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Abstract

We study scaling limits of a family of planar random growth processes in which clus-
ters grow by the successive aggregation of small particles. In these models, clusters are
encoded as a composition of conformal maps and the location of each successive particle
is distributed according to the density of harmonic measure on the cluster boundary,
raised to some power. We show that, when this power lies within a particular range, the
macroscopic shape of the cluster converges to a disk, but that as the power approaches
the edge of this range the fluctuations approach a critical point, which is a limit of sta-
bility. The methodology developed in this paper provides a blueprint for analysing more
general random growth models, such as the Hastings-Levitov family.
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1 Introduction

We study a family of planar random growth processes in which clusters grow by the successive
aggregation of particles. Clusters are encoded as a composition of conformal maps, following
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an approach first introduced by Carleson and Makarov [5] and Hastings and Levitov [8]. The
specific models that we study fall into the class of Laplacian growth models in which the
growth rate of the cluster boundary is determined by the density of harmonic measure of
the boundary as seen from infinity. In our case, the location of each successive particle is
distributed according to the density of harmonic measure raised to some power. Our set-up is
closely related to that of the Hastings-Levitov family of models, HL(α), α ∈ [0,∞) [8], which
includes off-lattice versions of the physically occurring dielectric-breakdown models [13], in
particular the Eden model for biological growth [6] and diffusion-limited aggregation (DLA)
[20]. Our family of models shares with the HL(0) model the unphysical feature that new
particles are distorted by the conformal map which encodes the current cluster. However, in
subsequent work [14], we show that these models share common behaviour with the HL(α)
models when α 6= 0, so the present paper serves to develop methods applicable to these more
physical models.

We establish scaling limits of the growth processes in the small-particle scaling regime
where the size of each particle converges to zero as the number of particles becomes large.
We show that, when the power of harmonic measure is chosen within a particular range, the
macroscopic shape of the cluster converges to a disk, but that as the power approaches the
edge of this range the fluctuations approach a critical point, which is a limit of stability. This
phase transition in fluctuations can be interpreted as the beginnings of a macroscopic phase
transition, from disks to non-disks.

1.1 Description of the model

Our clusters will grow from the unit disk by the aggregation of many small particles. Let

K0 = {z ∈ C : |z| 6 1}, D0 = {z ∈ C : |z| > 1}.

We fix a non-empty subset P of D0 and set

K = K0 ∪ P, D = D0 \ P.

We assume that P is chosen so that K is compact and simply connected. Then we call P a
basic particle.

We will call a conformal map F , defined on D0 and having values in D0, a basic map if it
is univalent and satisfies, as z →∞,

F (z)→∞, F ′(z)→ ec for some c > 0.

From now on, we will express this last condition by writing F (∞) =∞ and F ′(∞) = ec. By
the Riemann mapping theorem, there is a one-to-one correspondence between basic particles
and basic maps given by

P = {z ∈ D0 : z 6∈ F (D0)}.
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For convenience, we will assume throughout that F has a continuous extension to the unit
circle. It is well understood geometrically when this holds. The map F has the form

F (z) = ec

(
z +

∞∑
k=0

akz
−k

)
(1)

for some c > 0 and sequence (ak : k > 0) in C. The value ec is called the logarithmic capacity
of the cluster K. We define the capacity of the particle P (or, interchangeably, of the map F )
by

cap(P ) = logF ′(∞) = c.

For the purpose of this introduction, we will assume that we have chosen a family of basic
particles (P (c) : c ∈ (0,∞)), such that cap(P (c)) = c. Figure 1 shows four representative
particles from some families we have in mind. Write (F (c) : c ∈ (0,∞)) for the family of

Figure 1: Examples of basic particles.

associated basic maps. Given a sequence of attachment angles (Θn : n > 1) and capacities
(cn : n > 1), set

Fn(z) = eiΘnF (cn)(e−iΘnz).

Define a process (Φn : n > 0) of conformal maps on D0 as follows: set Φ0(z) = z and for
n > 1 define recursively

Φn = Φn−1 ◦ Fn = F1 ◦ · · · ◦ Fn. (2)

Then Φn encodes a compact set Kn ⊆ C, given by

Kn = K0 ∪ {z ∈ D0 : z 6∈ Φn(D0)}

and Φn is the unique conformal map D0 → Dn such that

Φn(∞) =∞, Φ′n(∞) ∈ (1,∞)

where Dn = C \Kn. It is straightforward to see that

cap(Kn) = log Φ′n(∞) = c1 + · · ·+ cn
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and that Kn may be written as the following disjoint union

Kn = K0 ∪ (eiΘ1P (c1)) ∪ Φ1(eiΘ2P (c2)) ∪ · · · ∪ Φn−1(eiΘnP (cn)).

We think of the compact set Kn as a cluster, formed from the unit disk K0 by the addition
of n particles.

By choosing the sequences (Θn : n > 1) and (cn : n > 1) in different ways, we can obtain a
wide variety of growth processes. The aggregate Loewner evolution (ALE) model, which was
introduced in [19] for slit particles, fits into this scheme and is dependent on the parameters
α ∈ R, η ∈ R, c ∈ (0,∞) and σ ∈ [0,∞). In this model, which is abbreviated as ALE(α, η),
we set

hn(θ) =
|Φ′n−1(eσ+iθ)|−η

Zn
(3)

where

Zn =

 2π

0

|Φ′n−1(eσ+iθ)|−ηdθ =
1

2π

� 2π

0

|Φ′n−1(eσ+iθ)|−ηdθ.

Conditional on Fn−1 = σ(Φ1, . . . ,Φn−1), Θn is taken to be a random variable whose distribu-
tion given by

P(Θn ∈ B|Fn−1) =

 2π

0

1B(θ)hn(θ)dθ

and we set
cn = c|Φ′n−1(eσ+iΘn)|−α.

We complete the recursive definition of Φ using equation (2). Observe that, with these choices,
Fn = σ(Θ1, . . . ,Θn).

In this paper, we will consider only the case where α = 0, which takes as data a single
basic map F = F (c) and a choice of η ∈ R and σ ∈ [0,∞). For simplicity, we refer to this
model here as the ALE(η) model with basic map F and regularization parameter σ.

If, on the other hand, we were to take η = σ = 0 and fix α ∈ [0,∞), then we would
obtain the HL(α) model considered by Hastings and Levitov [8]. The parameters α and η
play a similar role in adjusting the ‘local growth rate of capacity’ as a function of the current
cluster shape. Indeed, in the subsequent paper [14] we show that, modulo a deterministic
time-change and under the same restrictions on the parameter σ as will be used in this paper,
the scaling limit of ALE(α, η) depends primarily on the sum α + η provided that α + η 6 1.
This means that ALE(η) and regularized HL(α) have qualitatively similar behaviour when
α = η. Moreover, the range of the attachment densities considered in ALE(η) corresponds
exactly to those used to define the dielectric-breakdown models, so the full family ALE(α, η)
is of wider interest than HL(α) alone. See [19] for a comprehensive discussion of other models
related to ALE, and [7] for a survey of Laplacian growth.
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One of the challenges of studying HL(α) when α 6= 0 is that the capacity of the cluster
Kn is random and could be quite badly behaved. It is therefore a priori unclear how to tune
parameters in order to obtain non-trivial scaling limits. One way in which ALE(η) is simpler
is that the capacity of the cluster Kn is always cn, where c = logF ′(∞). Nevertheless, the
models have much in common, and it has turned out that the framework developed here for
ALE(η) provides useful ideas for the analysis of HL(α). In this paper we will focus on the
case where η ∈ (−∞, 1]. We will establish scaling limits and fluctuations for ALE(η) in the
small-particle regime, where simultaneously c → 0, σ → 0 and n → ∞ with n tuned so that
nc→ t, for some fixed t ∈ R, thereby giving clusters of macroscopic capacity.

1.2 Review of related work

Much effort has been devoted to the analysis of lattice-based random growth models. These are
models in which, at each step, a lattice site adjacent to the current cluster is added, chosen
according to a distribution determined by the current cluster. Examples include the Eden
model [6], diffusion limited aggregation (DLA) [20] and the family of dielectric-breakdown
models [13]. Around 20 years ago, Carleson and Makarov [5] and Hastings and Levitov [8]
introduced an alternative approach in the planar case, which allows the formulation of a
discrete particle model directly in the continuum by encoding clusters in terms of conformal
maps, as described in the preceding subsection. In [5], the authors obtained a growth estimate
for a deterministic analogue of DLA which is formulated in terms of the Loewner equation.
In [8], the HL(α) model was studied numerically and experimental evidence was shown for
a phase transition in behaviour at α = 1: when α < 1, clusters appeared to converge to
disks; on the other hand, when α > 1, a turbulent growth regime emerged, in which clusters
behaved randomly at large scale. Hastings and Levitov argued that HL(1) is a candidate for
an off-lattice version of the Eden model, and HL(2) corresponds to DLA. Establishing the
existence of this phase transition rigorously is one of the main open problems in this area.

In [19], Sola, Turner and Viklund showed the existence of a phase transition in the ALE(η)
model. They showed that, for η > 1, if particles are taken to be slits, and the regularisation
parameter σ is sufficiently small then, in the small-particle limit, the clusters themselves grow
from the unit disk by the emergence of a radial slit, at a random angle. In this case, harmonic
measure is concentrated at the tip of the slit, where derivative of the slit map vanishes. The
derivative of the slit map also has two poles on either side of the base of the slit. In the case
η < −2, Higgs [9] shows that, when the regularisation parameter σ is very small, ALE clusters
converge to an SLE curve.

Both of these limits are qualitatively different to the known behaviour of ALE(0), that is
to say HL(0), in the same scaling regime. In [15], Norris and Turner showed that the HL(0)
clusters converge to disks with internal branching structure given by the Brownian web. More
recently, Silvestri [18] analysed the fluctuations in HL(0) and showed that these converge to
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a log-correlated fractional Gaussian field. Several other papers consider modifications of the
HL(0) model [1, 2, 10, 11, 12, 17].

In this paper, we approach the question of the phase transition in ALE(η) at η = 1 from
the opposite direction to that in [19] by showing convergence to a disk for ALE(η) for all
η 6 1, provided that σ does not converge to zero too fast. Further, we prove convergence of
the associated fluctuations to an explicit limit, which depends on η, and which would exhibit
unstable behaviour if one took η > 1. Our results apply in a different regime to that considered
in [19]. We require that the regularization parameter σ � c1/2 (and sometimes more), which
enables us to show that, for each η 6 1, the disk limit and the fluctuations hold universally
for a wide class of particle shapes. By contrast, in [19] the parameter σ � c and the results
rely heavily on the slit particle being non-differentiable at its tip.

1.3 Statement of results

Our main results will be proved under the technical assumption (4) below, which we will
show in Appendix A to be satisfied for small particles of any given shape. This assumption
expresses that the basic particle P is concentrated near the point 1 on the unit circle in a
certain controlled way. Let F be a basic map of capacity c ∈ (0, 1], in the sense of Subsection
1.1, that is to say, a univalent conformal map from {|z| > 1} into {|z| > 1} such that
F (z)/z → ec as z →∞. We say that F has regularity Λ ∈ [0,∞) if, for all |z| > 1,∣∣∣∣log

(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ 6 Λc3/2|z|
|z − 1|(|z| − 1)

. (4)

Here and below we choose the branch of the logarithm so that log(F (z)/z) is continuous on
{|z| > 1} with limit c at ∞. Our results will concern the limit c → 0 with Λ fixed, but
are otherwise universal in the choice of particle. We will show that, for η ∈ (−∞, 1], in this
limit, provided the regularisation parameter σ does not converge to 0 too fast, the cluster
Kn converges to a disk of radius ecn, and the fluctuations, suitably rescaled, converge to the
solution of a certain stochastic partial differential equation.

Theorem 1.1. Let η ∈ (−∞, 1], Λ ∈ [0,∞) and ε ∈ (0, 1/2) be given. Let (Φn : n > 0) be an
ALE(η) process with basic map F and regularization parameter σ. Assume that F has capacity
c and regularity Λ, and that eσ > 1 + c1/2−ε. For all η ∈ (−∞, 1), m ∈ N and T ∈ [0,∞),
there is a constant C = C(η, ε,Λ,m, T ) < ∞ with the following property. There is an event
Ω1 of probability exceeding 1− cm on which, for all n 6 T/c and all |z| > 1 + c1/2−ε,

|Φn(z)− ecnz| 6 C

(
c1/2−ε +

c1−ε

(eσ − 1)2

)
. (5)
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Moreover, in the case where η = 1, provided ε ∈ (0, 1/5) and eσ > 1 + c1/5−ε, there is also
a constant C = C(ε,Λ,m, T ) < ∞ with the following property. There is an event Ω1 of
probability exceeding 1− cm on which, for all n 6 T/c and all |z| > 1 + c1/5−ε,

|Φn(z)− ecnz| 6 C

(
c1/2−ε

(
|z|
|z| − 1

)1/2

+
c1−ε

(eσ − 1)3

)
.

We remark that Theorem 1.1 can be recast in terms of a regularized particle P (σ) given by

P (σ) = {z ∈ D0 : eσz 6∈ F (eσz)}.

Note that P (σ) also has capacity c and is associated to the conformal map

F (σ)(z) = e−σF (eσz).

Let (Φ
(σ)
n : n > 0) be an ALE process with basic map F (σ) and regularization parameter 0.

Then
Φ(σ)
n (z) = e−σΦn(eσz)

for an ALE process (Φn : n > 0) with basic map F and regularization parameter σ. Hence,

if we replace Φn by Φ
(σ)
n in Theorem 1.1, then under the same restrictions on σ, the same

estimates are valid but now for all |z| > 1 and without regularization in the density of
attachment angles.

The simulations on the left side of Figure 2 illustrate the conjectured phase transition in
macroscopic shape from disks to non-disks at η = 1. The simulations on the right show the
sensitivity of the fluctuations of the level lines θ 7→ Φn(reiθ) in ALE(0) to taking r− 1 ≈ c1/2

versus r − 1 � c1/2. This provides evidence that the speed at which σ → 0 as c → 0 in
ALE(η) significantly affects cluster behaviour.

We also establish the following characterization of the limiting fluctuations, which shows
in particular that they are universal within the class of particles considered.

Theorem 1.2. Let η ∈ (−∞, 1], Λ ∈ [0,∞) and ε ∈ (0, 1/6) be given. Let (Φn : n > 0)
be an ALE(η) process with basic map F and regularization parameter σ. Assume that F has
capacity c and regularity Λ. Assume further that

σ >

{
c1/4−ε, if η ∈ (−∞, 1),

c1/6−ε, if η = 1.

Set n(t) = bt/cc. Then, in the limit c→ 0 with σ → 0, uniformly in F ,

(e−cn(t)Φn(t)(z)− z)/
√
c→ F(t, z)
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(a) η = 0.5 (b) r = 1

(c) η = 1 (d) r = 1 + c1/2

(e) η = 1.5 (f) r = 1 + c1/4

Figure 2: Left: ALE(η) clusters with slit particles where c = 10−4, σ = 0.02, and n = 8, 000.
Right: Level lines of the form Φn(reiθ) in an ALE(0) cluster with spread out particles (Figure
1, far right) for c = 10−4 and n = 10, 000. Colour variation is used to denote time evolution.
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in distribution on D([0,∞),H), where H is the set of analytic functions on {|z| > 1} vanishing
at ∞, equipped with the metric of uniform convergence on compacts, and where F is given
by the following stochastic PDE driven by the analytic extension ξ in D0 of space-time white
noise on the unit circle,

dF(t, z) = (1− η)zF ′(t, z)dt−F(t, z)dt+
√

2dξ(t, z). (6)

The space H and the meaning of this PDE are discussed in more detail in Section 7. For
η = 0 we recover the fluctuation result in [18]. The solution to the above stochastic PDE is
an Ornstein–Uhlenbeck process in H. This process converges to equilibrium as t→∞. When
η < 1, the equilibrium distribution is given by the analytic extension in D0 of a log-correlated
Gaussian field defined on the unit circle. In the case η = 0, this is known as the augmented
Gaussian Free Field. When η = 1, the equilibrium distribution is the analytic extension of
complex white noise on the unit circle. The equation (6) can be interpreted as a family of
independent equations for the Laurent coefficients of F(t, .), given in (51). These equations
may be considered also for η > 1 but now the equation for the kth Laurent coefficient shows
exponential growth of solutions at rate (η−1)k, so there is no solution to (6) inH, indicating a
destabilization of dynamics as η passes through 1. The mathematical formulation of universal
limits for cluster shapes when η > 1 remains an open problem.

Although we have stated our theorems above for η ∈ (−∞, 1], in many of our arguments
we restrict to the case η ∈ [0, 1]. The proofs are largely similar when η < 0 except in the way
that we decompose the operator in Section 4. We remark on the correct decomposition in the
case η < 0 at the relevant point.

1.4 Remarks on context and scope of results

The process of conformal maps (Φn : n > 0) is Markov and takes values in an infinite-
dimensional vector space. In the limit considered, where c → 0, the jumps of this process
become small, while we speed up the discrete time-scale to obtain a non-trivial limiting drift.
So we are in the domain of fluid limits for Markov processes. The analysis of such limits,
and of the renormalized fluctuations around them, is well understood in finite dimensions.
However, while the formal lines of this analysis transfer readily to infinite dimensions, its
detailed implementation is not so clear, not least because it is necessary to choose a norm,
which should be well adapted to the dynamics, and the limiting drift will in general be a
non-linear and unbounded operator.

In the case at hand, there are a number of special features which are important to the
analysis. First, while the limiting dynamics is not in equilibrium, it is an explicit steady state,
which allows us to handle convergence of the Markov process in terms of linearizations around
this steady state: we find that the difference Φn(z) − ecnz may usefully be expressed by an
interpolation in time, in which each term describes the error introduced by a single added
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particle. Second, the map Φn is determined by its restriction to the unit circle (Φn(eiθ) : θ ∈
[0, 2π)) and the action of each jump, besides being small, also becomes localized in θ in the
limit c→ 0. This is one of the features contributing to the explicit form found for the limiting
fluctuations. Third, we have at our disposal, not only the usual tools of stochastic analysis, but
also a range of tools from complex analysis, including distortion estimates, and Lp-estimates
for multiplier operators, which turn out to mesh well with Lp-martingale inequalities.

We have tried to optimise, as far as our present techniques allow, the constraints in our
results on the regularization parameter σ. In the case η < 1, we establish the disk limit
for σ � c1/2. Indeed, for η < 1, in the limit considered, we show that the derivative of the
fluctuations at radius eσ, which controls the scale of hn(θ)−1, is at most of order c1/2/(eσ−1).
Therefore, to leading order, the distribution of each attachment angle is approximately uniform
and the bulk dynamics of our process resemble that of HL(0). As seen in Proposition A.2,
the scale of individual particles is c1/2, so for σ ∼ c1/2 the fluctuations of e−cf ′(eσ+iθ) around
1 are scale-invariant. With that choice of σ we would expect to see macroscopic variations of
hn(θ), so the attachment distributions would no longer be well approximated by the uniform
distribution. We therefore believe our constraint on σ is close to optimal within this regime
and it remains a challenging open problem to allow σ ∼ c1/2. When η = 1, on the other hand,
we show that the derivative of the fluctuations at radius eσ is at most of order c1/2/(eσ−1)3/2.
The break-down in the uniform approximation may therefore well happen for larger σ than
σ ∼ c1/2 and the form of the fluctuations is suggestive of σ ∼ c1/3. Although we need a stronger
regularization for the fluctuation result (cf. Theorem 1.2), we find that the fluctuations develop
variations on all spatial scales, so the modification of dynamics from HL(0) to ALE(η), even
with the averaging enforced by our choice of regularization, results in a feedback which affects
the limiting evolution, and which identifies the case η = 1 as critical.

1.5 Organisation of the paper

The structure of the paper is as follows. In Section 2, we give a simplified proof of convergence
to a disk in the case η = 0, corresponding to HL(0). This is followed by an overview of
the proof when η 6= 0. In Section 3, we decompose the increment Φn(z) − Φn−1(ecz) as a
sum of martingale difference and drift terms, which we expand to leading order in c with
error estimates. In Section 4 we obtain the evolution equation and decomposition for the
fluctuations. The remainder of the paper analyses this equation. Specifically, in Section 5 we
use the estimates from Section 3 to obtain bounds on the terms arising in the decomposition
of the differentiated fluctuations. These bounds are then used in Section 6 to obtain our disk
limit Theorem 1.1. Finally the fluctuation limit Theorem 1.2 is derived in Section 7.

Some necessary but technical estimates are deferred to appendices. In Appendix A we show
that our main assumption (4) is satisfied for small particles of any given shape. Appendix B
contains the estimates for multiplier operators used in the paper. In Appendices C and D we
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derive the specific estimates on ALE(η) used in our main results. We believe that some of
the results and estimates in the appendices may be of independent use in related work. For
example, the “spread out” particle in Appendix A.2, has a very convenient form which makes
it a useful test case when trying to prove general theorems about particle aggregation.

2 HL(0) and overview of the proof of Theorem 1.1

In this section we give a quick argument for the scaling limit of HL(0) (which is the same
as ALE(0)), where the attachment angles (Θn : n > 1) are independent and uniformly dis-
tributed. Then we discuss the structure of the proof of Theorem 1.1, some aspects of which
follow the argument used for HL(0).

For a measurable function f on {|z| > 1}, for p ∈ [1,∞) and r > 1, we will write

‖f‖p,r =

( 2π

0

|f(reiθ)|pdθ
)1/p

, ‖f‖∞,r = sup
θ∈[0,2π)

|f(reiθ)|. (7)

In the case where f is analytic and is bounded at ∞, we have, for ρ ∈ (1, r),

‖f‖p,r 6 ‖f‖p,ρ, ‖f‖∞,r 6
(

ρ

r − ρ

)1/p

‖f‖p,ρ. (8)

The notation ‖ · ‖p will be reserved for the Lp(P)-norm on the probability space.

2.1 Disk limit for η = 0

We now show that HL(0) converges to a disk in the small-particle limit. A weaker form of this
result was shown in [15] by fluid limit estimates on the Markov processes (Φ−1

n (z) : n > 0).
Here, we will use a new method, based on estimating directly the conformal maps Φn. This
both gives a simpler argument and leads to a stronger result.

Theorem 2.1. Let (Φn : n > 0) be an HL(0) process with basic map F . Assume that F has
capacity c ∈ (0, 1] and regularity Λ ∈ [0,∞). Then, for all p ∈ [2,∞), there is a constant
C = C(Λ, p) <∞ such that, for all r > 1 and n > 0, we have∥∥∥ sup

|z|>r
|Φn(z)− ecnz|

∥∥∥
p
6 Cecn

√
c

(
r

r − 1

)1+1/p

.

We remark that by taking p large enough it is possible to deduce that, for all ε ∈ (0, 1/2)
and T > 0, we have

sup
n6T/c, |z|>1+c1/2−ε

|Φn(z)− ecnz| → 0

12



in probability as c → 0. As this is spelled out more generally in Section 6.2, we omit the
details at this stage. Indeed, on applying Theorem 1.1 to HL(0), say with σ = 1, we obtain
the stronger estimate

sup
n6T/c, |z|>1+c1/2−ε

|Φn(z)− ecnz| 6 Cc1/2−ε

with high probability as c → 0. This improvement can be traced to the iterative argument
used in the proof of Proposition 6.1.

Proof of Theorem 2.1. It will suffice to consider the case where r > 1 +
√
c. Set

∆n(θ, z) = Φn−1(eiθF (e−iθz))− Φn−1(ecz), ∆n(z) = ∆n(Θn, z). (9)

Note that Φn−1(ecz) is the map we would obtain after n steps if we substituted Fn(z) by ecz
in (2). As we aim to show that Φn(z) is close to ecnz, ∆n(z) can be understood as the error
due to the nth particle. We can write Φn as a telescoping sum

Φn(z)− ecnz =
n∑
j=1

∆j(e
c(n−j)z). (10)

The functions F and Φj−1 are analytic in {|z| > 1} and F (z)/z → ec as z → ∞, so the
function

w 7→ (Φj−1(wF (z/w))− Φj−1(ecz))/w

is analytic in {0 < |w| < |z|} and extends analytically to {|w| < |z|}. Hence, almost surely,
by Cauchy’s theorem,

E(∆j(z)|Fj−1) =

 2π

0

∆j(θ, z)dθ =
1

2πi

�
|w|=1

(Φj−1(wF (z/w))− Φj−1(ecz))
dw

w
= 0.

There is a constant C = C(Λ) <∞ such that, for all |z| > 1 +
√
c/2,

|F (z)− ecz| 6 Cc
|z|
|z − 1|

.

Since Φj−1 is univalent on {|z| > 1} and Φj−1(z)/z → ec(j−1) as z → ∞, by a standard
distortion estimate, for all |z| = r > 1,

|Φ′j−1(z)| 6 ec(j−1) r

r − 1
.

Hence, for |z| = r > 1 +
√
c/2, we have

|∆j(θ, z)| 6 Ccecj
r2

(r − 1)|e−iθz − 1|

13



and so

E(|∆j(z)|2|Fj−1) =

 2π

0

|∆j(θ, z)|2dθ

6 Cc2e2cj

(
r

r − 1

)2  2π

0

r2dθ

|e−iθz − 1|2
6 Cc2e2cj

(
r

r − 1

)3

.

Burkholder’s inequality (see Section B.1) applies to the sum of martingale differences (10), to
give that for all p ∈ [2,∞) there is a constant C = C(Λ, p) <∞, such that

‖Φn(z)− ecnz‖2
p 6 C

n∑
j=1

‖E(|∆j(e
c(n−j)z)|2|Fj−1)‖p/2 + Cc2e2cn

(
r

r − 1

)4

.

Hence, for |z| > 1 +
√
c/2,

‖Φn(z)− ecnz‖2
p 6 Cc2

n∑
j=1

e2cj

(
ec(n−j)r

ec(n−j)r − 1

)3

+ Cc2e2cn

(
r

r − 1

)4

6 Cce2cn

(
r

r − 1

)2

,

where we used an integral comparison for the last inequality. Set

Φ̃n(z) = e−cnΦn(z)− z.

and write ρ = (r + 1)/2. Then, for |z| > 1 +
√
c, we have ρ > 1 +

√
c/2, so∥∥∥ sup

|z|>r
|Φ̃n(z)|

∥∥∥p
p

= E
(
‖Φ̃n‖p∞,r

)
6 C

(
r

r − 1

)
E
(
‖Φ̃n‖pp,ρ

)
= C

(
r

r − 1

)  2π

0

‖Φ̃n(ρeiθ)‖ppdθ 6 Ccp/2
(

r

r − 1

)p+1

and the claimed estimate follows.

2.2 Overview of the proof of Theorem 1.1

We now discuss how the above strategy can be adapted to the case where η ∈ (−∞, 1]. Write

Φn(z)− ecnz =
n∑
j=1

∆j(e
c(n−j)z)

with ∆j(z) = Φj(z)−Φj−1(ecz) as in (9). We split ∆j(z) as the sum of a martingale difference

Bj(z) = ∆j(z)− E(∆j(z)|Fj−1) (11)

14



and a drift term (which vanished in the case η = 0)

Aj(z) = E(∆j(z)|Fj−1). (12)

Set Φ̃n(z) = e−cnΦn(z) − z as above. We start by identifying the leading term in the drift,
showing that

Aj(z) = −cηecjzΦ̃′j−1(eσz) +Rj(z) (13)

where Rj(z) is small provided ‖Φ̃′j−1‖∞,eσ is sufficiently small. This gives the following de-
composition

Φ̃n(z) = e−cΦ̃n−1(ecz)− cηzΦ̃′n−1(eσz) + e−cnBn(z) + e−cnRn(z)

= P Φ̃n−1(z) + e−cnBn(z) + e−cnRn(z)

where P is the operator which acts on analytic functions on {|z| > 1} by

Pf(z) = e−cf(ecz)− cηzf ′(eσz). (14)

The reader is alerted to the fact that, while we used P to denote our basic particle in Sections
1 and Appendix A, in the rest of the paper, P will refer to this operator instead. Solving the
recursion we end up with

Φ̃n(z) =
n∑
j=1

e−cjP n−jBj(z) +
n∑
j=1

e−cjP n−jRj(z). (15)

Note that for η = 0 the operator P has the simple form Pf(z) = e−cf(ecz) and we recover (10).
We treat the general case η ∈ (−∞, 1] by observing that P acts diagonally on the Laurent
coefficients, thus is a Fourier multiplier operator, which we can bound in ‖·‖p,r-norm by means
of the Marcinkiewicz multiplier theorem (see Appendix B.2).

The proof strategy for the disk theorem then goes as follows. For δ = δ(c) small, to be
specified, introduce the stopping time

N(δ) = min{n > 0 : ‖Φ̃′n‖∞,eσ > δ}. (16)

Then for all n 6 N(δ) the angle density hn defined in (3) is approximately uniform. This,
together with the multiplier theorem, can be used to bound both the martingale term (the
first term in (15)) and the remainder term (the second term in (15)), thus leading to a bound
for the map Φ̃n. At this point it remains to show that we can pick δ0 such that N(δ0) > bT/cc
with high probability to conclude the proof. To this end, it turns out to be convenient to
work instead with the differentiated dynamics

Ψn(z) = zΦ̃′n(z)

15



for which a decomposition similar to (15) holds (see (32) below). We use it to show that
‖Ψn1{n6N0}‖p,r is small in Lp(P) (see Proposition 6.1), where we have set N0 = N(δ0) to ease
the notation slightly. The analyticity of Ψn then allows us to make this bound into a high
probability statement on the supremum norm of Ψn1{n6N0}, at the price of taking p large
enough (see Proposition 6.2). By showing that this bound is smaller than δ for all n 6 N0,
we deduce that in fact we must have N0 > bT/cc, thus concluding the proof.

2.3 Choice of state variables

The sequence of conformal maps (Φn)n>0 is a Markov process. This allows an approach to the
desired scaling limits using martingale estimates. Above, we introduced the analytic function
Ψn on {|z| > 1} given by

Ψn(z) = DΦ̃n(z),

where we set Df(z) = zf ′(z) and Φ̃n is the process of fluctuations given by

Φ̃n(z) = e−cnΦn(z)− z.

Then the process (Ψn)n>0 is also Markov and it proves more convenient to use this as our
primary state variable. In doing this, we forget the limiting values (Φn(∞))n>0, so we see
the clusters only up to an unknown displacement. Otherwise, the use of (Ψn)n>0 may be
considered as a particular choice of coordinates for the sequence of clusters. The function Φn

has a Laurent expansion in {|z| > 1} of the form

Φn(z) = ecn

(
z +

∞∑
k=0

an(k)z−k

)

so Ψn has expansion

Ψn(z) = −
∞∑
k=1

kan(k)z−k.

In the final section of the paper, we will characterise the limit distribution of the fluctuations,
suitably rescaled, by analysing the Laurent coefficients.

3 Expansions to first order and error estimates

In this section we identify the leading order behaviour of several quantities of interest and
gather together bounds on the error terms which hold while the differentiated fluctuation
process (Φ̃′n)n>0 is well-behaved. Our main objective is to justify (13).
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Fix δ0 ∈ (0, 1/8] and consider the stopping time N0 = N(δ0) where N(δ) is defined in (16).
Several of our estimates will be made under the assumption that n 6 N0. In fact, in this
section, we only use that |Φ̃′j(eσ+iθ)| 6 δ0 6 1/8 when j = n− 1. However, we will need this
to hold for all j 6 n− 1 in the remainder of the paper and it simplifies notation to make the
assumption here. This assumption guarantees that hn, defined in (3), can be bounded above
and below by absolute constants. Bounding very crudely,

1

2
6 hn(θ) 6

3

2
so |hn(θ)− 1| 6 1

2
. (17)

A more refined analysis shows that, for all n 6 N0,∣∣∣hn(θ)− 1 + ηRe Φ̃′n−1(eσ+iθ)
∣∣∣ 6 Cδ2

0 (18)

where C = C(η) is a constant depending only on the value of η. As the precise computation
consists of elementary manipulations, it is deferred to Appendix C (see (67) and (68)).

Recall the definitions of ∆n(θ, z) and ∆n(z) from (9) and the definitions of An(z) and
Bn(z) from (12) and (11). Then

An(z) =

 2π

0

∆n(θ, z)hn(θ)dθ.

Furthermore, An and Bn are analytic in {|z| > 1} and, almost surely,

E(Bn(z)|Fn−1) = 0.

As we showed in the proof of Theorem 2.1, by Cauchy’s theorem,

� 2π

0

∆n(θ, z)dθ = 0

so

An(z) =

 2π

0

∆n(θ, z)(hn(θ)− 1)dθ. (19)

We now identify the leading order terms in ∆n(z) and An(z), in the limit c → 0. Where
the computations add little to the intuition, these are also deferred to Appendix C.

Given θ ∈ [0, 2π) and |z| > 1, define, for s ∈ [0, 1],

Fs(z) = z exp

(
(1− s)c+ s log

F (z)

z

)
,

Fs,θ(z) = eiθFs(e
−iθz) = z exp

(
(1− s)c+ s log

F (e−iθz)

e−iθz

)
.

(20)
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Note that F0,θ(z) = ecz and F1,θ(z) = eiθF (e−iθz). Note also that |Fs,θ(z)| > |z| for all
s ∈ [0, 1] and

d

ds
logFs,θ(z) = log

F (e−iθz)

e−iθz
− c.

Then

∆n(θ, z) = Φn−1(eiθF (e−iθz))− Φn−1(ecz)

=

� 1

0

DΦn−1(Fs,θ(z))
d

ds
logFs,θ(z)ds

=
2cβecnz

e−iθz − 1
+

(
log

F (e−iθz)

e−iθz
− c
) � 1

0

(DΦn−1(Fs,θ(z))− ecnz)ds

+ ecnz

(
log

F (e−iθz)

e−iθz
− c− 2cβ

e−iθz − 1

)
, (21)

where 2cβ = a0, the coefficient of z0 in the Laurent expansion (1). We factorize a0 in this
way to highlight that a0 ∼ 2c (see Proposition A.1 in the appendix). The first term in
the decomposition (21) captures the leading order of the increment and will determine the
evolution of the process; the second term is a recursive error arising from the fluctuations of
Φn−1; and the third term is an error term dependent just on the class of particle chosen (see
Appendix A.1 and in particular (59)). It will be convenient to write

mn(θ, z) =
2cβecnz

ze−iθ − 1
(22)

for the leading term and to set

wn(θ, z) = ∆n(θ, z)−mn(θ, z). (23)

Note that wn(θ,∞) = 0 and for all |z| > 1 +
√
c

|wn(θ, z)| 6 Ccecn

|e−iθz − 1|

� 1

0

|Ψn−1(Fs,θ(z))|ds+
Cecnc3/2|z|

|e−iθz − 1|(|z| − 1)
. (24)

for some constant C = C(η,Λ) <∞ (see (69) and (71) in the appendix).
Using (19), (18), (21) and that |β− 1| 6 Λ

√
c/2 (cf. Proposition A.1), the leading term of

An(z) is

Ln(z) = −
 2π

0

ηRe Φ̃′n−1(eσ+iθ)
2cecnz

ze−iθ − 1
dθ = −cηecnzΦ̃′n−1(eσz), (25)

where the equality follows by Cauchy’s integral formula. To be precise, set

Rn(z) = An(z)− Ln(z). (26)
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Then, by the argument in Appendix C, for n 6 N0 and |z| = r with r > 1 +
√
c,

|Rn(z)−Rn(∞)| 6 Ccecnδ0

r

(
1 + log

(
r

r − 1

))(
δ0 +

√
c

(
r

r − 1

))
+ Cc3/2ccn|Ψn−1(eσz)|+ Ccecnδ0

� 1

0

 2π

0

|Ψn−1(Fs,θ(z))|
|ze−iθ − 1|

dθds (27)

and
|Rn(∞)| 6 Ccecnδ2

0

for some constant C = C(η,Λ) < ∞ (possibly different to the constant C obtained earlier).
By the maximum principle, it follows that provided one takes δ0 >

√
c/(eσ − 1) and r > eσ >

1 +
√
c,

|Rn(z)| 6 Ccecnδ2
0 log

(
r

r − 1

)
.

From this bound, it can be easily seen that Rn(z) is small if ‖Φ̃′n−1‖∞,eσ is sufficiently small,
which is what we wanted to show. However, the assumption that r > eσ is too restrictive for
our needs, so in subsequent analysis we revert to the more general estimate (27).

4 Linear evolution equation for the fluctuations

In this section, our objective is to justify the expansion (15). In fact, we obtain an analogous
expansion which makes it clearer which terms determine the leading order fluctuations.

In Section 2.2 we decomposed ∆n(z) = Φn(z) − Φn−1(ecz) as a sum of a martingale
difference Bn(z) and drift An(z), and in the previous section we justified writing

An(z) = Ln(z) +Rn(z).

In view of (23), it is convenient to split the martingale difference Bn as a sum of analytic
functions

Bn(z) = Mn(z) +Wn(z)

where

Mn(z) = mn(Θn, z)−
 2π

0

mn(θ, z)hn(θ)dθ

and

Wn(z) = wn(Θn, z)−
 2π

0

wn(θ, z)hn(θ)dθ.
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We will see that Mn is the main term: its explicit form allows for precise estimates, and it
determines the Gaussian fluctuations. On the other hand, Wn is accessible less directly, but
is of smaller order, so can also be handled adequately. Then, using (26),

Φn(z) = Φn−1(ecz) +Mn(z) + Ln(z) +Wn(z) +Rn(z)

so we obtain the linear evolution equation

Φ̃n(z) = P Φ̃n−1(z) + e−cnMn(z) + e−cnWn(z) + e−cnRn(z) (28)

where P is as in (14). Note that P acts diagonally on the Laurent coefficients, with multipliers

p(k) = e−c(k+1) + cηke−σ(k+1), k > 0.

In the case η ∈ [0, 1], we factorize P by writing

p(k) = e−ce−c(1−η)kp0(k). (29)

It is straightforward to check then that, for all k,

0 6 p0(k + 1) 6 p0(k) 6 1. (30)

In particular, we can define a multiplier operator P0 acting on analytic functions f on {|z| > 1},
bounded at ∞, such that

P̂0f(k) = p0(k)f̂(k).

Note that, by the factorization above,

Pf(z) = e−cP0f(ec(1−η)z).

Being able to “push-out” the point at which f is evaluated in this way will allow us to exploit
that the derivative of a conformal map becomes more regular away from the boundary. Losing
this push-out in the η = 1 case is the reason that the bounds in Section 5 are larger when
η = 1.

In order to adapt our argument to the case η ∈ (−∞, 0), we would modify the equation
defining p0(k) to

p(k) = e−c(k+1)p0(k).

The subsequent argument is very similar so we will not give further details for this case.
We iterate (28) to obtain

Φ̃n(z) = M̃n(z) + W̃n(z) + R̃n(z) (31)
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where

M̃n(z) =
n∑
j=1

e−cjP n−jMj(z) = e−cn
n∑
j=1

P n−j
0 Mj(e

c(1−η)(n−j)z),

W̃n(z) = e−cn
n∑
j=1

P n−j
0 Wj(e

c(1−η)(n−j)z),

R̃n(z) = e−cn
n∑
j=1

P n−j
0 Rj(e

c(1−η)(n−j)z).

Then, on differentiating,
Ψn(z) =Mn(z) +Wn(z) +Rn(z) (32)

where

Mn(z) = e−cn
n∑
j=1

P n−j
0 DMj(e

c(1−η)(n−j)z),

Wn(z) = e−cn
n∑
j=1

P n−j
0 DWj(e

c(1−η)(n−j)z),

Rn(z) = e−cn
n∑
j=1

P n−j
0 DRj(e

c(1−η)(n−j)z).

We will focus initially on bounding the terms in the decomposition (32) of the differentiated
fluctuations Ψn. We will refer to Mn, Wn and Rn as the principal martingale term, the
second martingale term and the remainder term respectively. Later, we will return also to the
undifferentiated decomposition (31).

4.1 Norms

We conclude this section by describing the normed spaces on which we will obtain our bounds.
Recall from (7) the definition of ‖f‖p,r for a measurable function f on {|z| > 1}. For a

measurable function Φ : Ω× {|z| > 1} → C, we will write

9Φ9p,r =

(
E
 2π

0

|Φ(reiθ)|pdθ
)1/p

.

Then, by Fubini,

9Φ9p,r = ‖‖Φ‖p,r‖p =

( 2π

0

‖Φ(reiθ)‖ppdθ
)1/p
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where ‖ · ‖p denotes the Lp(P)-norm on the probability space.
Note that, for all n > 0, the boundedness and monotonicity seen in (30) allows an appli-

cation of the Marcinkiewicz multiplier theorem (see Appendix B.2), with mk = p0(k)n and
M = 1 to see that for all p ∈ (1,∞) and all r > 1, there is a constant C = C(p) < ∞ such
that

‖P n
0 f‖p,r 6 C‖f‖p,r. (33)

Some further operator estimates which will be used in the subsequent analysis are stated in
Appendix B.2.

5 Estimation of terms in the decomposition of the dif-

ferentiated fluctuations

In this section we collect estimates for the principal martingale term, the second martingale
term and remainder term.

We first estimate the principal martingale term Mn(z) in the decomposition (32) of the
differentiated fluctuation process, which is given by

Mn(z) = e−cn
n∑
j=1

P n−j
0 DMj(e

c(1−η)(n−j)z).

Lemma 5.1. For all p ∈ [2,∞), there is a constant C = C(p) <∞ such that

9Mn1{n6N0}9
2
p,r 6 C

(
c2−2/pr2−2/p

(r − 1)4−2/p
+ c2

n∑
j=1

e−2c(n−j) rn−j
(rn−j − 1)3

)
, (34)

where rn = rec(1−η)n.
It follows that if r > 1 + c1/2−ε for some ε ∈ (0, 1/2),

9Mn1{n6N0}9p,r 6


C
√
c

r − 1
, η < 1;

C
√
c

r

(
r

r − 1

)3/2

, η = 1.

Proof. By Burkholder’s inequality (cf. Theorem B.1), for all p ∈ [2,∞), there is a constant
C = C(p) <∞ such that

‖Mn(z)1{n6N0}‖2
p

6 Ce−2cn

(
‖ max

16j6n
Xj,n(ec(1−η)(n−j)z)1{j6N0}‖2

p +
n∑
j=1

‖Q̃j,n(ec(1−η)(n−j)z)1{j6N0}‖p/2

)
,
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where

Xj,n(z) = |P n−j
0 DMj(e

c(1−η)(n−j)z)| and Q̃j,n(z) = E(|P n−j
0 DMj(z)|2|Fj−1).

So, on taking the ‖ · ‖p/2,r-norm,

9Mn1{n6N0}9
2
p,r 6 Ce−2cn

(
9 max

16j6n
Xj,n1{j6N0} 9

2
p,r +

n∑
j=1

9Q̃j,n1{j6N0}9p/2,rn−j

)
. (35)

Recall from (22) that

mj(θ, z) =
2cβecjz

ze−iθ − 1
= 2cβecj

∞∑
k=0

z−keiθ(k+1).

Observe that

P n−j
0 Dmj(θ, z) = 2cβecj

∞∑
k=0

p0(k)n−j(−k)z−keiθ(k+1). (36)

We have, almost surely,

E(|P n−j
0 DMj(z)|2|Fj−1) 6 E(|P n−j

0 Dmj(Θj, z)|2|Fj−1) =

 2π

0

|P n−j
0 Dmj(θ, z)|2hj(θ)dθ

and, by (36), for |z| = r,

 2π

0

|P n−j
0 Dmj(θ, z)|2dθ = 4c2|β|2e2cj

∞∑
k=0

p0(k)2(n−j)k2r−2k 6 4c2|β|2e2cj

∞∑
k=0

k2r−2k.

For j 6 N0, by (17), we have hj(θ) 6 3/2, so we obtain, for |z| = r, almost surely,

Q̃j,n(z) 6 6c2|β|2e2cj r

(r − 1)3

where we have used
∞∑
k=0

k2r−2k =
r2(r2 + 1)

(r − 1)3(r + 1)3
6

r

(r − 1)3
.

Hence, for |z| = r, almost surely,

n∑
j=1

Q̃j,n(ec(1−η)(n−j)z)1{j6N0} 6 Cc2|β|2
n∑
j=1

e2cj rn−j
(rn−j − 1)3

.
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Moreover,

Xj,n(z) =
∣∣P n−j

0 Dmj(Θj, e
c(1−η)(n−j)z)− E(P n−j

0 Dmj(Θj, e
c(1−η)(n−j)z)|Fj−1)

∣∣
6
∣∣P n−j

0 Dmj(Θj, e
c(1−η)(n−j)z)

∣∣+ E(|P n−j
0 Dmj(Θj, e

c(1−η)(n−j)z)|2|Fj−1)1/2,

and∥∥P n−j
0 Dmj(Θj, z)

∥∥p
p,r

=

 2π

0

|P n−j
0 Dmj(Θj, re

iθ)|pdθ =

 2π

0

|P n−j
0 Dmj(0, re

i(θ−Θj))|pdθ

=
∥∥P n−j

0 Dmj(0, z)
∥∥p
p,r

6 C ‖Dmj(0, z)‖pp,r 6
Ccp|β|pepcjrp−1

(r − 1)2p−1
.

Hence, using that n 6 T/c,

‖ max
16j6n

Xj,n1{j6N0}‖pp,r 6
n∑
j=1

‖Xj,n1{j6N0}‖pp,r 6
Ccp−1|β|pepcnrp−1

(r − 1)2p−1
.

Finally, we take the ‖.‖p/2,r-norm and substitute into (35) to obtain (34).
Now suppose r > 1 + c1/2−ε for some ε ∈ (0, 2) and p > 1 + 1/(2ε). If η < 1, by using an

integral comparison in (34) we obtain

9Mn1{n6N0}9
2
p,r 6 Cc2

(
r

(r − 1)3
+

n−1∑
j=1

e−2cj rj
(rj − 1)3

)
+
Cc2−2/pr2−2/p

(r − 1)4−2/p

6 Cc

(
1

(r − 1)2
+

� ∞
0

crec(1−η)τ

(rec(1−η)τ − 1)3
dτ

)
=

Cc

(r − 1)2
(37)

where we used the assumption on p in the second inequality, and absorbed a factor of 2 +
1/(2− 2η) in the final constant C. Hence

9Mn1{n6N0}9p,r 6
C
√
c

r − 1
.

If η = 1, we now have rn = r, so

9Mn1{n6N0}9
2
p,r 6 Cc2

n−1∑
j=0

e−2cj r

(r − 1)3
+
Cc2−2/p

r2

(
r

r − 1

)4−2/p

6
Cc

r2

(
r

r − 1

)3(
1 + c1−2/p

(
r

r − 1

)1−2/p)
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and then, using that p > 2,

9Mn1{n6N0}9p,r 6
C
√
c

r

(
r

r − 1

)3/2

.

We now state the estimate of the second martingale termWn(z) in the decomposition (32)
of the differentiated fluctuation process, which is given by

Wn(z) = e−cn
n∑
j=1

P n−j
0 DWj(e

c(1−η)(n−j)z).

The proof is deferred to Appendix D.1.

Lemma 5.2. For all ε ∈ (0, 1/2) and p ∈ [2,∞), there is a constant C = C(Λ, η, ε, p) < ∞
such that, for all r > 1 + 2c1/2−ε,

9Wn1{n6N0}9
2
p,r 6 Cc2

n∑
j=1

e−2c(n−j) rn−j
(rn−j − 1)3

(
9Ψj−11{j6N0} 9

2
p,ρn−j

+c

(
r

r − 1

)2
)

+
Ce2c(n−1)c3−2/pr4−2/p

(r − 1)6−2/p
+
Ce2c(n−1)c2−2/pr2−2/p

(r − 1)4−2/p
max
16j6n

9Ψj−11{j6N0}9
2
p,ρn−j

,

(38)

where rn = rec(1−η)n and ρn = (1 + rn)/2.
It follows that, setting ρ = (1 + r)/2, for p > 1 + 1/(2ε),

9Wn1{n6N0}9p,r 6


C
√
c

r − 1

(
sup
j6n

9Ψj−11{j6N0} 9p,ρ +
√
c

(
r

r − 1

))
, η < 1

C
√
c

r

(
r

r − 1

)3/2(
sup
j6n

9Ψj−11{j6N0} 9p,ρ +
√
c

(
r

r − 1

))
η = 1.

We finish this section with the estimate of the remainder term Rn(z) in the decomposition
(32) of the differentiated fluctuation process, which is given by

Rn(z) = e−cn
n∑
j=1

P n−j
0 DRj(e

c(1−η)(n−j)z).

The proof is deferred to Appendix D.2.
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Lemma 5.3. For all p ∈ [2,∞), there is a constant C = C(Λ, η, p) < ∞ such that, for all
r > 1 + 2

√
c,

9Rn1{n6N0}9p,r

6 Cc
n∑
j=1

e−c(n−j)δ0

rn−j − 1

(
δ0 + 9Ψj−11{j6N0} 9p,ρn−j +

√
c

(
rn−j

rn−j − 1

))(
1 + log

(
rn−j

rn−j − 1

))

+ Cc3/2

n∑
j=1

e−c(n−j) 9Ψj−11{j6N0} 9p,ρn−j

(
rn−j

rn−j − 1

)
, (39)

where we have used the same notation as in Lemma 5.2.
Now suppose that n 6 T/c for some constant T > 0. Then there is a constant C =

C(Λ, η, p, T ) <∞ such that

9Rn1{n6N0}9p,r 6
Cδ0

r

(
δ0 + sup

j6n
9Ψj−11{j6N0} 9p,ρ +

√
c

(
r

r − 1

))(
1 + log

(
r

r − 1

))2

+ C
√
c sup
j6n

9Ψj−11{j6N0} 9p,ρ

(
1 + log

(
r

r − 1

))
,

when η < 1 and

9Rn1{n6N0}9p,r 6
Cδ0

r − 1

(
δ0 + sup

j6n
9Ψj−11{j6N0} 9p,ρ +

√
c

(
r

r − 1

))(
1 + log

(
r

r − 1

))
+ C
√
c sup
j6n

9Ψj−11{j6N0} 9p,ρ

(
r

r − 1

)
,

when η = 1.

6 Convergence to a disk for ALE(η)

In this section we derive our main disk theorem. Recall that

N0 = min
{
n > 0 : ‖Φ̃′n‖∞,eσ > δ0

}
. (40)

First we show that 9Ψn1{n6N0}9p,r is small, provided δ0 is appropriately chosen. Then we
deduce estimates on the random norms ‖Ψn1{n6N0}‖∞,r, valid with high probability, and use
them to dispense with the restriction that n 6 N0. Finally, we apply these results to show
that Φn(z) is close to ecnz.
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6.1 Lp-estimates on the differentiated fluctuations

The proposition below shows that, for an appropriately chosen δ0, the 9 · 9p,r norm of the
differentiated fluctuation process Ψn1{n6N0} is of order

√
c, with quantitative control of the

singularity as r → 1 and the decay as r → ∞. The dependence of the estimate on σ is also
explicit, allowing one to consider limits in which σ → 0 as c → 0. For small c, the estimates
are strongest when ε and ν are taken to be small. A second argument, given in the next
subsection, will show that the event {n 6 N0} appearing in (41) and (42) below is of high
probability in the limit c→ 0.

Proposition 6.1. For all η ∈ [0, 1), T ∈ (0,∞), ε ∈ (0, 1/2), ν ∈ (0, ε/2) and p ∈ [2,∞),
there is a constant C = C(Λ, η, T, ε, ν, p) ∈ [1,∞) with the following property. For all c ∈
(0, 1], all r, eσ > 1 + c1/2−ε and all n 6 T/c, we have

9Ψn1{n6N0}9p,r 6
C

r

(√
c

(
r

r − 1

)
+

c1−3ν

(eσ − 1)2

)
(41)

where N0 is given by (40) with δ0 = c1/2−ν/(eσ − 1).
Moreover, in the case η = 1, for all T ∈ (0,∞), ε ∈ (0, 1/5), ν ∈ (0, 3ε/2) and p ∈ [2,∞),

there is a constant C = C(Λ, T, ε, ν, p) ∈ [1,∞) with the following property. For all c ∈ (0, 1],
all r, eσ > 1 + c1/5−ε and all n 6 T/c, we have

9Ψn1{n6N0}9p,r 6
C

r

(√
c

(
r

r − 1

)3/2

+
c1−3ν

(eσ − 1)3

(
r

r − 1

))
(42)

where N0 is given by (40) with δ0 = c1/2−ν/(eσ − 1)3/2.

Proof. As before, constants referred to in the proof by the letter C may change from line to
line and are all assumed to lie in [1,∞). They may depend on Λ, η, T , ε, ν and p but they
do not depend on c, n, σ and r.

We begin with a crude estimate which allows us to restrict further consideration to small
values of c. The function e−cnΦn(z) is univalent on {|z| > 1}, with e−cnΦn(z) ∼ z as z →∞.
By same distortion estimate used in Section 2.1, for all |z| = r > 1,

|Φ̃′n(z)| = |e−cnΦ′n(z)− 1| 6 1

r2 − 1

and so

9Ψn9p,r = r 9 Φ̃′n9p,r 6
1

r − 1
. (43)

It is straightforward to check that this implies the claimed estimates in the case where c > 1/C,
for any given constant C of the allowed dependence. Hence it will suffice to consider the case
where c 6 1/C.
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Consider first the case where η < 1. Fix T , ε, p and ν as in the statement, and assume
that c 6 1/e and r > 1 + c1/2−ε/2 and eσ > 1 + c1/2−ε and n 6 T/c. Set ρ = (r + 1)/2. It will
suffice to prove the result for p large enough, so assume p > 1 + 1/(2ε).

By the triangle inequality,

9Ψn1{n6N0}9p,r 6 9Mn1{n6N0} 9p,r + 9Wn1{n6N0} 9p,r + 9Rn1{n6N0}9p,r,

where, by Lemmas 5.1, 5.2 and 5.3,

9Mn1{n6N0}9p,r 6
C
√
c

r − 1
=
C
√
c

r

(
r

r − 1

)
,

9Wn1{n6N0}9p,r 6
C
√
c

r

(
sup
j6n

9Ψj−11{j6N0} 9p,ρ

(
r

r − 1

)
+
√
c

(
r

r − 1

)2)
,

and

9Rn1{n6N0}9p,r 6
Cδ0

r

(
δ0 + sup

j6n
9Ψj−11{j6N0} 9p,ρ +

√
c

(
r

r − 1

))(
1 + log

(
r

r − 1

))2

+ C
√
c sup
j6n

9Ψj−11{j6N0} 9p,ρ

(
1 + log

(
r

r − 1

))
.

On combining the estimates above and substituting the chosen value of δ0, we obtain, for all
r > 1 + c1/2−ε/2,

9Ψn1{n6N0}9p,r 6 δ̄(r) sup
j6n

9Ψj−11{j6N0} 9p,ρ +δ(r) (44)

where

δ̄(r) =
C

r

(√
c

(
r

r − 1

)
+
c1/2−ν(log (1/c))2

eσ − 1

)
+ C
√
c log(1/c)

and

δ(r) =
C

r

(√
c

(
r

r − 1

)
+
c1−2ν(log(1/c))2

(eσ − 1)2

)
.

Note that, for all r > 1 + c1/2−ε, we have

δ̄(r) 6 Ccε + Ccε−ν(log(1/c))2 + C
√
c log(1/c) 6 cε/2 6 1

for all sufficiently small c. Similarly, for r > 1 + c1/2−ε/2, we have δ̄(r) 6 1 for all sufficiently
small c. As noted above, it suffices to deal with the case where c is sufficiently small.

A complication in the analysis is that the right hand side of the inequality (44) requires
estimates of Ψj−1(z) when |z| = ρ, but the left hand side only gives information about
Ψn(z) when |z| = r > ρ. Our approach is therefore to use the universal distortion estimate
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(43) to obtain an initial (very weak) bound and then recursively feed the bounds through the
inequality. This generates stronger and stronger estimates, but at the cost of moving r further
away from 1.

Set C0 = 1 and for k > 0 define recursively Ck+1 = 2k+1Ck + 1. We will show that, for all
k > 0, all r > 1 + 2kc1/2−ε/2 and all n 6 T/c,

9Ψn1{n6N0}9p,r 6 Ck

(
δ̄(r)k

r − 1
+ δ(r)

)
. (45)

The case k = 0 is implied by (43). Suppose inductively that (45) holds for k and that
r > 1 + 2k+1c1/2−ε/2 and n 6 T/c. Then ρ = (r + 1)/2 > 1 + 2kc1/2−ε/2 so, for all j 6 n,

9Ψj1{j6N0}9p,ρ 6 Ck

(
δ̄(ρ)k

ρ− 1
+ δ(ρ)

)
6 2k+1Ck

(
δ̄(r)k

r − 1
+ δ(r)

)
where we used the inequalities δ(ρ) 6 2δ(r) and δ̄(ρ) 6 2δ̄(r). Since r > 1 + c1/2−ε/2, we can
substitute into (44) to obtain

9Ψn1{n6N0}9p,r 6 2k+1Ck

(
δ̄(r)k+1

r − 1
+ δ̄(r)δ(r)

)
+ δ(r)

6 Ck+1

(
δ̄(r)k+1

r − 1
+ δ(r)

)
.

Hence (45) holds for k + 1 and the induction proceeds.
Choose now k = d1/εe. Then

δ̄(r)k

r − 1
6

cεk/2

r − 1
6

√
c

r − 1
6 δ(r).

For c sufficiently small, we have cε/2 6 2−k/2 so, for all r > 1+c1/2−ε, we have r > 1+2kc1/2−ε/2

and so

9Ψn1{n6N0}9p,r 6 Ck

(
δ̄(r)k

r − 1
+ δ(r)

)
6 2Ckδ(r)

giving a bound of the desired form (41).
We turn to the case where η = 1. Fix T , ε, p and ν as in the statement for η = 1. Assume

that c 6 1/e and n 6 T/c, and assume now that r > 1 + c1/5 and eσ > 1 + c1/5−ε. It will
suffice to prove the result for p sufficiently large. The argument follows the same pattern as
the case where η < 1, except for modifications necessary because of the different estimates in
Lemmas 5.1, 5.2 and 5.3 (and different choice of δ0), which arose because rn = rec(1−η)n = r.
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We obtain for r > 1 + c1/5,

9Ψn1{n6N0}9p,r 6 δ̄(r) sup
j6n

9Ψj−11{j6N0} 9p,ρ +δ(r)

where now

δ̄(r) =
C

r

(√
c

(
r

r − 1

)3/2

+
c1/2−ν log(1/c)

(eσ − 1)3/2

(
r

r − 1

))
+ C
√
c

(
r

r − 1

)
and

δ(r) =
C

r

(√
c

(
r

r − 1

)3/2

+
c1−2ν log(1/c)

(eσ − 1)3

(
r

r − 1

))
.

Note that, for r > 1 + c1/5−ε, we have, for all sufficiently small c

δ̄(r) 6 Cc1/5+3ε/2 + Cc5ε/2−ν log(1/c) + Cc3/10+ε 6 cε 6 1

Similarly, we have δ(r) 6 1 whenever r > 1+c1/5, for all sufficiently small c. We restrict to such
c. For ρ = (r + 1)/2, we now have modified inequalities δ(ρ) 6 23/2δ(r) and δ̄(ρ) 6 23/2δ̄(r).
Set C0 = 1 and for k > 0 define now recursively Ck+1 = 23k/2+1Ck + 1. Then, by an analogous
inductive argument, we obtain, for all k > 0, all n 6 T/c and all r > 1 + 2kc1/5,

9Ψn1{n6N0}9p,r 6 Ck

(
δ̄(r)k

r − 1
+ δ(r)

)
.

Choose now k = d1/εe and assume that r > 1 + c1/5−ε. Then

δ̄(r)k

(r − 1)
6

cεk

r − 1
6

c

r − 1
6 δ(r).

and, for c sufficiently small, we have cε 6 2−k, so r > 1 + 2kc1/5 and so

9Ψn1{n6N0}9p,r 6 2Ckδ(r)

which is a bound of the required form (42).

6.2 Spatially-uniform high-probability estimates on the differenti-
ated fluctuations

We now use the results from the previous section to obtain uniform estimates on Ψn(z).
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Proposition 6.2. For all η ∈ [0, 1), ε ∈ (0, 1/2), ν ∈ (0, ε/4), m ∈ N and T ∈ (0,∞), there
is a constant C = C(Λ, η, ε, ν,m, T ) < ∞ with the following properties. For all c ∈ (0, 1]
and all eσ > 1 + c1/2−ε, there is an event Ω0 of probability exceeding 1− cm on which, for all
n 6 T/c and all |z| = r > 1 + c1/2−ε,

|Ψn(z)| 6 C

r

(
c1/2−ν

(
r

r − 1

)
+

c1−4ν

(eσ − 1)2

)
. (46)

Moreover, for c 6 1/C, we have Ω0 ⊆ {n 6 N0} for all n 6 T/c, where N0 is given by (40)
with δ0 = c1/2−ν/(eσ − 1).

For η = 1, ε ∈ (0, 1/5), ν ∈ (0, ε/2), m ∈ N and T ∈ (0,∞), there is a constant
C = C(Λ, ε, ν,m, T ) <∞ with the following property. For all c ∈ (0, 1] and all eσ > 1+c1/5−ε,
there is an event Ω0 of probability exceeding 1 − cm on which, for all n 6 T/c and all |z| =
r > 1 + c1/5−ε,

|Ψn(z)| 6 C

r

(
c1/2−ν

(
r

r − 1

)3/2

+
c1−4ν

(eσ − 1)3

(
r

r − 1

))
.

Morover, for c 6 1/C, we have Ω0 ⊆ {n 6 N0} for all n 6 T/c, where N0 is given by (40)
with δ0 = c1/2−ν/(eσ − 1)3/2.

Proof. We will give details for the case η ∈ [0, 1). The minor modifications needed for the
case η = 1 are left to the reader. Fix η, ε, ν,m and T as in the statement. It will suffice to
consider the case where eσ > 1 + 2c1/2−ε, and to find an event Ω0 of probability exceeding
1− cm on which (46) holds whenever r > 1 + 2c1/2−ε and n 6 T/c. Set

K = min{k > 1 : 2kc1/2−ε > 1}, N = bT/cc.

Then K 6 blog(1/c)c+ 1. For k = 1, . . . , K, set

r(k) = 1 + 2kc1/2−ε, ρ(k) =
r(k) + 1

2
.

Then ρ(k) > 1 + c1/2−ε and r(K) ∈ [2, 4]. Choose p > max{1 + 1/(2ε); (m + 2)/ν} even
integer, and set

R =
(
KTc−m

)1/p
.

By Proposition 6.1, there is a constant C = C(Λ, η, ε, ν, p, T ) <∞ such that, for all n 6 T/c,

9Ψn1{n6N0}9p,ρ(k) 6 µk
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where N0 is defined as in the statement and

µk =
C

r(k)

(√
c

(
r(k)

r(k)− 1

)
+

c1−3ν

(eσ − 1)2

)
.

Set λ = Rc−1/p and consider the event

Ω0 =
N⋂
n=1

K⋂
k=1

{‖Ψn‖p,ρ(k)1{n6N0} 6 λµk}.

By Chebyshev’s inequality,

P(‖Ψn‖p,ρ(k)1{n6N0} > λµk) 6 λ−p = cR−p

so
P(Ωc

0) 6 KTR−p = cm.

Fix r > 1 + 2c1/2−ε. Then r(k) 6 r < r(k + 1) for some k ∈ {1, . . . , K}, where we set
r(K + 1) =∞. Note that zΨn(z) is a bounded analytic function on {|z| > ρ(1)}. We use the
inequality (8) to see that, on the event Ω0, for n 6 N0 ∧N ,

r‖Ψn‖∞,r 6 r(k)‖Ψn‖∞,r(k) 6

(
r(k) + 1

r(k)− 1

)1/p

r(k)‖Ψn‖p,ρ(k) 6 (2c−1/2)1/pr(k)λµk

so, using that r(k) > (r + 1)/2, we get

‖Ψn‖∞,r 6 (2c−1/2)1/pλµk 6
γk
2r

(
c1/2−ν

(
r

r − 1

)
+

c1−4ν

(eσ − 1)2

)
where

γk = 8C(2 log(1/c)Tc−m−1−1/2+pν)1/p.

By our choice of p, we have γk 6 1 for all sufficiently small c. We can restrict to such c, since
the desired estimate follows from the distortion inequality (43) otherwise. Then, on the event
Ω0, for n 6 N0 ∧N ,

‖Ψn‖∞,r 6
1

2r

(
c1/2−ν

(
r

r − 1

)
+

c1−4ν

(eσ − 1)2

)
and in particular, since eσ > 1 + c1/2−ε and ν < ε/4, we have

‖Φ̃′n‖∞,eσ 6 ‖Ψn‖∞,eσ 6
1

2eσ

(
c1/2−ν

(
eσ

eσ − 1

)
+

c1−4ν

(eσ − 1)2

)
6
c1/2−ν

eσ − 1
= δ0

which forces N0 > N on Ω0.
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6.3 Lp-estimates on the fluctuations

In this section we prove a result analogous to Proposition 6.1 for the undifferentiated dynamics.
This allows us to prove Theorem 1.1.

Proposition 6.3. For all η ∈ [0, 1), T ∈ (0,∞), ε ∈ (0, 1/2), ν ∈ (0, ε/4) and p ∈ [2,∞),
there is a constant C = C(Λ, η, T, ε, ν, p) ∈ [1,∞) with the following property. For all c ∈
(0, 1], all r, eσ > 1 + c1/2−ε and all n 6 T/c, we have

9(Φ̃n − Φ̃n(∞))1{n6N0}9p,r 6
C

r

(√
c

(
1 + log

(
r

r − 1

))1/2

+
c1−3ν

(eσ − 1)2

)
(47)

and

‖Φ̃n(∞)1{n6N0}‖p 6 C

(√
c+

c1−2ν

(eσ − 1)2

)
(48)

where N0 is given by (40) with δ0 = c1/2−ν/(eσ − 1).
Moreover, in the case η = 1, for all T ∈ (0,∞), ε ∈ (0, 1/5), ν ∈ (0, ε/2) and p ∈ [2,∞),

there is a constant C = C(Λ, T, ε, ν, p) ∈ [1,∞) with the following property. For all c ∈ (0, 1],
all r, eσ > 1 + c1/5−ε and all n 6 T/c, we have

9(Φ̃n − Φ̃n(∞))1{n6N0}9p,r 6
C

r

(
√
c

(
r

r − 1

)1/2

+
c1−3ν

(eσ − 1)3

)
(49)

and

‖Φ̃n(∞)1{n6N0}‖p 6 C

(√
c+

c1−2ν

(eσ − 1)3

)
(50)

where N0 is given by (40) with δ0 = c1/2−ν/(eσ − 1)3/2.

Proof. Let us first consider η ∈ [0, 1). It suffices to prove the result for p > 1 + 1/(2ε). The
argument follows along almost exactly the same lines as that used to establish (34). The only
difference is that we delete the D operator, which has the effect of removing the k2 factor
from some of the summations, and it is necessary to consider separately the constant term of
the Laurent expansion. This gives

9(M̃n − M̃n(∞))1{n6N0}9
2
p,r 6

Cc2

r2

n∑
j=1

e−2c(n−j)
(

rn−j
rn−j − 1

)
+
Cc2−2/p

r2

(
r

r − 1

)2−2/p

6
Cc

r2

(
1 + log

(
r

r − 1

))
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and

‖M̃n(∞)1{n6N0}‖2
p 6 Cc2

n∑
j=1

e−2c(n−j) 6 Cc.

Similarly, for the second martingale term we obtain

9W̃n1{n6N0}9
2
p,r 6

Cc2

r2

n∑
j=1

e−2c(n−j)
(
9Ψj−11{j6N0} 9

2
p,ρn−j

(
rn−j

rn−j − 1

)
+ c

(
rn−j

rn−j − 1

)3)

+
Ce2c(n−1)c3−2/pr2−2/p

(r − 1)4−2/p
+
Ce2c(n−1)c2−2/pr2−2/p

r2(r − 1)2−2/p
sup
j6n

9Ψj−11{j6N0}9
2
p,ρn−j

6
Cc2

r2

(
r

r − 1

)2

+
Cc3−7ν

r4(eσ − 1)4
,

where we used the bound on Ψn from Proposition 6.1. Finally, for the remainder term, we
find

9 (R̃n − R̃n(∞))1{n6N0}9p,r 6 e−cn
n∑
j=1

9P n−j
0 (Rj −Rj(∞))1{j6N0}9p,rn−j

6
Ccδ0

r

n∑
j=1

e−c(n−j)
(
δ0 + 9Ψj−11{j6N0} 9p,ρn−j +

√
c

(
rn−j

rn−j − 1

))(
1 + log

( rn−j
rn−j − 1

))

+ Cc3/2

n∑
j=1

e−c(n−j) 9Ψj−11{j6N0}9p,ρn−j

6
Cc1−3ν

r(eσ − 1)2
.

and

‖R̃n(∞)1{n6N0}‖p 6
Ccδ2

0

(eσ − 1)2

n∑
j=1

e−c(n−j) 6
Cc1−2ν

(eσ − 1)2
.

On assembling these bounds, and simplifying using our constraints on r and σ, we obtain (47)
and (48).

As in the proof of Proposition 6.1, in the case η = 1, we do not benefit from the push-out
of rn = rec(1−η)n, and the bound on Ψn is weaker. After some straightforward modifications,
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for p sufficiently large we obtain

9(M̃n − M̃n(∞))1{n6N0}9
2
p,r 6

Cc

r2

(
r

r − 1

)
,

9W̃n1{n6N0}9
2
p,r 6

Cc2

r2

(
r

r − 1

)4

+
Cc3−6ν

r4(eσ − 1)6

(
r

r − 1

)3

,

9(R̃n − R̃n(∞))1{n6N0}9p,r 6
Cc1−3ν

r

(
1

(eσ − 1)3
+

1

(eσ − 1)3/2

(
r

r − 1

)3/2
)
.

On assembling these bounds, and simplifying using our constraints on r and σ, we obtain
(49). Similarly

‖M̃n(∞)1{n6N0}‖2
p 6 Cc, ‖R̃n(∞)1{n6N0}‖p 6

Cc1−2ν

(eσ − 1)3
,

giving (50).

Proof of Theorem 1.1. The argument is a variation of that for Proposition 6.2. We do it
when η < 1; the η = 1 case is similar. Let Ω0, N , K, r(k), ρ(k) and λ be as in the proof of
Proposition 6.2. Define

Ω1 = Ω0 ∩
N⋂
n=1

K⋂
k=1

{‖Φ̃n‖p,ρ(k)1{n6N0} 6 λβk}

where

βk = 2C

(√
c

(
1 + log

(
r(k)

r(k)− 1

))1/2

+
c1−3ν

(eσ − 1)2

)
and C is the larger of the constant in (47) and that in (48). Then P(Ω1) 6 2cm and the desired
uniform estimate on Φn holds on Ω1, by the argument used in the proof of Proposition 6.2. In
arriving at this estimate we use the fact that for r > 1+c1/2 we have (1+log(r/(r−1)))1/2 6 c−ε

for all sufficiently small c > 0, for all ε > 0.

7 Fluctuation scaling limit for ALE(η)

In this section, we show that the fluctuations of ALE(η) for η ∈ (−∞, 1] are of order
√
c, and

we determine the distribution of the rescaled fluctuations.
Let (Φn)n>0 be an ALE(η) process with basic map F and regularization parameter σ.

Assume that F has capacity c ∈ (0, 1] and regularity bound Λ ∈ [0,∞). We consider the limit
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c→ 0 with σ → 0, and will show weak limits which are otherwise uniform in F , subject to the
given regularity bound. We embed in continuous time by setting n(t) = bt/cc and defining

Φ(t, z) = Φn(t)(z), Φ̃(t, z) = e−cn(t)Φn(t)(z)− z.

We will show that the process of analytic functions (Φ̃(t, .)/
√
c)t>0 converges weakly to a

Gaussian limit.
Let us define the metric spaces our processes will live in. To start with, let D[0,∞)

denote the space of complex-valued càdlàg processes equipped with the Skorohod metric d.
To discuss weak convergence of sequences of Laurent coefficients, it is convenient to introduce
the product space D[0,∞)Z

+
of sequences of complex-valued càdlàg processes, with the metric

of coordinate-wise convergence, given by

dZ+

((a(k))k>0, (b(k))k>0) =
∑
k>0

2−k (1 ∧ d(a(k), b(k))) .

Finally, to talk about convergence of functions, let H denote the space of analytic functions
on D0 = {|z| > 1} with limits at ∞, equipped with the metric of uniform convergence on
compacts in D0 ∪ {∞}, given by

dH(f, g) =
∑
m>0

2−m

(
1 ∧ sup

|z|>1+2−m
|f(z)− g(z)|

)
.

We let DH[0,∞) denote the space of H-valued càdlàg processes equipped with the associated
Skorohod metric dH. Then all the above spaces are complete separable metric spaces [3], and
(Φ̃(t, .)/

√
c)t>0 lies in DH[0,∞).

To state our main fluctuation result, we now define the limiting fluctuation field on
CH[0,∞), the space of continuous processes with values in H. Let (A(·, k))k>0 denote a
sequence of independent complex Ornstein–Uhlenbeck processes, solutions to{

dA(t, k) = −(1 + (1− η)k)A(t, k)dt+
√

2dBk(t),

A(0, k) = 0
(51)

where (Bk)k>0 are independent complex Brownian motions. Thus (A(·, k))k>0 is a zero-mean
Gaussian process, with covariance given for s, t ∈ [0,∞) by

E(A(s, k)⊗ A(t, k)) =

� s+t

|s−t|
e−(1+(1−η)k)udu

(
1 0
0 1

)
.

Here, on the left, we use the tensor product from R2. Thus

(x+ iy)⊗ (x′ + iy′) =

(
xx′ xy′

yx′ yy′

)
.
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By standard estimates, the following series both converge almost surely, uniformly on compacts
in (t, z) ∈ [0,∞)× (D0 ∪ {∞})

F(t, z) =
∑
k>0

A(t, k)z−k, ξ(t, z) =
√

2
∑
k>0

Bk(t)z
−k.

Hence F = (F(t, .) : t > 0) and ξ = (ξ(t, .) : t > 0) are continuous random processes in H. It
is straightforward to check that

F(t, z) = (1− η)

� t

0

DF(s, z)ds−
� t

0

F(s, z)ds+ ξ(t, z),

and ξ is the analytic extension in D0 of space-time white noise on the unit circle, so F satisfies
the stochastic PDE (6). In this section we prove Theorem 1.2 by showing that Φ̃/

√
c→ F in

distribution on DH[0,∞).

7.1 Discarding lower order fluctuations

Our analysis is based on the decomposition (31), which we rewrite in continuous time, with
obvious notation as

Φ̃(t, z) = M̃(t, z) + W̃(t, z) + R̃(t, z).

Define M̃0(t, z) = β−1M̃(t, z), where β is defined in Proposition A.1, and recall that |β−1| 6
Λ
√
c. In a first step, we will show that M̃0 is the only term that matters in the limiting

fluctuations.

Lemma 7.1. Under the hypotheses of Theorem 1.2, for all t > 0, we have

sup
s6t

dH

(
(Φ̃− M̃0)(s, .)√

c
, 0

)
→ 0

in probability as c→ 0, uniformly in σ and F .

Proof. Fix ε ∈ (0, 1/6) as in the statement of Theorem 1.2 and set

δ0 =

{
c1/2−ε/3/(eσ − 1), if η < 1,

c1/2−ε/6/(eσ − 1)3/2, if η = 1.

We first consider the case η ∈ (−∞, 1). Recall that in the proof of Proposition 6.3 we showed
that, for all T ∈ [0,∞), p > 1 + 1/(2ε) and r > 1, there is a constant C = C(Λ, η, T, ε, p, r) <
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∞ such that for all c 6 1/C, eσ > 1 + c1/2−ε and n 6 T/c, we have

9 (M̃n − M̃0)1{n6N0}9p,r =
|β − 1|
|β|

9 M̃n1{n6N0}9p,r 6 Cc,

9 W̃n1{n6N0}9p,r 6 Cc+
Cc3/2−ε

(eσ − 1)2
, 9R̃n1{n6N0}9p,r 6

Cc1−ε

(eσ − 1)2
.

Here we have used that |β − 1| 6 Λ
√
c. Note that under the further restriction σ > c1/4−ε,

c1−ε/(eσ − 1)2 6 c1/2+ε.

By arguments from the proof of Proposition 6.2, it follows that

(M̃ − M̃0)(t, z)1{t/c6N0}/
√
c→ 0, W̃(t, z)1{t/c6N0}/

√
c→ 0, R̃(t, z)1{t/c6N0}/

√
c→ 0

in probability as c→ 0, uniformly on compacts in (t, z) ∈ [0, T ]× (D0 ∪ {∞}), and uniformly
in σ and F subject to the given constraints. On the other hand, by Proposition 6.2, we know
that P(N0 < T/c)→ 0 in the same limiting regime. The claim of the lemma follows.

The case η = 1 is handled by the same argument with straightforward modifications.

7.2 Covariance structure

We now focus on the leading order fluctuations, coming from the martingale term

M̃0(t, z) =

n(t)∑
j=1

e−cjP n(t)−jM0
j (z), (52)

where

M0
n(z) = β−1Mn(z) =

2cecnz

e−iΘnz − 1
− E

(
2cecnz

e−iΘnz − 1

∣∣∣∣Fn−1

)
.

Let (Θu
n)n>1 be a sequence of independent uniform random variables in [0, 2π). Define for

|z| > 1

Mu
n (z) =

2cecnz

ze−iΘun − 1
− E

(
2cecnz

ze−iΘun − 1

∣∣∣∣Fun−1

)
=

2cecnz

ze−iΘun − 1
,

where Fun−1 is the σ-algebra generated by {Θu
k : k 6 n− 1}. Expanding in Laurent series, we

find
M0

n(z) =
∑
k>0

M̂0
n(k)z−k, Mu

n (z) =
∑
k>0

M̂u
n (k)z−k

where

M̂0
n(k) = 2cecn

(
eiΘn(k+1) − E(eiΘn(k+1)|Fn−1)

)
, M̂u

n (k) = 2cecneiΘ
u
n(k+1).
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Recalling that the operator P acts diagonally on Laurent coefficients, set

aj,n(k) =
e−cjp(k)n−jM̂0

j (k)
√
c

, uj,n(k) =
e−cjp(k)n−jM̂u

j (k)
√
c

,

where
p(k) = e−c(k+1) + cηke−σ(k+1),

and define for t > 0

Ã(t, k) =

n(t)∑
j=1

aj,n(t)(k), U(t, k) =

n(t)∑
j=1

uj,n(t)(k).

Let M̃u(t, z) be defined as in (52) with M0
j replaced by Mu

j . Then we have

M̃0(t, z)√
c

=
∑
k>0

Ã(t, k)z−k,
M̃u(t, z)√

c
=
∑
k>0

U(t, k)z−k.

By an elementary calculation, we obtain

E(M̂u
j (k)⊗ M̂u

j (k′)) = 2c2e2cjδkk′

(
1 0
0 1

)
from which

E(uj,n(k)⊗ uj,n′(k′)) = 2cp(k)n+n′−2jδkk′

(
1 0
0 1

)
.

Recall that for η ∈ [0, 1]
p0(k) = ec(1+(1−η)k)p(k).

By some straightforward estimation, recalling that σ → 0, we have

0 6 1− p0(k)2j 6 Ccσjk(k + 1).

Note that if j 6 t/c for some t > 0, and k is fixed, then the right hand side converges to 0
as c → 0. In the case η < 0, define p0(k) exactly as above (note that this differs from the
definition in (29)). Provided c is taken sufficiently small that σ − c− c|η| > 0, we have

1 + cηke−(σ−c)(k+1) > ecηk,

and hence p0(k) > 1. A straightforward estimation therefore gives

0 6 p0(k)2j − 1 6 Ccσjk(k + 1).
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Hence

n(s)∑
j=1

E(uj,n(s)(k)⊗ uj,n(t)(k
′))

= 2cδkk′

n(s)∑
j=1

p(k)n(s)+n(t)−2j

(
1 0
0 1

)
→ δkk′

� t+s

t−s
e−(1+(1−η)k)udu

(
1 0
0 1

)
. (53)

Now, for any k, k′ > 0 and s, t ∈ [0,∞) with s 6 t, the following limit holds in probability as
c→ 0, uniformly in σ and F ,

n(s)∑
j=1

∣∣E(aj,n(s)(k)⊗ aj,n(t)(k
′)|Fj−1)− E(uj,n(s)(k)⊗ uj,n(t)(k

′))
∣∣→ 0. (54)

To see this, recall that by Proposition 6.1 for all m ∈ N there exists a constant C =
C(Λ, η, ε,m, T ) <∞ such that, for c 6 1/C and δ0 defined as in the proof of Lemma 7.1, there
exists an event Ω0 of probability at least 1− cm on which, for all n 6 T/c and all θ ∈ [0, 2π),

|Φ̃′n(eσ+iθ)| 6 δ0 6 1,

and hence, by (17), |hn(θ)− 1| 6 63δ0. Then, on Ω0, for c 6 1/C and t 6 T ,

n(s)∑
j=1

∣∣E(aj,n(s)(k)⊗ aj,n(t)(k
′)|Fj−1)− E(uj,n(s)(k)⊗ uj,n(t)(k

′))
∣∣

6
e−c(n(s)+n(t))

c

n(s)∑
j=1

∣∣∣E(M̂0
j (k)⊗ M̂0

j (k′)|Fj−1)− E(M̂u
j (k)⊗ M̂u

j (k′))
∣∣∣

6 4c

n(s)∑
j=1

e−c(n(s)+n(t)−2j)

∣∣∣∣  2π

0

(eiθ(k+1) ⊗ eiθ(k′+1))(hj(θ)− 1)dθ−( 2π

0

eiθ(k+1)(hj(θ)− 1)dθ

)
⊗
( 2π

0

eiθ(k
′+1)(hj(θ)− 1)dθ

) ∣∣∣∣
6 Ccδ0

n(s)∑
j=1

e−c(n(s)+n(t)−2j).

Since cδ0n(s)→ 0 as c→ 0, this shows the claimed limit in probability.
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7.3 Convergence of Laurent coefficients

We now show that the processes of rescaled Laurent coefficients (Ã(·, k))k>0 of M̃0(t, z) con-
verge weakly to those of the limiting process F .

Theorem 7.2. Under the hypotheses of Theorem 1.2, in the limit c → 0 and σ → 0 and
uniformly in the basic map F , we have(

Ã(., k)
)
k>0
→ (A(., k))k>0

in distribution in (D[0,∞)Z
+
,dZ+

).

Proof. It will suffice to show that the finite-dimensional distributions of (Ã(·, k))k>0 converge
to those of (A(·, k))k>0, and that for each fixed k the processes Ã(·, k) are tight in (D[0,∞),d).

We start by proving convergence of finite-dimensional distributions. Fix positive integers
K and m and pick arbitrary 0 6 t1 < t2 < · · · < tm. We aim to show the following convergence
in distribution Ã(t1, 1) Ã(t1, 2) · · · Ã(t1, K)

...
...

...

Ã(tm, 1) Ã(tm, 2) · · · Ã(tm, K)

 −→
A(t1, 1) A(t1, 2) · · · A(t1, K)

...
...

...
A(tm, 1) A(tm, 2) · · · A(tm, K)

 .

Write ni in place of n(ti) for brevity. Fix real-linear maps αk,l : C→ R, for k = 1, . . . , K and
l = 1, . . . ,m and consider the real-valued random variables given by

Xj,nm =
K∑
k=1

m∑
l=1

αk,laj,nl(k)1{j6nl}.

Then
K∑
k=1

m∑
l=1

αk,lÃ(tl, k) =
nm∑
j=1

Xj,nm .

It is readily verified that (Xj,nm : j = 1, . . . , nm) is a martingale difference sequence with
respect to the filtration (Fj : j = 1, . . . , nm). Set

Σ =
K∑
k=1

m∑
l,l′=1

〈αk,l, αk,l′〉
� tl+tl′

|tl−tl′ |
e−(1+(1−η)k)udu

and note that Σ is the variance of
K∑
k=1

m∑
l=1

αk,lA(tl, k).

We will use the following martingale central limit theorem [3, Theorem 18.1].
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Theorem 7.3. Suppose given, for each n ∈ N, a martingale difference array (Xj,n : j =
1, . . . , n) with filtration (Fj,n : j = 1, . . . , n). Assume that, for some Σ ∈ [0,∞) and for all
ε > 0, the following two conditions hold in the limit n→∞:

(i)
n∑
j=1

E
(
X2
j,n|Fj−1,n

)
→ Σ in probability,

(ii)
n∑
j=1

E(|Xj,n|2 1{|Xj,n|>ε})→ 0.

Then
n∑
j=1

Xj,n → N (0,Σ) in distribution as n→∞.

We can apply this theorem to the limit c→ 0 and the martingale difference array (Xj,nm :
j = 1, . . . , nm), with nm = n(tm) = btm/cc. We have

nm∑
j=1

E(X2
j,nm|Fj−1) =

K∑
k,k′=1

m∑
l,l′=1

〈
αk,l

nl∧nl′∑
j=1

E(aj,nl(k)⊗ aj,nl′ (k
′)|Fj−1), αk′,l′

〉
→ Σ

in probability as c→ 0 by (54) and (53), which proves (i). To see (ii) note that

|aj,n(k)| 6 4
√
c for all k 6 K, j 6 n,

from which, for arbitrary ε > 0 and a constant C allowed to depend on the constants αk,l, K
and m, for all sufficiently small c,

nm∑
j=1

E(|Xj,nm|2 1{|Xj,nm |>ε}) 6 Cc
nm∑
j=1

P(|Xj,nm | > ε) 6 CtmP
(

max
j6nm

|Xj,nm| > ε

)
= 0.

Since the linear maps αk,l were arbitrary, this shows convergence of the finite-dimensional
distributions of (Ã(t, k))k>0 to those of (A(t, k))k>0.

It remains to prove tightness. We will show that, for all p ∈ [2,∞), all k > 0 and all
T ∈ [0,∞), there is a constant C = C(p, η, k, T ) <∞ such that, for all s, t ∈ [0, T ],

lim sup
c,σ→0

‖Ã(s, k)− Ã(t, k)‖p 6 C|t− s|1/2. (55)

Since we may choose p > 2, this implies tightness, by a standard criterion.
Recall that

Ã(t, k) =

n(t)∑
j=1

aj,n(t)(k) =
1√
c

n(t)∑
j=1

e−cjp(k)n(t)−jM̂0
j (k)
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and that (M̂0
j (k) : j > 0) is a martingale difference sequence with |M̂0

j (k)| 6 2cecj. Also
0 6 p(k) 6 1 and, estimating as above,

1− p(k)j 6 C[σk(k + 1) + (1 + (1− η)k)]cj. (56)

Fix s, t ∈ [0, T ] with s 6 t and note that n(t)− n(s) 6 1 + (t− s)/c. Then

Ã(t, k)− Ã(s, k) =
1√
c

n(s)∑
j=1

e−cjp(k)n(s)−j(p(k)n(t)−n(s) − 1)M̂0
j (k)

+
1√
c

n(t)∑
j=n(s)+1

e−cjp(k)n(t)−jM̂0
j (k).

Using that

max
j6n(t)

e−cj√
c
|M̂0

j (k)| 6 2
√
c,

and combining

∥∥∥1

c

n(s)∑
j=1

e−2cj(p(k)n(t)−n(s) − 1)2E(|M̂0
j (k)|2|Fj−1)

∥∥∥
p/2

6 8cn(s)(p(k)n(t)−n(s) − 1)2

with (56), by Burkholder’s inequality we find that, for some constant C = C(p, η, k, T ) <∞,

‖Ã(t, k)− Ã(s, k)‖2
p 6 C

(
(σ2k2(k + 1)2 + (1 + (1− η)k)2)(t− s+ c)2 + t− s+ c

)
. (57)

The asymptotic Hölder condition (55) follows.

7.4 Convergence as an analytic function

In this section we deduce the convergence of M̃0(t, z) from that of the Laurent coefficients,
thus concluding the proof of Theorem 1.2. To this end, set

F̃(t, z) =
M̃0(t, z)√

c
=
∑
k>0

Ã(t, k)z−k, F(t, z) =
∑
k>0

A(t, z)z−k.

These define processes in DH[0,∞). For any T > 0 let DH[0, T ] denote the space of H-valued
càdlàg processes on [0, T ]. Then F̃ ,F define processes in DH[0, T ] by restriction, for all T > 0.
For any r > 1 let Hr denote the space of analytic functions on {|z| > r} with limits at ∞,
equipped with the metric

dr(f, g) = sup
|z|>r
|f(z)− g(z)|.
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We let DHr [0, T ] denote the space of càdlàg processes with values inHr equipped with the asso-
ciated Skorohod metric dT,r. To show that F̃ converges to F in distribution on (DH[0,∞),dH),
it suffices to show that, for any T > 0 and r > 1, the process F̃ converge to F in distribution
on (DHr [0, T ],dT,r) as c→ 0 (see Billingsley [3]). This in turn follows from the lemma below.

Lemma 7.4. For any T > 0, r > 1 and δ = δ(r) ∈ [0, 1] such that e−2δr > 1, we have that
for any ε > 0

lim
K→∞

sup
c∈(0,δ]

P

(
dT,r

( ∞∑
k=K

Ã(., k)z−k, 0

)
> ε

)
= 0.

Proof. Fix ε, T, r, δ as in the statement, and partition the interval [0, T ] into sub-intervals
Il = [(l − 1)δ, lδ) for 1 6 l 6 dT/δe. Then

dT,r

( ∞∑
k=K

Ã(., k)z−k, 0

)
6
∑
k>K

sup
t∈[0,T ]

|Ã(t, k)|r−k

and so

P

(
dT,r

( ∞∑
k=K

Ã(., k)z−k, 0

)
> ε

)
6

1

ε

dT/δe∑
l=1

∑
k>K

E
(

sup
t∈Il
|Ã(t, k)|2

)1/2

r−k.

Recall that

Ã(t, k) =
1√
c

n(t)∑
j=1

e−cjp(k)n(t)−jM̂0
j (k)

which shows that the process (p(k)−n(t)Ã(t, k))t>0 is a martingale for each k > 0, with

E
(
|p(k)−n(t)Ã(t, k)|2

)
6
C

c

n(t)∑
j=1

e−2cjp(k)−2jE(|M̂0
j (k)|2|Fj−1) 6 16Cc

n(t)∑
j=1

p(k)−2j.

Doob’s L2 inequality then gives

E
(

sup
t∈Il
|Ã(t, k)|2

)
6 p(k)2n((l−1)δ)E

(
sup
t∈Il
|p(k)−n(t)Ã(t, k)|2

)
6 4p(k)2n((l−1)δ)E

(
|p(k)−n(lδ)Ã(lδ, k)|2

)
6 Ccp(k)2n((l−1)δ)

n(lδ)∑
j=1

p(k)−2j

6 Cp(k)−2(n(lδ)−n((l−1)δ), (58)
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for some positive constant C, depending on T , changing from line to line. In the last inequality
we have used that p(k) 6 1 and cn(lδ) 6 T + 1. Noting that n(lδ) − n((l − 1)δ) 6 1 + δ/c,
and that p(k) > e−c(k+1) for η ∈ [0, 1], we find

p(k)−2(n(lδ)−n((l−1)δ) 6 p(k)−2(1+δ/c) 6 e4δ(k+1)

for δ > c. Plugging this into (58) gives

E
(

sup
t∈Il
|Ã(t, k)|2

)
6 Ce4δk,

and hence

sup
c∈(0,δ]

1

ε

bT/δc∑
l=1

∑
k>K

E
(

sup
t∈Il
|Ã(t, k)|2

)1/2

r−k 6
C

εδ

∑
k>K

(e−2δr)−k −→ 0

as K → ∞ since e−2δr > 1. If η < 0, the result follows from the same argument using that,
for c small enough that σ − c− c|η| > 0, we have

p(k) = e−c(k+1)(1 + cηke−(σ−c)(k+1)) > e−c(k+1)−c|η|k.

Appendices

A Particle estimates

Let c ∈ (0,∞) and Λ ∈ [0,∞). Recall that we say a univalent function F from D0 = {|z| > 1}
into D0 has capacity c and regularity Λ if it satisfies condition (4), that is to say, for all z ∈ D0,∣∣∣∣log

(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ 6 Λc3/2|z|
|z − 1|(|z| − 1)

.

We show that this in fact implies a similar condition for F but with better decay as z →∞.
Then we will give some explicit examples of suitable maps F . Finally, we will show that (4)
holds whenever the corresponding particle is not too flat. Only Subsection A.1 is used in the
paper.
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A.1 Precise form of the particle hypothesis

Our particle hypothesis (4) can be reformulated more precisely in terms of the coefficient a0

in the Laurent expansion (1).

Proposition A.1. Suppose that F satisfies (4) and set β = a0/(2c). Then |β − 1| 6 Λ
√
c/2

and, for all z ∈ D0, ∣∣∣∣log

(
F (z)

z

)
− c− 2cβ

z − 1

∣∣∣∣ 6 6Λc3/2

|z − 1|(|z| − 1)
. (59)

Proof. Set

f(z) = log

(
F (z)

z

)
, g(z) = (z − 1)

(
f(z)− c− 2c

z − 1

)
.

Then g is analytic in D0 and g(z)→ a0 − 2c = 2c(β − 1) as z →∞. Condition (4) implies

|g(z)| 6 Λc3/2 |z|
|z| − 1

.

On letting z →∞, we see that 2c|β − 1| 6 Λc3/2 so |β − 1| 6 Λ
√
c/2. Consider

h(z) = z(g(z)− g(∞)) = z(z − 1)

(
f(z)− c− 2cβ

z − 1

)
.

Then h is analytic in D0 and bounded at ∞. We have∣∣∣∣f(z)− c− 2cβ

z − 1

∣∣∣∣ 6 |g(z)|+ |g(∞)|
|z − 1|

6 Λc3/2 2|z| − 1

|z − 1|(|z| − 1)
(60)

so

|h(z)| 6 Λc3/2 |z|(2|z| − 1)

|z| − 1
= 6Λc3/2

whenever |z| = 2. Then, by the maximum principle, for all |z| > 2, we have |h(z)| 6 6Λc3/2

and hence ∣∣∣∣f(z)− c− 2cβ

z − 1

∣∣∣∣ 6 6Λc3/2

|z − 1|(|z| − 1)
.

On the other hand (60) implies the same inequality for 1 < |z| < 2.

Note that (59) with |β − 1| 6 Λ
√
c/2 implies (4) with Λ replaced by 7Λ. Thus the two

conditions are equivalent up to adjustment of the constant by a universal factor.
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A.2 Spread out particles

Consider for γ ∈ C the map on D0 given by

F (z) = Fc,γ(z) = z exp

(
c
γz + 1

γz − 1

)
= ecz exp

(
2c

γz − 1

)
.

It is straightforward to check that Fc,γ is univalent into D0 if and only if

|γ| > γ(c) = 1 + c+
√

2c+ c2.

Then Fc,γ has capacity c and, since

log

(
Fc,γ(z)

z

)
= c

γz + 1

γz − 1

and ∣∣∣∣γz + 1

γz − 1
− z + 1

z − 1

∣∣∣∣ =
2|γ − 1||z|
|z − 1||γz − 1|

we see that Fc,γ has regularity Λ = 2|γ − 1|/
√
c. The corresponding particles Pc,γ are spread

all around the unit circle, as illustrated in the rightmost particle in Figure 1. When γ = γ(c)
we find F ′(1) = 0 so Pc,γ(c) has the form of a cusp with endpoint F (1). Moreover, in the limit

c → 0 with γ = γ(c), the regularity constant Λ stays bounded and logF (1) ∼
√

2c, so the
endpoint lies at distance F (1)− 1 ∼

√
2c from the unit circle.

A.3 Small particles of a fixed shape

The following proposition shows that our condition (4) holds generically for particles attached
near 1 which are not too flat. In particular, it shows that, for particles of a fixed shape,
such as slits or disks, attached to the unit circle at 1, in the small diameter limit δ → 0, the
capacity c → 0 while the regularity constant Λ stays bounded, which is the regime in which
our limit theorems apply.

Proposition A.2. There is a constant C <∞ with the following property. Let P be a basic
particle such that, for some δ0, δ ∈ (0, 1],

(a) |z| = 1 + δ0 for some z ∈ P ,

(b) |z − 1| 6 δ for all z ∈ P .

Then P has capacity c satisfying δ2
0/C 6 c 6 Cδ2. Moreover, if δ 6 1/C, then P has regularity

Λ 6 Cδ/δ0.
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Proof. The bounds on c are well known. The lower bound relies on Beurling’s projection
theorem and a comparison with the case of a slit particle. The upper bound follows from a
comparison with the case Pδ = Sδ ∩D0, where Sδ is the closed disk whose boundary intersects
the unit circle orthogonally at e±iθδ with θδ ∈ [0, π] is determined by |eiθδ − 1| = δ. See
Pommerenke [16].

We turn to the bound on Λ. First we will show, for a = 15δ 6 π, we have

|F (eiθ)| = 1 whenever |θ| ∈ [a, π]. (61)

Then we will show that, if c ∈ (0, 1] and (61) holds with a ∈ (0, π/2), then, for all |z| > 1,∣∣∣∣log

(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ 6 76ac|z|
|z − 1|(|z| − 1)

. (62)

The desired bound on Λ then follows from (61) and (62) and the lower bound on c.
We can write

log

(
F (z)

z

)
= u(z) + iv(z)

where u and v are harmonic functions in D with u(z) → c and v(z) → 0 as z → ∞. Since
F maps into D0, we have u(eiθ) > 0 for all θ ∈ [0, 2π). We have to show that u(eiθ) = 0
whenever |θ| ∈ [a, π]. Set

pδ = P∞(B hits Sδ before leaving D0)

where B is a complex Brownian motion. Consider the conformal map f of D0 to the upper
half-plane H given by

f(z) = i
z − 1

z + 1
.

Set b = f(e−iθδ) = sin θδ/(1 + cos θδ). Since δ 6 1, we have θδ 6 δπ/3 and then b 6 2πδ/9.
By conformal invariance,

pδ = Pi(B hits f(Sδ) before leaving H) = 2

� 2b/(1−b2)

0

dx

π(1 + x2)
.

Hence pδ 6 4b/π 6 8δ/9.
Now eiπ is not a limit point of P so eiπ = F (ei(π+α)) for some α ∈ R. Then u(ei(π+α)) = 0

and we can and do choose α so that α + v(ei(π+α)) = 0. Set

θ+ = sup{θ 6 π + α : u(eiθ) > 0}, θ− = inf{θ > π + α : u(eiθ) > 0} − 2π.
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Then θ− 6 θ+. It will suffice to show that |θ±| 6 15δ. For θ ∈ [θ−, θ+], we have F (eiθ) ∈ Sδ so
|θ+ v(eiθ)| 6 θδ. Set P ∗ = {F (eiθ) : θ ∈ [θ−, θ+]}. Then P ∗ ⊆ Sδ so, by conformal invariance,

θ+ − θ−

2π
= P∞(B hits P ∗ on leaving D0 \ P ) 6 pδ.

On the other hand, for θ, θ′ ∈ [θ+, θ− + 2π] with θ 6 θ′, by conformal invariance,

θ′ − θ
2π

= P∞
(
B hits

[
ei(θ+v(eiθ)), ei(θ

′+v(eiθ
′
))
]

on leaving D0 \ P
)
6
θ′ + v(eiθ

′
)− θ − v(eiθ)

2π

so v is non-decreasing on [θ+, θ− + 2π], and so

α + v(eiθ
+

) 6 α + v(ei(π+α)) = 0 6 α + v(eiθ
−

).

Hence
θ+ − α 6 2πpδ + θ− − α 6 2πpδ + θδ − v(eiθ

−
)− α 6 2πpδ + θδ

and similarly θ− − α > −2πpδ − θδ. So we obtain, for all θ ∈ [θ−, θ+],

|α + v(eiθ)| 6 2θδ + 2πpδ.

Since v is continuous and is non-decreasing on the complementary interval, this inequality
then holds for all θ. Now v is bounded and harmonic in D0 with limit 0 at ∞, so

� 2π

0

v(eiθ)dθ = 0.

Hence

|α| =
∣∣∣∣ 2π

0

(α + v(eiθ))dθ

∣∣∣∣ 6 2θδ + 2πpδ

and so |θ±| 6 3θδ + 4πpδ 6 41πδ/9 6 15δ, as required.
We turn to the proof of (62). Assume now that u(eiθ) = 0 whenever |θ| ∈ [a, π]. Since u

is harmonic, we have  2π

0

u(eiθ)dθ = c

and, for all |z| > 1,

u(z) =

 2π

0

u(eiθ) Re

(
z + eiθ

z − eiθ

)
dθ = c+

 2π

0

u(eiθ) Re

(
2eiθ

z − eiθ

)
dθ.
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Hence, using that u(eiθ) > 0 for all θ ∈ [0, 2π),

|u(z)− c| 6 2

|z| − 1

 2π

0

u(eiθ)dθ =
2c

|z| − 1

and, since v(z) → 0 as z → ∞, a standard argument using the Cauchy–Riemann equations
then shows that ∣∣∣∣log

(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ 6 24c

|z| − 1
.

This gives the claimed estimate in the case where |z − 1| 6 2a. It remains to consider the
case where |z − 1| > 2a. Let α, ρ be defined by

 2π

0

u(eiθ)eiθdθ = cρeiα.

Then |α| 6 a and ρ ∈ [cos a, 1). Now

u(eiαz)− c− Re

(
2ρc

z − 1

)
=

 2π

0

u(ei(θ+α)) Re

(
2eiθ

z − eiθ
− 2eiθ

z − 1

)
dθ

so∣∣∣∣u(eiαz)− c− Re

(
2ρc

z − 1

)∣∣∣∣ 6 2

|z − 1|(|z| − 1)

 2π

0

u(ei(θ+α))|eiθ − 1|dθ 6 4ac

|z − 1|(|z| − 1)
.

The standard argument mentioned above now allows us to deduce that∣∣∣∣v(eiαz)− Im

(
2ρc

z − 1

)∣∣∣∣ 6 27

π

4ac

|z − 1|(|z| − 1)
.

Hence, by a simple calculation,∣∣∣∣log

(
F (z)

z

)
− c− 2ρc

e−iαz − 1

∣∣∣∣ 6 35ac

|e−iαz − 1|(|z| − 1)
. (63)

Note that ∣∣∣∣z + 1

z − 1
− 1− 2ρ

e−iαz − 1

∣∣∣∣ 6 2(1− ρ+ |ρeiα − 1||z|)
|z − 1|(|z| − 1)

6
6a|z|

|z − 1|(|z| − 1)
.

Since |z − 1| > 2a, we have |e−iαz − 1| > |z − 1|/2, so we can deduce from (63) that∣∣∣∣log

(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ 6 76ac|z|
|z − 1|(|z| − 1)

.
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B Preliminary estimates

In this section, we gather together some standard results which are used in our proofs.

B.1 Martingale estimates

We recall the following martingale inequality, due to Burkholder.

Theorem B.1 ([4], Theorem 21.1). Let (Xn)n>0 be a martingale with respect to the filtration
(Fn)n>0. For n > 1 write ∆n = Xn −Xn−1 for the increment process, and define

∆∗n = max
06k6n

|∆k|, Qn =
n∑
k=1

E(|∆k|2|Fk−1).

Then for any p ∈ [2,∞) there exists a constant C = C(p) such that for all n > 1∥∥∥max
k6n
|Xk|

∥∥∥2

p
6 C

(
‖Qn‖p/2 + ‖∆∗n‖2

p

)
.

B.2 Operator estimates

We note some Lp-estimates on operators which act on the set of analytic functions f on
{|z| > 1} which are bounded at ∞, and hence have a Laurent expansion

f(z) =
∞∑
k=0

fkz
−k.

Firstly, for the operator Df(z) = zf ′(z), by a standard argument using Cauchy’s integral
formula, there is an absolute constant C <∞ such that, for all p ∈ N and 1 < ρ < r,

‖Df‖p,r 6
Cρ

r − ρ
‖f‖p,ρ. (64)

Secondly, let L be an operator which acts as multiplication by mk on the the kth Laurent
coefficient. Thus

Lf(z) =
∞∑
k=0

mkfkz
−k.

Assume that there exists a finite constant M > 0 such that, for all k > 0,

|mk| 6M
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and, for all integers K > 0,
2K+1−1∑
k=2K

|mk+1 −mk| 6M.

The Marcinkiewicz multiplier theorem [21, Vol. II, Theorem 4.14] then asserts that, for all
p ∈ (1,∞), there is a constant C = C(p) <∞ such that, for all r > 1,

‖Lf‖p,r 6 CM‖f‖p,r.

We will use also the following estimate. Write ‖L‖p,ρ→r for the smallest constant K such that

‖Lf‖p,r 6 K‖f‖p,ρ
for all analytic functions f on {|z| > 1} bounded at ∞.

Proposition B.2. Let f and g be analytic in {|z| > 1} and bounded at ∞. Set fθ(z) =
f(e−iθz). Let L be a multiplier operator and define

h(z) =

 2π

0

|L(fθ · g)|2(z)dθ.

Then, for all r, ρ > 1, we have

‖h‖p/2,r 6 ‖L‖2
p,ρ→r‖g‖2

p,ρ‖f‖2
2,ρ. (65)

Proof. We can write

f(z) =
∞∑
k=0

fkz
−k, g(z) =

∞∑
k=0

gkz
−k, Lf(z) =

∞∑
k=0

mkfkz
−k.

Then

L(fθ · g)(z) =
∞∑
k=0

∞∑
j=0

mj+kfkgje
iθkz−(k+j)

so

h(z) =
∞∑
k=0

|fk|2|L(τkg)(z)|2

where τkg(z) = z−kg(z). Hence

‖h‖p/2,r 6
∞∑
k=0

|fk|2‖L(τkg)‖2
p,r 6

∞∑
k=0

|fk|2‖L‖2
p,ρ→r‖τkg‖2

p,ρ

=
∞∑
k=0

|fk|2ρ−2k‖L‖2
p,ρ→r‖g‖2

p,ρ = ‖L‖2
p,ρ→r‖f‖2

2,ρ‖g‖2
p,ρ.
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C Computations of first order and error estimates

In this section, we provide the detailed calculations behind the estimates stated in Section
3. We only explicitly state estimates for η ∈ [0, 1], taking advantage of the fact that certain
constants can be chosen uniformly over such values of η. Similar estimates hold for η ∈
(−∞, 0), and we leave the necessary adjustments to the reader. Furthermore, throughout this
section we assume that c, σ 6 1. This assumption can be relaxed at the cost of the absolute
constants.

C.1 Estimates on the attachment measure hn(θ)

We begin by obtaining estimates on hn(θ), defined in (3). By an elementary calculation, for
all η ∈ (−∞, 1] and w ∈ C \ {0}, we can write

|w|−η = 1− ηRe(w − 1) + ε1(w)

with
|ε1(w)| 6 C(|w|−η ∨ 1)|w − 1|2

for some constant C < ∞ depending only on η. We will see below that C 6 24 for all
η ∈ [0, 1]; the case η < 0 requires minor adjustments to take into account the dependence of
C on η, which we leave to the reader. Take

w = e−c(n−1)Φ′n−1(eσ+iθ) = Φ̃′n−1(eσ+iθ) + 1

to obtain
ec(n−1)η|Φ′n−1(eσ+iθ)|−η = 1− ηRe Φ̃′n−1(eσ+iθ) + ε2(θ)

where
ε2(θ) = ε1(w).

(Here and throughout the remainder of this section, n is fixed and the dependence of error
terms on n is suppressed in the notation). Then

ec(n−1)ηZn =

 2π

0

ec(n−1)η|Φ′n−1(eσ+iθ)|−ηdθ = 1 + ε3 =
1

1 + ε4

(66)

where

ε3 =

 2π

0

ε2(θ)dθ, ε4 = − ε3

1 + ε3

.

Here we used the fact that � 2π

0

Re Φ̃′n−1(eσ+iθ)dθ = 0
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which holds because Φ̃′n−1(z) is analytic in {|z| > 1} and vanishes as z →∞. Hence

hn(θ) = 1− ηRe Φ̃′n−1(eσ+iθ) + ε5(θ) (67)

where
ε5(θ) = ε2(θ) + (1− ηRe Φ̃′n−1(eσ+iθ))ε4 + ε2(θ)ε4.

Recall the definition of N0 from (16). Then, for all n 6 N0 and all θ ∈ [0, 2π),

|Φ̃′n−1(eσ+iθ)| 6 1

8
,

7

8
6 e−c(n−1)|Φ′n−1(eσ+iθ)| 6 9

8
so

|ε2(θ)| 6 192

7
|Φ̃′n−1(eσ+iθ)|2

and

|ε3| =
∣∣∣∣ 2π

0

ε2(θ)dθ

∣∣∣∣ 6 192

7
‖Φ̃′n−1‖2

2,eσ 6
3

7
.

Using (66) to bound |1 + ε3| directly,

|ε4| 6
9

8
|ε3| 6

216

7
‖Φ̃′n−1‖2

2,eσ

and
|ε5(θ)| 6 42|Φ̃′n−1(eσ+iθ)|2 + 35‖Φ̃′n−1‖2

2,eσ 6 77δ2
0. (68)

This estimate, together with (67), is used to justify the bounds in (17) and (18).

C.2 Estimates on the increment ∆n(θ, z)

We now move to analysing the increment ∆n(θ, z), defined in (9). Recall from (23) that

∆n(θ, z) = mn(θ, z) + wn(θ, z)

where mn is defined in(22). By (21) we can write

wn(θ, z) = ε6(θ, z) + ε7(θ, z)

where

ε6(θ, z) =

(
log

F (e−iθz)

e−iθz
− c
) � 1

0

(DΦn−1(Fs,θ(z))− ecnz)ds

=

(
log

F (e−iθz)

e−iθz
− c
) � 1

0

ec(n−1)
(
Ψn−1(Fs,θ(z)) + Fs,θ(z)− ecz

)
ds,

ε7(θ, z) = ecnz

(
log

F (e−iθz)

e−iθz
− c− 2cβ

e−iθz − 1

)
.
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Note that ε6(θ,∞) = ε7(θ,∞) = 0 and

|ε7(θ, z)| 6 6Λecnc3/2|z|
|e−iθz − 1|(|z| − 1)

. (69)

By some straightforward estimation, we obtain a constant C = C(Λ) < ∞ such that, for all
c ∈ (0, 1] and all |z| > 1,

|z| 6 |Fs,θ(z)| 6 eC
√
c|z|

and, for |z| > 1 +
√
c,

|Fs,θ(z)− ecz| 6 Cc|z|
|e−iθz − 1|

. (70)

Hence, for |z| > 1 +
√
c,

|ε6(θ, z)| 6 Ccecn

|e−iθz − 1|

� 1

0

|Ψn−1(Fs,θ(z))|ds+
Cc2ecn|z|
|e−iθz − 1|2

. (71)

This estimate, together with (69), is used to justify the bound (24). We combine (67) and
(21) to obtain

An(z) =

 2π

0

(
− ηRe Φ̃′n−1(eσ+iθ) + ε5(θ)

)(
2cβecnz

ze−iθ − 1
+ ε6(θ, z) + ε7(θ, z)

)
dθ.

By Cauchy’s integral formula

 2π

0

ηRe Φ̃′n−1(eσ+iθ)
2cβecnz

ze−iθ − 1
dθ = cβηecnzΦ̃′n−1(eσz).

So we obtain
An(z) = −cηecnzΦ̃′n−1(eσz) +Rn(z) (72)

where

Rn(z) =

 2π

0

(
2cβecnz

ze−iθ − 1
ε5(θ) +

(
−ηRe Φ̃′n−1(eσ+iθ) + ε5(θ)

)
(ε6(θ, z) + ε7(θ, z))

)
dθ

− c(β − 1)ηecnzΦ̃′n−1(eσz).

Now suppose n 6 N0. Then, using (69) and (71), for |z| = r with r > 1 +
√
c, we obtain

(27).
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C.3 A more refined decomposition

The estimate (24), is not sufficiently tight for all our needs. In this section, we give a decom-
position of wn, which can be used for more refined estimates.

Set

l(z) = log
F (z)

z
− c, q(z) = l(z)− 2cβ

z − 1
.

Then, for |z| = r > 1 +
√
c,

|l(z)| 6 Cc

|z − 1|
, |q(z)| 6 Cc3/2

(r − 1)|z − 1|
.

It follows that we can write

F (z) = ecz +
2cβecz

z − 1
+ q̃(z)

where

|q̃(z)| 6 Cc3/2|z|
(r − 1)|z − 1|

.

We will write

l(θ, z) = l(e−iθz), q(θ, z) = q(e−iθz), q̃(θ, z) = eiθq̃(e−iθz), F (θ, z) = eiθF (e−iθz).

Recall the interpolation (20), which we can write as

Fs,θ(z) = ecz exp(sl(θ, z)).

We will use the following Taylor expansion

Φ̃n−1(F (θ, z)) =
m∑
k=0

l(θ, z)k

k!
(DkΦ̃n−1)(ecz) + l(θ, z)m+1

� 1

0

(1− s)m

m!
(Dm+1Φ̃n−1)(Fs,θ(z))ds

where m ∈ N. Hence

∆n(θ, z) = ec(n−1)
(

Φ̃n−1(F (θ, z)) + F (θ, z)− Φ̃n−1(ecz)− ecz
)

= ec(n−1)

(
F (θ, z)− ecz +

m∑
k=1

l(θ, z)k

k!
(DkΦ̃n−1)(ecz)

)

+ ec(n−1)l(θ, z)m+1

� 1

0

(1− s)m

m!
(Dm+1Φ̃n−1)(Fs,θ(z))ds

= ec(n−1)

(
2cβecz

e−iθz − 1
+ q̃(θ, z) +

m∑
k=1

l(θ, z)k

k!
(Dk−1Ψn−1)(ecz)

)

+ ec(n−1)l(θ, z)m+1

� 1

0

(1− s)m

m!
(DmΨn−1)(Fs,θ(z))ds
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and so

wn(θ, z) = ec(n−1)q̃(θ, z) + ec(n−1)

m∑
k=1

l(θ, z)k

k!
(Dk−1Ψn−1)(ecz)

+ ec(n−1)l(θ, z)m+1

� 1

0

(1− s)m

m!
(DmΨn−1)(Fs,θ(z))ds. (73)

D Proofs of second order bounds

D.1 Estimation of the second martingale term

In this section, we give the proof of Lemma 5.2, which bounds the second martingale term
Wn(z) in the decomposition (32) of the differentiated fluctuation process, which is given by

Wn(z) = e−cn
n∑
j=1

P n−j
0 DWj(e

c(1−η)(n−j)z).

By Burkholder’s inequality, for all p ∈ [2,∞), there is a constant C = C(p) <∞ such that

‖Wn(z)1{n6N0}‖2
p

6 Ce−2cn

(
‖ max

16j6n
XW
j,n(ec(1−η)(n−j)z)1{j6N0}‖2

p +
n∑
j=1

‖QW
j,n(ec(1−η)(n−j)z)1{j6N0}‖p/2

)

where

XW
j,n(z) = |P n−j

0 DWj(e
c(1−η)(n−j)z)| and QW

j,n(z) = E(|P n−j
0 DWj(e

c(1−η)(n−j)z)|2|Fj−1).

Then, on taking the ‖ · ‖p/2,r-norm, we deduce that

9Wn1{n6N0}9
2
p,r 6 Ce−2cn

(
9 max

16j6n
XW
j,n1{j6N0} 9

2
p,r +

n∑
j=1

9QW
j,n1{j6N0}9p/2,rn−j

)
. (74)

While it is possible to use the estimate (24) to bound this expression, the bound is only
sufficient to prove our final result for σ � c1/3. In order to obtain a bound that works all the
way down to σ � c1/2, we need the refined decomposition (73), for some m ∈ N which we will
choose later. Define

U i
n(z) = uin(Θn, z)−

 2π

0

uin(θ, z)hn(θ)dθ
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where

u0
n(θ, z) = ec(n−1)q̃(θ, z),

u1
n(θ, z) = ec(n−1)

m∑
k=1

l(θ, z)k

k!
Dk−1Ψn−1(ecz),

u2
n(θ, z) = ec(n−1)l(θ, z)m+1

� 1

0

(1− s)m

m!
DmΨn−1(Fs,θ(z))ds.

Then Wn = U0
n + U1

n + U2
n so, with obvious notation,

QW
j,n 6 3(Q0

j,n +Q1
j,n +Q2

j,n)

and so
‖QW

j,n‖p/2,r 6 3
(
‖Q0

j,n‖p/2,r + ‖Q1
j,n‖p/2,r + ‖Q2

j,n‖p/2,r
)
.

We estimate the terms on the right. First, for j 6 N0, we have

Qi
j,n(z) = E(|P n−j

0 DU i
j(z)|2|Fj−1) 6 E(|P n−j

0 Duij(Θj, z)|2|Fj−1)

=

 2π

0

|P n−j
0 Duij(θ, z)|2hj(θ)dθ 6 3

 2π

0

|P n−j
0 Duij(θ, z)|2dθ.

We start with i = 0. Then for all |z| = r and j 6 N0,

Q0
j,n(z) 6 3

 2π

0

|P n−j
0 D(ec(j−1)q̃(e−iθz))|2dθ

= 3e2c(j−1)‖P n−j
0 Dq̃‖2

2,r

6 Cc3e2cj r3

(r − 1)5
.

Here, and in what follows, C < ∞ is a constant, which may only depend on Λ, η, m and p,
and which may change from line to line.

Next, consider i = 1. Note that

Q1
j,n 6 Ce2c(j−1)

m∑
k=1

 2π

0

|P n−j
0 D

(
l(θ, z)kDk−1Ψj−1(ecz)

)
|2dθ.

We use the estimates (64),(65) and (33) to see that, for ρ = (r + 1)/2 and ρ̃ = (3r + 1)/4,

‖Q1
j,n‖p/2,r 6 Ce2c(j−1)‖Ψj−1‖2

p,ρ

m∑
k=1

(
r

r − 1

)2k

‖lk‖2
2,ρ̃.

58



It follows from (4) that, for |z| > 1 +
√
c,

|l(z)| 6 2(Λ + 1)c

|z − 1|
.

Hence

‖Q1
j,n‖p/2,r 6 Ce2cj‖Ψj−1‖2

p,ρ

m∑
k=1

(
r

r − 1

)2k
c2k

r(r − 1)2k−1

6 Ce2cj‖Ψj−1‖2
p,ρc

2 r

(r − 1)3

where in the last line we used that r > 1 +
√
c.

Finally we turn to i = 2. Then, for |z| = r > 1 +
√
c and ρ̃ = (3r + 1)/4, using Jensen’s

inequality and the inequalities (64) and (33),

‖Q2
j,n‖

p/2
p/2,r 6 3p/2

 2π

0

( 2π

0

|P n−j
0 Du2

j(θ, re
it)|2dθ

)p/2
dt

6 3p/2
 2π

0

 2π

0

|P n−j
0 Du2

j(θ, re
it)|pdtdθ

6 C

(
r

r − 1

)p  2π

0

 2π

0

|u2
j(θ, ρ̃e

it)|pdtdθ

= C

(
r

r − 1

)p  2π

0

 2π

0

|u2
j(θ + t, ρ̃eit)|pdtdθ.

Note that

u2
j(θ + t, ρ̃eit) = ec(j−1)

(
log

F (ρ̃e−iθ)

ρ̃e−iθ
− c
)m+1 � 1

0

(1− s)m

m!
(DmΨj−1)(eitFs,θ(ρ̃))ds.

We use the inequalities (4), |Fs,θ(ρ̃)| > ρ̃ and (70) to see that, for ρ = (r + 1)/2 > 1 +
√
c,

‖DmΨj−1‖p,|Fs,θ(ρ̃)| 6 C

(
r

r − 1

)m
‖Ψj−1‖p,ρ.

Hence we obtain

 2π

0

|u2
j(θ + t, ρ̃eit)|pdt 6 Cec(j−1)p

∣∣∣∣ c

ρ̃e−iθ − 1

∣∣∣∣p(m+1)(
r

r − 1

)mp
‖Ψj−1‖pp,ρ
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and then
 2π

0

 2π

0

|u2
j(θ + t, ρ̃eit)|pdtdθ

6 C

(
cm+1ec(j−1)‖Ψj−1‖p,ρrm

(r − 1)m

)p  2π

0

1

|ρe−iθ − 1|(m+1)p
dθ.

Hence

‖Q2
j,n‖

p/2
p/2,r 6 C

(
cm+1ec(j−1)‖Ψj−1‖p,ρrm+1

(r − 1)m+1

)p
1

ρ(ρ− 1)(m+1)p−1

and hence

‖Q2
j,n‖p/2,r 6 Cc2(m+1)e2cj r2(m+1)−2/p

(r − 1)4(m+1)−2/p
‖Ψj−1‖2

p,ρ.

Fix ε ∈ (0, 1/2) and assume that r > 1 + c1/2−ε. Then, on choosing m = d1/(8ε)e, we obtain,
for all p > 2,

‖Q2
j,n‖p/2,r 6 Cc2e2cj r

(r − 1)3
‖Ψj−1‖2

p,ρ

where C now depends on ε, in places where before it depended on m.
On combining our estimates, we have shown that, for j 6 N0, we have

‖QW
j,n‖p/2,r 6 Cc2e2cj r

(r − 1)3

(
‖Ψj−1‖2

p,ρ + c

(
r

r − 1

)2
)
.

We take the Lp/2(P)-norm to deduce that

9QW
j,n1{j6N0}9p/2,r 6 Cc2e2cj r

(r − 1)3

(
9Ψj−11{j6N0} 9

2
p,ρ +c

(
r

r − 1

)2
)
.

When bounding 9max16j6nX
W
j,n1{j6N0}9

2
p,r, it is sufficient to take m = 0 in the decomposition

above. In this case u1
n(θ, z) = 0, so

9 max
16j6n

XW
j,n1{j6N0}9

2
p,r 6 2

(
9 max

16j6n
X0
j,n1{j6N0} 9

2
p,r + 9 max

16j6n
X2
j,n1{j6N0}9

2
p,r

)
.

By (64) and (33), now, similarly to above,

9P n−j
0 DU i

j(z)9p,r 6 C

(
r

r − 1

)
9 U i

j(z) 9p,ρ .
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For i = 0,

‖u0
j(Θj, z)‖pp,r =

 2π

0

|u0
j(Θj, re

it)|pdt =

 2π

0

|u0
j(0, re

i(t−Θj))|pdt

= ‖u0
j(0, z)‖pp,r 6

Cepc(j−1)c3p/2r2p−1

(r − 1)3p−1

and hence, by the same argument as in the proof of Lemma 5.1,

9 max
16j6n

X0
j,n1{j6N0}9

2
p,r 6

Ce2c(n−1)c3−2/pr4−2/p

(r − 1)6−2/p
.

For i = 2,
9U2

j (z)9pp,r = E
(
E(‖U2

j (z)‖pp,r|Fj−1)
)
.

Now, by the computation above,

E(‖u2
j(Θj, z)‖pp,r|Fj−1) =

 2π

0

 2π

0

|u2
j(θ, re

it)|phj(θ)dtdθ

6
Ccpecp(j−1)‖Ψj−1‖pp,ρrp−1

(r − 1)2p−1
.

Hence

9 max
16j6n

X2
j,n1{j6N0}9

2
p,r 6

Ce2c(n−1)c2−2/pr2−2/p

(r − 1)4−2/p
max
16j6n

9Ψj−11{j6N0} 9
2
p,ρ .

Then, on using this estimate in (74), we obtain (38).
Now suppose η < 1. It suffices to prove the result for p sufficiently large, so assume

p > 1 + 1/(2ε). We use our constraint on r, the monotonicity of norms (8), and same integral
comparison as in (37) to deduce from (38) the estimate

9Wn1{n6N0}9
2
p,r 6

Cc

r2

(
r

r − 1

)2(
1 + c1−2/p

(
r

r − 1

)2−2/p)
sup
j6n

9Ψj−11{j6N0}9
2
p,ρ

+
Cc2

r2

(
r

r − 1

)4(
1 + c1−2/p

(
r

r − 1

)2−2/p)
.

The desired result follows, using our assumption on p.
The case when η = 1 is similar.
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D.2 Estimation of the remainder term

The remainder term in the decomposition (32) of the differentiated fluctuation process is given
by

Rn(z) = e−cn
n∑
j=1

P n−j
0 DRj(e

c(1−η)(n−j)z).

In this section, we give the proof of Lemma 5.3, which bounds this quantity.
By the triangle inequality

9Rn1{n6N0}9p,r 6 e−cn
n∑
j=1

9P n−j
0 DRj1{j6N0} 9p,rn−j .

For n 6 N0 and |z| = r > 1 +
√
c, we obtained in (27) the estimate

|Rn(z)−Rn(∞)| 6 Ccecnδ0

r

(
1 + log

(
r

r − 1

))(
δ0 +

√
c

(
r

r − 1

))
+ Cc3/2ecn|Ψn−1(eσz)|+ Ccecnδ0

� 1

0

 2π

0

|Ψn−1(Fs,θ(z))|
|ze−iθ − 1|

dθds.

We bound the ‖ · ‖p,r-norm of the final term on the right as follows: 2π

0

(� 1

0

 2π

0

|Ψn−1(Fs,θ(re
iu))|

|reiue−iθ − 1|
dθds

)p
du

=

� 1

0

. . .

� 1

0

 2π

0

. . .

 2π

0

( 2π

0

p∏
m=1

|Ψn−1(Fsm,θm(reiu))|
|reiue−iθm − 1|

du

)
dθ1 . . . dθpds1 . . . dsp

=

� 1

0

. . .

� 1

0

 2π

0

. . .

 2π

0

( 2π

0

p∏
m=1

|Ψn−1(eiuFsm,τm(r))|
|re−iτm − 1|

du

)
dτ1 . . . dτpds1 . . . dsp

6 ‖Ψn−1‖pp,r
 2π

0

. . .

 2π

0

p∏
m=1

1

|re−iτm − 1|
dτ1 . . . dτp

6

(
C

r

)p(
1 + log

(
r

r − 1

))p
‖Ψn−1‖pp,r.

We used the change of variable τm = θm − u and the identity

Fsm,τm+u(re
iu) = eiuFsm,τm(r)

in the second equality. Then we used Hölder’s inequality and the fact that |Fs,τm(r)| > r for
the first inequality, and we used 2π

0

1

|re−iτ − 1|
dτ 6

C

r

(
1 + log

(
r

r − 1

))
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for the second inequality. Hence, for all p ∈ N,

‖Rn −Rn(∞)‖p,r 6
Ccecnδ0

r

(
δ0 + ‖Ψn−1‖p,r +

√
c

(
r

r − 1

))(
1 + log

(
r

r − 1

))
+ Cc3/2ecn‖Ψn−1‖p,r.

We use (64) and (33) to obtain (39).
Now suppose n 6 T/c for some constant T . If η < 1, the result follows, using the integral

comparison

n∑
j=1

c

rj − 1
6

c

r − 1
+

� n

0

c

rec(1−η)τ − 1
dτ 6

c

r − 1
+

� n

0

cec(1−η)τ

rec(1−η)τ − 1
dτ

6
c

r − 1
+

1

r

(
1

1− η
log

(
r

r − 1

)
+ T

)
6
C

r

(
1 + log

(
r

r − 1

))
.

The argument when η = 1 is similar.
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