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Abstract

We investigate the performance of funds that specialise in cryptocurrency markets. In doing so, we contribute

to a growing literature that aims to understand the value of digital assets as investments. The main empirical

results support the argument that cryptocurrency funds generate significantly positive alphas compared to pas-

sive benchmarks or conventional risk factors. To understand whether the fund managers have sufficient skills

to more than cover their costs, we compare the actual fund alphas against the simulated values from a panel

semi-parametric bootstrap approach. The analysis shows that the extreme outperformance is unlikely to be

explained by the luck of fund managers. However, the significance of the alphas becomes statistically weaker

after considering the cross-sectional correlation in fund returns.
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1 Introduction

With the rising prices and public awareness of Bitcoin, investors have been drawn to cryptocurrency

markets by the promise of significant returns compared with the paltry or negative yields on offer

from cash, bonds or other traditional asset classes.1 The hyperbolic growth of cryptocurrency markets

– with a market capitalisation that stands roughly at $2 trillion at the time of writing - has led to

larger investments into a new category of specialised funds, namely cryptocurrency funds. While

much of the trading is still due to individual investors buying and selling their own private stashes

of digital assets, the increasing adoption of cryptocurrencies as a viable form of investment drove up

demand from institutional investors.2 The goal of this paper is to shed light on the value of active

asset management in the cryptocurrency space and the potential role of institutional investors in such

a new and still relatively unknown market.

Beginning with Jensen (1968), the ability of fund managers to create value for investors has

been studied extensively in the academic literature, especially following the growing popularity of

more passive and cheaper forms of investment such as exchange-traded funds (ETFs).3 Despite

the conventional wisdom, which holds that a search for securities that could possibly outperform the

market may be worth the expenses required, the empirical evidence on the value of active management

is mixed at best (see Cremers et al., 2019 for an extensive review of the literature). Furthermore,

such evidence is mostly focused on the US equity mutual fund industry.

We contribute to this debate by investigating the value of delegated active investment management

through the lens of the new and fast-growing cryptocurrency markets. Specifically, we focus on the

extent and the significance of the benchmark- and risk-adjusted performance for a representative

set of funds that specialize in cryptocurrency investments. Although the depth and width of the

investment management industry in the cryptocurrency space is not comparable with equity markets,

cryptocurrency funds provide a peculiar context through which the value of active asset management

can be further understood. The reason is threefold. First, because cryptocurrency markets have a

1At the time of writing there are more than 13,000 digital assets. The assets have different characteristics and
features, and are traded on more than 300 exchanges worldwide (see http://Coinmarketcap.com).

2The anecdotal evidence is substantial. For instance, on June 2020 Fidelity ran a survey on more than 800 institutional
investors from the EU and the US. The results showed that about a third of those investors owned digital assets. After
two months, Fidelity launched its own Bitcoin fund for wealthy investors (see link here)

3Leading examples of this research can be found in Ippolito (1989); Gruber (1996); Wermers (2000); Davis (2001);
Bogle (2005); Kacperczyk et al. (2005); Kacperczyk and Seru (2007); French (2008); Barras et al. (2010); Fama and
French (2010); Amihud and Goyenko (2013); Kacperczyk et al. (2014); Berk and Van Binsbergen (2015); Moneta (2015);
Pástor et al. (2015); Kacperczyk et al. (2016); and Hoberg et al. (2017) among others.
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highly fragmented, multi-platform structure, which is decentralised and granular, the pricing factors

for standard asset classes may not apply to cryptocurrencies (see Yermack, 2013; Liu and Tsyvinski,

2020; and Bianchi and Babiak, 2021). Such potential market segmentation may entail relatively low

return correlations with more standard asset classes. The top-right panel of Figure 1 reports the

sample correlation between the returns of global ETFs from equity, bond, commodity, and real estate

markets, buy-and-hold returns in Bitcoin or Ethereum, an equal- and value-weight market portfolio

of cryptocurrencies and a variety of anomaly-based portfolio strategies. A more detailed description

of the data is provided in Section 2. The sample correlation between cryptocurrency strategies and

traditional asset classes ranges between 0 and 0.2, indicating substantial diversification benefits which

can ultimately attract increasing capital flows.4

Second, competition in the crypto fund space is quite low compared to the traditional equity fund

industry. Assets under management (AUM) are highly concentrated in a few funds. The top-left

panel of Figure 1 shows the Lorenz curve, a visual representation of the Gini concentration index,

for the size of cryptocurrency funds. The top 10% of the funds own roughly 90% of total assets;

that is, the bottom 90% of the funds own only 10% of the AUM in the industry. Further, the top

1% of the funds manage more than 50% of the total AUM. Therefore, the crypto fund industry is

far from being perfectly competitive, as perfect competition would correspond to the Lorenz curve

having the 45 degree slope, and resembles an oligopoly where a few funds dominate the industry in

terms of size.5 In the empirical analysis, we document that managers of crypto funds are able to

generate large and economically significant alphas, which may be explained by low competition in the

cryptocurrency market. Further, we demonstrate that this performance is not dominated by a given

strategy over others. Instead, we find that a fraction of fund managers outperform others irrespective

of the investment strategy adopted.

Third, there is generally rather lax regulatory oversight on funds that specialise in cryptocurrency

investments. The bottom panels of Figure 1 show that, although around half of the funds in our

sample are based in the US, only 8% of all funds are actually SEC registered and regulated. In

4For instance, on May 2, 2019, Fidelity released the results of a large-scale survey and found that nearly half of
traditional institutional investors surveyed found digital assets’ low correlation to be a highly appealing characteristic.
Surveyed participants acknowledged such property could spark more investments in the cryptocurrency space. Fidelity’s
report on the survey can be found here.

5The straight diagonal line with a slope of 1 represents perfect equality in distribution for the variable of interest;
the Lorenz curve lies beneath it, showing the observed or estimated distribution. The area between the straight line and
the curved line, expressed as a ratio of the area under the straight line, is the Gini coefficient, a scalar measurement of
inequality.
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addition, within the other half of the funds that are not based in the US, a relevant fraction of these

is based in jurisdictions which do not regulate cryptocurrencies as securities or risky investments.

These include some European countries and fiscal paradises. The lack of regulation could affect

the managers’ decisions and risk-taking behaviors. For instance, Novy-Marx and Rauh (2011) and

Andonov et al. (2017) show that the regulation of US public pension funds links their liability discount

rate to the expected return on assets, affecting the risk-taking by US public funds.

Among others, these three aspects jointly make institutional investing in cryptocurrencies quite

unique. We argue that such a setting could help shed further light on the value of active asset

management above and beyond the exposure to market trends, risk factors and the inevitable random

component in the realised returns. The latter is particularly relevant in the context of cryptocurrency

markets, characterised by an incredibly high volatility in returns, which may make disentangling skill

versus luck more difficult. Throughout the paper we look at skill at the fund level, as we do not

keep track of changing managers. In other words, within our context the definition of manager and

fund coincide. The relatively short average length of the funds’ life allows us to conjecture, to some

extent, that there is not much turnover within groups of funds. Also, by skill we follow the definition

of Kosowski et al. (2006) and Fama and French (2010), namely that a given fund’s performance net

of fees and exposure to sources of risk cannot simply reconciled by the random sampling variation of

the returns.

Empirically, we look at the performance of 250 funds that specialise in cryptocurrency investments

and have been actively managed from March 2015 to June 2021. To avoid survivorship bias, the

sample includes not only currently active funds, but also funds that have been closed before the

end of the sample. Although the sample size is limited, it is fairly representative of all market

phases as is illustrated in Figure 2. The left panel shows the compounded returns, assuming a $1

initial investment in March 2015, of a value-weight market portfolio of the top 100 cryptocurrencies,

sorted on average market capitalisation. The cryptocurrency market experienced a significant boom

until December 2017, a major collapse from January 2018 to April 2018 – the so-called ICO bubble

burst – and then traded sideways until mid-2020. After a major market drop in the early stage of the

COVID-19 pandemic, the market soared with Bitcoin, Ethereum and all other major cryptocurrencies

reaching record high prices by early 2021. Furthermore, the sample period covers major regulatory

and institutional changes, from the ban by the Chinese government on crypto exchanges and trading
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to the introduction of tradable Bitcoin futures contracts on the Chicago Mercantile Exchange (CME).

The right panel of Figure 2 further shows that the average crypto fund significantly outperformed

both the average hedge fund and the aggregate equity market. For instance, the average crypto fund

generated an astonishing 600% cumulative log-return, while equity funds exhibited a cumulative raw

performance of 40% to 70% over the same period. In addition, the average crypto fund did not

plummet in value during the early stages of the COVID-19 pandemic unlike equity investments. This

evidence suggests that cryptocurrency funds may provide true diversification for the average investor.

The significant gap in the performances of funds specializing in traditional assets or cryptocurrencies

also motivates the analysis of the risk-return trade-off of cryptocurrency investments. Liu et al. (2019)

and Bianchi and Babiak (2021) develop factor models for cryptocurrency returns to better understand

the astonishing performance and key drivers of digital assets.

In the empirical analysis, we begin by looking at the aggregate performance of crypto funds in

excess of alternative passive investment strategies. The passive benchmarks include a buy-and-hold

investment in Bitcoin (BTC), an equal-weight portfolio of the top cryptos by market capitalisation,

akin to the “dollar risk factor” adapted to cryptocurrencies from Lustig et al. (2011), a value-weight

average of the tokens listed on Coinbase, and a buy-and-hold investment in Ethereum (ETH). Specifi-

cally, we estimate the alpha generated by equal-weight portfolios of all funds as well as funds clustered

based on their type and investment strategy. The results show that aggregate funds outperform pas-

sive benchmarks. Such a performance is not homogeneous, however, since the aggregate funds for

long-short and long-term investment strategies generate higher alphas. A panel regression with

fund type- or strategy-fixed effects and clustered standard errors yields a similar result. The evidence

is slightly different when replacing the benchmark passive strategies with a set of factor portfolios

following Liu et al. (2019) and Bianchi and Babiak (2021). Alphas tend to be lower and less significant

when using common risk factors instead of tradable passive benchmark portfolios. Turning to the

fund betas, there is significant market exposure across funds. Interestingly, Bitcoin plays the role of

a “level” factor when it is used as an alternative to a value-weight market portfolio.

We delve further into the analysis of fund performances and propose a panel semi-parametric

bootstrap, following Kosowski et al. (2006) and Fama and French (2010). Our approach is robust to

both time-series and cross-sectional correlations and allows for both the strategy-specific exposures

to passive benchmarks (risk factors) and the within-strategy return correlations. We assume that the
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distribution from which the cross-section of returns is jointly drawn is unknown ex-ante and that fund

returns are possibly highly correlated within investment strategies. The latter is empirically moti-

vated by the large differences in the alphas and the benchmark (factor) betas of aggregate funds for

different investment strategies. Across a wide array of statistical tests, our main results show that the

benchmark- or risk-adjusted alphas of crypto funds cannot be due simply to random sampling varia-

tion of the returns. That is, the extreme outperformance of crypto funds is unlikely to be explained

by the luck of fund managers. Interestingly, these results are not driven by the outperformance of

a particular investment strategy. There is no systematic dominance of one strategy over the others,

but rather the superior alphas are mainly spread across three strategies: long-term, long-short,

and multi-strategy. However, the significance of the alphas becomes statistically weaker after

considering the cross-sectional correlation in fund returns.

We conduct a variety of robustness checks. First, we analyse the fund performance across sub-

samples. In particular, we split the sample from March 2015 to December 2017 and from January

2018 to June 2021. The cut-off date of December 2017 is chosen to separate the period pre- and post-

ICO bubble. It is fair to conjecture that the burst of the ICO bubble could mark a significant change

in the profitability of cryptocurrency investments and hence the performance of crypto funds. In

addition, only a handful of funds were actually active before late 2017, which may call into a question

the significance of our main empirical results when including the pre-ICO bubble period. The main

results of the paper hold across sub-samples. Second, in order to investigate the impact of some of

our bootstrap assumptions, we redo the main empirical analysis on individual fund performances by

relaxing some of the main modeling assumptions. The main results of the paper remain unchanged if

we account for short-term time-series dependencies of fund and benchmark returns or if we indepen-

dently resample risk factors and residuals. An additional online appendix shows the results of tests

for the persistence in the fund alphas, following Carhart (1997). We document significant persistence

in the alphas for the top performing managers, a finding consistent with the main empirical analysis.

This paper contributes to the existing debate on the value of active investment management. On

the one hand, Jensen (1968) and Carhart (1997) argue that, on average, active management creates

little value to investors. A number of papers support this claim by documenting that (i) the average

fund underperforms after fees (Ippolito, 1989; Gruber, 1996; Wermers, 2000; Davis, 2001), (ii) there

is no persistence in the performance of the best funds (Brown et al., 1992; Malkiel, 1995; Elton et al.,
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1996; Phelps and Detzel, 1997), and (iii) some fund managers have skill, but few are skilled in excess of

costs (Fama and French, 2010). On the other hand, there is an emerging literature now advocating for

the existence of a significant and persistent value of active investment management. Kosowski et al.

(2006) use a new bootstrap statistical technique to demonstrate persistence in superior alphas of fund

managers.6 Kacperczyk et al. (2014) document a cognitive ability of investors to either pick stocks

or time the market at different times. Berk and Van Binsbergen (2015) express a manager’s “value-

added” in dollar terms and show that the average mutual fund generates around $3.2 million per year.

Kacperczyk et al. (2016) further provide a new attention allocation theory explaining the existence

of managerial skills. Our contribution to this literature is to examine the value of active investment

management in an emerging category of cryptocurrency funds, which has not been investigated before.

2 Data

2.1 Fund returns

We construct a novel data set on the monthly returns for cryptocurrency funds from three main

sources. First, we collect data on fund performances and characteristics from Crypto Fund Research

(CFR) and from Preqin. The former is a web-based data provider that collects in-depth crypto fund

data, while the latter provides data and analytics for alternative investments at large. Second, we

complement the data from these sources by hand-collecting information directly from fund managers.

Notice that managers report fund returns on a voluntary basis since there is no legal obligation to

disclose their performance to the public. The data is not usually revised after reporting for the

first time, though a small subset of managers provide estimates before fully reporting. To avoid any

revision bias, we consider only the initially reported actual returns.

We have introduced a variety of checks and filters to ensure the data is sufficiently representative

of specialised active investment in the cryptocurrency landscape. First, we excluded from the sample

those funds with less than $2mln in assets under management. The threshold seems low in absolute

value, but in relative terms it is not, considering that the median AUM for crypto hedge funds is

slightly more than $40mln, with a distribution that is concentrated around a few large funds (see the

top-left panel in Figure 1). Second, we consider raw returns net of all fees, including incentive fees

6A number of early papers draw a similar conclusion by applying a “false discoveries” technique (Barras et al., 2010),
Bayesian probability approaches (Busse and Irvine, 2006; Avramov and Wermers, 2006; Huij and Verbeek, 2007), or
using filters to control for estimation errors (Mamaysky et al., 2007).
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and management fees. The vast majority of the funds apply a typical 2% management fee + a 20%

performance fee. Only a few funds apply a high-watermark threshold. Returns are all expressed in

US dollars. By considering net-of-fee returns, our aim is to investigate whether fund managers can

generate benchmark- or risk-adjusted returns above and beyond the expenses an investor nominally

encounters. Third, to avoid survivorship bias, the sample includes not only those funds that are

still actively quoted, but also those that have been closed before the end of the sample; the only

requirement is that a fund should have at least 12 months of monthly return history.

After the filters above have been implemented, the data consists of a maximum of 204 different

funds which have been actively managed for at least 12 months between March 2015 to June 2021.

The bottom-right panel in Figure 1 shows the geographical distribution of the funds. Of note is that

the majority of the funds are headquartered either in the US, Europe or the UK, while only a small

fraction of institutional investors are located in Asia and countries often considered fiscal paradises.

The remaining funds, although a residual part, are located in peripheral countries such as Russia,

Brazil, and Australia.

Although the number of funds is relatively small, there is a substantial cross-sectional variation in

the raw returns. Figure 3 reports a set of box charts which summarise the cross-sectional distribution

of a variety of descriptive statistics such as the Sharpe ratio, returns skewness, autocorrelation, and

the market beta. For the market beta, a value-weight portfolio of the top 100 cryptocurrencies by

market capitalisation is used as a proxy of market risk. Contrary to conventional wisdom, not all

of the funds generate positive average raw returns. Indeed, the left panel shows that a non-trivial

fraction of the funds generate negative Sharpe ratios unconditionally. The distribution of Sharpe

ratios is also highly positively skewed. While the median Sharpe ratio is equal to 1.1 annualised, the

mean is equal to 1.3 in annual terms. The sample skewness also shows that the vast majority of fund

returns are highly positively skewed. The right panel of Figure 3 shows two additional interesting

insights. First, there is very low persistence in the fund returns, with an average AR(1) coefficient

of 0.12. The 25th and 75th percentiles of the distribution of individual AR(1) coefficients are around

0.0 and 0.3, respectively, while the range of all values is from -0.5 to 0.7. Although a majority of

funds tend to have a negligible autocorrelation in their returns, a small fraction show some sizable

autocorrelation and some funds exhibit a reversal in their performances. Second, the exposure of

funds to market risk is notably heterogeneous, with a median market beta of around 0.4.
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2.1.1 Fund types. We focus on four categories of crypto funds: hedge fund (HF), tokenized

fund (TF), managed account (MA), and fund of funds (FoF). We exclude private equity and ven-

ture capital funds given their valuations are much more sparse and data is highly scattered throughout

the sample. A crypto hedge fund and managed account work in the same way as standard hedge

and mutual funds, respectively, whereby high-net-worth individuals can access a high degree of cus-

tomisation, expertise and greater tax efficiencies. By contrast, a tokenized fund is specific to the

cryptocurrency space. Participating in a TF is similar to buying shares of a regular fund except

that quotas are bought in the form of crypto-coins or tokens. The main advantage for investors is

tradability, as shares in the tokenized fund can be freely traded on a secondary market. A fund of

funds takes a multi-manager approach and invests in a set of different funds. There is no structural

difference between a regular fund of funds and a crypto fund of funds. The left panel of Figure 4

shows a breakdown of the funds by their type. The HF category constitutes the vast majority of funds

in our sample with around 60% of the managers. The TF group ranks second (10%), while even a

smaller fraction of funds is labelled as MA (8%) or FoF (6%). There is a residual category of funds

dubbed other, which consists of those funds for which we cannot provide a reliable classification.

Table 1 reports a set of descriptive statistics at the aggregate level (first column) by taking an

equal-weight average of all funds in our sample and at a more granular fund type level (from column

two to column six) by averaging out the returns of the funds pertaining to a given type. First, the

annualised Sharpe ratio of the average fund (1.83) is higher than the cryptocurrency market portfolio

(1.22), a buy-and-hold investment in Bitcoin (1.19) or Ethereum (0.99) as shown in Table 2. In

addition, the returns on the average fund are positively skewed and have an AR(1) coefficient of 0.27.

Next, the average returns per each fund type exhibit a range of high volatilities, which translate into

annualised Sharpe ratios between 1.56 for the other category and 2.14 for the managed account

group. In general, the returns of aggregate crypto funds are relatively persistent, with the highest

AR(1) coefficients being equal to 0.29 for a managed account and 0.43 for a tokenized fund.

Panel B in Table 1 reports the descriptive statistics of proxies for global equity, bond, commodity,

and real estate investments. We measure these investments via global ETFs from traditional asset

classes: the Vanguard Total World Stock Index Fund ETF, the iShares Global Corporate Bond UCITS

ETF, the S&P GSCI Commodity Index ETF, and the iShares Global REIT ETF. In addition, we

include two traditional hedge fund indices such as the Barclay Hedge Fund and the Eurekahedge
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Hedge Fund indices. Both indices represent equal-weight aggregation of individual returns from a

large cross section of conventional hedge funds. Two observations are noteworthy. First, except for

bonds, the index returns for other asset classes are negatively skewed, with the most negative skewness

for the real estate ETF. Second, perhaps with the only exception of the Eurekahedge Index, which

has an annualised Sharpe ratio of 1.17, none of the index returns from traditional asset classes is

comparable with cryptocurrency funds in terms of Sharpe ratios. Panel C in Table 1 reports the

correlations between the aggregate fund returns and the proxies of traditional investments. The

unconditional correlations seem to extend to the institutional investment landscape the otherwise

conventional wisdom that cryptocurrency returns may offer some diversification benefits to investors

(see, e.g., Yermack, 2013; Liu and Tsyvinski, 2020; Bianchi et al., 2020). Historical correlations of

monthly returns are quite mild across the board and range between 0.05 and 0.30 across different

types of funds.

2.1.2 Investment strategies. The investment strategies of crypto funds can be classified in a

similar way to traditional equity funds. Based on the information provided, we can group funds into

five categories: long-short, long-term, market neutral, multi-strategy, and opportunistic.

The strategy labels are allocated based on the information provided by the data sources, or are

disclosed by the managers for those funds that have been hand-collected. Long-short funds primarily

employ a short/medium term systematic quantitative investment process, which seeks to capitalise

on the volatile behaviour of cryptocurrencies.7 Long-term crypto funds tend to invest in early-

stage token/coin projects, as well as to implement long-only strategies in the largest and more liquid

cryptocurrencies. They tend to have the longest lock-up periods for investors. Market neutral

crypto funds seek to have a neutral exposure to the market trend by overweighting or underweighting

certain digital assets with respect to their market weight. Unlike long-short funds, market neutral

strategies focus on making concentrated bets based on pricing discrepancies across cryptocurrencies,

with the main goal of achieving a lower market beta to hedge out systematic risk. Opportunistic

crypto funds target underpriced digital assets with the goal of exploiting special situations; these can

take many forms such as announcements of joint ventures, forks, bugs in the protocols, and any other

event that might affect a digital asset’s short-term prospects. Finally, multi-strategy crypto funds

7The short side of the trades is often taken through derivatives contracts, such as futures traded on major exchanges
including Binance, BitMEX, and Huobi Futures. To have a sense of the size of the derivatives market in the crypto
space, the interested reader can look at Coingecko.com.
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adopt a combination of the above strategies. For instance, within the limitation set in the prospectus,

a multi-strategy crypto fund may be managed in part through a long-only strategy and in part as

a long-short leveraged investment.

The right panel of Figure 4 shows that funds adopting opportunistic strategies are the minority,

with only 2% of the funds in our sample. Although almost two-thirds of the funds implement either

a long-short or a long-term strategy, Figure 4 shows that the composition of the sample of funds

is somewhat heterogeneous in terms of investment styles. The last five columns of Table 1 report

the performance of the average fund when grouped by investment strategy. There is significant

heterogeneity in the raw performance of funds across different clusters; for instance, multi-strategy

and long-short funds report a Sharpe ratio that is almost 50% higher than market neutral funds.

The latter, however, have the lowest volatility, with a monthly standard deviation of the returns that is

four times smaller than long-term funds. Similar to the average fund returns and returns aggregated

per fund type, Panel B shows that, perhaps with the only marginal exception of the market neutral

strategy, the average fund in each investment strategy tends to outperform investments in traditional

asset classes. Interestingly, Panel C shows that opportunistic crypto funds tend to have a slightly

higher correlation with traditional investments, which can be as high as 0.4.

2.2 Passive benchmark strategies and risk factors

We compare the fund returns against a set of alternative passive investment strategies (see, e.g., Berk

and Van Binsbergen, 2015 and Dyakov et al., 2020), as well as a set of risk factors. The reason why we

evaluate fund performances based on both passive benchmarks and risk-based portfolios is twofold.

First, within the context of cryptocurrency markets, the use of passive investment benchmarks to

extract the fund alphas is arguably more realistic than using factor portfolios. Passive investment

strategies, such as a buy-and-hold investment in BTC, are the actual benchmarks used by the vast

majority of the funds in our sample to calculate performance fees. In contrast, factor portfolios in the

cryptocurrency space do not necessarily represent actual alternative investment opportunities, since

they rarely incorporate transaction costs and trading restrictions. Such a discrepancy between the

construction of factor portfolios and their actual implementation could result in systematic biases

when estimating fund alphas (see, e.g., Huij and Verbeek, 2009). Second, despite its limitations,

calculating risk-adjusting returns by conditioning on factor portfolios is still common practice in the

mutual funds literature (see, e.g., Cremers et al., 2019). This justifies the use of both approaches.
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2.2.1 Passive benchmark strategies. To construct the passive benchmarks and risk factors, we

obtain data on daily prices and trading volumes from Cryptocompare.com, a web-based data provider

that collects data from multiple exchanges. The data integrates transactions for over 300 exchanges

globally. Recent work by Alexander and Dakos (2019) suggests that Cryptocompare data is among

the most reliable for use in academic and practical settings.8 We obtained data on a daily basis for

the sample period from March 1st 2015 to June 31st 2021. The data is aggregated across exchanges

based on a volume-weighting scheme, that is, prices and trading volumes, both expressed in USD,

are averaged across exchanges based on the average daily trading volume on a given exchange. The

aggregation thus gives the most liquid market prices more importance, while the price impact of

illiquid exchanges – and therefore more sensitive to exogenous shocks – is negligible.

In order to mitigate the impact of erratic and fraudulent trading activity, we apply a variety

of filters. First, trade outliers are excluded from the calculation of trading volume. For a trade

to be considered an outlier, it must deviate significantly either from the median of the exchanges

or from the previous aggregate price.9 Second, exchanges are reviewed on a regular basis for each

given cryptocurrency pair. Constituent exchanges are excluded if (1) posted prices are too volatile

compared to the market average; (2) trading has been suspended by the exchange on a given day; (3)

there are reports of false data provision; or (4) there is a malfunctioning of the public API of a given

exchange.

The aggregate market price takes the last trade time into account to ensure that the exchanges,

which are excluded on a given month, have an expiring price impact. Therefore, the last price on a

given exchange expired with time and the aggregation move with the market without being affected

significantly by the changes in the exchange composition. These steps mitigate the effect of fake

volume and substantially reduce the exposure of the empirical analysis to concerns of misreporting of

trading activity for some exchanges.

To reduce the impact of bias in selecting the benchmark returns, we choose four different strategies

that are fairly representative of the spectrum of passive investments. We first consider a simple buy-

and-hold investment either in BTC or in ETH, the two major digital assets currently traded. A third

8The reliability of CryptoCompare has been proven by a number of relevant strategic partnerships such as Va-
nEck’s indices division for pricing ETFs, Refinitiv (one of the world’s largest providers of financial market data and
infrastructure), and Yahoo Finance.

9These deviations can occur for a number of reasons, such as extremely low liquidity on a particular pair, erroneous
data from an exchange, and the incorrect mapping of a pair in the API.
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passive investment strategy is a simple equal-weight portfolio consisting of the top 100 cryptocur-

rencies in terms of market capitalisation. This is the equivalent of a dollar risk factor adapted from

Lustig et al. (2011). The fourth passive benchmark replicates the so-called Coinbase index, which is

a value-weight portfolio that give investors exposure to all cryptocurrencies listed on Coinbase and

Coinbase Pro exchanges at each point in time.10

The first four columns of Table 2 report a set of descriptive statistics similar to Table 1. Compared

to the average crypto fund, benchmark strategies earn a lower Sharpe ratio on an annual basis. This is

primarily because they exhibit much higher volatility of returns than do crypto funds. This suggests

that, on average, crypto funds produce returns per unit of risk, which are higher than the returns of

cheaper passive investment strategies. Also, with the sole exception of BTC, all benchmark strategies

show a positive skewness and exhibit weak persistence in realised returns.

2.2.2 Risk factors. Within cryptocurrency markets, a factor portfolio often does not represent a

feasible investment strategy. The large investment frictions and costs retailers should face to take short

positions make it prohibitive to implement profitable zero-cost long-short strategies based on individ-

ual characteristics such as momentum, liquidity, and volatility. Nevertheless, given their widespread

use (see, e.g., Liu et al., 2019 and Bianchi and Babiak, 2021), it can still be useful to benchmark fund

returns against factor portfolios (see, e.g., Barber et al., 2016; Berk and Van Binsbergen, 2016). Thus,

we calculate risk-adjusted returns to compare our main results based on benchmark-adjusted returns

to a more common approach taken in the literature. We construct a series of long-short portfolios to

proxy risk factors based on the daily returns and volume data for a large cross-section of more than

300 cryptocurrencies. We follow Bianchi and Babiak (2021) and exclude stablecoins from the sample.

The assets considered constitute approximately 90% of the total market capitalisation and trading

activity as of June 2021.

We first consider the returns on a cross-sectional momentum strategy (mom) as outlined by Je-

gadeesh and Titman (2001), and on a simple reversal strategy that goes long on past losers and

short on past winners (see De Bondt and Thaler, 1985). Both strategies are based on value-weighting

schemes for the sub-portfolios. As far as the momentum strategy is concerned, the look-back period

l is set to 6 months. For each cryptocurrency pair i at time t, if the cumulative log return over the

10Note that the fund returns are net of fees, whereas BTC, ETH and DOL are assumed to have no fee paid, and we
assume a 70bps/month fee for ETF. A 0.7% fee for ETF is calculated by taking the average expense ratio of the top 8
blockchain ETF currently available on the market.
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previous 180-days is positive; it signals a long position and vice versa. The skipping period for the

returns calculation is one month after the portfolio is constructed. In addition, we consider two fur-

ther sources of risk that are relevant in cryptocurrency markets: liquidity (liq) and volatility (vol)

(see Bianchi and Dickerson, 2019). A typical way to proxy for liquidity risk would be to use high

frequency information on bid-ask spreads. In the cryptocurrency space, however, such information is

not easily available at the aggregate level. Bid-ask spreads on a single currency, at a given point in

time, could substantially change across exchanges, generating fictitious arbitrage opportunities that

are difficult to exploit in practice (see, e.g., Makarov and Schoar, 2020). For this reason, we follow

Abdi and Ranaldo (2017) and Corwin and Schultz (2012) and proxy bid-ask spreads by using the

aggregate open-high-low-close historical pricing data. For each day and for each of the cryptocurrency

pairs, we calculate both the Abdi and Ranaldo (2017) and the Corwin and Schultz (2012) synthetic

bid-ask spreads and take the average of the two measures. Next, we single sort each pair into quintiles

based on the average bid-ask spread in a given month. A risk factor is then constructed by going

long on an value-weight portfolio of illiquid pairs (fifth quintile) and going short into the liquid pairs

(first quintile), again value-weight. This zero-cost long-short portfolio represents our liquidity factor

portfolio.

Concerning the volatility portfolio, at each time t a rolling volatility estimate is computed using

the average volatility estimator of Yang and Zhang (2000) within a given month. The volatility

estimates are then lagged and the cross-section is then sorted from low to high volatility. The out-

of-sample return is then computed by taking the value-weight mean of each decile. A short position

is initiated in the sub-portfolio with the pairs that have the lowest volatility, whereas a long position

is taken in the sub-portfolio with the pairs that have the highest volatility. This zero-cost long-short

portfolio approximates the volatility risk factor through a tradable portfolio (see, e.g., Menkhoff et al.,

2016). A similar logic applies to the construction of the short-term reversal (rev), in which assets are

clustered into quintiles based on previous-day returns (see, e.g., Nagel, 2012). Finally, we consider

the returns on the aggregate market (mkt) calculated as the returns on a value-weight portfolio of the

top 100 cryptos by market capitalisation. The last five columns in Table 2 show summary statistics

for the risk factors. With the sole exception of a pure reversal strategy, all factor portfolios deliver

lower Sharpe ratios than the average fund. Similar to the fund returns, all risk-based portfolio returns

have a positive skewness and very mild, if any, persistence, perhaps with the only exception being the

reversal strategy.
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3 Understanding the performance of crypto funds

3.1 Performance of aggregate funds

Table 1 shows that, at the aggregate level, crypto funds generate quite sizable returns and Sharpe

ratios. We now first look at the benchmark- and risk-adjusted performance of aggregate funds. We

define the alpha of a particular fund category as the expected value of the residual of a time-series

regression without intercept, where the dependent variable is the returns of the aggregate fund and

the independent variables are the returns of either passive benchmarks or risk factors. Formally, for

each aggregate fund considered, we estimate a time-series regression ykt = β′
kxt + εkt, where ykt is

the return of an equal-weight portfolio of crypto funds in a group k and β′
k is the exposure to passive

benchmarks or risk factors xt. Note that despite the aggregation through equal weighting, the fund

returns show significant outliers in the time series. To mitigate the effect of outlying observations on

the regression estimates, we use a “bi-square” weighting scheme for the linear regression residuals. This

method provides an effective alternative to deleting down-weight outliers altogether. Specifically, we

first compute the residuals ε from the unweighted least squares estimate and then apply the following

weight function W (ε) =
(

1−
(
ε

6m

)2)2
, where m is the absolute deviation of the residuals. The weight

is set to 0 if the absolute deviation of the residuals is larger than 6m. This translates into a set of

robust standard errors (and in turn t-statistics), which account for heteroskedasticity in the model

residuals.

Once we estimate the betas with the robust estimator, we test for the significance of the time-

varying alpha of the aggregate fund k defined as α̂kt = ykt− β̂
′
kxt. We also report a direct test of the

difference in the performance between the equal-weight portfolio of all crypto funds and the aggregate

funds per each type or investment strategy. To test for the difference in their alphas, we use an

approach á la Diebold and Mariano (2002). Specifically, we regress the difference in the benchmark-

or risk-adjusted returns of a given fund type or investment strategy k, α̂kt, and the corresponding

returns of the average crypto fund, α̂mt, onto a constant:

α̂kt − α̂mt = γ + ηt, with α̂jt = yjt − β̂
′
jxt, j ∈ {k,m} (1)

Testing for the difference in the performance boils down to a test for the significance in γ̂. In addition

to the alphas of the aggregate funds estimated from time series regressions, we also obtain the alphas
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of funds per each type or investment strategy based on a panel regression. In this case, we work with

the returns of individual funds instead of aggregate funds. Thus, we estimate a panel regression of

individual fund returns with fund type or investment strategy fixed effects. In the estimation, we

allow for type or strategy-specific exposures of fund returns to passive benchmarks or risk factors.

Thus, the loadings vary across different groups of funds similarly to the betas obtained from a set of

time-series regressions. Formally, we estimate a fixed effects model of the form yikt = αk+β′
kxt+εikt,

where yikt is the return at time t of a crypto fund i belonging to group k, αk represents the alpha of

funds for a given fund type or strategy k, and β′
k is the exposure of a given fund category k to the

passive benchmark or risk factor xt.

3.1.1 Benchmark-adjusted alphas. Panel A of Table 3 reports the estimated alphas and t-

statistics. When controlling for passive benchmarks, the average fund generates a significant alpha

of 3.71% (t-stat: 3.91) on a monthly basis. A more granular classification by fund type shows that

the performance is quite heterogeneous across different groups. For instance, an aggregate tokenized

fund generates a monthly alpha of 8.15% (t-stat: 3.95), which is more than twice the alphas of a fund

of funds (3.08%, t-stat: 2.90), a hedge fund (2.77%, t-stat: 3.30), and an other category (3.99%,

t-stat: 2.70). Additionally, there is substantial heterogeneity across different investment strategies.

The long-short, long-term, and multi-strategy funds record strongly significant alphas of 3.68%

(t-stat: 3.54), 5.00% (t-stat: 3.32), and 2.64% (t-stat: 3.06) at monthly frequency, while an aggregate

market neutral fund generates a borderline significant alpha.

Panel A of Table 3 further shows that the alphas of aggregate tokenized and hedge funds are

larger and smaller, respectively, than the alpha of the average cryptocurrency fund in statistical terms.

The performance of the remaining aggregate funds by their type is statistically comparable to the

average fund. A similar degree of heterogeneity holds when clustering funds based on their investment

strategy. An aggregate market neutral fund statistically underperforms the average cryptocurrency

fund, with a difference of γ̂ = −2.54 (t-stat: -2.92). The multi-strategy and opportunistic funds

also underperform the average fund, although the difference in the performance is effectively zero in

statistical terms. Overall, the results show that, at the aggregate level, cryptocurrency funds provide

a positive value for investors by generating positive alphas.

Panel B of Table 3 reports the loadings of passive benchmarks from a set of time-series regressions.

There is a substantial market level effect, which is captured by three passive benchmarks: BTC, ETH
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and ETF. When looking at the fund type classification, all aggregate funds are exposed to the market

trend through a combination of significant loadings for the two largest cryptocurrencies (BTC and

ETH) and other assets with the largest market size as proxied by ETF. Interestingly, an average

market neutral fund is still correlated with BTC, which is unexpected given the nature of this

strategy. The returns of aggregate funds for other investment strategies correlate significantly with

the market movement. In sum, the results indicate that the heterogeneity in the benchmark-adjusted

performances may be driven by the heterogeneous exposure of aggregate funds to passive investment

strategies.

Panel C of Table 3 extends the time-series analysis of aggregate funds to a panel regression of

individual funds with type or investment strategy fixed effects. It confirms that (1) there is substantial

heterogeneity in the performances of aggregate funds across different types and investment strategies,

and (2) the performances cannot be attributed solely to the exposure to the aggregate market trends

as proxied by passive benchmarks.

3.1.2 Risk-adjusted alphas. Table 4 reports the results once we replace the passive benchmark

portfolios with a set of risk factors. The independent variables in the regression specifications are the

returns of the value-weight market index and factor portfolios sorted by liquidity, volatility, momentum

and reversal (see Section 2). Panel A reports the risk-adjusted alphas from individual time-series

regressions. When clustered by fund type, the risk-adjusted alphas are lower than the benchmark-

adjusted performances. For instance, the alpha of the tokenized fund drops from 8.15% to 3.90%,

whereas the performance of the remaining funds deteriorates by more than 1% on a monthly basis

compared to the benchmark-adjusted results. Similarly, the estimated alphas for the funds clustered

by investment strategy tend to decrease. For example, the risk-adjusted alpha for the long-short

and long-term strategies become only weakly significant at the typical 5% thresholds (alphas of

2.05% and 2.75% with t-statistics of 2.24 and 2.39). Further, although the aggregate funds adopting

other investment strategies generate a positive value to investors, their risk-adjusted alphas become

statistically insignificant. Nevertheless, the average cryptocurrency fund still reports a positive and

significant risk-adjusted alpha (1.85%, t-stat: 2.60).

The estimates of the risk factor loadings in Panel B of Table 4 suggest that the lower statistical

significance of the performance is due to a large and significant exposure to a broader definition of

market risk. Interestingly, the market beta is highly positive and significant across fund types and
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investment strategies. For the average crypto fund, β̂MKT = 0.51 (robust t-stat: 19.99). For a

long-term fund, which typically invests in large assets, the market beta is as high as 0.72 (robust

t-stat: 21.67). Even a market neutral fund seems to be slightly exposed to market risk, although

the market beta estimate takes a modest value of 0.08. Except for the exposure to a reversal factor,

the significance of the other factor loadings tends to be modest and insignificant. For instance, when

it comes to fund type classification, the exposure to reversal is significant for the fund of funds, the

hedge fund, and the other category. For the strategy classification, all funds load significantly on

the reversal factor. There is virtually no exposure to momentum, liquidity or volatility risks. The

results suggest that the market trend represents the primary source of risk for active management in

cryptocurrency funds.

Panel C of Table 4 extends the time-series results presented in Panel A to the panel estimation of

aggregate fund alphas. We document that the magnitude of the alphas tends to be consistent with the

values obtained from the time-series regressions, whereas the significance of the estimates may change.

For instance, the alphas of other and tokenized funds change slightly from 2.17% and 2.48% for

the former and from 3.90% to and 3.95% for the latter, however, both values become significant with

t-statistics of 2.95 and 4.01, respectively. The economic magnitude of the risk-adjusted performance of

hedge funds and managed accounts becomes weaker but remains significant. Turning to different

investment strategies, market neutral and opportunistic funds do not produce significant risk-

adjusted alphas, while those funds belonging long-short, long-term, and multi-strategy groups

strongly outperform the market and factor-mimicking portfolios.

3.2 Performance of individual funds

Simply looking at the performance of aggregate funds based on fund type or investment strategy may

give an incomplete or misleading picture of the value of active asset management. This is because the

analysis at the aggregate level does not capture the cross-sectional heterogeneity in individual fund

returns. The aggregation may average out the superior performance of some funds and, hence, would

not reveal differences in the performance and skill of individual managers. Furthermore, the cross-

section of individual fund alphas possibly represents a complex mixture of non-normal distributions

due to the high volatility and non-normality of cryptocurrency returns. To address this issue, we

build upon Kosowski et al. (2006) and Fama and French (2010) and propose a panel bootstrap

procedure to evaluate the performance of individual cryptocurrency funds. We consider two key
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parameters to measure the fund performances, namely the estimated alpha α̂i and the corresponding

t-statistic t̂α̂i . The α̂i measures the economic size of the fund performance while controlling for

passive benchmark strategies or sources of systematic risk. Being a function of the α̂’s standard

errors, the t̂α̂i offers two main advantages in the context of highly heteroskedastic and non-normal

returns such as those of cryptocurrency funds. First, crypto funds tend to control small amounts

of assets under management, have a short life span, and engage in a relatively high-risk asset class.

Thus, the cross-sectional distribution of fund performances is likely to show spurious outliers. The

t-statistics provides a correction to these outlying performances by normalising the alpha estimates

by their standard errors. Second, with a relatively limited investment opportunity set compared to

traditional equity funds, crypto funds operating within a given strategy framework could embark in

overlapping investments, which in turn may generate highly correlated returns. By clustering standard

errors at the strategy level, the resulting t-statistics explicitly take into account within-strategy return

co-movement. For these reasons, we implement bootstrap α̂i and t̂α̂i and comment on the bulk of the

empirical results based on both the alpha estimates and t-statistics.

For each fund i, the historical alpha estimates α̂i, the corresponding t-statistics t̂α̂i , and the

residuals ε̂ikt obtained from a panel regression of the form yikt = αi + β
′
kxt + εikt, where yikt is the

return at time t for a fund i for the investment strategy k, αi are the individual fund fixed effects,

and β
′
k is the vector of exposures to passive benchmarks or risk factors xt for the funds following the

investment strategy k. Now let T0i and T1i represent the dates of the first and the last available returns

for the fund i, respectively. We draw a sample with replacement from both the fund residuals and

the benchmark investment returns:
{
ε̂bikt, x

b
t ; t = sbT0i , . . . , s

b
T1i

}
, where b = 1, . . . , B is the bootstrap

index and sbT0i , . . . , s
b
T1i

are drawn randomly from [T0i, . . . , T1i]. Next, we construct a time series of

“synthetic” zero-alpha returns for each fund i defined as:

ybikt = β̂kx
b
t + ε̂bikt, b = 1, . . . , B. (2)

By construction, the sequence of returns ybikt has a true alpha that is zero. However, when we regress

the zero-alpha returns on the bootstrap factors xbt for a given bootstrap sample b, a positive and

significant alpha may still arise from pure sampling variation. For each bootstrap iteration b, we

estimate the bootstrap alphas α̂bi and t-statistics t̂bα̂i via a panel regression for the constructed panel

of synthetic fund returns. We further compute the bootstrap t-statistics with and without clustered
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standard errors, where clustering is made at the strategy level. After repeating all bootstrap iterations

b = 1, . . . , B, we build the distribution of cross-sectional draws of alphas and t-statistics resulting

purely from sample variation. If there are fewer superior alphas and t-statistics among the bootstrap

values than the actual empirical estimates, then sampling variation cannot be the sole source of the

outperformance of the best funds. We execute B = 10, 000 iterations in all of our bootstrap tests.

Appendix A provides a more detailed description of the main bootstrap procedure. Our bootstrap

methodology is closely related to Kosowski et al. (2006) and Fama and French (2010). These papers

employ similar bootstrap procedures to draw inferences about skilled managers in a cross-section of

US equity mutual funds. The key difference is that we propose a panel regression bootstrap instead

of a time-series analysis of individual fund alphas. This offers two major advantages over estimating

separate time-series regressions as in Kosowski et al. (2006) and Fama and French (2010). First, the

fund fixed effects absorb the variation in fund returns due to the cross-sectional differences in manager

skills, as long as skills remain constant over time (see, e.g., Pástor et al., 2015). The assumption of

time-invariant skills seems innocuous and is consistent with the theoretical model of Berk and Green

(2004). In their model, skills are time-varying only from a subjective perspective, whereas objectively

the skills remain constant in the data generating process.11 Second, combining the cross-sectional

and time-series dimensions of the data increases the power of the test on the alphas and enhances the

reliability of the t-statistics. Thus, pooling information from different funds allows us to obtain more

precise estimates of the performance despite a short lifespan of the funds.

One comment is in order. The baseline bootstrap specification assumes that the fund residuals

and the benchmark investment returns or the returns on the risk factors are uncorrelated, or mildly

correlated, over time. In addition, we assume that the exposure to a given benchmark portfolio or risk

factor is strategy-specific. We relax both assumptions in a series of robustness checks by considering a

block-bootstrap approach, an independent resampling approach, and a panel regression with constant

betas across all funds.

3.2.1 Cross-section of individual fund performances. Figure 5 compares the distributions of

actual alphas and t-statistics with the distributions of bootstrap values. For ease of exposition, we

11Although in Berk and Green’s model investors cannot observe the skills of the fund manager i, which corresponds
to αi, such skills are time-varying only from a subjective perspective, whereas the true, objective αi remains constant in
the data-generating process. As a result, all of the time-series variation in αi is due to unpredictable, zero mean, random
noise which reflects news and surprises in fund activity. By taking a historical perspective - that is, the perspective of
an econometrician rather than of an investor who needs to make investment decisions in real time - the assumption that
the skills are time invariant seems somewhat innocuous.
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report the cross-sectional distributions of α̂ and t̂α̂ as color-coded box charts. A blue color corresponds

to the actual values and a red color denotes the bootstrap estimates. Panel A reports the alphas and

t-statistics based on the passive benchmarks, while Panel B illustrates the statistics based on the risk

factors. Each panel shows the alphas (a left plot), the standard t-statistics (a middle plot), and the

t-statistics with clustered standard errors at the strategy level (a right plot).

The benchmark-adjusted results point to three key observations. First, the figures confirm our

intuition about the possible heterogeneity in individual fund performances, as indicated by a significant

cross-sectional variation in the alphas estimates. For instance, although the majority of crypto funds

produce actual alphas within a modest range of 0% to 5%, the performances of the worst and best

managers can reach -17% and +38% on a monthly basis, respectively. Thus, while the results reported

in Section 3 mainly reflect the aggregate performance figures, they do not illustrate huge alphas of a

small number of outlying funds. Furthermore, the comparison between actual and bootstrap alphas

demonstrates that the probability mass of the actual estimates is shifted upward. This suggests that

the actual performance of a handful of the best crypto funds is stronger than those that could be

explained only by sampling variation.

Second, the cross-sectional distribution of the standard t-statistics demonstrates that a non-trivial

fraction of funds cross the conventional 5% confidence threshold. Similar to the alpha estimates, the

probability mass of the actual t-statistics experiences a pronounced upward shift compared to the

distribution generated by the bootstrap procedure. This evidence leads us to conclude that a fraction

of fund managers are able to generate economically large alphas that are also statistically significant

and cannot be fully explained by sampling variation. Third, when considering the within-strategy

correlation in fund returns, the standard errors become wider, substantially reducing the value of

the t-statistics. This suggests that the sizable uncertainty around the alphas weakens their statistical

significance. Yet the distribution of the actual and bootstrap robust t-statistics is far from overlapping.

The right tail of the actual t-statistics with standard errors clustered at the strategy level is still much

thicker than its bootstrap counterpart.

Panel B for the risk-adjusted results demonstrates that the alphas and t-statistics show similar

patterns when passive benchmarks are replaced by traditional risk factors. The economic magnitude

of the estimates is similar to that obtained using the benchmark strategies. For instance, the bulk

of alphas is concentrated within the interval of 0% to 5% on a monthly basis, and there is a sizable
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number of outlying funds with performances well above 10 on a monthly basis. All panels show that

sampling variation cannot explain the estimates of the right tail.

Table 5 provides a more granular representation of the differences between the actual and boot-

strap estimates. We report the actual and simulated values of alphas and t-statistics as well as the

percentage of actual estimates greater than the simulated value at selected percentiles (see, e.g., Fama

and French, 2010). We first compute the actual alphas and t-statistics at selected percentiles of their

distributions. We then obtain the corresponding simulated values by taking the averages across the

10,000 simulation runs of the α̂ and t̂α̂ estimates at selected percentiles. We further quantify the dis-

crepancy between the empirical and bootstrap distributions of alphas and t-statistics by calculating

the percent of actual estimates above the simulated value at a particular percentile. The benchmark-

adjusted results show that the 1st percentile of the actual α̂ is -9.58% and the simulated value is

-11.9%. Further, 99.02% of actual observed alphas are greater than the simulated estimate at the 1st

percentile.

Overall, Berk and Green (2004)’s prediction that most fund managers have sufficient skill to

cover their costs compared to benchmark passive strategies or risk portfolios seems to be supported

by the empirical results. The left tail percentiles of t̂α̂ from the actual returns are far above the

corresponding average value from the bootstrap simulations. For example, the 10th percentile of

the actual t-statistics of -0.21 and -0.67 for the benchmark- and risk-adjusted results are much less

extreme than the average estimates from the bootstrap simulations equal to -1.00. In fact, for the

benchmark- and risk-adjusted performances, the actual t-statistics are above the average bootstrap

simulation values for all percentiles considered. This holds regardless of whether t̂α̂ is calculated with

standard errors clustered by investment strategy.

The results presented in Figure 5 and Table 5 are in stark contrast with some earlier results on

the value of active investment management. We show that, at least within the fast-growing industry

of cryptocurrency markets, there is some evidence that fund managers have enough skill to produce

superior benchmark- and risk-adjusted returns to cover their costs. One word of caution. Although

there is evidence of a strong economic performance which is not simply due to random sampling

variation, the statistical significance of such a performance is weak when the correlation structure of

fund returns is taken into account. We could interpret this result as being the nature of investment

in cryptocurrency markets. Managers are exposed to a highly volatile and risky market, and their
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performances are quite correlated given the overlapping asset menus. We show that ignoring this

correlation comes at the cost of artificially inflating the significance of the benchmark- and risk-

adjusted returns (see, e.g., McNemar, 1947).

We next try to understand whether the superior performances are driven by a specific fund style

or the best funds are spread across different groups. Figure 6 reports the cross-sectional distribu-

tions of the actual alphas and t-statistics separately for each investment strategy. Three interesting

facts emerge. First, the majority of outlying performances are concentrated in the long-short and

long-term fund groups, with some residual tail performances belonging to the multi-strategy cat-

egory. Thus, the majority of funds in the right tail of the distribution reported in Figure 5 possibly

belong to these classes. Second, there is no systematic dominance of a given strategy over others.

When we exclude the tails, the strategy-specific cross-sectional distributions of alphas tend to be

largely overlapping. This suggests that, while the vast majority of superior performances are concen-

trated in two main classes, the remaining funds across different investment strategies tend to perform

similarly. The only partial exception is the opportunistic strategy, which neither shows any outlying

performances nor has an average alpha or t-statistic of a magnitude comparable to others. Third, the

results are similar for both benchmark- and risk-adjusted cases. We document the concentration of

outperforming funds in the two classes and no systematic dominance of a given investment strategy

over others.

3.3 Sub-sample analysis

Figure 2 shows that cryptocurrency markets were marked by a significant run-up in prices until late

2017 and a large drop in valuations from January 2018. This is the so-called ICO bubble, which may be

the reaction to the media hype surrounding the astonishing surge in Bitcoin valuation. It contributed

to the conventional wisdom that cryptocurrency markets are merely a playground for speculators in

search of yields. It is fair to conjecture that the burst of the ICO bubble could mark a significant

change in the profitability of cryptocurrency investments and hence the performance of crypto funds.

In addition, only a handful of funds were active before late 2017, which might raise questions about

the significance of our main empirical results when including the pre-ICO bubble period. To address

this, we split our main sample of observations into two sub-samples: the pre-ICO bubble from March

2015 to December 2017 and the post-ICO bubble period from January 2018 to June 2021. Splitting

the sample around the peak of the ICO bubble, when hundreds of new crypto-assets were introduced
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into the market primarily for speculative purposes, allows us to further investigate the value of active

investment management within the context of a drastically changing investment opportunity set.

We first look at the descriptive statistics of aggregate funds across sub-samples. Table 6 reports

the results. The mean and volatility of returns tend to be much lower for the second part of the

total sample. The only exception is an average opportunistic fund, which exhibits a dramatic

increase in the first two moments from 1.59% and 0.85% on a monthly basis in the first sub-sample

to 4.17% and 10.11% in the second sub-period. In relative terms, average returns decrease more

than realized volatilities across most types and investment strategies. Thus, the Sharpe ratios also

tend to be substantially lower for the second sub-sample. This evidence is consistent with the idea

that investment opportunities were more favourable before the ICO bubble. Despite lower average

returns, an average market neutral fund shows relatively constant Sharpe ratios of 1.28 and 1.50

in the pre- and post-ICO bubble periods. This suggests that while these funds may not be neutral

to market trends in terms of raw returns, they are stable once the performance is adjusted for risk.

The persistence of fund returns remains relatively low across both sub-samples, which supports the

main bootstrap procedure. Nevertheless, the robustness analysis further presents the block bootstrap

specification to capture the possible persistence in fund returns. We demonstrate that the results are

robust to different bootstrap methods, refuting a concern about the impact of serial correlation.

Turning to the analysis of individual funds, Figure 7 reports the alphas and t-statistics for the post-

ICO bubble period. The reason we focus on the post-2018 period is twofold. First, fund performances

are much stronger in the pre-ICO bubble period. Removing the data before 2018 tests whether our

results become weaker. Second, only a handful of funds were effectively available for investors in

the pre-ICO bubble period. A few interesting aspects emerge. The individual fund alphas become

slightly smaller in the second sub-period than those obtained from the total sample (see Figure 5).

This evidence confirms the inflating effect of the pre-ICO bubble period on the performance of funds.

We observe a similar effect of the pre-ICO bubble period on the magnitude of both types of t-statistics.

This suggests that while the alphas might be slightly lower, so are the volatilities of the returns. In

addition, the distributions of actual alphas and t-statistics are shifted upward compared to those of

simulated estimates. This result shows that the skill of outperforming funds is not driven by the spike

in valuations in the pre-ICO bubble period. Both benchmark- and risk-adjusted results share the

same patterns and lead to the same conclusions.
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We now construct the distributions of the actual and simulated estimates at selected percentiles

based on the post-ICO bubble data. Table 7 reports the results for both the benchmark- and the risk-

adjusted values. Several observations are noteworthy. Starting from the 10th percentile, the actual

alphas are larger than the simulated values at the corresponding percentiles. This provides evidence

of an economic performance that cannot be simply reconciled by the sampling variation of the returns.

Hence, we extend the key conclusion from the main empirical analysis to the sub-sample after the

ICO bubble. We find similar patterns between the actual and simulated values of the standardised

performances t̂α̂. Specifically, the empirical t-statistics are consistently above the average values across

simulations regardless of our approach to dealing with standard errors. Interestingly, the observed

patterns in actual and simulated statistics hold for both benchmark- and risk-adjusted returns. Thus,

evidence of skill sufficient to cover costs does not depend on the nature of conditioning information

as reflected by our choice of passive benchmarks or risk factors.

3.4 Robustness

In this section, we provide a set of additional results and robustness checks to show the sensitivity of

the main empirical analysis to a variety of different modeling choices. For ease of exposition, we focus

on the benchmark-adjusted results unless specified otherwise. The risk-adjusted results are available

upon request.

3.4.1 Block bootstrap and independent resampling. We begin by relaxing two technical

assumptions of our panel bootstrap approach that are related to the autocorrelation of the residuals

and the correlation between fund returns and passive benchmarks. Our main bootstrap procedure

assumes that the residuals are only weakly autocorrelated. Table 1 and Figure 3 show that the

persistence of individual and aggregate fund returns is weaker than traditional equity mutual funds.12

We further explore the sensitivity of our results to the possibility of some conditional dependence in

fund returns. Specifically, we compare the results of the main bootstrap procedure to its modification,

where we re-sample returns in blocks of a fixed size. Due to the short length of data, we set the size

of the bootstrap blocks equal to three months. If the length of the historical data for a specific fund

is not a divisor of 3, one of the blocks will contain one or two observations only. More details on the

procedure can be found in Appendix A.1. Panel A of Figure 8 presents the fund alphas and their

12In an online Appendix we further reports the autocorrelation function up to 20 lags of aggregate fund returns. There
is weak evidence of autocorrelation in the returns of aggregate funds.
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t-statistics for the block-bootstrap approach. There is a pronounced discrepancy between the actual

statistics and the average simulated values. Thus, allowing for a short-term autocorrelation in our

bootstrap procedure, the results are largely in line with the main empirical analysis. This is confirmed

by the more granular representation of the discrepancy between the actual and the bootstrap alphas.

Table 8 reports the results.

Overall, the main empirical results that most fund managers have sufficient skill to cover their

costs compared to benchmark passive strategies or risk portfolios are supported by the block-bootstrap

approach. The left tail percentiles of t̂α̂ from the actual returns are far above the corresponding average

value from the bootstrap simulations. For example, the 10th percentile of the actual t-statistics of

-0.21 and -0.67 for the benchmark- and risk-adjusted results are much less extreme than the average

estimates from the bootstrap simulations equal to -1.00 and -0.97, respectively. In fact, for both

benchmark- and risk-adjusted performances, the actual t-statistics are above the average bootstrap

simulation values for all percentiles considered. Such an observation holds regardless of whether t̂α̂ is

calculated with standard errors clustered by investment strategy.

Panel B of Figure 8 reports the estimates for α̂ (a left panel) and t̂α̂ with and without clustered

standard errors (a middle and right panel). These are obtained through an alternative bootstrap

approach in which the benchmark returns and the residuals are sampled independently. This approach

breaks any possible time correlation between explanatory returns and model residuals. As outlined

in Kosowski et al. (2006), such a correlation could arise if the performance model specified does not

fully capture the set of possible explanatory factors. The results are virtually the same as in the main

empirical analysis, that is, we provide evidence that fund managers are able to cover their costs and

exhibit skill. An online Appendix reports a granular representation of the discrepancy between the

actual and bootstrap alphas and t-statistics, similar to Table 5. The distributions of the empirical

and bootstrap t̂α̂ estimates confirm the main results that most fund managers have sufficient skill to

cover their costs compared to benchmark passive strategies or risk portfolios.

3.4.2 Constant betas and time-series regressions. We now restrict the exposure of fund

returns to passive benchmarks to be the same across fund strategies, i.e., β
′
j = β

′
for j = 1, . . . , J .

Figure 9 shows the results. The left panel reports the alphas, while the right panel reports the t-

statistics with clustered standard errors. Except for a few nuances, the results of the main empirical

analysis hold. Specifically, there is a wide discrepancy between the cross-sectional distributions of
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the actual estimates and the corresponding simulated values. Following Kosowski et al. (2006), this

provides evidence that fund managers display sufficient skills to produce benchmark-adjusted returns

that cover costs. An online Appendix replicates the analysis in Table 5. We show that the cross-

sectional distribution of actual estimates dominates the distribution of the bootstrap values in nearly

all quantiles considered, confirming the main empirical results.

Finally, we estimate alphas for each fund separately based on a simple time-series regression.

In this case, β
′
i becomes fund-specific and we do not assume correlation within strategies or fund

types. This approach is obviously sub-optimal relative to the panel estimation given the relatively

short length of data for some funds. However, it is consistent with the more traditional procedure

of obtaining the fund alphas from time-series regressions. Figure 9 shows the alphas and t-statistics

based on Newey and West (1986) robust standard errors. Two interesting facts emerge. First, the

estimated alphas are significantly larger than those obtained from a panel regression (see Figure 5).

This suggests that the short length of the data may generate a small-sample bias in the estimates.

Second, the cross-sectional distribution of the t-statistics shows a strong evidence in favor of fund

skill. The distribution of actual alphas and t-statistics has a pronounced upward shift relative to the

bootstrap statistics. Further, we observe a much larger mass of funds above a standard 5% significance

threshold compared to Figure 5. The average t-statistic from individual time-series regressions is much

higher than the panel regression estimates without clustered standard errors at the strategy level. This

suggests that our panel approach is more conservative when it comes to estimating fund alphas. This

result reinforces the reliability of our main empirical results.

4 Conclusion

This paper provides a comprehensive analysis of the value of active asset management in the new and

unregulated industry of cryptocurrency markets. The empirical analysis is based on a novel dataset of

more than 200 actively managed funds over the period from March 2015 to June 2021. We investigate

the performance of funds both at the aggregate level through regression analysis and at the individual

level through a panel regression and a bootstrap approach, which take into account specific features

of cryptocurrency funds such as outlying returns and within-strategy correlations.

We consider a set of benchmark strategies and risk factors to disentangle the fund managers’

performances. Our results show that fund managers can generate benchmark- and risk-adjusted
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returns, which cover their cost and could create positive value for investors, a finding consistent with

the prediction of Berk and Green (2004). While existing research has long debated the value of

active management in traditional asset classes, no study has tested the existence of such value in

the new and fast-growing industry of cryptocurrency funds. In this respect, we see this paper as an

“out-of-sample” test of existing theories, which typically focus on the equity market.
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Table 1: A first look at cryptocurrency funds

This table reports a set of descriptive statistics for the returns of aggregate crypto funds, global ETFs, S&P500, and two
hedge fund indices. Panel A reports descriptive statistics of equal-weight portfolio returns aggregated across all funds
(first column), each type of funds: fund of funds, hedge fund, managed account, tokenized fund, and other (from
column two to column six), and each investment strategy: long-short , long-term, market neutral, multi-strategy,
and opportunistic (the last five columns). It shows the sample mean and standard deviation (%, monthly), the
annualized Sharpe ratio, the skewness and autocorrelation of returns of fund portfolios. Panel B reports descriptive
statistics of the returns of global ETFs from traditional asset classes (equity, corporate bond, commodity, and real estate
markets), S&P500, and two hedge fund indices. Panel C reports the correlations of aggregate fund returns with the
returns of global ETFs, stock market, and hedge fund indices. The sample period is from March 2015 to June 2021.

Panel A: Descriptive statistics for cryptocurrency funds

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opportunistic

Mean (%) 8.53 5.89 7.85 11.20 9.61 12.82 7.37 11.28 2.21 7.13 3.60

Std (%) 16.12 11.57 15.38 18.10 21.41 23.37 14.36 24.66 5.93 12.97 8.96

SR (annualized) 1.83 1.76 1.77 2.14 1.56 1.90 1.78 1.58 1.29 1.90 1.39

Skewness 1.36 0.96 1.13 1.10 1.80 1.98 1.77 1.59 4.03 0.61 1.73

AR(1) 0.27 0.14 0.19 0.29 0.21 0.43 0.46 0.21 0.16 0.11 0.30

Panel B: Descriptive statistics for traditional asset classes

Equity Bond Commodity Real Estate S&P500 HF Index 1 HF Index 2

Mean (%) 0.66 0.25 -0.34 0.04 0.94 0.51 0.51

Std (%) 4.26 2.59 7.15 4.98 4.21 1.98 1.51

SR (annualized) 0.54 0.34 -0.17 0.03 0.77 0.90 1.17

Skewness -0.81 0.38 -1.70 -2.42 -0.61 -1.32 -0.88

AR(1) 0.00 -0.07 0.22 0.01 -0.06 0.13 0.17

Panel C: Correlations between cryptocurrency funds and traditional asset classes

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opportunistic

Global Equity 0.24 0.25 0.24 0.2 0.24 0.15 0.21 0.24 0.11 0.27 0.26

Global Bond 0.08 0.05 0.11 0.11 0.06 -0.04 -0.05 0.08 -0.01 0.17 -0.04

Global Commodity 0.12 0.16 0.14 0.12 0.08 0.13 0.13 0.13 0.10 0.13 0.28

Global Real Estate 0.22 0.27 0.23 0.18 0.20 0.10 0.17 0.22 0.09 0.28 0.26

S&P500 0.21 0.25 0.22 0.16 0.20 0.08 0.15 0.21 0.09 0.27 0.26

HF Index 1 0.27 0.27 0.28 0.24 0.26 0.19 0.25 0.26 0.15 0.32 0.36

HF Index 2 0.30 0.29 0.30 0.28 0.30 0.20 0.29 0.28 0.18 0.35 0.40

Table 2: Descriptive statistics for benchmark strategies and factor portfolios

This table reports a set of descriptive statistics for the returns of the passive benchmarks and risk factors. A full
description of each risk factor is provided in the main text. We report the sample mean and standard deviation (%,
monthly), the annualized Sharpe ratio, the skewness, and autocorrelation of returns. The sample period is from March
2015 to June 2021.

Passive benchmarks Risk factors

BTC DOL ETF ETH LIQ MKT MOM REV VOL

Mean (%) 7.08 5.64 8.28 10.14 14.19 9.77 9.97 64.46 15.12

Std (%) 20.69 33.82 23.26 35.64 52.30 27.81 87.97 104.33 53.04

SR (annualized) 1.19 0.58 1.23 0.99 0.94 1.22 0.39 2.14 0.99

Skewness -0.18 1.23 0.96 0.64 3.51 0.96 2.76 1.54 3.46

AR(1) 0.15 0.19 0.32 0.21 0.08 0.15 0.19 0.61 0.06
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Table 3: The benchmark-adjusted performance of aggregate funds

This table reports the benchmark-adjusted performance of aggregate funds across all crypto funds, each fund type
and strategy. Specifically, we run a set of time-series regressions in which the dependent variable is the equal-weight
portfolio returns aggregated across all funds (first column), each type of funds: fund of funds, hedge fund, managed
account, tokenized fund, and other (from column two to column six), and each investment strategy: long-short,
long-term, market neutral, multi-strategy, and opportunistic (the last five columns). The independent variables
are the passive benchmarks outlined in the main text and summarized in Table 2. When computing equal-weight
portfolio returns in each period, we calculate the sample equal-weight average of active funds in the corresponding
time period. Panel A reports the alpha estimates and robust t-statistics (in parentheses) from the corresponding OLS
regression. In order to test for the difference in the alphas, we use an approach á la Diebold and Mariano (2002). Panel
A also reports the estimate γ̂ as for Eq.(1) and robust t-statistics (in parenthesis) for the difference in alphas. Panel
B reports the estimates and robust t-statistics (in parenthesis) of passive benchmark loadings (betas) and the adjusted
R2 of the regressions. Panel C reports the estimates and t-statistics (in parenthesis) of fund type (investment strategy)
fixed effects from the panel regression of fund returns. For the panel approach, we introduce dummies per fund type
(investment strategy) and report their estimates. The sample covers the period from March 2015 to June 2021.

Panel A: Benchmark-adjusted alphas

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

Alpha 3.71 3.08 2.77 6.00 3.99 8.15 3.68 5.00 1.15 2.64 2.49

(3.91) (2.90) (3.30) (3.91) (2.70) (3.95) (3.54) (3.32) (1.95) (3.06) (2.32)

Difference -0.63 -0.94 0.99 0.28 3.14 -0.03 1.29 -2.54 -1.07 -2.52

(-0.51) (-2.11) (0.88) (0.28) (2.17) (-0.04) (1.85) (-2.92) (-1.27) (-1.62)

Panel B: Passive benchmark betas

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

βBTC 0.20 0.22 0.33 0.39 0.30 0.10 0.22 0.49 0.09 0.48 0.15

(3.20) (3.42) (5.61) (4.77) (4.29) (0.90) (3.76) (6.11) (4.24) (8.27) (2.53)

βDOL 0.08 0.04 0.08 0.02 0.25 0.00 0.07 0.13 0.02 0.01 0.02

(1.79) (0.90) (1.80) (0.26) (5.10) (0.05) (1.71) (2.16) (1.02) (0.30) (0.38)

βETF 0.20 0.10 0.12 0.17 0.27 0.15 0.10 0.09 0.03 0.07 -0.01

(3.45) (1.63) (2.21) (2.18) (4.13) (1.45) (1.75) (1.14) (1.31) (1.24) (-0.23)

βETH 0.15 0.02 0.12 0.10 -0.01 0.26 0.09 0.14 0.01 0.05 0.01

(4.01) (0.62) (3.43) (1.67) (-0.30) (3.50) (2.58) (2.84) (0.79) (1.30) (0.24)

Adj. R2 0.77 0.51 0.78 0.76 0.81 0.64 0.69 0.77 0.59 0.74 0.30

Panel C: Panel fixed-effect estimates

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

Alpha 2.67 3.29 4.67 4.33 5.88 4.37 4.33 1.56 3.50 3.15

Difference (2.20) (8.49) (4.53) (5.63) (6.59) (8.01) (8.90) (1.86) (5.73) (1.72)
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Table 4: The risk-adjusted performance of aggregate funds

This table reports the risk-adjusted performance of aggregate funds across all crypto funds, each fund type and strategy.
Specifically, we run a set of time-series regressions in which the dependent variable is the equal-weight portfolio returns
aggregated across all funds (first column), each type of funds: fund of funds, hedge fund, managed account, tokenized
fund, and other (from column two to column six), and each investment strategy: long-short , long-term, market

neutral, multi-strategy, and opportunistic (the last five columns). The independent variables are the risk factors
outlined in the main text and summarized in Table 2. When computing equal-weight fund monthly return in each
period, we calculate the sample equal-weight average of active funds in the corresponding time period. Panel A reports
the alpha estimates and robust t-statistics (in parentheses) from the corresponding OLS regression. In order to test for
the difference in the alphas, we use an approach á la Diebold and Mariano (2002). Panel A also reports the estimate
γ̂ as for Eq.(1) and robust t-statistics (in parenthesis) for the difference in alphas. Panel B reports the estimates and
robust t-statistics (in parenthesis) of passive benchmark loadings (betas) and the adjusted R2 of the regressions. Panel
C reports the estimates and t-statistics (in parenthesis) of fund type (investment strategy) fixed effects from the panel
regression of fund returns. For the panel approach, we introduce dummies per fund type (investment strategy) and
report their estimates. The sample covers the period from March 2015 to June 2021.

Panel A: Risk-adjusted alphas

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

Alpha 1.85 1.46 1.49 4.14 2.17 3.90 2.06 2.75 0.82 0.59 1.11

(2.60) (1.42) (2.28) (3.01) (1.78) (1.57) (2.24) (2.39) (1.44) (0.68) (1.16)

Difference -0.39 -0.37 1.62 0.32 1.37 0.21 0.90 -0.86 -1.26 -1.41

(-0.33) (-1.02) (1.59) (0.38) (0.71) (0.27) (1.53) (-1.11) (-1.37) (-1.11)

Panel B: Risk factor betas

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

βLIQ 0.00 -0.06 -0.03 0.02 0.07 0.17 0.02 -0.02 -0.02 0.04 -0.05

(-0.17) (-1.99) (-1.03) (0.31) (2.32) (2.49) (0.59) (-0.52) (-1.13) (1.17) (-1.37)

βMKT 0.51 0.31 0.52 0.43 0.57 0.40 0.42 0.72 0.08 0.43 0.09

(19.99) (10.88) (21.22) (11.22) (20.04) (8.2) (15.19) (21.67) (6.11) (14.49) (3.15)

βMOM 0.00 -0.01 0.00 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00

(0.12) (-0.55) (-0.57) (1.62) (2.34) (0.45) (-0.18) (-0.33) (0.46) (0.25) (-0.39)

βREV 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 0.03

(3.18) (2.83) (2.95) (1.76) (3.24) (1.72) (1.95) (2.50) (2.49) (3.01) (3.00)

βVOL 0.02 0.06 0.04 0.01 -0.07 0.00 0.00 0.02 0.02 0.01 0.03

(0.77) (1.84) (1.27) (0.20) (-2.12) (0.07) (0.08) (0.60) (1.31) (0.32) (0.67)

Adj. R2 0.84 0.62 0.85 0.74 0.85 0.66 0.75 0.86 0.39 0.73 0.32

Panel C: Panel fixed-effect estimates

Fund type Fund strategy

Age Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opport

Alpha 1.16 1.35 2.36 2.48 3.95 2.12 1.87 0.74 2.06 1.41

Difference (0.87) (3.13) (2.06) (2.95) (4.01) (3.51) (3.52) (0.78) (3.06) (0.67)
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Table 6: Descriptive statistics of crypto funds across sub-samples

This table reports a set of descriptive statistics for the returns net of both management and performance fees. Fund
returns are split before (Panel A) and after (Panel B) the peak of the market prices in December 2017 when the
monthly price of BTC reached its highest point. We report a set of descriptive statistics of the equal-weight portfolio
returns aggregated across all funds (first column), each type of funds: fund of funds, hedge fund, managed account,
tokenized fund, and other (from column two to column six), and each investment strategy: long-short , long-term,
market neutral, multi-strategy, and opportunistic (the last five columns). We report the sample mean and standard
deviation (%, monthly), the annualized Sharpe ratio, the skewness and autocorrelation of returns. The sample period
is from March 2015 to June 2021.

Panel A: Sample until Dec 2017

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opportunistic

Mean (%) 13.13 8.57 12.23 28.49 13.78 39.83 10.17 17.92 2.95 10.01 1.59

Std (%) 18.82 13.57 17.45 21.74 25.06 33.01 17.27 29.03 7.99 14.12 0.85

SR (annualized) 2.42 2.19 2.43 4.54 1.90 4.18 2.04 2.14 1.28 2.46 6.45

Skewness 1.40 0.93 1.26 0.38 2.03 0.61 1.77 1.70 3.80 0.72 0.54

AR(1) 0.26 -0.02 0.16 -0.32 0.25 -0.02 0.52 0.23 0.10 0.03 0.25

Panel B: Sample from Jan 2018

Fund type Fund strategy

Agg Fund of funds HF Managed acc Other Token fund Long-short Long-term Market neutral Multi-strategy Opportunistic

Mean (%) 4.80 3.72 4.31 6.26 6.24 5.10 5.09 5.90 1.68 4.79 4.17

Std (%) 12.60 9.27 12.61 13.58 17.52 11.80 11.19 19.18 3.87 11.61 10.11

SR (annualized) 1.32 1.39 1.18 1.60 1.23 1.50 1.58 1.07 1.50 1.43 1.43

Skewness 0.37 0.27 0.31 0.87 0.65 0.61 0.81 0.36 0.33 0.23 1.40

AR(1) 0.21 0.36 0.16 0.30 0.14 0.32 0.25 0.13 0.49 0.23 0.30
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Figure 1: Some facts about cryptocurrency funds

The figure reports a set of aggregate characteristics for the sample of funds used in the main empirical analysis. The
top-left panel shows the concentration of assets under management (AUM) via a visual representation of the Gini
coefficient, i.e., Lorenz curve. The top-right panel shows the unconditional correlation between the average crypto fund,
buy-and-hold positions in BTC and ETH, long-short cryptocurrency-based strategies, global ETFs from traditional
asset classes, S&P500, and two hedge fund indices. The bottom panels reports the regulatory framework, namely SEC
registration (a left panel) and the geographical dispersion (a right panel) of the funds in our sample. The sample period
is from March 2015 to June 2021.

(a) AUM concentration (b) Correlation of cryptos with other assets

(c) SEC regulated funds (d) Geographical distribution
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Figure 2: A snapshot of the cryptocurrency market

The left panel shows the compounded returns, assuming $1 initial investment, from a value-weight market portfolio of
the top 100 cryptocurrencies sorted by average market capitalisation. The right panel shows the cumulative log returns
of the average cryptocurrency fund, S&P500 Index, the Vanguard Total World Stock Index Fund ETF and two hedge
fund indices from Barclay and Eurekahedge. The sample period is from March 2015 to June 2021.

(a) Compounded returns of the crypto market portfolio (b) Cumulative log-returns
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Figure 3: The cross-sectional distribution of descriptive statistics of fund returns

This figure plots the cross-sectional distribution of the Sharpe ratio (annualised), the skewness, the first-order autore-
gressive coefficient (AR(1)) and the market beta for each of the fund in our sample. The market beta is calculated by
using a value-weight index of the top 100 cryptocurrencies by market capitalisation. The sample period is from March
2015 to June 2021.
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Figure 4: Classification of funds by type and investment strategy

This figure plots the distributions of funds per fund type (a left panel) and investment strategy (a right panel). Funds
are clustered by type and labeled as fund of funds, hedge fund, managed account, tokenized fund, and other.
Classification by investment strategy is defined as long-short , long-term, market neutral, multi-strategy, and
opportunistic. The sample period is from March 2015 to June 2021.

(a) Fund classification by type (b) Fund classification by investment strategy
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Figure 5: The cross-section of individual fund alphas

This figure plots the box charts of the benchmark-adjusted (Panel A) and risk-adjusted (Panel B) alphas and corre-
sponding t-statistics. The latter are calculated without (middle panels) and with (right panels) clustering the standard
errors by investment strategy. The individual alphas are calculated as the individual fund fixed effects from a panel
regression (see Pástor et al., 2015). The panels report actual (blue box charts) and bootstrap (red box charts) cross-
sectional distributions. The red dashed line in the middle panel represents a threshold of 1.96 for the t-statistic. The
sample period is from March 2015 to June 2021.

Panel A: Benchmark-adjusted alphas

Panel B: Risk-adjusted alphas
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Figure 6: The cross-section of alphas for different investment strategies

This figure plots the box charts of the benchmark-adjusted (Panel A) and the risk-adjusted (Panel B) alphas and corre-
sponding t-statistics for different investment strategies. Classification by investment strategy is defined as long-short,
long-term, market neutral, multi-strategy, and opportunistic. The individual alphas are calculated as the indi-
vidual fund fixed effects from a panel regression (see Pástor et al., 2015). The red dashed line in the middle panel
represents a threshold of 1.96 for the t-statistic. The sample period is from March 2015 to June 2021.

Panel A: Benchmark-adjusted alphas

Panel B: Risk-adjusted alphas
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Figure 7: The cross-section of alphas for the post ICO-bubble period

This figure plots the box charts of the benchmark-adjusted (Panel A) and risk-adjusted (Panel B) alphas and corre-
sponding t-statistics. The latter are calculated without (middle panels) and with (right panels) clustering the standard
errors by investment strategy. The individual alphas are calculated as the individual fund fixed effects from a panel
regression (see Pástor et al., 2015). The panels report actual (blue box charts) and bootstrap (red box charts) cross-
sectional distributions. The red dashed line in the middle panel represents a threshold of 1.96 for the t-statistic. The
sample period is from January 2018 to June 2021.

Panel A: Benchmark-adjusted alphas

Panel B: Risk-adjusted alphas
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Figure 8: Alternative bootstrap procedures

This figure plots the box charts of the benchmark-adjusted alphas (left panels) and the corresponding t-statistics.
The latter are calculated without (middle panels) and with (right panels) clustering the standard errors by investment
strategy. The individual alphas are calculated as the individual fund fixed effects from a panel regression (see Pástor et al.,
2015). The figure reports the actual (blue box charts) and bootstrap (red box charts) cross-sectional distributions. Panels
A and B report the results for the two bootstrap extensions: a block bootstrap procedure and a bootstrap independently
resampling benchmark returns and residuals. The red dashed line in the middle panel represents a threshold of 1.96 for
the t-statistic. The sample period is from March 2015 to June 2021.

Panel A: Block bootstrap

Panel B: Independent resampling of benchmark returns and residuals
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Figure 9: Constant betas and time-series regressions

Panel A plots the box charts for the benchmark-adjusted alphas (a left panel) and the t-statistics obtained with clustering
the standard errors by investment strategy (a right panel). Unlike the main empirical analysis, the betas of the benchmark
portfolios are restricted to be constant in the whole cross section of funds. The individual alphas are calculated as the
individual fund fixed effects from a panel regression (see Pástor et al., 2015). Panel B shows the results from time-series
regressions performed for each individual fund separately as in Kosowski et al. (2006) and Fama and French (2010). The
t-statistics are based on the Newey and West (1986) robust standard errors. The panels report actual (blue box charts)
and bootstrap (red box charts) cross-sectional distributions. The red dashed line represents a threshold of 1.96 for the
t-statistic. The sample period is from March 2015 to June 2021.

Panel A: Panel regression with constant betas

Panel B: Individual time series regressions
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Appendix

A Bootstrap methods

This appendix provides the details of the baseline procedure with the residual resampling that extends

the methodology outlined in Kosowski et al. (2006) and Fama and French (2010). For each fund in

our sample, we draw a random sample (with replacement) from the fund residuals conditional on

the returns of passive benchmarks (risk factors), creating a pseudo time-series of resampled residuals.

Next, an artificial panel of monthly net-of-fees returns is constructed imposing the restriction that a

true alpha for each fund is equal to zero. For each pseudo panel, we estimate the benchmark-adjusted

(factor-adjusted) fund alphas as the individual fund fixed effects from the panel regression (see, e.g.,

Pástor et al., 2015). Thus, we obtain a set of individual fund alphas and their t-statistics based on

random samples of months under the null of true fund alphas being zero. We repeat the above steps

10,000 times and save bootstrap alphas and t-statistics for all simulation runs. We then report the

distribution of these cross-sectional alphas and t-statistics.

Procedure

Estimate a benchmark (factor) model using the panel regression as outlined in the main text.

for all bootstrap iterations b = 1, ..., B

for all funds i = 1, ..., N

− Draw a sample of months {sbT0,i , ..., s
b
T1,i
} where T0,i and T1,i are, respectively, the dates

of the first and last months when returns of fund i are available

− Construct a time-series of resampled residuals {ε̂bikt : t = sbT0,i , ..., s
b
T1,i
}

− Generate a time-series of “synthetic” zero-alpha returns as

ybikt = β̂
′
kx

b
t + ε̂bikt,

in which xbt are the returns of passive benchmarks (risk factors)

end

Estimate the individual fund fixed effects from a panel regression with the benchmark (factor)

returns on the right-hand side:

ybikt = αbi + β′kx
b
t + εbikt

end

Output: The bootstrap individual fixed effects {α̂bi : b = 1, ..., B} and the corresponding

t-statistics {t̂bα̂i : b = 1, ..., B}.
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A.1 Bootstrap extensions

A.1.1 Block bootstrap. The baseline bootstrap assumes the residuals obtained from the panel

regression are independently and identically distributed. This is because we resample the residuals in

each period independently. The first extension relaxes this assumption by drawing months in blocks.

Due to a short sample period, we resample the residuals in blocks of three months. Once the pseudo

panel of fund returns is generated by blocks, we apply the remaining steps from the baseline procedure

as in Section A.

A.1.2 Independent resampling of residuals and explanatory returns. The second boot-

strap extension allows for independent draws of the benchmark (risk factor) returns and residuals.

The procedure is constructed as follows:

Procedure

Estimate a benchmark (factor) model using the panel regression.

for all bootstrap iterations b = 1, ..., B

for all funds i = 1, ..., N

− Draw a sample of months for the residuals {sbT0,i , ..., s
b
T1,i
}, and a sample of month for

the benchmark returns {τ bT0,i , ..., τ
b
T1,i
}, where T0,i and T1,i are the dates of the first

and last months when returns of fund i are available

− Construct a time-series of resampled residuals {ε̂biktε : tε = sbT0,i , ..., s
b
T1,i
}

− Construct a time-series of resampled benchmark returns {xbi,tx : tx = τ bT0,i , ..., τ
b
T1,i
}

− Generate a time-series of “synthetic” zero-alpha returns as

ybikt = β̂
′
kx

b
tx + ε̂biktε ,

in which xbtx are resampled returns of passive benchmarks (risk factors)

end

Estimate the individual fund fixed effects from a panel regression with the benchmark (factor)

returns on the right-hand side:

ybikt = αbi + β′kx
b
tx + εbiktε

end

Output: The bootstrap individual fixed effects {α̂bi : b = 1, ..., B} and the corresponding

t-statistics {t̂bα̂i : b = 1, ..., B}.
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