parzen when the noise

is dependent, but is considerably smaller than ⟨·̂, ·⟩(sub)15 and ⟨·̂, ·⟩(MS), which are not robust to

dependent noise. This result further confirms Proposition 3 that the original MSRC estimator

using the fastest scales is equivalent to the WLS estimator with Q = 1, which is biased in the
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presence of dependent noise.

The biases of the WLS estimators relative to their heteroscedasticity-corrected versions

require some further attention. Taking ⟨X̂,X⟩(WLS)
cubic as an example and assume independent

noise, its bias due to heteroscedasticity in our simulation is approximately11:

ψ2 E[
√
IQX

1 ]
(
2

∫ 1

0

w(t)2dt− w(0)2 − w(1)2
)
≈ −ψ2 E[⟨X,X⟩] = −ψ2. (35)

We therefore see that the heteroscedasticity correction indeed only adds about ψ2 to ⟨·̂, ·⟩(WLS)
cubic

and ⟨·̂, ·⟩(WLS)
parzen for the estimation of ⟨X,X⟩ and ⟨Y, Y ⟩ under all DGPs. The effect of this

correction is more meaningful if ⟨·̂, ·⟩(WLS)
cubic and ⟨·̂, ·⟩(WLS)

parzen are not largely biased from the noise

autocorrelation (e.g. DGP 1), but it can also exaggerate the positive bias caused by the noise

correlation in DGP 2. In general, the heteroscedaticity correction is immaterial in our simulation

setting for a normal level of noise (ψ2 = 0.005) that is more practically relevant. This is in line

with the empirical finding of Kalnina and Linton (2008) that the heteroscedasticity-correction

terms are typically very small in comparison to the volatility itself.

In terms of the RMSE of all estimators, we also find that the WLS estimators are fre-

quently among the top three best performing estimators from both panels of Table 2. The

Parzen kernel-based WLS estimators appear to have smaller RMSEs than the cubic kernel-

based ones. ⟨·̂, ·⟩(FTRK)
parzen is overall the best estimator in terms of the RMSE among all the

competing estimators, followed closely by ⟨·̂, ·⟩(PHY ) and ⟨·̂, ·⟩(CRK)
parzen . ⟨·̂, ·⟩(sub)15 and ⟨·̂, ·⟩(MS) in

the presence of dependent noise has very poor RMSEs, but ⟨·̂, ·⟩(MS) performs very well in the

bivariate case when the noises are assumed independent. To sum up, we find that the WLS

estimators with ĉ∗ and Q̂ provide a reliable class of estimators for the quadratic covariation of

asset pairs, with their biases and MSEs largely comparable and often superior to ⟨·̂, ·⟩(CRK)
parzen ,

⟨·̂, ·⟩(PHY ) and ⟨·̂, ·⟩(FTRK)
parzen .

Next, we present simulation results for the WLS estimator of the MMS noise variance. For

each simulated path ofX (and analogously for Y ), we construct Ê[(ϵX)2]
(WLS)

and Ê[(ϵY )2]
(WLS)

using the adaptive choices of c and Q and the Parzen kernel implied weights12. Proposition 4 en-

sures that Ê[(ϵX)2]
(WLS)

and Ê[(ϵY )2]
(WLS)

are consistent estimators of ψ2
√
IQX

1 and ψ2
√
IQY

1 ,

respectively. Since the noises are assumed to be independent between X and Y , we do not ex-

11Here we take τ(t) = t to compute the bias of the WLS estimator as in Proposition 4, which is implied by the

Poisson sampling scheme. For a more rigorous discussion, please see Example 2.3 of Jacod et al. (2017).
12In unreported simulation results, we find that the adaptive choices of c and Q optimized for the estimation of

the integrated covariation also work well for the noise variance estimator.
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amine Ê[ϵXϵY ]
(WLS)

in the simulation.

As competitors to the WLS estimator of E[ϵXn ], we firstly consider the noise variance es-

timator based on subsampled RV estimators in the spirit of Zhang et al. (2005), defined as

Ê[(ϵX)2]
(m)

:= 1
2N(m) [X̃, X̃](m). To avoid the impact of dependence in the noise dynamics, we

choose m = 20. Secondly, we construct the ReMeDI estimator of Li and Linton (2021) for the

MMS noise variance, which is a consistent estimator of MMS noise moments under very general

noise dynamics. The ReMeDI estimator with tuning parameter k is defined as:

Ê[(ϵX)2]
(LL)

k :=
1

N − 3k

N−k∑
n=2k

(X̃n − X̃n+k)(X̃n − X̃n−2k). (36)

We consider two choices of k in our simulation. Firstly, we consider a fixed choice of k = 10

following the simulation setting in Li and Linton (2021). Secondly, we compute13 the adaptive

choice of k as recommended by Li and Linton (2021), denoted by k̂. The full simulation results

for the four noise variance estimators are presented in Table 3.

Bias ×103 RMSE ×103

Target E[(ϵXn )2] E[(ϵYn )2] E[(ϵXn )2] E[(ϵYn )2]

Estimators DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

Panel 1: ψ2 = 0.005, (λX , λY ) = (1, 1/2)

Ê[·]
(WLS)

0.0000 -0.0006 -0.0004 0.0002 -0.0071 -0.0007 0.0117 0.0246 0.0188 0.0118 0.0207 0.0154

Ê[·]
(20)

0.0429 0.0438 0.0442 0.0792 0.0783 0.0793 0.0918 0.0954 0.1044 0.1370 0.1362 0.1378

Ê[·]
(LL)

10 -0.0010 -0.0154 -0.0143 -0.0008 -0.0018 -0.0001 0.0151 0.0392 0.0364 0.0193 0.0235 0.0256

Ê[·]
(LL)

k̂ 0.0001 -0.1072 0.0733 0.0001 -0.0235 0.0068 0.0163 0.2265 0.1908 0.0151 0.0458 0.0355

Panel 2: ψ2 = 0.015, (λX , λY ) = (1, 1/2)

Ê[·]
(WLS)

-0.0007 -0.0014 -0.0009 -0.0019 -0.0066 -0.0029 0.0284 0.0510 0.0611 0.0329 0.0564 0.0390

Ê[·]
(20)

0.0423 0.0412 0.0458 0.0775 0.0782 0.0793 0.0862 0.0947 0.1574 0.1411 0.1448 0.1447

Ê[·]
(LL)

10 -0.0020 -0.0475 -0.0419 -0.0030 -0.0069 -0.0009 0.0495 0.1541 0.1016 0.0590 0.0689 0.0756

Ê[·]
(LL)

k̂ -0.0008 -0.3215 0.2180 -0.0025 -0.0725 0.0217 0.0388 0.6485 0.5494 0.0456 0.1515 0.1236

Panel 3: ψ2 = 0.005, (λX , λY ) = (1/5, 1/10)

Ê[·]
(WLS)

-0.0015 -0.0091 0.0006 0.0005 -0.0075 -0.0032 0.0260 0.0759 0.0591 0.0383 0.0681 0.0393

Ê[·]
(20)

0.2173 0.2213 0.2187 0.3911 0.3904 0.3927 0.4628 0.4907 0.4823 0.6566 0.6475 0.6551

Ê[·]
(LL)

10 -0.0041 -0.0180 -0.0190 -0.0051 -0.0044 -0.0019 0.0465 0.0869 0.0805 0.0675 0.0990 0.0687

Ê[·]
(LL)

k̂ -0.0020 -0.1283 0.0720 -0.0025 -0.0347 0.0071 0.0332 0.2918 0.1790 0.0375 0.0818 0.0632

Panel 4: ψ2 = 0.015, (λX , λY ) = (1/5, 1/10)

Ê[·]
(WLS)

-0.0038 -0.0237 0.0003 -0.0011 -0.0121 -0.0056 0.0615 0.1836 0.1577 0.0960 0.1457 0.1189

Ê[·]
(20)

0.2119 0.2085 0.2165 0.3897 0.3807 0.3951 0.4372 0.4700 0.5437 0.6699 0.6296 0.6932

Ê[·]
(LL)

10 -0.0097 -0.0539 -0.0518 -0.0075 -0.0161 -0.0040 0.1170 0.1935 0.2012 0.1446 0.1790 0.1902

Ê[·]
(LL)

k̂ -0.0038 -0.3737 0.2124 -0.0035 -0.0965 0.0215 0.0904 0.7914 0.5653 0.1085 0.2388 0.1954

Table 3: Simulation results for the estimators of MMS noise variance. DGP refers to the data generating process of MMS noises.

For each estimator, DGP and inference target, we compute the bias and root mean squared error (RMSE) of the estimators based

on 1000 simulated paths. The WLS estimators are constructed with adaptively chosen ĉ∗ and Q̂. For each DGP and inference

target, the best estimators with the smallest absolute bias and smallest MSE are in bold.

13MATLAB code for computing the adaptive choice of k is provided by the authors at https://sites.google.

com/view/merrickli/research. We set a maximum k of 100 with an error tolerance of 10−20 and an error

window of 5 lags in the algorithm.
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Table 3 provides strong evidence supporting the validity of the WLS estimator for the

noise variance, which achieves the smallest bias and RMSE for almost every case. The biases

and RMSEs of all estimators shrink as the number of observations increases, which indicates

the consistency of these estimators. Notice that Ê[·]
(20)

has a positive finite sample bias due

to the quadratic variance component of the estimator. The biases of the ReMeDI estimators

are small in large sample, but they inflate quickly when the number of observation decreases,

while this increase for the WLS estimator is much milder. Ê[·]
(LL)

10 performs better than Ê[·]
(LL)

k̂

under persistent noise dynamics (e.g. DGP 2 and 3) in large sample, while Ê[·]
(LL)

k̂ seems to be

important for the RMSE in small sample. Importantly, even when the biases of the ReMeDI

estimator and the WLS estimator are of similar magnitude, we still find a smaller RMSE for

the WLS estimator, which demonstrates the efficiency advantage of the WLS estimator over

the ReMeDI estimator. However, unlike the ReMeDI estimator, the WLS estimator is unable

to deliver estimates of noise autocovariances or higher order noise moments.

We conclude our simulation with an interesting remark on the behavior of the noise variance

estimators when the noise variance is small. Apart from the upwardly biased estimator Ê[·]
(20)

,

the other three estimators do not guarantee positivity for the variance estimates. Negative

noise variance estimates typically occur when the noise variance is too small (or even zero14)

relative to the variance of tick returns. For the WLS estimator of noise variance, it turns zero

or negative when [X̃, X̃](m) does not decrease as the sampling frequency N (m) increases, leading

to a zero or negative slope coefficient estimate. This happens precisely when the noise variance

does not dominate [X̃, X̃](m) even when we sample at the highest frequency, as is shown in the

left panel of Figure 2.

The left panel of Figure 2 clearly shows that [X̃, X̃](m) drifts upward asm increases, leading

to a negative β̂
(WLS)
1 and hence Ê[(ϵX)2]

(WLS)

= β̂
(WLS)
1 /2 < 0. When we increase ψ2 from 10−5

to 10−3 as in the right panel of Figure 2, the noise term dominates [X̃, X̃](m), resulting in a

significantly improved fit of the WLS regression and a positive noise variance estimate. It is

worth noting that the ReMeDI estimator is also negative using data from the left panel, but

the signs of the two estimators are not always consistent. Also, β̂
(WLS)
0 does not seem to be

affected much by the size of the noise.

The possible negative noise variance estimates pose an important empirical question: is

14Note that when the noise is integrated, it is not identifiable from the efficient price process, which effectively

produces a noise process with zero variance.

27



2 4 6 8 10 12 14

0.105

0.11

0.115

0.12

0.125

0.13

0.135

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: Illustration of a negative WLS estimator of noise variance. In both panels of the figure, the observed price processes X̃

are constructed from the same realization of the efficient price process X with λX = 1/5 and MMS noises under DGP 1, but with

different choices of ψ2 as specified in the titles of the two panels. The WLS estimators in both panels are computed with Q = 2,

c = 0.2 and wparzen(x).

the noise variance significantly different from zero in the observed tick-by-tick data? If one

cannot reject the null hypothesis that the noise variance is zero, then a simple realized variance

estimator for ⟨X,X⟩ or a Hayashi-Yoshida estimator for ⟨X, Y ⟩ based on the tick-by-tick ob-

servations may be more accurate than a noise-robust method due to a faster convergence rate.

The WLS estimator of noise variance provides a promising statistic for constructing such test

in a classic WLS regression framework, which adds to the existing approaches as in Jacod et al.

(2017); Aı̈t-Sahalia and Xiu (2019); Li and Linton (2021). As this requires a careful study of

the asymptotic variance of β̂
(WLS)
1 , we leave it for future research.

5 Empirical Evidence

5.1 Data, Summary Statistics, and Empirical Estimates

In this section, we conduct our main empirical analysis to examine the performance of our new

estimator with real data. We resort to the tick-by-tick high-frequency intraday data of 27 Dow

Jones Industrial Average (DJIA) constituting stocks.15 We collect trade and quote data of these

15These 27 stocks are Apple (AAPL), American Express (AXP), Boeing (BA), Caterpillar (CAT), Cisco Sys-

tem (CSCO), Chevron (CVX), Walt Disney (DIS), General Electric (GE), Goldman Sachs (GS), Home Depot

(HD), International Business Machines (IBM), Johnson & Johnson (JNJ), JPMorgan Chase (JPM), Coca-Cola

(KO), McDonald’s (MCD), 3M (MMM), Merck (MRK), Microsoft (MSFT), Nike (NKE), Pfizer (PFE), Procter

& Gamble (PG), Travelers (TRV), UnitedHealth (UNH), Visa (V), Verizon Communications (VZ), Walmart
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stocks from NYSE Trade and Quote (TAQ) database through Wharton Research Data Services

(WRDS). Our sample period spans from January 2nd, 2014 to December 31st, 2020 covering

1,764 trading days.

We closely follow the steps in previous studies (Barndorff-Nielsen et al., 2009; Holden and

Jacobsen, 2014) to clean the high-frequency data and merge the trades with the quotes. Based

on the transaction prices, we estimate the daily 27-by-27 integrated covariation (IC) matrix

with the following estimators16: ⟨·̂, ·⟩(WLS,∗)
parzen with adaptive ĉ∗ and Q̂ (WLS), ⟨·̂, ·⟩(PHY ) (PHY),

⟨·̂, ·⟩(CRK)
parzen (CRK), and ⟨·̂, ·⟩(FTRK)

parzen (FTRK). These estimators are constructed on a pairwise basis

in the same manner as our simulation section. We also construct the outer product of the vector

of open-to-close returns (OTOC) as a benchmark following Barndorff-Nielsen et al. (2011b),

which is considered unbiased when averaged over a long sample period. To ensure the positive

definiteness of the resulting IC estimates, we apply the eigenvalue truncation technique based on

Theorem 2 of Varneskov (2016) to all estimators. In detail, we compute the eigendecomposition

of the daily realized covariance matrix and replace all the negative eigenvalues by n
−1/2
all × 10−4,

where nall is the smallest number of pairwise refresh time observations among all 351 unique

asset pairs.

Table 4 reports summary statistics for the main variables of interests. Panel A presents

means and cross-sectional standard deviations of time-series means for each of eight stock

characteristics. These characteristics are open to close log return (RetOTOC), the number of

trades per day (NoT), average relative bid-ask spread per trade (Spread), log of the average

trading volume per day (Volume), log of the best bid and offer depths at every trade (Biddepth

and Offedepth), order imbalance (OI), and order flow (OF).17 Average characteristic values for

each of the 27 stocks are reported in Table D.2 of Online Appendix. Although DJIA stocks

are typically large and liquid stocks, we still observe clear cross-sectional variations of these

microstructure variables. For instance, AAPL is the most actively traded stock with on average

60,136 trades per day while TRV is the least actively traded stock with only 6,202 trades per

day. This feature suggests that our sample contains stocks with heterogeneous trading activities.

Therefore, it is an appropriate sample to assess realized covariance estimators in the presence

(WMT), and Exxon Mobil (XOM), which are the DJIA constituting stocks throughout the sampling period.
16We do not include the MSRC estimator in our empirical analysis due to its asymptotic equivalence to the WLS

estimator.
17Order imbalance (resp. order flow) is defined as the daily log difference of numbers of buyer initiated trades

(resp. volume) and seller initiated trades (resp. volume).
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Panel A: Average Stock Characteristics

RetOTOC NoT Spread Volume Biddepth Offerdepth OI OF

Mean 0.1562 17620 2.2426 5.0754 6.7519 6.7646 -0.0353 -0.0314

Std of mean 3.3483 10817 0.0104 0.5348 1.2438 1.2491 0.0227 0.0317

Panel B: Realized Variance and Correlation Estimate

OTOC CRK FTRK PHY WLS

Mean (variance) 1.5158 1.7422 1.6089 1.7192 1.7161

Std (variance) 4.6348 4.5287 4.1683 4.7878 4.5471

Mean (correlation) 0.1970 0.2826 0.2725 0.2747 0.2797

Std (correlation) 0.4199 0.1485 0.1474 0.1419 0.1453

Bias vs OTOC 0.0617 0.0532 0.0412 0.0481

t-stats (0.5334) (0.4467) (0.3273) (0.4025)

Panel C: Microstructure Noise Moments

Mean Std ACF(1) ACF(2) ACF(3) ACF(4) ACF(5)

NV -0.1509 7.0117 0.2135 0.1840 0.1264 0.1063 0.0461

NV (positive only) 0.8794 4.4861 0.1904 0.1537 0.1331 0.1210 0.0780

NV(LL) -0.1590 1.5460 0.3207 0.2551 0.1999 0.1629 0.1224

Table 4: Summary statistics. This table reports summary statistics for the main variables used in the empirical analysis. Panel A

reports average stock characteristics including open to close return (RetOTOC), number of trades (NoT), bid-ask spread (Spread),

trading volume (Volume), bid and offer depths (Biddepth and Offedepth), order imbalance (OI), and order flow (OF). Return

and spread are reported in percentage points (10−2). Mean and cross-sectional standard deviation of time-series mean values are

reported. Panel B reports cross-sectional averages of time-series means and standard deviations of realized variance (RV) and

correlation (RCorr) estimate. Means and standard deviations of realized variances, as well as the average bias compared to the

benchmark OTOC covariance estimator for each estimators (composite realized kernel CRK, flat-top realized kernel FTRK, and

pre-averaging with Hayashi-Yoshida PHY) are reported in 10−4. t-statistics of the bias based on Newey-West HAC standard errors

are shown in brackets. Panel C reports average noise variance (NV) estimates and sample autocorrelation coefficients up to 5 lags.

Means and standard deviations of noise variances are reported in 10−8.
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of non-synchronous trading.18

Panel B provides realized variance and correlation estimates. To save space, we focus on

the cross-sectional averages of the time-series means and standard deviations for each of the

realized variance and correlation estimates we considered. We show that all variance estimates

have a comparable mean of around 0.02% and a standard deviation of around 0.05%. Realized

correlation means (about 28%) are generally larger than the one based on the open-to-close

return (20%). Realized correlation estimates are also more stable (standard deviations of around

14% vs. 42%). To assess how our estimator performs relative to other estimators, we calculate

the bias of each estimator compared with the OTOC benchmark. We find that all realized

covariance estimators are on average overestimating the “true” covariance with positive bias.

However, these biases are all small in economic magnitude (ranging from 4.12 to 6.17×10−6) and

statistically insignificant (with HAC standard error as in the literature) in our sample. Among

these estimators, we show that the pre-averaging estimator (PHY) has the smallest bias to the

OTOC benchmark while CRK has the largest bias. Our WLS estimator performs the second

best among all four realized estimators. The strong empirical performance of our estimator in

unbiasedness is consistent with its desirable statistical properties as we demonstrated in the

simulation analysis. Given that the magnitudes of biases themselves are small, the performance

differences among estimators are small.

Panel C offers summary statistics for the noise moments. In the empirical analysis, we

focus on the noise variance estimates based on Ê[·]
(WLS)

(henceforward abbreviated as NV) as

defined in our simulation.19 One observation is that our raw noise variance estimate is negative

on average (−1.51×10−9). As explained in Figure 2, this is due to that the noise-to-signal ratio

is in general very small relative to the sample size. This finding is confirmed by the sample

average of Ê[·]
(LL)

10 (NV(LL) in the table), the ReMeDI estimator of noise variance, which also

has a negative sample average with the same magnitude. Therefore, to ensure that Ê[·]
(WLS)

estimates MMS noise variances rather than the estimation error, we truncate the NV estimates

at zero by replacing all the negative values with zero in the following sections of the paper. We

find that both NV and the truncated NV estimates have positive autocorrelation on average.

18Varneskov and Voev (2013) consider a heterogeneous trading portfolio by replacing two DJIA stocks with two

5-10 times less liquid non-DJIA stocks. In our sample, the most liquid DJIA stock is around 10 times more liquid

than the most illiquid stock. Hence our sample is comparable to theirs in terms of the degree of heterogeneous

trading.
19To simplify our empirical analysis, we do not consider the noise covariance estimates here.
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5.2 In-Sample Volatility and Correlation Modelling

We proceed to forecast future realized variance and covariances. Since each estimator tends to

predict itself better and the open-to-close covariance estimator is not positive definite (despite

its unbiasedness in the long run average sense), we use the five-minute realized covariance

estimator (subsampled every second) as the forecasting target following the literature (Hautsch

et al., 2015). Besides using each estimator to forecast the target, we also check whether adding

noise moments may improve forecasting performance. Since the differences among estimators

are small, we stick to two estimators (CRK and WLS) throughout the main empirical analysis

and report results of two additional estimators (FTRK and PHY) in Online Appendix Table

D.3 to Table D.6.

We use a HAR-DRD specification to forecast realized variance and correlation separately

as in Oh and Patton (2016) and Bollerslev et al. (2018). Specifically, we forecast one day

ahead realized variance using daily, weekly, and monthly averaged lagged realized variances

constructed based on CRK and WLS realized estimators. We also consider whether adding the

noise variance (NV) into the HAR model improves forecasting performance for the variance. In

addition, we consider a specification including the interaction of NV and RV. For the correlation

forecast, we use the scalar HAR model without including noise moments for simplicity. To

facilitate a more meaningful interpretation of the average effect of noise variance on future

volatility, we resort to a panel data regression specification, similar to Patton and Sheppard

(2015).20 The general specification for the variance prediction is as follows:

σ2
i,t+1 =

∑
k∈{1,5,22}

β(k)
r RV

(k)
i,t +

∑
k∈{1,5,22}

β(k)
n NV

(k)
i,t + StockFEi + ϵi,t+1 (37)

where σ2
i,t is the forecasting target, i.e. the five-minute subsampled realized variance, of stock i on

day t, RV
(k)
i,t := 1

k

∑k−1
s=0 RVi,t−s with RVi,t denoting an estimator (CRK, FTRK, PHY, or WLS)

of the quadratic variation of stock i on day t, and similarlyNV
(k)
i,t := 1

k

∑k−1
s=0 NVi,t−s where NVi,t

is the (zero-truncated) WLS estimator of noise variance for stock i on day t. By construction,

the parameters β
(1)
r , β

(5)
r and β

(22)
r (resp. β

(1)
n , β

(5)
n and β

(22)
n ) capture the contribution of the

past daily, weekly and monthly quadratic variation estimates (resp. noise variance estimates)

to the prediction of the forecasting target. For variance forecasting, we also include stock

fixed effects (StockFEi) to account for the heterogeneity in the levels of variances for different

20While the panel regression is more restricted compared to the asset by asset regression, it allows easy interpre-

tation of the effect of lagged volatility and noise on future volatility.
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stocks. We obtain robust standard errors clustered by stock.21 For correlation forecasting, we

add individual element (diagonal (1s) and off-diagonal (pairwise stock correlation) elements)

fixed effect and use robust standard error clustered by element.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: CRK Panel B: WLS

RV (1) 0.2477** 0.2982*** 0.2718*** 0.3883*** 0.2651*** 0.3220*** 0.2929*** 0.3531***

(2.77) (3.45) (3.03) (3.25) (3.20) (3.31) (3.13) (3.09)

RV (5) 0.5206*** 0.4959*** 0.5360*** 0.4300*** 0.5097*** 0.4800*** 0.5244*** 0.4507***

(14.38) (12.47) (10.98) (6.13) (13.30) (10.42) (10.46) (7.60)

RV (22) -0.0032 0.0006 0.0006 -0.0043 -0.0119 -0.0076 -0.0099 -0.0119

(-0.16) (0.03) (0.03) (-0.27) (-0.66) (-0.49) (-0.53) (-0.76)

NV (1) -0.1076** -0.0654* 0.0385** -0.1138*** -0.0709** 0.0319

(-2.10) (-1.94) (2.07) (-3.16) (-2.48) (0.77)

NV (5) -0.0900** -0.0913***

(-2.24) (-3.75)

NV (22) 0.0046 0.0070

(0.55) (0.80)

NV (1) ×RV (1) -0.2093*** -0.1627**

(-4.05) (-2.55)

RCorr(1) 0.2587*** 0.2869***

(115.41) (123.34)

RCorr(5) 0.4746*** 0.4772***

(171.15) (163.12)

RCorr(22) 0.1419*** 0.1230***

(43.89) (36.01)

FE Stock Stock Stock Stock Element Stock Stock Stock Stock Element

Custer Stock Stock Stock Stock Element Stock Stock Stock Stock Element

Obs 47,007 47,007 47,007 47,007 658,098 47,007 47,007 47,007 47,007 658,098

R2 0.536 0.546 0.552 0.561 0.676 0.539 0.550 0.555 0.554 0.676

Table 5: In-sample volatility and correlation modelling. This table reports in-sample realized volatility and correlation forecasting

results using panel data fixed effect regressions. All variables are standardized to facilitate the interpretation. The dependent

variable is the sub-sampled 5-min realized variance one day ahead. We focus on two estimators including CRK (Panel A) and WLS

(Panel B). For each estimator, we consider four volatility model specifications: HAR (the model with daily, weekly, and monthly

averaged lagged realized variances, RV (1), RV (5), and RV (22) respectively), HAR plus daily lagged noise variance NV (1), HAR

plus daily, weekly, and monthly lagged noise variances NV (1), NV (5), and NV (22), and the one include the interaction between

RV (1) and NV (1). We add stock fixed effect and use robust standard error clustered by stock. This table also reports in-sample

realized correlation forecasting results. The dependent variable is the one-day ahead subsampled 5-min realized correlation. We

only consider the scalar HAR model using daily, weekly, and monthly averaged lagged realized correlations (RCorr(1), RCorr(5),

and RCorr(22)) based on each estimator. We add individual element (diagonal (1s) and off-diagonal (pairwise stock correlation)

elements) fixed effect and use robust standard error clustered by element. Numbers in brackets are t-statistics. ***, **, and * refer

to statistical significance at 1%, 5%, and 10%.

Columns (1) to (4) and (6) to (9) of Table 5 report the in-sample realized variance fore-

casting results using CRK and WLS based realized estimators respectively.22 Daily and weekly

(monthly) lagged realized variance are positively (negatively) associated with future variance.

21Results are qualitatively unchanged when we double cluster standard errors by stock and by time.
22In-sample volatility and correlation modelling results using FTRK and PHY estimators are reported in Online

Appendix Table D.3. Our main results remain robust using these alternative estimators.
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These HAR models with different variance estimators have a very similar performance with

R2s around 54%. For the effect of the noise variance, we show that the coefficient for the daily

lagged noise variance is consistently negative and significant across different estimators. The

effect is not only statistically significant but also economically meaningful. A one standard

deviation increase in the noise variance is followed by around on average 11% of one standard

deviation decline of the realized variance estimates in the next day. The coefficient remains

negative and significant for the weekly lagged noise and it turns positive but insignificant for

the monthly lagged noise. Therefore, the effect of noise seems to concentrate in the short to

mid horizons. Moreover, including the daily noise variance leads to an about 1% increase in

model fit, supporting the predictive power of the noise variance. We also find that the inter-

action terms between noise variance and realized variance are negative and significant across

specifications. The noise variance itself turns positive or insignificant once the interaction term

is included. This finding indicates that noise variance may also serve as a conditioning vari-

able. High noise periods tend to be those with higher estimation errors, hence future volatility

depends less on past volatility. We resort to Section 5.4 for more discussions about potential

sources of predictability.

Columns (5) and (10) report the in-sample correlation forecasting results. We show that

daily, weekly, and monthly lagged correlation estimates all positively and significantly forecast

one day ahead realized correlations. Results hold true across different estimators. The WLS

estimator performs comparably well as CRK with R2 of about 68% in forecasting correlations.

5.3 Out-of-Sample Forecasting and Asset Allocation

We then check whether our findings are robust in an out-of-sample analysis. We first conduct

the out-of-sample realized covariance forecasts. We use a rolling window regression estimation

with a window size of 500 days (approximately one-third of the whole sample length) to estimate

our models. We then move the window forward and re-estimate model parameters every day.

We forecast one day ahead realized variance using the (panel) HAR model and the HAR plus

daily lagged noise variance model (HARNV) for parsimony. For the correlation specification, we

stick to the scalar HAR model. We use the predicted variances and correlations to reconstruct

the conditional variance-covariance matrix and compare it with the target subsampled 5-min
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realized covariance.23

Table 6 Panel A reports out-of-sample forecasting results. We focus on the average root

mean squared errors (RMSE) across all variance and covariance estimates. For the HAR model,

the forecasting errors (RMSE, reported in 10−4) are about 1.65. Our WLS estimator has

comparable and slightly weaker performance to the composite Parzen realized kernel . However,

it outperforms pre-averaging and flat-top realized kernel in our sample as shown in Table D.4

in Online Appendix. Overall, the differences are small for models using different estimators.

Importantly, including noise variance leads to forecasting improvements in all cases, despite

the small magnitude. We implement Diebold and Mariano (1995) (DM) test to examine the

statistical significance of the forecasting improvements. Our findings show that including the

noise variance results in statistically significant improvements for all estimators used. In short,

our evidence supports the including the noise variance improves forecasting performance.

An important question is when does the noise variance improve the forecasting performance.

We consider a simple sub-sample period analysis. We first calculate the daily cross-sectional

average of noise variances to obtain a measure of the aggregate level noise variance. Then we

define high or low noise variance periods when the aggregate noise variance is above or below

its time-series median value during the out-of-sample period. We calculate RMSE for both high

and low noise variance periods. We find that RMSEs are larger in high noise periods than in low

noise periods as naturally expected. Most importantly, however, the forecasting improvement

by the noise variance is mainly concentrated in high noise periods. Including the noise variance

does not reduce forecasting errors when the noise is small. Our findings suggest that when the

noise is high, forecasting volatility is more difficult. Hence, if the noise variance contains some

missing information about the efficient price, then including the noise variance into the model

improves the forecasting performance. In contrast, when the noise variance is small, i.e. the

observed price is close the latent efficient price, using lagged realized variance to forecast future

variance already performs well. Hence including noise does not improve forecasting performance

during these periods.

Our results so far focus on statistical improvements. Do these forecasting improvements

translate into economic values? We consider a global minimum variance portfolio problem

23We replace the negative values of the predicted variances by the average values in the estimation periods and

replace the diagonal elements of the predicted correlation matrix to ones, to ensure the positive definite and

well conditioning variance-covariance matrix, similar to Bollerslev et al. (2018).
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Panel A: Out-of-Sample Forecasting

Whole Sample High Noise Periods Low Noise Periods

RMSE HAR HARNV HAR HARNV HAR HARNV

CRK 1.6521 1.6515 2.2051 2.2040 0.7461 0.7464

(-2.0295) (-2.1742) (1.8263)

WLS 1.6538 1.6529 2.2011 2.1997 0.7641 0.7642

(-2.5504) (-2.6036) (1.1618)

Panel B: Out-of-Sample Asset Allocation

Whole Sample High Noise Periods Low Noise Periods

CRK HAR HARNV HAR HARNV HAR HARNV

Mean 0.0660 0.0721 0.0540 0.0665 0.0755 0.0753

Std 0.1250 0.1257 0.1529 0.1539 0.0891 0.0891

SR 0.5277 0.5739 0.3535 0.4320 0.8472 0.8460

[0.4719] [0.4435] [0.9753]

MDD 0.1644 0.1641 0.1439 0.1429 0.0938 0.0947

∆ 8.0876 16.3853 -0.1800

(0.6721) (0.6897) (-0.0413)

∆tc 6.8327 14.5816 -0.8752

(0.5684) (0.6135) (-0.2018)

Whole Sample High Noise Periods Low Noise Periods

WLS HAR HARNV HAR HARNV HAR HARNV

Mean 0.0551 0.0580 0.0487 0.0557 0.0593 0.0580

Std 0.1256 0.1251 0.1557 0.1552 0.0856 0.0852

SR 0.4391 0.4638 0.3126 0.3592 0.6920 0.6804

[0.6505] [0.5897] [0.7775]

MDD 0.1742 0.1736 0.1493 0.1483 0.0942 0.0944

∆ 4.6197 10.7697 -1.5141

(0.4811) (0.5758) (-0.3178)

∆tc 3.4852 8.9645 -1.9707

(0.3642) (0.4805) (-0.4124)

Table 6: Out-of-sample covariance forecasting and portfolio performance. This table reports out-of-sample covariance forecasting and

asset allocation results. Panel A reports out-of-sample average RMSE, reported in 10−4. We consider two estimators including CRK

and WLS. We consider the HAR model and the HAR with daily lagged noise variance (HARNV) model to forecast the sub-sampled

5-min realized variance-covariance matrix based on a HAR-DRD specification (forecast variance and correlation separately and

then composite the covariance matrix) using a rolling window estimation with a window size of 500 days. Numbers in parentheses

are Diebold-Mariano (DM) test t-statistics. Panel B reports out-of-sample asset allocation results. We report annualized mean,

standard deviation, Sharpe ratios, maximum drawdown (MDD), performance fee or utility gains (∆) (reported in in basis point

(10−4) per annum), and performance fee accounting for transaction costs (∆tc). Numbers in brackets are Ledoit and Wolf robust

Sharpe ratio test p-values. Numbers in parenthesis are Diebold-Mariano (DM) test t-statistics. The risk aversion parameter is at a

moderate level of 6. Portfolio return is adjusted for a moderate level of transaction cost of 0.1% when calculating the transaction

cost adjusted performance fee. For each analysis, we also report results for high noise and low noise periods. High noise period

refers to periods when the aggregate level noise variance (cross-sectional average) is above its time-series median value, while low

noise periods refer to those below the median value.
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following the literature (Varneskov and Voev, 2013; Hautsch et al., 2015; Bollerslev et al.,

2018). In the global minimum variance problem, the only input is the day t forecast of day t+1

variance-covariance matrix Σt+1|t. Therefore, based on our model forecasts of the conditional

variance-covariance matrix, the optimal portfolio weight vector wt can be obtained by:

wt =
Σ−1
t+1|t1

1′Σ−1
t+1|t1

. (38)

We then multiply the weight by the individual stock return vector and obtain the portfolio return

(rp,t = w′
trt). We report portfolio mean, return standard deviation, Sharpe ratio, and maximum

drawdown. To assess the economic benefit of the forecasting improvement, we use the annualized

performance fee ∆ (or utility gain/certainty equivalence) based on the change of average utility

relative to the benchmark portfolio (HAR model in our case, ∆HARNV = ŪHARNV − ŪHAR),

where the average utility is defined as:

Ū =
1

T

T∑
t=1

[
(1 + rp,t)−

γ

2(1 + γ)
(1 + rp,t)

2

]
(39)

Table 6 Panel B reports asset allocation results. We find that the HARNV portfolios

generally have stronger performance with higher mean return, comparable or lower volatility,

higher Sharpe ratio, and lower maximum drawdown compare to the HAR portfolios for CRK

and WLS estimators.24 We also report the annualized performance fee for each noise-augmented

portfolio relative to the HAR benchmark portfolio based on a moderate level of risk aversion

parameter (γ = 6).25 HARNV portfolios generate positive performance fees relative to the

HAR portfolios from 5 to 8 basis points per annum. These economic improvements are positive

24We recognize that portfolio volatility is slightly larger for HARNV in the case of CRK, and the portfolio

performance improvements largely stem from the mean effect. One plausible explanation is as follows. Noise

variance matters more in high noise environment. Since high noise variance is followed by lower predicted

realized variance, the global minimum variance portfolio tends to assign higher weights to these stocks with

lower predicted variances, ceteris paribus. Due to the leverage effect (i.e. negative volatility-return relation),

these stocks tend to have higher average return. Therefore, the portfolio earns higher average return compared

to the portfolio without using noise variance information. In an unreported analysis, we also check short-selling

constrained portfolios and find similar results as our main findings. Hence our results are not due to an alternative

explanation that extremely negative portfolio weights on stocks with high volatility and negative returns may

artificially boost portfolio performance. Prior studies, such as Voev (2009) and Cenesizoglu and Timmermann

(2012), discuss in more details about potential different performances under statistical and economic criteria.

Overall, our findings show that including noise variance leads to not only more accurate covariance forecasting

but also stronger portfolio performance.
25Our results hold when we use alternative risk aversion levels of γ = 1 or γ = 10.
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and small, in line with the small magnitude of forecasting improvements, albeit not statistically

significant.26 The small magnitudes of economic improvements are comparable to prior studies

considering different covariance estimates (e.g. Varneskov and Voev (2013)). To assess the

feasibility of the strategy, we also consider performance fees using transaction cost adjusted

portfolio returns.27 We find that our main results remain valid, despite a drop in economic

magnitudes. We also find that the positive performance fees are mainly generated in those high

noise variance periods, consistent with our findings for the forecasting errors. In summary, our

results support the out-of-sample predictive power of the noise variance.

5.4 Understanding Microstructure Noise

We then explore what might drive the predictive power of the noise variance. One interesting

observation in the forecasting analysis is that the noise variance is negatively correlated with

future volatility. The conventional wisdom suggests that microstructure noise mainly reflects

information about market illiquidity, which tends to be positively associated with contempora-

neous volatility. Therefore, due to the persistence of volatility, noise is expected to be positively

correlated with future volatility, which contradicts the illiquidity-based explanation. Therefore,

we conduct further empirical analyses to understand the microstructure noise.

First, we regress the noise variance on a set of microstructure variables we considered in

Section 5.1. We use similar panel regression specifications as above and consider both contem-

poraneous and predictive regressions. Table 7 reports the relationship between noise variance

and microstructure variables. We show that the noise variance is positively correlated with

bid-ask spreads and negatively correlated with market depth measures, hence when trading

costs are high or the market depth is low, the noise variance is high, consistent with the illiq-

uidity interpretation. However, we also find that the noise variance is positively correlated

with the number of trades and trading volumes per day. This finding indicates that while the

noise variance captures some dimensions of illiquidity (trading cost, depth), it may not reflect

26We use Diebold and Mariano (1995) (DM) test for the inference of performance fee and Ledoit and Wolf (2008)

robust Sharpe ratio test for the inference of Sharpe ratio improvement.
27Transaction cost adjusted portfolio return is calculated by subtracting the transaction cost scaled by the turnover

from the raw portfolio return. Specifically, turnover is calculated as TO =
∑N

i=1 |wi,t+1 −wi,t · ( 1+ri,t
1+w′

trt
)|, which

reflects the cross-sectional sum of time-series changes of each portfolio weights adjusted by the proportion of the

value of each stock in the portfolio. Transaction cost adjusted portfolio return is rp,tc,t = r′twt − c · TO, where

we select c as a moderate value of 0.1%.
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other dimensions. Moreover, a high number of trades and a large trading volume may imply a

higher degree of irrational trader participation and a higher dispersion of investor beliefs (e.g.

as shown in Han et al. (2021)). These features may also drive the observed price away from the

fundamental efficient price, and hence enlarge the noise variance. Furthermore, we find that the

noise variance is also negatively correlated with variables related to net buying pressures such

as order flow and order imbalance. Therefore, the noise may partially reflect signed information

not fully captured by the current stock price. Despite the association of the noise variance and

these microstructure variables, we show that these models can explain only about 0.2% to 1.2%

of the variations of noise variance. Hence, a large proportion of the noise variance remains

unexplained.

Second, we directly include these microstructure variables along with the noise variance

into our baseline HAR specifications. The intuition is as follows: if the predictive power of the

noise variance mainly stems from market illiquidity proxies or other microstructure variables,

we expect to see the predictive power of the noise variance declining when these microstructure

variables are explicitly incorporated. Table 8 reports these regression findings. To save space,

we only consider results based on two volatility estimators: CRK and WLS.28 We find that

number of trades, spread, volume, and depths are all significantly correlated with the future

volatility. However, the noise variance remains negative and significant after controlling for

these variables, despite the slight drop in economic magnitude. Therefore, our findings indicate

that the market illiquidity is unlikely to be the sole or a major driver for the predictive power

of the noise variance.

Third, we discuss the interaction between noise variance and RV, as well as the relation

between between noise variance, realized quarticity (RQ), and jumps. Our interaction speci-

fication in Table 5 suggests that noise variance may serve as a conditioning variable. Besides

forecasting future volatility directly, noise may influence future volatility through its contempo-

raneous relation with current volatility. One possibility is that, besides market illiquidity, noise

also reflects the measurement error of the variance estimates.29 When noise is high, volatility

28Results hold also for FTRK and PHY, as shown in Table D.5 in Online Appendix.
29It is well-known that the asymptotic variance of the noise-robust volatility estimators depends on the variance

of the noise, see e.g. Zhang et al. (2005); Zhang (2006); Barndorff-Nielsen et al. (2008). Therefore, when noise

variance is large, volatility tends to have larger estimator errors, and hence past volatility is less informative

about future volatility. Taking account of this feature in the interaction specification therefore contributes to

forecast improvement.

39



(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Contemporaneous Regressions

NoT 0.0550*** 0.0455***

(3.50) (3.56)

Spread 0.1005*** 0.0915***

(4.87) (4.61)

Volume 0.0034 0.1268***

(0.32) (5.96)

Biddepth -0.0252 -0.0690

(-1.19) (-1.47)

Offerdepth -0.0314* -0.0640*

(-1.73) (-1.94)

OI -0.0102* -0.0114

(-1.71) (-1.46)

OF -0.0025 0.0008

(-0.50) (0.12)

FE Stock Stock Stock Stock Stock Stock Stock Stock

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,601 47,515 47,601 47,527 47,525 47,601 47,601 47,515

R2 0.005 0.009 0.002 0.003 0.003 0.003 0.002 0.012

Panel B: Predictive Regressions

NoT 0.0467*** 0.0536***

(4.00) (4.52)

Spread 0.0592** 0.0478*

(2.19) (1.78)

Volume 0.0073 0.1346***

(0.81) (5.63)

Biddepth -0.0188 -0.0322

(-1.02) (-1.38)

Offerdepth -0.0313 -0.0982***

(-1.69) (-3.65)

OI -0.0042 0.0013

(-1.07) (0.42)

OF -0.0119* -0.0122*

(-1.83) (-1.96)

FE Stock Stock Stock Stock Stock Stock Stock Stock

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,574 47,488 47,574 47,500 47,498 47,574 47,574 47,488

R2 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.007

Table 7: Understanding microstructure noise. This table reports in-sample panel data fixed effect regressions about the link between

noise variance and microstructure variables. All variables are standardized to facilitate the interpretation. The dependent variable

is the noise variance. We regress noise variance on seven microstructure variables: number of trade (NoT), bid-ask spread (Spread),

trading volume (Volume), bid and offer depth, order imbalance (OI), and order flow (OF). We add stock fixed effect and use robust

standard error clustered by stock. Numbers in brackets are t-statistics. ***, **, and * refer to statistical significance at 1%, 5%,

and 10%. Panel A reports contemporaneous regression while Panel B reports predictive regression (regressors are lagged by one

period).
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: CRK

NV (1) -0.1041** -0.0732** -0.1070** -0.0742** -0.0738** -0.1076** -0.1076** -0.0709**

(-2.11) (-2.55) (-2.10) (-2.57) (-2.57) (-2.10) (-2.10) (-2.53)

NoT 0.0906*** 0.0919***

(4.70) (4.17)

Spread 0.0682** 0.0657**

(2.56) (2.74)

Volume -0.0327*** 0.0300

(-4.28) (1.27)

Biddepth -0.0272 0.1415**

(-1.60) (2.19)

Offerdepth -0.0549*** -0.1487***

(-3.96) (-3.97)

OI -0.0021 -0.0008

(-0.59) (-0.23)

OF -0.0046 -0.0003

(-1.36) (-0.14)

HAR-RV Yes Yes Yes Yes Yes Yes Yes Yes

StockFE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 46,921 47,007 46,933 46,931 47,007 47,007 46,921

R2 0.551 0.554 0.547 0.554 0.556 0.546 0.546 0.559

Panel B: WLS

NV (1) -0.1101*** -0.0911*** -0.1131*** -0.0930*** -0.0923*** -0.1138*** -0.1138*** -0.0879***

(-3.13) (-3.66) (-3.16) (-3.72) (-3.77) (-3.16) (-3.15) (-3.57)

NoT 0.0890*** 0.0981***

(4.33) (4.17)

Spread 0.0756** 0.0724***

(2.60) (2.80)

Volume -0.0316*** 0.0335

(-3.48) (1.46)

Biddepth -0.0273 0.1474**

(-1.55) (2.21)

Offerdepth -0.0564*** -0.1550***

(-3.77) (-3.85)

OI -0.0020 -0.0011

(-0.54) (-0.31)

OF -0.0047 -0.0003

(-1.38) (-0.12)

HAR-RV Yes Yes Yes Yes Yes Yes Yes Yes

StockFE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 46,921 47,007 46,933 46,931 47,007 47,007 46,921

R2 0.554 0.549 0.550 0.548 0.550 0.550 0.550 0.554

Table 8: Volatility modelling with noise and microstructure variables. This table reports in-sample volatility forecasting with

microstructure variables using panel data fixed effect regressions. All variables are standardized to facilitate the interpretation.

The dependent variable is sub-sampled 5-min realized variance one day ahead. We add seven microstructure variables: number of

trade (NoT), bid-ask spread (Spread), trading volume (Volume), bid and offer depth, order imbalance (OI), and order flow (OF) to

the HAR model (the model with daily, weekly, and monthly averaged lagged realized variances RV (1), RV (5), RV (22) respectively)

along with daily lagged noise variance (NV (1)) model. HAR-RV refers to control for RV (1), RV (5), RV (22). We add stock fixed

effect and use robust standard error clustered by stock. Numbers in brackets are t-statistics. ***, **, and * refer to statistical

significance at 1%, 5%, and 10%. Panel A reports results using CRK realized variance while Panel B report results using WLS

realized variance.
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is measured less accurately due to noise contamination. This explanation is analogous to the

idea of HARQ as in Bollerslev et al. (2016) and Bollerslev et al. (2018) that future volatility

depends less on current volatility when the realized quarticity (measurement error) is high. An

implication is that the positive predictive power of the lagged volatility is weakened when the

noise variance is high. Our results in Table 5 show that the interaction term is negative and

significant. In contrast, the noise variance coefficient becomes largely insignificant or turns pos-

itive.30 Therefore, our findings are consistent with the idea that future volatility depends less

on the current volatility when the noise variance is large. Our findings in Table 6 also confirm

that the noise variance plays a stronger role in the high noise environment. These results are

consistent with the error-based explanations.

One may wonder whether noise variance simply reflects RQ. We therefore explicitly control

for the interaction between realized variance and the square root of RQ as in the HARQ model.

In addition, since both noise and jumps, which capture large and discontinuous price movements,

are not directly observable, it is also interesting to check whether the predictive power of noise

variance remains after controlling for jumps. Andersen et al. (2007) examine the role of jumps

in volatility forecasting. We construct two popular jump variation measures following the

bipower variation approach by Barndorff-Nielsen and Shephard (2006) and the median RV

approach by Andersen et al. (2012) and control for jumps in our baseline specifications. Table

9 reports results about the relation between noise variance, RQ, and jumps.31 Controlling

for the interaction between RV and the square root of RQ, noise variance and the interaction

between RV and NV remain negative and significant. Therefore, while the noise-RV interaction

seems to share the same error-based intuition, the noise variance does not simply reflect RQ.

We also show that our results remain hold after controlling for two types of jump variations.

Therefore, the information content of noise variance cannot be attributed to jumps. In short,

our results suggest that both illiquidity- and error-based explanations may jointly account for

the predictive power of the noise variance. We leave it to future studies to further explore other

plausible explanations.

30In the case of PHY, as shown in Table D.3, noise variance remains negative and significant. Hence, the error-

based explanation may not fully explain the predictive power of noise variance.
31Results remain valid when FTRK and PHY are used, as shown in Table D.6 in Online Appendix.
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: CRK Panel B: WLS

RV (1) 0.3508*** 0.4205*** 0.2832*** 0.3027*** 0.3559*** 0.3818*** 0.3067*** 0.3230***

(3.83) (3.06) (3.16) (3.16) (3.07) (2.83) (3.08) (3.10)

RV (5) 0.4837*** 0.4235*** 0.4868*** 0.4969*** 0.4720*** 0.4444*** 0.4697*** 0.4802***

(13.75) (5.82) (12.07) (13.19) (10.12) (7.09) (10.27) (10.83)

RV (22) -0.0068 -0.0090 -0.0016 0.0010 -0.0124 -0.0160 -0.0098 -0.0075

(-0.35) (-0.48) (-0.09) (0.05) (-0.65) (-0.84) (-0.66) (-0.49)

NV (1) -0.1084** 0.0349* -0.1031** -0.1080** -0.1145*** 0.0285 -0.1090*** -0.1138***

(-2.08) (1.77) (-2.07) (-2.09) (-3.08) (0.68) (-3.04) (-3.13)

NV (1) ×RV (1) -0.2049*** -0.1596**

(-3.80) (-2.48)

RV (1) ×RQ1/2 -0.0025 -0.0016 -0.0017 -0.0014

(-0.71) (-0.67) (-0.62) (-0.60)

JV
(1)
bp 0.0550** 0.0596**

(2.22) (2.30)

JV
(1)
med -0.0112 -0.0027

(-0.34) (-0.10)

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

FE Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 47,007 47,007 47,007 47,007 47,007 47,007 47,007

R2 0.548 0.561 0.549 0.547 0.551 0.554 0.553 0.550

Table 9: Noise, realized quarticity, and jumps. This table reports in-sample volatility modelling with noise, the interaction of noise

variance and realized variance controlling for Realized Quarticity (RQ) and jumps using panel data fixed effect regressions. All

variables are standardized to facilitate the interpretation. The dependent variable is the sub-sampled 5-min realized variance one

day ahead. We consider two estimators: CRK (Panel A) and WLS (Panel B). We add the interaction between daily lagged noise

variance and daily lagged realized variance (NV (1) × RV (D)) into the HAR model (the model with daily, weekly, and monthly

averaged lagged realized variances RV (1), RV (5), RV (22) respectively) plus daily lagged noise variance (NV (1)). We also control for

the interaction between RV and square root of RQ (RV (1) ×RQ1/2 ) as in the HARQ model. We also control for two measures of

jump variations based on Bipower (JV
(1)
bp ) and Median value (JV

(1)
med) methods. We add stock fixed effect and use robust standard

error clustered by stock. Numbers in brackets are t-statistics. ***, **, and * refer to statistical significance at 1%, 5%, and 10%.

6 Conclusion

In this paper, we propose a novel weighted least squares estimator to measure realized covari-

ation. We show that it is asymptotically equivalent to the rate-optimal multi-scale estimator

of Bibinger (2011, 2012) and derive its asymptotic properties under general settings of the ob-

servation scheme and the MMS noise dynamics. We further conduct a comprehensive Monte

Carlo simulation study. Our new estimator has comparable and often stronger finite sample

performance in comparison with a set of well-known estimators in the literature. We also show

that our method provides a reliable estimate of MMS noise variance.

We then conduct an empirical analysis using high-frequency intraday data of 27 DJIA
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constituent stocks over the period from 2014 to 2020. Consistent with the simulation findings,

our empirical analysis confirms the accuracy of our estimator in measuring realized covaria-

tion. Our estimator performs well when it is used in forecasting future realized variance and

correlation. While models based on different estimators generally perform similarly, including

the noise variance extracted from our approach leads to consistent improvements in forecasting

performance both in-sample and out-of-sample. These improvements are concentrated in high

noise periods. The statistical forecasting improvement can be translated into tangible economic

benefit, despite the small economic magnitude. We also investigate more about the noise vari-

ance. While the noise variance is correlated to several microstructure variables, its predictive

power is remained when these variables are controlling for. Instead, the interaction between

noise and volatility plays an important role in the predictive power of noise variance. Neither

realized quarticity nor jump variation can fully subsume the predictive power of noise variance.

Overall, this paper introduces a new econometric method to jointly estimate realized co-

variation and noise variance using high-frequency data. Future studies may consider potential

applications of the new approach in other important economic contexts and further explore the

information content of microstructure noise.
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Online Appendix to

“Weighted Least Squares Realized Covariation Estimation”

A Construction of Competing Estimators

In this section, we outline the construction of the competing estimators of ⟨X, Y ⟩ used in our

simulation in Section 4. The 15-minute equidistant subsampled RC estimator, ⟨X̂, Y ⟩(sub)15 , is

constructed as:

⟨X̂, Y ⟩(sub)15 :=
1

1800

23400∑
k=1800

(X̃t̃k
− X̃t̃k−1800

)(Ỹt̃k − Ỹt̃k−1800
), (A.1)

where t̃k = maxn=1:N(Tn|Tn ≤ k
23400

) and {Tn}n=0:N is the refresh times in Definition 1. In-

tuitively, we sample equidistantly in calendar time using previous tick sampling based on the

refresh time synchronized observations. The univariate estimator can be constructed analo-

gously without the use of refresh times.

The generalized MSRC estimator, ⟨X̂, Y ⟩(MS), is defined as:

⟨X̂, Y ⟩(MS) :=
M∑
m=1

α(m)[X̃, Ỹ ](m), (A.2)

where:

α(1) = a(1) + 2/N, α(2) = a(2) − 2/N, α(m) = a(m),∀m > 2, (A.3)

and a(m) = 12 m
M2

m/M−(1+M−1)/2
1−M−2 is the optimal MSRC weight as in Eq. (20) of Zhang (2006).

The choice of tuning parameter M = ⌈0.2
√
N⌉ follows from Bibinger and Mykland (2016).

The pre-averaged Hayashi-Yoshida estimator, ⟨X̂, Y ⟩(PHY ), is defined as in Eqs. (2.4) and

(2.5) of Christensen et al. (2013). We choose the standard triangle function g(x) = x ∧ (1− x)

for the pre-averaging step, and the bandwidth is chosen to be kn = ⌈0.15
√
NX

1 +NY
1 ⌉, as

suggested by Christensen et al. (2013). Note that the univariate version of this estimator takes

a simpler form, as described in Remark 3.2 of the paper.

The composite realized kernel, ⟨X̂, Y ⟩(CRK)
parzen , is implemented following Sections 2.2 and 2.3

of Lunde et al. (2016) on a step-by-step basis. The prices are jittered at both ends with a lag

of 2. Note that ⟨X̂, Y ⟩(CRK)
parzen is simply computed as the realized correlation multiplied by the

square root of the univariate realized kernels of X and Y , and the univariate estimators are

standard non-flat-top realized kernels with a Parzen kernel.
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The flat-top realized kernel, ⟨X̂, Y ⟩(FTRK)
parzen , is constructed based on an element-wise imple-

mentation of the flat-top realized kernel in Varneskov (2017) with a Parzen kernel. The prices

are jittered at both ends with a lag of 2. The flat top parameter is chosen to be γ = 0.4, as

suggested by the author. The optimal bandwidth is set to be H = c
√
N where N is the number

of refresh times, and c is estimated based on Eq. (8) of Varneskov (2017) as:

ĉ∗ = 4.78max{ψ̂X , ψ̂Y }, (A.4)

where (ψ̂X)2 = (12 3
√
N)−1⟨X̂,X⟩(RK)

parzen/⟨X̂,X⟩(sub)15 , in which ⟨X̂,X⟩(RK)
parzen is a univariate realized

kernel estimator of ⟨X,X⟩ based on the refresh time synchronized observations of X with a

Parzen kernel and the bandwidth 3
√
N . ψ̂Y is constructed analogously. For the univariate case,

we work with the full series of X and Y without synchronization. We re-compute the optimal

bandwidth for each series, and the construction of the estimator is identical.

Note that the same ĉ∗ is also used for ⟨X̂,X⟩(WLS)
parzen . Specifically, let ĉ∗X and ĉ∗Y denote

the estimated tuning parameter based on X and Y using Eq. (A.4), we simply use them to

construct the bandwidth M = ⌈c
√
N⌉ + Q − 1 for ⟨X̂,X⟩(WLS)

parzen and ⟨Ŷ, Y ⟩(WLS)
parzen (and their

heteroscedasticity-corrected versions). The tuning parameter for ⟨X̂, Y ⟩(WLS)
parzen is computed as

ĉ∗XY = max{ĉ∗X , ĉ∗Y }. Finally, for ⟨X̂,X⟩(WLS)
cubic , one simply scales the estimated tuning parame-

ters of the corresponding Parzen kernel-implied weights by 3.68
4.78

≈ 0.77.

B Adaptive Choice of Q for the WLS Estimator

In this section we describe the algorithm to choose Q, the number of fast scales we skip, for

the WLS estimators. We firstly introduce an estimator of noise autocorrelation due to Jacod

et al. (2017) (JLZ afterwards). Consider the sequence of observed price process {X̃n}n=0:N .

Let k denote a positive integer, understood as a window size of local averaging. Construct the

sequence of pre-averaged prices {Xn}n=k:N−k such that:

Xn =
1

2k + 1

k∑
i=−k

X̃n+i. (B.1)

Suppose that the MMS noise ϵXn is stationary with finite second moments, and let ΓXm :=

E[ϵXn ϵ
X
n−m] denote the m-th lag noise autocovariances. The (upwardly biased) JLZ estimator of

ΓXm according to their Eq. (3.10) is defined as:

Γ̂X,(JLZ)m :=
1

N − 2k + 1

N∑
n=k+m

(X̃n −Xn)(X̃n−m −Xn−j). (B.2)
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Consequently, the m-th lag autocorrelation of ϵXn can be obtained by ρ̂
X,(JLZ)
m := Γ̂

X,(JLZ)
m

Γ̂
X,(JLZ)
0

.

Intuitively, as Xn is close to the efficient price Xn when we take local averages of observed

price, we have X̃n − Xn ≈ ϵXn , and Γ̂
X,(JLZ)
m is simply a sample covariance estimator for the

noise. Although Jacod et al. (2017) show that this estimator is not consistent due to the

conflicting convergence rates, here we only need a crude estimator of ΓXm for the choice of Q. In

simulation and practice we choose k = ⌈0.1
√
N⌉, which provides good estimates for the noise

autocorrelation in simulation.

We choose Q̂ for the univariate WLS estimator ⟨X̂,X⟩(WLS) based on the sequence of

estimated noise autocorrelations {ρ̂X,(JLZ)m }m=1,2,.... Specifically:

Q̂ = inf{Q ≥ 1 : |ρ̂X,(JLZ)Q | ≤ 1.96/
√
N}. (B.3)

Intuitively, Q̂ is chosen to be the smallest Q such that |ρ̂X,(JLZ)Q | is smaller than the bound

1.96/
√
N , mimicking the 95% confidence bounds of the sample autocorrelation for a white

noise. Although this bound is not a valid confidence bound for ρ̂
X,(JLZ)
Q , it allows us to avoid

the lags with high values of noise autocorrelation, which serves the purpose of this exercise.

The choice of Q in the bivariate case is slightly more complicated. Recall the definition

of Γm in Proposition 3 which governs the bias of ⟨X̂, Y ⟩(WLS). Using idea of the JLZ esti-

mator, we propose a simple estimator of Γm as follows. Firstly, construct the sequence of

pre-averaged prices {X tXn
}n=k:NX

1 −k and {Y tYn
}n=k:NY

1 −k, and let the sequence {Tn}n=1:N denote

the refresh times generated by the observation times of the pre-averaged prices {tXn }n=k:NX
1 −k

and {tYn }n=k:NY
1 −k. The JLZ estimator of Γm is defined as:

Γ̂(JLZ)
m :=

1

N

N∑
n=m

(
(X̃+

Tn
−X

+

Tn)(Ỹ
−
Tn−m

− Y
−
Tn−m

) + (Ỹ +
Tn

− Y
+

Tn)(X̃
−
Tn−m

−X
−
Tn−m

)
)
, (B.4)

where the notation follows from Definition 1. Again, intuitively we have X̃±
Tn

−X
±
Tn ≈ ϵXTn and

similarly for ϵYTn , which explains this construction. The m-th lag cross-correlation estimator is

defined as:

ρ̂(JLZ)m :=
Γ̂
(JLZ)
m√

Γ̂
X,(JLZ)
0 Γ̂

Y,(JLZ)
0

, (B.5)

where Γ̂
X,(JLZ)
0 and Γ̂

Y,(JLZ)
0 are computed from the full series of X and Y using Eq. (B.2). The

choice of Q̂ in this case is defined as follows:

Q̂ = inf{Q ≥ 1 : |ρ̂(JLZ)Q | ≤ 1.96
√

2/N |}, (B.6)
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Q̂ of ⟨X̂, Y ⟩(WLS) Q̂ of ⟨X̂,X⟩(WLS) Q̂ of ⟨Ŷ, Y ⟩(WLS)

Stat DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

ψ2 = 0.005 Mean 1.1620 1.2410 1.1560 2.3290 19.5180 11.1360 2.1300 6.7560 6.6430

(λX , λY ) = Std. Dev. 0.3898 0.5340 0.3947 0.5993 4.1715 1.1979 0.5151 5.3516 1.7947

(1, 1/2) Min 1 1 1 2 5 8 2 3 4

Max 3 4 4 7 37 17 13 22 21

ψ2 = 0.015 Mean 1.0540 1.1050 1.0990 2.1710 20.0410 11.4920 2.7150 10.4700 6.2940

(λX , λY ) = Std. Dev. 0.2305 0.3770 0.3540 0.5080 4.0144 1.4704 1.4463 5.8643 0.9058

(1, 1/2) Min 1 1 1 2 5 8 2 3 4

Max 3 4 4 6 39 28 14 25 13

ψ2 = 0.005 Mean 1.0710 1.1970 1.0880 2.1520 9.9830 13.3110 3.5840 6.4850 5.3080

(λX , λY ) = Std. Dev. 0.2899 0.6087 0.3039 0.5433 0.9958 3.9764 2.1008 1.9415 2.1302

(1/5, 1/10) Min 1 1 1 2 9 9 2 2 4

Max 3 5 4 9 17 44 9 12 16

ψ2 = 0.015 Mean 1.0500 1.0900 1.0530 2.1720 9.9230 13.3640 3.8380 7.0260 6.0340

(λX , λY ) = Std. Dev. 0.2270 0.3848 0.2495 0.4633 1.1333 3.9458 2.1685 1.4302 2.3576

(1/5, 1/10) Min 1 1 1 2 3 9 2 2 4

Max 3 4 4 6 17 39 10 12 22

Table B.1: Descriptive statistics of adaptive choices of Q̂ for the WLS estimator under all simulation settings. The mean, standard

deviation (Std. Dev.), minimum and maximum of Q̂ are computed from 1000 simulated paths of (X,Y ). DGP refers to the DGP

of MMS noises

where the factor
√
2 is included to account for the fact that Γ̂

(JLZ)
m is jointly estimating two

noise cross-covariances.

In Table B.1, we present the descriptive statistics of the adaptively chosen Q̂ for both

univariate and bivariate WLS estimators under all simulation settings considered in our paper.

Firstly, the choice of Q̂ to a good extent reflects the dependence structure of the noise. For

example, the average Q̂ is close to 1 for the bivariate case as the noise processes are independent.

For the univariate case, we find that Q̂ is close to 2 for DGP 1 and is much larger for DGP 2

and 3, reflecting the dependence structure in the noise. The range and standard deviation of Q̂

in general increases as we observe more data, which is due to the scaling of
√
N in the bounds

for the autocorrelations. Autocorrelation in the noise does not appear to have a large impact

for Q̂ of ⟨X̂, Y ⟩(WLS), but it has a much larger impact for the univariate Q̂s. In general, we find

that Q̂ for ⟨X̂,X⟩(WLS) is much larger than that of ⟨Ŷ, Y ⟩(WLS) due to a more persistent noise

dynamics. In general, the results in Table B.1 shows that our proposed algorithm succeeds

at picking up the dependence structure in the MMS noise. This allows us to choose Q̂ that

avoids lags with large noise autocorrelation, which is crucial in reducing the bias of the WLS

estimator.
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C Proofs

Proof of Proposition 1. We start by defining the following vectors and matrices used in the

WLS regression of Eq. (6):

Y =


[X̃, Ỹ ](Q)

[X̃, Ỹ ](Q+1)

...

[X̃, Ỹ ](M)

 , D =


Q
M2w(

Q
M
), 0, . . . , 0

0, Q+1
M2 w(

Q+1
M

), . . . , 0
...,

...,
. . . ,

...

0 . . . , 0, 1
M
w(1)

 , X =


1, N (Q)

1, N (Q+1)

...,
...

1, N (M)

 .
(C.1)

Define also the following matrix:

(X ′DX)−1XD =

ϕ(Q), ϕ(Q+1), . . . , ϕ(M)

θ(Q), θ(Q+1), . . . , θ(M)

 . (C.2)

The WLS estimator of ⟨X, Y ⟩ is then by construction:

β̂
(WLS)
0 :=

M∑
m=1

ϕ(m)[X̃, Ỹ ](m), (C.3)

To derive the explicit expression of ϕ(m), note that X ′DX has the following form by direct

matrix multiplication:

XDX =

C1 C0

• C−1

 , (C.4)

where the constants C1, C0 and C−1 are defined as:

C1 =
M∑

m=Q

m

M
w
(m
M

) 1

M
, C0 =

N + 1

M

M∑
m=Q

w
(m
M

) 1

M
− C1,

C−1 =
(N + 1

M

)2
M∑

m=Q

M

m
w
(m
M

) 1

M
− 2C0 − C1.

(C.5)

Note that the above matrix cannot be singular whenever D is positive definite. We therefore

have:

(X ′DX)−1X ′D =
1

C1C−1 − C2
0

C−1 −C0

• C1

X ′D, (C.6)

and the expression of ϕ(m) follows by explicit computation. Finally, to prove that ϕ(m) satisfies

conditions 1 and 2, we note that (X ′DX)−1(X ′DX) = I, thus:ϕ(Q), ϕ(Q+1), . . . , ϕ(M)

θ(Q), θ(Q+1), . . . , θ(M)

X = I, (C.7)
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and the multiplication related to the first row of I gives the desired result. This completes the

proof.

Proof of Theorem 1. We start with a useful lemma which characterizes the asymptotic be-

haviour of Riemann sums involving w(x) as M → ∞:

Lemma 1. For w(x) with dominating exponent dw and any Q = O(1), define the Riemann sum

Wp,q :=
∑M

m=Q(
m
M
)pw(m

M
)q 1
M
. The following results hold as M → ∞:

Wp,q =



∫ 1

0
xpw(x)qdx+O(M−1), p+ qdw ≥ 0∫ 1

0
xpw(x)qdx+O(M−1−p−qdw), p+ qdw ∈ (−1, 0)

O(lnM), p+ qdw = −1

O(M−1−p−qdw), p+ qdw < −1

. (C.8)

Proof. Since Q/M → 0 for any Q = O(1) and M = O(N δ) with δ ∈ (0, 1), we can take Q = 1

without any loss of generality. As the function xpw(x)q is uniformly continuous on [b, 1] for all

choices of p, q, dw and b > 0 by Definition 2, its Riemann sum converges in the usual sense with

the standard error bound on [b, 1]:

M∑
m=⌈bM⌉

(m
M

)p
w
(m
M

)q 1

M
=

∫ 1

b

xpw(x)qdx+O(M−1), (C.9)

which holds for arbitrary w(x) that satisfies the definition. We therefore only need to focus on

the interval [0, b]. By Definition 2, we can choose b small enough such that w(x) = Cxdw +

O(xdw−1) holds for some C ≥ 0 on [0, b]. Thus without any loss of generality, we only need to

consider the choice w(x) = xdw on [0, 1], which dominates the order of the Riemann sum over

the interval [0, b] but agree with the order of the Riemann sum on [b, 1] for any b > 0. With

w(x) = xdw , we rewrite Wp,q as:

Wp,q =
M∑
m=1

(m
M

)p+qdw 1

M
=

1

M1+p+qdw

M∑
m=1

mp+qdw . (C.10)

The sum in the RHS of the above equation is known as a p-series, which is closely linked to

Riemann’s ζ function. Specifically, when p+ qdw > −1, the p-series diverges, and the following

result holds by an Euler-Maclaurin expansion of the ζ function:

M∑
m=1

m1+p+qdw = ζ(−p− qdw) +
M1+p+qdw

1 + p+ qdw
+O(Mp+qdw). (C.11)
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This implies that:

M∑
m=1

(m
M

)p+qdw 1

M
=

∫ 1

0

xp+qdwdx+O(M−1−p−qdw) +O(M−1), (C.12)

using
∫ 1

0
xp+qdwdx = 1

1+p+qdw
. This proves the first two cases in the lemma. For the case

p+ qdw = −1 we have the classic harmonic series expansion:

M∑
m=1

(m
M

)−1 1

M
=

M∑
m=1

1

m
= lnM + γ +O(M−1) = O(lnM), (C.13)

where γ is the Euler-Mascheroni constant. Finally, when p+qdw < −1, the p-series in Eq. (C.11)

converges, which implies the last case of the lemma. This completes the proof.

In view of Lemma 1, all Riemann sums in C1, C0 and C−1 converge to proper Riemann

integrals when dw ≥ 1 for any δ ∈ (0, 1), which implies:

C1 = W1 +O(M−1), C0 =
N

M
W0 +O(N/M2), C−1 =

N2

M2
W−1 +O(N2/M3), (C.14)

where Wd is define in Eq. (18). We now evaluate the difference ϕ(m) − φ(m) explicitly:

ϕ(m) − φ(m) =
m

M2

w(m
M
)(C1N

(m) − C0)

C1C−1 − C2
0

= O(N−1), (C.15)

and the last estimate can be obtained by plugging Eq. (C.14) into the above equation and

simplify. As the above result is independent of m, Eq. (15) is proved. To show that φ(m)

satisfies conditions 1′ and 2′, we consider the alternative representation:

φ(m) =
m

M2

w(m
M
)(C̃−1 − C̃0

N+1
m

)

C1C̃−1 − C̃2
0

, (C.16)

where C̃−1 = C−1 + 2C0 + C1 and C̃0 = C0 + C1 have the following simple representation:

C̃0 =
N + 1

M

M∑
m=Q

w
(m
M

) 1

M
, C̃−1 =

(N + 1

M

)2
M∑

m=Q

1

m
w
(m
M

)
. (C.17)

Note also that C1C̃−1 − C̃2
0 = C1C−1 − C2

0 and the asymptotic orders of C̃0 and C̃−1 remain

unchanged. From here, the two required conditions
∑M

m=Q φ
(m) = 1 and

∑M
m=Q φ

(m)/m = 0

can be obtained by direct computation. Eq. (17) is a straightforward result by plugging the

asymptotic expressions of C1, C̃0 and C̃−1 into the expression of φ(m) and simplify. Finally,

the results regarding the properties of h(x) can be verified by straightforward calculus. This

completes the proof.
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Proof of Theorem 2. In virtue of Theorem 1 and Eq. (12), it suffices to derive the optimal

convergence rate of the biased WLS estimator ⟨X̃, Y ⟩(WLS) =
∑M

m=Q φ
(m)[X̃, Ỹ ](m), and again

we can take Q = 1 without loss of generality. We start with a canonical decomposition of

⟨X̃, Y ⟩(WLS):

⟨X̃, Y ⟩(WLS) =
M∑
m=1

φ(m)[X, Y ](m) +
M∑
m=1

φ(m)U (m) +RN , (C.18)

where U (m) := − 1
m

∑M
j=m(ϵ

X
n ϵ

Y
n−m + ϵYn ϵ

X
n−m), and RN is a remainder term:

RN =
M∑
m=1

φ(m)
(
[X, ϵY ](m) + [Y, ϵX ](m) − 1

m

m−1∑
n=0

ϵXn ϵ
Y
n − 1

m

N∑
n=N−m+1

ϵXn ϵ
Y
n

)
. (C.19)

Under Assumption 1, the discussion in Zhang (2006) and Bibinger (2012) suggest the following

asymptotic order for the two leading terms in Eq. (C.18):

M∑
m=1

φ(m)[X, Y ](m) − ⟨X, Y ⟩︸ ︷︷ ︸
discretization

= Op(
√
M/N),

M∑
m=1

φ(m)U (m)

︸ ︷︷ ︸
noise

= Op(
√
Nγ),

(C.20)

where γ2 ∝
∑M

m=1(
φ(m)

m
)2 determines the asymptotic order of the noise term as a function of

φ(m) (Zhang, 2006, Proposition 2). Therefore, ⟨X̃, Y ⟩(WLS) converges at the fastest rate when

the order of the discretization error equals that of the main noise term, and the remainder

term has Rn + 2E[ϵXn ϵ
Y
n ] = Op(M

−1/2) which is dominated by the two leading terms whenever

δ ≥ 1/2.

We check the asymptotic order of γ under different choices of dw. Recall the definition of

φ(m):

φ(m) =
m

M2

w(m
M
)(C̃−1 − C̃0

N+1
m

)

C1C̃−1 − C̃2
0

, (C.21)

where C̃−1, C̃0 and C1 are defined in Eq. (C.14) and Eq. (C.17), whose asymptotic orders are

identical to C−1, C0 and C1 which depend on dw.

We now study the asymptotic order of γ2 as M → ∞ by cases. Start with the first case

dm > 0. Eq. (C.14) holds for C1 and C0 whenever dm ≥ 0, while for C̃−1 the Riemann sum

still converges but with a possibly slower rate by Lemma 1, thus we find C̃−1 = N2

M2 (W−1 +

O(M−(dw∧1))) = O(N2M−2). Plugging in the asymptotic orders of C−1, C0, and C1 into φ(m)

gives:

φ(m) =
m

M2
w(

m

M
)
(
O(1) +O(1)

M

m

)
. (C.22)
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We can now determine the asymptotic order of γ2:

γ2 =
M∑
m=1

(φ(m)

m

)2

=
1

M4

M∑
m=1

w(
m

M
)2
(
O(1) +O(1)

M

m
+O(1)

M2

m2

)
= O(M−3)

(
O(1)W0,2 +O(1)W−1,2 +O(1)W−2,2

)
,

(C.23)

where Wp,q is defined in Lemma 1. From here, it should be clear that the asymptotic order

of γ2 is governed by O(M−3)W−2,2. Based on Lemma 1, we have three sub-cases: (1) when

dw > 1
2
, W−2,2 = O(1) and γ2 = O(M−3). This is similar to the case in Zhang (2006),

with the optimal bandwidth M = O(
√
N) and the convergence rate is the optimal N

1
4 . (2)

dw = 1
2
. In this case W−2,2 = O(lnM), thus γ2 = O(M−3 lnM). Using the asymptotic relation

lnM = O(δ lnN) = lnN , we now balance the two conflicting convergence rates to obtain the

optimal bandwidth:

Op(
√
NM−3 lnN) = Op(

√
M/N) ⇔M = O(N

1
2 ln(N)

1
4 ). (C.24)

This leads to a convergence rate of (N/ lnN)
1
4 . (3) dw ∈ (0, 1

2
), and we haveW−2,2 = O(M1−2dw),

so γ2 = O(M−2−2dw). Repeating the previous exercise, we find the optimal bandwidth M =

O(N
2

3+2dw ) and the corresponding converge rate N
1+2dw
6+4dw .

Consider the next case dw = 0. The asymptotic orders of C1 and C0 remain the same,

while for C−1 it changes to C−1 = O(N2M−2 lnM). We have now:

φ(m) =
m

M2
w(

m

M
)
(
O(1) +O(ln(M)−1)

M

m

)
. (C.25)

This combined with Lemma 1 leads to:

γ2 = O(M−3)
(
O(1)W0,2 +O(ln(M)−1)W−1,2 +O(ln(M)−2)W−2,2

)
= O(M−3) +O(M−3 ln(M)−2) +O(M−2 ln(M)−2) = O(M−2 ln(N)−2),

(C.26)

Repeating the previous exercise again, we find the optimal bandwidth to beM = O((N/ lnN)
2
3 )

with the corresponding convergence rate N
1
6 ln(N)

1
3 .

For the last case dw < 0, all three Riemann sums in C1, C0 and C−1 can diverge. Let us

firstly consider the scenario dw ∈ (−1, 0), where only the Riemann sum in C−1 diverges. We

get C−1 = O(N2M−dw−2), thus:

φ(m) =
m

M2
w(

m

M
)
(
O(1) +O(Mdw)

M

m

)
. (C.27)

The asymptotic order of γ2 is therefore:

γ2 = O(M−3)
(
O(1)W0,2 +O(Mdw)W−1,2 +O(M2dw)W−2,2

)
= O(M−2), (C.28)
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which is independent of dw due to the cancellation in the W−2,2 term. This suggests that the

optimal bandwidth is M = O(N
2
3 ) with the convergence rate N

1
6 .

When dw = −1, C0 diverges with the order O(NM−1 lnM). Therefore:

φ(m) =
m

M2
w(

m

M
)
(
O(1) +O(M−1 lnM)

M

m

)
,

γ2 = O(M−3)
(
O(M1) +O(M lnM) +O(M ln(M)2)

)
= O(M−2 ln(N)2).

(C.29)

The optimal bandwidth is M = O((N lnN)
2
3 ) with the convergence rate N

1
6 ln(N)−

1
3 . Finally,

for dw < −1, C0 = O(NM−2−dw), which leads to:

φ(m) =
m

M2
w(

m

M
)
(
O(1) +O(M−1)

M

m

)
,

γ2 = O(M−3)O(M−1−2dw) = O(M−3−2dw).

(C.30)

The optimal bandwidth is M = O(N
1

2+dw ) with the convergence rate N
1+dw
4+2dw . But this rate

is negative for any dw < −1, which means that ⟨X̃, Y ⟩(WLS) is inconsistent, and the proof is

complete.

Proof of Proposition 2. Recall from Eq. (C.2) that β̂
(WLS)
1 =

∑M
m=Q θ

(m)[X̃, Ỹ ](m), where by

direct matrix calculation:

θ(m) =
m

M2

w(m
M
)(C1N

(m) − C0)

C1C−1 − C2
0

. (C.31)

But the above coincides with ϕ(m)−φ(m) in Eq. (C.15), which proves the first claim. Also, by a

similar argument in the proof of Theorem 1, we have
∑M

m=Q θ
(m) = 0 and

∑M
m=Q θ

(m)N (m) = 1,

which implies
∑M

m=Q
θ(m)

m
= 1

N+1
. In view of these relations, the asymptotic unbiasedness of

β̂
(WLS)
1 follows directly from a linear combination of Eq. (8). For the consistency and the

convergence rate of β̂
(WLS)
1 , we consider the following decomposition of β̂

(WLS)
1 and take Q = 1

for simplicity:

β̂
(WLS)
1 =

M∑
m=1

θ(m)[X, Y ](m)

︸ ︷︷ ︸
(I)

+
M∑
m=1

θ(m)U (m)

︸ ︷︷ ︸
(II)

+
2

N + 1

N∑
n=0

ϵXn ϵ
Y
n︸ ︷︷ ︸

(III)

+R̃N , (C.32)

with the remainder term:

R̃N =
M∑
m=1

θ(m)
(
[X, ϵY ](m) + [Y, ϵX ](m) − 1

m

m−1∑
n=0

ϵXn ϵ
Y
n − 1

m

N∑
n=N−m+1

ϵXn ϵ
Y
n

)
, (C.33)

and the four terms in Eq. (C.32) are asymptotically independent. Consider firstly the conver-

gence rate of (I). From a bivariate version of Corollary 2 in Zhang (2006) we can conclude

that:
M

N

M∑
m=1

θ(m)[X, Y ](m) = Op(
√
M/N), (C.34)
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which follows from the fact that M
N
θ(m) = m

M2 (g(
m
M
) + O(M−1)) has the same asymptotic

structure as a(m) with some MSRC weight g(x). We thus see that
∑M

m=1 θ
(m)[X, Y ](m) =

Op(N
− 3

4 ) which is asymptotically negligible. For (II), a direct computation of its variance

yields:

Var
[ M∑
m=1

θ(m)U (m)
]
∝ N

M∑
m=1

(θ(m)

m

)2

= O(N−1M−1) = O(N− 3
2 ). (C.35)

Therefore (II) = Op(N
− 3

4 ) which is the same as (I) and is also asymptotically negligible. (III)

is a standard sample mean which is of the order Op(N
− 1

2 ) by a classical CLT. Finally, the

remainder term satisfies:

E[R̃N ] = 0,
M

N
R̃N = Op(M

− 1
2 ), (C.36)

which follows in the same spirit as Theorem 4 of Zhang (2006). This implies that R̃N =

Op(N
− 3

4 ), again asymptotically negligible. We thus see that β̂
(WLS)
1 is dominated by (III)

which is of the order Op(N
− 1

2 ). The proposition thus follows since Ê[ϵXϵY ]
(WLS)

= β̂
(WLS)
1 /2

by definition. This completes the proof.

Proof of Corollary 1. We start with the two decompositions for ⟨X̂, Y ⟩(WLS) and ⟨X̂, Y ⟩(MS)

due to Eq. (22) and Eq. (10):

⟨X̂, Y ⟩(WLS) =
M∑

m=Q

φ(m)[X̃, Ỹ ](m) +
M∑

m=Q

θ(m)[X̃, Ỹ ](m),

⟨X̂, Y ⟩(MS) =
M∑

m=Q

a(m)[X̃, Ỹ ](m) +
M∑

m=Q

r(m)[X̃, Ỹ ](m),

(C.37)

where r(m) = α(m) −φ
(m)
MS. Note that

∑M
m=Q φ

(m)[X̃, Ỹ ](m) and
∑M

m=Q a
(m)[X̃, Ỹ ](m) are by con-

struction asymptotically equivalent, because under Assumption 1, the asymptotic distributions

of these two quantities are determined by h(x) which is common for both estimators. Therefore,

we only need to analyse the asymptotic order of the difference of the end-effect terms:

M∑
m=Q

∆r(m)[X̃, Ỹ ](m), (C.38)

where ∆r(m) = θ(m) − r(m) = O(N−1). Note that by construction,
∑M

m=Q r
(m) = 0 and∑M

m=Q r
(m)N (m) = 1, and the same holds for θ(m). Therefore we see that:

∑M
m=Q∆r(m) =∑M

m=Q∆r(m)N (m) =
∑M

m=Q∆r(m)/m = 0, which implies that E[
∑M

m=Q∆r(m)[X̃, Ỹ ](m)|X, Y ] =

0 in the limit by virtue of Eq. (8). Finally, for its asymptotic variance, we note that:

M∑
m=Q

∆r(m)[X̃, Ỹ ](m) =
M∑

m=Q

∆r(m)[X, Y ](m) +
M∑

m=Q

∆r(m)U (m) + R̃N , (C.39)
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where R̃N is defined in Eq. (C.33) with θ(m) replaced by ∆r(m). Following the same proof of

Proposition 2, we find that:

Var
[ M∑
m=Q

∆r(m)[X̃, Ỹ ](m)
]
= O(N− 3

2 ). (C.40)

This shows that
∑M

m=Q∆r(m)[X̃, Ỹ ](m) = Op(N
− 3

4 ), and consequently:

N
1
4 (⟨X̂, Y ⟩(WLS) − ⟨X̂, Y ⟩(WLS)) ∼ N

1
4

M∑
m=Q

∆r(m)[X̃, Ỹ ](m) = op(1), (C.41)

as desired. This completes the proof.

Proof of Proposition 3. We start with the following straightforward result for the generalized

RC estimator under Assumptions 2 and 3 (Bibinger, 2012) as N → ∞:

E[[X̃, Ỹ ](m)|X, Y ] → ⟨X, Y ⟩+ N (m)

m

(
2E[ϵXTnϵ

Y
Tn ]− Γm

)
, (C.42)

and note that 2E[ϵXTnϵ
Y
Tn
] is simplified from E[ϵX

tX+ (Tn)
ϵY
tY+(Tn)

+ ϵX
tX− (Tn)

ϵY
tY−(Tn)

] due to Assumption

3.3. A similar simplification is also applied to Γm. Using the properties of the WLS estimator,

we find:

E[⟨X̂, Y ⟩(WLS)|X, Y ] → ⟨X, Y ⟩ −
M∑

m=Q

ϕ(m)

m
N (m)Γm,

E[Ê[ϵXϵY ]
(WLS)

|X, Y ] → E[ϵXTnϵ
Y
Tn ]−

1

2

M∑
m=Q

θ(m)

m
N (m)Γm,

(C.43)

which is the desired expression of the expectations. For the asymptotic order of the bias, we

note that ϕ(m)

m
is of the order O(M−2) and θ(m)

m
is of the order O(M−1N−1) when dw ≥ 1. Under

the q-dependence assumption, we see that:

−
M∑

m=Q

ϕ(m)

m
N (m)Γm =

M∑
m=Q

O(M−2) ·O(N) · 1l {Q≤q}O(1) = 1l {Q≤q}O(N
1−2δ),

−
M∑

m=Q

θ(m)

m
N (m)Γm =

M∑
m=Q

O(N−1M−1) ·O(N) · 1l {Q≤q}O(1) = 1l {Q≤q}O(N
−δ),

(C.44)

which holds as there are only finite non-zero addends in the sums. Finally, to prove consistency,

it suffices to notice that the q-dependent structure in the noise only adds a multiple of q finite

terms to the asymptotic variance of ⟨X̂, Y ⟩(WLS) and Ê[ϵXϵY ]
(WLS)

, which has an impact of order

O(1) thus does not alter their convergence rates. This implies that the asymptotic variances

of ⟨X̂, Y ⟩(WLS) and Ê[ϵXϵY ]
(WLS)

converge to zero in the limit for any δ ∈ (1
3
, 1), and the

convergence in probability follows. This completes the proof.
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Proof of Proposition 4. Since the choice of Q does not affect the asymptotic order of the WLS

weights ϕ(m) and θ(m), we take Q = 1 for simplicity. We firstly consider the result regarding

⟨X̂,X⟩(WLS). Starting with the usual decomposition:

⟨X̂,X⟩(WLS) =
M∑
m=1

ϕ(m)[X,X](m) +
M∑
m=1

ϕ(m)U (m) + 2
M∑
m=1

ϕ(m)[X, eX ](m) +Rn, (C.45)

where U (m) = − 2
m

∑N
n=m e

X
n e

X
n−m and:

Rn =
2

N + 1

N∑
n=0

(eXn )
2 −

M∑
m=1

ϕ(m)

m

(m−1∑
i=0

(eXn )
2 +

N∑
n=N−m+1

(eXn )
2
)
. (C.46)

The result
∑M

m=1 ϕ
(m)[X,X](m) p→ ⟨X,X⟩ is standard. As each U (m) is the end-point of a zero-

mean martingale and independent across m, the weighted sum has variance converging to zero

such that
∑M

m=1 ϕ
(m)U (m) p→ 0. Therefore the asymptotic limit of ⟨X̂,X⟩(WLS) is determined

by the last two terms in Eq. (C.45). We consider the cross-term first:

M∑
m=1

ϕ(m)[X, eX ](m) =
M∑
m=1

ϕ(m)

m

N∑
n=0

b(m)
n eXn +

M∑
m=1

ϕ(m)

m

N∑
n=m

∆Xne
X
n , (C.47)

where:

b(m)
n =


−(Xn+m −Xn), 0 ≤ n ≤ m− 1

(Xn−1 −Xn−m)− (Xn+m −Xn), m ≤ n ≤ N −m

(Xn−1 −Xn−m), N −m+ 1 ≤ n ≤ N

. (C.48)

Clearly, the first term in Eq. (C.47) is also the end-point of a zero-mean martingale, and by a

similar argument as in Eq. (57) of Zhang (2006), the variance of this term converges to zero in

the limit. For the second term in Eq. (C.47), we have the following Riemann sum approximation:

E
[ N∑
n=m

∆Xne
X
n

∣∣∣X]
=

N∑
n=m

∆Xnω(tn)∆t
− 1

2
n ξ∆Xn

≈
N∑

n=m

((σXtn∆B
X
n )

2 + o(N−1))ω(tn)∆t
− 1

2
n ξ

≈
√
N

N∑
n=m

ξ(σXtn)
2ω(tn)

√
N∆tn

1

N
+ o(1)

≈
√
N

N∑
n=0

ξ(σXtn)
2ω(tn)

√
N∆tn

1

N
+O(mN− 1

2 ) + o(1)

→
√
N

∫ 1

0

ξ(σXτ(u))
2ω(τ(u))λ(u)du.

(C.49)
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where we have used the approximation ∆Xn ≈ σXtn∆B
X
n + µXtn∆tn by the continuity of σXt and

µXt , and note that ∆tn = O(N−1) by Assumption 4. The above result implies that:

E
[ M∑
m=1

ϕ(m)

m

N∑
n=m

∆Xne
X
n

∣∣∣X]
→

√
N

N + 1

∫ 1

0

ξ(σXτ(u))
2ω(τ(u))λ(u)du = O(N− 1

2 ). (C.50)

Its variance satisfies:

Var
[ M∑
m=1

ϕ(m)

m

N∑
n=m

∆Xne
X
n

∣∣∣X]
≤ Var

[ 1

N + 1

N∑
n=1

∆Xne
X
n

∣∣∣X]
= O(N−2). (C.51)

Therefore,
∑M

m=1 ϕ
(m)[X, eX ](m) p→ 0. Now for Rn, the first term is a straightforward Riemann

sum:

E
[ 2

N + 1

N∑
n=0

(eXn )
2
∣∣∣X]

→ 2

∫ 1

0

ω(τ(u))2du. (C.52)

For the second term, by mean value theorem we find ω(τ(m/N))2 = ω(0)2 + O(mN−1) and

similarly ω(τ(1 − m/N))2 = ω(1)2 + O(mN−1), which follows from τ(0) → 0 and τ(1) → 1

by Assumption 3. We can write E[(eXn )
2|X] = w(0)2 + O(nN−1) = w(1)2 + O((N − n)N−1).

Consequently:

E
[m−1∑
i=0

(eXn )
2 +

N∑
n=N−m+1

(eXn )
2
∣∣∣X]

= m(ω(0)2 + ω(1)2) +O(m2N−1). (C.53)

This implies:

E
[ M∑
m=1

ϕ(m)

m

(m−1∑
i=0

(eXn )
2 +

N∑
n=N−m+1

(eXn )
2
)∣∣∣X]

→ ω(0)2 + ω(1)2. (C.54)

Also, the asymptotic order of the variance of Rn can be derived using the same argument as

Eq. (53) of Zhang (2006), which is O(M−1). We thus have Rn
p→ 2

∫ 1

0
ω(τ(u))2du − (ω(0)2 +

ω(1)2), which proves the required consistency of ⟨X̂,X⟩(WLS).

We proceed to derive the result concerning Ê[(ϵXn )
2]

(WLS)

:= β̂
(WLS)
1 /2. Decompose β̂

(WLS)
1

as before:

β̂
(WLS)
1 =

M∑
m=1

θ(m)[X,X](m) +
M∑
m=1

θ(m)U (m) + 2
M∑
m=1

θ(m)[X, eX ](m) + R̃n, (C.55)

where:

R̃n =
2

N + 1

N∑
n=0

(eXn )
2 −

M∑
m=1

θ(m)

m

(m−1∑
i=0

(eXn )
2 +

N∑
n=N−m+1

(eXn )
2
)
. (C.56)

As
∑M

m=1 θ
(m) = 0 and θ(m) = M

N
ϕ(m), the first three terms in Eq. (C.55) and also the second

term in R̃n converge to zero in probability. The first term in R̃n is identical to Eq. (C.52),

which implies that β̂
(WLS)
1

p→ 2
∫ 1

0
ω(τ(u))2du as desired, and the proof is complete.
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Proof of Corollary 1. We firstly note that, under the assumptions in Proposition 4, we have:

M∑
m=Q

φ(m)[X̃, X̃](m) p→ ⟨X,X⟩ − w(0)2 − w(1)2, (C.57)

which is proved following the same steps as in the proof of Proposition 4. The only difference

is that the leading term in Eq. (C.46) disappears due to that
∑M

m=Q
φ(m)

m
= 0 by construction.

Therefore, we only need to show that (X̃, X̃){Q} p→ ω(0)2 + ω(1)2. Notice that (X̃, X̃){Q} has

a similar structure to [X̃, X̃](Q), which can be decomposed as:

(X̃, X̃){Q} = (X,X){Q} + 2(X, eX){Q} + (eX , eX){Q}. (C.58)

The first term is simply Q
M−Q+1

times the subsampled RV estimator for the interval [0, M
N
] ∪

[1− M
N
, 1]. As the length of the interval is O(MN−1), we have E[(X,X){Q}|X] → O(N−1) and

Var[(X,X){Q}|X] → O(M−3), which implies (X,X){Q} p→ 0.

For the second term:

E[(X, eX){Q}|X] →
√
N

M −Q+ 1

∫
[0,M

N
]∪[1−M

N
,1]

ξ(σXτ(u))
2ω(τ(u))λ(u)du = O(N− 1

2 ),

Var[(X, eX){Q}|X] = Var
[ Q

M −Q+ 1

∑
n∈[1,M ]∪[N−M+1,N ]

∆Xne
X
n

∣∣∣X]
= O(M−1N−1),

(C.59)

which is in the same spirit as the proof of Proposition 4. Thus (X, eX){Q} p→ 0. For the

third term, we again use the mean value expansion of ω(t)2 at 0 and 1 as in the derivation of

Eq. (C.53), which yields:

E[(eX , eX){Q}|X] = w(0)2 + w(1)2 +
2

M −Q+ 1

∑
n∈[Q,M ]∪[N−M+Q,N ]

O(nN−1)

= w(0)2 + w(1)2 +O(MN−1) → w(0)2 + w(1)2.

(C.60)

Its variance satisfies:

Var[(eX , eX){Q}|X] = O(M−2)
∑

n∈[1,M ]∪[N−M+1,N ]

O(1) = O(M−1), (C.61)

which implies (eX , eX){Q} p→ w(0)2 + w(1)2, and the proof is complete.
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D Additional Tables and Figures
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Figure D.1: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
parzen with (λX , λY ) = (1/5, 1/10) and ψ2 = 0.015. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a Parzen kernel.
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Figure D.2: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
parzen with (λX , λY ) = (1, 1/2) and ψ2 = 0.005. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a Parzen kernel.
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Figure D.3: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
parzen with (λX , λY ) = (1, 1/2) and ψ2 = 0.015. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a Parzen kernel.
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Figure D.4: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
cubic with (λX , λY ) = (1/5, 1/10) and ψ2 = 0.005. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a cubic kernel.
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Figure D.5: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
cubic with (λX , λY ) = (1/5, 1/10) and ψ2 = 0.015. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a cubic kernel.
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Figure D.6: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
cubic with (λX , λY ) = (1, 1/2) and ψ2 = 0.005. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a cubic kernel.
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Figure D.7: Impact of c and Q on the performance of ⟨·̂, ·⟩(WLS)
cubic with (λX , λY ) = (1, 1/2) and ψ2 = 0.015. The figures show

the bias and RMSE of the estimators based on 1,000 simulated path of (X,Y ) and each combination of c ∈ {0.1, 0.2, . . . , 2} and

Q ∈ {1, 3, 5, 7, 9}. The vertical dashed line shows the simulated value of E[ĉ∗], the expected estimated optimal bandwidth parameter

for a realized kernel with a cubic kernel.
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Targets ⟨X,Y ⟩ ⟨X,X⟩ ⟨Y, Y ⟩

Estimators DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

Panel 1: ψ2 = 0.005, (λX , λY ) = (1, 1/2)

⟨·̂, ·⟩(WLS)
cubic 0.0000 -0.0011 -0.0001 -0.0111 0.0141 0.0343 -0.0071 0.0397 -0.0013

⟨·̂, ·⟩(WLS,∗)
cubic 0.0001 -0.0010 -0.0001 -0.0059 0.0199 0.0396 -0.0022 0.0435 0.0033

⟨·̂, ·⟩(WLS)
parzen 0.0003 -0.0014 -0.0006 -0.0072 0.0097 0.0198 -0.0075 0.0435 0.0007

⟨·̂, ·⟩(WLS,∗)
parzen 0.0004 -0.0013 -0.0005 -0.0018 0.0155 0.0249 -0.0026 0.0475 0.0054

Bias ⟨·̂, ·⟩(sub)15 -0.0334 -0.0334 -0.0332 0.0632 0.0627 0.0639 0.1486 0.1481 0.1493

⟨·̂, ·⟩(MS,∗) 0.0016 -0.0015 0.0003 -0.5729 2.8637 -0.6013 -0.3589 1.1604 -0.4443

⟨·̂, ·⟩(PHY ) -0.0023 -0.0043 -0.0016 0.0046 0.0320 0.0031 -0.0169 -0.0140 -0.0174

⟨·̂, ·⟩(CRK)
parzen 0.0025 0.0307 -0.0010 0.0277 0.1100 0.0202 0.0135 0.0545 0.0086

⟨·̂, ·⟩(FTRK)
parzen 0.0024 0.0019 0.0014 0.0187 0.0499 0.0147 -0.0049 -0.0026 -0.0066

⟨·̂, ·⟩(WLS)
cubic 0.0779 0.1039 0.0801 0.0891 0.3211 0.2209 0.1200 0.1886 0.1386

⟨·̂, ·⟩(WLS,∗)
cubic 0.0780 0.1040 0.0800 0.0879 0.3320 0.2319 0.1180 0.1896 0.1373

⟨·̂, ·⟩(WLS)
parzen 0.0734 0.0974 0.0778 0.1082 0.2977 0.1723 0.1205 0.1857 0.1386

⟨·̂, ·⟩(WLS,∗)
parzen 0.0734 0.0974 0.0777 0.1096 0.3052 0.1774 0.1181 0.1874 0.1376

RMSE ⟨·̂, ·⟩(sub)15 0.3130 0.3136 0.3127 0.5572 0.5581 0.5591 2.3921 2.3847 2.3969

⟨·̂, ·⟩(MS,∗) 0.0674 0.1040 0.0765 1.1587 6.0849 1.2534 0.6325 1.9955 0.7812

⟨·̂, ·⟩(PHY ) 0.0717 0.0985 0.0747 0.2012 0.3675 0.1841 0.1855 0.1916 0.1829

⟨·̂, ·⟩(CRK)
parzen 0.1028 0.1421 0.1026 0.2255 0.4149 0.2024 0.1811 0.2289 0.1722

⟨·̂, ·⟩(FTRK)
parzen 0.1184 0.1254 0.1192 0.2251 0.3017 0.2092 0.1891 0.1913 0.1864

Panel 2: ψ2 = 0.015, (λX , λY ) = (1, 1/2)

⟨·̂, ·⟩(WLS)
cubic -0.0002 -0.0004 0.0035 -0.0033 -0.0108 0.0722 -0.0078 0.0184 0.0084

⟨·̂, ·⟩(WLS,∗)
cubic -0.0001 -0.0003 0.0034 0.0110 0.0063 0.0887 0.0069 0.0314 0.0231

⟨·̂, ·⟩(WLS)
parzen 0.0002 -0.0010 0.0044 -0.0069 -0.0084 0.0391 -0.0065 0.0234 0.0142

⟨·̂, ·⟩(WLS,∗)
parzen 0.0002 -0.0010 0.0044 0.0081 0.0086 0.0551 0.0083 0.0364 0.0285

Bias ⟨·̂, ·⟩(sub)15 -0.0339 -0.0333 -0.0335 0.2983 0.3006 0.3007 0.3837 0.3860 0.3861

⟨·̂, ·⟩(MS,∗) 0.0021 0.0019 0.0068 -1.7231 8.5657 -1.8059 -1.0700 3.5010 -1.3235

⟨·̂, ·⟩(PHY ) -0.0001 0.0031 -0.0014 0.0016 0.0416 0.0021 -0.0200 0.0016 -0.0171

⟨·̂, ·⟩(CRK)
parzen 0.0154 0.0610 0.0117 0.0603 0.2085 0.0505 0.0583 0.1399 0.0460

⟨·̂, ·⟩(FTRK)
parzen 0.0008 0.0013 0.0032 0.0281 0.1120 0.0265 0.0072 0.0344 0.0006

⟨·̂, ·⟩(WLS)
cubic 0.1087 0.1314 0.0878 0.2197 0.4155 0.2965 0.2006 0.2706 0.1631

⟨·̂, ·⟩(WLS,∗)
cubic 0.1094 0.1312 0.0879 0.2194 0.4017 0.3251 0.1985 0.2695 0.1590

⟨·̂, ·⟩(WLS)
parzen 0.1074 0.1293 0.0840 0.1585 0.3277 0.1991 0.1880 0.2645 0.1520

⟨·̂, ·⟩(WLS,∗)
parzen 0.1081 0.1291 0.0842 0.1771 0.3181 0.2279 0.1862 0.2647 0.1521

RMSE ⟨·̂, ·⟩(sub)15 0.3149 0.3132 0.3128 0.8093 0.8231 0.8220 2.7626 2.7788 2.7776

⟨·̂, ·⟩(MS,∗) 0.1142 0.2432 0.0896 3.5173 17.9553 3.7432 1.8467 6.0592 2.2910

⟨·̂, ·⟩(PHY ) 0.0822 0.2159 0.0755 0.1713 0.5363 0.1827 0.2020 0.4100 0.1838

⟨·̂, ·⟩(CRK)
parzen 0.1240 0.1934 0.1125 0.2575 0.6469 0.2584 0.2108 0.3132 0.1832

⟨·̂, ·⟩(FTRK)
parzen 0.1322 0.1423 0.1266 0.2246 0.3911 0.2420 0.2054 0.2283 0.1862

Table D.1: Simulation results for 9 estimators of ⟨X,Y ⟩, ⟨X,X⟩ and ⟨Y, Y ⟩. DGP refers to the data generating process of MMS

noises. For each estimator, DGP and inference target, we compute the bias and root mean squared error (RMSE) of the 9 estimators

based on 1000 simulated paths. The WLS estimators are constructed with adaptively chosen ĉ∗ and Q̂. For each DGP and inference

target, the top three (resp. one) estimators with the smallest absolute bias and smallest MSE are in bold (resp. underlined).
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AAPL AXP BA CAT CSCO CVX DIS GE GS

RetOTOC 0.0548 -0.0132 -0.0500 0.0244 0.0264 -0.0346 -0.0253 -0.0890 0.0014

NoT 60136 11550 18749 12757 18170 18053 19141 14758 11359

Spread 0.0107 0.0202 0.0282 0.0245 0.0307 0.0174 0.0157 0.0663 0.0317

Volume 4.9914 4.8168 4.5921 4.7452 5.8846 4.8463 4.9585 6.7264 4.4491

Biddepth 6.9051 6.1611 5.7434 5.8839 9.0253 6.1232 6.3616 10.3565 5.4296

Offerdepth 6.9827 6.1635 5.6797 5.8995 9.0505 6.1659 6.3337 10.3529 5.4532

OI -0.0157 -0.0363 -0.0357 -0.0067 -0.0203 -0.0178 -0.0965 -0.0379 0.0046

OF -0.0355 -0.0274 -0.0161 -0.0110 -0.0067 -0.0182 -0.0538 -0.0504 0.0197

HD IBM JN JPM KO MCD MMM MRK MSFT

RetOTOC 0.0311 -0.0049 0.0036 0.0010 0.0108 0.0306 -0.0067 -0.0195 0.0420

NoT 13881 12275 16066 25415 11615 11583 9126 15184 43216

Spread 0.0201 0.0193 0.0148 0.0145 0.0231 0.0188 0.0246 0.0182 0.0160

Volume 4.6744 4.6767 4.9071 5.1954 5.7507 4.7506 4.5160 5.2910 5.3959

Biddepth 5.7990 5.6739 6.1917 7.0918 8.3272 5.9161 5.4404 7.1309 7.7802

Offerdepth 5.7901 5.6956 6.2042 7.0942 8.3689 5.9215 5.4473 7.1317 7.7989

OI -0.0632 -0.0379 -0.0313 -0.0026 -0.0259 -0.0298 -0.0292 -0.0514 -0.0279

OF -0.0509 -0.0289 -0.0278 0.0117 -0.0261 -0.0323 -0.0188 -0.0385 -0.0289

NKE PFE PG TRV UNH V VZ WMT XOM

RetOTOC 0.0175 -0.0376 0.0376 0.0229 0.0280 0.0034 0.0065 0.0325 -0.0517

NoT 13723 15147 15414 6202 12093 17903 14531 16469 21235

Spread 0.0196 0.0293 0.0148 0.0293 0.0268 0.0189 0.0204 0.0158 0.0155

Volume 4.9926 6.0364 5.1155 4.5365 4.5963 4.7868 5.5383 4.9959 5.2701

Biddepth 6.4507 8.8800 6.7298 5.6433 5.6079 6.0385 7.8486 6.6340 7.1270

Offerdepth 6.4921 8.8987 6.8253 5.6170 5.6158 6.0499 7.8590 6.6261 7.1256

OI -0.0583 -0.0451 -0.0620 -0.0395 -0.0224 -0.0322 -0.0111 -0.0773 -0.0444

OF -0.0481 -0.0252 -0.0513 -0.0328 -0.0287 -0.0151 -0.0070 -0.1621 -0.0366

Table D.2: Average characteristics for each stock. This table reports average stock characteristics including open to close return

(RetOTOC), number of trades (NoT), bid-ask spread (Spread), trading volume (Volume), bid and offer depths (Biddepth and

Offedepth), order imbalance (OI), and order flow (OF). Return and spread are reported in percentage points (10−2).
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: FTRK Panel B: PHY

RV (1) 0.2574*** 0.3457*** 0.3017*** 0.3659*** 0.2507*** 0.3986*** 0.3346*** 0.4124***

(3.12) (3.04) (2.89) (2.87) (3.17) (3.27) (3.03) (3.18)

RV (5) 0.5107*** 0.4638*** 0.5329*** 0.4429*** 0.5086*** 0.4276*** 0.5216*** 0.4121***

(19.82) (9.81) (12.72) (7.31) (18.20) (6.80) (9.13) (5.98)

RV (22) -0.0250 -0.0212 -0.0309 -0.0245 -0.0093 -0.0034 -0.0169 -0.0064

(-1.03) (-1.05) (-1.32) (-1.17) (-0.40) (-0.20) (-0.93) (-0.35)

NV (1) -0.1441*** -0.0887** -0.0228 -0.1969*** -0.1267*** -0.1008***

(-3.35) (-2.48) (-0.46) (-4.31) (-2.88) (-3.89)

NV (5) -0.1146*** -0.1327***

(-4.30) (-6.96)

NV (22) 0.0116 0.0116

(1.00) (1.06)

NV (1) ×RV (1) -0.1325* -0.1050*

(-1.71) (-1.91)

RCorr(1) 0.2213*** 0.2869***

(98.09) (123.34)

RCorr(5) 0.4827*** 0.4772***

(156.73) (163.12)

RCorr(22) 0.1789*** 0.1230***

(47.54) (36.01)

FE Stock Stock Stock Stock Element Stock Stock Stock Stock Element

Cluster Stock Stock Stock Stock Element Stock Stock Stock Stock Element

Obs 47,007 47,007 47,007 47,007 658,098 47,007 47,007 47,007 47,007 658,098

R2 0.517 0.534 0.542 0.536 0.670 0.518 0.547 0.557 0.548 0.676

Table D.3: In-sample volatility and correlation modelling. This table reports in-sample realized volatility and correlation forecasting

results using panel data fixed effect regressions. All variables are standardized to facilitate the interpretation. The dependent

variable is the sub-sampled 5-min realized variance one day ahead. We focus on two estimators including FTRK (Panel A) and

PHY (Panel B). For each estimator, we consider four volatility model specifications: HAR (the model with daily, weekly, and

monthly averaged lagged realized variances, RV (1), RV (5), and RV (22) respectively), HAR plus daily lagged noise variance NV (1),

HAR plus daily, weekly, and monthly lagged noise variances NV (1), NV (5), and NV (22), and the one include the interaction between

RV (1) and NV (1). We add stock fixed effect and use robust standard error clustered by stock. This table also reports in-sample

realized correlation forecasting results . The dependent variable is the one-day ahead subsampled 5-min realized correlation. We

only consider the scalar HAR model using daily, weekly, and monthly averaged lagged realized correlations (RCorr(1), RCorr(5),

and RCorr(22)) based on each estimator. We add individual element (diagonal (1s) and off-diagonal (pairwise stock correlation)

elements) fixed effect and use robust standard error clustered by element. Numbers in brackets are t-statistics. ***, **, and * refer

to statistical significance at 1%, 5%, and 10%.
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Panel A: Out-of-Sample Forecasting

Whole Sample High Noise Periods Low Noise Periods

RMSE HAR HARNV HAR HARNV HAR HARNV

FTRK 1.7367 1.7287 2.3149 2.3029 0.7945 0.7953

(-6.3775) (-6.3157) (1.0441)

PHY 1.6669 1.6605 2.2011 2.1997 0.7802 0.7804

(-6.7892) (-6.5403) (0.3028)

Panel B: Out-of-Sample Asset Allocation

Whole Sample High Noise Periods Low Noise Periods

FTRK HAR HARNV HAR HARNV HAR HARNV

Mean 0.0357 0.0521 0.0357 0.0521 0.0357 0.0521

Std 0.1595 0.1635 0.1595 0.1635 0.1595 0.1635

SR 0.2238 0.3186 0.2238 0.3186 0.2238 0.3186

[0.7370] [0.6102] [0.5702]

MDD 0.1389 0.1500 0.1389 0.1500 0.1389 0.1500

∆ 5.9643 17.8943 -5.9359

(0.2236) (0.3396) (-0.6038)

∆tc 2.8101 13.6543 -7.1260

(0.1046) (0.2571) (-0.8998)

Whole Sample High Noise Periods Low Noise Periods

PHY HAR HARNV HAR HARNV HAR HARNV

Mean 0.0618 0.0659 0.0521 0.0644 0.0690 0.0649

Std 0.1244 0.1251 0.1544 0.1557 0.0846 0.0842

SR 0.4964 0.5263 0.3374 0.4137 0.8158 0.7708

[0.7484] [0.6048] [0.5086]

MDD 0.1754 0.1868 0.1359 0.1484 0.0932 0.0967

∆ 5.1021 15.8403 -5.5801

(0.3028) (0.4758) (-0.7072)

∆tc 2.5151 12.2271 -1.9707

(0.1498) (0.3679) (-0.4124)

Table D.4: Out-of-sample covariance forecasting and portfolio performance. This table reports out-of-sample covariance forecasting

and asset allocation results. Panel A reports out-of-sample average RMSE, reported in 10−4. We consider two estimators including

FTRK and PHY. We consider the HAR model and the HAR with daily lagged noise variance (HARNV) model to forecast the sub-

sampled 5-min realized variance-covariance matrix based on a HAR-DRD specification (forecast variance and correlation separately

and then composite the covariance matrix) using a rolling window estimation with a window size of 500 days. Numbers in parentheses

are Diebold-Mariano (DM) test t-statistics. Panel B reports out-of-sample asset allocation results. We report annualized mean,

standard deviation, Sharpe ratios, maximum drawdown (MDD), performance fee or utility gains (∆) (reported in in basis point

(10−4) per annum), and performance fee accounting for transaction costs (∆tc). Numbers in brackets are Ledoit and Wolf robust

Sharpe ratio test p-values. Numbers in parenthesis are Diebold-Mariano (DM) test t-statistics. The risk aversion parameter is at a

moderate level of 6. Portfolio return is adjusted for a moderate level of transaction cost of 0.1% when calculating the transaction

cost adjusted performance fee. For each analysis, we also report results for high noise and low noise periods. High noise period

refers to periods when the aggregate level noise variance (cross-sectional average) is above its time-series median value, while low

noise periods refer to those below the median value.
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: FTRK

NV (1) -0.1392*** -0.1208*** -0.1435*** -0.1242*** -0.1240*** -0.1442*** -0.1442*** -0.1161***

(-3.30) (-3.64) (-3.35) (-3.74) (-3.74) (-3.35) (-3.35) (-3.52)

NoT 0.0869*** 0.0973***

(3.80) (3.68)

Spread 0.0813** 0.0785**

(2.48) (2.64)

Volume -0.0288*** 0.0318

(-2.93) (1.21)

Biddepth -0.0222 0.1560**

(-1.11) (2.09)

Offerdepth -0.0521*** -0.1594***

(-3.08) (-3.52)

OI -0.0016 -0.0008

(-0.40) (-0.22)

OF -0.0042 0.0001

HAR-RV Yes Yes Yes Yes Yes Yes Yes Yes

FE Stock Stock Stock Stock Stock Stock Stock Stock

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 46,921 47,007 46,933 46,931 47,007 47,007 46,921

R2 0.538 0.533 0.534 0.532 0.534 0.534 0.534 0.538

Panel B: PHY

NV (1) -0.1904*** -0.1744*** -0.1961*** -0.1797*** -0.1788*** -0.1969*** -0.1969*** -0.1679***

(-4.17) (-4.14) (-4.28) (-4.25) (-4.33) (-4.31) (-4.31) (-3.99)

NoT 0.0850*** 0.0952***

(3.76) (3.72)

Spread 0.0797** 0.0767***

(2.62) (2.81)

Volume -0.0278** 0.0384

(-2.60) (1.65)

Biddepth -0.0238 0.1477**

(-1.25) (2.11)

Offerdepth -0.0535*** -0.1612***

(-3.19) (-3.69)

OI -0.0021 -0.0010

(-0.57) (-0.27)

OF -0.0051 -0.0007

(-1.51) (-0.30)

HAR-RV Yes Yes Yes Yes Yes Yes Yes Yes

FE Stock Stock Stock Stock Stock Stock Stock Stock

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 46,921 47,007 46,933 46,931 47,007 47,007 46,921

R2 0.551 0.545 0.547 0.544 0.546 0.547 0.547 0.550

Table D.5: Volatility modelling with noise and microstructure variables. This table reports in-sample volatility forecasting with

microstructure variables using panel data fixed effect regressions. All variables are standardized to facilitate the interpretation.

The dependent variable is sub-sampled 5-min realized variance one day ahead. We add seven microstructure variables: number of

trade (NoT), bid-ask spread (Spread), trading volume (Volume), bid and offer depth, order imbalance (OI), and order flow (OF) to

the HAR model (the model with daily, weekly, and monthly averaged lagged realized variances RV (1), RV (5), RV (22) respectively)

along with daily lagged noise variance (NV (1)) model. HAR-RV refers to control for RV (1), RV (5), RV (22). We add stock fixed

effect and use robust standard error clustered by stock. Numbers in brackets are t-statistics. ***, **, and * refer to statistical

significance at 1%, 5%, and 10%. Panel A reports results using FTRK realized variance while Panel B report results using PHY

realized variance.
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(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: FTRK Panel B: PHY

RV (1) 0.3549*** 0.3681** 0.3268*** 0.3440*** 0.4424*** 0.4513*** 0.3804*** 0.3230***

(2.80) (2.67) (2.85) (2.82) (2.97) (2.91) (3.07) (3.10)

RV (5) 0.4616*** 0.4424*** 0.4537*** 0.4634*** 0.4172*** 0.4037*** 0.4193*** 0.4802***

(9.51) (7.17) (10.52) (10.15) (6.10) (5.42) (7.13) (10.83)

RV (22) -0.0225 -0.0248 -0.0233 -0.0213 -0.0093 -0.0116 -0.0056 -0.0075

(-1.10) (-1.19) (-1.24) (-1.08) (-0.51) (-0.60) (-0.35) (-0.49)

NV (1) -0.1442*** -0.0233 -0.1373*** -0.1439*** -0.1983*** -0.0982* -0.1888*** -0.1138***

(-3.33) (-0.46) (-3.19) (-3.28) (-4.11) (-1.74) (-4.05) (-3.13)

NV (1) ×RV (1) -0.1320 -0.1084***

(-1.66) (-3.66)

RV (1) ×RQ1/2 -0.0005 -0.0001 -0.0022 -0.0020

(-0.14) (-0.04) (-0.72) (-0.68)

JV
(1)
bp 0.0659** 0.0591**

(2.30) (2.11)

JV
(1)
med 0.0044 -0.0027

(0.16) (-0.10)

Cluster Stock Stock Stock Stock Stock Stock Stock Stock

FE Stock Stock Stock Stock Stock Stock Stock Stock

Obs 47,007 47,007 47,007 47,007 47,007 47,007 47,007 47,007

R2 0.534 0.536 0.538 0.517 0.547 0.549 0.549 0.518

Table D.6: Noise, realized quarticity, and jumps. This table reports in-sample volatility modelling with noise, the interaction of

noise variance and realized variance controlling for Realized Quarticity (RQ) and jumps using panel data fixed effect regressions.

All variables are standardized to facilitate the interpretation. The dependent variable is the sub-sampled 5-min realized variance

one day ahead. We consider two estimators: FTRK (Panel A)and PHY (Panel B). We add the interaction between daily lagged

noise variance and daily lagged realized variance (NV (1)×RV (D)) into the HAR model (the model with daily, weekly, and monthly

averaged lagged realized variances RV (1), RV (5), RV (22) respectively) plus daily lagged noise variance (NV (1)). We also control for

the interaction between RV and square root of RQ (RV (1) ×RQ1/2 ) as in the HARQ model. We also control for two measures of

jump variations based on Bipower (JV
(1)
bp ) and Median value (JV

(1)
med) methods. We add stock fixed effect and use robust standard

error clustered by stock. Numbers in brackets are t-statistics. ***, **, and * refer to statistical significance at 1%, 5%, and 10%.
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