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Superflow as a tool for studying superfluid 3He

by Asher Jennings

In this thesis, we use mechanical oscillators to induce fluid flow in the superfluid 3He
in order to investigate the properties of several superfluid phases. In particular, we in-
vestigate the B phase below temperatures of 230 µK and superfluid 3He confined in an
anisotropic aerogel.

Superfluid 3He is a fermionic superfluid consisting of Cooper pairs. If the superfluid
flows above a critical velocity called the Landau velocity, the Cooper pairs break and form
into quasiparticles. When an oscillating object goes faster than the critical velocity, it ex-
periences a large increase in the drag force on the object. In this work, we move a device
in superfluid 3He-B with constant velocity rather than oscillating it. We see only a small
increase in damping for velocities above the critical velocity, instead of the large increase.
After subtracting the results of thermally excited quasiparticles, we demonstrate that the
small increase in damping is due to expelling quasiparticles occupying surface-bound-
states on the wire surface. By monitoring the thermometer response to the movements,
we measure the Kapitza resistance. We also observe the damping of wires oscillating
in superfluid 3He-B with a diameter approaching the coherence length. The damping is
much smaller than expected from considering the collisions of thermally excited quasi-
particles.

Lastly, we built a new device for exploring the superfluid phases of 3He confined in-
side an anisotropic aerogel. The aerogel has 10 nm strands aligned parallel with a mean
distance between the strands of 100 nm, close to the coherence length of the superfluid.
The device can be moved and oscillated, inducing flow. By observing the resonance fre-
quency and the damping of the device, one can measure the superfluid fraction and ob-
serve other phenomena in the superfluid. Sharp changes in the velocity of measurements
below the aerogel transition temperature have been found using this technique.
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Chapter 1

Introduction

In the popular imagination, quantum physics is thought of as describing the realm of
extremely small objects. In reality, there are macroscopic quantum systems that arise
from quantum mechanics. Two such quantum systems are the quantum fluids superfluid
helium-4 and superfluid helium-3 [1]. Whole bucketfuls of helium-4 can be described as
following a single wave function, as the particles in the fluid condensate into the quan-
tum ground state at low temperatures. Of the two, superfluid 3He is the much more
complex, as superfluidity requires 3He atoms to form pairs called Cooper pairs [2]. It is
fermionic, magnetic and has a triplet wave-function state which allows for the stabilisa-
tion of multiple superfluid phases. This leads to a rich and diverse range of phenomena.
Whilst most closely related to unconventional superconductors, the fundamental physics
in superfluid 3He allows the quantum fluid to be used as a quantum analogue or simula-
tor of many other systems. Moreover, superfluid 3He is the purest system in the universe.
The lack of impurities allow a much easier theoretical treatment of the superfluid. As a
liquid, it is easy to introduce controlled impurities. A commonly used impurity is an
aerogel: a sponge-like porous material made of 1 nm–10 nm sized solid strands with a
small mean free path between the strands, usually 10 nm–100 nm in distance.

This work describes the design and undertaking of experiments in superfluid 3He
with the goal of investigating both bulk superfluid 3He and 3He confined to an aerogel.
The main tool used to investigate the superfluid is a mechanically moving object that
induces mass flow in the superfluid, known as superflow. In the bulk superfluid, we
study superflow with velocities above the critical Landau velocity. For 3He in aerogel, we
use a nematic aerogel to introduce anisotropy into the system.

1.1 Faster than Landau Experiment

It was previously thought that superflow above the Landau velocity was impossible. The
Landau velocity in superfluid 3He-B at saturated vapour pressure is vL = 27 mm s−1. A
slightly lower critical velocity was found by experiments using moving objects to induce
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flow [3, 4]. To explain the lower critical velocity, Lambert developed a model incorporat-
ing the local flow of the fluid around the object, which reduces the critical velocity from
the Landau velocity by a factor depending on the geometry of the moving object [5].

A recent experiment demonstrated it is possible to move an object above the critical
velocity and the Landau velocity without experiencing a large increase in the drag force
on the object, as long as the velocity remains constant [6]. There is some small increase in
damping, which was thought to be from expelling surface Andreev bound quasiparticles
that exist on the surface of the object when immersed in superfluid 3He-B. By introduc-
ing a direction dependence of the motion, we investigate the reasons for this peculiar
behaviour and use superflow at velocities above vL to investigate the dynamics of the
surface states.

This works also presents a thermometric analysis of the experiments to measure the
thermal boundary resistance, or Kapitza resistance, between copper plates covered with
silver sinter and superfluid 3He. The results of this analysis has an impact on the design
of future nuclear demagnetisation stages and the aerogel experiments.

1.2 3He in a Nematic Aerogel

A new phase of superfluid 3He was discovered in the nematic aerogel nafen, called the
polar phase [7]. The phase was detected by nuclear magnetic resonance (NMR). Previous
experiments in this phase have led to the stabilisation of half-quantum vortices (HQVs),
also detected by NMR [8]. These vortices can be created by Kibble-Zureck mechanism
or by the rotation of the superfluid. Another way to create vortices is to move an object
inside the superfluid. In the case of this work, moving the aerogel itself.

Since measurements on the polar phase required NMR, the magnetic fields used
were quite low. If the polar phase can be stabilised, another theoretically predicted phase
should be present at high magnetic fields called the beta (β) phase [9]. This phase is un-
detectable by NMR, but can be detected by using superflow. The fraction of fluid inside
the nematic aerogel that is superfluid abruptly changes when beta phase transitions to
the polar phase. The superfluid fraction inside an aerogel can be measured by oscillating
it [10, 11].

Much of the work presented in this thesis can be viewed with the main goal of search-
ing for the β phase. A new mechanically oscillating device with an NMR coil attached
was created and immersed in superfluid 3He. Inside the NMR coil, the aerogel nafen-
92 was inserted in which the polar phase can be stabilised. The NMR coil allows low
field measurements to ensure the polar phase is present in the sample. At high fields, we
can oscillate the device with the aim of measuring the superfluid fraction of the liquid
3He confined within the aerogel. At low fields, the aim was also to detect HQVs created
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by mechanical motion and possibly measure their dynamics using NMR. Whilst the ex-
periment so far is ultimately inconclusive about the presence of the β phase, the data
presented demonstrates some strange effects that are likely due to the aerogel.

1.3 Layout

Chapter 2 gives a brief introduction to helium and superfluids in general, before covering
the necessary theoretical details of superfluid 3He. At the end, continuous wave NMR as
it pertains to 3He is described.

Chapter 3 covers the devices used in the experimental cell, both theoretically and
practically. It begins with a description of damped-driven mechanical resonance using
the mass-spring model, and makes an analogy to electrical resonance. We then theoreti-
cally describe damping mechanisms in superfluid 3He. Finally we discuss the design and
operation of specific devices used in this work.

Chapter 4 gives details of other experimental apparatus and techniques used in this
work. As the details of dilution refrigeration and nuclear demagnetisation is extensive
in low temperature literature, only very brief descriptions of the cooling techniques used
are given. The layout of the experimental cells are shown and the design of a helium
purifier is discussed.

Chapter 5 presents the results of experiments where an object is moved faster than the
Landau velocity. We explore the difference between moving the object in a constant direc-
tion and changing direction. We use these results to confirm the surface Andreev bound
states as a mechanism for damping when moving at a constant velocity and elucidate the
dynamics of bound states.

Chapter 6 describes the results of some thermometric experiments. It consists of two
sections. First, the temperature response of the thermometers in time to the faster than
Landau experiments is analysed to find the Kaptiza resistance of our sintered-nuclear
refrigerant. The Kapitza resistance is compared when the sinter is plated with pure 3He
versus with 2 layers of solid 4He. Second, we describe preliminary measurements of vi-
brating wire resonators with radii approaching the coherence length of the superfluid
and discuss their applicability as thermometers.

Chapter 7 presents results of the new flopper device with an NMR coil and aerogel
attached, termed the NMR-flopper. First, NMR measurements in a low magnetic field are
presented. Then our efforts in search of the β phase using the mechanical properties of
the device are shown.

Lastly, Chapter 8 summarises the thesis and gives some indications for future research
that might be derived from this work.
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Chapter 2

Liquid Helium

Without a sufficiently high pressure, both helium-3 and helium-4 remain liquid even at
absolute zero [1, 2, 12, 13]. A simple argument demonstrating this phenomenon is that
the zero point energy of the atoms is large. The zero point energy for 3He or 4He is given
by

E0 =
3h̄2π2

2m3,4V
2
3

3,4

, (2.1)

where h̄ is the reduced Planck’s constant, m3,4 is the mass of a 3He or 4He particle respec-
tively and V3,4 is the volume of the “box" the particle is confined in. As helium is such a
light particle, it gives rise to a very large energy. Since the energy increases as the confin-
ing box decreases, the energy of solid helium is much higher than that of liquid helium,
preventing solidification. In fact, the zero point energy is several times larger than that
of the attractive van der Waal’s force between two helium atoms. For helium-3, there is
also an attractive force due to nuclear dipole interaction, but this is a small correction.
Similarly, since the attractive forces between atoms are very small, when in the gaseous
state both isotopes can be considered an ideal gas.

Instead of remaining a simple classical fluid, both isotopes undergo a phase transition
into a so-called "superfluid" state. The superfluid state is a macroscopic quantum system
described by a condensate, in which all the particles are governed by a single macroscopic
wave function. Furthermore, the 4He and 3He superfluid phases are distinct from each
other. 4He atom has an even number of nucleons, and therefore an integer spin. The
helium-4 atom is therefore bosonic and the superfluid state more akin to a Bose-Einstein
Condensate (BEC) gas. 3He atom has an odd number of nucleons, hence having half-
integer spin in total and is fermionic. A fermionic system requires the fermions to form
into pairs called Cooper pairs in order to condense into the superfluid state. The Cooper
pairing process is also found to happen to electrons in superconductors, and as such
3He is often considered a charge-less superconductor. These differences mean that the
respective superfluid transitions in each isotope happen at much different temperature
scales. The transition temperature for superfluid 4He happens on the order of Kelvins,
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FIGURE 2.1: The phase diagram of helium at low temperatures and zero
magnetic field. Note the log scale on temperature axis [2].

with the transition temperature Tλ = 2.17 K at saturated vapour pressure. For 3He the
superfluid transition temperature Tc is on the order of millikelvins, with the zero-pressure
transition temperature being 929 µK, shown by the phase diagram in Fig. 2.1.

The major difference between the fermionic superfluid state of 3He and bosonic su-
perfluid 4He is that there are actually multiple superfluid phases, rather than the one.
This comes from the magnetic properties of the Cooper pair formed. The ground state of
the Cooper pair wave function in superfluid 3He has orbital angular momentum l = 1
and spin s = 1.

2.1 Brief Introduction to Superfluids

Experimentally, the first signs of a phase transition are sharp discontinuities in the specific
heat capacity [14] but the most immediately striking property of a superfluid is the ability
to flow with zero viscosity [15, 16]. The superfluid can flow through extremely narrow
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channels with no friction and even flow up walls as a thin film. In a normal liquid, the van
der Waal’s forces between the wall and liquid and the surface tension of the film comes
into equilibrium with the viscous friction and gravity opposing the film. In a superfluid,
the absence of viscosity means that film flow is nearly always possible [1]. Objects moving
within a superfluid experience almost no drag force, as if in a mechanical vacuum. This
behaviour exists as long as the object is moving below a certain critical velocity, known as
the Landau velocity vL [17, 18]. Similarly, a superconductor conducts with zero resistance
as the electrons superflow. One can exploit this property to create supercurrents of fluid
flow by rotating a vessel containing the superfluid.

Another common feature is extremely fast heat conduction [19, 20]. The heat transport
is not done through convection but as a temperature-entropy wave known as second
sound. Sound propagation in superfluids is complex, with possible sounds such as a third
and fourth sound. In 3He superfluid and normal liquid phases, a zeroth sound consisting
of the oscillations of momentum distribution of quasiparticles near the Fermi energy also
exists. Another common feature is the existence of quantised vortices.

Two Fluid Theory

At high temperatures, a superfluid can be modelled with the two-fluid theory [1, 17, 20].
According to the two-fluid model, the fluid behaves as a mixture of two interpenetrating
fluids. It is important to keep in mind that this is only a model and there are not actually
two separate liquids. One fluid is the “normal” fluid whilst the other is the superfluid,
which increases in concentration as temperature T decreases which can be roughly mea-
sured by the density. Accordingly, the liquid does not immediately become entirely su-
perfluid. The total density of the liquid is constant however the superfluid density ρs and
normal fluid ρn varies with temperature. The total density is therefore

ρHe = ρn(T) + ρs(T). (2.2)

Many of the properties of the two fluids explain phenomena observed above. The nor-
mal fluid carries the entropy and viscosity of the total fluid. As the temperature decreases
below the transition point, a sudden drop in normal fluid density and therefore viscosity
occurs. The normal and superfluid densities as a function of temperature in superfluid
3He-B are plotted in Fig. 2.2. Below about 0.3Tc in the B phase of superfluid 3He, the
normal fluid density is vanishingly small. Flow through narrow channels is flow of the
superfluid component. The heat conduction is also explained by counterflow of the two-
fluid components which move in anti-phase with each other, known as second sound.
Since the normal fluid component carries both the temperature and entropy, this can be
seen as an entropy wave.
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[13].

Quantum Turbulence

Consider a condensate described by the macroscopic wave function

Ψ =
√

ns eiΘ(r), (2.3)

as found in superfluid 4He [1]. Here, ns is the superfluid number density, r is a posi-
tion in space, and Θ is the phase. Comparing the classical momentum p = m4v and the
momentum operator p̂ = ih̄∇ we get an expression for the superfluid velocity

vs =
h̄

m4
∇Θ(r). (2.4)

If we imagine the superfluid moving along a closed loop C around a region of non-
superfluid, the circulation would be

κ =
∮

C
vs · dr. (2.5)
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Only the phase varies with position, but it must be continuous and return back to the
original value. It is therefore limited to being integer multiples of 2π. Thus the circulation
is

κ = Ξ
h
m

, (2.6)

where Ξ is an integer. We can therefore say circulation is quantised in units of h
m4

. A
similarly argument can be made for quantisation of vortices in the B phase of superfluid
3He as it is isotropic. Instead of the helium-4 mass m4, the mass of one Cooper pair 2m3

appears. For the A phase circulation does not have to be quantised at all. There also
exists exotic possible configurations, such as double-core vortices in the A phase and
half-quantum vortices in the polar phase.
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2.2 Liquid Helium-3

2.2.1 Landau Fermi-Liquid

Since fermions cannot occupy the same state as another fermion, at temperature T = 0,
fermions will fill increasing energy states up until the Fermi energy EF [2, 13]. Fermions
with mass m at EF can be said to have Fermi momentum pF. The relationship between
the two is given by

EF =
|pF|2
2m

. (2.7)

At a finite temperature (T > 0), states close to EF can be excited to a state above EF,
creating a “hole” in the now unoccupied state. The probability of a state being occupied
excited above EF is described by the Fermi-Dirac distribution

f (E, T) =
1

e(E−EF)/kBT + 1
, (2.8)

where kB is the Boltzmann constant. The 3-D density of states for a symmetric free Fermi
gas is

g(E) =
(2m)

3
2
√

E
2π2h̄3 , (2.9)

and the number density of the system at zero temperature where all states are occupied
only up to EF is then

n =
N
V

=
∫ EF

0
g(E) f (E,T = 0)dE =

1
2π2

(
2mEF

h̄

) 3
2

. (2.10)

However, liquid 3He is an interacting system and the excitations of one particle affects
the others around it. The effects of the strongly interacting system can be resolved by
treating the excitation as a virtual quasiparticle with spin-1/2 and effective mass of m =

m∗3 . The quasiparticles are therefore still fermions and obey Fermi-Dirac statistics (as long
as the states are well defined, which they are at low temperature). The effective mass is
related to the mass of a single 3He atom by

m∗3 = m3

(
1 +

1
3

F1

)
. (2.11)

The accepted mass of a helium atom is m3 = 5.008× 10−27 kg and the Fermi parameter F1

is dependent on the pressure, ranging from 5.31 at 0 bar and 14.21 at 33 bar [2]. One can
rearrange (2.10) to find EF, and using the relation TF = kBEF find the Fermi temperature
of liquid 3He as TF = 4.9 K.
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2.2.2 Properties of Normal Fluid 3He

Several properties of normal fluid 3He can be derived from the Landau Fermi-liquid be-
haviour. The heat capacity of a Fermi gas at temperatures below the Fermi temperature
is

CV,FG =
π2

2
n
EF

k2
BT, (2.12)

and the susceptibility of a Fermi gas is a constant

χFG = I(I + 1)µ0µ2
ng2

n
2n
3EF

. (2.13)

I = 1
2 is the nuclear spin, µ0 is the vacuum permeability, µn the nuclear magnetic moment

and gn the so-called g-factor.
Once the Fermi-liquid corrections are fully taken into account the heat capacity is [13]

CV =
m∗3
m3

CV,FG (2.14)

and the susceptibility is [13]

χN =
m∗3
m3

(
1

1 + 0.25G0

)
χFG. (2.15)

G0 is experimentally determined to be -2.8, indicating the nuclear spins of 3He tend to
orient parallel as in paramagnetism.

Finally of interest is the viscosity. The viscosity of a Fermi gas can be found from
Boltzmann’s kinetic theory of gas, where the gas molecules have a velocity v and mean
free path λ, with the overall gas density ρ. The viscosity of such a system is [13]

η =
1
3

ρvλ. (2.16)

One can replace the velocity v with the Fermi velocity vF at low temperatures, and also
use the mean scattering time τ = λ

vF
. The mean scattering time for a fermionic system is

proportional to T−2 for T << TF. Hence the viscosity is proportional T−2. This is in good
agreement with experimental measurements [21].

Finally we have all the relevant temperature dependencies for low temperature nor-
mal fluid 3He: CV ∝ T, χN is constant and η ∝ T−2.

2.2.3 Superfluid Phases

The movement of a magnetically polarised quasiparticle causes the quasiparticle fluid
around it to be induced with the opposite polarisation. The oppositely polarised field
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then attracts another quasiparticle. This coupling mechanism between quasiparticles leads
to the overall lowering of energy in the system and is similar to the Cooper pairing mech-
anism found in superconductors and described by Bardeen Cooper and Schreiffer (BCS)
[22]. Unlike in standard BCS theory the magnetic interaction favours quasiparticles with
parallel spin and therefore the total spin s of the pair equals 1 [23, 24]. To preserve anti-
symmetry with respect to exchange of identical particles, the total orbital angular mo-
ment l = 1 also. This leads to the creation of spin-triplet wave function of spin combina-
tions: ↑↑, 1√

2
(↑↓ + ↑↓), and ↓↓. On the z axis these result in three spin state projections

sz = (−1, 0, 1) and three angular momentum state projections lz = (−1, 0, 1), leading to a
total of nine different complex combinations. These Cooper pairs are quasi-bosonic and
can therefore undergo condensation [2, 13].

As a condensate, superfluid 3He can be described by a macroscopic wave function.
Unlike that of the 4He wave function (2.3) it must reflect the triplet state and therefore
can be written as

|Ψ(k)〉 = ψ↑↑(k̂) |↑↑〉+ ψ↓↓(k̂) |↓↓〉+
1√
2
(ψ↑↓(k̂) |↑↓〉+ ψ↓↑(k̂) |↓↑〉), (2.17)

where ψxx are amplitudes of the spin projections and k is the Cooper pair momentum
vector (k̂ indicating a unit vector).

The Cooper pairs formed in the superfluid state are bosonic and can occupy the same
state, allowing for condensation (otherwise superfluidity would not occur), which re-
duces the overall energy. Since the Cooper pairs’ binding energy reduces the quasiparti-
cle energy below EF, the quasiparticle dispersion curve shifts as shown in Figure 2.4. This
binding energy creates an energy gap ∆ in the quasiparticle dispersion curve similar to
that found in the superconductor. The energy required to break a Cooper pair is therefore
2∆. The energy of the Cooper pairs is a function of the energy gap and k

E =
√

ζ2 + |∆(k)|2 (2.18)

where ζ is the excess kinetic energy p2−p2
F

2m∗3
.

2.2.4 Bulk Superfluid Phases of Superfluid 3He

Order Parameter and d-vector

The order parameter Aµj describes many of the physical properties of a particular super-
fluid state. It describes the probability to form a Cooper pair depending on its position
in space, orientation of its orbital angular momentum denoted by the unit vector l̂ and
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FIGURE 2.4: Quasiparticle (qp) and quasihole (qh) dispersion curve of su-
perfluid 3He when ∆ 6= 0 as is the case in 3He-B, shown by the blue line.
The red dashed line shows the dispersion curves of a Landau Fermi-liquid.
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orientation of its total spin. The µ and the j subscripts represent the spin and orbital mo-
mentum degrees of freedom, respectively. This probability is related to the gap energy.

It is common to use the unit vector d̂ to describe the spin state of the Cooper pair
[2]. The physical meaning of d̂ vector is that it points in the direction of zero-total spin:
S · d = 0. Much of the properties of a superfluid 3He phase can be described by the
orientations of spin, orbital and Cooper pair momentum unit vectors, d̂, l̂ and k̂.

B Phase

The Balian-Werthamer-phase, BW-phase or B phase has a wave function with the same
form as (2.17), with equal amplitudes and therefore equal populations of each type of
Cooper pair. Since all states in the superfluid B phase are equally populous the state can
be said to be isotropic. The general form of the order parameter is [2, 13]

AB
µj = ∆BeiΘRµj(n̂R, ι). (2.19)

Rµj(n̂R, ι) are components of a rotation matrix R coupling spin and orbital angular mo-
mentum around an arbitrary axis n̂R with an angle ι, shown to be 104° to minimise the
dipole energy that arises from the dipole-dipole interaction of 3He nuclei [25]. It follows
from this that d̂ is parallel to k̂ and has no preferred direction, and that for the B phase
the energy gap is also isotropic, shown in Fig. 2.5. The energy gap depends only on pres-
sure, field and temperature. The energy gap at zero temperature, pressure and field in
the weak coupling limit is
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∆B (T = 0) = 1.76kBTc. (2.20)

The phase is represented by Θ, similar to the case of the 4He wave function. The phase
changes over distances larger than the coherence length [2]

ξ(T, P) =
ξ0(P)√
1− T

Tc

. (2.21)

The value of ξ0 ranges from 80 nm at 0 bar to 10 nm at 34 bar. At low temperatures and
pressures it is roughy a constant ξ(0, 0) ≈ 80 nm [26].

To break the Cooper pair and form quasiparticles, the states must be excited to an
energy equal or above the energy gap. This is reflected in the changed dispersion curve
shown in Fig. 2.4. The energy of the quasiparticles is now

E =
√

ζ2 + |∆B|2 (2.22)

Frictionless flow can occur with objects below a certain critical velocity known as the
Landau velocity. At this velocity a dissipative process known as “pair-breaking” begins,
in which normal 3He quasiparticles are produced by the breaking of Cooper pairs. Hence
the Landau velocity in 3He is given by the dividing the energy required to break produce
one quasiparticle with momentum equal to the Fermi momentum [6],

vL =
∆B

|pF|
≈ 27 mm s−1. (2.23)

In the low temperature limit (2.8) can be simplified to f (E, T) = e−E/kBT. The quasi-
particle density number is given by

∫ ∞
∆B

g(E) f (E, T) dE. In the low temperature limit only
states near EF are populated, hence the density of states g(E) ≈ g(EF), which results in

N = g(EF) kBT e−
∆B
kBT . (2.24)

The exponential temperature dependence means the density of quasiparticles is extremely
small at low temperatures, giving rise to the so-called “ballistic regime” (T ≤ 0.3Tc).
In this regime, the scattering length between quasiparticles becomes much larger than
the dimensions of the cell (typically the smallest dimension is on the order of 1 cm).
Quasiparticle-quasiparticle interactions can thus be neglected, and only interactions with
surfaces in the cell are taken into account.

The relevance of (2.24) is apparent when calculating the heat capacity. The specific
heat of the B phase is [13, 27]

CB =
√

2π g(EF) kB∆B

(
∆B

kBT

) 3
2

e−
∆B
kBT . (2.25)
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The magnetic susceptibility of the B phase is lower than that of both the A phase and
normal phase, as the presence of 1√

2
(↑↓ + ↑↓) pairs which have no z-projection of the

spin (sz = 0) reduces the overall magnetisation. At high magnetic fields, however, the
relative population of these pairs becomes smaller. The gap is then distorted, from the
spherically symmetric shape to an ovoid. This phase is sometimes known as B2 phase
but is simply referred to as the B phase in this work.

A Phase

The Anderson-Brinkman-Morell (ABM) or A phase has no pairs with spin compnent
(S = 0) and the wave function is [13]

|Ψ(k)〉 = ψ↑↑(k̂) |↑↑〉+ ψ↓↓(k̂) |↓↓〉 . (2.26)

The phase exists only at high temperatures and pressures in zero magnetic field but
is much more apparent at higher magnetic fields. The order parameter for the A phase is
[2, 13]

AA
µj = ∆AeiΘdµ(m̂j + in̂j), (2.27)

where m̂ and n̂ are mutually orthogonal unit vectors in orbital space. These two unit vec-
tors define the preferred direction in orbital space l̂ such that l̂ = m̂ × n̂. The absolute
value of the order parameter in 3He is proportional to the energy gap. The gap parame-
ter for the A phase ∆A is dependent on the direction of quasiparticles’ momentum and
orbital angular momentum

∆A = ∆(T)

√
3
2

sin (k̂l̂) (2.28)

with ∆(T = 0) = 2.029kBTc. This results in a strongly anisotropic gap with nodes along l̂
where the gap is zero and superfluidity does not exist, illustrated in Fig. 2.5. Near Tc, the
maximum energy gap can be written as

∆A ≈ 3.42kBTc

√
1− T

TC
. (2.29)

A consequence of the nodal points is that moving objects can always break pairs and
therefore feel friction. 3He-A can still be said to be superfluid as mass flow can take part
without dissipation but moving objects will always experience a viscous force.

The magnetic susceptibility of the A phase depends strongly on the orientation of the
magnetic field B to the vector d̂ . When B ⊥ d̂ the magnetic susceptibility equals the
normal phase susceptibility given by (2.15).
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FIGURE 2.6: The temperature width of the A1 phase per unit magnetic field
as a function of pressure [12].

In a high magnetic field this phase also distorts, with different amplitudes of ↑↑ and
↓↓ pairs corresponding to a smaller relative population of the ↓↓ pairs. The phase has
similar properties as the pure A phase and as such will also be referred to as the A phase
but is also known as the A2 phase.

A1 Phase

The A1 phase only exists at high temperatures, pressures and in a magnetic field. It is
characterised by having only one of the possible spin states, the |↑↑〉 state. Thus, the
wave function is [2, 13]

|Ψ(k)〉 = ψ↑↑(k̂) |↑↑〉 . (2.30)

The width of the A1 phase is a function of pressure and is directly proportional to
magnetic field. Fig. 2.6 shows the temperature width of the A1 phase in units of µK T−1

as a function of pressure.
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Textures

The alignment of the direction of the orbital angular momentum l over space is known
as the “texture” in 3He [2].

In 3He-A the minimisation of the dipole-dipole interaction prefers the d̂ vector and or-
bital angular momentum l̂ to be parallel or anti-parallel. In addition to the dipole-dipole
interaction, there are several other interactions that induce textural changes, such as the
interaction with a magnetic field, walls, bending energy and the counterflow energy. In
the A phase, there is a fixed condition that near a surface the superfluid must orient l̂
perpendicular to the surface.

Of particular interest to this work are the magnetic healing length and the orientation
of l̂ by the superflow vs of 3He-A. In a magnetic field, the free energy is lower when
d̂ ⊥ B. The magnetic healing length in the A phase is [2]

ξA
mag =

BA

B
ξ0 (2.31)

with BA an empirical constant. At fields about 10 mT, the healing length is about 102ξ, on
the order of 1 µm. The healing length can be used to find the field needed to overcome
the dipole interaction by substituting ξA

mag with the dipole healing length, which in the
Ginzburg-Landau regime is [2]

ξA
di =

1
2

√
λdi · ξ0. (2.32)

Here, λdi ≈ 5× 10−7 is a dimensionless parameter describing dipole coupling between
atoms in 3He [2]. The required magnetic field is typically on the order of a few milliteslas.

Superflow tends to orient as vs ‖ l̂ with the change in energy per unit volume given
by [13]

∆Esf

V
=

1
2
(
ρs‖ − ρs⊥

)
(l̂ · vs) ≈ −10 J m−3 ×

(
1− T

Tc

)
, (2.33)

where the anisotropic superfluid density in the A phase is written as the components
perpendicular and parallel to l̂, ρs⊥ and ρs‖ [2].

2.3 3He in Aerogels

There are some ways to drastically alter the relative stability of the potential phases of su-
perfluid 3He. One typical way is to confine the superfluid in extremely small slab geome-
tries, creating a quasi 2D superfluid [28, 29]. The other is to introduce some impurities
into the system such as aerogel. Aerogels consist of extremely small diameter particles
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FIGURE 2.7: Pressure-temperature phase diagram of superfluid 3He in an
aerogel (blue) compared with the bulk phase diagram (red lines). Open
circles indicate data from Cornell University [32] and closed circles indicate
data from Northwestern University [33, 34]. The blue line is a theoretical
fit with the mean free path for quasiparticle λ and silica particle-particle

correlation length ξa. Figure taken from [30].

melded together into strands (typically on the order of 1–10 nm with an order of magni-
tude larger mean distance between strands (typically on the order of 100 nm [30]. Aero-
gels are thus typically extremely light and porous materials, usually with porosity above
95%. The aerogel strands can be arranged in a random or preferred direction. When ar-
ranged with a preferred direction, the aerogel is said to be anisotropic. The measure of
anisotropy is typically to compare the mean free path between strands in a parallel and
perpendicular direction. An aerogel that has all strands arranged almost completely par-
allel to each other is referred to as a “nematic" aerogel [7, 31]. Nafen is an example of a
nematic aerogel.
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2.3.1 Superfluid Transition Suppression

One of the primary effects on superfluidity of immersing an aerogel in liquid 3He is a
reduction in the superfluid transition temperatures [32–36]. Fig. 2.7 shows the pressure-
temperature phase diagram of superfluid 3He in a 98% porous silica aerogel at zero field.
Furthermore, a reduced NMR frequency shift and a reduced superfluid fraction as com-
pared with bulk 3He for the same pressure has been found in these silica aerogel samples
[30].

The superfluid suppression and the changed phase diagram of the superfluid effects
of an aerogel strongly depends on the properties of the aerogel. Similarly, the properties
of each phase can be changed by the aerogel.

To introduce anisotropy into an aerogel it is common to “stretch" the aerogel or com-
press it with strain. The introduction of a stretching anisotropy into an aerogel increased
the stability of the A phase compared to the B phase at high pressures. The angular mo-
mentum l̂ can orient either perpendicular or parallel to the strain axis. The direction l̂
appears to prefer an orientation along the direction of the anisotropy. At higher temper-
atures, NMR experiments have shown that the A phase is stabilised with l̂ parallel to the
strain axis but suddenly reorients to be perpendicular after crossing a lower temperature
transition [30].

2.3.2 Phases in Nematic Aerogels

Polar Phase and Polar Distorted Phases

Recently, a phase not energetically favourable in bulk superfluid called the polar phase
was stabilised in the nematic aerogel nafen by Dmitriev et al. [7]. In a low density (90 mg · cm−3)
sample they found three phases: the polar distorted B (PdB) phase, the polar distorted A
(PdA) phase and the polar (P) phase. In high density nafen (243 mg · cm−3) only the po-
lar phase has been found. Fig. 2.8 shows the currently known P-T phase diagrams for
superfluid 3He in these nafen samples, known as nafen-90 and nafen-243 for their re-
spective densities. In addition to immersing the nafen samples, the experimental cell and
nafen samples had to be pre-plated with about 2.5 layers of solid 4He for the phases to be
stabilised. The solid 4He plating increases the specularity of quasiparticle scattering con-
ditions on the aerogel strands surface. Without first pre-plating the aerogel surface with
approximately 2.5 monolayers of 4He, the polar phase is not stabilised [31]. The forma-
tion of the polar and polar distorted phases is due to to the strong orientation of orbital
momentum perpendicular to the walls of the strands, and therefore m̂ in the anisotropy
direction.

The order parameter of the polar phase and polar distorted A phase is similar to the
A phase order parameter in (2.27). The aerogel anisotropy forces the unit vector m̂ to be
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FIGURE 2.8: Phase diagrams of superfluid 3He in the nematic aerogels
(a) nafen-243 and (b) nafen-90 at low magnetic fields of 10 mT–37 mT. In
nafen-243 (a) only the polar phase is stabilised whilst in nafen-90 polar
distorted A and B phases are apparent. Similar to silica aerogels, there is
a suppression of Tc and the (polar-distorted) A phase is favoured at lower

temperatures and pressures compared to bulk. Image taken from [7].
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aligned with the axis of aerogel anisotropy. We can write the order parameter for all three
in the general form

AP
µj = ∆PeiΘd̂µ(am̂j + ibn̂j). (2.34)

The constants a and b are constrained such that a2 + b2 = 1. For the A phase proper,
a = b; for the polar distorted A phase a2 > b2 > 0; for the polar phase a = 1 and b = 0.
All three phases are referred to as Equal Spin Pairing phases (ESP). The polar distorted
A phase is still chiral as with the A phase with zero energy gap nodal points at ±l̂. The
polar phase is not chiral, however, and has zero energy gap along the entire plane normal
to m̂ as shown in Fig. 2.5.

Beta Phase

The β phase is similar to the A1 phase in that it consists of only the spin up Cooper pairs.
The order parameter is given by [30, 31]

Aβ
uj =

(
∆1√

2
(dµ + eµ) +

∆2√
2
(dµ − eµ)

)
m̂, (2.35)

where ê is a unit vector in spin space perpendicular to d̂, ∆1,2 are the gap parameters and
m̂ is again aligned with the anisotropy direction of the nafen strands. When ∆2 = 0 the
state is purely the β phase, and when ∆1 > ∆2 > 0 the phase is distorted as there is a
relatively smaller population of ↓↓ Cooper pairs compared to ↑↑ pairs, similar to the A2

phase. This phase can be known as the P2 phase. Through this work we will use the term
polar phase to distinguish it from the pure β phase. When ∆1 = ∆2 the phase becomes
the pure polar phase in (2.34).

The β phase shares many similar properties as the A1 phase. It only exists in magnetic
fields, and the temperature range of its existence increases as pressure and field increases.
Surovtsev calculated a phase diagram for a nematic aerogel in high magnetic field shown
in Fig. 2.9 [9]. One can expect the dependence on the temperature width of the β phase to
have a very similar dependence on field and pressure as the A1 phase given in Fig. 2.6.
The temperature width of the pure β phase is linearly dependent on the magnetic field
and is given by

∆Tβ

Tca
≈ 2ηaB (2.36)

where Tca is the superfluid transition in aerogel which we can take from Fig. 2.8 [7] and
ηa = 0.02 T−1 in silica aerogel [9]. For nafen-90 a B = 0.5 T and P = 0 bar this creates a
splitting ∆Tβ ≈ 8 µK, similar to the value from Fig. 2.6. Evidence for this phase following
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FIGURE 2.9: The pressure-temperature phase diagram of superfluid 3He in
nematic aerogel (nafen-90) at high magnetic field. “P" refers to polar phase
P2 when ∆1 > ∆2 > 0 in (2.35). Similarly, “β" is just the pure β phase
where ∆2 = 0. “PdA" and “PdB" refer to polar-distorted A and B phases
respectively. Image adapted from [9], where details of the calculations and

about planar phase can be found.

this theoretical prediction has recently been found by Dmitriev et al., using a vibrating
wire with a nematic aerogel attached [11].

Furthermore, Surovtsev calculated several thermodynamic properties that can be used
to identify the phase transitions [37]. The superfluid fraction depends on the direction of
superflow, whether it is normal to the aerogel anisotropy axis (ρs⊥) or parallel (ρs‖). Fig.
2.10 shows the superfluid density for an orientation where the direction of motion for a
moving aerogel sample is parallel to the direction of anisotropy. The β phase transition is
more easily detectable by measuring the superfluid fraction in the case where superflow
is parallel to the anisotropy.

Surovtsev also predicts a temperature dependent critical velocity [37]. In the aero-
gel state, the order parameter is degenerate over up-up and down-down pairs only for
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FIGURE 2.10: The calculated superfluid fraction for superflow in a direc-
tions parallel (ρs‖) and perpendicular to (ρs⊥) the aerogel anisotropy direc-
tion in the weak coupling limit. The superflow velocity is vs < vd. Image

adapted from [37].

superflows with higher energy than the dipole energy. In the discussion of textures, we
saw the minimisation of the dipole energy gives a preferred direction, which lifts the de-
generacy. When the superfluid velocity is degenerate, the superfluid velocities of up-up
and down-down pairs (v↑s and v↓s ) are independent. When the dipole energy is dominant,
v↑s = v↓s and the total superfluid density can be calculated. We can estimate this critical
velocity by comparing the superfluid velocity to the dipole length:

vd >
h̄

ξdim3

√
|∆1

∆2
| ≈ 1 mm s−1. (2.37)

The approximate value of 1 mm s−1 comes from the dipole length ξdi = 10 µm and the
case where ∆1 ∼ ∆2, far from the β transition [37]. At higher temperatures, it should be
on the order of vL.
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2.4 Nuclear Magnetic Resonance

A 3He nucleus possesses a magnetic moment and an angular momentum. Therefore, a
common technique used to study superfluid 3He is Nuclear Magnetic Resonance, more
commonly known as NMR. When a 3He nucleus is placed in an external magnetic field,
the spin of the nucleus begins to precess around the magnetic field at a frequency known
as the Larmor frequency [38]

fL =
ωL

2π
= − γ3

2π
Bext (2.38)

determined by the external field and the gyromagnetic ratio γ3. The sign of the gyromag-
netic ratio indicates the direction of the precession. For 3He

γ3

2π
= 32.434 MHz T−1 (2.39)

For a general particle with spin and therefore a magnetic moment, the angle between
the direction of the external field and the spin is a constant depending on the initial spin
polarisation.

One can then perturb the precession of the spins by applying a second, weaker oscil-
lating magnetic field that is orientated transverse to the constant main external field. The
energy may be absorbed when the frequency of this signal is equal to Larmor frequency.
In continuous wave NMR, this magnetic resonance seen around the Larmor frequency is
Lorentzian-like [38]. The two components, absorption and dispersion, are defined by

Absorption =
χ

2

1
T2

1
T2

2
+ (ω−ωL)2

, (2.40)

Dispersion =
χ

2
(ω−ωL)

1
T2

2
+ (ω−ωL)2

. (2.41)

T2 is the rate of decay of the transverse magnetisation. The integral of the absorption
component can be used to measure the magnetic susceptibility χ whilst the width of the
line shape is limited by T2 such that ∆ω = 2T2.

Continuous Wave NMR in superfluid 3He

NMR is a powerful tool for investigating superfluid 3He. Indeed, superfluidity in 3He
was first discovered experimentally using NMR. As 3He enters from the normal phase
into the A phase the NMR signal shifts from the Lorentzian frequency whilst retaining
the same amplitude. Going from the A phase to the B phase the NMR signal suddenly
returns to ωL and the amplitude begins decreasing due to the lower magnetisation of the
B phase.
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FIGURE 2.11: The precession of a spin in superfluid 3He about an external
magnetic field Bext after a small RF pulse. d̂ is initially parallel to l̂ and
perpendicular to the spin ŝ. However, after the pulse the spin begins pre-
cessing at the Larmor frequency about Bext = Bẑ, meaning d̂ precesses
around l̂ at double the frequency in a figure-of-eight motion. This creates
an additional “torque" that shifts the spin precession frequency away from

the Larmor frequency.

The physical origin of the frequency shift is the dipole-dipole interaction. In super-
fluid 3He-A the macroscopic dipole interaction causes the orbital momentum and d̂ to
be parallel to each other. Furthermore, l̂ must be perpendicular to the external magnetic
field Bext = B0ẑ. However, as d̂ is also perpendicular to the spin s, when the oscillating
RF field is applied and the spins begin precession the d̂ vector must also precess, creating
an extra “torque" force (see Fig. 2.11). This torque increases the resonant frequency.

Using this idea, Legett derived the equations of motion for the spin system in super-
fluid 3He [25]. The frequency of the NMR signal in the A phase (when the vectors l̂ and
d̂ are “locked") is given by [39]
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ω2
A = ω2

L + ΩA(T)2, (2.42)

where ΩA is the longitudinal NMR resonance frequency. In the B phase a slightly more
complicated picture arises. It depends on the local angle φ between the n̂R in (2.19) and
the magnetic field. The frequency shift is then [39]

ωB ≈ ωL +
ΩB(T)2

2ωL
sin2(φ) (2.43)

Again, ΩB indicates the longitudinal NMR resonant frequency. Since φ depends on
the local texture, when there is no dominant texture the B phase NMR peak can be seen
as a sum of independent oscillator peaks. Since the magnetisation of 3He-B is smaller
than in the normal and A phases, according to (2.40) and (2.41) the peak will be smaller.
The ratio of the frequency shifts is defined by [39]

Ω2
B

Ω2
A
=

5
2

χB

χA
(2.44)

In the polar phase, the NMR frequency shift depends on the angle µ between the
external magnetic field B and the aerogel anisotropy direction [7, 8, 39]

ωP ≈ ωL +
ΩP(T)2

2ωL
cos2(µ). (2.45)

NMR can be further used to probe defects such as quantum vortices or domain walls,
as the local texture depends on the defects. One type of defect present in the polar phase
but as yet unfound in the bulk phases are Half-Quantum Vortices (HQVs). Above a mag-
netic field of 3 mT, the magnetic energy is larger than the dipole energy. To minimise the
magnetic energy, d̂ becomes orientated perpendicular to the field, as it does with the A
phase. The unit vector d̂ can be orientated in any direction in the plane perpendicular
to B. The direction of d̂ in the plane can be described by an angle ν. When considering
an ordinary single quantum vortex, for the wave function to be single valued the phase
had to change by an integer multiple of 2π. In a HQV the phase changes only by π, but
the spin angle ν also changes by π for the order parameter to remain single-valued [8].
HQVs therefore only carry a half quantum of mass circulation.

HQVs can be detected by a secondary satellite NMR peak with a negative frequency
shift away from the main peak, shown in Fig. 2.12 [8]. The magnitude of the frequency of
the satellite peak is

ωsat ≈ ωL +
ΩP(T)2

2ωL

(
cos2(µ)−Λ sin2(µ)

)
(2.46)

where Λ ≤ 1.
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FIGURE 2.12: Observation of HQVs by continuous wave NMR with an ex-
ternal field of 12 mT. The aerogel sample used was nafen-243 with the su-
perfluid pressurised to 7.1 bar. (a) Typical NMR sweeps at a given temper-
ature for two different orientations of the angle µ. Here, the satellite peak
corresponding to HQVs can be seen. (b) The temperature dependence of
the magnitude of the frequency shifts. ∆ω = ω − ωL. Figure taken from

[8].
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Chapter 3

Resonators

Probing a superfluid at extremely low temperatures provides a large challenge. The su-
perfluid has weak mechanical interactions that only get weaker as the superfluid fraction
increases. Probing a superfluid requires very sensitive devices that will still work at low
temperatures. Additionally, helium is not a charged material, which makes using elec-
tronic techniques difficult.

However, there are some properties of liquid helium superfluids one can take advan-
tage of that cannot easily be taken advantage of in cold atomic gas condensates or at all
in the case of superconductors. NMR is one such tool [8, 40]; as are electron bubbles [41,
42] or frozen tracer particles [43–45] that can be injected into the liquid; and a container
with a desired geometry can easily manipulate the superfluid. Work using confined ge-
ometry and thin films of fluids on surfaces to probe 2-D superfluidity is very common
[46–48]. More recently, superfluid 3He has been confined in extremely thin slabs with an
observed change in order [28, 29]. Furthermore, these containers and geometries them-
selves can be manipulated to induce flows in the superfluid. Rotating cryostats [8, 49] are
used to investigate quantum vorticity and more.

Most obviously, though, macroscopic objects can be immersed within liquid helium
directly. Torsional oscillators [35, 50], vibrating wires [51, 52], vibrating grids [53], tuning
forks [54–56], microplates [57, 58] and more have been used. Experiments at Lancaster
in both superfluids 3He and 4He commonly use the effects of the superfluid on resonant
modes of mechanical oscillators. Smaller mechanical oscillator devices have high mass
and momentum sensitivity that are sensitive to superfluids and their excitations even
at low temperatures where the normal fluid fraction is close to zero [59, 60]. Operation
at ultra-low temperatures necessarily imposes restrictions on the parameters and con-
struction of the oscillators: they must generate minimal amount of heat when operating.
Typically, much less than a nanowatt. In this chapter, we describe such vibrating devices
and the properties of resonance we exploit to probe superfluid 3He.
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3.1 Mechanical Oscillator Basics

3.1.1 Damped Driven Oscillator

The response of a damped, driven resonant mode of a three-dimensional mechanical
oscillator can be modelled using the one-dimensional mass-spring approximation [54].
The equation of motion for a damped and periodically driven mass-spring system is

mẍ + γẋ + kex = Fdriveeiωt. (3.1)

Here x is the displacement, γ is the damping, ke is the effective spring constant, Fdrive

is the driving force, m is the (effective) mass, ω is the angular frequency of the periodic
driving force, t is the time and the dot notation is used to show derivatives with respect
to time. The natural angular resonant frequency of the oscillator is

ω0 = 2π f0 =

√
ke

m
. (3.2)

f0 is the natural resonant frequency. A steady state solution for equation (3.1) takes the
form x = x0ei(wt−ϕ) where x0 is a constant and ϕ is the phase. Substituting in this solution
and rearranging for x0 gives

x0e−iϕ =
Fdrive

mω2
0 −mω2 + iγω

, (3.3)

and for velocity

ẋ0e−iϕ = iωx0e−iϕ =
iωFdrive

mω2
0 −mω2 + iγω

. (3.4)

Taking real and imaginary components of the velocity, we obtain

<(ẋ0e−iϕ) = ωFdrive
γω

(mω2
0 −mω2)2 + γ2ω2

; (3.5)

=(ẋ0e−iϕ) = ωFdrive
mω2

0 −mω2

(mω2
0 −mω2)2 + γ2ω2

. (3.6)

The real and imaginary components are known as the absorption and dispersion com-
ponents, respectively. The maximum velocity occurs at the frequency which fulfils the
condition

mω =

√
m2ω2

0 −
γ2

4
. (3.7)
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For small damping (γ � ω0), this occurs at the natural resonance frequency, ω = ω0.
For γ > 2ω0, resonance does not occur and there is no maximum (see section 3.1.1). The
maximum value for small damping is then

Fdrive

γ
= vmax. (3.8)

In the small damping limit, the imaginary component has extrema corresponding to
the two solutions of ωγ + mω2

n − mω2 = 0. These minima in the imaginary component
occur when the real component is at half its maximum value. An example response is
given in Fig. 3.1. The difference between the two extrema gives the width of the reso-
nance. In the small damping limit this results in

∆ω = 2π∆ f =
γ

m
, (3.9)

hence the width is directly related to the damping. The phase can also be found using
identities as

ϕ = arctan
(

γω

mω2
0 −mω2

)
. (3.10)

At resonance the denominator equals zero and the phase is
π

2
.

Two other important characteristics are the quality factor or Q-factor

Q =
ω0

∆ω
=

f0

∆ f
, (3.11)

which is also the ratio of energy stored by the oscillator over the energy dissipated. The
last important characteristic used is “Height times Width over Drive” (HWD) which is
equivalent to

HWD =
vmax∆ f

Fdrive
=

1
2πm

. (3.12)

We can see that HWD is constant for given parameters, and therefore can be used to
recalculate the height, width, or drive when two of those parameters are known.

Damping Mechanisms

Energy loss in a real mechanical oscillator occurs through several mechanisms. Some of
these mechanisms are intrinsic to the oscillator; some are extrinsic mechanisms are due
to interactions with the surrounding media. The contributions of damping mechanisms
to the total resonance width can simply be summed [61]

∆ f = ∆ fm + ∆ fn + ∆ fo . . . (3.13)
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FIGURE 3.1: An example resonance with ke = 10000, m = 1 and γ = 5. The
resonance frequency is ω0 = 100 and has width ∆ω = 5 which is shown.

The quality factor is therefore 20.

Common intrinsic damping mechanisms are clamping losses, the thermoelastic effect and
magnetic damping for oscillators driven by the Laplace force [61].

Clamping losses occur due to the construction of the oscillator and are a hard limit
on the minimum dissipation and therefore damping. The thermoelastic effect is directly
proportional to temperature and can therefore be neglected at the very low temperatures
in this work [62]. The magnetic effect is proportional to B2 and is small compared to fluid
damping effects in the fields used for this work [63, 64].

In liquid helium, there are many possible extrinsic damping mechanisms. There can
be acoustic losses, where energy is dissipated by emitting sound waves [65]. For dipole
emitters the width ∆ f is dependent on the square of the frequency and for quadrupole
emitters ∆ f is quartic with frequency. Generally, acoustic losses are only relevant for high
frequency devices.

For all oscillators in liquid helium there is damping due to the viscosity of liquid he-
lium. We can split the theoretical treatment of viscous damping into two regimes: the
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FIGURE 3.2: The magnitude of the same example resonance as Fig. 3.1 ex-
cept with widths ∆ω = 5, 200, 400, corresponding to underdamping, criti-
cal damping and overdamping, respectively. At frequencies far from reso-
nance the responses are the same, but around the resonance only an under-
damped oscillator’s response is enhanced. Inset: the free motion starting

with position x(0) = 1 and initial velocity ẋ(0) = 0.

hydrodynamic regime and the ballistic regime [61]. The hydrodynamic regime exists in
normal fluid and in superfluid conditions where there exists a sufficiently high normal
fluid fraction. The ballistic regime exists at low reduced temperatures, typically around
0.3Tc and below. These two regimes are detailed in section 3.1.3. Further, damping mecha-
nisms can occur due to the rich array of phenomena available in 3He, such as interactions
with quantum turbulence or Cooper pair-breaking [61].

Effects of Damping

Very near Tc, the viscosity of both normal fluid and the normal component in the super-
fluid phase of 3He is extremely high. Mechanical resonators, especially smaller ones, at
these temperatures can be “overdamped”. As the normal fluid fraction quickly drops (see
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Fig. 2.2), the damping decreases and the resonators become “underdamped”. To investi-
gate the effects of damping, we begin by solving the free equation of motion, (3.1) with
the driving force Fdrive = 0,

mẍ + γẋ + kex = 0. (3.14)

Using a solution of the form x = x0e−iαt

mα2 + γα + ke = 0. (3.15)

Solving for α

α+,− =
−γ±

√
γ2 − 4mke

2m
. (3.16)

There are three possible physical solutions depending on the square root corresponding
to γ2 > 4mke, γ2 = 4mke and γ2 < 4mke corresponding to overdamping, critical damp-
ing and underdamping respectively. Fig. 3.2 shows the resulting frequency sweeps over
several damped-driven oscillators. There is no enhancement of the signal at the resonant
frequency for an overdamped oscillator, making it difficult to measure with a frequency
sweep.

It was mentioned above that at low damping (when Q-factor is much larger than
1), the maximum in real part of the response and therefore the resonance occurs at the
undamped resonant frequency ω0. However, converting (3.16) into frequency space we
can find the damped resonance frequency

α+,− = −∆ω

2
±
√

∆ω2

4
−ω2

0. (3.17)

The free motion of an oscillator is shown in the inset of Fig. 3.2. In the underdamped
case, we see progressively smaller oscillations until it reaches the equilibrium value. The
position is given by

xud(t) = c1e−
γ

2m teiωudt + c2e−
γ

2m e−iωudt = e−
∆ω
2 t [c3 cos(ωudt) + c4 sin(ωudt)] , (3.18)

where

ωud =

√
ω2

0 −
∆ω2

4
(3.19)

is the damped resonant frequency, cn are constants.
In the critical damping and overdamped cases, the system returns exponentially to

the equilibrium, never going beyond it again. For the overdamped case, the oscillator
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returns to equilibrium slower than critical damping. The governing equations of motion
are

xod(t) = c1eα+t + c2eα−t = e−
∆ω
2 t [c3 cosh (ωodt) + c4 sinh (ωodt)] , and (3.20)

xcd(t) = e−
γ

2m t
(

x(0) + ẋ(0)t + x(0)
γ

2m
t
)

. (3.21)

Here, the overdamped resonant frequency is

ωud =

√
∆ω2

4
−ω2

0 (3.22)

but one must remember that in the case of overdamping there is no enhancement of the
signal by a Q-factor and no free oscillations. Therefore, the system doesn’t really resonate.

The constants cn can be found by considering the initial position x(0) and velocity
ẋ(0).

3.1.2 RLC Circuit Resonance

A parallel RLC (resistor-inductor-capacitor) circuit undergoes resonance in an analogous
way to the mechanical mass-spring model [66]. Fig. 3.3 shows a simple parallel RLC
circuit, also known as a tank circuit. From Kirchoff’s current law, the sum of the current
through each component must be equal to the total drive current. The current through the
resistor is VRLC/R, the current through a capacitor is the capacitance C time the derivative
of the voltage V̇RLC and the current through an inductor is the integral of the voltage with
respect to time divided by the inductance L. Thus, a time varying “equation of motion”
for a drive current Idrive can be written

CV̇RLC +
VRLC

R
+

1
L

∫
VRLCdt = Idriveeiwt. (3.23)

With the same form as (3.1) the RLC circuit undergoes a similar resonance. We can
simply relate the terms to the mechanical mass-spring model. The capacitance C is equiv-
alent to the mass m, resistance R is equivalent to the inverse of the damping γ and the
inverse of inductance L is the spring constant. The resonant frequency is then

ω0 =

√
1

LC
. (3.24)

Similarly, the quality factor and width can be found. The quality factor is

Q = R

√
C
L

. (3.25)
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CLR

FIGURE 3.3: A simple parallel RLC resonating circuit.

3.1.3 Oscillators in Liquid Helium

Hydrodynamic Regime

In the hydrodynamic regime, the damping occurs from viscous drag due to the viscosity
of the remaining normal fluid fraction. Additionally, a finite layer of normal fluid will
cling to a moving object within this regime, known as the viscous penetration depth δ.
This layer of normal fluid will move with the object, increasing the effective mass of the
object. Thus, the effects on the resonance of the mechanical oscillator are twofold: a re-
duction in the resonant frequency due to the added mass of liquid that must be displaced,
and the increasing of the resonance width due to viscous drag [54, 60, 61].

The added mass of an oscillating object with volume V can be modelled as [54]

meff = m + β1ρHeV + β2ρnSδ (3.26)

where ρHe is the total density of liquid helium-4 or helium-3 and V and S are the volume
and surface area of the oscillator, respectively. β1 and β2 are dimensionless constants that
depend on the geometry of the oscillator and are usually left as fitting constants. They
are typically close to unity [54]. The first term here corresponds to the “backflow”: the
amount of fluid that must be displaced as the object moves. This is roughly equal to the
volume of the object. The second term is related to the amount of normal fluid that moves
along with the oscillator as part of viscous penetration depth. The viscous penetration
depth is
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δ =

√
η

πρn fH
. (3.27)

Assuming the spring constant does not change, dividing the vacuum frequency fv

and hydrodynamic frequency fH as calculated by (3.2) gives the ratio(
fv

fH

)2

= 1 + β1
ρHe

ρosc
+

β2S
m

√
ρnη

π fH
. (3.28)

To calculate the damping, we take the Stokes’ drag force for an infinitely long cylinder
in the high frequency limit. The drag force is

F = CSv
√

πρnη fH. (3.29)

C is a geometrical constant, which is equal to 2 for an infinitely long cylinder. The damp-
ing is given by dF

dv and therefore the width is

∆ fH = C
S

2πm
η

δ

(
fv

fH

)2

. (3.30)

For a cylinder with diameter 2R we can write the mass in terms of its density and volume:
m = ρoscV. Since the ends are excluded, the ratio S/V is then simply 2/R. This means for
cylindrical objects, the hydrodynamic damping is inversely proportional to the radius of
the object.

The total width is the sum of the intrinsic width determined by measurements in
vacuum and the hydrodynamic width,

∆ f = ∆ fv + ∆ fH. (3.31)

At extremely low temperatures, the frequency shift of oscillating objects still occurs
due to the backflow term. However, the normal fluid fraction approaches zero and thus
both the total viscosity and the viscous penetration depth terms also approach zero.

Ballistic 3He-B and Andreev Reflection

In the ballistic regime of the B phase, the hydrodynamic approach breaks down [51, 61].
Instead, we can model the oscillator as a 1D scattering problem with a rarefied gas of
quasiparticles moving with group velocity vg. The quasiparticles scatter with and reflect
off the oscillator. Due to the superfluid gap, this reflection must involve exchange mo-
mentum of 2pF. The difference between the number of quasiparticles hitting the front
and back of the oscillator as it moves with velocity v gives rise to the damping force. The
oscillator is modelled as a flat paddle with surface area S.
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FIGURE 3.4: The dispersion curves for superfluid far from an object mov-
ing with velocity v, and near the object moving with velocity v. The right-
hand side branch near the object has a much higher velocity. Quasiparticles
and quasiholes on the right-hand side far from the object therefore have no
available states to move into, and cannot perform the simple scattering

with the object. Instead, they must undergo Andreev reflection.

A naive model takes only the velocity of the moving object into account and not the
local velocity field produced by the moving wire. Using (2.10), the naive prediction is
then simply the difference between the forces on the front and back of the paddle

Fdamping =
1
2

S〈n(vg + v)〉︸ ︷︷ ︸
front

− 1
2

S〈n(vg − v)〉︸ ︷︷ ︸
back

= 2SnvpF. (3.32)

The velocity profile of the superfluid close to the oscillator, which morphs the dis-
persion curve by a Galilean transformation, is shown in Fig. 3.4 [5]. The object drags
some fluid with it, and therefore fluid near the wire is also moving at velocity v. Quasi-
particles and quasiholes in branches 3 and 4 need energy ∆B + pFv to reach the pad-
dle, thus, the quasiparticle density from these are not equal to

∫ ∞
∆B

g(E) f (E, T) dE but∫ ∞
∆B+pFv g(E) f (E, T) dE. All the quasiparticles and quasiholes from branches 1 and 2 are

free to reflect, so this scattering process is left unchanged. The retroreflective scattering
process in 3He is known as Andreev reflection.

Once these corrections are taken into account, the damping force is

Fdamping = 2SpFvgN
pFv
kBT

(3.33)

for low velocities (vpF << kBT). N is given by (2.24). To simplify extension to higher
dimensions, a proportionality constant C1 is introduced. Recalling (3.1) the damping force
is Fdamping = γv. Combining this, (3.9) and (3.33) gives
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∆ f =
C1S
π

vgNp2
F

m kBT
=

C1S
π

vg p2
Fg(E)
m

e−
∆B
kBT . (3.34)

In the low temperature limit g(E) ≈ g(EF). It is then convenient to place all the con-
stants into one constant

C′ =
C1S
π

vg p2
Fg(EF)

m
. (3.35)

Adding the vacuum damping ∆ fv of the oscillator, the final expression for the width is
therefore

∆ f = ∆ fv + C′e−
∆B
kBT , (3.36)

which we can rearrange for thermometry purposes:

T =
∆B

kB ln
(

C′
∆ f−∆ f0

) . (3.37)

Since this result is only valid for slow velocities, we perform thermometry measure-
ments only at velocities below 1 mm s−1, where response of the oscillator is well-fitted by
a Lorentzian. The extent of the linear response in terms of driving force and velocity can
be found by performing an amplitude sweep described in 3.3.2.
For full 3-D calculations for both specular and diffuse scatterings, see [67, 68].

3.1.4 Velocity Enhancement and Critical Velocity

It was mentioned previously that the critical velocity above which the superfluid state
is destroyed due to a moving object is the Landau velocity vL. The predicted velocity
is 27 mm s−1. The observed critical velocity of actual moving objects in the superfluid is
much lower due to the velocity field around a moving object. As discussed above, the
local velocity field of the superfluid flow around tilts the dispersion curve by a Galilean
transformation.

We can model the flow using the well-known potential flow of an incompressible,
inviscid fluid around an infinitely long cylinder. The fluid is moving at initial velocity
v0 in the x direction. The cylinder has a radius R0. The boundary conditions are simple.
Far away from the cylinder, r = ∞, the fluid flow is not warped at all by the object:
v(r = ∞, θ, z) = v0. There must be no flow inside the cylinder or perpendicular to the
cylinder at the boundary: v(R0, θ, z) ·Υ = 0, where Υ is a unit vector perpendicular to the
cylinder’s surface.

Since the z-direction is of no consequence for an infinitely long cylinder, we can con-
sider only the 2D problem of the cross-section. In Fig. 3.6, we see that in the rest frame of
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FIGURE 3.5: The potential flow of an incompressible, inviscid fluid within
the boundaries of a cylinder cross-section moving at velocity −v in the
cylinder’s frame. The maximum enhancement of the velocity is 2v at the

top and bottom of the cylinder. The cylinder has radius R0.

a cylinder moving at velocity −v in the x direction, the fluid moves at different velocities
relative to the cylinder within the vicinity. At the boundary of the cylinder, it reaches a
velocity of 2v at the top and bottom of the cylinder.

Due to the tilting of the dispersion curves the onset of a large damping force occurs
when the condition ∆− pFv = 2pFv is met, shown in Fig 3.6, which is understood through
the Lambert model [5]. On any surface in 3He there exists Andreev bound states which
are localised to regions with a strong spatial dependence on the energy gap [69, 70]. An-
dreev first considered the quasi-electrons and quasi-holes in a thin layer of normal metal
between the surface of an insulator and the same metal but in its superconducting state.
A similar situation exists with the thin layer of normal 3He as the energy gap goes from
its bulk value to zero in the direction perpendicular to the surface of an object in 3He
over a distance of the order of the coherence length from that surface. The quasiparticles
and quasiholes in the layer of normal fluid have the normal liquid 3He (the red curve
in Fig. 2.4). For any quasiparticle with energy E < ∆, we can see that it can never enter
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FIGURE 3.6: The dispersion curves for a gas of SABS on the surface of an
object moving at velocity v such that the fluid flow is enhanced, and in the
bulk superfluid. At vc quasiparticles and quasiholes that can undergo the
crossbranch process can then escape into the bulk, dissipating energy. [5]

the superfluid area, in the same way quasiparticles in the right-hand side branches of the
dispersion curve in Fig. 3.6 could not enter the region near the wire. Again, the quasipar-
ticles can only retro-reflect off the energy potential. In the case of the thin layer of normal
fluid, this is the only process available for left or right hand side branches. These quasi-
particles or quasiholes can never cross into the superfluid, therefore they are “bound”
to the surface and are known as surface Andreev bound states (SABS). These states are
predicted to have majorana like properties [71].

When the dispersion curves begin to tilt due to the movement of the object, then there
becomes an escape process available for quasiparticles or quasiholes who can undergo
the crossbranch process. Due to the difference between the local flow and the bulk flow,
the dispersion curves tilt at different rates. Choosing the maximum local flow at the top
and bottom of a cylinder (2v), the crossbranch process begins when 2pFv = ∆− pFv. The
critical velocity for a cylinder can then be calculated as

vc =
∆B

3pF
=

vL

3
. (3.38)

3.1.5 High Field Vibrating Wire Thermometry

At moderate and high fields (> 100 mT) the bulk A phase is stabilised at low pressures for
a large temperature region. As discussed is section 2.2.4, the A phase has a non-uniform
energy gap with two nodal points. This entails that quasiparticles can always be excited
by pair-breaking and a moved object always experiences some effective drag, and that
the drag force experience by a moving object such as a vibrating wire is dependent on
the local texture for both the hydrodynamic and ballistic cases [13, 72, 73].
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However, this does not mean vibrating wire thermometry can not be used at all. When
the field is much higher than the required field to overcome the preferred alignment of
d̂ and l̂ caused by the dipole interaction, in the absence of other effects, we can assume
the direction of the magnetic field defines the texture. Thus, the texture will be the same
for any magnetic field much larger than a few milliteslas, as long as the direction of the
magnetic field is the same. In this case, one can use some known points for thermometry:
the superfluid transition, the A1—A transition and the A—B transition. There will be an
abrupt change in resonant width of a wire at these points, which give a rough idea of
the temperature in time. Second, if the heating to the fluid remains constant in time one
can extrapolate backwards from the temperature in the normal fluid phase where accu-
rate thermometry is possible. In section 2.2.2 it was discussed that the viscosity of the
normal liquid 3He is proportional to T−2. The oscillator at this temperature will be in the
hydrodynamic regime. From (3.27), (3.28) and (3.30) the damping can be calculated and
roughly proportional to T−1. Fig. 3.7 shows a temperature dependence calibration of the
resonance width of a tantalum VWR with a vacuum resonant frequency of 4721.25 Hz
and diameter of 124 µm, which is a large enough to not be overdamped. The backwards
extrapolation can then be compared to the known points and the accuracy can be deter-
mined.

3.2 Devices

In this section, the mechanical probes used in the experimental cell are introduced. Many
of these devices such as vibrating wire resonators (VWRs) and quartz micro-tuning forks
(QTFs) are commonly used both in Lancaster Ultra Low Temperature experiments and
elsewhere [51, 53, 55]. Newer technologies such as more complicated microelectrome-
chanical systems (MEMS), nanoelectromechanical systems (NEMS) and carbon nanotubes
(CNTs) have started to make their way from the wider physics research to the ultra-low
temperature and quantum fluids communities, although mostly in superfluid 4He [59].

3.2.1 The Flopper

The flopper is a large goalpost-shaped superconducting vibrating wire resonator (VWR).
Shown in Fig. 3.8 (a). From its long leg size relative to the crossbar and low resonance
frequency, the wire became known as the “flopper” or “flopper wire” [75]. The original
dimensions of the flopper had legs of about 25 mm length and a crossbar of 9 mm in
length. The wire diameter was 128 µm and made of single core superconducting NbTi
(diameter 100 µm). In this work, a new flopper was made to allow the attachment of a
NMR coil around a cylindrical sample of the nematic aerogel Nafen to the crossbar. The
new flopper has 24 mm long legs and a crossbar 8 mm long. The wire used was 70 µm
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FIGURE 3.7: Calculation for the resonant width of a 124 µm diameter tan-
talum wire with a vacuum resonant frequency of 4721.25 Hz using hydro-

dynamic theory and viscosity measurements in [74].

diameter single-core NbTi clad in copper with a ratio of approximately 1.5 Cu: 1 NbTi.
To distinguish the devices, the new flopper will be referred to as the NMR-flopper in this
thesis.

The flopper has a low quality factor when immersed in superfluid. Normally a disad-
vantage, a low quality factor means that the device is not very sensitive to small changes
of the superfluid. However, if one moves the flopper with a certain velocity and suddenly
stops, there is comparatively little subsequent movement or “ring-down” vibrations [75].
The quick stopping time can be exploited effectively by using a direct current drive to
move the flopper at a quasi-uniform velocity between two points, rather than alternating
current drive to create oscillatory motion.
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(a) (b)

FIGURE 3.8: 3D sketches of the large wires known as the flopper. (a) The
old design as just a moving wire, which was used in investigating faster
than Landau velocity [6] and for measuring the Kapitza resistance in Chap-
ters 5 and 6. (b) The new inverted design with the copper NMR coil and

nafen aerogel.

Driving at Quasi-Uniform Velocity

The method for moving at quasi-uniform velocities requires smooth acceleration and de-
celeration pulses [76]. Any current through the flopper crossbar in a magnetic field per-
pendicular to the crossbar creates a Laplace force which will move the crossbar. For oscil-
latory motion, an alternating current is used. For quasi-uniform velocity, a direct current
is used.

The direct current starts at an initial value, which defines the initial position of the
flopper. The position is changed according to a complicated profile. A simple linear ramp-
ing up (increasing) of the drive current I has discontinuities in the acceleration and de-
celeration at the end of a ramp, which lead to strong oscillations at the end of a ramp
despite the low Q-factor [75]. Hence, the position function is chosen as
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FIGURE 3.9: A 45 mm s−1 ramp of the old flopper, with the position de-
tected by an EMF measurement of the position detection coils using a
lock-in amplifier. The initial acceleration and the deceleration periods are
shown. There is no oscillation in the position from the flopper after stop-

ping.

x(t) =


vtacc(1− t

2tacc
)( t

tacc
)3 for 0 < t ≤ tacc

vt for tacc < t ≤ tramp − tacc

dramp − vtacc(1− t
2tacc

)( t
tacc

)3 for tramp − tacc < t ≤ tramp

(3.39)

where tacc is the acceleration time, v is the desired uniform velocity, dramp is the distance
moved over and tramp is the total time the ramp takes. The distance moved is defined
by the initial and final values of the current. The position function and resulting current
function is chosen to minimise the strong oscillations.

Faster than Landau Velocity

These “DC ramps” of a direct current to move the flopper at quasi-uniform velocity led
to a unique discovery. It was determined the damping force on a wire moving at uniform



Chapter 3. Resonators 45

FIGURE 3.10: The difference in damping force on the flopper with AC drive
oscillatory motion and DC drive ramps as the velocity increases. For the
oscillatory motion vc is clearly seen. The blue dotted line shows the thermal
background due to finite temperature. The red circle and arrow indicates

vL. Figure from [6].

exceeding the Landau velocity is much lower than expected and orders of magnitude
lower than damping seen for equivalent velocities in oscillatory motion, (see Fig. 3.10)
[6]. There is neither the large onset of damping force seen by the AC driven motion at
vc = 9 mm s−1 or at the full Landau velocity.

The originally proposed explanation was that this damping was due to the escape
of quasiparticles occupying surface Andreev bound states (SABS) that exist on the wire
surface during acceleration and deceleration periods. In the flopper experiment, the pro-
posed mechanism of dissipation is that when the wire is moving, the normal fluid dis-
persion curve tilts by the Galilean transformation similar to Fig. 3.6. At vc, some SABS
have enough energy to move into the superfluid state if they are on the correct side. They
undergo a cross-branch process and then escape into the bulk, shown in Fig. 3.10. Eventu-
ally, these SABS with enough energy have all escaped, and there is no more dissipation.
Compared with oscillatory motion, in which the dispersion curves will reverse the tilt
and then dissipation can occur in the opposite direction.

The Lambert model of dissipation could be repeated for AC motion indefinitely, de-
pending on how long it takes for the SABS to replenish themselves. Chapter 5 presents
an investigation into this model and the dissipation caused by SABS.

Adding Aerogel and NMR Coil

The NMR coil was formed from annealed high purity Teflon-coated copper. The coil is
created around a metallic rod wrapped in Teflon tape and annealed for 24 hours at a
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FIGURE 3.11: The shaping devices used for the flopper. The flopper wire is
pressed between the two Teflon cubes, with a metal rod on one side within
the gap. It is possible to create shapes with either the flopper having an
inward or outward semicircle, depending on whether the flopper is above

or below the rod.

temperature of 440 °C. This improved the residual-resistance ratio (RRR) from approxi-
mately 80 to 250. At higher temperatures the Teflon coating evaporates and the coil will
short, and longer times was found to have little effect on the RRR, although it sometimes
resulted in some of the Teflon coating deforming. Before annealing, the total diameter is
75 µm with the copper inner diameter 50 µm. The final coil was 4 mm in diameter and
7 mm long with 75 turns.

The nafen sample was cut with a high-speed cutting disk tool from a larger sample of
nafen-92 (density 92 kg m−3). Whilst cutting the sample, an air pump was used to remove
small strands. The sample was cut to fit tightly within the coil.

To make space for the aerogel and coil a flopper with a semicircular space in its cross-
bar was needed. The semicircle is centred at the midpoint of the crossbar. The flopper is
constructed using a Teflon former and a cylindrical metal rod, shown in Fig. 3.11. The
former is two blocks with a hole for the rod. The desired wire is passed through the
Stycast-paper base and stretched over the lower forming block. Weights were used at the
end of the wire to provide tension. The rod is placed over the wire, then the upper block
is place on top and the wire is compressed into shape. This results in the circle pointing
inwards, to avoid the NMR RF coil being inside the current loops of the flopper once it is
glued.
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FIGURE 3.12: A frequency sweep of the NMR-flopper in vacuum at 4.2 K.
The solid lines represent fits. The central frequency is f0 = 8.648 Hz with
a quality factor Q = 4119. There is some ringing at the beginning of the

sweep.

We tested many types of wire, with and without coils. The wire decided on was single
core NbTi clad in copper, with a ratio of 1.5 Cu to 1 NbTi. The original wire diameter was
100 µm. The wire was drawn to decrease the diameter to 70 µm. Drawing a wire results
in some of the wire becoming curled, which can be treated by annealing the wire.

Finally, the coil is glued to the flopper using Araldite. The leads to coil were twisted
into a twisted pair and varnished, and made slack so as not to restrict the NMR-flopper’s
movement. A sketch of the NMR-flopper is shown in Fig. 3.8.

The NMR-flopper is upside-down compared to the old flopper to stabilise the motion.
Thus, the new flopper becomes similar to that of a pendulum. The resonant frequency of
a simple pendulum of a mass at the end of a massless string with length Losc is well
known to be

f0 =
1

2π
ω0 =

1
2π

√
G

Losc
. (3.40)
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With the acceleration due to gravity G = 9.81 m s−1 s, the resonant frequency f0 = 3.2 Hz.
Consequently, we can expect a much lower frequency. Another side effect of adding a
crossbar mass was that the quality factor increased greatly. Fig. 3.12 shows a frequency
sweep of the NMR-flopper taken at 4.2 K in vacuum. The quality factor is so high that the
signal shows ringing effects for frequency points after the resonant frequency, even for
sweeps over an hour long.

The frequency of the NMR-flopper is almost thrice that of the simple pendulum. Mod-
elling it as a physical pendulum (i.e., including the mass of the string and the volume of
the end-mass) gives a higher but similar frequency as the simple pendulum model. In-
stead, the more complicated approach of a hanging cantilever (or “stiff pendulum”) with
end mass can be taken. This takes into account the rigidity and stiffness of the wire legs
and the large mass of the NMR-flopper crossbar. We look at the vibrational mode of just
one leg. The mass of the pendulum is the total mass of the coil and crossbar, shared be-
tween the two.

The problem of a stiff pendulum is extremely complex and requires computational
methods to solve. Naguleswaran computed solutions to the dimensionless natural fre-
quency ω0 of the nth mode for a hanging cantilever with different boundary condi-
tions[77]. Values are computed depending on the dimensionless gravity parameter Γ and
the dimensionless end-mass υ. The dimensionless end-mass is the ratio of half of the mass
of the aerogel, NMR coil and crossbar to the mass of one leg. The end mass of the aerogel
sample can be calculated as

Me =
Mcrossbar + Mcoil + Maerogel + Mglue + MHe

2
. (3.41)

The crossbar is made of 70 µm diameter NbTi wire clad in copper with a ratio of 1.5
copper to 1 NbTi. The average density of this wire is then 7960 kg m−3. The total mass
is then Mcrossbar = 270 µg with a mass per unit length µD = 30 mg m−1, which can be
used to calculate the mass of one leg also. The coil is made of Teflon covered copper
wire. The copper core has diameter 50 µm and the total diameter is 75 µm. There are
75 turns of the coil made around a 4 mm diameter rod. The coil mass Mcoil is 21.7 mg.
The mass of the aerogel is simply the volume of the sample times the density, giving
Maerogel = 8.1 mg. The mass of the glue is unknown and we initially neglect it. Thus, the
end mass in vacuum is Me ≈ 15 mg.

The mass of the helium fluid is found similarly to the hydrodynamic equations (3.26).
In this case, the added mass comes from the volume of normal fluid trapped inside the
aerogel and β1 = 1. The penetration depth is comparatively small and can thus be ne-
glected, β2 = 0. Accordingly, the mass of the helium Me = ρn1.98Vaerogel .

From the values tabulated by Naguleswaran in [77], if the dimensionless end-mass υ

is between 1 and 100, and Γ ≈ 0.0 (as it is for the NMR-flopper) then the dimensionless
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natural frequency for the first mode can be approximated by the relationship

Ω0 =
1.7√

υ
. (3.42)

For the resonant frequency of the first mode we find the predicted resonant frequency
of the flopper in vacuum as

f v
0 =

ωv
0

2π
≈ 6.8 Hz. (3.43)

Comparatively, in normal fluid we can add the mass of all the helium. The density of
normal fluid ρn = ρHe = 81.8 kg m−3. The helium mass in normal fluid is then MHe =

7.1 mg. The predicted resonant frequency is thus

f He
0 ≈ 5.9 Hz. (3.44)

NMR Circuit and Setup

The NMR circuit is a simple tank circuit, using a cryogenic amplifier developed by V.
V. Zavjalov et al. and a differential amplifier at room temperature [78]. The tank circuit
resonance is excited by a signal generator denoted as the master generator. A 10 pF ca-
pacitor is used as a simple DC filter before the RLC resonance circuit. The output of the
differential amplifier is measured by a high frequency SR844 lock-in amplifier.

The RLC circuit was designed to have a frequency equal to the Larmor frequency
of helium in a magnetic field around 30 mT. From (2.38) this requires a frequency fL =

1 MHz. The RLC circuit used is shown in the dotted oval in Fig. 3.13. With 75 turns and
a diameter of about 4 mm, the inductance of the coil is about 10 µH. By (3.24) this results
in a frequency of f0 ≈ 1.3 MHz. Due to the resistance of the coil (shown in Fig. 3.13 by
the resistor in series) and the resistance of the wires, the actual frequency is shifted down
to 948 kHz. The width of the resonance at low temperatures is 5 kHz, giving a Q-factor of
190.

The actual NMR spectrum is measured using a differential amplifier. A second gen-
erator is set to produce a signal at the resonant frequency of the tank circuit and phase
locked with the master generator. The master generator excited the tank circuit and cre-
ated the small oscillating RF field. The slave generator is used to compensate the signal,
so that the output of the differential amplifier is close to zero when the magnetic field is
far below the magnitude required for the Larmor frequency to be equal to the tank circuit
resonant frequency. The field is then varied past the required field Larmor frequency and
back again, rather than varying the frequency. When the field is close to the required field
for resonance, there is an absorption of the RF signal which changes the output of the dif-
ferential amplifier. Fig. 3.14 shows examples of the resulting absorption spectrum from
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FIGURE 3.13: Circuit diagram for the NMR setup. The Master Generator
is fed into a tank circuit out lined by the dotted oval, which produces an
electrical resonance and an oscillating RF field through the coil. The Slave
Generator is phase-locked with the Master Generator and the frequency is
set to the resonance. The signal from the Slave is adjusted to minimise the

sum of the two signal in the differential amplifier.

the resonance. The field sweeps are equivalent to frequency sweeps but with inverted
directionality. When the static field Bext goes from low-to-high, the equivalent frequency
sweep is from high-to-low.

3.2.2 Vibrating Wire Resonators

Vibrating wire resonators (VWRs) are one of the most commonly used devices. They
consist of superconducting wire with a circular cross-section. The wires can be created
in a goalpost shape with a straight crossbar joining two straight legs, as with the flopper.
Alternatively, they can be made as a semicircular loop attached between the two legs. The
wire diameter ranges between 1 µm and 200 µm, and the leg spacing is typically above
1 mm.

The wires involved in this work were two semicircular wires with larger diameters
known as Outer Cell Tantalum and Inner Cell Tantalum (OCTa and ICTa), which were
used only for thermometry. Also contained in the experimental cell were a series of
smaller wires. The largest of the small-diameter wires was a 13.5 µm diameter wire, then
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FIGURE 3.14: NMR absorption signals in both 3He-B and normal fluid 3He
at zero pressure. The superfluid data is shifted slightly and has a small
amplitude, as one would expect from the lower magnetisation in the B-

phase if some bulk liquid signal is seen from the coil.

a wire with diameter of 4.5 µm known commonly as “triple micro” or “µµµ” but in this
thesis just by their diameter. These are also commonly used for thermometry purposes
[51]. In addition, we constructed some sub-micron diameter wires for use in the new
experimental cell. These two wires had diameters of 0.9 µm and 0.4 µm diameter wire.

Loop Measurement

All the VWRs are driven by the magnetomotive method. An alternating drive current
results in an alternating Laplace force on the wire, creating an oscillating motion. The
Laplace force on a wire in magnetic field B driven by current Idrive with leg spacing D is
[57]

F = B× Idrive · D. (3.45)
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F

B

FIGURE 3.15: A sketch of a semicircular loop VWR commonly used for the
smaller diameter wires. The wire is driven by the Laplace force induced by
an alternating current in the presence of the perpendicular magnetic field
B. Inset: The resonance of the 0.9 µm diameter wire in vacuum at 4 K. As
with Fig. 3.12, dots represent the raw signal and the solid lines represents

fits.

The motion of the wire can be detected by the Faraday voltage induced by the change
in field of the area enclosed by the loop

V =
d(B ·A)

dt
. (3.46)

The area of a semicircle is A = π D2

8 and the rate of change is related to the velocity of
the wire as 2v2

D . With a static magnetic field B = Bẑ, the voltage is related to the velocity
by

v =
4V

πBD
. (3.47)

This voltage can be measured and converted into a velocity using the above formula. Nat-

urally, for a straight crossbar the factor
4
π

does not appear. The HWD can be calculated
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from (3.45) and (3.46) as

HWDvwr =
B2D2

8m
. (3.48)

3.2.3 Quartz Micro-Tuning Forks

Quartz micro-Tuning Forks (QTFs) are well-defined, easy to operate and easily available
from commercial outlets. Quartz is a piezoelectric material that creates a voltage and
current when undergoing stress deformations. Micro-fabrication can develop many forks
with high precision. The high precision allows frequencies from a broad set of ranges to
be chosen with a similar precision. QTFs are shaped similar to a regular musical tuning
fork, as shown in Figure 3.16. There are two prongs or legs with length Losc and cross-
sectional area AQTF attached to a substrate. The frequency is well described by [54, 79]

fn =
1.8752

2πL2

√
EY Iqtf

ρqAQTF
. (3.49)

Iqtf is the moment of inertia, EY = 97 GPa is the Young’s modulus of quartz, and ρq =

2650 kg is the density of quartz.
Each prong contains an electrode. The electrodes can be used to apply an AC wave-

form. Depending on the electrode position on each prong, the waveforms excites a flexu-
ral resonance, deforming the quartz and inducing a piezoelectric current which can then
be detected. The current is dependent on the deformation and therefore resonance; the
faster the prongs move, the higher the current.

Tuning forks have a so-called fork constant a that relates the ratio of current I per unit
velocity of the fork in the linear regime

v =
Iqtf

a
(3.50)

or the force F to the voltage, Vqtf

F =
aVqtf

2
. (3.51)

It is possible to calculate the fork constant a from the HWD as the drive voltage is known
and the current is the measured by the height. Substituting (3.50) and (3.51) into (3.12)

HWD =
a2

4πm
. (3.52)

The effective mass of a tuning fork is

m = 0.24267ρqLoscbh (3.53)
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FIGURE 3.16: A photo of a QTF with thickness b = 25 µm. The dimensions
and electrodes are shown. The fork is soldered to two wires, which are
secured by Araldite adhesive. Inset: frequency sweep of the fundamental
mode of the 25 µm fork TF3 in vacuum at 4 K. ∆ f = 0.31 Hz and f0 =

31 827.4 Hz.

where Losc, b, h are fork prong dimensions and density of quartz ρq = 2.648 kg m−3. The
fork constant can be determined optomechanically using a laser Doppler velocimetry
[79]. Doing so gives good agreement with the electromechanical determinations.
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3.2.4 NEMS

Nano-electromechanical Systems (NEMS) are devices that have at least one important
spatial dimension below 1 µm. They are commonly used as resonators. During the con-
struction of our new cell, we added space for five doubly-clamped nano-beams of differ-
ent lengths and two sub-micron diameter VWR loop resonators. The beams are simple
prismatic beams that operate in much the same way as a vibrating loop: an alternating
current is passed through in a perpendicular magnetic field, creating a Laplace force and
subsequent movement [59].

As nano-sized devices are much smaller they have higher force and mass sensitivity,
and generally higher resonant frequencies (see below), allowing them to access the MHz
range of frequencies, previously not used in liquid 3He. A further physical interest is that
the nano-beams had width and height dimensions approaching the coherence length in
superfluid 3He, about 80 nm. How a probe that has dimensions similar to the size of
the coherence length and an amplitude much smaller interacts with the superfluid is
particularly interesting question.

The disadvantage of nano-beams are that they tend to have much higher losses than
slightly larger devices such as micro-tuning forks. Particularly, their high frequencies
mean that acoustic damping is a large problem [60]. To get around this problem, the sub-
micron VWRs are made similar to the traditional way, outside the clean room [51]. These
devices have lengths of the order of 1 mm, and therefore have a much lower resonant
frequency.

Construction of Sub-Micron Diameter Wires

To construct a small diameter wire, copper-clad multi-filament superconducting NbTi
wire is used. The original wire is total diameter 130 µm. First, the wire is drawn through
dies to ensure the filaments are the desired size, reducing the total wire diameter. Second,
the wire is bent into the semicircular loop and glued in place by placing both ends of the
wire through Stycast paper. Often, the wire is wrapped around a mould with the desired
leg spacing to create the loop.

Third, the copper cladding must be removed by etching the loop in nitric acid. Once
the filaments are exposed, all but one must be plucked. For the sub-micron diameters,
such as the 0.9 µm and 0.4 µm wires, this is often done whilst the loop is submerged in
alcohol and then left to dry, as the surface tension when pulling the wire out of the acid
can break the wire. It is also possible to glue the ends of the NbTi wire to the legs, adding
some tension to the wire.
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(a) (b)

FIGURE 3.17: Scanning Electron Microscope images of (a) a successful
nanobeam from those used in superfluid 4He [59] and (b) a collapsed

nanobeam.

Nanobeam Fabrication and Failure

The beams were fabricated by means of applying two masks to a silicon wafer and using
electron beam lithography to pattern the masks. Silicon is then etched according to the
pattern, and Aluminium is deposited through the mask onto the thin remaining silicon
bridge. Finally, the masks are removed. This leaves a large aluminium layer on the silicon
bridge. The mismatch between the silicon and aluminium expansion coefficient causes a
tension that increases the beam frequency [59].

The nanobeams were investigated for quite some time. Whilst resonances were found,
they were found to be fairly independent of parameters that usually effected the mechani-
cal resonance of beams. For instance, a lack of magneto-motive damping was seen. How-
ever, some beams showed a clear superconducting transition, demonstrating electrical
conductivity through the beam. The scanning electron microscope (SEM) of nano-beams
produced in the same batch in Figure 3.17 demonstrates the clear reason. The beams had
collapsed along the floor of the beam but some had retained their conductivity.

One possible reason is the over-etching of the silicon caused the silicon bridge to
collapse before or during aluminium deposition.

3.2.5 Carbon Nanotube

One can imagine a carbon nanotube as essentially the tube one would get when rolling up
a single atomic layer or a few multi-layered sheets of carbon. As such, carbon nanotubes
are extremely small devices, often having lengths sub-micrometer and diameters about
10 nm. This makes them extremely sensitive to mass and excitations in a system. Due to
their small size, they have high mechanical resonant frequencies, in the tens or hundreds
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of GHz [80]. Due to their method of growth however, they do not have high losses one
would associate with a tradition nanobeam made to a similar size and can have Q-factors
over 30000 [80].

A carbon nanotube also represents a good opportunity to measure a larger mechanical
device in its quantum ground state. The temperature required to achieve this is T < h f

kB
.

Furthermore, the larger the Q-factor, the longer lived a quantum state will be. Finally, the
diameter of a carbon nanotube is well below the coherence length of the superfluid 3He.

Unfortunately, the carbon nanotube used in this work was either broken before use in
our experimental cell or broken sometime during the setup or testing period.

3.3 Measurement Types

There are several ways of measuring oscillators. The most fundamental way is to apply
a sinusoidal drive at a range of frequencies. In the following, the common measurement
types used in this work are presented.

3.3.1 Frequency Sweep

The most common and basic measurement method is a frequency sweep. Here, an al-
ternating drive current with a constant amplitude is applied. The frequency at which
the current is applied can then be increased or decreased. The result is that given by
(3.5) and (3.6). Figs. 3.12, 3.15 and 3.16 all contain frequency sweeps. In reality, there is a
“background" in the frequency sweep, in both the real and imaginary components. The
background is usually a linear function of frequency or a constant offset, and it can be
found during the fitting procedure and subtracted later.

The electrical circuit for performing such measurements differs slightly by oscilla-
tor. Circuit diagrams are shown in Appendix A. For VWRs, a voltage signal generator
is passed through a resistor, then through a step-down transformer into the VWR. The
resulting electromotive force (EMF) can be picked up by using a step-up transformer,
amplifier and a lock-in amplifier. The lock-in amplifier is phase locked with the original
signal generator.

The tuning forks again use a signal generator and lock-in amplifier, however they do
not need transformers. The signal is reduced by attenuators (if required) and the resulting
signal is converted by means of an I-V converter with a gain setting.

The damping of the oscillator directly limits the time taken for a frequency sweep.
The response time of an oscillator is inversely proportional to the resonance width

τw =
1

π∆ f
. (3.54)
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Therefore, for each measured point on a frequency sweep, one should wait τw time to
prevent ringing effects. At extremely low temperatures, some very lightly damped de-
vices may take hours to measure correctly, whilst a device with high damping will take a
much shorter time.

3.3.2 Tracking Mode

Once the resonance frequency, phase, HWD and background are known from a frequency
sweep, a resonator can be operated in “tracking mode”. In this mode the drive current is
set to the resonant frequency. From equation (3.6) we note that in the correct phase the
imaginary part of the frequency sweep must be equal to zero at the resonance.

We can then measure the ratio of the imaginary signal Vy to the real signal Vx. Substi-
tuting the damping γ for the width from (3.9) gives

Vy

Vx
=
=(ẋ0)

<(ẋ0)
=

ω2
0 −ω2

∆ω×ω
. (3.55)

During the tracking mode, we can introduce feedback in the form of a phase-locked
loop to adjust the frequency of the driving signal generator. From 3.1, Vy is: zero when
the frequency is equal to the resonance frequency, negative at frequencies above the res-

onance frequency and below ω0 +
∆ω

2
and positive at frequencies below the resonance

frequency ω0 −
∆ω

2
. By using Vy/Vx in a proportional–integral–derivative controller al-

gorithm we can keep the signal on resonance.

Amplitude Sweeps

A common way of using the tracking mode is to increase the drive whilst keeping the
same frequency. The increased drive results in larger velocities and displacements. In the
linear regime, one can plot the force against velocity and expect a linear relationship. In
non-linear regimes, (3.1) no longer applies and the force-velocity relationship changes. A
log-log force velocity will see this as a “kink” as it goes from a straight line of gradient one
to a line of different gradient. In the case of damping by turbulence, the kink line should
have gradient 0.5. Andreev reflection also results in a non-linear force against velocity
relation when in the ballistic regime.

For this reason, amplitude sweeps are generally used to determine the range of linear
response for an oscillator, where (3.1) applies. Subsequent measurements are then used
in this range.
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Chapter 4

Experimental Techniques and
Apparatus

In this chapter, the different experimental designs for this work are shown and techniques
used for refrigeration are described. The Chapter shows the layout of the two experimen-
tal cells used. The first experimental cell housed the old flopper. The second experimental
cell was made by recycling the old experimental cell: cutting the lower portion and re-
placing it with a new cell. This cell houses the NMR-flopper and the sub-micron VWRs.
Some devices, for example Outer Cell Tantalum (OCTa) and Inner Cell Tantalum (ICTa)
are common to both cells.

4.1 Refrigeration

The experiments in this work take place in a custom–built dilution refrigerator with an
adiabatic nuclear demagnetisation stage. Both dilution refrigeration and nuclear demag-
netisation are discussed extensively in the literature [13, 81, 82]. For details of a design of
a Lancaster specific custom-built fridge, one can see [83] and for the specific fridge used
in this experiment [84]. Therefore, only a very brief description of the dilution refrigera-
tion is given here, with a slightly more detailed description of nuclear demagnetisation.

A dilution refrigerator exploits the spontaneous separation of liquid 3He-4He mix-
tures at low temperature (about 870 mK). At zero temperature, there is a layer of the
lighter 3He liquid above a dilute 6.5% 3He–93.5%4He mixture in the part of the fridge
known as the mixing chamber. Cooling power is generated by transferring 3He atoms
from the pure layer into the dilute layer, in a process similar to evaporation.

Once separation is achieved, extra 3He can be added into the system by pumping it
in. This 3He liquefies and joins the pure layer, creating a nonequilibrium concentration at
the phase boundary between the pure and diluted layers. 3He will then cross the phase
boundary. The dilute phase has a higher entropy, thus there is an increase in entropy.
From the second law of thermodynamics, this process then requires some thermal energy,
which is taken from the surroundings.
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Above the mixing chamber is the still volume. It is connected to the dilute phase at the
bottom of the chamber and heated to about 0.5 K. At this temperature, 3He is predomi-
nately evaporated from the mixture due to its higher vapour pressure. There is therefore a
vapour of 90% or more 3He and a liquid mixture of less than 1% 3He. [13] The vapour can
be pumped out, cleaned and then pumped back into dilution refrigerator. The principle
operation is then to initially condense and cool a 3He-4He gas mixture into liquid until
separation in the mixing chamber. This is done by a variety of high impedances and heat
exchange with pre-cooling unit [13]. 3He is then extracted from the still and cycled back
in, driving the nonequilibrium concentration at the phase boundary. Continuous circula-
tion of 3He provides a continuous cooling power which reaches a base temperature of a
few millikelvins.

4.1.1 Nuclear Demagnetisation

Nuclear demagnetisation is a cooling process that involves using the nuclear spins of a
paramagnetic material as a refrigerant [81, 82]. In a magnetic field and at low temperature
the nuclear spins undergo Zeeman splitting and separate into different energy levels. Our
nuclear refrigerant of choice is copper. The nuclear spin of the stable isotopes of copper,
63Cu and 65Cu, is I = 3/2. There are then 2I + 1 = 4 energy levels. The entropy of the
nuclear spin system is

sn = Rg ln (2I + 1)− λnB2

2µ0T2 , (4.1)

for Rg the ideal gas constant, λn is the nuclear molar Curie constant and µ0 is the Bohr
magneton.

Since the entropy of the Copper nucleons is a function of the ratio of the magnetic field
over the temperature, if one thermally disconnects the copper refrigerant using a super-
conducting heat switch and then reduces the magnetic field the demagnetisation process
is isentropic. Therefore, for the entropy to remain constant whilst the field decreases, the
temperature of the nucleons must also decrease. We can write the final temperature of
the nuclei in terms of the initial and final magnetic fields, and the initial temperature. At
low fields the interaction between the nuclear moments of neighbouring Cu nuclei are no
longer negligible. The nuclear interactions can be simplified as a small internal magnetic
field B′, which presents a hard limit on the final field:

Tfinal

Tinitial
=

√
B2

final + B′2√
B2

initial + B′2
. (4.2)

In reality, the final temperature of the nuclei is higher than Tfinal as there is always
some heat leak into the system, shown in Fig. 4.1. One large source of heating during a
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FIGURE 4.1: A nuclear demagnetisation cycle. A real demagnetisation pro-
cess does have some parasitic heat leaks into the system, which leads to a

higher final temperature than the theoretical Tfinal.

real demagnetisation cycle is the Joule heating from eddy currents created in the copper
by the changing magnetic field [85].

4.1.2 Kapitza Resistance in Nuclear Demagnetisation

Since the nuclear demagnetisation process applies to the nuclear spin system in the Cop-
per refrigerant, to cool the helium sample heat must flow from the liquid helium to the
nuclear refrigerant. There are several thermal baths with independent temperatures it
must go through [81, 85]. First, there is the liquid helium sample. Heat then transfers
through to the metallic phonons in the refrigerant. After that, heat must transfer from the
phonons via the eletron-phonon interaction to the Copper electrons, then finally into the
nuclei by the hyperfine interaction. This means the final temperature of the liquid 3He
sample will be even higher than that of the Copper nuclei.

The heat conduction between the solid metal and liquid 3He is limited by the thermal
boundary resistance RK, known as the Kapitza resistance. The heat flux between the two
materials with contact area A can be defined as
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q̇ =
∆T

ARK
. (4.3)

The existence of Kapitza resistance between liquid helium and solid metal has had
a strong effect on the design of helium refrigerators. The Kapitza resistance increases as
temperature decreases. Hence, refrigeration becomes increasingly difficult the lower the
temperature.

Nakayama breaks down the effect of temperature on Kapitza resistance for the helium
liquids into three regimes [86]:

• T > 1 K: RK is anomalously low and similar to solid helium’s.

• 10 mK ≤ T ≤ 200 mK: RK follows the prediction of acoustic mismatch theory, RK ∝
T−3 [87]

• 1 mK ≤ T < 10 mK: RK is again anomalously low, turning to a possible T−2 or T−1

relationship. There is a suspected magnetic channel of heat transfer mediated by
solid 3He adsorbed on the surface of the metal.

To combat the effects of the Kapitza resistance at low temperatures, a process known
as sintering is undertaken to increase the surface area of metal in contact with the liquid
helium [81, 82, 86]. Metal powders or flakes are fused together at high temperatures and
pressures, creating a rough sponge-like surface with a large “microscopic" surface area
[88, 89]. The larger surface area allows more contact with the liquid helium and thus more
heat transfer, without taking up large amounts of space.

Copper plates used as coolants in nuclear demagnetisation experiments commonly
have silver sinter coatings to enhance the cooling power of the nuclear refrigerant. With-
out the silver sinter, these experiments would either simply not work or take an unrea-
sonably long time to reach a desirable temperature. This also slightly modifies the heat
flow, as heat must flow from electrons in the sintered silver to electrons in the copper
refrigerant.

4.1.3 Kaptiza Resistance in the B Phase

A further regime for superfluid 3He should be added. For superfluid 3He, a range of
differing RK have also been found. Previous measurements at Lancaster and measure-
ments made by Parpia at Cornell found a Kapitza resistance exponentially dependent on

temperature, T ∝ e−
∆B
kBT [27, 90, 91]. The exponential dependence is suspected to be be-

cause the heat transfer is dominated by quasiparticle collisions with the metal. However,
later measurements have found simple power laws. All sets of measurements have been
performed over varying temperatures and pressures.
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If the value of Kapitza resistance behaved according to the acoustic mismatch theory
(see [86]), the Kapitza resistance would still be too great. The leading hypothesis to ex-
plain the discrepancy in superfluid and normal fluid below 10 mK is due to a magnetic
channel of heat exchange between magnetic 3He and magnetic particles or impurities in
the metal powder [86]. Whilst Leggett and Vuorio originally developed this theory due to
anomalous measurements of the Kapitza resistance between cerium magnesium nitrate
and helium at relatively high temperatures, this theory can be applied to metals at lower
temperatures [86, 92]. The origin of this channel is dipole-dipole interaction between the
nuclei refrigerant’s spins and the 3He nuclei. In reality, helium will adsorb on the surface
of a cold solid. Solid 3He is a strongly para-magnetic material and a complex dynamic
between liquid 3He, solid 3He and sintered metal is responsible for the whole Kapitza
resistance [93].

Whilst early measurements saw no magnetic field dependence for RK at low fields,
Perry et al. found a field dependence in Platinum powders [94]. Osheroff and Richard-
son found a field dependence in the more commonly used silver sinter at fields up to
200 mT but no further [95]. Detailed investigations in the magnetic impurities of different
powders used for sinter have since been carried out by König et al. [96–98]. They found
evidence for the amount of magnetic impurities in a silver sinter affecting the Kapitza
resistance.

Covering the surfaces with solid 4He is commonly done in NMR experiments to re-
move the signal from solid 3He [7, 8, 36]. Moreover, covering the experimental surfaces
with non-magnetic 4He to increase surface specularity has become popular [28, 29, 99].
The removal of the solid layer of 3He should have a great impact on the cooling power of
the demagnetisation stage by removing the magnetic channel as 4He has no nuclear mag-
netism. In an experiment similar to the one presented in this thesis in Chapter 6, Mizutani
and Suzuki found the RK to increase when solid 4He was added to HoVO4 and TmVO4

between 2 mK–20 mK [100]. Similarly, increasing the field also increased the resistance.
The effects on nuclear demagnetisation experiments should not be understated. The

time required to reach the target temperatures should increase, and it may not be possible
to reach some temperatures at all. Reaching the ballistic regime without pressurising may
prove an impossibility if this magnet channel is indeed responsible for the anomalously
low Kapitza resistance.

4.2 Inner Cell Design and Reconstruction

4.2.1 Cell Recycling

To reach ultra-low temperatures of T < 200 µK, experiments at Lancaster use a “nested"
cell. Fig. 4.2 shows the nested cell design with the inner cell used for experiments in
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FIGURE 4.2: The Lancaster nested-cell demagnetisation stage. The mixing
chamber contains sinter plates which are thermally connected through a
superconducting Aluminium heat switch controlled by its own magnet
solenoid. The outer cell wall is constructed of Stycast-filled araldite shells,
whilst the inner cell wall is constructed of Stycast-soaked paper. The ex-
perimental cell shown here is the one used for flopper experiments and in
Chapter 6, which was replaced by the method described here for experi-

ments in Chapter 5.
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Chapter 5 and 6. The nested cell comprises an experimental cell of two separate layers,
both filled with liquid 3He. The outer cell is defined by a hard Stycast wall and contains
most of the copper plates used as refrigerant for nuclear demagnetisation. The outer cell
contains just one VWR as a thermometer, known as OCTa and acts as an extra thermal
shield for the inner cell.

The inner cell sits within the outer cell. At the top, there is space for more copper
plates for nuclear demagnetisation. Below that is the experimental volume of the cell. The
whole cell is made from Stycast-soaked paper. The cells share the same helium filling line,
and therefore the inner cell can still be pressurised as there will be no pressure difference
across the inner and outer cells. Both cells are thermally connected to the mixing chamber
by silver wire attached to the copper plates through an aluminium superconducting heat
switch.

Experiments in Chapter 5 required the design and building of a new experimental cell
for the new NMR-Flopper device. Rather than remove both cells entirely and construct
an entirely new cell, it was decided to simply replace the Stycast-paper section of the old
inner cell. This required the opening and rejoining of the bottom of the outer cell.

The cell was detached from the mixing chamber and placed upside-down in the centre
of a rotating turntable. The outer cell tailpiece was cut with a Dremel rotary cutting tool
held in a fixed position whilst the cell was rotated on the disc. A new outer cell wall was
constructed from Araldite. The wall was made of three concentric shells, with gaps to be
filled with Stycast when gluing back to the rest of the original outer cell. Each shell was a
different height, allowing a cap to be placed on top of the innermost gap after filling with
Stycast and then glued on when filling the outermost gap.

Once the cell was opened, the tailpiece of the inner cell was cut out, the old Flopper
device was removed and a new inner cell tailpiece was put in place. The devices at the
top of the experimental volume before the tailpiece (ICTa, a 4.5 µm VWR, a 13.5 µm VWR
and a QTF) were left and are common to both experimental cells.

4.2.2 New Inner Cell Design

The new tailpiece was originally designed to be much shorter and mainly house the
NMR-flopper, allowing the outer cell to also be shorter. However, the new tailpiece soon
came to house many devices: five nanobeams, a CNT, two sub-micron VWRs and a 25 µm
QTF. A small external antenna was glued to the inside of the wall, but its use creates a
large amount of heat. Instead, an external set of gradient coils are used and described
below.

A schematic of the new experimental cell is shown in Fig. 4.3. The NMR-flopper is
in roughly the same position as before but upside down. In the middle section is the
CNT chip, placed vertically. The CNT is driven and detected by capacitive means, and
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FIGURE 4.3: Schematic of the reconstructed cell with NMR-flopper. The
upper part of the cell near the copper refrigerant is unchanged, housing
ICTa and two other VWRs used as thermometers. The QTF1 here is also re-
cycled from the previous cell. The old separation between the tailpiece was
used to floor the old flopper device, and was removed, being replaced with
the NMR-flopper. The bottom cap contains the nanobeams, the CNT chip,
two sub-micron diameter VWRs and a tuning fork with a leg thickness of

25 µm.

therefore didn’t require being oriented perpendicular to the magnetic field. At the bottom
is a stycast plate holding a printed circuit board with three nanobeam chips glued and
bonded. The plate has three holes allowing space for the nano-VWRs and a 13.5 µm wire.
This whole plate is then glued over with stycast to prevent leaks.

Outside the outer cell, a set of two connected co-rotating gradient coils are located
across from each other on the axis of the NMR coil. The coils serve as position detection
for the NMR-flopper. The RF signal produced by the coil is picked up by the NMR coil
on the flopper. When it is closer to a particular coil, the signal changes in magnitude and
sign.
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NEMS Grounding

Whilst the nano-beams had collapsed, it may be worth mentioning the scheme used to
ground the devices whilst soldering them to the rest of the fridge. Soldering can poten-
tially produce electrostatic discharge which can destroy the small devices. The observa-
tion of superconducting transitions in the beams indicates the metallic connection of the
beam had not been destroyed by such a voltage.

The different ends of the nanobeams were bonded at the top of the chip but were
shorted at the back. A rectangle was left in the stycast-paper plate holding the beams
at the bottom, allowing the short connects to be cut and destroyed before sealing with
another piece of stycast-paper and gluing over with stycast. The wires from the bond
pads were then also shorted by a circular piece of wire, pre-soldered to every nanobeam
wires. The shorts mean that any current created by soldering would not pass through the
nanobeam but instead travel around the loops. In actuality, two loops were used. One was
held at the mixing chamber on the drive side of the nanobeam circuit (if the nanobeam is
the centre of the circuit), the other at the top of the fridge on the measurement side of the
nanobeam circuit.

4.2.3 Flopper Position Calibration

To detect the motion of the old flopper during a DC ramp two coils wound in the same
direction were mounted in the outer cell on the inner cell wall in the direction of motion
of the flopper [75]. As well as sending a DC drive, a small, off-resonance high frequency
96.4 kHz signal is mixed into the drive. The two coils on the outer cell can pick up this
signal via mutual induction, which increases as the flopper gets closer to a coil. A slow
calibration motion is used and the signals of the two pickup coils are monitored. In this
motion the flopper is moved until it hits a wall, and then moved in the reverse direc-
tion until it hits the other wall. Knowing the dimensions of the inner cell and using the
small angle approximation allows for the position to be calibrated, and further a spring
constant to be determined. The velocity can be calculated by differentiation.

In practice, the EMF induced by the motion of the wire in the same way as a VWR
provided a much less noisy signal and therefore more precise measurement of the veloc-
ity. Therefore, the coils were only used for the initial calibration of the spring constant for
the old flopper.

For the new NMR-flopper, the same principle was used but with a reversed relation-
ship, and the two coils were connected in the same circuit by a wire. The NMR circuit
can be driven via the coils through mutual induction. The response of the NMR circuit
is measured instead. Since the NMR coil is large and the amplification of properties of
resonance are used, the signal can have a much lower signal-to-noise ratio than the old



Chapter 4. Experimental Techniques and Apparatus 68

−0.5 0.0 0.5
Current (A)

−2.0

−1.5

−1.0

−0.5

0.0

Vo
lta

ge
(V

)

(a)

Linear
Region

backward
forward

0 2 4 6
Time (days)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

RM
S

Ve
lo

cit
y

(m
m

s−
1 )

(b)

Coils
e.m.f.

FIGURE 4.4: Position calibration of the NMR-flopper. (a) The flopper is
slowly swept with a DC drive from each side of the wall whilst the exter-
nal coils drive the NMR circuit. The difference in backwards and forwards
motion is suspected to be due to the motion of trapped magnetic flux lines
in the superconducting wire (see section 5.2.3). (b) A comparison of us-
ing the EMF and a fit to the linear region of the position calibration (coils)
for measuring the velocity response of the NMR-flopper. See Chapter 7 for

details.

flopper coils. Fig. 4.4 shows a typical wall-to-wall response and then the velocity calcu-
lated from a series of fixed frequency sine-wave drive currents (see Chapter 7) by the
position detection compared to the velocity calculated from the EMF as done for a VWR.
In our measurements, we only use the current end points and the distance travelled as
the inner cell radius (18 mm) and the coil length (7 mm) to calculate the total distance
travelled as 11 mm. We then stay in only the linear portion shown in Fig. 4.4 (a), and as-
suming the distance changes linearly here. We convert the voltage detected by the NMR
circuit using a linear fit.

In Fig. 4.4 (b) we can see firstly there is good agreement, and that we can achieve better
signal-to-noise ratio. The precision of this method is limited simply by the systematic
error, rather than the signal noise.
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4.3 NMR Magnets

A static magnetic field of 30.4 mT is required for an NMR resonance with a Larmor fre-
quency fL = 948 kHz given the gyromagnetic ratio γ for 3He. Furthermore, the field
needs to be extremely homogeneous within the aerogel region. Although the rate of de-
cay of the transverse magnetisation τ2 gives a minimum NMR linewidth, in practice the
NMR linewidth is much more likely to be determined by the field homogeneity. If the
field is slightly different in the different regions of the aerogel sample, then the helium
in these regions will resonate at very slightly different frequencies, creating a larger line
width in the NMR signal.

To create a homogeneous magnetic field, two new superconducting magnets were
created: a static main NMR magnet was created to provide the 30.4 mT field needed for
NMR, and a gradient magnet to control the field homogeneity.

The main magnet is made of 142 µm diameter superconducting NbTi wire and com-
prised of three connected parts. The top and bottom have 171 turns and eight layers,
whilst the larger middle section has 1264 turns and four layers.

The gradient magnet comprises just two connected parts, in the same position as the
top and bottom of the main magnet. It used the same wire and each part was 171 turns
with just a single layer in design. Fig. 4.5 shows a simulation of the overall magnetic
field created by a current of 1 A in the main magnet and 5 A in the gradient magnet. The
calculated field in the NMR region is 33.65 mT A−1.

4.4 Adding Helium-4

As mentioned in section 2.3.2, the polar phase in nafen-90 can only be stabilised when
there is no paramagnetic surface 3He. Second, pre-plating means there is no NMR sig-
nal from solid 3He. To prevent 3He from forming on the surfaces, one can pre-plate the
surfaces with just over two monolayers 4He as 4He has a lower adsorption energy and is
thus preferably attracted to the surface.

4.4.1 Helium-4 Pre-plating

To pre-plate the surface 4He a small amount of 4He gas is seeded into the cell and left to
form layers. The amount of 4He gas is based on the surface area of the whole cell and the
area density of 4He monolayers. The area density of the first two monolayers is roughly
0.1 Å

−2
[101]. The surface area is dominated by the total area of the silver sinter on the

copper plates, which totals about 437 m2. One can then calculate the required volume of
4He from the number of helium atoms.
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FIGURE 4.5: A simulation using the final wound properties of the NMR
magnet (1 A supplied) and gradient magnet (5 A supplied) in the area
around the experimental cell. The red dashed boxes show the position of
the Copper demagnetisation plates for the outer and inner cells. The blue

dashed box shows the position of the aerogel sample.

The pressure inside the cell as the gas can be monitored by the smaller VWRs. The
devices can sense even small changes in the pressure. The gas is seeded in slowly and
the VWR resonance response is monitored in tracking mode. When in gas, the frequency
decreases and width increases according to hydrodynamic theory, but then the gas solidi-
fies and the wire returns to its previous resonance width. When the wire doesn’t return to
its vacuum resonance, there is a small equilibrium pressure and saturated solidification
has been achieved.

We can verify there is no solid 3He once the cell is filled and at temperatures below
100 mK. Here, the normal fluid will obey Landau Fermi liquid theory, meaning the mag-
netic susceptibility is a constant equal to (2.15). If there is solid 3He, the susceptibility of
a paramagnet follows the well-known Curie law
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χs =
CT

T
(4.4)

where CT is the Curie temperature and the total susceptibility will be the sum of χN and
χs.

Since by (2.40) the integral of the absorption spectrum of an NMR signal is equal to
the susceptibility, if there is an inverse temperature dependence of the absorption signal
then there is solid 3He, whilst if it is constant there is no solid 3He. This check only applies
to the cell with the NMR-flopper, and unfortunately was not possible for the experiments
described in Chapter 5 and section 6.1.

4.4.2 Adsorption Purifier

Due to the spontaneous phase separation, helium-3 at ultra-low temperatures is the purest
material in the universe, as liquid 4 will spontaneously separate and every other material
is frozen. However, when warming up to higher temperatures, it is difficult to separate
3He and 4He.

The experiments with 4He pre-plating were the first ever done at Lancaster, and there-
fore a new purifying system had to be designed and built. After an experimental run with
4He pre-plating, we separate the mixed helium gases by again exploiting the difference
in adsorption energies. This method takes after the Moscow group and is simpler than
the rectification method, which requires the condensation of the mixture.

The design is simple and Fig. 4.6 shows the schematic. The mixture is slowly pumped
out through a needle valve with a charcoal cryopump immersed in liquid 4He. The needle
valve is used as there appears to be an ideal pressure for the efficiency of the separator,
which is fairly low [102]. After the needle valve, it goes through the purification cham-
ber, made of spiralled copper-nickel tube packed with activated charcoal also immersed
in liquid 4He. As 4He has a lower adsorption energy, it preferentially adsorbs onto the
charcoal. In this way, 4He is removed from the mixed gas and the purified 3He gas passes
through into the cryopump.

A leak detector is used to monitor the relative percentages of the outputted gas. Once
the purification chamber reaches saturation, the percentage of 4He in the output gas in-
creases greatly. The purifying process is stopped when this rise begins, and the purified
3He is removed from the cryopump and stored in a barrel. The remaining mixture of 4He
and 3He gas can be stored in the auxiliary “dirty barrel".

The performance of the purifier is shown in Fig. 4.7. A leak detector employs a mass
spectrometer. The mass spectrometer’s accelerating voltage determines whether it de-
tects 3He gas, 4He gas and hydrogen gas, and then the detector measures the throughput
of that gas [103]. In Fig. 4.7 the readings of the mixture before and after purifying is
shown as we sweep the voltage of the mass spectrometer. A background reading must
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FIGURE 4.6: Schematic of the purification system. Red circles with cross
indicates valves and the green G indicates a pressure gauge. The valve with
NV is a needle valve, used for fine control of the gas flow. The cryopump

used is a charcoal pump.

be taken before, where the leak rate against without any throughput is determined. The
background is subtracted from subsequent calculations. The peaks for 4He and 3He are
shown.

We see that the purifying system works very well, with a factor of 167 reduction in
the percentage of 4He gas. The design of this system is very simple and mobile. It can be
used for any fridge in Lancaster and be easily replicated in another laboratory.



Chapter 4. Experimental Techniques and Apparatus 73

120 140 160 180 200
Mass Spectrometer Voltage (V)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Le
ak

Ra
te

(m
ba

rl
s−

1 ) 4He 3He

0.0028% 4He
0.47% 4He
Background

FIGURE 4.7: The 3He and 4He leak rates as detected by the mass spectrom-
eter before purifying (orange) and after purifying (blue). The percentages

of 4He are shown respectively.



74

Chapter 5

Faster than Landau Experiment

In Chapter 3 we discussed the experiment in which the flopper is moved at quasi-uniform
velocities above the Landau velocity vL by the DC ramp method [6]. A nearby VWR ther-
mometer and QTF thermometer measured the heat released by the bursts, and the force
on the wire was inferred. This was compared to the damping force on the wire during
oscillatory motion by an AC drive. For AC drive, there was a sudden and large increase
in the damping force on the wire at 9 mm s−1, the predicted critical velocity for a cylin-
der. For DC ramps, there was no sudden onset of large damping on the wire and only a
smooth increase. Whilst the amount of damping was larger than the thermal background
due to collisions with the quasiparticle population in the ballistic regime, it was only a
modest increase and the damping increased smoothly.

The suspected reason was that when the wire was travelling above the critical veloc-
ity, a certain amount of quasiparticles occupying SABS on the wire could begin escaping
into the nearby bulk superfluid [5, 6]. This process leads to some dissipation and the
damping force. Once they had all escaped, the process ends and no more states can be
dissipated. In this chapter we detail an experiment exploring this model and investigate
some dynamics of the surface-bound quasiparticles on the wire. This work a continuation
of experiments in [104] and makes use of those results. All experiments in the following
were carried out at saturated vapour pressure. The main results of this experiment are
published in Nature Communications [105].

5.1 Model of Dissipation

We begin with a thought experiment based on the model of dissipation. First, we consider
the 1D Lambert model of dissipation for several velocities, as discussed earlier in sections
3.1.4 and 3.2.1, and explained in [5]. At velocity v < vc, there is a crossbranch process
available to the surface-bound quasiparticles but no escape process. At velocities between
vc and the full Landau velocity vL, the escape process becomes available for only the
quasiparticles able to make the crossbranch process. To make the crossbranch process, a
quasiparticle has to reverse the direction of its momentum almost elastically, for example
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FIGURE 5.1: On the right is a schematic showing the difference of the up
and down ramps at a velocity higher than vc. On the left are the dispersion
curves corresponding to the lettered positions on the ramp. (a) Halfway on
the first half of the ramp. The surface states that can escape to bulk have
done so and are now depleted. (b) The motion is stopped, the dispersion
curves return to normal and the quasiparticles begin to reach equilibrium
again. (c) The beginning of an up ramp after waiting a short amount of
time. There was not enough time for the surface states to reach equilib-
rium, and therefore the surface states are still mainly depleted. (d) The
beginning of a down ramp by reversing the direction after a short waiting
time. The reversed direction of the dispersion curve tilt means there is an
overpopulation of surface states on the RHS branch, allowing many more

escape processes to undergo, increasing the damping.

from−p to +p. The escape process results in dissipation into the system and a drag force
on the flopper. At velocities v > vL, the escape process becomes possible for some states
even without making the crossbranch process. Eventually, the quasiparticles with high
enough energy to escape will become depleted and the escape process ends (Fig. 5.1 (a)).
There is no more dissipation.

The escape of quasiparticles into bulk increases the local quasiparticle population of
the bulk superfluid. This increases the number of quasiparticle collisions on a thermome-
ter, and is equivalent to if we had heated up the superfluid by some amount. It is im-
portant to remember that when talking about heating detected by thermometers in the
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following sections, we are equivalently talking about the increase in quasiparticle density.

5.1.1 Alternating Direction

Now we can ask: what happens if we were to suddenly reverse the direction of the wire?
In this case, there is a very large amount of quasiparticles that are available to escape or
crossbranch and escape.

Instead of suddenly reversing the direction, we can stop, wait some time ∆t and, after
waiting, reverse the direction. The right-hand side of Fig. 5.1 shows the profile of these
ramps. During the waiting period, the dispersion curves reset and then there are two
thermalisation processes happening as the quasiparticles begin to equilibrate. First, the
cross branch process happens again, then a relaxation process occurs, shown in Fig. 5.1
(b). The timescale of these two processes are τcb and τr, for crossbranch and relaxation,
respectively.

Once we have waited some time, we can choose to either reverse the direction, or con-
tinue in the same direction. The ramps with a reversed direction we call “down" ramps,
and with a continued direction “up” ramps. If we do not wait any time at all, the quasi-
particle branches on the left-hand side and right-hand side will not have time to reach
equilibrium again. In this case, we expect to see a large difference in the damping as the
states that can escape are still depleted for the up ramps, but there is an overpopulation of
quasiparticles that can escape for the down ramps (Fig. 5.1 (c) and (d)). If we wait a long
time, the quasiparticles will repopulate and reach an equilibrium between both branches.

In summary, we expect the down ramps to dissipate more heat into the system at
low waiting times. We expect no difference in drag force on the wire between up ramps
and down ramps as the waiting time goes to infinity. We also expect the dissipation from
ramps with a long waiting time to be less than the dissipation of down ramps with no
waiting time, and more than up ramps with long waiting time.

5.2 Measurements

We compared DC ramps at several temperatures between 160 µK and 225 µK in super-
fluid 3He-B at saturated vapour pressure, just at the edge of the ballistic regime. Fig. 5.2
is a zoomed in version of Fig. 4.2 showing the relevant devices in the experimental cell.

In the measurement, each ramp is measured whilst the thermometers are operated
in resonance tracking mode. The resonance properties are recorded in the time before,
during and immediately after the ramp. The exact same ramp is repeated a few times
at this temperature before moving onto the next ramp type. In analysis, the response of
the VWR and QTF thermometers are averaged. Fig. 5.3 shows a typical response from
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FIGURE 5.2: A zoomed 3D sketch of the top of the inner cell and devices
used for this experiment and the Kapitza resistance analysis in Chapter 6.
The inner cell contains eighty thin and eight thick copper plates that are
sintered with silver powder. The geometric volume formed by cutting the
plates (see Fig. 6.6) cell contains the 4.5 µm vibrating loop wire. A cylindri-
cal volume containing the flopper and quartz tuning fork is connected via
a circular cutout to the bottom of the geometric volume. The cylindrical

volume also has a tailpiece separated by a small hole.

the two thermometers to a ramp. The time dependence of the thermometer response is
analysed in Chapter 6 to find the Kapitza resistance.

Many of the measurements were made previously and the effects of varying the ramp
parameters of velocity, acceleration time and waiting time have been analysed [104]. The
effects are as follows: increasing acceleration time increases the total dissipation; increas-
ing velocity increases the amount of heating; decreasing acceleration time excites higher
resonance modes of the flopper (particularly below 2 ms). A ramp with a distance more
than 1 mm experience large effects of magnetic heating (see the velocity dependence re-
sults).

For this thesis, new measurements were made with 2.5 layers of 4He pre-plating. The
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FIGURE 5.3: The change in width d∆ f of the 4.5 µm VWR and QTF ther-
mometers as a response to a 45 mm s−1 up ramp with a total distance of
1 mm with 2.5 monolayers of 4He pre-plating. The base width are 25.9 Hz
and 3.22 Hz for the VWR and QTF respectively, corresponding to a tem-
perature of 194±1 µK. The VWR reacts quicker due to its higher width, as

expected from (3.54).

main focus was velocity dependent measurements which were not taken in previous
experimental runs, but three sets of waiting time measurements were taken. These wait-
ing time measurements are compared with previous measurements using the same total
distance of 1 mm, acceleration time of 3 ms and velocity of 45 mm s−1. The ramps were
stopped at halfway, 0.5 mm, for the waiting period. A ramp with ∆t = 0 will still have two
separate halves, but with no instructions to wait after finishing the first half. The waiting
time measurements are compared with previous waiting time measurements with the
same acceleration time, total distance and velocity.

These three waiting time measurements are compared to similar previous measure-
ments of waiting time. The total distance is the same, and the acceleration periods are
from 3 ms–5 ms, but most commonly 3 ms is used. This is within the good range of ac-
celeration values and has effect on the analysis presented here, as we are only concerned



Chapter 5. Faster than Landau Experiment 79

about the waiting time dependence of the dissipation, not the magnitude.
For the velocity measurements, the ramps analysed here have the same distance,

acceleration time and stopping point as above. The ramp velocity was varied between
2 mm s−1 and 50 mm s−1 and there were three wait times 0 ms, 0.05 s and 0.1 s.

To convert the change in resonance width d∆ f to the amount of heat energy released,
we use a previous calibration for the 4.5 µm wire [106]. The calibration was made by using
AC motion pulses with similar durations to a DC ramp and monitoring the resonance as
it is in tracking mode. The EMF and drive current of the flopper are measured, and the
energy is calculated. In the calibration, it is assumed all the energy dissipated is released
as heat into superfluid 3He-B. The calibration is [106]

q = 88.6 pJ(d∆ f − 0.46 Hz)0.26. (5.1)

A second option is to calculate the heat energy from thermodynamics. Integrating
the heat capacity of the B phase (2.25) between the initial and max temperature of the
thermometer gives results for the energy released with the same order of magnitude at
low changes in width, but relies on knowing the correct volume of superfluid 3He. In
Chapter 6 the possible volumes used for the heat capacity are discussed in more detail.

5.2.1 Waiting Time Dependence

Fig. 5.4 shows two of the new waiting time measurement in terms of the heat energy q
produced and detected by the VWR for up (qup) and down (qdown) ramps. We see that
the expectation that the down ramps dissipate more energy into the system is matched.
The difference in dissipation released by the two ramp sequences increases as the wait-
ing time increases, which was predicted by our simple model. However, the difference
doesn’t reach zero and actually reverses. The difference in Fig. 5.4 at long waiting times is
of the same order of magnitude as the values of the magnetic heating constant a discussed
below.

We can fit the heating from up and down ramps with a simple exponential decay
plus an offset. Since ∆q = qdown − qup is negative at long waiting times, we fit qup and
qdown separately but with the same decay time constant τd rather than fit the difference.
This time constant is plotted in Fig. 5.5. The time constant is the same at all temperatures
measured.

The surface conditions may play an important role in the dynamics of the surface
states, but here the 2.5 layers of solid 4He pre-plating had no effect on the time constant.
From [71], this should have increased the specularity from entirely diffuse to a specularity
between 0.2 and 0.5, (where 1 is fully specular, 0 is diffuse and -1 fully retro-reflective).
The average time constant is 6 ms with a range of 6 ms. Therefore, τd = 6± 3 ms.
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FIGURE 5.4: Two waiting time measurements with 2.5 layers of 4He pre-
plating. The magnetic field is 130 mT in both cases. The solid lines repre-
sent exponential decay fits with an offset. Each temperature set uses the
same time constant. The difference between the offsets is similar to values
of the magnetic heating constant a in (5.2). The errors are estimated from
the error in the change in width. The waiting time measurements are simi-

lar to those in [104], with which we perform the same analysis.

Interpreting the Decay Constant

The fitted decay constant can refer to either of the two time constants related to the two
processes in Fig. 5.1, the crossbranch or the relaxation process, τcb and τr. We argue that
decay constant is a measurement of τcb only by considering our model for two limits of
τr.

If τr = 0, then a SABS would crossbranch and immediately fall in energy. We would
expect a second surface state to immediately follow, and the whole process would be
essentially limited by τcb and how many particles there are that are needed to cross. If
τr = ∞, then we would expect a diffusive process. And in this case, the time would still
be determined by τcb. That is to say, we can only have measured τcb.

To test for τr it would be best to use AC motion. The Lambert model predicts that there
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FIGURE 5.5: The exponential decay time constant τd does not change with
the temperature. The 2.5 layers of 4He pre-plating does not appear to have

any effect. From the average and range, τd = 6± 3 ms.

will be a reduction in the critical velocity when the frequency of the motion approaches
1/τr [5]. At frequencies higher than this, the repeated tilting of the dispersion curves al-
lows some surface states to increase in energy until the point they can just escape to bulk,
which can onset much earlier than vc. Since vc depends on the local flow and therefore
geometry of the device, this requires using the same geometry with different frequencies
to properly test. To do so, one can use higher modes of an oscillator. Other groups at Lan-
caster have not seen a reduction in vc using the second modes of a quartz tuning fork up
with a frequency up to 158 kHz [105].

The process τr therefore must be extremely fast, with a time constant less than 7 µs.
An alternative model for supercritical velocity has been proposed by Kuorelahti, Laine,
and Thuneberg [107]. As a mechanism for supercritical superflow, they find that the Lan-
dau velocity can be increased for a macroscopic cylinder with a radius larger than the
coherence length and the damping effect reduced. However, this increase is only about
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FIGURE 5.6: An illustration of the cross-section of the flopper crossbar
(grey circle) with a surface state (orange dot) trapped inside the surface
layer (blue). At the top of the crossbar, this SABS has the wrong momen-

tum to join the bulk superflow and must move around the entire wire.

1.12vL = 30.4 mm s−1 and the damping reduction found was not enough to explain re-
sults of the original experiment [6, 107]. Their model is however preliminary, and does
not include many effects at the surface, such as Andreev reflection. Nevertheless, they
suppose that surface quasiparticles collide with the wire with a time constant equal to
the coherence length divided by the Fermi velocity. They approximate this constant as
1× 10−9 s. The extremely fast time constant here is used as an argument against the Lam-
bert model. The idea here is that the very short bound state dynamics can not be per-
turbed by the much longer time scales of our acceleration period (or oscillation period
for AC motion). Hence, the bound states remain in equilibrium through the motion and
another mechanism is needed to explain the results of this thesis. However, if we have
correctly identified that there are actually two processes, and one of them is relatively
slow, this would explain how one can create nonequilibrium populations of bound states
between branches.

It would be fruitful to explore the possibility of a reduced vc caused by reaching a
higher frequency than 1/τr. To do so requires high-frequency resonator devices, such as
MEMS and NEMS.
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Mechanism for the Decay Constant

If we take the decay constant as a measurement of the replenishment rate of the surface
bound states, there needs to be some physical process of how this is possible. One pro-
posal is that bound states from elsewhere can crawl up the legs of the wire to the crossbar,
driven by a concentration gradient [104]. The legs are 25 mm long. We can identify three
velocities in 3He. The Fermi velocity vF ≈ 60 m s−1, the group velocity vg ≈ vF/3, and
Landau velocity vL = 27 mm s−1. Using the leg length, only the group velocity seems
promising, giving about 1 ms time. This simple calculation does not include any surface
effects, and it is possible the process is diffusive, which would increase the time. An effec-
tive test would be changing the length of the legs. An alternative test is to use a floating
device which has no legs or attachment to other surfaces at all. Replenishment would
then be impossible, and a device for this is currently under construction [108].

A second possible interpretation is that surface bound quasiparticles need to be in
a position with the matching direction of momentum to join the bulk. An illustration
is given in Fig. 5.6. In this simple drawing, a quasiparticle on the top of the wire has
momentum in the wrong direction to join the bulk. It must make travel to the bottom
of the wire, where the momentum will be in the correct direction. According to [109]
and [110], surface states should have a velocity less than or equal to the Landau velocity.
A simplified picture goes that vL is a kind of escape velocity: if they had greater than
Landau velocity, they would already be able to escape to the bulk.

Following this, the time required to traverse half the wire is simply πR0. This gives a
travel time of 7.5 ms. This is well within the range of values calculated for our device.

5.2.2 Velocity Dependence

When examining the velocity dependence, there was an unusual effect. Fig. 5.7 shows
the heating at different ramp velocities response with the different ramps types with zero
waiting time. Most experiments were done with only down and up ramps, but this data
is representative of those and qualitatively the same. At high velocities for the up ramps
and down ramps, the expected relationship is true. The down ramps indeed produce
more heating. At low velocities, where we should expect no difference, the relationship
is strangely reversed. The cause of this is a suspected magnetic heating effect.

5.2.3 Magnetic Hysteresis Heating Effect

In order to investigate the effects of the SABS, which should exist at zero temperature,
we need to remove the effects of thermal background of bulk quasiparticles. Ordinarily, a
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FIGURE 5.7: Two velocity measurements with ∆t showing the original
∆q = qdown − qup (orange data) which is fitted below vc with (5.2). This is
subtracted to attain the heating due to surface states (blue data), which is
fitted above vc by (5.3). After subtraction of the magnetic hysteresis, below
vc there is no heating and then there is a smooth increase. The magnetic
field for both was 130 mT. The temperatures are 185 µK–195 µK (circle and

solid lines) and 197 µK–209 µK (squares and dashed lines).

simple way of doing that would be to plot the difference in heating ∆q. There is no direc-
tional dependence of damping in the ballistic regime, so both type of ramps with iden-
tical velocity and the same background temperature should have the same background
damping. This subtraction should then leave only damping processes with a directional
dependence. This subtraction is shown by the orange data in Fig. 5.7. There is a positive
∆q at high velocities, but a negative ∆q at low velocities.

To explain the data at low velocities, it was supposed that there is a magnetic hys-
teresis effect [104]. The flopper wire is made of a type-II superconductor, which can pin
magnetic flux lines [13]. As a type-II superconductor, the wire will be in a state of flux
penetration. As the wire moves, the flux moves relative to the wire, creating some damp-
ing. The motion of these flux lines leads to some slightly extra dissipation [111].
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The consequence of the damping due to the flux lines seems to be that the down
ramps do not move quite as far as up ramps, and therefore do not collide with as many
thermal bulk quasiparticles as up ramps.

We fit the low velocity data with an empirical power law, which is

∆qlow = a
√

v
vc

. (5.2)

The fitting constant a for several datasets is shown in Fig. 5.8 and seems to follow a
magnetic field dependence close to B−2, which indicates this difference is indeed likely
due to some magnetic effect.

5.2.4 Damping from Bound States

Once we fit the empirical magnetic law, we can subtract it. Performing this subtraction
gives us the blue data in Fig. 5.7. This picture matches much more closely to the expected
picture, with ∆q being large at high velocities and roughly zero at low velocities. This
data is fitted with an empirical law

∆q = b
(

v− vc

vc

)p

(5.3)
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b is different depending on the dataset but falls within the range 0.4 pJ–1.2 pJ and p =

2.5± 0.5. Lambert’s model calculates p = 2 for high velocities, although this is not for
our reversal ramps where the bound states could be depleted [5].

5.3 Conclusions

In this experiment we presented a simple Lambert-style model of the supercritical su-
perflow explained in terms of the dynamics of surface bound states on the crossbar of
the flopper. Using this model, we compared moving the flopper at supercritical velocities
primarily with two types of motion. An initial direction of motion was chosen, and then
stopped. After stopping, the same direction was repeated, or the direction was reversed.

Measuring the difference in dissipation between these two ramps allows us to exclude
the dissipation from collisions with bulk superfluid quasiparticles, which is not direction
dependent. A further correction for a magnetic dissipation effect had to be made. Once
this was carried out, the data clearly shows that there is a difference between the two
ramp types when we wait for only small times. This difference appears at vc, as pre-
dicted by Lambert’s model [5]. In the absence of other possible explanations that would
be direction dependent, we conclude that the extra dissipation seen above vc for quasi-
uniform velocity ramps is due to the escape of surface-bound quasiparticles to the bulk
superfluid.

By varying the waiting time, we found that the difference between up and down
ramps at long waiting times is simply the magnetic hysteresis. By fitting the heating pro-
duced by each type of ramp as a function of waiting time with an exponential decay, we
found the time constant of the crossbranch process identified in Lambert’s model.

We should emphasise the preliminary and simple nature of this model. In this work,
it is shown as a simple 2D problem. However, this simple Lambert model has predicted
the behaviour of several phenomena, and provides a qualitatively accurate explanation
of the faster than Landau velocity observed in Fig. 3.10 and reported in [6]. Further-
more, an alternative model developed by Kuorelahti, Laine, and Thuneberg predicts an
enhanced Landau velocity at ∼ 1.12vL for a moving macroscopic cylinder and does not
have a mechanism understanding the difference between up and down ramps [107]. In
our velocity measurements, no such enhancement was found.

As yet, the nature of the physical process leading to the crossbranch processes τcb

is unknown. Hopefully this can be done with further analysis and experiment. One ex-
periment is currently being designed, with plans to move a floating sphere [108]. If the
quasiparticles replenish by moving up the legs, this process will become impossible. A
second test of Lambert’s model is the prediction of a reduced critical velocity at frequen-
cies higher than the second relaxation process, f > 1/τr. The critical velocity depends
on the local flow around the oscillator, so it would be convenient to have the same shape
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oscillator. Using MEMS and NEMS in ballistic superfluid 3He-B present an excellent op-
portunity to test this prediction.
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Chapter 6

Thermometric Experiments

This chapter details experimental results in relation to the response of vibrating wire
thermometers. First, measurements of Kapitza resistance between liquid 3He and copper
covered with sintered silver are reported, which are published in Physical Review B [112].
This is compared to both with and without a surface layer of 4He covering the sinter.

As mentioned in the section 4.1.3, the temperature dependence of Kapitza resistance
in the superfluid phase has been controversial. In the ballistic regime of 3He-B, early
measurements by Parpia at Cornell and at Lancaster showed an exponential temperature
dependence but a later investigation by Voncken et al. investigate a power law and found
a T−2 or T−3 dependence the most likely [27, 90, 91, 113]. Replicating the results of one of
these experiments would improve our understanding of heat exchangers for designing
low temperature experiments.

The chapter also presents some preliminary measurements of the sub-micron diam-
eter vibrating wires as we explore their possibilities as bolometers in superfluid 3He.
In superfluid 4He, nanoscale devices have been successfully employed as ultra-sensitive
probes from less than 10 mK to the superfluid transition temperature [59, 62]. However,
the coherence length is smaller than a nanometer in superfluid 4He [1]. In superfluid 3He
the coherence length ranges from 20 nm to 80 nm depending on pressure [26]. One VWR
has a diameter of just 400 nm, and the coherence length could affect the damping on the
wire. The measurements presented here were carried out at saturated vapour pressure,
where the coherence length is 80 nm [26].

6.1 Measurements

In this section we analyse the thermometer response to DC ramps presented in the pre-
vious chapter. In the experiments, the DC ramps released a heat burst. In the following
analysis, only up ramps with zero waiting time described in Chapter 5 are analysed.
The heat burst from a ramp is measured by two nearby thermometers: a 4.5 µm diameter
VWR and a QTF. The original set up is shown in Fig. 5.2. The resonance widths of the ther-
mometers are measured continuously as they are left in the tracking mode described in
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3.3.2. Naturally, the resonance widths of the thermometers increase during the ramp, be-
fore decaying back to a base temperature. The analysis for Landau velocity only requires
the height of the response, but analysing the full response can be used to illuminate the
thermal interaction between superfluid 3He-B and silver sinter.

Before a DC ramp, the bulk quasiparticle population is in thermal equilibrium with
the thermal bath. The thermometers are resonating with a base resonance width of ∆ fbase.
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FIGURE 6.1: The response of the VWR with diameter 4.5 µm for pure 3He
and two layers of solid 4He coverage on the cell surface at temperatures of
197 µK (∆ fbase = 30.4 Hz) and 193 µK (∆ fbase = 25.9 Hz), respectively. The
corresponding width change for the 4He data is given by the right y-axis.
The 3He data was measured at a slightly different temperature, and hence
the width change is 5% larger for a given temperature change. Solid lines

represent the fits from Eq. (6.1).

After a DC ramp is started, the released heat goes directly into the liquid and increases
the bulk quasiparticle population, detected by a rapid increase in thermometer width up
to a peak value. The quasiparticles excited begin colliding with surfaces. In the ballistic
regime these collisions are either near-elastic or the quasiparticles lose enough energy to
recombine as a Cooper pair. We expect an exponential decay of the quasiparticle density
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until thermal equilibrium is again reached, measured by the thermometer width reaching
the base value. Figure 6.1 shows a typical response of a thermometer width to a DC pulse
that we model as [114]

∆ f = ∆ fbase + H
τb

τb + τw

(
e−t/τb − e−t/τw

)
. (6.1)

Here, H is a constant describing the amplitude of the width response and τw is the re-
sponse time of the thermometer, determined by the resonance width and is approxi-
mately equal to 1/ (π∆ fbase) (see (3.54)). The decay time constant τb is related to the
heat capacity given by (2.25) [27]

RK =
τb

CB
. (6.2)

The thermal conductivity of the stycast cell walls is extremely low. Therefore, we ex-
pect only collisions with sintered copper plates to result in recombination. The inner cell
contains 8 copper plates of thickness 1.1 mm and 80 copper plates of thickness 0.2 mm
which are used as a refrigerant for nuclear demagnetization. Ulvac brand silver powder
of 70 nm particle size is sintered to both sides of each copper plate with a filling factor of
0.5 and results in a microscopic surface area of 80 m2 [89].

6.1.1 Comparison of 3He and 4He Plated Cells

Fig. 6.2 shows the time constants extracted from the measured response of the 4.5 µm
wire to ramps at different temperatures. Unfortunately, the QTF was too noisy to pro-
vide useful measurements in the 3He run. However, between those measurements and
adding 4He a low temperature attenuator was added to the QTF circuitry, much improv-
ing the signal quality. The QTF provides similar results in the case of 4He measurements
as the VWR does to identical ramps for 4He pre-plated cases. The ramps are up ramps
with velocity 45 mm s−1 over a total distance 1 mm with an acceleration period of 3 ms.
They have waiting time ∆t = 0, see Fig. 5.1 for details. For this analysis these ramps are
functionally equivalent to a constant ramp without stopping in the middle, as according
to (6.1) the time dependence is not dependent on the magnitude H and acceleration time
is much shorter than the response time of the oscillator.

The decay constant τb extracted for 4He pre-plated surfaces is 1.0± 0.1 s which is ap-
proximately double the 0.5 ± 0.1 s constant observed in pure 3He. Similar results were
obtained for the QTF thermometer for pure 4He, with the same average. From (6.2) this
means that 4He plating has effectively doubled the Kapitza resistance. Furthermore, the
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FIGURE 6.2: The quasiparticle relaxation time constant τb as measured by
the vibrating loop thermometer. The average τb is 0.5± 0.1 s and 1.0± 0.1 s
for solid 3He and solid 4He coverage, respectively. Absence of discernible
variation over temperature is consistent with an exponential dependence

of RK.

thermalization time constant τb is independent of temperature for both types of cover-
ages, which is demonstrated in Fig 6.2. According to (6.2), this demonstrates an expo-
nential temperature dependence on Kapitza resistance in both cases, and leads to the
conclusion that pre-plating with solid 4He doubles the Kapitza resistance.

DC ramps with varying velocities for the same 1 mm distance and 3 ms time constant
were measured with 4He plating. From Fig. 6.3 we can see that the velocity of the ramp
does not affect the time constant. Therefore, the height of the peak, or in physical terms,
the heat released into the superfluid, does not seem to affect the time constant, as one
would expect in the ballistic regime.

What is interesting is the difference between the higher and lower fields. The mea-
surements show a consistent difference. The 65 mT measurements have an average time
constant τ = 1.0± 0.1 s whilst the 130 mT has an average time constant of 1.2± 0.1 s for
the entire span. More startlingly, the effect is happening in the 4He plated data but this
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FIGURE 6.3: The time constants extracted from fits as velocity of the DC
ramps is increased in two different field and temperature regimes. The av-
erage time for the lower field is 1.0± 0.1 s and for the higher field 1.2± 0.1 s.

does not necessarily suggest there is still solid 3He on the surfaces. In a study of Kapitza
resistance for metals with impurities, Avenel et al. note that the Kapitza resistance with
one monolayer of 4He was identical to Kapitza resistance with pure 3He [115], hence it is
likely we have over one layer. Moreover, in a study comparing 99.99% pure platinum and
99.999% platinum, Bishop, Mota, and Wheatley found that the two values proportional
to RK were independent of 4He up to 480 ppm [116]. At 635 ppm the Kapitza resistance
increases consistently up to 7000 ppm, depending on the impurity level. Unfortunately,
they lacked knowledge of their geometry and do not calculate the number of layers.

The field dependency in some way provides evidence for the existence of a magnetic
channel. The original proposal was simply the dipole-dipole interaction between nuclear
dipoles in the liquid 3He and electronic dipoles in the solid [92]. It is possible that solid
3He only enhances the coupling, but it is not completely prevented without 3He. Osheroff
and Richardson found a similar 20% increase in the Kapitza resistance as they increased
the magnetic field up to 200 mT [95]. Osheroff and Richardson also used the 70 nm Ulvac
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brand of silver powder. Perry et al. saw that Kapitza resistance between 3He-N and pure
3He-covered platinum was insensitive to magnetic field in our range of magnetic fields
[94].

In this chapter, we convert the velocity energy range by the heat capacity method,
different from the calibration method presented as (5.1) in Chapter 5. First, one converts
the thermometer widths into a temperature by means of (3.37). The heat required to raise
the temperature is then

q =
∫ Tpeak

Tbase

CBdT. (6.3)

Both methods provide similar values at low velocities but deviate at high velocities.
Using (6.3) the energy range tested over is from 5 pJ to 100 pJ.

A final concern is that the heat capacity of the solid helium on the cell walls may
effect the results, as in [117]. The heat capacity of the solid helium at the temperatures
presented is much smaller than the heat capacity of the liquid for our cell.

6.1.2 Comparison to Previous Measurements

As Lancaster has used the same technique found in [89] for making silver sinter with the
same Ulvac powder, it is possible to compare to the previous measurements of Kapitza
resistance by Carney et al. and Castelijns et al. [90, 91]

To calculate the Kapitza resistance using (6.2), the relevant volume of 3He has to be
calculated. The possible options are the volume of the whole inner cell or the volume of
3He bordered by the sintered copper plates and the cell walls, localised within the vicinity
of the flopper. That is to say, not including the 3He between the copper plates.

During Carney’s 1989 experiments, they also investigate heat transport through sin-
tered plates, from a distant heater (say volume A) to the experimental volume (say vol-
ume B), shown in Fig. 6.4. Volume A has a heater and several 10s of sintered plates be-
tween it and volume (B), with a VWR thermometer. They found that even at extremely
high heat flux, there was only a small temperature rise eventually detected by the VWR
thermometer in B. At low heat flux there was no detected temperature rise in the ther-
mometer even after a long period of waiting time.

Thus, it was decided to take into account only the localised 3He. The tailpiece was
also neglected due to being connected by only a tiny hole. Despite this, the choice for
the value of the volume does not change the overall conclusion of the following results
much, and the Kapitza resistance would be the same order of magnitude. This volume
was used to calculate the energy range for the velocity measurements and gives similar
values to the calibration, although again, the other volumes would still keep it within
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FIGURE 6.4: Sketch of the experimental cells used in earlier Lancaster ex-
periments [90, 91], referred to as Cell I and Cell II, respectively. The ex-
perimental volume in both experiments contains several wires that can be
used as detectors or heaters, and even resistance heaters in the case of [90].
In the case of Cell I the copper plates were 1 mm thick with about 0.5 mm
of sinter on one face, whilst in Cell II the plates were 0.1 mm thick with

0.1 mm sinter on both sides of each plate.

an order of magnitude. The method for measuring RK by Carney and Cousins did not
depend on the choice of volume.

When comparing the data, one would expect a similar value of Kapitza resistance
times area RKA (or heat conduction per area) for each set of data. As with the volume
chosen, the choice of area is not obvious. There are three possibilities: the total “interfa-
cial" area, the “microscopic" area or the “geometric" area. Table 6.1 shows a comparison of
the possible three sets of geometries for the three datasets. The interfacial area is the total
area of the copper plates, calculated as if the sinter does not enhance the area. The micro-
scopic area is the area created by the sponge-like sinter surface, calculated by knowing
the total mass of sinter used on the plates and measurements of the area per unit mass
made (0.83 m2 g−1) by Keith and Ward [89].
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Cell Volume
(cm3)

Sinter Area Sinter Mass
(g)

Interfacial
(m2)

Microscopic
(m2)

Geometric
(cm2)

This work 8.6 0.21 80 36 96
Castelijns et
al. [90]

1.0 0.011 22 3.0 28

Carney et
al. [91]

1.0 0.17 41 3.0 49

TABLE 6.1: Experimental cells for each measurement. The interfacial area
is the area of all plate faces covered in sinter and microscopic area is
the area of the sintered powder’s sponge-like surface. Geometric area is
the sintered plate surfaces that face the experimental volume containing
the large wire with no other sintered surfaces between it and the volume
(see text). The experimental volume quoted for this work excludes the tail
piece, in which a small hole limited heat flow into the tail piece volume.
However, the tail piece volume is not large and its inclusion would not

change the results significantly.

The geometric area is complex to define. It is the area of sinter that is in contact with
the chosen experimental volume of 3He. In Fig. 5.2 we could say that the back, front and
top are sinter “walls" that are in contact with volume. The area of these walls would then
be the geometric area.

Thus we treat this area as if there are no gaps between the plates. Of course, in reality
there are small gaps. Even more complicated is the structure of the plates are not at a
uniform depth, but instead have a ridge-like structure. The inner cell contains eighty
0.2 mm thick and eight 1.1 mm thick copper plates with dimensions 49 mm by 28 mm. To
create the box at the top of the experimental area, a rectangle is cut out of each of the
middle plates. The rectangles cut out are of alternating dimensions to create the ridge-
structure. Figure 6.6 shows the full pattern of the dimensions.

Fig. 6.5 shows the Kapitza resistance multiplied by the geometric area for our pure
3He in Fig. 6.2, the data from Lancaster in 1986 and 1989. The zero pressure data for 1986
and 1989 has been refitted with the same Tc2 e−∆B/kBT form as the original fits but with a
fixed BCS gap

q = p1Tp2 e−
1.76kBTc

kBT . (6.4)

The inverse of the derivative is then used to calculate RK, as per (4.3). For [90], p1 =

5.87× 10−10 and p2 = −0.836 and for [91], p1 = 1.25× 10−8 and p2 = −0.54. These fits
are as good if not better than the previous fits. The R-squared value of fit to the 1985 data
is 0.99, whilst it was 0.98 for the previous fit. Appendix B gives some details of statistical
measures of best fit.
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FIGURE 6.5: The effective thermal boundary resistance RK multiplied by
the “geometric" sinter scattering area A for quasiparticles created by the
wire as a function of inverse temperature. Tc = 929 µK is the critical tem-
perature of superfluid 3He at zero pressure. The gold and red lines are
fits using (6.4) for data from [90] and [91], respectively, and converted into
thermal boundary resistance. For comparison, our data shown is only in
pure 3He. They lie mostly on the gold line, or between the two lines if the

tailpiece volume is included.

The area used is the geometric area. The geometric area is in fact the only area that
gives the broad order of magnitude agreement one would expect. The fact that the ge-
ometric area is the only area suggests that in the ballistic regime of 3He-B, the quasi-
particles don’t “see" the entire sinter area. Perhaps to a quasiparticle, the sinter appears
mainly as a wall of normal fluid, solid helium and metal. The pore size of sintered metals
is roughly equal to the coherence length of the superfluid in our conditions, 80 nm.

Consider a quasiparticle in a box, with the ceiling being a sinter wall with which a
collision results in recombination. The other walls and floor are plastic, with recombi-
nation collisions so rare as to be effectively impossible. The quasiparticle travels with
group velocity vg which is approximately 20 m s−1 at these temperatures and pressure.
With distance dc between the walls, the time it takes to traverse from one wall to another
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FIGURE 6.6: The arrangement of sintered copper plates in the inner cell as
viewed from underneath. The inner cell contains eighty 0.2 mm thick and
eight 1.1 mm thick copper plates with dimensions 49 mm by 28 mm. A 2 cm
by 2 cm by 1 cm cube is formed by cutting the middle plates. The cuts from
these plates are in an alternating pattern of a 1.9 cm by 1.1 cm rectangle
followed by a 2.0 cm by 1.0 cm rectangle to create 1 mm protrusions that
increase the surface area without changing the volume. The thick plates
have holes for attaching silver wires from the mixing chamber plate. The

white gaps indicate a piece of cigarette paper.

is roughly tcol = dc/vg and the average time taken for there to be no more collisions is
approximately τb. Therefore the probability of collision successfully leading to recombi-
nation is P = tcol

6τb
. This gives an estimate on the order of 1000 collisions needed for a

quasiparticle to lose its energy with the sinter and recombine.
However, this is a much too simplified model to explain fully the dynamics of heat

conduction by quasiparticle collisions. First, in the calculation of the geometric and inter-
facial areas we made no distinction between parts of copper plates covered by sinter and
those not.

Second, we are unsure of how the gaps between the plates affect the collisions. Surely
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some quasiparticles will fall into these gaps. We know from the volume A to B heat con-
duction experiment by Carney et al. that at some high heat flux some quasiparticles likely
get through these gaps. The 1986 experimental cell used just twelve 1 mm thick copper
plates with a square cut out of seven to create an experimental volume. In 1989, Carney et
al. used ninety-two 0.1 mm thin plates. As previously described, we have eight thick and
eighty thin plates. Our data lies towards Carney et al. in 1989, and is closer to midway
between the two with the tailpiece volume included.

In their efforts to explain possible differences, Carney et al. used a similar model to
our simple quasiparticle collisions with a box calculation but also stipulated the possi-
bility of an effective “capture rate”. The capture rate is how likely a quasiparticle recom-
bines upon colliding with a particular surface. Adding sinter improves the capture rate.
A “wall” actually being the ends of several sintered plates with gaps between would also
have a different capture rate. It would be interesting to perform a conduction experiment
similar to that in Carney et al. In the original experiment, both the plates and quasiparticle
travel direction from the distant heater are vertical. Instead, the plates could be arranged
horizontally rather than vertically to test if there is indeed a difference in capture rates if
there are gaps. Mixed arrangements could also be tried, such as most plates vertical but
with one or a few horizontal in the middle. Alternatively, more thermometry could be
placed along the direction of travel and between plates, to determine how far a quasipar-
ticle travels.

Unfortunately, it was difficult to extend the comparison to other measurements. For
example, Parpia uses bronze flakes rather than silver powder [27]. Details of the experi-
mental geometry are often difficult to find but make a large difference to the final analysis.

For the experiments made by Voncken et al., they used a platinum NMR thermometer
to monitor the temperature of the cell or sinter Ts, and a VWR thermometer to measure
the pressure of the liquid Tl [113]. In their analysis, they plot the difference of the Tn

l − Tn
s

against temperature, where n = 1, 2 3.
There are a few significant differences, which they also note. First, the experimen-

tal cell is designed such that, apart from a small space for the VWR thermometers, it is
packed with silver sinter. The sinter is thermally connected to the refrigerant plates, but
they are not directly in the cell. This means the cell temperature changes quite drastically
when they apply heat to the liquid, whereas for our cell the change is slow and the cell
temperature is close to a constant. In their model, they come to the conclusion that there
is normal fluid trapped in the sinter due to the small pore size. In their one dimensional
model, they therefore use the properties of normal fluid for the temperature dependence
of heat conductivity. Since their cell is packed with sinter, the relative percentage of nor-
mal fluid would be much larger. In our experiment, RK would be dominated by the su-
perfluid quasiparticles because the ratio of superfluid is much higher compared to the
normal fluid trapped leading to an exponential dependence, whereas in their experiment
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the opposite could be true.
Second, they lose sensitivity at the lowest temperatures, as the intrinsic width of the

VWR become comparable to the damping. Finally, they use a different silver sinter for
their sinter, so one would not expect an exact agreement. There is a large difference be-
tween the Kaptiza resistance and different types of silver sinter. König et al. performed
several measurements of impurities in different brands of silver powder used for mak-
ing sinter [96–98]. They concluded that Ulvac powder has a larger content of magnetic
impurities and a lower Kapitza resistance at millikelvin temperatures. We, Osheroff and
Richardson, Castelijns et al. and Carney et al. all used the 70 nm Ulvac powder, which has
the highest magnetic impurity content of all brands and sizes measured by König et al
[90, 91, 95]. Voncken et al. use a powder from Inabala Corp., Vacuum Metallurgical Ltd
[113].

6.2 Nanowires as Thermometers

With the construction of the new inner cell, 400 nm and 900 nm VWRs were added.
Nanowires and nanobeams have a much higher mass-sensitivity [59]. At temperatures
near Tc the viscosity of 3He means such devices are much too overdamped to gain infor-
mation from a frequency sweep for thermometry purposes. At lower temperatures, they
may be more responsive to small changes in temperature.

As discussed in section 3.1.3 the resonance width is caused by damping due to quasi-
particle collisions. The damping is enhanced by Andreev reflection and follows the expo-
nential relationship (3.33). Since the proportionality constant C is of order unity, devices
should experience a similar damping force normalised by the diameter. Using the full 3D
specular calculation for the devices allows us to estimate the expected maximum damp-
ing force for a given temperature and geometry [68]:

F
2R0

= 2p2
Fv

4πpFh
m3

e−
∆B
kBT . (6.5)

The wires were first measured with in vacuum, with the inner cell connected to the
mixing chamber, which had reached its base temperature close to 4 mK, to ascertain the
intrinsic width of the resonators. The wires have then been measured in the ballistic
regime of 3He-B at zero pressure. The wires were plated with 4He and the quasiparticle
reflections should therefore be close to specular. Fig. 6.7 shows the normalised damping
force of the several thermometers at 220 µK in the cell as a function of the characteristic
size of the device.

One can see the 400 nm device is almost an order of magnitude lower than the pre-
dicted maximum value and much smaller than the average for the other devices. There is
a possible drop off for 900 nm device. The relationship is more or less the same at various
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FIGURE 6.7: The normalised damping force of various probes in the cell at
220 µK at zero pressure. The specular reflection prediction for this temper-
ature according to (6.5) is shown. The drag force of ion at this data has been
extrapolated from data in [118]. The naive prediction without Andreev re-

flection effects included would be 0.002 N s m−3.

temperatures. Also plotted is the extrapolated drag force for an electron bubble extrapo-
lated to the same reference temperature [118]. The electron bubble radius is much smaller
than the coherence length and could provide a reference value for devices smaller than
the coherence length. Finally, a simple scattering mechanism without Andreev reflection
as described by (3.32) would give a normalised sensitivity of about 0.002 N s m−3. The
ratio of 4.5 µm wire and 400 nm wires’ normalised damping force is 3.5.

This difference could be due to 400 nm having a very strange geometry, but this seems
unlikely. An alternative physical explanation could be that the flow enhancement around
the cylinder has reduced. The coherence length in 3He-B at zero pressure is ≈ 80 nm, and
thus R0

η ≈ 2.5. In these cases, they could exhibit much different damping phenomena
compared to the larger devices. The effect on the velocity profile of the superflow around
the wire and the potential barrier coming into the wire was derived by Evgeny Surovtsev
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1

First, Surovtsev rewrites the order parameter of the B phase (2.19) near a wire in polar
co-ordinates (r, θ) as

Aµj = eiΘ(∆⊥(r)nµnj + ∆‖(r)(δµj − nµnj)) (6.6)

where nµ and nj are components of the matrix n̂R which is fixed perpendicular to the
cylinder, and we have split the gap into its components parallel and perpendicular to the
surface, and we have assumed it depends only on the radius. Surovtsev also assumes that
the superflow does not influence the surrounding texture, which is valid for low veloci-
ties. Using Ginzburg-Landau expansions and the fact the superflow must be irrotational,
the differential equation to solve is

(
3∆2
⊥ + 2∆2

‖

) ∂2Θ
∂r2 +

(
(3∆2

⊥ + 2∆2
‖)

r
+ 6∆‖

∂∆‖
∂r

+ 4∆⊥
∂∆⊥
∂r

)
∂Θ
∂r

+
4∆2
‖ + ∆2

⊥

r2
∂2Θ
∂θ2 = 0.

(6.7)
The boundary conditions are the same as the simple incompressible, inviscid model
above. That is to say, v = v0 far away and v = 0 perpendicular to the cylinder at r = R0.

At large diameter devices R0 � ξ, the energy gaps ∆⊥ = ∆‖ = ∆B. Since ∆B is a con-
stant at a given temperature, in this regime the model simplifies into the same governing
equation as that of the incompressible, inviscid fluid model in Fig. 3.5.

More complex, however, is the situation for wires with a diameter such that R0 ∼ ξ.
Here, we take a model function for the gap values of the order parameter as the gap going
to zero at the boundary over a distance defined by the coherence length

∆⊥,‖ = ∆B − δ⊥,‖e
( R−r

ξ ). (6.8)

The constants δ⊥ and δ‖ depend on the scattering conditions. The simplest case is specular
reflection, where δ⊥ = ∆B and δ‖ = 0. Solving for the purely specular case numerically
results in a varying flow profile relative to the wire size, plotted in Fig. 6.8.

1This analysis was delivered in personal communications. A website with contact details is available here:
https://kapitza.ras.ru/arhiv/people/surovtsev/Welcome.html.

https://kapitza.ras.ru/arhiv/people/surovtsev/Welcome.html
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FIGURE 6.9: The potential energy of superfluid near a cylinder of R. The
same values as Fig. 6.8 are plotted in dotted, whilst the 400 nm diameter
wire is plotted as a solid line. A potential barrier is formed when the wire

is much larger than coherence length.

Such a morphing of the flow velocity and order parameter near the wire has a large
effect on the potential barrier that causes Andreev reflection. Surovtsev estimates this
by considering a quasiparticle with momentum p = (−pF − δp, 0) for Cartesian co-
ordinates. The particle is moving directly perpendicular to the surface of the wire. For the
wire moving with velocity (−v0, 0) the potential barrier can be estimated as the perpen-
dicular gap plus the relative velocity of superflow multiplied by the Fermi momentum:
∆⊥ + (v0 − vs(r))pF. Fig. 6.9 shows calculations of the potential barrier as R

η decreases.
We can see this barrier reduces as the radius of the wire becomes comparable to the co-
herence length and even becomes an attractive well. Therefore, there will be a lack of
Andreev reflection for such a quasiparticle.

Furthermore, both the 400 nm and 900 nm wires have the reduced critical velocities
shown in Fig. 6.10. The 4.5 µm wire has the expected critical velocity vc = 9 mm s−1.
This could be due to approaching the coherence length, however it could also be due
to a much more mundane reason. It could indicate dirt, some kink in the wire, a shape
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FIGURE 6.10: Amplitude sweeps in a magnetic field of 84 mT for the
nanowires as temperature increases from 178 µK to 191 µK. The critical ve-

locities are less than the usual vc = 9 mm s−1.

slightly different from a loop or some unetched copper causing a strange geometry.

6.3 Conclusions

The flopper experiments have illuminated cooling mechanisms important for the future
of ultra-low temperature experiment design. The analysis prevents strong evidence that
in the ballistic regime of 3He-B that Kapitza resistance is dominated by quasiparticle col-
lisions with sintered copper plates. Comparisons with previous measurements indicate
that simply increasing the amount of sinter in an experimental cell will not yield much
improvement in cooling power once an experiment has started. Since the probability of
a collision resulting in recombination, on the order of 1000 collisions are needed for the
average quasiparticle to recombine. If an experiment produces a localised heating (and
thus an increase in the local quasiparticle population) one should focus on increasing the
area of sintered surfaces a quasiparticle created in this local area can easily scatter too.
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One way of increasing this area is to employ the alternating narrow and wide sinter
plates to create a ridge like surface. The early experimental results were likely the logic
behind this design, as opposed to the straight design used in those experiments. Another
possibility is to use copper plates with prismatic sloped edges, which also have sinter on
them. This design is soon to be tested at Lancaster in a new experiment.

Adding surface layers of 4He was found to increase the Kapitza resistance. Some ex-
periments require large amounts to achieve surface specularity may struggle to reach low
temperatures, at least in a reasonable time. The higher Kapitza resistance is likely due to
the weakening of a magnetic channel of heat transfer, as solid 4He is non-magnetic. Sim-
ilarly, it seems that the amount of magnetic impurities in the silver powder used is an
important factor.

It would be beneficial to extend the scope of the measurements by increasing the tem-
perature range and probing different phases. This requires sensitive and accurate ther-
mometers for a higher temperature range. Similarly, the VWR thermometry technique
cannot be used in the A phase. The A phase has nodal points in the energy gap, and
therefore quasiparticle populations differ depending on the texture. The method of heat
transfer from superfluid 3He-A to sinter at ultra-low temperatures is an interesting ques-
tion for further work, since the propagation of quasiparticles is significantly different [73].
One would assume it is unlikely that the result in the B phase would then apply, but
earlier measurements of the A phase found an exponential dependence on temperature
similar to that in the B phase between 230 µK and 450 µK at zero pressure [67].

As for the preliminary measurements on the vibrating wires, a potentially counter-
intuitive result was found. Whilst the small diameter wires are expected to have a high
mass-sensitivity in general, they may actually have a lower damping force for the same
temperature in the ballistic regime of a superfluid. The warping of the velocity poten-
tial and energy gap near an object that approaches the coherence length could result
in a weaker effect for Andreev reflection, leading to an overall loss in sensitivity. While
these devices may be useful in observing interesting physics from approaching the coher-
ence length, their value as sensitive thermometers may be limited. As an object becomes
smaller than the coherence length, they may become essentially point-like objects [107].
Under this assumption, they would therefore not disrupt the superflow at all and the en-
ergy gap perpendicular to the surface would also not go to zero. Therefore, they such an
object would not undergo Andreev reflection, resulting in a much lower damping [107].

It is currently unclear whether the sub-micron VWRs have anomalously low damping
due to the effects of the coherence length on the flow and energy potential around the
wire, or if it is a mundane reason such as a geometric defect. It is possible to pressurise
the cell to confirm this effect. Pressurising will decrease the coherence length and change
the ratio of R/ξ. This should therefore change the potential barrier according to Fig. 6.9
and therefore the damping force due to Andreev reflection.
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Additionally, due to their low frequency, the sub-micron diameter wires present a
good opportunity to investigate a new regime. Studies of mechanical oscillators in the
hydrodynamic regime of liquid helium have hitherto focused on the limit where the vis-
cous penetration depth δ is much greater than radius [57]. With resonant frequencies on
the order of 1 kHz, much lower than resonance frequencies of MEMS and NEMS previ-
ously studied, the sub-micron wires can have δ � R. These measurements can be done
in liquid 3He or 4. Furthermore, they could also be done in gaseous helium, but an in-
dependent pressure gauge is necessary to accurately control the density of the helium
gas.
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Chapter 7

3He in a Nematic Aerogel Experiment

In this chapter, we detail experiments entirely using the newly built cell and NMR-
flopper device. The experiments took place in two regimes, low magnetic field and high
magnetic field. The objective of low magnetic field was to use NMR to detect features in
the polar phase. It would be possible to confirm and complete the phase diagram found
by Dmitriev et al. discussed in Fig. 2.8 for the low temperature and low pressure region
in the bottom left [7].

Furthermore, the NMR can be used to examine textural defects in the several phases
[2]. By moving the NMR-flopper and therefore aerogel beforehand, vortices and half-
quantum vortices could be generated, as well as possible textures induced by the flow.
After stopping, NMR can be performed to examine the defects and their dynamics. The
population of HQVs with relation to the amplitude of the movement, and the population
decay in time, can hopefully be measured. In this chapter the current performance of the
NMR setup is presented and whether HQVs could be measured is determined.

In the high magnetic field, movement of the flopper is hopefully used to detect the β

phase. The properties of resonance of the device could be used to detect the superfluid
fraction and therefore the β phase [10]. Finally, any dependence of superflow on the ve-
locity of moving is to be found, in an effort to search for the predicted threshold velocity
effect. The bulk of the chapter concerns measurements in high field in search of the β

phase and a threshold velocity for superflow.

7.1 NMR Measurements

We performed nuclear magnetic resonance measurements at temperatures around and
above 0.6Tc and in a field of around 30 mT by inputting a current of 900 mA into the main
NMR magnet. Once the resonance was found by sweeping the magnetic field around
900 mA, increasing currents were applied to the gradient field magnet to increase field
homogeneity. A reduction in the width of the NMR signal is observed. Fig. 7.1 shows
the absorption of several NMR field sweeps, as a function of Lamor frequency of the
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FIGURE 7.1: The NMR absorption spectrum as the current in the gradient
field magnet is increased. The NMR absorption line width is decreasing
and amplitude increasing as the gradient magnetic field increases, indicat-

ing the field inside the aerogel is becoming more homogeneous.

given field. We can see the frequency width of the signal decreases as the gradient current
increases.

6 A is the maximum current our power supply could provide. The signal width is
about 2 kHz. Unfortunately, at currents of 5 A and above, the gradient magnet will even-
tually quench and become normal again. Quenching heats the dilution refrigerator, as
the magnets are thermalised on the still radiation shield, and the superfluid quickly heats
well into the normal phase, effectively ending any measurement. Quenches in the gradi-
ent magnet can also quench the main NMR magnet and temporarily stop circulation as
the pumps used to circulate mixture are overloaded. Therefore, we operate the gradient
magnet at 4 A. Since it is possible to use higher currents on the gradient magnet for a time
before it quenches, only a small part of the gradient field magnet or its wiring must have
exceeded its critical current, until this part heats enough to create an avalanche process
of heating and quenching.
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One can estimate the resonance width needed to observe HQVs from (2.46) and mea-
surements made by Autti et al. [8]. For the µ = π/2 configuration, Autti et al. saw a
frequency shift (ωsat − ωL) ×

ωL

4π2 of approximately −1× 109 Hz to −3.5× 109 Hz (see
the blue curve in Fig. 2.12 (b)) with a measured Λ of 0.93± 0.07. Rearranging (2.46) and
using our own Larmor frequency we can approximate the frequency shift a HQV peak
would occur at using

−
(

ωsat −ωL

2π

)
=

2π

2ωL
× 1× 109 Hz. (7.1)

Using the relationship between frequency and angular frequency f = ω/2π we find
the minimum frequency shift for our setup, occurring near Tc, should be approximately
500 Hz. This increases to around 1750 Hz at low temperatures. The amplitude of the HQV
satellite peak is expected to be much lower than the main peak, meaning with our mag-
netic field inhomogeneity, near Tc the peak will not be visible.

In theory, it might be possible to see the satellite peak at low temperatures, at least as
a distortion of the main peak. However, after the introduction of the NMR magnets there
was a large increase in the heat leak and temperatures below 0.5Tc were not achievable.

Much effort was made to find the source of the heat leak. There were very few changes
from early test measurements in which measurements of the sub-micron diameter VWRs
in the ballistic B phase presented in Chapter 6 were made. These measurements were
made before the NMR magnets had been finished, and before the grad coil used for de-
tecting the NMR-flopper position were glued. Between these experimental runs, there
were several big changes: more 4He was added; the magnets and their wiring were
added, gradient antenna coils for the position detection were added and finally a mu-
metal magnetic shield was added. Several smaller fixes adjustments to wiring would
have also been made. Heat leaks from the gradient antenna and the NMR magnets were
not found. The mu-metal is on the still radiation shield, thermally disconnected from the
cell by the heat switch. It is possible the extra 4He has had an effect.

7.1.1 Normal Phase Susceptibility

The NMR line was measured at temperatures between 5 mK and 30 mK to determine
the temperature dependence of the normal fluid susceptibility. The susceptibility can be
measured by integrating the absorption of the NMR spectrum. Integrating (2.40) gives
simply

π

2
χ.

Following (2.15) the normal phase of liquid 3He should have no temperature depen-
dence. If there is any solid 3He the signal should follow the Curie temperature depen-
dence T−1. Fig. 7.2 shows a plot of the numerical integral of the absorption spectrum of
the measured curves with respect to temperature. The numerical integration was carried
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out using Simpson’s rule. We can conclude from this that the susceptibility is constant
and all surfaces have been covered with solid 4He.

7.1.2 Superfluid Susceptibility

The main NMR line was then followed between 0.6Tc to well above the superfluid tran-
sition temperature. Again, the absorption spectrum is integrated and normalised to the
value above the superfluid transition in Fig. 7.3.

Here we can see that there is a decrease in the magnetic susceptibility. Such a drop
is a hallmark of the bulk B phase due to the presence of 1√

2
(↑↓ + ↑↓) pairs. Both the

P and A phase have only ↑↑ and ↓↓ pairs and therefore do not see a reduction in the
magnetic susceptibility. Whilst the drop is not as extreme as in the pure bulk phase, a
smaller drop in B-like phases in isotropic aerogels has been previously reported that can
be well-supported by the suppression of spin-spin scattering by the aerogel strands [119].
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NMR spectrum by Simpson’s rule. The pressure is saturated vapour pres-
sure and Tc = 929 mK. There is a decrease in the magnetic susceptibility in

the superfluid phase, which is normally associated with the B phase.

According to Fig. 2.8 (b), we should be in the polar phase and polar distorted A phase
for the temperature range in Fig. 7.3. The NMR coil is a tight fit around the aerogel and
only some small amount of bulk near the edges of the coil should be visible. Therefore,
it seems unlikely that the coil is detecting a larger volume of liquid outside the aerogel
than inside the aerogel. We can assume that at least a significant proportion of the signal
is from superfluid inside the aerogel. From previous measurements of nafen-92 (see Fig.
2.8 (b)), the only B-like phase is the distorted B phase. The transition to the distorted B
phase is below 0.6Tc [7]. It is possible the aerogel sample is damaged and not as isotropic
as we would have liked.
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7.2 Mechanical Oscillator Frequency Sweeps

Originally, frequency sweeps were performed on the NMR-flopper. It quickly became
apparent from frequency sweeps near Tc (Fig. 7.4 (a)) that the NMR-flopper was heavily
overdamped and would be difficult to extract information from by fitting a Lorentzian.
Without the enhancement of a peak from resonance, the signal from mechanical motion
is very small and difficult to distinguish from electrical noise. Whilst this general prob-
lem can be solved by taking longer for measuring points and averaging, in practice this
slows down the measurement. The heat leak meant very few measurements could then
be taken. Furthermore, the response time of a resonator is proportional to the inverse of
the resonance width. The oscillator will respond fairly quickly to changes in the prop-
erties of liquid helium surrounding it due to increasing temperature. If the temperature
changed substantially over a single slow frequency sweep, then it could be difficult to
fit. The low frequency of the device was also difficult to work with. There is a strange
electrical response measured by the lock-in amplifier at these frequencies. The response
was found when testing by measuring the signal from the signal generator directly. The
phase below 2.5 Hz appeared to change continuously and below 1 Hz some of the signal
is lost.

Frequency sweeps at relatively high temperatures in the normal phase where the vis-
cosity is low were performed. A second resonance can be seen in the device, quite close
to the first resonance, in Fig. 7.4 (b). This resonance does not seem to appear in vacuum
measurements and also becomes overdamped, with its resonance shifting to lower fre-
quencies and becoming wider. The main resonance and second mode can interfere with
each other. It is possible to create a double Lorentzian fit, but these fits only seem to fit
decently to intermediate temperatures. For these reasons more creative approaches were
taken.

During the design, testing and creation of the NMR-flopper this second mode was not
observed. A replica device has been built and immersed in 4He, and frequency sweeps
do not display this mode. Finite Element Analysis was carried out in SolidWorks, but
due to a lack of information on the mechanical properties of NbTi and nafen and the fact
that the real device has imperfections such as bent legs, this simulation did not produce
qualitatively good results even for the frequency of the first mode. Finally, calculations
by Naguleswaran also do not predict a second mode so close in frequency to the first [77].

7.3 Constant Frequency Measurements

The NMR-flopper was driven with a sinusoidal AC drive at a fixed frequency and am-
plitude for a period of 300 seconds. The measurement would be repeated over a large
stretch of time after the demag as the cell temperature increased, with several drives.
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FIGURE 7.4: Raw frequency sweeps of the NMR-flopper in liquid helium
at saturated vapour pressure and (a) near Tc where it is overdamped and
(b) far above Tc. The ICTa thermometer resonance width is (a) 768 Hz, the
magnetic field is 172 mT, the drive is 68 mV. For (b) ICTa thermometer res-

onance width is 4.24 Hz, the magnetic field is 31 mT, the drive is 4 V

As with vibrating wires, the Laplace force due to an alternating current in a magnetic
field creates a sinusoidal (or sinusoidal-like) motion of the NMR-flopper. However, the
frequency was not swept and the frequency chosen was deliberately chosen as an off-
resonance frequency, and is not even necessarily near the resonance frequency.

The magnitude of the drive used was chosen by initially moving the NMR-flopper
from one wall of the cell to the other, with its position monitored by the gradient coils as
described in Chapter 4 and shown in Fig. 4.4 (a). A maximum drive was then chosen to
be within the range of drives that provided a linear signal.

During a fixed frequency drive measurement, the position is monitored by the driving
the NMR resonance with the gradient antenna coils. Monitoring the position naturally
produces a corresponding sinusoidal-like wave, shown in Fig. 7.5. From this resulting
signal, the amplitude and phase of the wave could be extracted by means of Fourier
analysis. Alternatively, one could fit a sine wave to the signal. Finally, we also monitored
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FIGURE 7.5: An example of the drive signal and the resulting response
measured by the NMR coil. Only the first ten seconds of a 300 second mea-
surement is shown for clarity. This measurement had a peak-to-peak drive

of 14 mV and a fixed frequency of 3 Hz.

the e.m.f. produced using a separate lock-in amplifier. The circuitry is shown in Appendix
A. Comparing the measured velocity of the wire by the e.m.f. and by position detection
gives a good agreement (see Fig. 4.4). However, the noise for the phase and amplitude
data given by Fourier analyses of the signals was much lower than the other two methods
(see Fig. 4.4 (b)).

The drive signal was also monitored and recorded, allowing the real drive voltage
applied to the NMR-flopper to be known but more importantly the phase difference be-
tween drive and response for each 300 s measurement. In fact, it is possible to separate
each measurement into smaller sections to increase the time-resolution of the data, at the
cost of noise.

Due to the predicted threshold superfluid velocity, at which only above certain veloc-
ities does the β phase behave superfluid, we wished to investigate the response at both
low and high velocities. There were two ways of doing so: altering the frequency of the
300 second measurement, or altering the drive. We most commonly chose to use several



Chapter 7. 3He in a Nematic Aerogel Experiment 115

drives (up to six) in a repeating order. The higher drives produced noticeable heating as
recorded by ICTa’s resonance width (shown in the inset of Fig. 7.6 or the oscillations in
Fig 7.11). Thus, we chose to alternate between high and low drives in these patterns to
prevent over heating. For example, a 50 mV (high) drive 300 second measurement, then
a 10 mV (low) drive 300 second measurement, then a 40 mV (fairly high) drive, then a
30 mV drive, and so on. In some measurements we changed both the frequency and the
drive. However, there was not any noticeable differences from just changing one param-
eter.

Measurements were made by initially demagnetising to a high field, where the bulk
B phase is not stable. A measurement was started once the temperature seemed to have
settled after demagnetisation. The measurement was left to continue for several days.
Once the bulk helium has moved into the normal phase, the measurement was stopped
and a second demagnetisation was carried out. This process was to half of the original
field, where the bulk B phase is stable. Then a second measurement at a lower field was
carried out. Often, a measurement would be briefly paused for one to two hour periods,
to allow the helium bath to be refilled. Occasionally, the controlling computer restarted,
or a power cut happened, pausing a measurement for a much longer period.

In general, we can separate the results into these two distinct groups: high field mea-
surements (> 312 mT) and low field measurements (≤ 312 mT). Data at high fields overall
produced a similar temperature dependence when comparing normalised amplitude, as
did data at lower fields, but they are distinct from each other, in part due to the A-B tran-
sition only being present in the low fields. It is also important to note all magnetic fields
presented from here onwards are the maximum magnetic field. Due to differences in po-
sition, ICTa is in a field 98% of the total magnetic field, and the NMR-flopper crossbar
95% of the total magnetic field.

Thermometry

Taking accurate thermometry for this type of measurement turned out to be uniquely
difficult. The temperature dependence of the ICTa resonance width is well known in the
B phase and normal phase, but there is no data in the A phase. Whilst typically one could
perform a backward calibration from the normal phase if the heating is constant through-
out, when the drive of the sine-wave measurement was increased, the amount of heating
produced by the measurement also increased. In Fig. 7.6 the resonance width of ICTa as
a function of time is plotted. In this measurement a cycle of increasing drives were used.
We can see the clear pattern of heating and cooling in the ICTa width, corresponding to
when higher drive measurements are made. When the cycle finishes, it returns to a lower
drive. For this reason alone, the heating rate due to the measurement is not constant. This
pattern also seems much less distinct when in the normal phase.
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FIGURE 7.6: The resonance width of the ICTa VWR thermometer as a mea-
surement takes place in a magnetic field of 453 mT.

Whilst it may be possible to assume there is an average heating rate from the mea-
surement across the different drives, the measurements in high field were often stopped
very soon after entering the normal phase to allow a second demagnetisation to a lower
field. Roughly, from (4.2), halving the field would reach half the temperature. Due to im-
perfections in the system, temperature dependent thermal resistances between the cop-
per nucleons and liquid helium, and some heat leaks, in reality is a higher temperature
is reached. Therefore, to reach a low enough temperature for superfluidity again and
provide a reasonable temperature range, we had to demagnetise very soon after going
beyond Tc.

Since backward extrapolation for higher field data is simply not possible, and there is
a non-constant heating from the measurement itself (and any pauses), we instead present
the data in general as a function of the ICTa thermometer resonance width. An advantage
of this method is that we have a direct comparison of the two oscillators in the same
bulk liquid. A deviation of the behaviour of the NMR-flopper with respect to ICTa must
be explainable in terms of the oscillator’s mechanical properties (its geometry or lower
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FIGURE 7.7: Known-point thermometry calibration curve based on the B
to A phase transition observed by a discontinuity in the ICTa width on

warming for several magnetic fields.

frequency), or in the properties of the superfluid in aerogel.
Additionally, the ICTa resonance width at the B phase to A phase transition and at Tc

were reproducible with a low drive signal to ICTa. Therefore, we can attempt to use the
warming B→A and cooling A→B transitions at different magnetic fields for known point
thermometry. The downside of this is that the low drive signal means the signal-to-noise
ratio is lower than desired. Fig. 7.7 is a calibration curve for the A→B transitions. This
method is only valid in this range and even then, we can not expect it to be particularly
accurate.

7.3.1 Lower Fields

In the lower fields, we can rearrange (2.36) to find the temperature width of the β phase.
At SVP Tc = 929 mK and the aerogel transition temperature is ≈ 0.92Tc. The fields used
ranged from 120 mT to 240 mT. The expected temperature width of the β phase is there-
fore approximately 5 µK to 10 µK, similar to values for the A1 phase [12].
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FIGURE 7.8: The RMS velocity of a 300 second sine-wave measurement,
normalised by the drive signal amplitude. The magnetic field is 234 mT
and the fixed frequency is 3 Hz. The solid circles indicate normal fluid data
and the open circles indicate superfluid. The black dotted lines correspond

to the B→A transitions on ICTa, shown in Fig. 7.7.

Velocity

First, we compare the velocity amplitude for each measurement across several drives by
normalising the root mean squared (RMS) velocity by the drive vrms/Vdrive. In Fig. 7.8
the data is plotted against the resonance width of ICTa, and marks the resonance width
at which the B→A transition was detected by ICTa on warming as part of a known point
thermometry for measurements in a few fields. Fig. 7.8 measurement is typical of low
field measurements.

First, we note a transition that is seen at the low ICTa widths. This is likely the bulk B
to A transition, and is close in ICTa width to the bulk A to B transition seen on cooling.
The lower drives see it sharper as they produce less heating. But before this transition the
behaviour is odd. The normalised amplitudes are equal and remain constant until this
transition. If the NMR-Flopper’s mechanical behaviour was governed only by B phase
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dynamics, the normalised velocity would be decreasing as the temperature and normal
fluid fraction increased. Furthermore, we know that ICTa width is behaving as expected,
so it is possibly not some purely bulk superfluid process. We can even compare to a
similar ICTa width in the normal phase. When the ICTa width is the same in either the
normal or superfluid phases, the viscous force and therefore viscosity should be equal.
Here we see the expected behaviour that as ICTa width and therefore damping becomes
lower, the NMR-Flopper’s velocity increases.

Past the B→A transition, we note that at lower drives the device is oscillating at a
much lower relative velocity whilst the highest two drives follow a smooth curve. As
the temperature increases and the ICTa width increases, these lower drives eventually
join this smooth curve. The velocity at which the lower drives rejoin the main curve is
a critical velocity that will be investigated later. This smooth curve that the high drives
follow appears to be almost the same as the curve followed by all drives in the normal
phase.

Phase

According to (3.10), a changing phase difference indicates either a moving resonant fre-
quency, a changing resonance width, or both. Examining the change of phase difference
produces a similar picture to examining the amplitude. Fig. 7.9 shows the corresponding
phase data to the amplitude data in Fig. 7.8.

We again see the B→A transition and a similar pattern: the two higher drives follow
a smooth curve after the transition, and almost completely follow normal phase data.
The lower drives seem even more separated and join only after a while. What is a notable
difference here, however, is that the phase difference does not seem to be wholly constant
at low temperature before the B→A, unlike the amplitude.

For the data in the B phase, let us assume that the resonant frequency is above the
measurement frequency and the oscillator is not overdamped. The superfluid fraction in
the bulk B phase is well understood, and we know that the viscosity is indeed chang-
ing from the ICTa measurements. We know the NMR-flopper is not overdamped from
previous frequency sweeps and later drop measurements, detailed below. Then we can
compare the following scenarios as the temperature increases. (1) Both damping and
resonance frequency are changing, but the resonance frequency is close. (2) Neither is
changing. (3) The resonance frequency has increased to a value far higher than the fixed
frequency. Alternatively, (3) could be that resonance width has decreased, meaning the
resonance is now relatively far away. Likely it is a combination of both effects.

In scenario (1), the simultaneous change in damping and resonant frequency implies
that they must change such that the effects on velocity cancel each other out. This seems
unlikely, especially as we have performed measurements at two fixed frequencies (2 Hz
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FIGURE 7.9: The phase of a 300 second sine-wave measurement. The mag-
netic field is 234 mT and the fixed frequency is 3 Hz. The solid circles indi-
cate normal fluid data and the open circles indicate superfluid. The black
dotted line corresponds to the B→A transition on ICTa for this field, shown

in Fig. 7.7.

and 3 Hz). If (2) was true, the phase wouldn’t be changing. Therefore, (3) must be true,
and the resonance frequency has suddenly increased far above the fixed frequencies.

Higher Harmonics

A perfect sine wave has no harmonic components. When performing a Fourier transform
of the measured sine wave to find the amplitude, one can also perform it around the
higher frequencies of n f , where n = 1, 3, 5 . . . to find the odd harmonics. Naturally, the
Fourier transform of a perfect sine wave should have zero amplitude at these frequencies.
Whilst the signal noise will result in a non-zero Fourier amplitude, this should be much
lower than any Fourier amplitude from the actual mechanical response, if such a response
exists. Examining the Fourier amplitude allows us to see any increases in the Fourier
amplitude. We also tested for Fourier amplitudes in the drive signal, at even harmonics
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FIGURE 7.10: The amplitude of the 3rd harmonic second sine-wave mea-
surement in millivolts. The magnetic field is 234 mT and the fixed fre-
quency is 3 Hz. Only superfluid data is shown. Inset: The amplitude of

the second harmonic in superfluid, which is constant.

(n = 2, 4, 6 . . . ) and at a random frequency at an integer multiple of the fixed frequency
were also examined.

Fig. 7.10 shows the n = 3 harmonic of the low field data corresponding to Fig. 7.8.
As can be seen, a significant increase in the Fourier transform of the n = 3 harmonic for
the two highest drives, 24 mV and 33 mV, is present after the entry into the A phase. This
amplitude then decreases at an ICTa width around 320 Hz, similar to the width at which
the 4 mV drive rejoins the curve.

If we were to normalise the 3rd harmonics by the drive as we did the velocity of
the fundamental frequency, the normalised amplitude of lower drive signals would be
larger than the normalised amplitudes of the 17.0 mV and 23.3 mV amplitude drives.
This indicates that the 3rd harmonic amplitude of these drives is lower than the noise of
the measurement, if they exist. The harmonics n = 2 were also measured (Fig. 7.10 inset),
but this amplitude showed no features and was much lower than n = 3 and was closer
in value to a random frequency. No changes were noticed in the drive signal for any of
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the drive amplitudes used.

7.3.2 Higher Fields

At higher fields the picture is similar to that in lower fields, however without the B→A
phase transition present since only the A phase is stable in these fields. Fig. 7.11 shows
the normalised velocity amplitude and phase of a representative sine-wave measurement
in a magnetic field of 453 mT. There is here a large difference between lower drives and
the higher drives again, most notable with the 5.0 mV drive. Eventually, as temperature
increases, all sine-wave amplitudes begin to follow the same curve again.

Interestingly, there appears to be a maximum velocity reached for every drive, some-
thing not seen before in the low-field measurements. This feature is perhaps interrupted
by the B phase for the lower field measurements. For the two lowest drives, their veloc-
ity initially seems constant. There seems to be no discontinuity in the highest drive and
steadily increases, despite the maximum in velocity. The data sets at high ICTa widths
are much closer to the same phase when compared with low field data.

Finally, the normalised amplitude of the 3rd harmonic for each wave is also plotted
in Fig. 7.12. The reason for normalising by the drive shall become clear below. As the
temperature increases, the normalised 3rd harmonic decreases for all drives. This seems
to happen at the same point for all drives. Again, the 2nd harmonic of each drive was
also measured, but this amplitude showed no features and was much lower than n = 3.

7.3.3 Critical or Threshold Velocities?

There are two possible interpretations of the velocities here. One is that of a traditional
critical velocity vc, where the damping force increases and often becomes non-linearly
dependent on velocity. The second is a type of threshold velocity. A description of the
outcomes of them both follow.

Interpretation as a Critical Velocity

Under a standard critical velocity approach, the damping increases. Typical mechanisms
for critical velocity are pair breaking, an abrupt change in the superfluid fraction (for
example, due to a phase change) and the onset of quantum turbulence. The increase in
damping shifts the resonance frequency to a lower frequency.

Considering the simpler high field case where there is no B phase, initially the lower
drives are below the critical velocity, and the higher drives are above the critical velocity.
The resonance frequency of the device for the higher drives would effectively be lower.
Suppose at v > vc the lower resonance frequency is much closer to the fixed drive fre-
quency of the measurement than when the device is below critical velocity. In this case,
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FIGURE 7.11: The velocity and phase of a high field sine-wave measure-
ment. B = 453 mT and f = 2 Hz. Only superfluid data is shown for clar-
ity and as only 54 measurements were made in normal fluid before de-
magnetising again. The transition appears slightly earlier on ICTa as the
NMR-flopper is positioned lower than ICTa and is only at 95% of the total

magnetic field.

the normalised velocity for the higher drives would be higher, as they are closer to the
resonance and see the enhancement. The lower drives would initially be further away
from the resonance, with a reduced normalised velocity.

Under this interpretation, as temperature increases the critical velocity would have to
decrease, such that the lower drives also break the critical velocity to catch up and rejoin
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FIGURE 7.12: The amplitude of the 3rd harmonic second sine-wave mea-
surement normalised by the drive. B = 453 mT and f = 2 Hz. A rolling

average with a window of 5 is used.

the same general curve. This is the opposite temperature dependence expected for the
critical velocity vd given by (2.37) at which the superflow energy is larger than the dipole
energy [37]. Also, we must note under this shifting-frequency model that the oscillator
is almost certainly underdamped. Recalling Fig. 3.2, for an overdamped oscillator, the
amplitude at frequencies lower than the resonance frequency is close to a constant.

Previous hydrodynamic measurements of the superfluid fraction of 3He in the A
phase found that the apparent superfluid fraction decreases as the velocity is increased
[10]. This effect was attributed to a textural change in the superfluid. As the velocity
increases, the l̂ vector inside aligns parallel to the flow. This increases the superfluid frac-
tion inside the aerogel, as the superfluid gap goes to zero at points parallel to l̂ (see Fig.
2.5). In those measurements, the axis of the aerogel cylinder is not orientated parallel to
the superflow and the aerogel is isotropic. The magnetic field in our measurements is
also much higher. The preferred alignment of d̂ is perpendicular to the magnetic field.



Chapter 7. 3He in a Nematic Aerogel Experiment 125

The direction of superflow is parallel to the axis of the aerogel cylinder and perpendicu-
lar to the field, and so will tend to align l̂ also perpendicular to the field. The preferred
alignment from the dipole interaction is l̂ ‖ d̂, which is possible with our direction of su-
perflow and magnetic field, and therefore we do not expect the textural alignment effects
of the magnetic field and superflow to compete with each other. A hysteresis was also
observed, attributed to the increased expelling of defects such as vortices as velocity in-
creased. There is no hysteresis at all in our measurements. Our measurements take place
in a much higher magnetic field.

7.3.4 Interpretation as a Threshold Velocity

The second possible interpretation of the difference between lower drives and higher
drives for both fields involves a threshold velocity vt. Under this interpretation, there is
no superflow below the threshold velocity and therefore the damping of the wire is larger
for a lower velocity. We can identify two possible mechanisms for a threshold velocity.
One is velocity needed to orient the superflow parallel to the aerogel [10]. Another is
that the β phase contains only ↑↑ Cooper pairs but the A phase contains both ↑↑ and
↓↓ Cooper pairs. In this case, around the aerogel the dipole energy of the A phase in a
magnetic field (or A2 phase) will not be minimised. In this case, the degeneracy is not
lifted. The superflow energy must be greater than the dipole energy for superflow to
occur at all.

We can interpret data as at first, the threshold velocity is only small, and only the
lowest drive in Figs. 7.8 and 7.11 are below this velocity. It is impossible to know whether
this is the “turn on” point, or whether this is just the first velocity to go below such a
drive. As the temperature decreases, the threshold velocity increases, and other lower
drives slowly drop below the threshold velocity. This seems to readily explain the feature
of the velocity graphs. It may also offer a partial explanation of the 3rd harmonic data.

At high temperatures and at all drives, the NMR-flopper oscillates at a velocity above
the threshold (or there is no threshold). In this case, the sine wave is normal and the
n = 3 harmonic amplitude is low, caused only by measurement noise. Now consider
an oscillating motion for a sine wave with an amplitude above the threshold velocity. For
parts of the oscillation period, the velocity is between zero and the threshold velocity (0 <

|v| < vt), but at some point it will cross the threshold (|v| ≥ vt) and therefore the damping
will decrease and the velocity will increase further, leading to a larger overall amplitude.
A larger third harmonic amplitude happens when a more significant proportion of the
sine wave is morphed. This explains why the third harmonic amplitude for the 33 mV
seems to increase near the same point the first harmonic amplitude of the 4 mV drive
stops increasing (in temperature decreasing direction).



Chapter 7. 3He in a Nematic Aerogel Experiment 126

0 2 4 6
Time (a.u.)

−3

−2

−1

0

1

2

3

Ve
lo

cit
y

(a
.u

.)

(a)

Threshold
0.5
0.75
1
No threshold

1 2 3 4 5
n

0.0

0.5

1.0

1.5

2.0

2.5

Ha
rm

on
ic

Am
pl

itu
de

(a
.u

.)

(b)

Threshold
0.5
0.75
1
No threshold

FIGURE 7.13: (a) The simulated sine-waves and the “velocity" the thresh-
old velocity occurs at. All sine-waves have frequency of f = 2 and go on
for time t = 100. The amplitude of the original sine-wave is 1.49. Above
the threshold, the damping is reduced by half increasing the amplitude to
2.5. Random noise was added to each wave by a normal distribution cen-
tred at zero with a standard deviation of 0.1. (b) The Fourier amplitude
of each harmonic n f found by the same slow Fourier transform as a real

measurement.

In Fig. 7.13 (a) four simple model waves are created and in (b) shows the amplitude of
the different harmonics. All model waves are originally created with the same damping,
resulting in a velocity wave 1.49 in amplitude. Each wave is 100 seconds long, with a
frequency of 2 Hz. For three of the waves, when the velocity reaches above a threshold
(0.5, 0.75, 1 or one third, one half and two thirds), the damping decreases to half its value,
increasing the velocity of the wave. The fourth wave has no threshold and is just the
original for comparison. Finally, noise is added to each wave.

From Fig. 7.13 (b) we can see that there are odd harmonics created by a sine-wave
response where the damping is halved after crossing a threshold but there is no even
harmonics, which matches observations for the 2nd and 3rd harmonics. We also observe a
distinct pattern. Aside from n = 1, the odd harmonic amplitudes increase as the threshold
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is increased. In real terms, the more time the response is below the threshold, the higher
the 3rd harmonic amplitude. If this is the case it explains why Fig. 7.12 the normalised
harmonics of the lower drives are larger.

On the other hand, for the first harmonic the relationship is reversed. A lower thresh-
old always results in a higher amplitude. One would expect a signal where most of the
sine-wave is above the threshold to have a slightly larger first harmonic, and therefore
one should expect to see the normalised velocity for lower drives slightly below the nor-
malised velocity of higher drives in areas where they appear to follow the same tempera-
ture dependence. Looking at the velocities 7.11 and 7.8, the opposite is true. The fact that
a lower drive is offset above the highest drive holds for all measurements we made, and
is shown more clearly below in Fig 7.14.

Phase Diagram

It is possible to create a phase diagram by determining the ICTa width at which a velocity
kink is observed somewhat objectively. For this method, we assume that the highest drive
is always above the threshold velocity. At the high temperatures and in the normal phase,
it was seen clearly that the normalised velocities follow a similar curve. If we assume the
highest drive in any particular data set is always above the threshold velocity and it
has no obvious critical or threshold velocities kinks, we fit the highest drive data with
a polynomial. We can then use the same polynomial, plus some small offset, to fit the
normalised velocity data of a second drive. However, when there is a kink we assume a
linear function is subtracted from the polynomial that reduces the normalised velocity.
By fitting for the ICTa width at which any kinks occur, we find possible transition points.

Fig. 7.14 gives an example of this process for the 9.9 mV drive compared to the highest
17.0 mV drive data shown in Fig. 7.11. As long as there are no obvious critical or threshold
velocity kinks in the highest drive data we are comparing the lower drive with, we can
assume the process will accurately find kinks. A disadvantage of this method is if there
is a potential point in the highest drive data, one can not compare the curve to itself.
A potential solution to this is to use data taken in the normal phase. However, not all
datasets had data far enough into the normal phase, and there was no observable kink in
the data for the highest drive anyway across all datasets.

We have data for fields 219 mT, 234 mT, 312 mT, 406 mT and 453 mT. For most data
sets in the high magnetic field, as in Fig. 7.15, there are apparently two kinks. In low field,
it is not always clear if there are two kinks, but the same process is used for all data sets.
In Fig. 7.15, the temperature-velocity phase diagram is plotted. In (a) all kinks are plotted
with their critical ICTa width, with 1 and 2 corresponding to the 1st and 2nd kink shown
in Fig. 7.15. In (b), only kink 1 is presented and the ICTa width has been converted to
temperature by the known-point thermometry calibration curve above.
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FIGURE 7.14: An example process of finding possible threshold velocity
kinks. A polynomial curve is fitted to a high drive dataset and the same
polynomial used with an offset to predict the temperature dependence
of a lower drive. The lower drive data has two linear functions that are
only added to the polynomial before a critical ICTa width, with the critical
widths left as fitting parameters. One can see very clearly the effect when

flattening the curves.

From Fig. 7.15 (b), a linear function is fitted to the data for the velocity kinks. The fit
for kink 1 crosses the temperature axis at 0.92Tc. This is very close to the aerogel transi-
tion temperature Tca = 0.9Tc for nafen-92 [7]. This is evidence that the kink has something
to do with a superfluid transition within the aerogel. However, we must note that ICTa
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FIGURE 7.15: Temperature phase diagrams for the critical velocity in terms
of (a) ICTa resonance width and (b) reduced temperature by calibration
from Fig. 7.7. In (a), both kinks 1 and 2 are plotted. The black lines represent

a linear fit to the kink 1 data. The velocity is 0 at 0.92Tc.

known-point calibration in Fig. 7.7 can only be expected to be accurate within our esti-
mated error for ICTa widths between 100 Hz and 300 Hz. Although there can be a large
error for the widths outside this range, there are several values within this range and
all the data seems to fit well to the line. Second, the error only just outside this range is
unlikely to be on the order 100 µK. The error in the temperature calibration is hence not
enough to change from the overall conclusion that this transition happens somewhere
around the expected aerogel transition of 0.9Tc, but it is clearly not precise enough to say
exactly where this temperature is. The temperature difference between kink 1 and kink
2 varies widely. The data was collected at various fields which would explain some dif-
ferences, but the difference at high velocities is very large and some tens of millikelvins.
This may be due to overheating. For these reasons and the inaccuracy of the temperature
calibration at the high-temperature range, it is impossible to draw any conclusions about
the physical nature of the second kink and whether it is a phase transition in the aerogel.
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7.4 Drop Measurements

The second type of measurement used was a so-called “drop” measurement. The NMR-
flopper was held at an equilibrium by a constant DC drive current Iini. The NMR-flopper
is then “dropped” at time t0 to another equilibrium position determined by a DC drive
current Ifin. The current switch was instantaneous and not smooth, similar to holding a
pendulum at a fixed position and releasing it. The free response of the oscillator is then
observed by monitoring its position as a function of time. The position is detected by
measuring voltage on the detection coils and then converted to a position by the method
described in section 4.2.3.

Equations (3.18), (3.20) and (3.21) give the response of a generic oscillator for under-
damped, overdamped and critically damped conditions. Although in our case Ifin 6= 0
and therefore x(t→ ∞) 6= 0, this is a simple offset that can be subtracted. We can use the
boundary conditions x(0) = x0 and ẋ(0) = 0 for fitting the response, and the response
of the oscillator will be similar to the example plotted in Fig. 3.2. We fit the signal with
a python program using the trigonometric and hyperbolic versions of (3.18) and (3.20)
respectively. With our initial conditions the constants c3 and c4 are

c3 = x0, (7.2) c4 =
x0∆ω

2ωud,od
(7.3)

with the appropriate underdamped and overdamped resonant frequencies.
As with the constant frequency sine-wave measurements, a small drive is applied

to the gradient coil and the position is detected by a lock-in amplifier measurement of
the voltage response generated on the NMR coil. The voltage was measured through
the digital filter of the lock-in amplifier, which is equivalent to four simple exponential
decay filters with a time constant τf = 10 ms (see Appendix B.3). Whilst this is relatively
inconsequential for a low frequency sine-wave or a signal with a response time much
longer than 10 ms, the NMR-flopper typically reached its new equilibrium within a few
hundred milliseconds in the most overdamped of cases.

The response for a first-order exponential decay filter with time constant τ to the
position x(t) measured by the voltage on the detection coils can be found from

ẏ1 =
x− y1

τf
(7.4)

with the initial condition y(0) = x(0) which gives the simple exponential decay. Once
we have solved the equation for the first filter, we can use the output y(t) as a new input
x(t) for the next filter and repeat the process. We can iterate the process over J filters (see
Appendix B.3). The response for an underdamped oscillator to any number of filters J
with the same time constant is
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yJ = e−
∆ω
2 t [AJ cos(ωudt) + BJ sin(ωudt)] +

J

∑
j=0

(
1− AJ−j

) (t/τf)
j

j!
(7.5)

and for an overdamped oscillator

yJ = e−
∆ω
2 t [AJ cosh(ωodt) + BJ sinh(ωodt)] +

J

∑
j=0

(
1− AJ−j

) (t/τ)j

j!
. (7.6)

The constants AJ and BJ are given by the series

AJ = uF AJ−1 − vFBJ−1 (7.7) BJ = uFBJ−1 ± vF AJ−1 (7.8)

and the multipliers uF and vF are

uF =
1− τ∆ω/2

(1− τ∆ω/2)2 ± (ωud,od)τ)2 (7.9) vF =
τωud,od

(1− τ∆ω/2)2 ± (ωud,od)τ)2 . (7.10)

For underdamping, the ± signs are positive, and for overdamping, the ± signs are nega-
tive. Fig. 7.16 shows a measurement and a fit of both an underdamped and overdamped
responses from the NMR-flopper below Tc. The fits are with J = 4 and τ = 10 ms. The
NMR-flopper is held at the position corresponding to the initial drive current for a few
seconds before the drop time, from which we take x0. We measure for a long time after
the NMR-flopper returns to equilibrium, and from here take the offset to be subtracted.
Therefore, the only fitting parameters are the resonance width and the natural resonant
frequency ω0. The actual change in position (with no filters) of the oscillator is also plotted
in Fig. 7.16 based on the fitted resonance frequency and width. The velocity can be mea-
sured from the time derivative of the position. We can vary the drop distance to change
the velocity the device reaches. The advantage of this method versus constant frequency
measurements is we can directly easily obtain the resonant frequency and damping of
the device, similar to doing a frequency sweep, which can then be used to measure the
superfluid density.

7.4.1 Saturated Vapour Pressure

Drop measurements were first carried out at saturated vapour pressure at ultra-low tem-
peratures. At this pressure, two slow-warming measurements were made with magnetic
fields of 273 mT and 468 mT. Fig. 7.17 shows the response at 468 mT for the oscillator’s
damping and the resonance width and the oscillator’s undamped (natural) resonance
frequency. As one can see there is a clear phase transition to Tc but also a large increase
in the damping just before. This large increase in damping corresponds roughly to the
location of the A1 phase. In fact, phase transitions seem to be detected slightly earlier
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FIGURE 7.16: Two examples of a drop measurement when the NMR-
flopper is (a) underdamped and (b) overdamped. The lock-in time con-
stant was set 10 ms and the filter −24 dB, indicating a series of 4 filters.
x0 is taken from the average of values before the measurement and is
0.400 mm. The fit parameters are (a) f0 = 11.0 Hz and ∆ f = 6.25 Hz and

(b) f0 = 9.80 Hz and ∆ f = 20.7 Hz.

by the NMR-flopper than ICTa. The same effect was found in the sine-wave measure-
ments. We can attribute this to the heating being produced by measurements as being
more localised creating some overheating, and the magnetic field not being uniform in
the z-direction. The presented field is the maximum field provided by the main demag-
netisation magnet, which occurs roughly in the middle of the Cu plate refrigerants. The
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FIGURE 7.17: Drop measurements as a function of time after nuclear de-
magnetisation and the cell temperature has settled. The cell is left to warm
up and the temperature is monitored by the ICTa thermometer in red. A
rolling average with a window of 3 is used. (a) The resonance width as a
result of fitting by (7.5) and (7.6). (b) The resonance frequency. We assume
this is the fundamental mode f0. The A1 phase transition is zoomed in on

ICTa.

location of ICTa means that the field is calculated to be at 98.4% of this field [106]. The
old flopper crossbar was in a similar position, but since the inversion, the NMR-flopper
crossbar will be at ≈ 95%.

What is strange about the A1 transition detected on the NMR-flopper large spike in
the damping just before Tc is that it is much higher than damping in the normal phase.
This is possibly caused by the superflow within the oscillator as the phase changes, caus-
ing a large change in the local texture. The texture changes and energies involved are
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difficult to calculate because there are multiple competing effects on the texture: the ori-
entation of l̂ due to the aerogel, the orientation of l̂ due to the magnetic field and the
orientation l̂ due to the superflow.

The other noticeable difference is the difference between dropping the NMR-flopper
upwards and dropping the NMR-flopper downwards. This difference is most likely due
to some asymmetry in the device. First, the NMR-flopper is not perfect and has some
asymmetry in the legs. Second, the coil may have been slightly imbalanced. Third, in
one direction the flopper is moving against gravity. Fourth, the aerogel sample may be
asymmetric. What is strange is that the difference seems to be more pronounced around
Tc in the superfluid phase than in the normal phase, which may indicate the aerogel is
symmetric, and the superfluid inside the aerogel is asymmetric.

Examining the frequency dependence with temperature we learn important proper-
ties of the device with regard to the fixed-frequency sine wave measurements. The fixed-
frequency measurements were most commonly performed with frequencies of 2 Hz and
3 Hz. Between some temperature range, around the Tc, the frequency of the NMR-flopper
is below 3 Hz. For 2 Hz measurements we can assume the point is always below the res-
onance frequency, but for any 3 Hz measurements the resonance frequency crosses the
fixed-point.

7.4.2 5 bar Pressure

The decision was made to pressurise the experimental cell by adding more liquid 3He
to increase the temperature width of the β phase. According to (2.36) the temperature
width is linear with field and equal to 2TcaηaB. From previous measurements of the phase
diagram (Fig. 2.8) [7], the aerogel transition temperature increase from Tca ≈ 0.9Tc to
Tca ≈ 0.95Tc. Furthermore, Tc increases 0.929 mK to 1.48 mK [12]. Not only does this in-
crease the temperature width of the β phase, but we no longer need to demagnetise to as
low fields to reach the superfluid temperature. This allows us to perform measurements
at even higher fields, further widening the temperature width of the β phase if it is sta-
bilised in our system [37]. We performed drop measurements in magnetic fields ranging
from 0.5 T–1 T, resulting an estimated ∆Tβ =28 µK–56 µK.

Upon performing the drop measurements, an extremely unusual phenomenon hap-
pened, as the NMR-flopper resonance frequency was found to increase to roughly double
in both normal and superfluid. Since the frequency doubled in both superfluid phases
and the normal fluid phase it seems entirely mechanical. There is no reasonable expla-
nation for this effect. It is not clear how the pressure of the fluid can strongly effect the
properties of the resonator, unless the pressure changed the mechanical properties of the
material or the shape of the object somehow.
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FIGURE 7.18: The undamped resonance frequency of the NMR-flopper af-
ter a downwards drop as the cell temperature slowly warms. Temperature
is measured by the ICTa resonance width. The data displayed is up un-
til Tc. A rolling average with a window of 3 was used for the 1 mm and
0.67 mm drops, and a window of 5 for the 0.4 mm drops. The two peaks

are labelled.

Fig. 7.18 shows plots of the resonance width as function of ICTa width for measure-
ments with different drop distance in a magnetic field of 940 mT. Due to the differences
that appear between upwards and downwards drops, for clarity only downwards drops
are plotted. Just before the transition to the normal phase there seems to be a double peak
in the resonance frequency. It is also apparent in the resonance width, although less no-
ticeable. In time, these transitions occur just before A1 and normal transitions are detected
by ICTa, which is consistent with the constant frequency measurements.

The velocity response of the NMR-flopper for a drop measurement in each peak is
shown in Fig. 7.19. The velocity at the first peak is slightly faster than the second peak in
all cases even though the frequencies are very similar, indicating the damping is larger in
the second peak.

We need to distinguish between several possibilities: (1) each peak is a phase unto
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FIGURE 7.19: The velocity of a typical drop measurement for (a) the first
peak and (b) the second peak as labelled on Fig. 7.18. The velocity is found
by differentiating the position as determined by the fit parameters with re-
spect to time. The maximum speeds are (a) 23.0 mm s−1, 20.0 mm s−1 and
16.0 mm s−1 and (b) 13 mm s−1, 9.4 mm s−1 and 8 mm s−1, for drop dis-

tances of 1 mm, 0.67 mm and 0.4 mm respectively.

itself, with the first being a phase in the aerogel (β), the second being a phase in the bulk
(A1) or (2) each peak represents entering and leaving a single phase. In the case of (2),
we need to then further distinguish whether this is the β or A1 phase, since until now we
have assumed that the NMR-flopper is indeed sensitive to the bulk A→A1 transition.

Temperature Calibration

To distinguish between these possibilities, we begin by backwards extrapolating in time
the temperature as measured by ICTa in the normal phase to produce a relationship be-
tween time and temperature. We can then compare it to the known transition temperature
of 1.478 mK at 5 bar. This backwards extrapolation is more complicated as the disconti-
nuity in ICTa appears at various widths depending on the field, with the difference some
tens of Hertz. There is no single calibration that matches all fields. ∆ f is linear with the
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FIGURE 7.20: The resonance width of the ICTa thermometer as a function
of temperature after using backwards extrapolation from the normal phase
and known point thermometry at Tc for drop measurements in a magnetic
field of 937 mT. The first kink in the width is the A1 phase transition, and

the second is Tc.

inverse temperature so if we assume the difference in width is constant with time, the
width difference can be considered simply as an offset. Therefore, the heating rate (the
gradient of the temperature with respect to time) is accurate. A recalibration with regard
to the actual time ICTa went through Tc can be performed. The actual relationship of time
and temperature can be checked against the A1 transition given by [12] in Fig. 2.6.

The maximum magnetic field is 937 mT, and the flopper is at a position where field
strength 95% of the maximum magnetic field. In this field, and at a pressure of 5 bar, the
A1 width should be ≈ 22 µK T−1 and therefore Tc = 1.478 mK + 0.011 mK [12]. Fig. 7.20
demonstrates the ICTa calibration procedure described above. Each drop measurement
has an A1 phase temperature width of ∼ 22 µK. The difference between the lowest and
highest temperatures the A1 phase kink appears at can be used as an estimate for the
error. This difference is 5 µK.

After calibrating, it is possible to plot the undamped frequency shown in Fig. 7.18 as
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FIGURE 7.21: Undamped resonance frequency f0 as a function of temper-
ature for downward drop measurements in a magnetic field of 937 mT.

a function of temperature instead of ICTa width. From Fig. 7.21 there is a definite differ-
ence between the double peak for a drop distance 1 mm and the two lower distances. The
overall temperature width is much larger than the A1 width. From the beginning of the
first peak to the end of the second, the temperature width is 57 µK±7 µK. Each peak is
wide enough on its own to be the A1. As mentioned above, the aerogel transition tem-
perature at 5 bar is approximately 0.95Tc, which is 1.4 µK. Therefore, the first peak also
begins roughly in the correct position for the β phase.

There is little difference between the undamped resonant frequencies of the two lower
amplitude drops. For the 0.67 mm and 0.4 mm drops the width is 30 µK±7 µK, still larger
than the A1 phase. Considering peak-centre to peak-centre, the width would be much
closer to 20 µK. But for these drops neither peak on its own has a large enough tempera-
ture width on its own to be the A1 phase, unlike in the case of the 1 mm drops.
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Magnetic Field Dependence

A more useful way of identifying any phase transitions would be to follow the temper-
ature widths of the peaks and the beginning and end. Given there may be a difference
between higher and lower distances, drops with similar distances should be grouped
together.

Fig. 7.22 shows three drops measurements with a drop distance ∼ 0.7 mm in distance
at different fields. In checking the ICTa calibration for each measurement, the A1 was
found to vary with field according to [12]. Again, the 0.67 mm measurement was the
furthest from the expected A1 width, so the temperature error is still approximated as
5 µK. From the measurements, we can see the double peak is not particularly consistent
among the data. It seems present in (a) and (b), but not present in (c).

Furthermore, there is no clear magnetic field dependence in the width of the peaks or
the distance between the peaks. (a) and (c) look extremely similar yet the magnetic field
has increased by 50%. This should result in a 50% increase in the phase width for both A1

and β phase. For drops with a distance of over 1 mm there were measurements for three
different fields, and the result were similar. There was no field dependence found, and
one measurement didn’t show any sign of a double peak.

What is consistent among both groups of measurements is that the frequency seems to
depend on magnetic field at all temperatures. The average resonant frequency increases
as field increases, going from (a) to (c). When the width is plotted instead in Fig. 7.23,
there is no overall increase in the width as with f0. Since there is no change in the damping
measured by the width, it is likely the increase in frequency is caused by an increase in the
effective stiffness. It has previously been found that VWRs resonance frequency increases
as magnetic field increases due to the pinned flux lines present in the superconducting
wire [63, 64].

In Fig. 7.23, we do also notice a field dependence in the width of a potential phase
transition. The phase width of the 1250 mT drops seems about 30 µK, which is a result
that matches the expectation for the A1 phase. Both the 624 mT and 937 mTdata shows a
higher width in the superfluid phase. Both of these datasets were the two that displayed
a double peak most clearly. This leads us to suspect that the double peak is a result of
some interaction within the A1 phase, rather than the β phase.

7.5 Conclusions

In this chapter we first presented NMR measurements at low magnetic field. NMR can
be used to fingerprint the polar phase and detect HQVs. In the normal phase, there was
no temperature dependence of the magnetic susceptibility, confirming we had pre-plated
the surfaces with enough 4He to remove the signal of solid 3He. Below Tc the magnetic
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FIGURE 7.23: The NMR-flopper resonance frequency near bulk Tc from
drop measurements with a drop distance of ∼ 0.7 mm in several magnetic

fields. Rolling averages with a windows (a) 5, (b) 3 and (c) 3 are used.

susceptibility dropped, an indication of the non-equal spin pairing B phase. The current
state of measurements shows our width is larger than the expected frequency shift of any
HQVs at the temperatures measured. They do indicate that HQVs could be detected at
much lower temperatures, although the HQV peak would overlap with the main peak.
There is hope for improvement, however, if the gradient magnet can be driven to higher
fields. An alternative possibility, since the capacitors in the NMR RLC circuit are located
outside the cell, they could be changed to reduce the resonant frequency and thereby
increase the frequency shift of the HQV peak.

We have also described our efforts to discover the β phase in superfluid 3He in a ne-
matic aerogel using mechanical motion of the NMR-flopper. The NMR-flopper is heavily
overdamped near Tc. Instead of frequency sweeps, two other measurement types were
used. Despite our best efforts, we have not yet found evidence of the pure β phase. In-
stead, we have found a series of odd effects. First, there is apparently no change in the
velocity of the NMR-flopper driven by a constant force when the bulk superfluid is in
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the B phase as the temperature increases. Second, there are some possible threshold or
critical velocities whilst the bulk liquid is in the A phase. Plotting a temperature-velocity
phase diagram and extrapolating, we see that these velocities begin around 0.9Tc, the ex-
pected polar phase transition. Since, in general the transition temperature of any phase
of superfluid 3He is reduced in aerogels, this can not be taken as evidence of the polar
phase. Finally, there is sometimes a double-peak in the undamped resonant frequency of
the NMR-flopper at temperatures just below Tc and higher damping in the A phase than
in the normal phase. These two phenomena seem to be related, as measurements that
show a double peak often show a higher damping.
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Chapter 8

Summary

This thesis has presented work on two main experiments in superfluid 3He. The first
experiment was a continuation of a previous experiment, using new results, techniques
and analysis, taking place in superfluid 3He-B. The second was a newly built experiment
exploring superfluid 3He confined in an aerogel.

8.1 Faster than Landau Experiments

In the first experiment, the dissipation mechanism of a large superconducting wire known
as the flopper as it was moved faster than the critical Landau velocity in superfluid 3He
was investigated. Previously, it was discovered that there is no large onset of damping
seen with oscillatory motion at the critical velocity or the Landau velocity. Instead, a
small increase is seen. A tentative model was proposed, that the only damping comes
from surface-bound-states on the wire. In a previous work, an attempt at discovering the
replenishment rate of the surface states was made by moving the wire, waiting and re-
peating the movement in the same direction (up ramp) or reversing the direction (down
ramp).

In this work, we pre-plated the cell with 2.5 layers of solid 4He to increase the sur-
face specularity. This was not found to affect the dynamics of the surface states. We have
reanalysed the old data with a slightly different technique, fitting two separate exponen-
tial decay curves to the heating of the up ramps and down ramps as the waiting time is
varied, rather than trying to fit the difference. This is because there is a direction depen-
dent magnetic heating effect, which results in the heating of the two ramps being slightly
different. We conclude there is no temperature dependence to the time constant τ of the
exponential decay. An argument that this time constant represents the time constant for
a surface state to undergo a crossbranch process, where it changes its momentum, was
presented.

We varied the velocity of these ramps and analysed the difference in dissipation be-
tween down ramps and up ramps as the velocity was increased. When there is no wait
time between the first and second half of each ramp, from the Lambert model there
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should be a large difference in heating between the two ramps, beginning at vc = vL/3.
By removing the effects of magnetic heating, we demonstrated that there is no extra dis-
sipation due to surface states below vc and indeed there is an increase in the dissipa-
tion above at v ≥ vc, following a v2 dependence. Since the bulk superfluid quasiparticle
contribution to the dissipation is not direction dependent, it is effectively removed by
plotting the difference. Therefore, this extra dissipation can only be due to the surface
states.

Furthermore, an analysis of the thermometer response used to measure the heating
generated by the flopper was carried out. By measuring the time decay of the response
back to a base temperature, the Kapitza resistance could be measured. The Kapitza resis-
tance between liquid helium and sintered metal has long been controversial, especially at
ultra-low temperature. Our measurements found an exponential dependence of the Kap-
tiza resistance on temperature, agreeing with previous measurements made at Lancaster
and Cornell. As the previous measurements were made with the same sinter recipe, the
Kapitza resistance multiplied by the area (or the heat conductance per area) should be
roughly similar. Surprisingly, the area that gives even an order of magnitude estimate is
the geometric area: the area available for quasiparticles to scatter. This finding may be
useful to future demagnetisation experiments, when designing the shape and structure
of the nuclear refrigerant to maximise the cooling power.

Finally, the Kapitza resistance was found to double when 2.5 monolayers of solid 4He
were added. As solid 4He is non-magnetic, and solid 3He is paramagnetic, this is evidence
for the magnetic channel of heat transfer between silver sinter and superfluid helium.

8.2 The Search for the β Phase

The experimental cell used above was rebuilt for a new experiment. The polar phase of
superfluid 3He was recently stabilised for the first time in a nematic aerogel known as
nafen. At high magnetic fields, the β phase should also be stable, which, at the time of
beginning the experiment, had not been stabilised. As with the bulk A1 phase, this phase
consists of only Cooper pairs with both spins parallel to the field. Half quantum vortices
(HQVs) can also be stabilised with this phase. HQV are best detected by Nuclear Mag-
netic Resonance (NMR) at low magnetic fields, whereas the β phase cannot be detected
by NMR. Instead, it can be detected by the change in the superfluid density.

To this end, a new oscillating device was created. The nafen aerogel was fit inside an
NMR coil and glued to a vibrating wire, very similar in design to the flopper. Mechanical
vibrations allow us to probe the superfluid density and possibly nucleate HQVs at low
temperatures.
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Sadly, the β phase has not been discovered with this device in high magnetic fields,
and there are some limitations to the NMR side of the experiment that will make it diffi-
cult to observe HQVs without going to very low temperatures. More optimistically, there
have been some strange effects seen whilst in the bulk A phase that are likely due to the
superfluid phase in the aerogel, including a possible threshold or critical velocity. Sec-
ondly, the NMR circuit frequency can be lowered, and the NMR peak shift of the HQVs
can be increased to within our resolution fairly easily.

Additionally, new sub-micron diameter vibrating wires were measured in superfluid
3He-B below 200 µK. These wires experience much lower damping than expected from
the standard treatment of wires in the ballistic regime. This is possibly due to a lack of
Andreev reflection, as the wire radius approach the coherence length of the superfluid.
However, it’s also possible there is kink, or unetched copper on the wire after the manu-
facturing process. The wires have been compared in helium gas at 4 K with larger wires,
but the results are not any clearer. Hopefully in the future the matter will become more
clear: first, it is possible to measure the wires at higher pressure, which will decrease the
coherence length and increase the ratio of coherence length to radius. Second, a new ex-
periment has begun which has several of these sub-micron wires, and an independent
pressure gauge. We eagerly anticipate superfluid results for these wires.
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Appendix A

Measurement Circuitry

Fig. A.1 and Fig. A.2 show simplified measurement circuits used for VWR measurements
and QTF measurements, respectively. The signal generators used are Keysight Agilent
33220A or Agilent 33521A. The lock-in amplifiers used are Stanford Research Systems
SR830. For VWRs, the drive current is passed through a drive box with a variable resis-
tance (100 Ω to 1 MΩ) and a 6:1 step-down transformer to break ground loops. The signal
voltage is amplified by a step-up transformer, which typically is a ratio 30:1. A QTF is in-
stead passed through a series of −20 dB attenuators, usually a total of −60 dB, to reduce
the drive voltage. The signal is amplified by a current-to-voltage (I/V) converter. The I/V
converter is a Stanford research systems SR570.

Signal
Generator

Drive Box Step-up
Transformer

Lock-in
Amplifier

Phase Sync

VWR

FIGURE A.1: Simplified circuit for a VWR resonator.

The measurement circuits for the flopper and NMR-flopper are in Fig. A.3, Fig. A.4
and Fig. A.5. For AC measurements (the outer signal generator and lock-in amplifier), the
principle is the same as a VWR but without the step-up transformer. For the flopper DC
ramps, the DC drive is mixed with an off-resonance high-frequency signal to measure
the pick-up coil response. The drive voltage is determined by measuring the voltage of
an 0.1 Ω resistor. For the NMR flopper, the NMR tank circuit is driven by the gradient
coil via mutual induction. The NMR tank circuit is driven at a fixed frequency of 948 kHz
and the response is recorded. In a sine-wave measurement, the DC power supply is still
used but programmed by an AC signal generator. Again, the voltage of the resistor is
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Signal
Generator

Attenuator

I/V
Converter Lock-in

Amplifier

Phase Sync

QTF

Resistor

FIGURE A.2: Simplified circuit for a QTF.

measured to monitor the drive signal. Of course, for a drop measurement, only the DC
supply is needed. The DC power supply used is a KEPCO Linear Power Supply BOP
20-25M model, which is controlled by a voltage signal from a Digital Acquisition board
(DAQ).

Signal
Generator

Signal
Generator

DC
Supply

Lock-in
Amplifier

Lock-in
Amplifier

Lock-in
Amplifier

Drive Box

Coil 1 Coil 2

V

Phase sync

Phase sync

Flopper

1
 Ω

Signal
Mixer

FIGURE A.3: Simplified circuit for AC motion and DC ramps of the flopper.
The outer phase loop is for AC motion and is similar for a VWR.
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Phase sync

Voltage Divider V NMRFlopper

Tank Circuit
Attenuator

Phase sync

Low Temperature
Amplifer

High Frequency
Lock-in
Amplifier

Lock-in
Amplifier

Lock-in
Amplifier

Signal
Generator
948 kHz

Signal
Generator

Gradient
Coil

Lock-in
Amplifier

DC
Supply

1 Ω

Moving
Coil

DAQ

FIGURE A.4: Simplified circuit for a sine-wave measurements in Chapter
7.

Phase sync
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NMRFlopper
(mechanical)

Tank Circuit
Attenuator

Low Temperature
Amplifer

High Frequency
Lock-in
Amplifier

Signal
Generator
948 kHz

Gradient
Coil

Lock-in
Amplifier

DC
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1 Ω

Moving
Coil

DAQ

Control
Signal

FIGURE A.5: Simplified circuit for drop measurements in Chapter 7.
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Appendix B

Statistics

B.1 Goodness of Fits

In this work there are free methods for calculating the goodness of a fit to data. These are:
the coefficient of determination (R2), the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE).

B.1.1 Mean Absolute Error

The total MAE simply measures the absolute difference between the measured value of
the ith data point yi and the predicted fit value xi for the total N data points. It is defined
as

MAE =
∑N

i=1 |yi − xi|
N

. (B.1)

B.1.2 Root Mean Squared Error

The RMSE uses the residual sum of squares (SSres). The residual sum of the squares is
defined as the sum of the squared difference between the measured and fit values

SSres =
N

∑
i=1

(yi − xi)
2. (B.2)

For the RMSE, we simply divide SSres by N and take the square root

RMSE =

√
SSres

N
. (B.3)

B.1.3 Coefficient of Determination

The R2 value is said to be a measure of the proportion of variation in the measured values
that are predictable by the fit.
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It compares the ratio of the residual sum of squares to the total sum of squares (SStot).
The total sum of squares is the sum of the difference between the measured values yi and
the mean ȳ

SStot =
N

∑
i=1

(yi − ȳ)2. (B.4)

The R2 is then defined as

R2 = 1− SSres

SStot
. (B.5)

One can think of the R2 of providing a measure comparing how good our fit is to the
simplest and most basic fit we can think of, the mean.

B.2 Statistical Moments

Statistical moments can be used to calculate several features of the NMR absorption line,
including the central frequency and the width. Statistical moments are analogous to mo-
ments in classical mechanics. For a discrete data set that is a function of f (x), the moment
is

µ1 =
N

∑
1

f (xi)xi (B.6)

which we can use to find the centre by simply dividing by sum of f (xi)

Centre =
µ1

∑N
1 f (xi)

. (B.7)

This is analogous to finding the centre of mass. The second moment is simply

µ2 =
N

∑
1

f (xi)x2
i . (B.8)

To find the standard deviation σ which we use as the width, we use the centred second
moment and divide by the sum of the function again

σ2 = Var = ∑N
1 f (xi)(xi − centre)2

∑N
1 f (xi)

. (B.9)

For a continuous function we can replace the sums with integrals between −∞ and
+∞.
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B.3 Signal Response to a Lock-in Filter

The lock-in amplifiers have a Jth order low-pass filter setting with a time constant τf and
a roll-off. The roll-off can be 6 dB, 12 dB, 18 dB and 24 dB per octave and determines the
order of the filter used. This filtering is performed digitally within the lock-in amplifier.
The low pass-filter is a simple exponential filter. Increasing the roll-off from −6 dB per
octave is equivalent to passing the response after the first filter through another identical
filter. Therefore, the roll-off setting controls the number of filters the original signal is
passed through, from J = 1 to J = 4.

To find the position x(t) of the NMR-flopper, we measure the voltage of the position
detection coils. The response y1(t) of the first simple exponential filter can be defined by

ẏ1 =
x− y1

τf
. (B.10)

Now we introduce the function u = y1et/τf and rearrange (B.10) to get

x = Tf u̇et/τf . (B.11)

Since y1 = ue−t/τf we can write from (B.11)

y1 =
1
τf

(∫
xet/τf dt + CJ

)
e−t/τf (B.12)

The constant of integration CJ is determined by the initial condition y1(0) = x(0). Taking
the underdamped solution, we write

y1 =
1
τf

(∫
e−

∆ω
2 t [c3 cos(ωudt) + c4 sin(ωudt)] et/τf dt + CJ

)
e−t/τf . (B.13)

For simplicity, we use the substitution a1 = (1/τf − ∆ω/2). Integrating results in

y1 =
1
τf

e
∆ω
2 t

a2
1 + ω2

ud
[(c3a1 − c4ωud) cos (ωudt) + (c4a1 + c3ωud) sin (ωudt)] +

CJ

τf
e(−t/τf).

(B.14)
We can see that this equation has the same form as the original underdamped equa-

tion, except with new constants in front of the sine and cosine functions and the addition
of cn

τf
e(−t/τf).

We can then repeat the process for the second filter y2(t) by using the response of the
first filter,

ẏ2 =
y1 − y2

τf
. (B.15)



Appendix B. Statistics 152

Clearly, this will result in another equation with the form of the original underdamped
solution but with the addition

∫ cJ
τf

e(−t/τf)dt + cJ+1
τf

e(−t/τf), where cJ+1 is the second con-
stant of integration.

We can repeat this process for J filters, as the constants of integration will just result
in the addition of an infinite series.
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