
Contents

Contents i

1 Introduction 1

1.1 Problem Setting . 2

1.2 Our Contributions . 4

2 Literature Review 4

2.1 Workforce and Resource Planning . 5

2.2 Distributionally Robust Optimisation . 6

3 Planning Model 8

3.1 Notation and Definitions . 9

3.2 General Distributionally Robust Model . 9

3.3 Non-parametric DRO Model . 10

3.3.1 Phi-divergence Based Ambiguity Sets . 10

3.3.2 Reformulation with Modified χ2-divergence 11

3.4 Parametric DRO Model . 12

3.4.1 Implications of Parametric Ambiguity Sets 12

3.4.2 Mixed Integer Programming Reformulation 13

3.5 Binomial Intakes and Ambiguity Sets . 14

3.6 Solver-based Solution Algorithms . 15

3.6.1 Cutting Surface Algorithms . 15

3.6.2 Approximate-objective Algorithm . 17

3.7 Example: A Two-day Problem . 18

4 Design of Computational Experiments 18

4.1 Parameter Hierarchy . 19

4.2 Capacity and Workstacks . 20

4.3 Uncertainty and Ambiguity Sets . 20

4.3.1 Uncertainty Set . 20

4.3.2 Ambiguity Sets . 21

5 Results 21

5.1 Summary of Instances and Their Sizes . 22

5.2 Optimality of Algorithms and Times Taken . 23

5.3 Performance of Algorithms in Detail . 24

5.4 CS’s Suboptimal Distributions . 26

5.5 Parametric vs. Non-parametric Decisions and Distributions 27

5.5.1 Pulling Forward Decisions and Objective Values 28

5.5.2 Worst-case Distributions . 29

i

ar
X

iv
:2

10
8.

03
94

9v
4

 [
m

at
h.

O
C

]
 8

 A
pr

 2
02

2

6 Conclusions and Further Research 31

Bibliography 32

Appendices 36

A Derivation of CQP Reformulation of Non-parametric Model 36

A.1 General Reformulation . 36

A.2 Modified χ2-divergence . 37

A.2.1 Reformulation . 37

A.2.2 Extracting Worst-case Distribution . 38

B Further Analysis of Results 39

B.1 The Effect of Workstacks on Solutions . 39

B.2 Comparison with Robust Optimisation Solutions 40

C A Benders Decomposition Approach 41

C.1 Residual Problem and its Dual . 42

C.2 Benders Decomposition Algorithm . 43

C.3 Results . 43

D Large Results Tables 45

D.1 Results by |Θ| . 45

D.2 Results by |I| . 46

E Tables of Notation 47

E.1 General Model Notation . 47

E.2 Non-parametric Model Notation . 48

E.3 CS/CS opt/AO Notation . 49

E.4 Input Parameter and Results Notation . 50

ii

Distributionally Robust Resource Planning Under

Binomial Demand Intakes

Russell Ainslie∗, Ben Black†‡, Trivikram Dokka§, Christopher Kirkbride¶

April 11, 2022

Abstract

In this paper, we consider a distributionally robust resource planning model inspired

by a real-world service industry problem. In this problem, there is a mixture of known

demand and uncertain future demand. Prior to having full knowledge of the demand, we

must decide upon how many jobs we will complete on each day of the plan. Any jobs

that are not completed by the end of their due date incur a cost and become due the

following day. We present two distributionally robust optimisation (DRO) models for this

problem. The first is a non-parametric model with a phi-divergence based ambiguity set.

The second is a parametric model, where we treat the number of uncertain jobs due on each

day as a binomial random variable with an unknown success probability. We reformulate

the parametric model as a mixed integer program and find that it scales poorly with the

ambiguity and uncertainty sets. Hence, we make use of theoretical properties of the binomial

distribution to derive fast heuristics based on dimension reduction. One is based on cutting

surface algorithms commonly seen in the DRO literature. The other operates on a small

subset of the uncertainty set for the future demand. We perform extensive computational

experiments to establish the performance of our algorithms. Decisions from the parametric

and non parametric models are compared, to assess the benefit of including the binomial

information.

Keywords: Uncertainty modelling, distributionally robust optimisation, heuristics, resource planning.

1 Introduction

In this paper, we consider a resource planning problem motivated by a real-world telecommuni-

cations service company. This real problem consists of optimising the use of a large workforce

of service engineers, in the face of a mixture of known and uncertain jobs.

∗Applied Research, BT Technology, Adastral Park, Ipswich, United Kingdom. Email: russell.ainslie@bt.com
†STOR-i Centre for Doctoral Training, Lancaster University, United Kingdom. Email:

b.black1@lancaster.ac.uk
‡Corresponding author.
§Management Section, Queens Management School, Queens University Belfast, United Kingdom. Email:

T.Dokka@qub.ac.uk
¶Department of Management Science, Lancaster University Management School, United Kingdom. Email:

c.kirkbride@lancaster.ac.uk.

1

mailto:russell.ainslie@bt.com
mailto:b.black1@lancaster.ac.uk
mailto:T.Dokka@qub.ac.uk
mailto:c.kirkbride@lancaster.ac.uk

1.1 Problem Setting

The planning process for a service company is subject to three stages, named the three stages

of planning. Each serves a different purpose, covers a different time horizon, and creates results

that feed into the next. The three stages are strategic, tactical, and operational planning.

Strategic planning covers a period of multiple years, and concerns long term decisions such as

how many employees to be hired and in which skills they should be trained. Tactical planning

concerns a period of weeks or months. It involves aggregate decisions such as deciding upon the

capacity needed in each period, or how many jobs can and cannot be completed in each period.

Operational planning concerns short-term decisions such as scheduling the day-to-day activities

of the workforce at the individual level. We focus on the tactical planning stage in this paper.

The decisions that we make are at the aggregate level, i.e. we do not plan the specific activities

of every worker but we instead aggregate their availability into a daily capacity value. We

are tasked with planning the use of this capacity to maximise job completions, or equivalently

minimise the number of jobs left incomplete. Since it is typically not possible to move capacity

between days, planners manipulate demand to make the best use of what they have.

In the telecommunications industry, jobs can be divided into two categories: repair jobs and

installation jobs. Repair jobs correspond to service engineers being tasked with fixing broken

equipment for existing customers, such as broadband routers and telephone systems. Installation

jobs correspond to engineers installing equipment in order to obtain new customers. For example,

this may be installing new cabling cabinets and networks in order to provide broadband to a new

geographical area. Repair jobs are treated as emergency jobs and they are given a high priority

for completion. Installation jobs are treated as additional jobs that a company can plan to

complete in order to generate more profit. In this paper, we will consider planning the activities

of a telecommunications workforce carrying out repair jobs. Since breakages in equipment and

services are not planned, these jobs offer a source of uncertainty. In particular, for any given

planning period we have knowledge of a fixed number of repair jobs that are already in the

system at the time of planning (workstack jobs). However, the number of breakages between

the time of planning and the date concerned is subject to uncertainty. The jobs generated by

these future breakages are referred to as intake jobs.

At the time of planning, we have an aggregate capacity value that gives the number of jobs that

our workforce can complete, for each day in a planning horizon of fixed length. This is obtained

from the number of engineers working on each day, and the number of hours that they will work.

By default, we will use all available capacity on each day to complete jobs that are due on that

day. Furthermore, workstack jobs can be completed on or before their due date, and completing

them early is referred to as pulling forward. However, the same does not apply to intake jobs.

Since the day that they will arrive in the system is unknown, allowing them to be pulled forward

could suggest that they will be completed before they even arrive. Hence, intake jobs cannot

be pulled forward. If any jobs are still incomplete by the end of their due date, then they will

not leave the system but incur a cost, and become due on the following day. This is referred to

as rollover. In this paper, since capacity is fixed, our model will optimise the pulling forward

2

decision in order to minimise the total rollover cost over the planning horizon. Pulling forward

can be utilised to free up capacity on due dates that we expect to have high intake. This helps

to reduce rollover and utilise spare capacity.

In the literature on service industry planning models that are closest to ours, demand uncertainty

often results in intractable models due to poor scalability. Examples of this come from Ainslie

et al. (2015) and Ainslie et al. (2018). In these papers, models had to be solved heuristically

due to their size, even though they were deterministic. However, the demand uncertainty is still

acknowledged. In fact, in some cases the plan is passed through a predictive model in order to

better assess its performance (Ainslie et al., 2017). The closest model to ours that does model

uncertain demand comes from Ross (2016), who used two-stage stochastic programming models

for service industry workforce planning. However, this methodology requires the assumption

that the demand distribution is known, and this is not an assumption that is reasonable here.

The framework that we use to model our problem is Distributionally Robust Optimisation

(DRO). This framework allows us to include distributional information in our models, without

full knowledge of the distributions themselves.

More specifically, we model intakes as binomial random variables where each distribution is

ambiguous. Furthermore, we assume that the intake random variables for any two days in the

plan are independent of one another. We assume that we have access to a forecasting model or

expert knowledge that gives a point estimate of intake and a range of potential values. Hence, for

each day, the number of trials is fixed at the maximum intake. Therefore, the success probability

is the only unknown parameter for each distribution. This parameter can be estimated through

maximum likelihood estimation, with access to past intake data. Our decision to use the binomial

distribution can be justified by the following three reasons:

1. The number of intake jobs due on each day is a discrete quantity and any two jobs arriving

on the same day arrive independently of one another.

2. There is a fixed and finite set of values that each intake random variable can take. Other

discrete distributions such as the Poisson distribution are unbounded, and hence not fitting

for these random variables.

3. Apart from naturality, it gives a concise way of modelling the uncertainty. We can represent

each distribution uniquely by one choice of p, which is a vector of dimension equal to the

number of periods in the plan. Using a non-parametric approach would mean having

to analyse the entire distribution, which is a larger vector that has one entry for every

realisation of intake.

We emphasize that the binomial assumption is in contrast with much of the DRO literature,

in which distributions are usually non-parametric. The reason for this is that parametric dis-

tributions often lead to intractable models. However, in the context of our problem, we show

that it is possible to derive algorithms which are both tractable and near-optimal. Binomial

and negative binomial distributions have often been used for demand modelling, particularly in

inventory management. Examples of this include Collins (2004) for a risk-minimising newsven-

3

dor, Gallego et al. (2007) for inventory planning under highly uncertain demand, Dolgui and

Pashkevich (2008) for forecasting demand in slow-moving inventory systems, and Rossi et al.

(2014) for confidence-based newsvendor problems.

In this paper, we will use the fact that every distribution in the ambiguity set is binomial

in order to find the worst-case expected cost for a fixed pulling forward decision. In general,

our methodology consists of three key steps. Firstly, we construct a discrete ambiguity set for

the parameters of the true distribution. Secondly, we create a tractable reformulation of the

model by replacing the inner objective with a finite number of constraints. In particular, there

is one constraint for each distribution in the ambiguity set. Thirdly, we study the objective

function as a function of the distribution’s parameters in order to construct a set of extreme

distributions. For discrete distributions, the constraints representing the inner objective will

always be linear. For continuous distributions, this is not necessarily the case. In such situations,

for the second step, one would have to use a linear or quadratic approximation of the objective

function. For example, this could be done using piecewise linear approximations or sample

average approximations. Doing so would then allow our methodology to be applied.

1.2 Our Contributions

We consider a DRO model for a resource planning problem with an unknown number of intake

jobs on each day. Using the problem structure, we model intakes as binomial random variables

and study the resulting DRO model. Due to the use of the binomial distribution, the problem is

considerably harder from a computational point of view. Our contributions in the paper include

the following:

1. A new framework for solving DRO problems with ambiguity sets containing only distri-

butions in the same parametric family as the nominal distribution. A comparison of this

framework with a common, non-parametric framework based on the use of φ-divergences.

2. Three solver-based algorithms for the parametric model: an optimal and a heuristic Cut-

ting Surface (CS) algorithm, and an Approximate Objective (AO) algorithm (see Sec-

tions 3.6.1 and 3.6.2). Our heuristic CS algorithm, while not exact, considerably simplifies

the main bottleneck step of the optimal CS algorithm: finding the worst-case distribution

for a fixed pulling forward decision (referred to as the distribution separation problem).

This makes it much more scalable with the size of the ambiguity set.

3. Extensive computational experiments on a variety of constructed instances which show

the efficacy of our methods. See Section 5 for these results.

2 Literature Review

In this section, we review relevant literature relating to our problem and problems of a similar

nature. In Section 2.1, we review the workforce planning literature and highlight the method-

ologies used there. In Section 2.2, we summarise the recent DRO literature and discuss how our

4

research differs from it.

2.1 Workforce and Resource Planning

Workforce planning models of various forms have been studied in the OR literature since the

mid 1950’s, with early papers focussing on creating tractable deterministic models (Holt et al.,

1955, Hanssmann and Hess, 1960). Demand uncertainty has always been discussed in these

early papers, with some authors extending previous models to minimise expected cost rather

than cost (Fetter, 1961). In more recent literature, the modelling of uncertain demand has been

developed further. The most common method in the literature has been two-stage stochastic

programming. This methodology was applied to nurse scheduling J. Abernathy et al. (1973) and

recruitment for a military organisation Martel and Price (1978) in the early literature. More

recent examples of stochastic programming in workforce planning include planning a cyber

branch of the US army Bastian et al. (2020), and service industry workforce planning Zhu and

Sherali (2009), Ross (2016). These authors use stochastic programming due to their assumption

that the distribution of the uncertain parameters is known. When this is not the case, or if the

planner is risk-averse, Robust Optimisation (RO) can be used to represent demand uncertainty.

This methodology has been used, for example, in healthcare (Holte and Mannino, 2013) and air

traffic control (Hulst et al., 2017).

Recently, there have also been some applications of distributionally robust optimisation (DRO)

to workforce and resource planning. Liao et al. (2013) used DRO for staffing a workforce to

take calls arriving at a call centre at an uncertain rate. The reason for using DRO was cited as

being that the true arrival rates of calls are usually subject to fluctuations, meaning that the

typical stochastic model with a fixed Poisson distribution was not appropriate. They simulated

the DRO solution and the stochastic programming solution and found that the two had similar

costs. However, the stochastic programming solution violated more model constraints. Chen

et al. (2015) also used DRO for workforce planning in a hospital environment. In particular,

they used DRO to determine bed requirements in order to appropriately manage admissions to

the hospital. They use DRO due to the difficulty in specifying a distribution to describe patient

movements in the hospital, and find that it performs better than a deterministic approach.

Our resource planning problem deals with the management of both planned and unplanned jobs.

Similar problems exist in other settings, such as scheduling for gas pipeline maintenance (An-

galakudati et al., 2014), and operating room scheduling in hospitals (Samudra et al., 2016). Par-

ticularly, in operating room planning, the workstack and intake jobs as defined in our model are

similar to elective (inpatient and outpatient) and non-elective (emergency) surgeries. Similarly,

in gas pipeline maintenance the workstack and intake jobs correspond to planned maintenance

jobs and emergency gas leak repairs, respectively. The main difference between our research and

these papers is the choice of performance measure. For example, Angalakudati et al. (2014) use

overtime hours as a performance measure under the assumption that jobs have individual com-

pletion times. However, since our model is for tactical and not operational planning, jobs and

capacity are aggregated. The duration of each job is not modelled directly. Hence, in our case,

5

the amount of overtime would be inferred by the number of jobs that could not be completed, i.e.

rollover. As discussed by Samudra et al. (2016), metrics chosen for optimisation differ based on

the underlying context and the stakeholders involved. They emphasize that traditional metrics

such as makespan do not work in presence of both planned and emergency demands. In our

application, the time taken to complete jobs is not of particular concern. However, leaving jobs

incomplete is very costly due to its effects on customer satisfaction. In industries like telecom-

munications, customer satisfaction is of great importance, and hence rollover may be the most

appropriate performance measure.

The literature reviewed here shows that the modelling of uncertain demand in resource and

workforce planning has been the subject of a breadth of research in the past. It suggests that

the most common approach is to employ two-stage stochastic programming models. However,

the assumption that the distribution of demand is known is not reasonable in our setting. In

fact, we only have access to a point forecast and range of potential values for demand. We do

assume, however, that we can take samples of intake in order to estimate the parameters of its

distribution. In addition, there are no recourse actions in our problem. In such settings, RO

and DRO are the only potential solution approaches. For our problem, a robust model will be

shown to lead to more conservative decisions and large costs. We show this in Appendix B.2.

Hence, we present a DRO model for our problem, which will extend the previous stochastic

programming approaches to the case where the distribution is not known exactly. We find that

the model is large and complex, due to the size of the sets of intakes and distributions. Hence,

we develop heuristics that apply dimension reduction to these sets in order to reduce solution

times. One algorithm considers only a small subset of distributions, and the other operates on

a small subset of intakes. While these algorithms perform well on average, they do sacrifice

optimality for speed in some large instances.

2.2 Distributionally Robust Optimisation

DRO combines concepts from robust optimisation and stochastic programming in order to pro-

tect the decision maker from distributional ambiguity. DRO models are constructed using only

limited information on the true distribution of the uncertain parameters. This information is

encoded in an ambiguity set, in which the true distribution should lie. The earliest type of ambi-

guity set in the literature is the moment-based ambiguity set. This set contains all distributions

whose moments satisfy a given set of constraints. The simplest moment-based sets consider mo-

ments to be fixed and known. The moments concerned have often been the mean and variance.

This case was studied by Scarf (1957) for a newsvendor model. Other papers included models

where the first m moments were known (Shapiro and Kleywegt, 2002). Authors have also devel-

oped models that did not assume that these values were fixed but that they were known to lie in

an interval or that ordinal relationships between probabilities were known (Breton and Hachem,

1995). Other examples of this come from Ghaoui et al. (2003) and Lotfi and Zenios (2018),

who study a CVaR model where the first two moments are only known to belong polytopic or

interval sets. Methodologies for solving moment-based ambiguity models include reformulation

via bounding the objective function (Scarf, 1957), reformulating as a second order conic pro-

6

gram (Ghaoui et al., 2003, Lotfi and Zenios, 2018), sample average approximations (Shapiro and

Kleywegt, 2002) and sub-gradient decomposition (Breton and Hachem, 1995).

The second common methodology for constructing ambiguity sets is using distance measures.

A distance-based ambiguity set contains all distributions that lie within some pre-prescribed

distance of a nominal one. In the literature, many ways to measure this distance have been

studied. For example, many papers have used the Wasserstein distance. This distance can lead

to tractable reformulations as convex programs (Mohajerin Esfahani and Kuhn, 2018). Due to

this, it has been used in a number of contexts, such as portfolio selection (Pflug and Wozabal,

2007), least squares problems (Mehrotra and Zhang, 2013) and statistical learning (Lee and

Mehrotra, 2015, Lee and Raginsky, 2018).

Another common family of distance measures in DRO has been φ-divergences. This family con-

tains a number of distance measures, such as the χ2 distance, variation distance and Kullback-

Leibler divergence. Such measures typically lead to second-order conic programming or even

linear programming relaxations via taking the Lagrangian dual of the inner problem (Ben-Tal

et al., 2013, Bayraksan and Love, 2015). Due to the convenient reformulations they yield, φ-

divergences have been popular in the DRO literature. There have been numerous examples of

φ-divergences being used to reformulate DR chance-constrained programs as chance-constrained

programs (Hu et al., 2013, Yanıkoğlu and den Hertog, 2013, Jiang and Guan, 2016). Another

benefit of φ-divergences is that they can be used to create confidence sets and enforce prob-

abilistic guarantees. Ben-Tal et al. (2013) show how to create confidence sets for the true

distribution based on φ-divergences. This is done by taking an MLE of its parameters and using

the resulting distribution as the nominal distribution. Duchi et al. (2016) use DRO models

with φ-divergence ambiguity sets to construct confidence intervals for the optimal values of a

stochastic program with an ambiguous distribution. Their intervals asymptotically achieve ex-

act coverage. By studying φ-divergence balls centred around the empirical distribution, Lam

(2019) shows that DRO problems can recover the same standard of statistical guarantees as the

central limit theorem.

In addition to these papers that consider general φ-divergence functions, the fact that φ-

divergences cover a range of distance measures allows authors to select those that are most

appropriate for their models. For example, Hanasusanto and Kuhn (2013) used χ2 divergence

ambiguity sets for a distributionally robust dynamic programming problem. They used the χ2

divergence, in particular, because it allows the min-max problems in the dynamic programming

recursion to be reformulated as tractable conic programs. They also chose this divergence be-

cause it does not suppress scenarios. In other words, it does not give scenarios zero probability in

the worst-case if they have non-zero probability under the nominal distribution. The Kullback-

Leibler divergence was also extensively studied by Hu and Hong (2013), who used it for DR

chance-constrained problems. They showed that, under this divergence, if the nominal distribu-

tion was a member of the exponential family then so was the worst-case distribution.

The literature we have reviewed so far concerns models that can be reformulated and solved

exactly, due to their ambiguity sets being constructed using distance measures or moment con-

7

straints. However, there has also been significant literature studying general DRO models that

are not formulated in this way. In general, DRO models are semi-infinite convex programs

(SCPs). They have a potentially infinite number of constraints induced by those defining the in-

ner objective value. Typically, iterative algorithms are used to solve SCP models. For example,

Kortanek and No (1993) developed a cutting surface (CS) algorithm for linear SCP problems

with differentiable constraints. This algorithm approximates the infinite set of constraints with

a sequence of finite sets of constraints. Constraints are iteratively added to the current set

considered until stopping criteria are met. The constraint that is most violated by the current

solution is added at each iteration. In the context of DRO, adding a constraint corresponds to

finding a distribution to add to the current ambiguity set. This is referred to as solving the

distribution separation problem. Pflug and Wozabal (2007) later applied this algorithm to DRO

models for portfolio selection under general ambiguity sets. In an extension of Kortanek and

No (1993)’s algorithm, Mehrotra and Papp (2014) developed a CS algorithm for SCP problems

that allowed for non-linear cuts, and did not require differentiable constraints. CS has since

become a common algorithm for DRO problems that are computationally expensive and do not

have tractable reformulations. For example, Rahimian et al. (2019) applied a CS algorithm to

a DRO model using the total variation distance. They state that the model becomes expensive

to solve to optimality when there are a large number of scenarios. Another example of its use in

the literature is given by Bansal et al. (2018), who used a CS algorithm to solve DR knapsack

and server location problems. Luo and Mehrotra (2019) also applied CS to solve DRO models

under the Wasserstein distance, and applied their results to regression models.

Our work differs from the cited literature in two key ways. Firstly, we consider demand dis-

tributions belongs to some parametric family, and enforce that the worst-case distribution also

belongs to this family. We show that the resulting model can be reformulated as a large MIP.

This model becomes very slow to solve for large ambiguity and uncertainty sets. This is due to

the large amounts of computation required and the large number of constraints. Hence, secondly,

we present algorithms that make use of the additional distributional information in order to solve

the parametric model. Among these algorithms is an optimal CS algorithm, that we will show

to be fast for small problems, but to scale poorly with the size of the ambiguity set. We also

contribute a heuristic version of this CS algorithm, that solves the distribution separation prob-

lem at each iteration over a subset containing only the most extreme parameters. We will show

that this allows us to greatly reduce the time taken to solve the distribution separation problem.

We also show how to construct a confidence set for the worst-case parameter without the use of

φ-divergences. In addition, we develop the non-parametric model and show how to reformulate

it as a second-order conic program. The results from the parametric and non-parametric models

are compared to assess the benefit of incorporating the binomial information.

3 Planning Model

In this section, we introduce our planning model and discuss the different types of ambiguity

sets that we will consider. In Section 3.1 we provide a summary of the notation that will be

8

used. Following this, in Section 3.2, we provide the DRO model itself under a general ambiguity

set. In the sections following this, we detail the parametric and non-parametric versions of the

model that will be studied in this paper.

3.1 Notation and Definitions

We consider a planning horizon of L periods, which are days in our setting. The days in the

plan are denoted by τ ∈ {1, . . . , L}. The inputs for the model are defined as follows. For each

day τ we have capacity cτ , which gives the number of jobs that we can complete on day τ . The

workstack for day τ is the number of jobs that are currently due on day τ , and is denoted Dτ .

The workstacks are known at the time of planning. The intake for day τ is denoted Iτ . This

quantity is the number of jobs that will arrive between the time of planning and the due date τ

and will be due on day τ . Each Iτ is a random variable, and its value is not realised until the end

of day τ . In other words, workstack and intake jobs represent planned and unplanned/emergency

jobs in the terminology used in other problems.

The rollover for day τ is the number of jobs that are due on day τ but are left incomplete at the

end of day τ . This quantity is denoted by Rτ , which is a random variable due to its dependence

in I. Each unit of rollover on day τ incurs a cost aτ . The set of realisations of the random

variable Iτ is denoted by Iτ = {0, . . . , imax
τ }, and a realisation of Iτ is denoted by iτ . We use

suppression of the subscript τ to represent the vectors of intakes, workstacks and so on. For

example, the vector of workstacks is denoted by D = (D1, . . . , DL). The set of all realisations of

the vector I is denoted by I. We assume that the set I is the cartesian product of the marginal

sets, i.e. I = I1 × . . . × IL. In the language of robust optimisation, I is referred to as an

uncertainty set for I. For a realisation i of the vector of intakes I, the corresponding realisation

of rollover is denoted by Ri = (Ri1, . . . , R
i
L). The objective of our problem is to minimise the

total rollover cost by pulling forward jobs wherever possible. Hence, the decision vector in our

problem is the pulling forward variable, which we denote by y. Jobs can be completed no earlier

than K periods prior to their due date. Therefore, we use yτ1,τ2 to denote the number of jobs

pulled forward from period τ1 ∈ {2, . . . , L} to period τ2 ∈ {τ1−K, . . . , τ1−1}. This corresponds

to completing yτ1,τ2 additional jobs on τ2 that are due by τ1.

3.2 General Distributionally Robust Model

We now consider the distributionally robust planning model, which is defined as follows. Denote

by P a general ambiguity set of intake distributions, such that every distribution P ∈ P assigns a

probability to every possible intake i ∈ I. Our model aims to minimise the worst-case expected

rollover cost by selecting the value of y. The model is shown in (1)-(8).

min
y,R

max
P∈P

L∑
τ=1

aτEP (Rτ) (1)

s.t.

τ1−1∑
τ2=max{τ1−K,1}

yτ1,τ2 ≤ Dτ1 ∀ τ1 = 2, . . . , L, (2)

9

min{τ2+K,L}∑
τ1=τ2+1

yτ1,τ2 ≤ max{cτ2 −Dτ2 , 0} ∀ τ2 = 1, . . . , L− 1, (3)

Ri1 ≥ i1 +

min{1+K,L}∑
τ1=2

yτ1,1 − (c1 −D1) ∀ i ∈ I, (4)

Riτ ≥ Riτ−1 + iτ +

min{τ+K,L}∑
τ1=τ+1

yτ1,τ −

cτ −Dτ +

τ−1∑
τ2=max{τ−K,1}

yτ,τ2

∀ τ = 2, . . . , L− 1 ∀ i ∈ I, (5)

RiL ≥ RiL−1 + iL −

cL −DL +
L−1∑

τ2=max{L−K,1}

yτ,τ2

 ∀ i ∈ I, (6)

yτ1,τ2 ∈ N0 ∀ τ1, τ2, (7)

Riτ ≥ 0 ∀ τ = 1, . . . , L ∀ i ∈ I. (8)

The general idea in calculating rollover in the L-day model is as follows. For a given day τ ,

we first compute the number of jobs to be completed on day τ . To compute this, we take the

rollover from day τ − 1 and day τ ’s intake as a baseline number of jobs. Then we add the

number of jobs pulled forward to day τ , i.e.
∑min{τ+K,L}

τ1=τ+1 yτ1,τ . We then compute the capacity

that can be used to complete these jobs. This is done by taking the capacity cτ and subtracting

the capacity required to complete those workstack jobs that are not pulled forward from day τ ,

i.e. Dτ −
∑τ−1

τ2=max{τ−K,1} yτ,τ2 . If the remaining capacity is enough to complete all jobs on τ ,

then the rollover is zero. Otherwise, the rollover is the number of jobs left incomplete.

Constraints (2) and (3) provide upper bounds on the pulling forward totals. Constraint (2)

ensures that no jobs are pulled forward if they cannot be completed on the day to which they

are moved. Constraint (3) ensures that only workstack jobs can be pulled forward, and that a

job cannot be pulled forward multiple times in order to be pulled forward more than K days.

Constraint (4) reflects that jobs cannot be pulled forward from day 1 and hence we only subtract

those jobs pulled forward to day 1 from its remaining capacity. We do not reduce rollover by

pulling forward from it. Similarly, constraint (6) reflects that jobs cannot be pulled forward to

the final day of the plan. Hence, we only pull forward from this day and not to this day. For

every other day, constraint (5) captures that we can pull forward to and from said day. We

therefore add and subtract jobs from its capacity to calculate the rollover.

3.3 Non-parametric DRO Model

The non-parametric model is defined by ambiguity sets P containing distributions P that are

not necessarily parametric. To be specific, P can be any subset of the set of all distributions

over the set of intakes, i.e. P ⊆
{
P ∈ [0, 1]|I| :

∑|I|
j=1 Pj = 1

}
.

3.3.1 Phi-divergence Based Ambiguity Sets

As discussed earlier in the paper, it is common to define P using φ-divergences. Adopting similar

notation to that of Bayraksan and Love (2015), suppose that P and Q are two probability

10

distributions. We define a φ-divergence dφ for φ-divergence function φ as:

dφ(P,Q) =
n∑
j=1

Qjφ

(
Pj
Qj

)
, (9)

where φ is a convex function on the non-negative reals. This function measures the distance

between P and Q. Furthermore, we denote by φ∗ the conjugate of φ, which can be found

via (10).

φ∗(s) = sup
t≥0
{st− φ(t)} (10)

The conjugate will be useful when finding reformulations later in the paper. Given a nominal

distribution Q, we can define P as the set of all distributions P that lie within some pre-

prescribed distance from Q as measured by the φ-divergence. In other words, we can use:

Pρ =

P ∈ [0, 1]|I| :

|I|∑
j=1

Pj = 1, dφ(P,Q) ≤ ρ

 . (11)

As described by Ben-Tal et al. (2013), this formulation of the ambiguity set allows us to choose

ρ such that P is a confidence set for the true distribution. Suppose that the true distribution P 0

lies in a parameterised set {P θ | θ ∈ Θ}, such that the true value of θ is θ0. Also suppose that

we take N samples of intake from P 0 and take an MLE θ̂ of θ0. Then, if we choose ρ using (12),

the set Pρ is an approximate 100(1− α)% confidence set for P 0 around P̂ = P θ̂.

ρ =
φ′′(1)

2N
χ2
k,1−α. (12)

In (12), k is the dimension of Θ and χ2
k,1−α is the 100(1− α)th percentile of the χ2 distribution

with k degrees of freedom. There are many choices for the choice of φ-divergence function, and

some examples can be found in the paper by Ben-Tal et al. (2013).

3.3.2 Reformulation with Modified χ2-divergence

In our model, we will use the modified χ2 distance as our φ-divergence. This uses the φ-

divergence function φmχ2(t) = (t− 1)2 and is defined in (13).

dφmχ2 (P,Q) =
n∑
j=1

(Pj −Qj)2

Qj
. (13)

Here, n is the number of potential values of the uncertain parameters. In our problem, we have

n = |I|. We choose this function for the following reasons. Firstly, it leads to a convex quadratic

programming (CQP) reformulation. Secondly, squared deviations from the nominal distribution

are represented as a proportion of the nominal distribution’s value. This means that small

deviations from the nominal distribution can still lead to a large term in the sum in (13). When

n is large, most values of Qj will be small, and this will help identify significant deviations

from small nominal values. Other choices of φ-divergences that lead to CQP reformulations,

such as the χ2 distance, Hellinger distance and the Cressie-Read distance, do not have the

11

normalisation effect given by dividing each term by Qj . Following Ben-Tal et al. (2013), defining

sj =
∑L
τ=1 aτR

ij
τ −ν

λ , we can we find the following CQP reformulation of our full model:

min
y,R,λ,ν,z,u

λ(dmax − 1) + ν +
1

4

n∑
j=1

Qjuj

 , (14)

s.t. (2)− (8), (15)√
4z2
j + (λ− uj)2 ≤ (λ+ uj) ∀ j = 1, . . . , n (16)

zj ≥
L∑
τ=1

aτR
ij

τ − ν + 2λ ∀ j = 1, . . . , n (17)

zj ≥ 0 ∀ j = 1, . . . , n. (18)

λ ≥ 0. (19)

In this formulation, zj and uj for j = 1, . . . , n are dummy variables defined to ensure that the

model is a CQP model. A full derivation of this reformulation can be found in Appendix A,

along with how to extract the worst-case distribution from its solution.

3.4 Parametric DRO Model

In this section, we detail a parametric version of the DRO planning model. This is a new mod-

elling framework for DRO problems that allows the ambiguity set to contain only distributions

that are members of the same parametric family as the true distribution. This is useful in cases

where we know beforehand which family the true distribution lies in, because it ensures that

the worst-case distribution implied by the model is also in this family.

3.4.1 Implications of Parametric Ambiguity Sets

Recall from Section 3.3.1 that we can use φ-divergences to create confidence sets when we know

that the true distribution lies in some parametric family PΘ = {P θ | θ ∈ Θ}. The resulting

confidence set (11), however, does not only contain distributions in this family. Therefore, there

is no guarantee that the worst-case distribution will lie in this family and hence no guarantee

that it is even a distribution that could be equal to P 0. Our methodology involves explicitly

using the set PΘ in our DRO model instead, which eliminates potential worst-case distributions

that are not in the same family as the true distribution. Suppose that we take the ambiguity

set given by P = PΘ.

The methodology in Section 3.3.2 relies on being able to represent the requirement that P ∈ P
in the constraints of the model. However, representing P ∈ PΘ in the constraints is more

challenging. In the case where PΘ represents a set of discrete parametric distributions, e.g.

binomial or Poisson, the requirement might be represented by:

Pj = f(ij | θ) for some θ ∈ Θ, (20)

where f is the probability mass function (PMF) of I and ij is the jth realisation of intake. The

only reasonable way that one might attempt to include this in the model is to treat θ as a dummy

12

variable, and replace Pj in the objective with f(ij | θ). However, most PMFs as functions of

their parameters are either high order polynomials (such as binomial) or include exponential

functions (such as Poisson). Including them in the model through the objective function will

hence make the model intractable. As an example, consider our model with independent intakes

and Iτ ∼ Bin(imax
τ , pτ) for τ = 1, . . . , L. The objective of the inner problem becomes:

max
p∈Θ

z =
L∑
τ=1

∑
i∈I

aτR
i
τ

L∏
l=1

(
imax
l

il

)
pill (1− pl)i

max
l −ir . (21)

Treating this as an NLP, we might consider solving using (for example) the KKT conditions.

The derivative of the objective function in (21) w.r.t. pk is given by:∑
τ,i

aτR
i
τ

(
imax
k

ik

)(
ikp

ik−1
k (1− pk)i

max
k −ik − pikk (imax

k − ik)(1− pk)i
max
k −ik−1

)∏
l 6=k

fl(il), (22)

for each k ∈ {1, . . . , L}, where fl is the PMF of Il. Choosing a vector p such that pτ < 1 for

all τ and all derivatives are equal to zero is a challenging task. This would need to be done

numerically, and hence would not result in a tractable objective function for our outer model.

Furthermore, using a φ-divergence to define Θ would not result in a tractable reformulation.

This would involve using an ambiguity set for p of the form:

Θ = {p ∈ [0, 1]L : dφ(p, q) ≤ dmax}, (23)

where q is the success probability vector corresponding to the nominal distribution Q. Now

consider the methodology in Section 3.3.2. This methodology relies on the objective function

being separable over j (see Appendix A). Following the same steps but with the objective in (21),

we arrive at the following dual objective:

min
λ≥0

{
λ0d

max + λ1 max
p≥0

L∑
τ=1

(∑
i∈I

aτR
i
τ

L∏
l=1

fl(il)− λ0qτφ

(
pτ
qτ

)
+ λ1(1− pτ)

)}
. (24)

Due to the product over l inside the maxp≥0 operator (which contains each success probability),

we see that this objective is not separable over τ . Thus, the remaining steps in creating a

tractable reformulation cannot be carried out. This holds not only for independent distributions,

but for any where the PMF of I depends on more than one pτ .

Hence, our methodology is as follows. Instead of treating the parameter θ as a vector of decision

variables, we represent it using a discrete, finite set of potential values. In other words, we assume

that Θ is a discrete and finite set. This allows us to represent the distributional ambiguity via

a finite set of constraints that are linear in the rollover variables. The resulting model has one

additional constraint for every θ ∈ Θ, but remains a tractable mixed integer program (MIP).

We detail the MIP reformulation of the parametric model in Section 3.4.2.

3.4.2 Mixed Integer Programming Reformulation

To solve this model, we can reformulate it as an MIP as follows. Firstly, we replace the set

PΘ with Θ and optimise over the parameters p directly. Since there is a one-to-one mapping

13

between θ and P θ, the objective becomes:

min
y,R

max
θ∈Θ

L∑
τ=1

aτEθ (Rτ) . (25)

Next, we define a dummy variable t to represent the worst-case expected cost for a given y. Since

the set Θ is a discrete set, we can enforce the requirement that t = maxθ∈Θ
∑L

τ=1 aτEθ(Rτ) a

set of linear constraints. Hence, the MIP reformulation of the DRO model is given by:

min
y,R,t

t (26)

s.t. (2)− (8), (27)

t ≥
L∑
τ=1

aτEθ(Rτ) ∀ θ ∈ Θ, (28)

This model can be very slow to build and solve. This is mostly due to the amount of computation

required to build the model and its constraints. The constraint for t requires us to compute

the distribution P θ for every θ ∈ Θ. Due to the sizes of Θ and I, this can be very slow. To

see this, consider an example with |Θ| = 3883 distributions and |I| = 20000 potential intakes.

Suppose also that the intakes are independent. Then, for each of 3883 distributions we would

need to compute a product of L PMF values, for each of 20000 intakes. This means computing

L × 3883 × 20000 = L × (77.66 × 106) PMF values. Furthermore, the model has L|I| rollover

variables and constraints, and |Θ| expected value constraints. This also makes the model slow

to build and solve for large instances. For this instance with L = 5, this corresponds to 103,878

additional constraints, when compared with the deterministic model. Our heuristics therefore

employ dimension reduction techniques to make them more tractable.

3.5 Binomial Intakes and Ambiguity Sets

As previously discussed, we will assume that the intakes in our problem our binomially dis-

tributed. In other words, we assume that Iτ ∼ Bin(imax
τ , pτ). We assume that I is provided to

us prior to model building, either by a prediction model or expert knowledge. The true set in

which we know that the true p, denoted p0, must lie is [0, 1]L. As detailed in Section 3.4.1, we

will however use a finite, discrete subset of [0, 1]L as an ambiguity set for our model. We consider

a discretisation of [0, 1]L of the form given in (29), where nprobs is chosen by the planner, and

details the fineness of the discretisation.

Θbase =

{
j

nprobs

∣∣∣∣∣ j = 0, . . . , nprobs

}L
(29)

Secondly, we assume that we have access to N samples of past intake data, from which we can

take an MLE p̂ of p0. The corresponding distribution is given by P̂ , which has mean vector

î = p̂imax. Given the MLE p̂, we consider only p ∈ Θbase that can be considered close to p̂. As

mentioned earlier, it is common in the non-parametric DRO literature to use φ-divergences to

measure the distance between two distributions. The main reason for this is that it results in

tractable reformulations via dualising the inner problem. However, since our approach does not

14

entail dualising the inner problem, this benefit does not apply to us. Another reason for using

φ-divergences is that they allow us to create confidence sets for the true distribution. However,

this is based on applying the φ-divergence to the distributions themselves, not to the parameters.

We could construct a confidence set for p0 by first constructing a confidence set for P 0 and then

creating Θ by extracting the parameters of each distribution in the confidence set. However,

this would entail computing the corresponding distribution for every p ∈ Θbase, which is a large

computational task. Hence, we do not use φ-divergences for the parametric model. We can,

however, construct a confidence set for p0 without using φ-divergences and without needing to

compute each distribution P p. Since p̂ is an MLE of p0 based on N samples from the true intake

distribution, by Millar (2011) for large N we have:

(p̂τ − p0
τ) ∼ N

(
0,
p̂τ (1− p̂τ)

Nimax
τ

)
, (30)

approximately. Therefore, by independence of the L different MLE’s, we have that:

L∑
τ=1

Nimax
τ

p̂τ (1− p̂τ)
(p̂τ − p0

τ)2 ∼ χ2
L, (31)

approximately. Therefore, we have the following approximate 100(1−α)% confidence set for p0

around p̂:

Θα =

{
p ∈ Θbase :

L∑
τ=1

Nimax
τ

(p̂τ − pτ)2

p̂τ (1− p̂τ)
≤ χ2

L,1−α

}
. (32)

This may yield a different ambiguity set to the one obtained using the φ-divergence method.

This is because they are two different approximations of the same set.

3.6 Solver-based Solution Algorithms

As described in Section 3.4.2, the model can be solved to optimality by reformulating it as a

mixed integer program. However, when Θ and I are large, this model has a large number of

constraints and decision variables. This can make it very slow to solve. Hence, we develop three

dimension reduction algorithms in order to reduce the effects of the sizes of these sets on solution

times. In Section 3.6.1, we discuss two cutting surface (CS) algorithms. The first is an optimal

CS algorithm that also scales poorly with the size of Θ. The second is a heuristic CS algorithm

that applies dimension reduction to Θ. Then, in Section 3.6.2, we describe our Approximate

Objective (AO) algorithm that applies dimension reduction to I.

3.6.1 Cutting Surface Algorithms

In this section, we describe our adaptation of the CS algorithm detailed in the literature review,

which has been commonly used in the DRO literature. The algorithm has a number of different

forms, but the one that we base our adaptation on is that from the review paper by Rahimian

and Mehrotra (2019). The general idea of the algorithm is as follows. In order to deal with the

large number of constraints implied by the ambiguity set, the algorithm uses the following steps.

We start with a singleton set containing one distribution, and solve the problem with only this

15

small ambiguity set. Then, for the generated pulling forward solution, we find the worst-case

distribution over the entire ambiguity set. We add this distribution to the ambiguity set and

then repeat the above steps. This procedure is repeated until optimality criteria are met.

In more detail, suppose that we have some initial subset Θ0 of our set of distributions Θ and

we solve the full model with ambiguity set Θ0, to get an optimal decision y0. Then, we find the

worst-case parameter, p0 ∈ Θ, for the fixed solution y0, and add it to our set to create a new

subset Θ1 = Θ0 ∪ {p0} of Θ. We then solve the model with ambiguity set Θ1, and repeat. We

stop the algorithm when we have reached ε-optimality, i.e. if the solution from the full problem

at iteration k, yk, gives a worst-case expected cost over Θk that is within ε/2 of the worst-case

expected cost for yk over Θ. The algorithm returns an ε-optimal solution to the DRO model

in a finite number of iterations. The issue with this version of CS is that, even if y is fixed at

yk, finding the true worst-case distribution pk can be a very cumbersome task. To do so, this

problem is often treated as an LP. In our case, we can simply enumerate all distributions in Θ.

Even though this is not a difficult task, it requires a significant amount of computation due to

the necessity of calculating the distributions themselves.

From now on, we refer to the optimal CS algorithm described above as CS opt. We will show

that this algorithm suffers from poor scaling with respect to the size of Θ. In order to reduce

the computational burden, we apply dimension reduction to Θ. Particularly, we use the simple

observation that Ep(Iτ) = imax
τ pτ is increasing in pτ to construct a set of extreme distributions.

Intuitively, this result suggests that a higher success probability also leads to no-less expected

rollover, due to the fact that Riτ is increasing in iτ . Hence, we construct a set of probability

vectors such that at least one value is maximised. If this is not the case, then one value can

be increased and this would cause higher expected rollover for that day. Furthermore, we also

assume that the total success probability is maximised given that one value is maximised. This

is to ensure that we take the most extreme probability vectors over all those such that one

success probability is maximised. Mathematically, we define the set of extreme parameters as

follows. Define pmax
τ = maxp∈Θ pτ for τ = 1, . . . , L and find the set of parameters such that one

value is maximised:

Θmax
τ = {p ∈ Θ : pτ = pmax

τ } for τ = 1, . . . , L.

For each τ , construct a set of the most extreme parameters in Θmax
τ and take the union of these

sets to form Θext:

Θext
τ = argmax

p∈Θmax
τ

{
L∑
k=1

pk

}
, Θext =

L⋃
τ=1

Θext
τ .

In order to reduce the computation required, our heuristic CS algorithm solves the distribution

separation problem over Θext, rather than the entire ambiguity set Θ. The general framework

for both of our CS algorithms is given below, where CS opt uses Θ̃ = Θ in step 2(b) and CS

uses Θ̃ = Θext.

1. Compute ambiguity set Θ̃ and initialise Θ0 = {p0}, where p0 = p̂ for example.

2. For k = 0, . . . , kmax:

16

(a) Solve the full model to optimality using the set Θk to generate solution (yk, tk) where

tk is worst-case expected cost of yk over the set Θk passed to the model.

(b) Solve distribution separation problem maxp∈Θ̃

∑L
τ=1 aτEp(Rτ | y = yk) to get solution

pk:

i. For p ∈ Θ̃ calculate Cp =
∑L

τ=1 aτEp(Rτ | y = yk).

ii. Choose pk such that Cpk = maxp∈Θ̃(Cp).

(c) If Cpk ≤ tk + ε
2 or pk ∈ Θk then stop and return solution (yk, pk).

(d) Else, set Θk+1 = Θk ∪ {pk} and k = k + 1.

The logic behind 2(c), where we check if pk ∈ Θk, is that calculation differences might cause

tk and Cpk to differ by more than ε
2 when they should be equal. Solvers use some dimension

reduction techniques when building and solving their models. This can lead to objective values

that are not the same as the ones given by the function used in 2(b), even for the same arguments.

This stopping criterion is also used in the CS algorithms by Pflug and Wozabal (2007) and Bansal

et al. (2018). We now explain why the condition cannot cause early stopping. Firstly, assume

that p̂ is not a worst-case parameter for yk in Θk, i.e. it did not give a cost of tk. Since pk is

generated by the distribution separation problem, it is a worst-case parameter for yk over the

entire set Θ̃. If we also have pk ∈ Θk then we have the following two facts. Firstly, we have

Θk \{p̂} ⊆ Θ̃ and so pk is necessarily worse than every p ∈ Θk \{p̂}. Secondly, pk must be worse

than p̂, because otherwise p̂ would be a worst-case parameter in Θk. Hence, pk is a worst-case

parameter in Θk, i.e. Cpk = tk < tk + ε
2 . Now suppose that p̂ is a worst-case parameter in Θk.

If pk ∈ Θk then we must have Cpk ≤ tk < tk + ε
2 since p̂ is worse than pk. Hence, whenever

pk ∈ Θk occurs, the first stopping criterion should also be met.

3.6.2 Approximate-objective Algorithm

The final algorithm that we describe is the Approximate-objective algorithm (AO). When solving

the model to optimality, we are required to compute the distribution P p for each p ∈ Θ. For

each intake ij ∈ I we can easily compute:

max
p∈Θ

P pj = max
p∈Θ

P(I = ij | p), (33)

and then we can consider a new set of intakes in the model defined by:

Ĩ =

{
i ∈ I : max

p∈Θ
P pj > β

}
(34)

where β is our minimum intake probability. By tuning β, we are removing intakes from our set

that are very unlikely. When solving the model, we are approximating the expected value by

removing some small terms. Since the intakes removed have low probability, this approximation

should be strong. We simply solve the MIP reformulation with the full set Θ of distributions

but over the reduced set Ĩ of intakes. For this paper, we use β = 10−3 as our initial testing

showed that this value led to good improvements in computation times.

17

3.7 Example: A Two-day Problem

In order to illustrate the logic behind our algorithms, we now give an example of their use for

a two-day version of our model. Since there is only one feasible pair of days that we can pull

forward jobs between, i.e. (2, 1), there is now only one decision variable. We refer to this decision

variable as y = y2,1. The two-day model is given by (1)-(8) with L = 2 and K = 1.

Suppose that we have c = (30, 10), D = (5, 20), imax = (20, 20) and a = (1, 1). This gives

|I| = 212 = 441. We construct a 99.5% confidence set for p0 using α = 0.005, N = 10 and

nprobs = 100. This gives |Θ| = 305, and we find that the maximum values of p1 and p2 are both

0.84. This suggests that the above model has 2×441 = 882 rollover constraints and variables, 81

expected value constraints and 2 pulling forward constraints. Hence, it has 1189 constraints and

884 decision variables. We solve this model to optimality in 2.6 seconds, to find the optimal y to

be yP = 9 and the worst-case p to be pP = (0.82, 0.82) with an expected cost of zP = 19.2.

When we solve this model with CS, we find that Θext = {(0.84, 0.79), (0.79, 0.84)} and so CS

only has to compute 2 PMFs as opposed to P and AO which have to compute 81. We initialise

with Θ0 = {p̂} = {(0.75, 0.75)}. In iteration 0, CS solves the MIP reformulation over Θ0 and

finds y0 = 10. It then evaluates the expected costs under each p ∈ Θext and finds the worst-case

to be given by p0 = (0.84, 0.79). Hence, we have Θ1 = {(0.75, 0.75), (0.84, 0.79)}. In iteration

1, CS solves the model over Θ1 and finds y1 = 8. It finds the worst-case cost to be given by

p1 = (0.79, 0.84), and hence takes Θ2 = Θ1 ∪ {(0.79, 0.84)}. In iteration 2, CS finds y2 = 9

and p2 = (0.84, 0.79). Since (0.84, 0.79) ∈ Θ2, the algorithm ends and returns yCS = 9 and

pCS = (0.84, 0.79) with an expected cost of zCS = 19.07. Hence, CS returned the optimal y but

slightly underestimated its worst-case cost. This is an example of where CS will be suboptimal

because pP /∈ Θext. However, CS returned its solution in 0.17 seconds, as opposed to P’s 2.6

seconds. Note that CS terminated in 2 iterations because |Θext| = 2 = L.

To solve this model with AO, we construct the reduced set of intakes Ĩ. In order to do so, we

compute the PMFs, which takes 2 seconds. Using β = 0.001, we find the new set of intakes

to have |Ĩ| = 150, which is a 67% cardinality reduction. Then, we solve the MIP model over

Ĩ and find the solution yAO = 9, pAO = (0.82, 0.82), meaning that AO was both y-optimal

and p-optimal in this instance. However, it took 0.71 second in total, as opposed to CS’s 0.17

seconds. We can also run this instance with CS opt. Doing so, CS opt’s first two iterations are

the same as CS’s. In its third iteration it finds y2 = 9 and p2 = (0.82, 0.82), whereas CS found

p2 = (0.84, 0.79). Following this, in iteration k = 3 it finds p3 = (0.82, 0.82) and breaks since

p3 ∈ Θ3, returning yCS opt = 9 and pCS opt = (0.82, 0.82). This is the same solution as P gave.

This took CS opt a total of 0.43 seconds. It finished in twice as many iterations as CS.

4 Design of Computational Experiments

This section details our experiments evaluating the performance of the algorithms described in

Section 3.6 in comparison with the solution from the parametric DRO model. These experiments

will also allow us to compare the solutions resulting from the parametric (P) and non-parametric

18

(NP) models and the times taken to reach optimality by each model. In this section, we discuss

how the parameters for the experiments will be chosen to ensure that they are representative of

typical real-life scenarios. To discuss experimental design, we need to define which parameters

of the model will be varied and the values that they will take. The vector of inputs to the model

for a fixed set I of intakes and P of distributions is S = (c,D, a, L,K).

4.1 Parameter Hierarchy

It is helpful to consider a hierarchy of parameter choices, which is defined by:

1. (L,K) defines the difficulty of the problem in terms of the MIP itself.

2. c and D define the set of solutions that are possible for a given model with fixed L and K,

and need to be constructed for each combination of these parameters to ensure we have

a varied range of instances when it comes to pulling forward opportunities. We create

this variety by varying the number of days that have spare capacity and are hence able to

receive additional jobs. The values of c and D used are discussed in Section 4.2.

3. (a) For the parametric model, I and Θ define how the uncertainty is encoded in the

model, depending on the planner’s attitude to risk. If |I| or |Θ| are large, solving

to optimality will be very slow, and we would like to use a heuristic that is not

significantly affected. |I| is defined by imax, and |Θ| is defined by two parameters.

The initial discretisation of the interval [0, 1] in which each pτ lies is defined by nprobs.

The maximum distance from the nominal distribution that p ∈ Θ can be is defined

by the second parameter, N . This is the number of samples that we take from

the distribution of I in order to calculate p̂. Larger N results in smaller distances

from p̂ being allowed, and hence corresponds to a less risk-averse planner. For these

experiments, we use 95% confidence sets, i.e. Θα from (32) with α = 0.05. From now

on, we use Θ to represent Θ0.05.

(b) For the non-parametric model, we also use 95% confidence sets. However, for this

model we use the φ-divergence based set, Pρ given in (11) with ρ defined by (12) with

α = 0.05. This set is only affected by N , which affects the maximum distance from

P̂ that a distribution can lie under the non-parametric model.

4. a will be left as the ones vector for these experiments as it has not been seen to have an

effect on solutions.

We choose L = 5 due to it being the number of days in a typical working week. We take the

maximum pulling forward window length to be K = 2, since pulling forward is not enacted

until the operational planning phase, where the planning horizon is very short. These choices

are partly motivated by usual practices, and also partly by the fact that we aim to test our

heuristics against optimal solutions, and for larger L or K the model becomes very difficult to

solve to optimality. Note that the optimality tolerance for CS/CS opt, ε, will be set as 0.01 and

it will be ran for a maximum of kmax = 10 iterations. Initial testing suggested these parameters

19

are not so important, as CS and CS opt usually terminated due to a repeat parameter (i.e.

pk ∈ Θk) after 2-3 iterations.

4.2 Capacity and Workstacks

The factors affecting the potential solutions of a model the most are c and D, due to the fact that

they define the rollover and pulling forward opportunities. In this section, we detail the capacities

c and workstacks D used in our experiments. These are constructed with the aim of ensuring

that a variety of combinations of pulling forward opportunities are represented by at least one

(c,D) pair. We assume for this section that the previous parameters in the hierarchy, i.e. L and

K are given. We now define how c and D define pulling forward opportunities mathematically.

Firstly, we define the set of pairs of days under consideration for pulling forward as:

F = {(τ1, τ2) | τ1 ∈ {2, . . . , L}, τ2 ∈ {τ1 −K, . . . , τ1 − 1}} (35)

and the set of pairs such that the corresponding y can feasibly be positive given c and D as:

F+(c,D) = {(τ1, τ2) ∈ F | cτ2 > Dτ2 , Dτ1 > 0} . (36)

This is the set of all pairs of days (τ1, τ2) such that τ2 is within pulling forward range of τ1,

τ2 has spare capacity and τ1 has workstack jobs to be completed early. For our experiments,

we consider instances where Dτ > 0 for all τ ∈ {1, . . . , L}. This is because for a short horizon

of L = 5 days, it is very unlikely that any day will have a workstack of zero. Hence, we can

control |F+(c,D)| by controlling which days have spare capacity. For example, we can set

|F+(c,D)| = 3 by setting D1 < c1 and D4 < c4 and then Dτ > cτ for τ ∈ {2, 3, 5}. This results

in F+(c,D) = {(2, 1), (3, 1), (5, 4)}. We do this similarly for other values of |F+(c,D)|. The

main effect that c and D has on decision making is defining the constraints on y, meaning their

only significant quality is how much pulling forward they do or do not allow. Using this set

of values for c and D we will be able to see how well our algorithms detect and make use of

opportunities for pulling forward.

4.3 Uncertainty and Ambiguity Sets

As a reminder, the term “uncertainty set” refers to I and “ambiguity set” refers to Θ. We now

detail the parameters used to construct these sets in our instances.

4.3.1 Uncertainty Set

We assumed in Section 1.1 that we would be given a set I, either by expert knowledge or by

a prediction model. We could then extract imax from this set. However, in these experiments,

we do not have access to real intake data or expert knowledge and thus it is more convenient to

define imax and then use this to construct I. Since there is a one-to-one mapping between the

two, both methods achieve the same result. We consider imax satisfying:

L∑
τ=1

imax
τ ≤

L∑
τ=1

max{cτ −Dτ , 0}. (37)

20

This is reasonable because if the total number of jobs arriving in the system exceeds the RHS

of (37) then some intake jobs will always remain incomplete at the end of day L, regardless of

our pulling forward decision. Furthermore, we can consider varying numbers of high-intake days,

through the number n(imax) = |{τ ∈ [L] : imax
τ > cτ −Dτ}|, which corresponds to the number

of days with potential spikes in demand. Depending on c and D, n(imax) can range between 0

and L− 1. However, for these experiments we consider n(imax) ∈
{

1,
⌊
L
2

⌋
, L− 1

}
for sufficient

coverage of cases. The case of 1 day with high intake corresponds to a one-day spike caused by an

event such as a major weather event. The case of
⌊
L
2

⌋
days with high intake could correspond to

an extended spike lasting for multiple consecutive days, for example, a network problem causing

lots of service devices to break. The final case of L − 1 will have L − 1 small spikes in intake,

marking a period of consistently high intake.

4.3.2 Ambiguity Sets

The choice of parametric ambiguity set depends on the choice of discretisation of [0, 1]L and

also the way we in which we then reduce its size. The choice of discretisation is defined by the

parameter nprobs, and increasing this value increases the size of the ambiguity set. For these

experiments, we consider nprobs ∈ {5, 10, 15}. In our preliminary testing we found that any value

larger than 15 can lead to intractability when solving the parametric model to optimality.

Both ambiguity sets are also defined by the sampling parameter N . For the purpose of testing

our models, we consider N ∈ {10, 50, 100}. Clearly, higher N leads to better convergence to the

true distribution of the MLE/φ-divergence, but it also leads to much smaller ambiguity sets and

typically less conservative decisions. Even for N = 50, we obtained some singleton ambiguity

sets. Typically, this value would be chosen by the planner who is in control of the sampling

process. However, the results of our testing can be used to understand the tradeoff between

the accuracy of the approximation and the conservativeness of the resulting decisions. Hence,

it may influence the value of N used by the planner. In these experiments, we will assume

î = (0.75imax
1 , . . . , 0.75imax

L). Hence, we will obtain p̂ = (0.75, . . . , 0.75). In practice, p̂ would

be obtained from sampling the true intake distribution. However, without access to true intake

data, we set the value somewhat arbitrarily, since it is only used for testing purposes. If these

models were used by a real planner, we would suggest that they create their own MLE.

5 Results

We now detail the results of our experiments that test the algorithms on 279 problem instances

in which L = 5 and K = 2. We report the results from all 5 algorithms in terms of times taken,

pulling forward decisions and worst-case distributions. Due to space considerations, we present

some additional results in the Appendices. We discuss the effects of workstacks on solutions in

Appendix B.1. We give a brief comparison of our results with those from the RO version of the

model in Appendix B.2. In addition, we present and test a Benders decomposition algorithm

for this problem in Appendix C. These experiments were run in parallel on a computing cluster

(STORM) which has 486 CPU cores. The solver used in all cases was the Gurobi Python package,

21

gurobipy (Gurobi Optimization, LLC, 2022). The version of gurobipy used was 9.0.1. The node

used on STORM was the Dantzig node, which runs the Linux Ubuntu 16.04.6 operating system,

Python version 2.7.12, and 48 AMD Opteron 638 CPUs.

5.1 Summary of Instances and Their Sizes

In Table 1, we summarise the sizes of the sets I and Θ, that form the basis for constraints and

variables in the model. A summary of the sizes of I is given in Table 1a. The table shows

7 of the 31 imax values considered and the size of the resulting set I. The other imax values

considered were permutations of the values shown in the table, and hence led to |I| values that

are already listed in the table. Table 1b shows the values of N and nprobs used and the average

size of the resulting ambiguity sets. The sizes vary as the construction of the set also depends

on imax. The cases where |Θ| = 1 corresponds to cases where
χ2
L,1−α
N was too small to allow any

p other than p̂ to be in the ambiguity set defined by (32).

imax |I|

(1, 6, 6, 1, 1) 392

(1, 3, 3, 3, 3) 512

(2, 2, 2, 6, 2) 567

(2, 2, 8, 8, 2) 2187

(5, 5, 1, 5, 5) 2592

(1, 7, 7, 7, 7) 8192

(9, 9, 1, 9, 9) 20000

(a) Example imax values and sizes of the asso-

ciated uncertainty sets I considered.

N nprobs Average |Θ|

100 5 1.000

100 10 1.000

100 15 16.871

50 5 1.419

50 10 14.419

50 15 93.129

10 5 14.742

10 10 504.226

10 15 4301.645

(b) Parameters defining ambiguity sets and av-

erage size of corresponding sets.

Table 1: Summary of input parameters and corresponding set sizes

We can see here that our choices of imax gave instances with as many distinct intakes (and

rollover vectors) as 20000, and as few as 392. The sizes of the ambiguity sets varied between 1

and 8854, where the largest sets resulted from the smallest imax and N values, and the largest

nprobs values. This is because the criteria for p being included in Θ was

L∑
τ=1

Nimax
τ

(p̂τ − pτ)2

p̂τ (1− p̂τ)
≤ χ2

L,1−α.

Clearly the LHS is increasing in N and imax
τ . Hence, larger values lead to a higher distance from

the nominal distribution. Large nprobs leads to larger Θ because it results in a finer discretisation

of [0, 1]L, and hence more candidate p values.

22

5.2 Optimality of Algorithms and Times Taken

Comparing results for DRO problems is not as simple as comparing final objective values. Our

optimal objective value can be written as z∗ = miny maxp f(y, p). Here f(y, p) is the total

expected rollover cost, i.e.
∑L

τ=1 aτEp(Rτ | y). Suppose we have an instance where yCS = yP

but pCS 6= pP. Then, if CS gives a lower objective value than P, it may appear to have given a

better solution to the minimisation problem. However, this means that CS did not successfully

choose the worst-case p for its chosen y. This leads to a lower objective function value but

a suboptimal solution w.r.t. p. Similarly, we can say that CS is suboptimal if pP = pCS but

yCS 6= yP and CS gave a higher objective value. Hence, both a higher and a lower objective

value can suggest suboptimality for a DRO model. Given this, we summarise the results using

3 optimality criteria. An algorithm x is said to be:

1. y-optimal if maxp∈Θ f(yx, p) = z∗.

2. p-optimal for a given yx if f(yx, px) = maxp∈Θ f(yx, p).

3. Optimal if f(yx, px) = z∗. Note that this is met is the algorithm is both y-optimal and

p-optimal.

We display the number of times each algorithm was optimal, p-optimal and y-optimal in Table 2.

No. (%) Optimal Sol No. (%) p-Optimal Sol No. (%) y-Optimal Sol

CS 257 (92.11%) 257 (92.11%) 272 (97.49%)

CS opt 279 (100.0%) 279 (100.0%) 279 (100.0%)

AO 223 (79.93%) 263 (94.27%) 239 (85.66%)

Table 2: Summary of optimality of heuristics

Table 2 shows that CS was optimal in 92% of instances, and y-optimal in 97%. As can be

expected, CS opt was optimal in every instance. AO was only optimal in 80% of instances and

y-optimal in 86% of instances. In fact, both CS and AO were optimal in selecting p in more

than 92% of instances. Unsurprisingly, AO performs the best in this regard. This is because it

solves the problem over the full set of parameters, unlike CS. However, CS was still p-optimal in

around 92% of cases. Closeness to optimality of the algorithms is discussed in Section 5.3.

A summary of the computation times of each algorithm is given in Table 3. Firstly, the table

shows average and maximum times taken over all instances. CS takes around 17 seconds. To

find the optimal solution, it took approximately 1 minute and 50 seconds on average when

using P, which is a large difference. CS opt found the optimal solution in an average of 20

seconds, which is faster than P. This is only 3 seconds slower than CS on average. However,

there are many instances with small ambiguity sets. AO takes similar times to CS, also taking

around 17 seconds on average. NP solves faster than P, but slower than CS, CS opt and AO.

The fact that NP is slower than CS opt suggests that the parametric model can be solved to

optimality faster than the non-parametric model. AS reports the times taken to compute Θ

23

for the parametric algorithms. This is not included in the solution time for each algorithm, as

it is a pre-computation step. It is worth noting that the average of 6 seconds is significantly

faster than extracting Θ from the non-parametric confidence set, which can take hours. Please

note that, while the differences between the algorithms’ times may seem small, these instances

are small compared to real planning instances. We would expect the time differences to be

more pronounced when the problems are large. Furthermore, CS opt requires significantly more

memory and computing power than CS. For large instances, it stores thousands of distributions,

each of which comprises thousands of values. CS only stores around 5 distributions, regardless

of problem size.

Avg. t.t. (Overall) Max t.t. (Overall) Avg. t.t. (Large) Max t.t. (Large)

P 0:01:22.85 0:19:23.5 0:07:57.99 0:19:23.5

CS 0:00:17.48 0:01:50.37 0:00:06.1 0:00:33.82

CS opt 0:00:20.17 0:02:12.09 0:00:24.74 0:01:07.84

AO 0:00:17.29 0:03:52.97 0:02:08.08 0:03:52.97

NP 0:00:25.35 0:03:26.88 0:00:07.25 0:00:44.4

AS 0:00:05.95 0:00:19.38 0:00:14.18 0:00:16.59

Table 3: Summary of times taken

Since there are a large number of small instances that affect the overall averages, Table 3

also shows average and maximum times for instances with the largest ambiguity sets. This

corresponds to the largest 10% of instances with respect to Θ or equivalently |Θ| ≥ 1000. From

these two columns, we see that CS opt takes more than 4 times longer than CS on average, when

Θ is large. We also see that CS opt took 34 seconds longer to solve its slowest instance than CS

took for its slowest instance. The largest time difference was 46 seconds, and this occurred when

|Θ| = 831 and |I| = 20000. The time difference is due to two main reasons. Firstly, CS never

spent more than 0.5 seconds computing PMFs, whereas CS opt took up to 22 seconds. Hence,

CS significantly reduces the amount of computation required. Secondly, CS typically completed

in many fewer iterations than CS opt. This is because its use of Θext meant it identified a

repeat parameter in fewer iterations. Based on the optimality counts and time taken, CS is the

strongest heuristic. It selects the optimal y is 97% of instances, and does so in less time than

CS opt. CS opt can be used when Θ is small, but begins to solve slowly in comparison with CS

when Θ is large.

5.3 Performance of Algorithms in Detail

To illustrate further how well the algorithms performed, we define the following two metrics.

Note that a positive value for either of these metrics suggests suboptimality.

1. Quality of p choices. For a solution yx that was selected by an algorithm x, where

x ∈ {CS,CS opt,AO}, we calculate the worst-case expected cost over all distributions in

Θ using brute force. We can then compare this cost with the expected cost obtained by

24

the algorithm, i.e. from px, the p that the algorithm selected. This allows us to establish

how close to worst-case the choices in p were. We refer to this difference as the p-gap, and

it is defined as gp(y
x, px) = maxp∈Θ f(yx, p)− f(yx, px).

2. Quality of y choices. For a given solution yx from algorithm x, we compute the worst-

case expected cost using brute force, as we did when finding gp(y
x, px). We can then

compare this worst-case cost with that of the optimal y, to assess how close yx is to

optimal. This is referred to as the y-gap, and is defined as gy(y
x) = maxp∈Θ f(yx, p)− z∗.

In Table 4, we summarise the average p-gaps and y-gaps of the three heuristics, along with the

average absolute percentage gaps (APGs). The p-APG is obtained by taking the p-gap as an

absolute percentage of the worst-case expected cost for the chosen solution yx. The y-APG is

obtained by taking the y-gap as an absolute percentage of the optimal objective value.

Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG

CS 0.0561 0.084% 0.0058 0.0101%

CS opt 0.0000 0.0% 0.0000 0.0%

AO 0.0064 0.0065% 0.0233 0.1369%

Table 4: Summary of gaps and APGs of the heuristics

This suggests that all algorithms perform very well at choosing the worst-case p for a fixed

yx, and all have an average p-APG of less than 0.09%. AO performs the best at selecting p,

which supports the observation made from the optimality counts. CS and AO are very good at

selecting the optimal y, since they both use a solver to do so. Of CS and AO, CS performs the

best in this regard, with an average y-APG of 0.01%. The y solution CS chose had, on average,

a worst-case expected cost that was 0.0058 away from the optimal objective value. AO also

performs well in selecting y, but its average y-APG is a factor of 20 larger than that of CS. Due

to its optimality in every instance, CS opt has average gaps and APGs of 0.

We can also study the results broken down by the size of the set of distributions. In order

to reduce the size of the table, we present results averaged over the categories for |Θ| given

in Table 1b. We present these results in Table 11, which is in Appendix D.1 due to space

considerations. In summary, the table suggests that CS does not return suboptimal ps for its

chosen y until the set reaches the average size of 93. CS is consistent in its selection of the

optimal y across all values of |Θ|. CS’s y-APE stays very close to 0 in all cases. AO has larger

p-gaps for the larger values of |Θ|. Interestingly, AO’s performance in selecting y improves as

|Θ| grows larger. CS opt has zero gaps and APGs for all values of |Θ|, but its times taken do

not scale as well as CS’s and AO’s with large |Θ|. For small ambiguity sets, CS opt takes similar

times to CS, but it takes twice as long for the largest ambiguity sets (average size of 4301). We

also plot the average times by |Θ| in Figure 1a. The algorithms that use Gurobi on the full set

of distributions, i.e. P and AO, do not scale well with |Θ| in terms of time. CS, CS opt and NP

all scale much better with |Θ| than AO and P. For CS and CS opt, this is because they only

25

(a) Average times taken by |Θ| (b) Average times taken by |I|

Figure 1: Average times taken by sizes of sets

ever solve the MIP reformulation over a small subset of Θ. For NP, this is because increasing

the size of the ambiguity set for the non-parametric model does not result in a more complex

model, it only increases the value ρ. This plot supports our observation that CS opt solves in

similar times to CS when Θ is small, but begins to take noticeably longer for large Θ.

Finally, we can look at the performance of algorithms by the size of the set of intakes I. These

results are shown in Table 12 in Appendix D.2. The p-APGs for the heuristics are not signifi-

cantly affected by |I|, apart from a drop in performance for CS when |I| = 8192. This is likely

due to other model parameters, since there is no reason for |I| to affect the p-APG. AO also

begins to lose y-performance when |I| = 8192. This is an intuitive result, because as this set gets

larger AO will remove more and more intakes. This reduces the accuracy of its approximation

of the objective function. CS does not remove intakes, which explains why its performance is

consistent. In fact, CS’s y-APG is lower than AO’s when |I| = 20000. Again, CS opt has all

zero gaps and APGs. The difference between CS and CS opt in terms of time taken is less

noticeable here. CS opt consistently takes 3-5 seconds longer than CS for all values of |I|. This

indicates that |Θ| is the main factor causing CS opt to solve slowly. We also plot the average

times by |I| in Figure 1b. This plot suggests that P does not scale well with |I|, and that AO

scales very well with |I|. CS, CS opt and NP scale better than P, but not nearly as well as AO,

due to the fact that they do not apply dimension reduction to I.

5.4 CS’s Suboptimal Distributions

In this section, we compare the solutions and distributions from CS with those from P. Since

CS is only limited by its performance in selecting p, we study CS’s worst-case ps in order to

find ways to improve its performance. We do not study CS’s performance with respect to y,

since if Θext contains pP then CS will return the same y as P, as evidenced by CS opt. Hence,

improving Θext is sufficient to improve CS with respect to y and p. We do not analyse AO’s

solutions, since improving its performance can only come from tuning β.

As shown in Table 2, CS chose the optimal p for its selected y in 92% of cases, leaving 22

instances where it did not. This indicates that our set Θext did not in fact contain the worst-

case p in those 22 instances. To compare CS with P, we study only instances where CS selected

26

the same y as P, which occurred in 15 of these 22 instances. Firstly, for these 15 instances,

we can confirm that pP was not contained in the set Θext used by CS. This either occurred

because no probability was at its maximum, or because the sum of the probability vector was

not maximised. We find that one value of pP was maximised in 13 out of 15 instances. However,

in every one of these 13 instances, the sum over the vector was not maximised. This indicates

that the main reason why CS did not return the worst-case p in every case was because the

worst-case does not need to satisfy this condition. In general, we find that CS both allocated a

higher maximum success probability and more success probability in total than P.

In order to see why the worst-case p does not need to satisfy the sum-maximisation crite-

rion, we study some examples more closely. For example, in one instance we have pP =

(0.933, 0.867, 0.867, 0.867, 0.733) and pCS = (0.933, 0.933, 0.867, 0.8, 0.867). We see that P and

CS both gave maximal probability to day 1. However, P has reduced days 2 and 5’s probabilities

in order to allocate more to day 4. The resulting rollover vectors are (0.87, 10.6, 27.34, 24.54, 41.01)

for P and (0.87, 10.74, 27.47, 24.27, 41.0) for CS. In this instance, allocating higher probability

to day 4 resulted in higher day-4 and also day-5 rollover, and more rollover in total, despite the

fact that the total probability was not maximised. Another way that CS can be suboptimal is

choosing the wrong day to set to its maximum. For example, in one of the 15 instances P gave

pP = (0.933, 0.867, 0.8, 0.8, 0.8) and CS gave pCS = (0.8, 0.867, 0.8, 0.867, 0.867). Here, CS has set

p2 to its maximum, while P has set p1 at its maximum. For this instance, the closest values of p

to pP that were in Θext were (0.933, 0.8, 0.8, 0.867, 0.933) and (0.933, 0.8, 0.8, 0.933, 0.867). These

two solutions give less expected cost than pCS, and so CS did not allocate maximal probability to

day 1. Clearly the maximal cost came from allocating high probability to day 2 as well as day 1,

but no such probability vectors were contained in Θext. Finally, in two instances no value of pP

was at its maximum. One example of this occurred when pP = (0.867, 0.867, 0.867, 0.733, 0.733)

and pCS = (0.8, 0.933, 0.8, 0.8, 0.8). CS has allocated day 2 its maximum probability. However,

the worst-case parameter spread the success probability more evenly over the first 3 days. The

assumption that one pτ is maximised is usually satisfied, and hence this is not the main reason

for CS’s suboptimality.

These observations explain why CS did not always return the true worst-case p. Clearly, the

issue lies in the construction of Θext. In particular, the assumption that the sum over the success

probability vector should be maximised is not always required. In fact, sometimes it is worse

to reduce the sum in order to give high priority days a higher success probability. In order to

assess whether or not this is the case, CS would need to compare the maximum intakes for each

day in order to see where the most rollover could be caused.

5.5 Parametric vs. Non-parametric Decisions and Distributions

In this section, we compare NP’s solutions and distributions with those from P. This will allow

us to assess the benefits and costs of including the parametric information in the model. As

we have seen, incorporating this information creates a model that is larger and computationally

more difficult to solve. However, it retains the information on the family of distributions that

27

P 0 lies in and ensures that the worst-case distribution from the model is also in this family.

This is something that is not guaranteed by the non-parametric model.

5.5.1 Pulling Forward Decisions and Objective Values

We first study the differences in pulling forward decisions between the two models along with

their worst-case objective values. We find that the two models gave the same pulling forward

decision in 199 of the 279 instances solved. This can be stated as NP being y-optimal with

respect to the parametric model in 71% of instances. In every one of these instances, it was only

optimal to pull forward between either days 2 and 1 or not at all. The worst-case expected cost

from NP was 1.21 higher than that from P in these instances, on average. This suggests that

the worst-case distribution from NP for a fixed y is typically worse than that from P.

(a) Scatter plot of total amount pulled forward

under P vs. NP

(b) Scatter plot of worst-case expected costs un-

der P vs. NP

Figure 2: Scatter plots comparing P and NP’s pulling forward decisions

Figure 2a shows a scatter plot of the total amount pulled forward under each model in each of

the 279 instances. Figure 2b shows the corresponding worst-case expected costs. The dashed

line corresponds to instances where both models pulled forward the same amount or had the

same worst-case cost. Figure 2a suggests that, when the two were different, there is no definitive

answer to which algorithm is more conservative. In 42 instances NP pulled forward more, and

in 38 instances it pulled forward less. However, when NP pulled forward more than P, it pulled

forward up to 7 jobs more. When P pulled forward more, it only pulled forward 1 more. On

average over the instances where the two solutions were different, NP pulled forward 1.24 more

jobs. The overall average difference was 0.32. This suggests that NP is generally slightly less

conservative than P. However, as shown in Figure 2b, rarely did NP attain a lower worst-case

expected cost than P. The overall average difference between P and NP’s worst-case expected

costs was −1.21. This suggests that NP’s worst-case distribution typically suggests that there

will be 1.21 more jobs being expected to roll over in the worst case. This is surprising since NP

typically pulled forward more. Hence, this result indicates that NP’s less conservative nature

leads to more expected rollover in the majority of these instances.

Since NP results from relaxing the requirement that the worst-case distribution is binomial,

we can view NP as a heuristic for solving the parametric model. Hence, it may be beneficial

28

to study the expected cost resulting from yNP under the binomial worst-case distribution that

would be given by P, instead of the distribution given by NP. Therefore, for each value of yNP,

we compute the worst-case binomial distribution given by a p ∈ Θ, and the associated expected

cost. This allows us to compute the objective value that yNP would attain under the parametric

model. Hence, it allows us to assess the quality of yNP in comparison with yP, as we did for our

heuristics. We can also study the difference between yNP’s worst case cost under P and NP, via

the p-gap. This allows us to assess how the two objective functions differ for the same y.

Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG y-opt. %

NP -1.1764 13.0095% 0.0234 0.0429% 87.1%

CS 0.0561 0.084% 0.0058 0.0101% 97.1%

Table 5: Summary of NP and CS’s gaps

The gaps for NP are summarised in Table 5, along with those from CS for comparison. The p-

gaps suggest that the worst-case cost for yNP from NP is 1.18 higher than that from P, on average.

This indicates that the NP model typically overestimates the worst-case cost associated with

yNP. This is consistent with our previous observation that NP’s worst-case objective values are

higher for a fixed y. In fact, NP overestimated the worst-case cost of yNP in 248 of 279 instances

(89%). The most that NP overestimated this cost by was 3.4. These values may seem small,

but relative to the true worst-case cost they can be quite large. The largest p-APG was 165%,

indicating that the worst-case cost from NP was 2.65 times that from P. These results indicate

that NP will typically give an objective that makes a decision look worse than it would be in

reality. The y-APGs suggest that the y decisions from NP perform similarly to that of P, under

P’s objective. However, they do result in a slight cost increase on average. Based on the results

here, we believe that CS is the strongest performing algorithm. CS runs in less time than NP

and gives solutions closest to those from P. In fact, we can say that the NP solutions have gaps

that are 4 times higher than CS’s on average. Both average gaps are small, but CS was optimal

in 92% of instances, as opposed to 71% for NP. Furthermore, if one were to use the NP model,

then they would likely overestimate the rollover cost from their decision by approximately 13%,

whereas CS would underestimate this cost by approximately 0.084%.

5.5.2 Worst-case Distributions

In order to explain the differences in decisions and costs, we now study the worst-case dis-

tributions from P and NP. There are a number of ways in which these distributions can be

different. The most obvious one is that P’s worst-case distribution is always binomial, whereas

NP’s is not. As well as this, the two approximations of the 95% confidence set for P 0 can be

different, allowing different distances from P̂ . In fact, typically the confidence sets for P were

larger. This indicates better coverage from the parametric sets. We first study the maximum

distances from P̂ allowed by each ambiguity set and the distances attained by the parametric

and non-parametric worst-case distributions, as measured by dφ. We find that the maximum

29

distance allowed by P can be almost twice that allowed by NP. The maximum distance allowed

by NP was 1.22, whereas this value was 2.32 for P. This suggests that the parametric ambiguity

set can be significantly larger than the non-parametric set. We also find that NP’s worst-case

distribution always achieves the maximum distance from P̂ . Interestingly, the same does not

apply for P. The maximum distance that PP had from P̂ was 2.00, showing that the worst-case

binomial distribution was not always as far from P̂ as it was allowed to be. In fact, there were

106 instances where P did not reach its maximum distance. As a result, even though the para-

metric ambiguity sets allowed PP to be further from P̂ , we still find that PNP was further from

P̂ on average. The fact that NP’s solution is always on the boundary may indicate that the true

worst-case distribution is further from P̂ than is allowed by NP’s ambiguity set.

In order to compare the worst-case distributions directly, we compute a number of summary

statistics for each distribution and present their average values in Table 6. The first two results

we show are the average distances from P̂ as measured by dφ and by the Kullback-Leibler

Divergence (KLD). The KLD value, KLD(P x, P̂), can be loosely interpreted as the amount of

surprise that would result in simulating from P x if the true distribution were P̂ . These two

rows indicate that NP was further from P̂ , on average, than P with respect to both distance

measures. The values of dφ are quite close, but proportionally the difference in KLD values is

much larger. In fact, NP has 52% more surprise than P, on average. This is likely due to the fact

that NP’s distribution is not binomial, unlike P’s distribution. Entropy also measures surprise,

but with respect to the values given by the distribution. We see that both distributions have a

similar total entropy, but P has slightly more.

P NP % Gap

dφ(P x, P f) 0.435 0.480 -10.345%

KLD(P x, P f) 0.167 0.254 -52.096%

Entropy 5.379 5.227 2.826%

Total EV 16.701 17.048 -2.078%

Total Variance 3.670 3.590 2.18%

Total Skewness -4.274 -4.431 -3.673%

No. Popped 14.074 21.822 -55.052%

No. Suppressed 215.556 568.178 -163.587%

Table 6: Summary statistics comparing PP with PNP

We also present summaries of the total mean, variance and skewness of each distribution. We

see that NP has a higher total expected intake than P on average, but less variance. This can be

expected since NP can control the mean and variance separately. P, on the other hand, fixes the

variance by fixing the mean. P can therefore have a smaller variance than P, even when the two

means are the same. However, P is typically less negatively skewed than NP. These results may

explain why NP’s worst-case costs are higher. If NP is more negatively skewed with a higher

mean and lower variance, then this suggests that more mass is allocated to the higher intakes

and less to the lower ones. Hence, expected costs will necessarily be higher.

30

Finally, we look at the number of intakes that were popped and suppressed by each worst-case

distribution. A distribution P x popping an intake i is defined as P(I = i | P x) > 0 when

P(I = i | P̂) = 0. The distribution P x suppressing i is defined as P(I = i | P x) = 0 when

P(I = i | P̂) > 0. Since P̂ is a binomial distribution, technically we will never have popping as

P(I = i | P̂) > 0 ∀ i ∈ I. We will also never have suppressing under P, for the same reason.

In addition, by Bayraksan and Love (2015), the modified χ2 divergence cannot pop scenarios.

Hence, we consider the distributions when rounded to 6 d.p. instead. The table shows that

NP popped 55% more intakes than P on average. Both popped only a few intakes, which is

consistent with our observation that neither method can technically pop scenarios. This is not

the main cause for the difference in the distributions, however. The main difference is from

suppressing. We see that NP suppresses 163% more intakes than P on average. This indicates

that NP’s worst-case sets a large number of P̂ ’s positive values to zero. P is much more restricted

in this sense, due to the fact that PP is also binomial. This means that P cannot set any values

to be exactly zero. This difference may also explain the increased values of KLD given by NP;

some intakes that would be generated by P̂ would never be generated by PNP.

6 Conclusions and Further Research

In this paper, we presented parametric and non-parametric DRO models for a workforce planning

problem under a mixture of known and uncertain demand. We developed heuristics to solve

the parametric model, due to its poor scalability. The general conclusions that we can make

from our results are as follows. The full model can be slow to solve to optimality using the MIP

reformulation, i.e. using P. CS opt solves this model to optimality in a short time on average,

but begins to solve slowly when the ambiguity set is large. Our heuristics, AO and CS, employ

dimension reduction to the sets of intakes and distributions respectively in order to solve the

problem in significantly less time than P. The main conclusion we make about these algorithms

is that CS performs very well, and takes a fraction of the time that P takes. However, we found

that CS can fail to select the worst-case success probability for its chosen pulling forward decision

due to its assumption that the total success probability should be maximised. We compared

the parametric and non-parametric solutions, and made a number of conclusions. Namely, NP

typically pulls forward more than P but it overestimates the worst-case cost of a decision by

13% on average. We also found that the NP distributions had higher means, lower variance and

more negative skewness. They also suppressed many more intakes than P’s distributions.

The main contribution that we have made to the existing DRO literature is the new modelling

framework of parametric DRO. This framework allows us to enforce that the worst-case distri-

bution from the DRO model belongs to the same family of parametric distributions as the true

distribution. For an example problem, we also contribute a selection of algorithms resulting from

incorporating information about the family in which the distribution of the uncertain parame-

ters lies. We have shown that this additional information can be very beneficial in constructing

algorithms for the DRO model, since CS exploits the behaviour of the binomial distribution in

order to produce solutions. This has not only allowed these algorithms to perform very well,

31

but also to quickly produce solutions to a large and complex model. It has been noted in the

literature that CS algorithms suffer runtime issues due to the complexity of the distribution

separation problem, and our CS opt algorithm supports this. However, we have presented a

heuristic CS algorithm that does not suffer from this problem.

There are a number of natural extensions to our work which would be of further interest from a

practical viewpoint. Firstly, we have considered a simplified problem in which each job requires

one unit of capacity to complete. This is not typically the case in real life workforce planning.

Adding more varied completion times would be a clear next step in improving this model.

Secondly, the model considers the case where there is only one skill, and is equivalent to assuming

all workers can complete any job. In some scenarios this is not the case, and the model could

account for this by considering separate demand values and decision variables for each skill.

Thirdly, we have treated the capacity as fixed and aimed to optimise its use. In some cases,

if not all, however, capacity can be manipulated in the tactical planning phase. For example,

one can order extra units of existing resources (overtime) or hire outside resources for a cost

(contractors). These ways to manipulate capacity (planning levers) will form the basis of some

of our future research. Finally, we have assumed in this paper that the intakes are independent.

Extending our model to account for correlated intakes is a promising area for future work.

Acknowledgements

We would like to acknowledge the support of the Engineering and Physical Sciences Research

Council funded (EP/L015692/1) STOR-i Centre for Doctoral Training. We would like to thank

BT for their funding, and Mathias Kern and Gilbert Owusu from BT for their support. We

would also like to thank the 4 anonymous EJOR reviewers for their useful comments that have

helped us improve this paper. In addition, we would like to thank Dick den Hertog for his help

in developing the CQP reformulation of the non-parametric version of our model.

Bibliography

Ainslie, R., Mccall, J., Shakya, S., and Owusu, G. (2017). Predicting service levels using neural

networks. pages 411–416.

Ainslie, R., McCall, J., Shakya, S., and Owusu, G. (2018). Tactical plan optimisation for

large multi-skilled workforces using a bi-level model. 2018 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8.

Ainslie, R. T., Shakya, S., McCall, J., and Owusu, G. (2015). Optimising skill matching in the

service industry for large multi-skilled workforces. In Bramer, M. and Petridis, M., editors,

Research and Development in Intelligent Systems XXXII, pages 231–243, Cham. Springer

International Publishing.

Angalakudati, M., Balwani, S., Calzada, J., Chatterjee, B., Perakis, G., Raad, N., and Uichanco,

J. (2014). Business analytics for flexible resource allocation under random emergencies. Man-

agement Science, 60(6):1552–1573.

32

Bansal, M., Huang, K.-L., and Mehrotra, S. (2018). Decomposition algorithms for two-stage

distributionally robust mixed binary programs. SIAM Journal on Optimization, 28(3):2360–

2383.

Bastian, N. D., Lunday, B. J., Fisher, C. B., and Hall, A. O. (2020). Models and methods

for workforce planning under uncertainty: Optimizing U.S. army cyber branch readiness and

manning. Omega, 92:102171.

Bayraksan, G. and Love, D. K. (2015). Data-driven stochastic programming using phi-

divergences. In The Operations Research Revolution, chapter 1, pages 1–19. INFORMS.

Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013). Robust

solutions of optimization problems affected by uncertain probabilities. Management Science,

59(2):341–357.

Breton, M. L. and Hachem, S. E. (1995). Algorithms for the solution of stochastic dynamic

minimax problems. Computational Optimization and Applications, 4:317–345.

Chen, D., Meng, F., Ang, J., Chu, S., Sim, M., and Kannapiran, P. (2015). A robust optimization

model for managing elective admission in hospital. Operations Research, 63.

Collins, R. A. (2004). The behavior of the risk-averse newsvendor for uniform, truncated normal,

negative binomial and gamma distributions of demand. In Department of Operations and

Management Information Systems, Leavey School of Business Santa Clara University Working

paper. Citeseer.

Dolgui, A. and Pashkevich, M. (2008). On the performance of binomial and beta-binomial models

of demand forecasting for multiple slow-moving inventory items. Computers & Operations

Research, 35(3):893–905.

Duchi, J., Glynn, P., and Namkoong, H. (2016). Statistics of robust optimization: A generalized

empirical likelihood approach. Mathematics of Operations Research, 46.

Fetter, R. B. (1961). A linear programming model for long range capacity planning. Management

Science, 7(4):372–378.

Gallego, G., Katircioglu, K., and Ramachandran, B. (2007). Inventory management under highly

uncertain demand. Operations Research Letters, 35(3):281–289.

Ghaoui, L. E., Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust portfolio

optimization: A conic programming approach. Operations Research, 51(4):543–556.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

Hanasusanto, G. A. and Kuhn, D. (2013). Robust data-driven dynamic programming. Advances

in Neural Information Processing Systems, 26.

Hanssmann, F. and Hess, S. W. (1960). A linear programming approach to production and

employment scheduling. Management Technology, 1(1):46–51.

33

Holt, C. C., Modigliani, F., and Simon, H. A. (1955). A linear decision rule for production and

employment scheduling. Management Science, 2(1):1–30.

Holte, M. and Mannino, C. (2013). The implementor/adversary algorithm for the cyclic

and robust scheduling problem in health-care. European Journal of Operational Research,

226(3):551–559.

Hu, Z. and Hong, L. J. (2013). Kullback-leibler divergence constrained distribution-

ally robust optimization. Available at Optimization Online: http://www.optimization-

online.org/DB˙HTML/2012/11/3677.html, pages 1695–1724.

Hu, Z., Hong, L. J., and So, A. M.-C. (2013). Ambiguous probabilistic programs. Available at

Optimization Online: http://www.optimization-online.org/DB˙HTML/2013/09/4039.html.

Hulst, D., den Hertog, D., and Nuijten, W. (2017). Robust shift generation in workforce plan-

ning. Computational Management Science, 14.

J. Abernathy, W., Baloff, N., Hershey, J., and Wandel, S. (1973). A three-stage manpower

planning and scheduling model – a service-sector example. Operations Research, 21:693–711.

Jiang, R. and Guan, Y. (2016). Data-driven chance constrained stochastic program. Math.

Program., 158(1–2):291–327.

Kortanek, K. O. and No, H. (1993). A central cutting plane algorithm for convex semi-infinite

programming problems. SIAM Journal on Optimization, 3(4):901–918.

Lam, H. (2019). Recovering best statistical guarantees via the empirical divergence-based dis-

tributionally robust optimization. Operations Research, 67(4):1090–1105.

Lee, C. and Mehrotra, S. (2015). A distributionally-robust approach for finding sup-

port vector machine. Optimization Online. Available at http://www.optimization-

online.org/DB˙HTML/2015/06/4965.html.

Lee, J. and Raginsky, M. (2018). Minimax statistical learning with wasserstein distances. In

Proceedings of the 32nd International Conference on Neural Information Processing Systems,

NIPS’18, page 2692–2701, Red Hook, NY, USA. Curran Associates Inc.

Liao, S., van Delft, C., and Vial, J.-P. (2013). Distributionally robust workforce scheduling in

call centres with uncertain arrival rates. Optimization Methods and Software, 28(3):501–522.

Lotfi, S. and Zenios, S. A. (2018). Robust var and cvar optimization under joint ambiguity in

distributions, means, and covariances. European Journal of Operational Research, 269(2):556–

576.

Luo, F. and Mehrotra, S. (2019). Decomposition algorithm for distributionally robust optimiza-

tion using Wasserstein metric with an application to a class of regression models. European

Journal of Operational Research, 278(1):20–35.

34

Martel, A. and Price, W. (1978). A normative model for manpower planning under risk. In

Manpower Planning and Organization Design, pages 291–305. Springer.

Mehrotra, S. and Papp, D. (2014). A cutting surface algorithm for semi-infinite convex program-

ming with an application to moment robust optimization. arXiv preprint. arXiv:1306.3437.

Mehrotra, S. and Zhang, H. (2013). Models and algorithms for distributionally robust least

squares problems. Mathematical Programming, 146.

Millar, R. B. (2011). Maximum Likelihood Estimation and Inference: With Examples in R, SAS

and ADMB, volume 112 of Statistics in practice. Wiley, New York, 1. aufl. edition.

Mohajerin Esfahani, P. and Kuhn, D. (2018). Data-driven distributionally robust optimization

using the wasserstein metric: Performance guarantees and tractable reformulations. Mathe-

matical Programming, 171(1):115–166.

Pflug, G. and Wozabal, D. (2007). Ambiguity in portfolio selection. Quantitative Finance,

7(4):435–442.

Rahimian, H., Bayraksan, G., and Homem-De-Mello, T. (2019). Identifying effective scenarios

in distributionally robust stochastic programs with total variation distance. Mathematical

Programming, 173(1–2):393–430.

Rahimian, H. and Mehrotra, S. (2019). Distributionally robust optimization: A review. arXiv

preprint. arXiv:1908.05659.

Ross, E. (2016). Cross-trained Workforce Planning Models. PhD thesis, University of Lancaster.

Rossi, R., Prestwich, S., Tarim, S. A., and Hnich, B. (2014). Confidence-based optimisation for

the newsvendor problem under binomial, poisson and exponential demand. European Journal

of Operational Research, 239(3):674–684.

Samudra, M., Demeulemeester, E., Cardoen, B., Vansteenkiste, N., and Rademakers, F. (2016).

Scheduling operating rooms: achievements, challenges and pitfalls. Journal of Scheduling, 19.

Scarf, H. E. (1957). A Min-Max Solution of an Inventory Problem. RAND Corporation, Santa

Monica, CA.

Shapiro, A. and Kleywegt, A. (2002). Minimax analysis of stochastic problems. Optimization

Methods and Software, 17(3):523–542.

Yanıkoğlu, I. and den Hertog, D. (2013). Safe approximations of ambiguous chance constraints

using historical data. INFORMS Journal on Computing, 25(4):666–681.

Zhu, X. and Sherali, H. D. (2009). Two-stage workforce planning under demand fluctuations

and uncertainty. Journal of the Operational Research Society, 60(1):94–103.

35

Appendices

A Derivation of CQP Reformulation of Non-parametric Model

A.1 General Reformulation

For a φ-divergence ambiguity set with nominal distribution Q, we can write the inner problem

of the DRO model (1)-(8) as:

max
P

L∑
τ=1

aτEP (Rτ) (38)

s.t. Pj ≥ 0 ∀ j = 1, . . . , n (39)
n∑
j=1

Pj = 1 (40)

dφ(P,Q) ≤ dmax. (41)

The Lagrangian of this model is given by:

L(P, λ, ν) =
L∑
τ=1

n∑
j=1

PjaτR
ij

τ + λ (dmax − dφ(P,Q)) + ν

1−
n∑
j=1

Pj

 . (42)

The objective function of the dual problem is therefore:

g(λ, ν) = max
P≥0

L(P, λ, ν). (43)

Since dmax > 0 and dφ(Q,Q) = 0 < dmax where Q is a feasible choice of distribution, Slater’s

condition holds. Since the primal is concave, we have strong duality. We can hence write the

objective of the dual of the inner problem as:

min
λ≥0,ν

g(λ, ν) = min
λ≥0,ν

max
P≥0

L∑
τ=1

n∑
j=1

PjaτR
ij

τ + λ (dmax − dφ(P,Q)) + ν

1−
n∑
j=1

Pj

 (44)

= min
λ≥0,ν

λdmax + ν + max
P≥0

 n∑
j=1

Pj

L∑
τ=1

aτR
ij

τ − λdφ(P,Q)− ν
n∑
j=1

Pj

 (45)

= min
λ≥0,ν

λdmax + ν + max
P≥0

 n∑
j=1

Pj

L∑
τ=1

aτR
ij

τ − λ
n∑
j=1

Qjφ

(
Pj
Qj

)
− ν

n∑
j=1

Pj

(46)

= min
λ≥0,ν

λdmax + ν +

n∑
j=1

max
Pj≥0

(
Pj

L∑
τ=1

aτR
ij

τ − λQjφ
(
Pj
Qj

)
− νPj

) (47)

= min
λ≥0,ν

λdmax + ν +

n∑
j=1

max
Pj≥0

(
Pj

(
L∑
τ=1

aτR
ij

τ − ν

)
− λQjφ

(
Pj
Qj

)) (48)

= min
λ≥0,ν

λdmax + ν + λ
n∑
j=1

Qj max
tj≥0

(
tj
Ri

j

τ − ν
λ

− φ (tj)

) (49)

36

= min
λ≥0,ν

λdmax + ν + λ
n∑
j=1

Qj max
tj≥0

(tjsj − φ (tj))

 (50)

= min
λ≥0,ν

λdmax + ν + λ
n∑
j=1

Qjφ
∗(sj)

 , (51)

where sj =
∑L
τ=1 aτR

ij
τ −ν

λ and tj =
Pj
Qj

. Note that we can replace the sum of maxima with a

maximum of sums in (49) because the objective is separable over j. Finally, we require a dual

feasibility constraint (52)

sj ≤
(

lim
t→∞

φ(t)

t

)
∀ j = 1, . . . , n, (52)

which ensures that φ∗ does not grow to infinity. Consider φ∗(sj) = supt≥0{sjt − φ(t)}. If
φ(t)
t → ∞ as t → ∞ then this constraint can be removed. If not, i.e. limt→∞

φ(t)
t = s̄ < ∞,

then for s > s̄ we have φ∗(s) = ∞. Note that, according to the definition given by Ben-Tal

et al. (2013), we have 0φ∗(s/0) := (0φ∗)(s), which is zero if s ≤ 0 and +∞ if s > 0. Therefore,

combining with the outer problem, we have:

min
y,R,λ,ν

λdmax + ν + λ

n∑
j=1

Qjφ
∗(sj)

 , (53)

s.t. (2)− (8) (54)

λ ≥ 0 (55)

L∑
τ=1

aτR
ij

τ − ν ≤ λ
(

lim
t→∞

φ(t)

t

)
∀ j = 1, . . . , n. (56)

A.2 Modified χ2-divergence

Recall equation (13), which states that for a modified χ2 divergence, we have:

dmχ2(P,Q) =

n∑
j=1

(Pj −Qj)2

Qj
.

A.2.1 Reformulation

The conjugate of φmχ2 is given by:

φ∗mχ2(s) =

−1 if s < −2

s+ s2

4 if s ≥ −2

= max
{sj

2
+ 1, 0

}2
− 1.

Using φ∗ to represent φ∗mχ2 for shorthand, we can expand φ∗(sj) in order to write:

λφ∗(sj) = λ

(
max

{sj
2

+ 1, 0
}2
− 1

)
(57)

= λmax

{∑L
τ=1 aτR

ij
τ − ν

2λ
+ 1, 0

}2

− λ (58)

37

=
1

4λ
max

{
L∑
τ=1

aτR
ij

τ − ν + 2λ, 0

}2

− λ. (59)

In order to define φ∗(sj) using convex quadratic constraints, we first need to remove the max

operator from this expression. Hence, we define a dummy variable zj to represent the value of

max
{∑L

τ=1 aτR
ij
τ − ν + 2λ, 0

}
. We enforce z’s value via (60) and (61).

zj ≥
L∑
τ=1

aτR
ij

τ − ν + 2λ ∀ j = 1, . . . , n (60)

zj ≥ 0 ∀ j = 1, . . . , n. (61)

Then, we can define another dummy variable uj =
z2
j

λ = 4λφ∗(sj) + λ. We enforce the value of

uj using a conic quadratic constraint as follows:

uj ≥
z2
j

λ
(62)

λuj ≥ z2
j (63)

(λ+ uj)
2 − (λ− uj)2 ≥ 4z2

j , (64)√
4z2
j + (λ− uj)2 ≤ (λ+ uj). (65)

Hence, with dummy variables zj , uj for j = 1, . . . , n, we can reformulate our inner problem

as:

min
λ≥0,ν,z,u

λ(dmax − 1) + ν +
1

4

n∑
j=1

Qjuj

 (66)

√
4z2
j + (λ− uj)2 ≤ (λ+ uj) ∀ j = 1, . . . , n (67)

zj ≥
L∑
τ=1

aτR
ij

τ − ν + 2λ ∀ j = 1, . . . , n (68)

zj ≥ 0 ∀ j = 1, . . . , n. (69)

λ ≥ 0. (70)

Therefore, combining with the original model, we have:

min
y,R,λ,ν,z,u

λ(dmax − 1) + ν +
1

4

n∑
j=1

Qjuj

 , (71)

s.t. (2)− (8), (72)

(67)− (70). (73)

Note that, in the objective function, the −λ comes from the fact that λφ∗(sj) = 1
4uj − λ.

A.2.2 Extracting Worst-case Distribution

In order to find the worst-case distribution, we must extract it from the optimal values of

λ, ν, z, u. Denote the optimal solution of model (71)-(73) by (y∗, R∗, λ∗, ν∗, z∗, u∗). As discussed

38

by Bayraksan and Love (2015), the worst-case distribution P ∗ satisfies:

P ∗j
Qj
∈ ∂φ∗(s∗j),

n∑
j=1

Qjφ

(
P ∗j
Qj

)
≤ dmax,

n∑
j=1

P ∗j = 1. (74)

Here, the notation ∂f(x) is the set of subgradients of f at x. Suppose that λ∗ > 0 so that s∗j is

defined. By Bayraksan and Love (2015), if φ∗ is differentiable then (φ∗)′(s∗j) is a subgradient.

This is true in our case, with (φ∗)′(s) = max
{

1 + s
2 , 0
}

. This derivative is non-negative, and

hence always gives a feasible solution for P ∗j by taking P ∗j = Qj(φ
∗)′(s∗j) when λ∗ > 0. In our

experiments we only ever observed λ∗ > 0 and hence φ∗(s∗j) always gave a solution. For more

detail on how to extract the solution when λ∗ = 0, see Bayraksan and Love (2015).

B Further Analysis of Results

B.1 The Effect of Workstacks on Solutions

In our experiments, we used only one value of the capacity c but varied the workstacks D to give

a variety of possibilities for pulling forward. This was based on the number of pairs between

which pulling forward was possible, i.e. |F+(c,D)| from Section 4.2. We give some examples of

the values of c−D and the corresponding |F+(c,D)| in Table 7.

c−D |F+(c,D)|

(8, -15, -15, 8, -15) 3

(8, -15, 8, 8, 8) 5

(8, 8, 8, 8, 8) 7

Table 7: Examples of c−D values and corresponding number of pairs

Any more pairs than 7 is not possible for L = 5 and K = 2. We present a summary of the

results broken down by |F+(c,D)| in Table 8. This table shows three quantities: the average

time taken by each algorithm, the average gaps and the average number of pairs of days which

had a positive pulling forward decision. The table shows that we did not have any more non-zero

decisions than 1, from any algorithm, until |F+(c,D)| reached its maximum value of 7. Days 1

and 2 are typically prioritised for rollover reduction via pulling forward in these cases. This is

because jobs due on these days have the potential to roll over the most times. However, when

|F+(c,D)| = 7, we see between 1 and 6 pairs of days having a non-zero pulling forward decision.

by, for example, relaxing the constraint that requires that only incomplete jobs be moved.
The APGs are also shown in Table 8. From this, we can see a number of results. Firstly, we see

that the average time taken by each algorithm apart from AO is increasing in |F+(c,D)|. This

can be expected, since more feasible pairs leads to a more complex feasible region. Furthermore,

AO performs worse in selecting y as |F+(c,D)| increases. This is likely because reducing the

set of intakes leads to less accurate estimates of the expected rollover. Interestingly, CS does

not suffer from the same issue. In fact, for |F+(c,D)| = 7, CS has an average y-APG of 0.0%

and for all values of |F+(c,D)| this value is below 0.051%. This is because CS does not employ

39

Avg. p-APG Avg. y-APG Avg. t.t. (Avg., Max) Non-zeros

|F+(c,D)| Count Algorithm

3 189 opt 0.0% 0.0% 0:01:00.38 (1.0, 1)

CS 0.0415% 0.0029% 0:00:07.58 (1.0, 1)

CS˙opt 0.0% 0.0% 0:00:09.75 (1.0, 1)

AO 0.0084% 0.0059% 0:00:24.74 (1.0, 1)

NP - - 0:00:02.62 (1.0, 1)

5 45 opt 0.0% 0.0% 0:02:12.72 (1.0, 1)

CS 0.3465% 0.0506% 0:00:25.62 (1.0, 1)

CS˙opt 0.0% 0.0% 0:00:29.35 (1.0, 1)

AO 0.0052% 0.2903% 0:00:19.04 (1.0, 1)

NP - - 0:00:32.2 (1.0, 1)

7 45 opt 0.0% 0.0% 0:02:44.25 (2.0, 4)

CS 0.0% 0.0% 0:01:27.85 (2.0, 4)

CS˙opt 0.0% 0.0% 0:01:31.68 (2.0, 4)

AO 0.0% 0.5332% 0:00:21.16 (2.0, 4)

NP - - 0:01:53.93 (2.8, 6)

Table 8: Results by |F+(c,D)|.

dimension reduction to the set of intakes like AO does. As might be expected, there is no clear

pattern in the p-APGs. For AO and CS, this value is highest when |F+(c,D)| = 5 and lowest

when |F+(c,D)| = 7. Finally, the final column shows the average and maximum numbers of

pairs (τ1, τ2) that had yτ1,τ2 > 0 under each algorithm. The results for |F+(c,D)| = 7 suggest

that NP’s solution is slightly less conservative than P’s solution on average. We study this in

more detail in Section 5.5. Interestingly, NP takes almost as long as P in these instances. CS opt

again has all zero gaps and APGs, and its times taken are no more affected by |F+(c,D)| than

the times taken by CS.

B.2 Comparison with Robust Optimisation Solutions

In this section, we compare the DRO decisions and objectives with those resulting from the

robust optimisation (RO) version of the model. The RO model is obtained by replacing the

inner objective with the maximisation of the total rollover cost over all intake vectors. The first

result that we find is that the intake vector responsible for the worst-case cost for the chosen y

value was always imax. This shows that the RO model can be solved simply by assuming that all

intakes take their maximum values at all times. As well as this, the RO model pulled forward

less than the DRO model in 227 (82%) of our 279 instances. The RO solution also had a higher

cost than the DRO solution in 269 (97%) of instances. This can be expected due to the way that

their objectives differ. These two facts justify our claim that the RO model is more conservative

than the DRO model.

We present some more detailed results in Table 9. This table compares the objective values,

40

pulling forward decisions and times taken from the three models. Firstly, note that RO takes

around 16 seconds on average. RO also pulls forward less than DRO. Specifically, it pulled

forward 1.3 jobs less than DRO, on average. Also, DRO pulled forward a maximum of 8 jobs

whereas RO only pulled forward a maximum of 7 jobs. Furthermore, the objective values

from RO were significantly higher than DRO. Comparing the RO objective with the DRO

objective, we see that RO’s objective values were around 9.5 higher than DRO’s on average.

This corresponds to almost a 200% increase in objective value. The y-gap and y-APGs assess

the expected costs from RO’s decisions when evaluated by DRO’s objective function. This

suggests that RO’s decisions would result in around 2 more jobs being expected to roll over in

the worst-case than DRO’s solution.

RO Det. RO DRO

Avg. Obj. Gap 9.499 9.499 0

Avg. % Obj. Gap 199.662% 199.662% 0%

Avg. y-gap 1.851 1.851 0

Avg. y-APG 2.616% 2.616% 0%

Avg.
∑

τ1,τ2
yτ1,τ2 4 4 5.308

Max.
∑

τ1,τ2
yτ1,τ2 7 7 8

Avg. t.t. 0:00:00.01 0:00:15.89 0:01:22.85

Table 9: Comparison of results from RO model with DRO solutions

As already noted, RO is equivalent to the deterministic model under the assumption that I =

imax with probability 1. The results from this model are shown in the “RO det.” column. This

shows that this model took 0.01 seconds to build and solve, on average. Hence, our results

indicate that the inclusion of the rollover constraints for the RO model leads to around a 16

second increase in solution times. The inclusion of the expected value constraints for the DRO

model results in over 1 minute of additional solution time. Table 9 also shows that RO had an

objective value that was three times larger than DRO’s, on average.

From the results presented here, we can conclude three main results. Firstly, RO is more

conservative than DRO for this problem, since it pulls forward fewer jobs on average. Secondly,

RO results in significantly higher costs for the same y decision. However, the third conclusion is

that RO is much faster than DRO. This indicates that the main factor affecting solution times

for DRO is the inclusion of the expected value constraints.

C A Benders Decomposition Approach

Our CS opt algorithm can be viewed as a specialised Benders decomposition (?) approach that

solves the distribution separation problem as a residual problem. However, it does not require

us to create the dual of the distribution separation problem, and in our case we can simply solve

this problem by enumeration. For comparison, we now present a classical Benders decomposition

approach in order to explain why CS opt is preferred.

41

C.1 Residual Problem and its Dual

We create the Benders residual problem by taking y as master problem variables and R, t as

subproblem variables. This is because the model’s complexity comes from R and t, not y. For

a fixed y = ȳ, the residual problem can be written as:

min
R,t

t, (75)

s.t. Ri1 ≥ i1 +

min{1+K,L}∑
τ1=2

yτ1,1 − (c1 −D1) ∀ i ∈ I (76)

Riτ −Riτ−1 ≥ iτ +

min{τ+K,L}∑
τ1=τ+1

yτ1,τ −

cτ −Dτ +

τ−1∑
τ2=max{τ−K,1}

yτ,τ2

∀ τ = 2, . . . , L− 1 ∀ i ∈ I, (77)

RiL −RiL−1 ≥ iL −

cL −DL +
L−1∑

τ2=max{L−K,1}

yτ,τ2

 ∀ i ∈ I, (78)

t−
L∑
τ=1

aτ
∑
i∈I

P(I = i|p)Riτ ≥ 0 ∀ p ∈ Θ. (79)

This model has m = L|I|+|Θ| constraints. Hence, we have dual variables uj,τ for j = 1, . . . , |I|
and τ = 1, . . . , L, and vk for k = 1, . . . , |Θ|. The model has L|I|+1 variables, and so we have

L|I|+1 constraints in the dual. The dual is given by:

max
x

L∑
τ=1

n∑
j=1

bj,τ (ȳ)uj,τ +

|Θ|∑
k=1

b̃k(ȳ)vk (80)

s.t. Ri1 : uj,1 − uj,2 −
|Θ|∑
k=1

a1P(I = ij |pk)vk ≤ 0 ∀ j = 1, . . . , |I|, (81)

Riτ : uj,τ − uj,τ+1 −
|Θ|∑
k=1

aτP(I = ij |pk)vk ≤ 0 ∀ j = 1, . . . , |I| ∀ τ = 2, . . . , L− 1, (82)

RiL : uj,L −
|Θ|∑
k=1

aLP(I = ij |pk)vk ≤ 0 ∀ j = 1, . . . , |I|, (83)

t :

|Θ|∑
k=1

vk ≤ 1, (84)

where bj,τ (ȳ) and b̃k(ȳ) are defined as:

bj,1(ȳ) = i1 +

min{1+K,L}∑
τ1=2

ȳτ1,1 − (c1 −D1) ∀ i ∈ I (85)

bj,τ (ȳ) = iτ +

min{τ+K,L}∑
τ1=τ+1

ȳτ1,τ −

cτ −Dτ +

τ−1∑
τ2=max{τ−K,1}

ȳτ,τ2

 ∀ τ = 2, . . . , L− 1 ∀ i ∈ I,

(86)

42

bj,L(ȳ) = iL −

cL −DL +
L−1∑

τ2=max{L−K,1}

ȳτ,τ2

 ∀ i ∈ I, (87)

b̃k(ȳ) = 0 ∀ k = 1, . . . , |Θ|. (88)

C.2 Benders Decomposition Algorithm

Our Benders decompositon algorithm is as follows.

1. Initialise ε, LB = −∞, UB =∞. Set feasible region for z as Z = R+. Set feasible region

for y as Y , where y ∈ Y indicates that y is feasible for the model in (2)-(8).

2. While UB − LB > ε:

(a) Solve master problem:

min
z∈Z,y∈Y

z (89)

to get a solution ȳ and objective value zM.

(b) Set LB = zM.

(c) Solve Benders subproblem (80)-(84) with y = ȳ to get a solution ū, v̄ with objective

zS.

(d) If subproblem is unbounded, add feasibility cut:

L∑
τ=1

n∑
j=1

bj,τ (y)uj,τ +

|Θ|∑
k=1

b̃k(y)vk ≤ 0

to Y .

(e) If subproblem is optimal, add optimality cut:

z ≥
L∑
τ=1

n∑
j=1

bj,τ (y)uj,τ +

|Θ|∑
k=1

b̃k(y)vk

to Z.

(f) If zS < UB then set UB = zS.

3. Find index of binding t constraint from the subproblem and use this to find worst-case p.

4. Return y, p.

In the following section we will show that this approach is slow compared with CS opt.

C.3 Results

We tested the Benders algorithm on each of our 279 instances, for ε ∈ {0.01, 10−6, 10−8}. We

present the results in Table 10. From these results, it is clear that ε = 10−8 was required

for y optimality. However, with this ε, the Benders algorithm took almost 6 minutes to solve,

on average. In one instance, the algorithm timed out as it took longer than 4 hours. In

43

comparison with CS opt, which takes approximately 17 seconds on average, this version of

Benders decomposition is very slow.

ε Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG Avg. t.t. Max t.t.

1e-08 0.0 0.0% -0.0000 0.0% 0:05:57.798 4:00:05.011

1e-06 0.0 0.0% 0.0029 0.0% 0:04:42.6717 1:24:55.625

1e-02 0.0 0.0% 0.0141 10.1984% 0:04:36.6348 1:21:58.415

Table 10: Results of Benders algorithm

44

D Large Results Tables

D.1 Results by |Θ|

(N,nprobs) Avg. |Θ| Count Algorithm Avg. p-APG Avg. y-APG Avg. t.t.

(100, 5), (100, 10) 1.000 62 P 0.0% 0.0% 0:00:14.57

CS 0.0% 0.0% 0:00:16

CS˙opt 0.0% 0.0% 0:00:15.81

AO 0.0% 0.248% 0:00:01.32

NP - - 0:00:25.58

(50, 5) 1.419 31 P 0.0% 0.0% 0:00:15.11

CS 0.0% 0.0% 0:00:16.53

CS˙opt 0.0% 0.0% 0:00:16.46

AO 0.0% 0.248% 0:00:01.35

NP - - 0:00:27.13

(50, 10) 14.419 31 P 0.0% 0.0% 0:00:14.23

CS 0.0% 0.0% 0:00:15.05

CS˙opt 0.0% 0.0% 0:00:15.42

AO 0.0% 0.248% 0:00:01.4

NP - - 0:00:25.22

(10, 5) 14.742 31 P 0.0% 0.0% 0:00:16.14

CS 0.0% 0.0% 0:00:18.97

CS˙opt 0.0% 0.0% 0:00:19.42

AO 0.0% 0.0004% 0:00:01.76

NP - - 0:00:24.66

(100, 15) 16.871 31 P 0.0% 0.0% 0:00:16.24

CS 0.0% 0.0% 0:00:16.48

CS˙opt 0.0% 0.0% 0:00:16.5

AO 0.0452% 0.2391% 0:00:01.57

NP - - 0:00:26.12

(50, 15) 93.129 31 P 0.0% 0.0% 0:00:24.51

CS 0.5029% 0.0734% 0:00:20.8

CS˙opt 0.0% 0.0% 0:00:19.9

AO 0.0105% 0.0% 0:00:02.9

NP - - 0:00:27.16

(10, 10) 504.226 31 P 0.0% 0.0% 0:00:59.36

CS 0.0339% 0.0% 0:00:17.85

CS˙opt 0.0% 0.0% 0:00:19.76

AO 0.0% 0.0% 0:00:12.77

NP - - 0:00:23.47

(10, 15) 4301.645 31 P 0.0% 0.0% 0:09:30.88

CS 0.219% 0.0176% 0:00:19.66

CS˙opt 0.0% 0.0% 0:00:42.47

AO 0.0031% 0.0% 0:02:11.27

NP - - 0:00:23.22

Table 11: Summary of results and times taken by N and nprobs. Referred to in Section 5.3.

45

D.2 Results by |I|

|I| Count Algorithm Avg. p-APG Avg. y-APG Avg. t.t.

392 27 P 0.0% 0.0% 0:00:33.63

CS 0.0234% 0.0% 0:00:06.37

CS˙opt 0.0% 0.0% 0:00:08.01

AO 0.002% 0.0% 0:00:23.53

NP - - 0:00:00.84

512 45 P 0.0% 0.0% 0:00:31.88

CS 0.0952% 0.0024% 0:00:06.54

CS˙opt 0.0% 0.0% 0:00:08.05

AO 0.0% 0.0% 0:00:20.86

NP - - 0:00:00.78

567 45 P 0.0% 0.0% 0:00:37.09

CS 0.0572% 0.0107% 0:00:06.61

CS˙opt 0.0% 0.0% 0:00:08.28

AO 0.0116% 0.0% 0:00:25.75

NP - - 0:00:00.98

2187 27 P 0.0% 0.0% 0:01:42.9

CS 0.0536% 0.0% 0:00:08.72

CS˙opt 0.0% 0.0% 0:00:11.69

AO 0.0259% 0.0005% 0:00:25.93

NP - - 0:00:04.25

2592 45 P 0.0% 0.0% 0:01:42

CS 0.0043% 0.0% 0:00:09.69

CS˙opt 0.0% 0.0% 0:00:12.82

AO 0.0061% 0.0246% 0:00:26.58

NP - - 0:00:06.18

8192 45 P 0.0% 0.0% 0:02:12.72

CS 0.3465% 0.0506% 0:00:25.62

CS˙opt 0.0% 0.0% 0:00:29.35

AO 0.0052% 0.2903% 0:00:19.04

NP - - 0:00:32.2

20000 45 P 0.0% 0.0% 0:02:44.25

CS 0.0% 0.0% 0:01:27.85

CS˙opt 0.0% 0.0% 0:01:31.68

AO 0.0% 0.5332% 0:00:21.16

NP - - 0:01:53.93

Table 12: Summary of results and times taken by size of I. Referred to in Section 5.3.

46

E Tables of Notation

E.1 General Model Notation

Notation Meaning

L Number of days in a plan

K Maximum number of days a job can be pulled forward

τ , τ1, τ2 A day in the plan, value in {1, . . . , L}
yτ1,τ2 Number of jobs to pull forward from day τ1 ∈

{2, . . . , L} to τ2 ∈ {max τ1 −K, 1, . . . , τ1 − 1.

Rτ Number of jobs to roll over from day τ to τ + 1.

aτ Cost of a job rolling over from day τ to τ + 1.

cτ Number of hours of capacity available on day τ .

Dτ Number of jobs currently due on day τ .

N0 Set of non-negative integers.

Iτ Random variable representing number of jobs arriving

between the time of planning and day τ that will be

due on day τ (intake).

iτ Realisation of Iτ .

Ri Realisation of R = (R1, . . . , RL) corresponding to re-

alisation i of I.

Iτ Set of all possible realisations of Iτ .

I Set of all possible realisations of the vector of intakes

I.

P General ambiguity set constaining distributions of in-

take.

P A discrete probability distribution over the set of in-

takes I.

Q Nominal distribution of intake.

imax
τ The maximum value Iτ can take.

pτ A variable representing success probability parameter

of the binomial distribution of intake Iτ .

p0
τ True success probability of intake Iτ .

p̂τ MLE of p0
τ taken from N samples of Iτ .

P p Binomial distribution of intake with success probabil-

ity parameter p.

P̂ MLE of distribution resulting from p = p̂.

PΘ Set of all probability distributions P that are binomial

with a value p ∈ Θ.

Θ Set of vectors p obtained from a distribution P in PΘ.

Θα 100(1−α)% confidence set for p0 around the MLE P̂ .

Table 13: General model notation from Section 3.

47

E.2 Non-parametric Model Notation

Notation Meaning

φ φ-divergence function.

dφ φ-divergence measure resulting from φ-

divergence function φ.

φ∗ Conjugate of φ-divergence function φ.

φmχ2 φ-divergence function for modified χ2 dis-

tance.

χ2
k,1−α 100(1−α)% percentile of χ2 distribution with

k degrees of freedom.

Pρ Non-parametric confidence set for true distri-

bution P 0.

λ, ν Lagrange multipliers for SQP reformulation

of NP model.

uj , zj , sj Dummy variables used to reformulate NP

model.

dmax Maximum distance, measured by dφ, from

Q that P can be under the non-parametric

model.

∂f(x) Set of subgradients of a function f at a point

x.

·∗ Optimal value of · under the non-parametric

model.

Table 14: Notation used in the non-parametric model in Section 3.3

48

E.3 CS/CS opt/AO Notation

Notation Meaning

k (repeated dummy variable) Index for the iteration of CS/CS opt algo-

rithm that we are currently carrying out.

pmax
τ Maximum value that pτ takes over p ∈ Θ.

Θmax
τ Set of p parameters such that pτ is maximised.

Θext Set of extreme distributions used by CS.

Θ̃ General ambiguity set used by CS algorithms.

Θ̃ = Θ for CS opt and Θ̃ = Θext for CS.

kmax Maximum number of iterations of CS/CS opt

algorithm allowed to run.

Θk Current subset of Θ being used at iteration k

of CS/CS opt.

yk Pulling forward decision generated by solving

outer problem at iteration k of CS/CS opt.

pk Probability vector generated by solving dis-

tribution separation problem at iteration k of

CS/CS opt.

ε Optimality tolerance of CS/CS opt algo-

rithm.

tk Objective value of problem obtained by solv-

ing outer problem at iteration k of CS.

β Minimum probability an intake must have of

occurring in order to be used in the AO algo-

rithm.

Ĩ Set of intakes with probability of occurring

higher than β.

Table 15: Notation used in CS/AO Algorithms (Section 3.6)

49

E.4 Input Parameter and Results Notation

Notation Meaning

F Set of pairs of days between which pulling for-

ward is allowed.

F+(c,D) Set of pairs of days between which pulling for-

ward is feasible given c and D.

n(imax) Number of days with maximum intake higher

than remaining capacity given imax, c, and D.

nprobs Number of values each probability in p can

take in our discretised ambiguity set.

î MLE of mean intake vector.

ρ Maximum distance from P̂ we allow P to

be under NP, measured by the chosen φ-

divergence.

Table 16: Input parameter notation used in Section 4

Notation Meaning

f(y, p) Shorthand for expected rollover cost given

pulling forward decision y and distribution

parameter p.

x An algorithm, namely in {S&S,CS,AO}.
yx, px y, p solution obtained by algorithm x.

gp(y
x, px) p-gap of algorithm x’s solution. The differ-

ence between the worst-case expected cost for

yx and the expected cost obtained by the al-

gorithm.

z∗ Overall optimal objective value.

gp(y
x) y-gap. Difference between worst-case ex-

pected cost for yx over all distributions and

the overall optimal objective value.

Table 17: Results analysis notation from Section 5

50

	Contents
	1 Introduction
	1.1 Problem Setting
	1.2 Our Contributions

	2 Literature Review
	2.1 Workforce and Resource Planning
	2.2 Distributionally Robust Optimisation

	3
	3.1 Notation and Definitions
	3.2 General Distributionally Robust Model
	3.3 Non-parametric DRO Model
	3.3.1 Phi-divergence Based Ambiguity Sets
	3.3.2 Reformulation with

	3.4 Parametric DRO Model
	3.4.1 Implications of Parametric Ambiguity Sets
	3.4.2 Mixed Integer Programming Reformulation

	3.5 Binomial Intakes and Ambiguity Sets
	3.6 Solver-based Solution Algorithms
	3.6.1 Cutting Surface Algorithms
	3.6.2 Approximate-objective Algorithm

	3.7 Example: A Two-day Problem

	4 Design of Computational Experiments
	4.1 Parameter Hierarchy
	4.2 Capacity and Workstacks
	4.3 Uncertainty and Ambiguity Sets
	4.3.1 Uncertainty Set
	4.3.2 Ambiguity Sets

	5 Results
	5.1 Summary of Instances and Their Sizes
	5.2 Optimality of Algorithms and Times Taken
	5.3 Performance of Algorithms in Detail
	5.4 CS's Suboptimal Distributions
	5.5 Parametric vs. Non-parametric Decisions and Distributions
	5.5.1 Pulling Forward Decisions and Objective Values
	5.5.2 Worst-case Distributions

	6 Conclusions and Further Research
	Bibliography
	Appendices
	A Derivation of CQP Reformulation of Non-parametric Model
	A.1 General Reformulation
	A.2
	A.2.1 Reformulation
	A.2.2 Extracting Worst-case Distribution

	B Further Analysis of Results
	B.1 The Effect of Workstacks on Solutions
	B.2 Comparison with Robust Optimisation Solutions

	C A Benders Decomposition Approach
	C.1 Residual Problem and its Dual
	C.2 Benders Decomposition Algorithm
	C.3 Results

	D Large Results Tables
	D.1 Results by
	D.2 Results by

	E Tables of Notation
	E.1 General Model Notation
	E.2 Non-parametric Model Notation
	E.3 CS/CS_opt/AO Notation
	E.4 Input Parameter and Results Notation

