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Abstract—Resilience in networks has often relied on high
availability to ensure minimal disruption to end users when
faults occur, but this has grown difficult for retaining state with
the growing popularity of hardware middleboxes – blackbox
hardware network functions that have served as an important
part of network design in recent years. There is potential room
for the introduction of Network Function Virtualisation (NFV)
in the field of resilience in connection with middlebox usage.
Rather than relying on overprovisioning, we propose Middlebox
Minion (MiMi) VNF, a system design that can be inserted around
inaccessible hardware. This recreates state in accordance with
the middlebox function, using NFV to establish stateful failover
mechanisms without the need to replace existing hardware.
The experiment we present is a failover analogy examining the
importance of state retention and the complexities involved with
inaccessible hardware. Results suggest a promising improvement
of connection quality and up to 60% lower loss when state can
be preserved across failover instances, as well as potential for
further exploration of the topic area.

I. INTRODUCTION

Network operators increasingly use middleboxes to improve
network connectivity, designed to overcome limitations in
network protocol design by processing packet headers in non-
standardised ways supporting operations, like security enforce-
ment, resource control and connectivity. Middleboxes predom-
inantly use specialised hardware components to process traffic
at line rate and rely on vertically-integrated control planes. As
a result, they operate as a ”bump-on-the-wire” and remain
external to the network control plane (e.g. routing). Although
middlebox failures are sporadic, they can disrupt network
functionality [1] as they become a single point of failure in the
network. Unlike TCP/IP protocol design principles, network
middleboxes maintain essential per-flow state and persistent
failures will render the network unusable, with even simple
device reboots having a long-lasting degradation effect on
network performance. Failure recovery typically relies on re-
setting established network flows. A subsequent storm of new
connections will force the middlebox to push a large amount
of packets to the co-processor, which typically manages
the initial state allocation. Nonetheless, the communication
channel between the co-processor and the forwarding plane
offers limited capacity and is designed to support sporadic
packet exceptions [2]. This results in increased packet loss
and potential incast effects over a period of time.

Existing network resiliency frameworks [3] rely on multi-
stage processes using a mix of failure mitigation mechanisms
for short-term remediation as well as long-term recovery.

Remediation mechanisms restore partial service delivery, while
recovery mechanisms restore service delivery. Several research
efforts [4, 5] offer timely VNF failure detection, while the con-
nectionless design of TCP/IP protocols ensures the eventual
service recovery. Research on middlebox failure remediation
has been limited, due their “black-box” design nature. In
this paper we explore a novel view point on the use of
VNF technologies: can virtualised software replicas provide an
effective remediation mechanism for hardware middleboxes?
The lack of standardisation both for design and interface
renders fault-recovery infeasible in the case of significant fault,
and we lack the control plane mechanisms to manage such
failures in a timely fashion. The lack of external API or
flexible design also isolates these physical network functions
from anything besides its intended function [6]. This limits the
number of approaches to resilience that can be utilised with
this hardware [7]. State cannot be retained when faults occur
across redundant devices, nor can replication be used without
the ability to define consensus via protocols such as Paxos [8].
The fault tolerance that a middlebox supports is limited pri-
marily to its own design and very simple redundancy through
overprovisioning. The proliferation of middleboxes greatly
exacerbates these limitations, with the potential for thousands
of these devices distributed throughout the network [9].

This paper presents MiMi-VNF (Middlebox Minion VNF),
an architecture to enable general-purpose state-resilience for
hardware middleboxes. MiMi-VNF takes advantage of the
flexibility of VNFs to create virtualised equivalents of mid-
dleboxes that, during periods of disruption or fault, can
provide a fast remediation mechanism for service delivery.
As built for purpose VNFs, they may be hardware-agnostic,
sufficiently replicating the role of the middlebox regardless of
the product used. This is achieved through state replication
and traffic cloning to generic hardware placed in parallel to
the middlebox. The performance limitations of virtualisation
are minimised in this role, and their flexible design exploited.
Specifically, the contributions of this paper are:

• We present a network architecture that improves hardware
middlebox resilience, by replicating state using VNF
minions.

• We implement a prototype of the proposed architectures
and demonstrate the ability of the architecture to min-
imise network disruption.



II. BACKGROUND

Resilience is an umbrella term that encompasses many
approaches to network and system design. Sterbenz et al. [3]
define resilience as “the ability of the network to provide
and maintain an acceptable level of service in the face of
various faults and challenges to normal operation”. It is a
vital part of system design, but difficult to do effectively.
Middleboxes and NFV are no exception, with a body of work
in recent years exploring the topic, especially for the issues
of state preservation and the complexities they both pose.
Several key challenges have been highlighted by work prior
to this paper, including Remus [10], Pico [7] and FTMB [11].
Coarse grained approaches to replication are not faster than the
tolerable limit of sub-1ms for live deployments as discussed
in [11], whilst fine grain transaction logging requires access
to hardware that is unlikely in live deployments. Satisfying all
requirements is unlikely; sufficiently generalised, minimally
impactful during normal operation and seamless in its re-
covery. The replacement of middleboxes with virtualisation
is not a simple improvement, and has been the subject of
considerable exploration for its resource consumption [12],
organisation [13] and traffic steering [14].

There is no approach to resilience that will be sufficient
on its own, and the growing complexity of networks only
complicates the design of recovery efforts. The restrictions on
performance impact and the black box nature of middleboxes
further compounds this. Changing the nature of the system
as it has evolved is tough. Several recent approaches attempt
to remove middlebox reliance entirely through frameworks
to execute their functionality as a rentable service, such as
the In-Net framework by Stoenescu et al. [15] for rentable
edge processing, or the APLOMB system by Sherry et al.
[16] that pushes all NFV to the cloud. There has been
little adoption of such system-changing approaches for both
technical and financial reasons, leaving middleboxes firmly
rooted in network design for the near future. These demon-
strate that creating a generic, resilient and state-aware failover
system, especially under these strict criteria, is a complex and
difficult task. FTMB is a significant step in the right direction
towards this high bar, but still requires that the middlebox be
modifiable/accessible.

III. MIDDLEBOXES AND NETWORK RESILIENCE

The work established in [11] is a step in the right direction,
but its assumption on the capacity to modify middleboxes
may be unreasonable. The argument of this paper is that
middleboxes are unlikely to be replaced, but their significant
presence in enterprise networks and minimal approach to
resilience offers a niche for NFV to be introduced. Rather
than replacing or modifying their existing deployments like
prior research, a stateful failover system can be placed around
these black boxes and facilitate the retention of state better
than mere hardware redundancy. Areas in which this approach
may be lacking such as performance are less important if
the existing hardware remains the primary packet processor
and the virtualised failover system used only in the event
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Fig. 1. MiMi Middlebox resilience architecture.

of failure. The motivation for this argument is not with-
out grounding from work by others. Technologies such as
DPDK and Nvidia’s Cumulus [17] have pursued softwarised
packet processing without compromising on the advantages
of hardware via APIs to proprietary platforms such as Intel
or ARM. These hybrid ASIC architectures can be observed
as a technological trend where softwarisation is pursued in
conjunction with accessible hardware without compromising
on programmability or performance. Whilst MiMi in its early
phases primarily explores both the concept and its benefits,
the argument it also establishes forms the basis of its future
work.

Architecture: Figure 1 presents MiMi’s architecture. It is
built on the basic assumptions that the network infrastructure
supports VNFs and fast-failover routes such as MPLS [18]
are in place when failures occur. Our architecture uses a
best-effort mechanism to construct state and maintain partial
packet processing and forwarding correctness during mid-
dlebox failures. This is achieved through 1:1 pairings of
key middleboxes to VNFs, where a set of modules maintain
state synchronisation between the primary middlebox and the
minion VNF. In parallel, it uses the northbound API of the
network control plane to establish a backup path to the VNF if
the middlebox fails. The management layer uses off-the-shelf
database software (e.g. Redis) to store the forwarding state of
each middlebox. It is worth highlighting that the architecture
has a minimal impact on the resource of the infrastructure
during idle mode, as the backup VNF functionality will be
limited to collecting state updates and signal liveness to the
management layer. Furthermore, modern memory ballooning
techniques in VMs can also minimise the need for internal
memory fragmentation on the virtualised servers.

To minimise impact on service liveness, the middlebox state
must be retained and transferred to the MiMi VNF during
either operation or at the point of failure. The middlebox
ecosystem is diverse however, and what can be defined as
middlebox state is both traffic and application-dependent. For
example, a load balancer will need to persist ”client IP - out-
port” pairings and the target backend server for long streams,
or current backend server load for load spread decision mak-
ing. An application’s tolerance for disruption defines the speed
at which the VNF must operate to mask failures. Middle-
box platforms vary significantly in their programmability and



transparency. Vendors typically keep their firmware closed for
security purposes and do not allow user-defined applications to
run on the co-processor. Nonetheless, the increasing adoption
of network programmability has motivated network operators
to adopt more open middlebox designs that allow user to script
custom management policies [19].

As a result, our architecture adopts a flexible middlebox
integration model. Specifically, to integrate a hardware mid-
dlebox with the MiMi platform, a VNF image must be defined
that supports similar packet operations and manipulate traffic
in an appropriate manner. Software such as Open Vswitch
and the Click modular router can implement a wide range
of packet processing operations at high speeds, as well as
several subsystem from the Linux kernel. As part of this VNF
selection process, the network manager much also define a
custom schema from the middlebox state and develop drivers
that can extract state from the primary middlebox, serialise it
in the state repository and translate it into appropriate state
setup from the MiMi VNF.

The difficulty of this depends on the nature of the middle-
box; for a white box, an internal driver can be inserted into
the box to serialise state, to be sent to the state repository
and then to the VNF. The number of middlebox products
that are modifiable in this fashion is unknown however, with
the prevailing position being most devices disallow external
modification. For these devices, external drivers can recreate
state using information derived from system logs generated
by the middlebox itself or created through observation of
traffic patterns. This may not be sufficient to replicate state
identically, but produces an approximation sufficient for re-
mediation. If no metrics are available at all, it is possible
to establish approximate state through symbolic execution
when the middlebox configuration is known as discussed by
Stoenescu et al. with SymNet [20].

Implementation: In order to evaluate the feasibility of
our architecture, we have implemented a software proto-
type. The management layer of the MiMi architecture use
a container-based micro-service architecture consisting of a
liveness service, an SDN application supporting Fast-Reroute
and a state serialisation middleground service. To evaluate
the compatibility of our architecture with existing middlebox
technologies, we focused on a load balancing service. The
application schema stores a mapping between the source IP
address and port number and the selected backend server IP.
Due to limited access to real middlebox appliances, we use
software load balancers to emulate two middlebox scenarios:
an OpenFlow-based load balancer built as a Ryu application,
and a NetFilter Source NAT policy. Both middlebox scenarios
perform packet-level load-balancing and offer some form of
state control.

Our OpenFlow application implements a reactive load
balancing control application which uses a 5-tuple hash to
randomise backend server selection and exact match rules to
rewrite MAC and IP addresses, forwarding the packet to the
correct output port. The MiMi driver is implemented as part of
the application and use a Redis python library to synchronise

Fig. 2. Experimental topology emulating a caching service with 5 backend
servers and 5 clients.

with the remote state repository. For our NetFilter-based load
balancer we insert a set of rules in the NAT table of the post-
routing chain that select a random backend server and forward
the traffic to it. In this implementation, because the NetFilter
rules are executed in the kernel, we opted to design an external
MiMi driver. The driver uses the logging capabilities of the
NetFilter system and implements a syslog server that can
extract the relevant field from the logging information.

IV. EVALUATION

In this section, we evaluate the ability of the MiMi VNF
prototype to reduce TCP connection resets during a failure
scenario. The experimental topology, depicted in Figure 2,
emulates a caching service and consists of five clients ac-
cessing a load-balanced HTTP service supported by five
backend servers. A primary hardware load balancer exposes
an HTTP service via a virtual IP and each HTTP request is
randomly redirected to a backend server, while a minion VNF
is available to remediate service delivery, upon failures. The
clients and the servers connect with the load balancers using
OpenFlow switches configured with static L2 forwarding rules
and a Fast Failover group table entry implementing a network
failover mechanism; when the link to the primary middlebox
is disabled, all traffic is rerouted to the minion VNF.

Our evaluation uses two workload models; requesting small
web objects (WEB - short flows) and streaming DASH video
streams (DASH - long flows). For the WEB workload, we
used the WRK (v4.1.0) HTTP traffic generator running on
two threads on every client and requesting a small web
object (617Kb). We vary the number of parallel connections
to ensure a certain level of utilisation in each experimental
run. For the DASH workload, we run the scootplayer load
generator, and serve the “Big Buck Bunny” video at high
quality (8000kbit) segmented in 1 second chunks, with chunk
sizes varying between 100Kb to 1.4 Mb. In both scenarios, the
servers use the lighttpd daemon (v1.4.45). To emulate failure
scenarios, we manually trigger link failures at fixed intervals,
which force the OpenFlow switches to forward traffic via the
minion VNF. During an experiment, we measure the number
of failed connections and the overall traffic throughput. Our
experiments executed on a Dell server (Dual Socket Xeon
4114, 20 Cores, 32gb RAM, Ubuntu 18.04) using the Mininet
platform. Four scenarios are replicated for each experiment.



Firstly, we run the system without any failures and measure
the performance when the flow replication mechanism of
MiMi VNF is disabled (Clean) or enabled (Copied). This
experiment is used to identify if the MiMi architecture during
normal operation incurs any noticeable service degradation.
Secondly, we trigger failures at fixed intervals while the flow
replication is enabled (Failover) or disabled (Fail). For the
WEB workload, we run the experiment for 5 minutes and
trigger a failure every 30 seconds (5 state transfers). For the
DASH workload, we trigger 15 evenly spaced link failures for
the experimental duration. It is worth noting, that we mirror
state only from the primary middlebox to the minion VNF.

Resilience Evaluation: In our experiment we use two
driver designs for the MiMi VNF; state recreation via logging
and direct driver insertion into the primary middlebox. In
both scenarios, state is serialised to JSON and stored in a
middleground (mainly Redis) separate from the two middle-
boxes. We initially tested our Ryu load balancing application
both as the primary middlebox and the minion VNF, and we
report the average and standard deviation number of failed
of connections across 5 experimental runs in the upper half
of Table I. The DASH workload consists of long-running
TCP connections with little disruption tolerance. This is a
significant volume of traffic for OpenFlow, staggered to begin
in equal sets to maintain a consistent level of traffic.

From the results, we observe that for both low (50 client)
and high traffic volumes (100 clients), our MiMi driver reduces
the number of failed connections by 16% and 18% respec-
tively. The results are consistent if not substantial; there is
some measure of improvement, but scootplayer is intolerant
of significant disruption. The WEB workload exhibits more
clearly the benefits of the MiMi sytem with a reduction
in connection timeouts by 41%. Timeouts inevitably spawn
rebroadcasted packets, with a 36% increase in requests over
fault-free operation. When transferring state, an increase of
only 17% occurs. The trend can also be observed with 2000
connections, with a reduction of timeouts of 40% and 33%
for traffic respectively. Applications with better robustness to
failure exhibit a more distinguishable reduction in the total
number of failed connections. This is not to suggest that
systems with heavier traffic are inappropriate for retention of
state, but that the scenario of repeated failures with transfer in
one direction is not as accurate to a real world deployment.
Average rates of latency and impact of this approach on
fault-free operation is minimal and within normal range of
deviation.

In order to evaluate our state recreation via logging driver
model, we use our Iptables middlebox as the primary load
balancer. There is an expected but significant performance
difference between the primary and minion load balancer in
this scenario, observable in the orders of magnitude difference
in packet processing speeds and this affects our ability to
compare the performance of the DASH workload and we
restrict our analysis to the WEB workload exclusively. The
lower half of Table I presents the average and standard
deviation of the number of failed connections of the WEB

Ryu/OpenFlow middlebox
Workload Clean Copied Fail Failover

DASH (50 sessions) 12 (1) 15 (1.5) 36 (3) 29 (2)
DASH (100 sessions) 51 (2) 56 (3) 89 (5) 71 (3)

WEB (1k sessions)
2296
(73)

2057
(96)

4167
(265)

2496
(156)

WEB (2k sessions)
1177
(97)

1295
(150)

7144
(324)

4278
(212)

IPtable middlebox
Workload Clean Copied Fail Failover

WEB (20k sessions)
9497
(502)

10444
(427)

28331
(1388)

12417
(1326)

WEB (30k sessions)
13737
(461)

15512
(418)

45220
(3275)

21672
(865)

TABLE I
AVERAGE (STANDARD DEVIATION) CONNECTION FAILURES USING A

MIMI VNF LOAD-BALANCER FOR DIFFERENT WORKLOADS ACROSS FIVE
EXPERIMENTAL RUNS.

workload for a varying number of parallel connection across
five experimental runs. From the results, it is evident that
the trend of timeout reduction continues with an observable
change of 56 to 60% in 20-30K connections respectively. This
is a significant reduction in rates of connection failure and will
become more pronounced with higher volumes of traffic.

V. CONCLUSION

In this paper we have presented MiMi, a prototype and
initial exploration of the problem of building resilient systems
around fixed hardware middleboxes. Middleboxes present a
difficult goal for maintaining state across failures, but NFV
offers considerable potential in its adaptability, especially
when placed in an auxiliary role where its comparative
disadvantages are diminished. The MiMi VNF architecture
offers significant improvement in connection retention both
for long and short flows, with state reconstructed from logging
acting as a first step to more generic state preservation. This
paper lays the groundwork for an idea and argument that to
our knowledge has not been investigated elsewhere. Current
technology trends, especially in regard to hybrid models of
softwarised networks and underlying hardware, demonstrate
that there is an appropriate and growing domain for this sort
of concept. We believe it will grow more relevant as SDN
further enters more traditional networking. For future work,
investigate alternative mechanisms for state reconstruction,
including symbolic execution and logging, to integrate
efficient packet processing platforms, including the Click
router, and to explore VNF management techniques, such as
scaling and clustering.
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