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Abstract

We compute symplectic cohomology for Milnor fibres of certain compound Du Val
singularities that admit small resolution by using homological mirror symmetry. Our
computations suggest a new conjecture that the existence of a small resolution has
strong implications for the symplectic cohomology and conversely. We also use our
computations to give a contact invariant of the link of the singularities and thereby
distinguish many contact structures on connected sums of S2 × S3.

1 Introduction

1.1 Links

Let X ⊂ CN be a normal n-dimensional algebraic variety over C and let P ∈ X be a point;
we will write [P ∈ X] for the germ of X at P considered up to local analytic equivalence.
Recall that the link of P ∈ X, written Link(P ), is the intersection of a small Euclidean
sphere centred at P with X. If P is a smooth point or isolated singularity then the link is a
smooth, compact (2n−1)-dimensional manifold; we will focus on hypersurface singularities,
whose link is (n− 2)-connected. How much information do we retain about [P ∈ X] if we
only remember the manifold Link(P )?

Mumford [35] proves that if n = 2 then Link(P ) is a simply-connected 3-manifold if and
only if P ∈ X is a smooth point. By contrast, in higher dimensions, the topology of
the link exerts less influence. For example, if Σ is any homotopy 7-sphere, Brieskorn [8]
constructs singular complex 4-folds Pk ∈ Xk, k ∈ N, with [Pi ∈ Xi] 6= [Pj ∈ Xj] for i 6= j
and Link(Pk) ∼= Σ. More generally, when n ≥ 3, surgery theory tells us there are not very
many (n− 2)-connected (2n− 1)-manifolds1, but there are lots of singularities.

The field of complex tangencies ξ forms a contact distribution on Link(P ) [48]. McLean [32]
demonstrates that the contact manifold (Link(P ), ξ) retains much more information about

1For a classification, see Wall [50].
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[P ∈ X]. For example, he shows that (Link(P ), ξ) is contactomorphic to the standard
contact 5-sphere if and only if P ∈ X is a smooth point, and that the minimal discrepancy
of a canonical Q-Gorenstein singularity P ∈ X is determined by (Link(P ), ξ).

An interesting corollary of McLean’s work relates the purely algebro-geometric notion of
terminal singularities to the purely contact geometric notion of dynamical convexity.

• A singularity is called terminal if its minimal discrepancy is positive. Terminal singu-
larities emerged in the work of Reid [39] as a natural class of singularities that should
appear on minimal models of smooth 3-folds. The 3-fold terminal singularities were
classified by Mori [34].

• A Reeb flow on a contact manifold is called dynamically convex if every closed Reeb
orbit γ satisfies µCZ(γ)+n−3 > 0, where µCZ is the Conley-Zehnder index. A contact
manifold which admits a dynamically convex Reeb flow is called index positive.

Theorem 1.1 ([32]). Suppose that P ∈ X is an isolated Q-Gorenstein singularity with
H1(Link(P );Q) = 0 (e.g. a hypersurface singularity of dimension n ≥ 3). The singularity
P ∈ X is terminal if and only if its link (Link(P ), ξ) is index positive.

Proof. If P ∈ X is terminal then the minimal discrepancy is positive, so McLean’s theorem
implies that the highest minimal SFT index of the link is positive, which is precisely the
statement that there is a dynamically convex Reeb flow on (Link(P ), ξ). If there is no
dynamically convex Reeb flow then the highest minimal SFT index is nonpositive so, by
McLean’s theorem, the minimal discrepancy is also nonpositive; therefore P ∈ X is not
terminal.

Invariants of contact manifolds (like contact homology or symplectic field theory) are no-
toriously difficult to define because of bubbling of pseudoholomorphic curves in symplecti-
sations. The condition of index positivity allows us to bypass many of these problems to
get useful contact invariants. For example, if Y is a contact manifold and V is a simply-
connected strong symplectic filling of Y with c1(V ) = 0, then we can define symplectic
cohomology

SH∗(V ;C)

as a Z-graded2 C-vector space (with various additional algebraic structures on it) which
usually depends on V . However, if Y is simply-connected and index positive then the
dependence of SH∗(V ;C) on the filling is very mild. The positive symplectic cohomology
SH∗+(V ;C), constructed as the cohomology of a quotient complex of the cochain complex of
SH∗(V ;C) by the cochains coming from the interior of the filling, is known to be a contact

2More generally, the possible Z-gradings on SH∗(V ;C) form a torsor over H1(V ;Z). Note that with
our grading conventions an orbit with Conley-Zehnder index µ lives in degree n − µ where 2n = dimV .
In particular the unit lives in degree zero and a constant orbit corresponding to a critical point of Morse
index k lives in degree k.
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invariant [12, Proposition 9.17]. This has been used successfully by Uebele to distinguish
some contact structures on S2 × S3 [45].

We explore a refinement of this in Corollary 4.5. In particular, for n = 3, we are able prove
by a standard neck-strecthing technique that the Lie algebra structure on SH1(V ;C) and
its Lie algebra representation on

⊕
d<0 SHd(V ;C) is a contact invariant.

Our goal in this paper is to compute symplectic cohomology for some further examples
of links of terminal 3-fold hypersurface singularities, observe some patterns which emerge,
and use it to distinguish a variety of links.

1.2 Compound Du Val (cDV) singularities

It is a theorem of Reid [39, Theorem 1.1] that the Gorenstein terminal 3-fold singularities
are precisely the isolated compound Du Val (cDV) singularities. These are hypersurface
singularities which (in suitable local analytic coordinates (w, x, y, z)) are cut out by an
equation of the form

f(x, y, z) + wg(x, y, z, w) = 0

where f is one of the following polynomials:

A` : x2 + y2 + z`+1,

D` : x2 + y(z2 + y`−2),

E6 : x2 + y3 + z4,

E7 : x2 + y(y2 + z3),

E8 : x2 + y3 + z5.

The w = 0 hyperplane section has an ADE singularity at 0. If Γ is the ADE type of this
hyperplane section, we refer to the 3-fold singularity as a compound Γ or cΓ singularity.

As we have explained in Theorem 1.1, the links of these singularities are index positive
and so we can use SH∗ of the Milnor fibre for ∗ < 0 as a contact invariant.

Remark 1.2. Observe that if we define B ⊂ Link(0) to be the intersection {w = 0} ∩
Link(0) then we get a Milnor open book

w/|w| : Link(0) \B → S1

with binding B. The page is a copy of the corresponding 4-dimensional ADE Milnor fibre
and the contact structure determined by the open book is contactomorphic to ξ.

Example 1.3. Consider the family of cA1 singularities

A` := {x2 + y2 + z2 + w`+1 = 0}, ` ≥ 1.
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In fact, any cA1 singularity is equivalent to one of these. The link is either S5 (if ` is even)
or S2×S3 (if ` is odd). The page of the Milnor open book is the A1-Milnor fibre T ∗S2, and
the monodromy is the (`+ 1)st power of a Dehn twist in the zero-section. The symplectic
cohomology of the Milnor fibre V` behaves differently if ` is odd or even. If ` is even then,
by [30, Section 5.2], we have

SH∗(V`;C) =


C` if ∗ = 3

C if ∗ = −q(`+ 3)− r for r ∈ {0, . . . , `− 1}, r = q(mod2)

C if ∗ = −q(`+ 3)− r + 1 for r ∈ {0, . . . , `− 1}, r = q(mod2)

0 otherwise,

for q ∈ N. In particular, we see that SH∗ can be either 0 or C for ∗ < 0.

If ` is odd then we will see below that

SH∗(V`;C) =


C` if ∗ = 3

C if ∗ = 1 or ∗ < 0

0 otherwise.

Write ξ` for the contact structure on the link of 0 ∈ A`. Since the contact invariant SH∗+
coincides with SH∗ if ∗ < 0, this shows that

(a) the links {(S5, ξ`) : ` = 2, 4, 6, . . .} are pairwise nonisomorphic as contact manifolds,

(b) we cannot distinguish the links {(S2 × S3, ξ`) : ` = 1, 3, 5, . . .} using SH∗+ with
coefficients in C.

A similar phenomenon was observed by Van Koert [47, Example 3.1.1] for these contact
structures on S2 × S3: they are not distinguished by their cylindrical contact homology.
Interestingly, Uebele [45] does distinguish them using SH∗+ with coefficients in Z/2. We
will give a second way to distinguish them below.

From an algebro-geometric perspective, the singularities A` have different behaviour when
` is even/odd. For example, these singularities admit small resolutions3 if and only if ` is
odd; indeed, if ` is odd, there is a resolution whose exceptional set is an irreducible rational
curve. However, if ` is even then there cannot be a small resolution because the link is not
diffeomorphic to a nontrivial connected sum of copies of S2 × S3.

Inspired by this example, we record an optimistic conjecture, which provides the main
motivation for the calculations in this paper. We will establish this conjecture in a range
of examples (Theorem 1.8).

Conjecture 1.4. Suppose that P ∈ X is a cDV singularity and let V be the Milnor fibre
of the singularity. Then P ∈ X admits a small resolution such that the exceptional set has
` irreducible components if and only if SH∗(V ;C) has rank ` in every negative degree.

3Recall that a small resolution is a resolution whose exceptional set has codimension at least 2. Note
that, by [39, Theorem 1.14], a resolution of an isolated cDV singularity is small if and only if it is crepant.
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Remark 1.5. In this paper, we have focused on providing evidence for one direction of this
conjecture: that the existence of a small resolution constrains the symplectic cohomology.
The converse is plausible: we have calculated many examples and found no counterexample.
This would give an a priori way of detecting whether a cDV singularity admits a small
resolution just by knowing its link.

Remark 1.6. If P ∈ X admits a small resolution whose exceptional set has ` irreducible
components then the link is diffeomorphic to ]`(S

2 × S3). Small resolutions can be con-
structed by thinking of the 3-fold as a 1-parameter deformation of an ADE singularity.
This gives a classifying map from the disc to the versal deformation space of the ADE
singularity such that the 3-fold is the pullback along the classifying map of the versal
family. Brieskorn [9], Tjurina [44] and Pinkham [37] constructed branched coverings of
the versal ADE deformation space (branched over the discriminant locus) such that the
pullback of the versal family to the branched covering admits a simultaneous (partial) reso-
lution. More precisely, the fundamental group of the complement of the discriminant locus
is the ADE Artin braid group; Brieskorn and Tyurina constructed the branched covering
corresponding to the kernel of the homomorphism to the ADE Weyl group and found a
full simultaneous resolution, while Pinkham constructed simultaneous partial resolutions
for intermediate covering spaces. For a specific 3-fold, if the classifying map from the disc
lifts (in the sense of algebraic topology) to one of these branched covers, then you get a
small resolution by pulling back the simultaneous partial resolution of the versal family.
In particular, the existence of a small resolution can be read off from the monodromy of
the Milnor open book mentioned in Remark 1.2 (which is the element of the fundamental
group of the ADE Artin braid group represented by the boundary of the disc under the
classifying map).

Remark 1.7. Remark 1.6 provides a sanity check on Conjecture 1.4. Consider what
happens if we deform the germ of the singularity at P . Namely, suppose we have a
family hs(w, x, y, z) = f(x, y, z) +gs(w, x, y, z) of cDV singularities parametrised by s ∈ C.
Suppose that there are balls B ⊂ C and B′ ⊂ C4 such that for s ∈ B, the origin is the
only singularity of the hypersurface h−1

s (0) ∩ B′. Gray’s stability theorem tells us that
the contact geometry of the link of the singularity is independent of s ∈ B. Moreover, if
0 ∈ h−1

0 (0) admits a small resolution then so do all the singularities 0 ∈ h−1
s (0) because

the monodromy of the Milnor open book is stable under perturbations.

We now summarise our evidence for Conjecture 1.4. These calculations will be explained
in Section 3. Throughout, we work over C.

Theorem 1.8. The table below summarises our calculations of symplectic cohomology for
Milnor fibres of some cDV singularities. The left-most column is a polynomial w̌ and the
singularity is defined by 0 ∈ w̌−1(0). The columns SH∗ give the ranks of the various graded
pieces of SH(w̌−1(1)). In all cases, SHd(w̌−1(1)) = 0 if d = 2 or d ≥ 4. The final column
gives a reference for the calculation. Case 4 is conditional on Conjecture 2.2 or Conjecture
2.3, so we have marked it with an asterisk.
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Singularity ADE type SH3 SHd≤1 See Theorem...

1. x2
1 + x2

2 + x`+1
3 + x

k(`+1)
4 A` `(k(`+ 1)− 1) ` 3.7 (1), (2)

2. x2
1 + x2

2 + x3x4(x`−1
3 + x

k(`−1)
4 ) A` (k`+ 1)(`− 1) ` 3.13

3. x2
1 + x3

2 + x3
3 + x6k

4 D4 24k − 4 4 3.7 (3)
4*. x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4 D4 6k + 5 1 3.10
5. x2

1 + x3
2 + x4

3 + x12k
4 E6 72k − 6 6 3.7 (4)

6. x2
1 + x3

2 + x5
3 + x30k

4 E8 240k − 8 8 3.7 (5)

Remark 1.9. In all cases, these singularities admit small resolutions and the number of
exceptional curves in the resolution equals the rank of SHd for d ≤ 1; this is explained
case-by-case in Section 3. In particular, this establishes Conjecture 1.4 for these examples.

Remark 1.10. The examples in Theorem 1.8 are all invertible polynomials (see Section 2),
and our strategy for calculating symplectic cohomology uses mirror symmetry for invert-
ible polynomials to relate SH with the Hochschild cohomology of a mirror dg-category of
equivariant matrix factorisations. In all cases except case 4, the required mirror symmetry
conjecture is proven. Case 4 is only proved conditionally (see Section 2.2). This example
is the base of the Laufer flop [27].

Remark 1.11. Theorem 1.8 seems to indicate that symplectic cohomology (over C) of
the Milnor fibre is not a useful invariant for distinguishing contact structures on links. We
are nonetheless able to distinguish all these examples by studying a certain bigrading on
symplectic cohomology, as we discuss in Section 1.3. Note that Uebele’s work (discussed
in Example 1.3 above) shows that Conjecture 1.4 breaks down if we work over a field of
characteristic 6= 0, which gives an alternative way to distinguish contact structures on
links.

1.3 Families of inequivalent contact structures

We introduce the following notation for the contact structures on the links of our singu-
larities:

Table 1: Contact structures on links of our cDV singularities.

Singularity Link Contact structure

1. x2
1 + x2

2 + x`+1
3 + x

k(`+1)
4 ]`(S

2 × S3) α`,k
2. x2

1 + x2
2 + x3x4(x`−1

3 + x
k(`−1)
4 ) (` ≥ 2) ]`(S

2 × S3) β`,k
3. x2

1 + x3
2 + x3

3 + x6k
4 ]4(S2 × S3) δ4,k

4. x3
1 + x1x

2k+1
2 + x2x

2
3 + x2

4 S2 × S3 λ1,k

5. x2
1 + x3

2 + x4
3 + x12k

4 ]6(S2 × S3) ε6,k
6. x2

1 + x3
2 + x5

3 + x30k
4 ]8(S2 × S3) ε8,k
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Remark 1.12. Note that α`,1 ∼= β`,1: the two singularities are related by a change of
variables.

Let Ξ` denote the list of all contact structures on ]`(S
2×S3) from this table. For example,

Ξ1 = (α1,1, α1,2, . . . , λ1,1, λ1,2, . . .)

Ξ4 = (α4,1, α4,2, . . . , β4,1, β4,2, . . . , δ4,1, δ4,2, . . .).

Theorem 1.13. For each `, the contact structures in the list Ξ` are pairwise nonisomorphic
except for α`,1 ∼= β`,1.

Remark 1.14. We remind the reader that all results about λ1,k are conditional on a mirror
symmetry statement.

Remark 1.15. What makes this an interesting theorem is that all of these links have
the same positive symplectic cohomology over C. We equip SH∗ with a contact-invariant
bigrading to distinguish these contact manifolds. This bigrading will be the weight decom-
position of

⊕
d<0 SHd under the action of the Lie algebra SH1.

Remark 1.16. As explained in Example 1.3, the fact that α1,i 6∼= α1,j if i 6= j was proved
by Uebele [45] using positive symplectic cohomology with coefficients in Z/2 (rather than
a bigrading).

Remark 1.17. If one focuses on cDV singularities which do not admit a small resolution,
one finds very many more contact structures which can be distinguished by SH∗+ already
without using the bigrading. This is not so surprising: it is much easier for 5-manifolds to
be diffeomorphic than contactomorphic.

Acknowledgments. J. E. would like to thank Mark McLean and Michael Wemyss for inspira-
tion and for helpful discussions. Y. L. would like to thank Kazushi Ueda for collaborations
[29],[30] from which many ideas are borrowed here. We would both like to thank the
referees for their thoughtful remarks and careful attention.

J. E. was supported by EPSRC Grant EP/P02095X/2. Y. L. was partially funded by the
Royal Society URF\R\180024.

2 Symplectic cohomology for invertible polynomials

2.1 Symplectic cohomology

Let V be a Liouville manifold with c1(V ) = 0. Associated to V we can define an invariant
SH∗(V ) called the symplectic cohomology of V . Symplectic cohomology was introduced by
Cieliebak, Floer, Hofer [23, 14, 11] and Viterbo [49]. An excellent exposition can be found
in [41]. More recent results can be learned from [12]. See also [28, Sec 2.1] for a fast review
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of our sign and grading conventions. In particular, our conventions are cohomological and
the unit lives in degree zero!

Briefly, SH∗(V ) is an algebra over the homology operad of framed little discs over an
arbitrary commutative ring k (in this paper k = C). In particular, it has a (graded)
commutative product, a Gerstenhaber bracket [ , ] (i.e a Lie bracket of degree −1), and a
Batalin-Vilkovisky operator ∆ (i.e. a degree −1 operator whose Hochschild coboundary is
the bracket).

In general, symplectic cohomology is rather difficult to compute explicitly. A fruitful
approach to do such computations goes via the open string A-model. Namely, we have an
isomorphism

SH∗(V ) ' HH∗(W(V ))

whereW(V ) is the wrapped Fukaya category of V . An early version of this result based on
Legendrian surgery is due to Bourgeois-Ekholm-Eliashberg ([6], elaborated in [13]) which
concerned Hochschild homology; a definitive version based on duality appeared in [20,
Theorem 1.1] (see also the more recent [10]).

On the other hand, even if one achieved a good understanding of W(V ), in general, it is
still a difficult algebraic problem to compute Hochschild cohomology of A∞ categories.

In [29], [30], a method to compute symplectic cohomology for certain Milnor fibres was
given based on the homological mirror symmetry conjecture for invertible polynomials.

2.2 Invertible polynomials and mirror symmetry

Definition 2.1. To an (n+1)-by-(n+1) integer matrixA = (aij) with nonzero determinant,
we associate the polynomial

w(x1, . . . , xn+1) =
n+1∑
i=1

n+1∏
j=1

x
aij
j .

We write w̌ for the polynomial associated to AT (the Berglund-Hübsch mirror to w, see
[4]).

An invertible polynomial is weighted homogeneous, that is there is a uniquely determined
weight system (d1, d2, . . . , dn+1;h) satisfying gcd(d1, d2, . . . , dn+1, h) = 1 for which

w(λd1x1, . . . , λ
dnxn+1) = λhw(x1, . . . , xn+1)

for all λ ∈ Gm. In this paper, we are primarily concerned with the log Fano case, i.e. when

h−
n+1∑
i=1

di =: d0 < 0
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In fact, there is a finite extension Γw of Gm acting on An+1 which preserves w, namely

Γw :=

{
(t0, t1, . . . , tn+1) ∈ Gn+2

m :
n+1∏
j=1

t
aij
j = t0t1 · · · tn+1, i = 1, . . . , n+ 1

}
,

acting on An+1 via (x1, . . . , xn+1) 7→ (t1x1, . . . , tn+1xn+1). This group also acts on An+2 via
(x0, x1, . . . , xn+1) 7→ (t0x0, t1x1, . . . , tn+1xn+1), and this Γw-action preserves the polynomial

w(x1, . . . , xn+1) + x0 · · ·xn+1.

With this setup, we can formulate the following mirror symmetry conjectures. A version
of Conjecture 2.2 appeared in [16] (see also [29, Conjecture 1.2] and references therein),
and Conjecture 2.3 appeared in [29].

Conjecture 2.2. There is a quasi-equivalence of idempotent complete A∞-categories

F(w̌) ' mf(An+1,Γw,w)

between the Fukaya-Seidel category of a Morsification of w̌ and the dg-category of Γw-
equivariant matrix factorisations of w. Moreover, there exists a full exceptional collection
∆1, . . . ,∆K of vanishing thimbles for the Morsification of w̌ such that the A∞-algebra A :=
endF(w̌) (

⊕
i ∆i) has its cohomology A := H(A) supported in degree zero. In particular,

this entails that (a) A is quasi-isomorphic to A and (b) both F(w̌) and mf(An+1,Γw,w)
are quasi-equivalent to perf(A).

Conjecture 2.3 ([29, Conjecture 1.4]). There is a quasi-equivalence of idempotent com-
plete A∞ categories

W(w̌−1(1)) ' mf(An+2,Γw,w + x0x1 · · ·xn+1)

between the wrapped Fukaya category of the Milnor fibre w̌−1(1) and the dg-category of
Γw-equivariant matrix factorisations of w + x0 · · · xn+1.

These conjectures are established in the following situations:

• If the matrix A is diagonal (so w defines a Brieskorn-Pham singularity) then Con-
jecture 2.2 was proved by Futaki and Ueda [17]. More generally, if the matrix A is

block diagonal and its blocks are either 1-by-1 or 2-by-2 equal to

(
2 1
0 k

)
(so that w

is a Sebastiani-Thom sum of ADE polynomials of type A or D), Conjecture 2.2 was
proved by Futaki and Ueda [18]. Polishchuk and Varolgunes [38] make significant
progress towards establishing Conjecture 2.2 in the chain case which includes the
Laufer flop (Case 4 in the Table of Theorem 1.8).

• If n = 1, Conjecture 2.2 was proved by Habermann and Smith [22]. In fact, this means
Conjecture 2.2 holds for any invertible polynomial w of the form w(x1, . . . , xn+1) =
x2

1 +· · ·+x2
n−1 +f(xn, xn+1). This is because stabilising w and w̌ by adding quadratic

terms in extra variables changes neither the Fukaya-Seidel nor the matrix factorisa-
tion category.
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• In [29], various cases of Conjecture 2.3 were verified. The sequel paper [30] focused
on the log Fano case and established Conjecture 2.3 for the Milnor fibres of simple
singularities. The n = 1 case of Conjecture 2.3 was proved by Habermann [21].
Conjecture 2.3 was proved in full generality by Gammage [19] in the Z/2-graded
case using a microlocal sheaf category version of wrapped Fukaya categories. For our
purposes, we will need to work with Z-graded categories; a careful chase of Z-gradings
in [19] might allow us to assume Conjecture 2.3 in all cases.

Remark 2.4. The main theorem statements from Futaki-Ueda and Habermann-Smith do
not mention the formality of A, but in either case the authors construct a full exceptional
collection whose cohomology is supported in degree zero, hence formality follows for degree
reasons

Remark 2.5. The examples w̌ from Theorem 1.8 all fall into one of these cases except for
w̌ = x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4. In this case, our results are conditional on one of the two
Conjectures 2.2 or 2.3 holding.

We now explain how knowing one or other of these conjectures can help one to calculate
symplectic cohomology.

2.3 Using mirror symmetry to compute symplectic cohomology

Pick a Morsification of w̌. Let F(w̌) denote the Fukaya-Seidel category of the Morsi-
fication, let V := w̌−1(1) denote the Milnor fibre, and let W(V ) (respectively F(V ))
denote the wrapped (respectively compact) Fukaya category of V . Choose a collection of
vanishing paths for the Morsification and let ∆1, . . . ,∆K (respectively S1, . . . , SK) be the
corresponding vanishing thimbles (respectively vanishing cycles). Let A = endF(w̌) (

⊕
i ∆i)

and B = endF(V ) (
⊕

i Si). Let A = H(A) and B = H(B) denote the cohomology algebras
of A and B (considered as A∞-algebras with zero higher products).

Theorem 2.6. Assume that HH2(mf(An+2,Γw,w)) = 0, that d0 6= 0, and either Conjec-
ture 2.2 or Conjecture 2.3 holds. Then

SH∗(V ) ∼= HH∗(mf(An+2,Γw,w)) (2.1)

as Gerstenhaber algebras.

In the next section, we give a formula to compute HH∗(mf(An+2,Γw,w)).

Proof that Conjecture 2.2 implies Equation (2.1). If d0 6= 0 then [29, Theorem 6.2] implies
that the inclusion of categories B → W(V ) induces an isomorphism on Hochschild coho-
mology. Since this map comes from a functor, it is a morphism of Gerstenhaber algebras.
Ganatra [20, Theorem 1.1] shows that SH∗(V ) ∼= HH∗(W(V )) as Gerstenhaber algebras.
Therefore, we need to show

HH∗(B) ∼= HH∗(mf(An+2,Γw,w)). (2.2)
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As a first step, we calculate HH∗(B), where B = H(B) is the cohomology algebra of B.

Lemma 2.7. We have HH∗(B) ∼= HH∗(mf(An+2,Γw,w)) as Gerstenhaber algebras.

Proof. We continue to write A for the endomorphism A∞-algebra of the vanishing thimbles
and A for its cohomology. Recall that the trivial extension algebra Tn(A) is defined to be
A ⊕ A∨[−n] with the product (a, b)(a′, b′) = (aa′, ab′ + a′b). For any Lefschetz fibration
with (n+ 1)-(complex-)dimensional total space with n > 0, the Floer cohomology algebra
B = H(B) of the vanishing cycles is an extension of A∨[−n] by A, where A is the directed
Fukaya-Seidel Floer cohomology algebra for the vanishing thimbles [42, Equation 4.1 and
Proposition 5.1]. If A is supported in degree zero (as asserted by Conjecture 2.2) then
this is the trivial extension Tn(A): the products in B which are not determined by the
A-module structure of A∨[−n] vanish for degree reasons. To prove the lemma, it therefore
suffices to show that HH∗(Tn(A)) ' HH∗(mf(An+2,Γw,w)).

Let k be the semisimple ring
⊕K

i=1 Cei where ei ∈ A is the identity element of HF (∆i,∆i).
The projection Tn(A) → A → k makes k into an Tn(A)-module (augmentation). Keller
[26, Section 4.1] defines a Koszul-dual algebra called the n-Calabi-Yau completion Πn(A) ∼=
RHomTn(A)(k,k). This is Koszul-dual in the sense that k is a (Tn(A),Πn(A))-bimodule
and Tn(A) ∼= RHomΠn(A)(k,k). Koszul duality ensures that we can apply [25, Theorem
in Section 3.2] to deduce that the Hochschild cohomologies HH∗(Tn(A)) and HH∗(Πn(A))
are isomorphic as Gerstenhaber algebras. For any algebra C (more generally A∞-algebra),
HH∗(C) ∼= HH∗(perf(C)), so

HH∗(B) ∼= HH∗(Tn(A)) ∼= HH∗(Πn(A)) ∼= HH∗(perf(Πn(A))),

and it suffices to prove that HH∗(perf(Πn(A))) = HH∗(mf(An+2,Γw,w)). In fact, we will
show a stronger result: that

perf(Πn(A)) ' mf(An+2,Γw,w).

To see this stronger result, recall that Keller’s construction of Πn(·) works more generally
when the input is a dg-algebra or category, and satisfies [30, Eq. (2.2)]

perf(Πn(A)) ' Πn(perf(A)).

It was shown in [30] (Eq. (1.7) for the statement and Section 4 for the proof) that

mf(An+2,Γw,w) ' Πn(mf(An+1,Γw,w)) (2.3)

and Conjecture 2.2 is the assumption that

perf(A) ' mf(An+1,Γw,w)

so
perf(Πn(A)) ' Πn(perf(A)) ' Πn(mf(An+1,Γw,w)) ' mf(An+2,Γw,w),

as required.
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Lemma 2.8. The A∞-algebra B is quasi-isomorphic to its cohomology algebra B.

Proof. By Lemma 2.7, HH2(B) ∼= HH2(mf(An+2,Γw,w)), which vanishes by assumption,
so B is intrinsically formal, and hence quasi-isomorphic to B = H(B).

Together, these two lemmas show that HH∗(B) ∼= HH∗(mf(An+2,Γw,w)) as Gerstenhaber
algebras, establishing Equation (2.2), so Equation (2.1) follows.

Proof that Conjecture 2.3 implies Equation (2.1). We will show in Theorem 2.15 below
that if HH2(mf(An+2,Γw,w)) = 0 then we can make a Γw-equivariant formal change of co-
ordinates along the critical locus of w+x0 · · ·xn+1 such that the pullback of w+x0 · · ·xn+1

in these new coordinates equals w. If we can make such a formal change of coordinates, it
follows from [36, Theorem 2.10] that mf(An+2,Γw,w + x0 · · ·xn+1) is quasi-equivalent to
mf(An+2,Γw,w), so Conjecture 2.3 implies

HH∗(W(V )) ∼= HH∗(mf(An+2,Γw,w))

as Gerstenhaber algebras. By [20, Theorem 1.1], HH∗(W(V )) ∼= SH∗(V ) as Gerstenhaber
algebras, so Equation (2.1) follows.

2.4 Calculating HH∗(mf(An+2,Γw,w))

There is a formula for HH∗(mf(An+2,Γw,w)) which expresses it as a sum of Γw-invariant
pieces of twisted Koszul cohomologies; this formula appeared in [3, Theorem 1.2], where
its context and history are discussed. It is also explained and used in [29, Theorem 3.1]
and [30, Section 5.1]. We now briefly describe how to perform calculations in practice with
this formula; Theorem 2.14 below summarises the answer and its proof explains how our
notation fits with the notation from [30]. We will use the notation from this section in our
calculations in Section 3.

Definition 2.9. Define the character

χ : Γw → Gm, χ(t0, . . . , tn+1) = t0 · · · tn+1.

Its kernel kerχ is the finite group

kerχ =

{
(t0, . . . , tn+1) ∈ Gn+2

m :
n+1∏
j=1

t
aij
j = 1, t0 = t−1

1 · · · t−1
n+1

}
.

Definition 2.10. Given an element γ ∈ kerχ, let

{1, . . . , n+ 1} = {i1, . . . , ik} ∪ {j1, . . . , jn+1−k}

be the partition for which each xim is fixed under the action of γ and each xjm is not fixed un-
der the action of γ. Let Jγ be a monomial basis for the Jacobian ring of w|xj1=···=xjn+1−k=0.
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Definition 2.11. The set Mγ of γ-monomials is the union Mγ = Aγ ∪Bγ ∪ Cγ where

Aγ =

{
{xβ0px∨j1 · · ·x

∨
jn+1−k

: p ∈ Jγ, β = 0, 1, 2, . . .} if x0 is fixed by γ

∅ otherwise.

Bγ =

{
{xβ0px∨0x∨j1 · · ·x

∨
jn+1−k

: p ∈ Jγ, β = 0, 1, 2, . . .} if x0 is fixed by γ

∅ otherwise.

Cγ =

{
∅ if x0 is fixed by γ

{px∨0x∨j1 · · ·x
∨
jn+1−k

: p ∈ Jγ} otherwise.

Definition 2.12. Let ζ : Γw → Gm be a character of Γw. We say that a polynomial or
formal power series p(x0, . . . , xn+1) is ζ-isotypical if p(gx) = ζ(g)p(x) for all g ∈ Γw. Note
that every monomial m determines a character ξ(m) such that m is ξ(m)-isotypical. The
space of formal power series K := C[[x0, . . . , xn+1]] is therefore the completed direct sum of
its ζ-isotypical summands

K =
⊕̂

ζ∈Γ̂w

Kζ , Kζ = {p ∈ K : p(gx) = ζ(g)p(x) ∀g ∈ Γw} .

Definition 2.13. Given a γ-monomial m, we write bk for the total exponent of xk in m,
where x∨k contributes −1 to bk. The character ξ(m) is determined by these exponents:

ξ(m)(t0, . . . , tn+1) = tb00 · · · t
bn+1

n+1 .

We now assume the following. For each γ ∈ Γw let wγ (respectively w′γ) denote the
restriction of the polynomial w to the subspace where the unfixed variables xj1 , · · · , xjn−k+1

(respectively x0, xj1 , · · · , xjn−k+1
) vanish. We assume that w′γ has an isolated singularity

at the origin for all γ ∈ Γ, which is the case for all our examples.

Theorem 2.14. Under this assumption, the Hochschild cohomology HH∗(mf(An+2,Γw,w))
is a direct sum of 1-dimensional contributions, one from each pair (γ,m) with m ∈ Mγ

such that ξ(m) = χ⊗u for some u ∈ Z. In this case, (γ,m) contributes to

HH2u+n−k+1 if m ∈ Aγ,
HH2u+n−k+2 if m ∈ Bγ,

HH2u+n−k+2 if m ∈ Cγ,

where k is the number of variables amongst {x1, . . . , xn+1} fixed by γ.

Proof. This is just a repackaging of [3, Theorem 1.2], based on the exposition in [30, Section
5.1]. We briefly explain how to translate between our notation and the notation of [30].
For each γ there are three kinds of contribution to Hochschild cohomology, enumerated by
[30, Equations 5.5-5.7]:
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• If x0 is not fixed by γ then the Hochschild cohomology picks up a contribution given
by [30, Equation 5.5]: (

Jacwγ ⊗ΛdimNγN∨γ
)
χ⊗u

where Nγ is the vector space spanned by the non-fixed variables x0, xj1 , . . . , xjn−k+1
,

Jac denotes the Jacobian ring, and χ⊗u means taking the isotypical part. Our γ-
monomials from Cγ form an explicit basis of this space: Jγ is a basis for the Jacobian
Jacwγ and x∨0 ⊗ x∨j1 ⊗ · · · ⊗ x∨jn−k+1

is a generator of ΛdimNγN∨γ ; the χ⊗u subscript
is precisely telling us to restrict attention to γ-monomials with ξ(m) = χ⊗u. This
contributes to HH2u+dimNγ = HH2u+n−k+2.

• If x0 is fixed by γ then there are contributions [30, Equations 5.6 and 5.7]:(
Jacw′γ ⊗C[x0]⊗ ΛdimNγN∨γ

)
χ⊗u

,
(
Cx∨0 ⊗ Jacw′γ ⊗C[x0]⊗ ΛdimNγN∨γ

)
χ⊗u

to HH2u+dimNγ = HH2u+n−k+1 and HH2u+dimNγ+1 = HH2u+n−k+2 respectively. Our
γ-monomials of type Aγ and Bγ give bases for these vector spaces.

2.5 Formal change of coordinates

In this section we prove the last remaining ingredient (Theorem 2.15 below) that was used
in Section 2.3 above (in the proof that Conjecture 2.3 implies Equation (2.1)).

Recall that there exist weights d0, d1, . . . , dn+1 such that if we give xi weight di then
both w(x1, . . . , xn+1) and x0 · · ·xn+1 are quasihomogeneous of degree h =

∑n+1
i=0 di and

χ-isotypical. Let | · |0 be the x0-valuation on the space K = C[[x0, . . . , xn+1]] of formal
power series, i.e. |p|0 = k if xk0 divides p but xk+1

0 does not.

Theorem 2.15. Suppose that p0(x0, . . . , xn+1) is a χ-isotypical formal power series which
is quasihomogeneous of degree h and |p0|0 > 0. If HH2(mf(An+2,Γw,w)) = 0 then there is
a formal change of variables z = (x0, z1(x), . . . , zn+1(x)) such that w(z) = w(x) + p0(x).

Remark 2.16. In particular, the theorem applies when p0(x) = x0 · · ·xn+1. To prove
Theorem 2.15, we first establish a sequence of lemmas.

Lemma 2.17. Suppose that HH2(mf(An+2,Γw,w)) = 0. Then the image of Kχ in the
Jacobian ring is trivial.

Proof. If m is a χ-isotypical monomial which is nontrivial in the Jacobian ring then we
can use it as part of our monomial basis Jγ for γ = id. It will then contribute as a type
A id-monomial to HH2(mf(An+2,Γw,w)). Thus if HH2(mf(An+2,Γw,w)) = 0, we deduce
that any monomial m ∈ Kχ is trivial in the Jacobian ring, and hence the image of Kχ in
the Jacobian ring is zero.
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Lemma 2.18. If p ∈ Kχ is trivial in the Jacobian ring then p =
∑n+1

i=1 vi
∂w
∂xi

for some
v1, . . . , vn+1 ∈ K where vi ∈ Kti. Here, ti denotes the character of Γw which projects to ti.

Proof. Consider the map ∂ : Kn+1 → K defined by ∂(v1, . . . , vn+1) =
∑n+1

i=1 vi
∂w
∂xi

. The
cokernel of ∂ is the Jacobian ring. Because w ∈ Kχ, we have ∂w/∂xi ∈ Kχ⊗t−1

i
for all i,

so ∂(v1, . . . , vn+1) ∈ Kχ if and only if vi ∈ Kti for all i = 1, . . . , n+ 1.

If v ∈ Kt1⊕· · ·⊕Ktn+1 then we call v a Γw-equivariant vector field because the components
vi of v transform under Γw like the coordinates xi. We have now seen that, under the
hypotheses of Theorem 2.15, p0 = ∂v for a Γw-equivariant vector field v.

Lemma 2.19. In the setting of Theorem 2.15, there exists a formal change of variables y
such that

p1(y) := w(x) + p0(x)−w(y)

is χ-isotypical and satisfies |p1|0 > |p0|0.

Proof. This is a small modification of [2, Section 12.6]. We know that p0 = ∂v for a Γw-
equivariant vector field v. We define y implicitly by y0 = x0, xi = yi − vi(y). Since v
is Γw-equivariant, this formal change of coordinates is Γw-equivariant. As in the proof4 of
[2, Section 12.6], we find that p1(y) := w(x) + p0(x) −w(y) has |p1|0 > |p0|0. Moreover,
since v is Γw-equivariant, p1 is χ-isotypical.

Proof of Theorem 2.15. We can apply Lemma 2.19 iteratively and compose the formal
diffeomorphisms we get at each stage. Composition makes sense because |v|0 > 0, so the
xk0-term in the composition of formal diffeomorphisms only involves summing finitely many
terms. In this way, we construct a sequence of perturbation terms p1, p2, . . . with |p1|0 <
|p2|0 < · · ·. In the limit, we obtain a formal change of coordinates z with perturbation
term p∞(z) := w(x) + p0(x)−w(z) satisfying |p∞|0 =∞. Therefore p∞ = 0 and we have
proved the theorem.

3 Compendium of examples

In this section, we calculate HH∗ := HH∗(mf(An+2,Γw,w)) for the invertible polynomials
w which are mirror-dual to the polynomials in Theorem 1.8. We now summarise how this
leads to a proof of that theorem.

4In [2], they have no variable x0 and filter by the weighted degree of the perturbation rather than
the x0-valuation. Since the perturbation terms are quasihomogeneous of degree h, the weighted degree of
the perturbation term with respect to x1, . . . , xn+1 is proportional to the x0-valuation, so our strategy is
equivalent.
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Proof of Theorem 1.8. These examples are log Fano, so d0 < 0, and, in all cases, we will
see that HH2(mf(An+2,Γw,w)) = 0. In Cases 1–3 and 5–6 of Theorem 1.8, Conjecture
2.2 holds, so that Theorem 2.6 applies. As a consequence, we can conclude Theorem 1.8
unconditionally in these cases. Case 4 holds conditionally on Conjecture 2.2 or 2.3.

3.1 Brieskorn-Pham

A Brieskorn-Pham singularity is an isolated hypersurface singularity given by the vanishing
of the polynomial

w(x1, . . . , xn+1) = xa11 + · · ·+ x
an+1

n+1

for a collection of integers ai ≥ 2. This is an invertible polynomial with w̌ = w.

Let µk denote the cyclic group of kth roots of unity, and let

l = lcm(a1, . . . , an+1), ν = 1−
n+1∑
i=1

1

ai
.

We have a surjective l-to-1 homomorphism

T : µa1 × · · · × µan+1 ×Gm → Γw,

T (µ1, . . . , µn+1, τ) =
(
τ lνµ−1

1 · · ·µ−1
n+1, τ

l/a1µ1, . . . , τ
l/an+1µn+1

)
Remark 3.1. Under T , the subgroup µa1 × · · · × µan+1 maps isomorphically onto kerχ;
we will use this identification to write elements of kerχ as (n+ 1)-tuples of roots of unity.

Fix an element γ ∈ kerχ. Restricting w to the fixed variables xi1 , . . . , xik we get
∑k

m=1 x
aim
im

,
and we pick the monomial basis

Jγ =
{
x
bi1
i1
· · · xbikik : 0 ≤ bim ≤ aim − 2 for m = 1, 2, . . . k

}
for its Jacobian ring.

Lemma 3.2. Let m be a γ-monomial with total exponents b0, . . . , bn+1 and suppose that
(γ,m) contributes to Hochschild cohomology. Then bi = b0 mod ai for i = 1, . . . , n+ 1 and

ξ(m) = χ⊗(b0−
∑n+1
i=1 mi), where the integers mi are determined by b0 = bi +miai.

Proof. The γ-monomial m with total exponents b0, . . . , bn+1 has character5

ξ(m)(µ1, . . . , µn+1, τ) = τ b0lν+
∑n+1
i=1 bil/aiµb1−b01 · · ·µbn+1−b0

n+1

This coincides with a power of χ if and only if b0 = bi mod ai for i = 1, . . . , n + 1. More
precisely, if b0 = bi +miai for integers m1, . . . ,mn then ξ(m) = χ⊗(b0−

∑n+1
i=1 mi).

5The characters of Γw induce characters of µa1
× · · · × µan+1

× Gm by precomposing with T and we
will often write characters of Γw by giving a character of the bigger group which factors through T .
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Remark 3.3. In fact, if b0 ≥ 0, then b0 uniquely determines monomials mA(b0) and mB(b0)
of types A and B respectively which have total exponents bi = b0 mod ai. Namely, we
multiply together factors of xbii , i = 1, . . . , n+1, where x−1

i means x∨i . To obtain mA(b0) we
include a factor of xb00 ; to obtain mB(b0) we include a factor of xb0+1

0 x∨0 . Similarly, b0 = −1
determines unique monomials mB(−1) = x∨0 · · ·x∨n+1 of type B and mC(−1) = x∨0 · · ·x∨n+1

of type C.

Remark 3.4. By the Sun Zi remainder theorem, given any collection of total exponents
0 ≤ b1 < a1, . . . , 0 ≤ bn+1 < an+1, we can solve this system of congruences for b0 uniquely
modulo l if and only if bi = bj mod gcd(ai, aj) for all i, j ∈ {1, . . . , n+ 1}.

Our approach to calculating HH∗ will therefore be to consider each possible value b0 and
find the number of elements γ ∈ kerχ such that (γ,mA(b0)), (γ,mB(b0)) or (γ,mC(b0)) is
a contributing γ-monomial.

The contributions from b0 = −1 are easy to calculate.

Lemma 3.5. The contributions from monomials with total exponent b0 = −1 come from

(γ, x∨0 · · ·x∨n+1) ∈ HHn

for all γ ∈ (µa1 \ {1})× · · · ×
(
µan+1 \ {1}

)
.

Proof. We have mB(−1) = mC(−1) = x∨0 · · ·x∨n+1. This contributes as a γ-monomial if
and only if either:

• γ leaves all variables x0, . . . , xn+1 unfixed. In this case we get a type C contribution
from (γ,mC(−1)).

• γ fixes x0 and does not fix any other variable. In this case we get a typeB contribution
from (γ,mB(−1)).

Remark 3.6. In fact, in our examples (but not in general), these will be the only contri-
butions to HHn, which gives dim HHn = (a1 − 1) · · · (an+1 − 1). Note that this equals the
Milnor number of the singularity.

We now proceed to the specific examples of interest to compute the contributions explicitly.
These examples are:

cA` : x2
1 + x2

2 + x`+1
3 + x

k(`+1)
4 , k, ` ≥ 1

cD4 : x2
1 + x3

2 + x3
3 + x6k

4 , k ≥ 1

cE6 : x2
1 + x3

2 + x4
3 + x12k

4 , k ≥ 1

cE8 : x2
1 + x3

2 + x5
3 + x30k

4 , k ≥ 1

In all cases, the x4 = 0 slice has an ADE singularity at the origin, having the type indicated.
The 3-folds admit small resolutions which fully resolve the singularity of the slice; this
follows from [9, Satz 0.2] because the exponent of x4 is a multiple of the Coxeter number
of the ADE singularity.
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Theorem 3.7. For each w below, we will compute HH∗ = HH∗(mf(A5,Γw,w)). In all
cases, HHd vanishes when d = 2 or d ≥ 4.

1. Type cA`: Let w = x2
1 + x2

2 + x`+1
3 + x

k(`+1)
4 . Then

dim HH3 = `(k(`+ 1)− 1), dim HHd = ` for d ≤ 1.

2. Type cD4: Let w = x2
1 + x3

2 + x3
3 + x6k

4 . Then

dim HH3 = 24k − 4, dim HHd = 4 for d ≤ 1.

3. Type cE6: Let w = x2
1 + x3

2 + x4
3 + x12k

4 . Then

dim HH3 = 72k − 6, dim HHd = 6 for d ≤ 1.

4. Type cE8: Let w = x2
1 + x3

2 + x5
3 + x30k

4 . Then

dim HH3 = 240k − 8, dim HHd = 8 for d ≤ 1.

Proof. In each case, the HH3 contributions come from Lemma 3.5. We will consider the
contributions from mA(b0) with b0 ≥ 0.

In the various cases we will use Euclid’s algorithm to write:

Type b0 = q ∈ r ∈

cA` k(`+ 1)p+ (`+ 1)q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , `}
cD4 6kp+ 6q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 5}
cE6 12kp+ 12q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 11}
cE8 30kp+ 30q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 29}

In the following tables, we indicate: the type A monomials mA(b0); the γ for which
(γ,mA(b0)) contribute to HH∗; the number of such γ; and the degree of HH∗ to which
they contribute. We omit monomials m for which there are no γ such that (γ,m) con-
tributes.

In every case, we will see that HH∗ has the rank stated in the theorem in every even degree
d ≤ 0. The type B contributions, other than those appearing in Lemma 3.5, will differ
only in replacing mA(b0) with x0x

∨
0mA(b0) and yield the same ranks in every odd degree

d ≤ 1.
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Table 2: Table for cA`. Note that b0 = k(`+ 1)p+ (`+ 1)q + r with p ≥ 0, 0 ≤ q ≤ k − 1,
0 ≤ r ≤ `. The top two row give us rank ` in every degree d 6= −2kmod 2(k + 1). The
bottom row gives us rank ` in degrees d = −2kmod 2(k + 1) (ω is a chosen primitive
(`+ 1)th root of unity and a ∈ {1, 2, . . . , `}).

q r mA(b0) γ # γ HH∗ degree

any < ` xb00 x
r
3x

(`+1)q+r
4

{
1 if b0 even

x∨1x
∨
2 if b0 odd

{
(1, 1, 1, 1)

(−1,−1, 1, 1)
1 −2(k + 1)p− 2q

k − 1 ` xb00 x
∨
3x
∨
4

{
1 if b0 even

x∨1x
∨
2 if b0 odd

{
(−1,−1, ωa, ω−a)

(1, 1, ωa, ω−a)
` −2(k + 1)p− 2k

Table 3: Table for cD4. The top three rows give us rank 4 in every degree d 6=
−2kmod 2(k + 1). The bottom row gives us rank 4 in degrees d = −2kmod 2(k + 1)
(on the second and fourth rows, ω is a chosen primitive 3rd root of unity and a, b ∈ {1, 2}).

q r mA(b0) γ # γ HH∗ degree

any 0 x6kp+6q
0 x6q

4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 2 x6kp+6q+2
0 x6q+2

4 x∨2x
∨
3 (1, ωa, ω−a, 1), 2 −2(k + 1)p− 2q

any 4 x6kp+6q+4
0 x2x3x

6q+4
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

k − 1 5 x6kp+6k−1
0 x∨1x

∨
2x
∨
3x
∨
4 (−1, ωa, ωb,−ω−a−b) 4 −2(k + 1)p− 2k

Table 4: Table for cE6. The top six rows give us rank 6 in every degree d 6= −2kmod 2(k+
1). The bottom row gives us rank 6 in degrees d = −2kmod 2(k + 1) (ω and i are chosen
primitive 3rd and 4th roots of unity; and a ∈ {1, 2} and b ∈ {1, 2, 3}).

q r mA(b0) γ # γ HH∗ degree

any 0 x12kp+12q
0 x12q

4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 3 x12kp+12q+3
0 x12q+3

4 x∨1x
∨
3 (−1, 1,−1, 1) 1 −2(k + 1)p− 2q

any 4 x12kp+12q+4
0 x2x

12q+4
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 6 x12kp+12q+6
0 x2

3x
12q+6
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 7 x12kp+12q+7
0 x2x

12q+7
4 x∨1x

∨
3 (−1, 1,−1, 1) 1 −2(k + 1)p− 2q

any 10 x12kp+12q+10
0 x2x

2
3x

12q+10
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

k − 1 11 x12kp+12k−1
0 x∨1x

∨
2x
∨
3x
∨
4 (−1, ωa, ib,−ω−ai−b) 6 −2(k + 1)p− 2k
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Table 5: Table for cE8. The top eight rows give us rank 8 in every degree d 6= −2kmod 2(k+
1). The bottom row gives us rank 8 in degrees d = −2kmod 2(k + 1) (ω and ζ are chosen
primitive 3rd and 5th roots of unity, a ∈ {1, 2}, and b ∈ {1, 2, 3, 4}).

q r mA(b0) γ # γ HH∗ degree

any 0 x30kp+30q
0 x30q

4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 6 x30kp+30q+6
0 x3x

30q+6
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 10 x30kp+30q+10
0 x2x

30q+10
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 12 x30kp+30q+12
0 x2

3x
30q+12
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 16 x30kp+30q+16
0 x2x3x

30q+16
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 18 x30kp+30q+18
0 x3

3x
30q+18
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 22 x30kp+30q+22
0 x2x

2
3x

30q+22
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

any 28 x30kp+30q+28
0 x2x

3
3x

30q+28
4 (1, 1, 1, 1) 1 −2(k + 1)p− 2q

k − 1 29 x30kp+30k−1
0 x∨1x

∨
2x
∨
3x
∨
4 (−1, ωa, ξb,−ω−aξ−b) 8 −2(k + 1)p− 2k

3.2 Laufer’s examples

Let
w̌ = x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4

This polynomial defines a cD4 singularity: the x1 = x2 slice has an isolatedD4 singularity at
the origin. Laufer [27] showed that this admits a small resolution with a single exceptional
curve; the small resolution yields a partial resolution of the D4 slice (the map from the
minimal resolution to the partial resolution collapses the three peripheral curves in the D4

configuration).

The Berglund-Hübsch transpose is

w = x3
1x2 + x2k+1

2 x3 + x2
3 + x2

4

which has
Γw = {(t0, t1, t2, t3, t4) : t31t2 = t2k+1

2 t3 = t23 = t24 = t0t1t2t3t4}.

Lemma 3.8. There is a 3-to-1 surjective homomorphism

T : µ2 × µ3 × C× → Γw,

T (s, µ, τ) = (sµ−1τ−(4k+4), µτ 4k+1, τ 3, τ 6k+3, sτ 6k+3).

The composition χ ◦ T is given by (s, µ, τ) 7→ τ 12k+6.
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Proof. We first show that the stated homomorphism is surjective. Since t2k+1
2 t3 = t23 we get

t3 = t2k+1
2 . Since t24 = t23, we have t4 = ±t2k+1

2 . Since t31t2 = t23 = t4k+2
2 , we get t31 = t4k+1

2 .
If t2 = τ 3 for some τ ∈ C× then t1 = µτ 4k+1 for some cube root µ of unity. Finally, t0 is
determined by t0 · · · t4 = t23, which gives t0 = ±µ−1τ−4k−4.

To see that the homomorphism is 3-to-1, observe that its kernel consists of triples (s, µ, τ)
such that

µτ 4k+1 = τ 3 = τ 6k+3 = sτ 6k+3 = 1.

In particular, this means s = 1 and τ 3 = 1. The condition 1 = µτ 4k+1 = µτ k+1 means that
µ = τ−k−1, so the kernel is {(1, τ−k−1, τ) : τ 3 = 1}, which has size 3.

The kernel ker(χ◦T ) is then µ2×µ3×µ12k+6; recall that T is 3-to-1, so this is three times
the size of kerχ. We now identify which combinations of fixed and unfixed variables are
possible for γ ∈ kerχ.

Lemma 3.9. Let γ = T (s, µ, τ) ∈ kerχ. The possible combinations of fixed and unfixed
variables for γ are given by the table below. We state the conditions on (s, µ, τ) ∈ µ2×µ3×
µ12k+6 such that γ = T (s, µ, τ) fixes this combination of variables, and also the number of
such γ (remembering that T is 3-to-1).

Fixed variables Number of γ = T (s, µ, τ) ∈ kerχ s µ τ

{0, 1, 2, 3, 4} 1 1 τ−4(k+1) τ 3 = 1
{0} 1 1 τ−4(k+1) τ 3 = −1
{2, 3} 2 −1 µ 6= τ−k−1 τ 3 = 1
∅ 6k + 2 See below

Five further cases which do not contribute to HH∗: {3}, {4}, {3, 4}, {1, 2, 3} and {2, 3, 4}

Proof. Let γ = T (s, µ, τ) with s ∈ {±1}, µ ∈ µ3, τ ∈ µ12k+6.

If x0 is fixed then τ−4(k+1) = sµ. This means that τ 24(k+1) = 1, but τ 12k+6 = 1, so τ 6 = 1.
Therefore τ−4(k+1) is a cube root of unity, which means that s = 1. This means that the
other variables transform as µτ 4k+1 = τ−3, τ 3, τ 6k+3 and τ 6k+3. There are two possibilities:
τ 3 = 1 (which fixes all variables) or τ 3 = −1 (which fixes none).

If x1 is fixed then µ = τ−4k−1, so τ−12k−3 = 1, but τ 12k+6 = 1, so τ 3 = 1. This means that
x2 and x3 are also fixed. The variable x0 transforms as sµ−1τ−4k−4 = sτ−3 = s, so either
x0 is fixed (as in the previous case) or s = −1, in which case both x0 and x4 are unfixed.

If x2 is fixed then τ 3 = 1 so τ 6k+3 = 1 and x3 is also fixed. If x0 or x1 is fixed then we are
in a previous case; assume they are not. Then µ 6= τ−k−1 and s can take on either value
because both µ and τ−k−1 are in µ3, so µ = −τ−k−1 is impossible. If s = 1 then x4 is fixed
(yielding fixed variables {2, 3, 4}); otherwise we get fixed variables {2, 3}.
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Finally, if none of x0, x1, x2 are fixed then the remaining variables can be fixed in any
combination. We will see in Theorem 3.10 that the only such γ which contribute γ-
monomials to HH∗ are those which fix no variables. There are 6k+ 2 of these. To see this,
we argue as follows. If x3 is not fixed then τ 6k+3 6= 1, so τ 6k+3 = −1. If x4 is not fixed
then sτ 6k+3 = −1 means that s = 1. The remaining conditions become

µ 6= τ−4(k+1), µ 6= τ−4k−1.

The second condition always holds because τ 6k+3 = −1, so τ−4k−1 is not a cube root of unity
((τ−4k−1)3 = τ−12k−3 = τ 3 6= 1). The first condition implies 1 = (τ−4(k+1))3 = τ 12k+12 = τ 6,
which can hold only if τ 3 = −1. Therefore there are 6k roots of τ 6k+3 = −1 for which µ
can take on any value and 3 roots of τ 3 = −1 for which µ can be two out of the three roots
of unity. This gives a total of 3(6k + 2) combinations (1, µ, τ), and this triple-counts the
available γs because T is 3-to-1.

We now pick the following monomial bases Jγ for the relevant Jacobian rings:

Jac(w|x1,x2,x3,x4) = Jac(w|x1,x2,x3)

= C[x1, x2, x3]/(3x2
1x2, x

3
1 + (2k + 1)x2k

2 x3, x
2k+1
2 + 2x3)

= C{1, x2, x
2
2, . . . , x

4k+1
2 , x1, x1x2, x1x

2
2, . . . , x1x

4k+1
2 , x2

1}
Jac(w|x2,x3,x4) = Jac(w|x2,x3)

= C[x2, x3]/((2k + 1)x2k
2 x3, x

2k+1
2 + 2x3)

= C · {1, x2, x
2
2, . . . , x

4k
2 }

Jac(w|x3,x4) = C[x3, x4]/(2x3, 2x4) = C · 1
Jac(w|x3) = Jac(w|x4) = C · 1

Theorem 3.10. If w = x3
1x2 + x2k+1

2 x3 + x2
3 + x2

4 then HH∗(A5,Γw,w) satisfies

dim HH3 = 6k + 5, dim HHd = 1 for d ≤ 1

and dim HHd = 0 for d = 2 and d ≥ 4.

The HH∗ contributions for these singularities are as follows:
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Monomial Type Degree in HH∗ Number of contributions

x∨0x
∨
1x
∨
2x
∨
3x
∨
4 C 3 6k + 2

x∨0x
∨
1x
∨
2x
∨
3x
∨
4 B 3 1

x∨0x
∨
1x

2k
2 x
∨
4 C 3 2

x
(6k+3)p−1
0 x∨1x

∨
2x
∨
3x
∨
4 A −4(k + 1)p+ 2 p ≥ 1 even

x
(6k+3)p+3q
0 x2q

2 A −4(k + 1)p− 2q p ≥ 0, 0 ≤ q ≤ 2k, p = qmod 2

x
(6k+3)p+3q+4
0 x1x

2q+3
2 A −4(k + 1)p− 2q − 2 p ≥ 0, 0 ≤ q ≤ 2k − 1, p = qmod 2

x
(6k+3)p+6k+4
0 x1x2 A −4(k + 1)(p+ 1) p ≥ 0 even

x
(6k+3)p+6k+2
0 x2

1 A −4(k + 1)p− 4k − 2 p ≥ 0 even

Type B contributions in HHd+1 for each type A monomial contributing to HHd.

Proof. Assuming the stated monomials are correct, the patient reader can check that every
degree less than or equal to 1 picks up precisely one contribution as p and q vary (it suffices
to check this over the degree range from 0 to −8(k + 1)). We will therefore focus on
establishing the list of contributing γ-monomials.

We work one set of fixed variables at a time and figure out which γ-monomials can con-
tribute.

{0, 1, 2, 3, 4}: The possible A-type monomials are as follows.

xb00 x
b2
2 with 0 ≤ b2 ≤ 4k + 1. For this to contribute, we need the existence of a u ∈ Z

such that sb0µ−b0τ 3b2−4(k+1)b0 = τ (12k+6)u for all (s, µ, τ) ∈ µ2 × µ3 × µ12k+6. By taking
(s, µ, τ) = (−1, e2πi/3, 1) we see that b0 = 0 mod 6, which leaves τ 3b2−4(k+1)b0 = τ (12k+6)u, so
3b2 − 4(k + 1)b0 = (12k + 6)u. If we write b0 = 6β0 and 2β0 = (2k + 1)p + q with p ≥ 0,
q ∈ {0, 1 . . . , 2k}, p = qmod 2, then we get

b2 = (4k + 2)(2(k + 1)p+ u) + 4(k + 1)q,

so if we reduce modulo 4k + 2 we get b2 = 2qmod 4k + 2. Since 0 ≤ b2 ≤ 4k + 1 and
q ≤ 2k, this determines b2. The result is a contribution x

(6k+3)p+3q
0 x2q

2 ∈ HH−4(k+1)p−2q for
all p ≥ 0, q ∈ {0, 1, . . . , 2k} with p = qmod 2.

xb00 x1x
b2
2 with 0 ≤ b2 ≤ 4k + 1. For this to contribute, we need b0 = 1 mod 3, b0 = 0 mod 2

(so b0 = 4 mod 6) and 3b2 + 4k + 1 − 4(k + 1)b0 = (12k + 6)u for some u ∈ Z. As in
the previous case, we write b0 = 6β0 + 4 and 2β0 = (2k + 1)p + q with p ≥ 0, q ∈
{0, 1, . . . , 2k}, p = qmod 2. Arguing as before, we deduce that b2 = 2q + 3 mod 4k + 2.
This means b2 = 2q + 3 except in the case q = 2k, when b2 = 1. We get contributions
x

(6k+3)p+3q+4
0 x1x

2q+3
2 ∈ HH−4p(k+1)−2q−2 for p ≥ 0, q ∈ {0, 1, . . . , 2k − 1} with p = qmod 2

and a contribution x
(6k+3)p+6k+4
0 x1x2 ∈ HH−4(p+1)(k+1).

xb00 x
2
1. For this to contribute, we need b0 = 0 mod 2, b0 = 2 mod 3 (so b0 = 2 mod 6)

and 8k + 2 − 4(k + 1)b0 = (12k + 6)u for some u ∈ Z. If we write b0 = 6β0 + 2 and
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2β0 = (2k+1)p+q with p ≥ 0, q ∈ {0, 1, . . . , 2k}, p = qmod 2 then we get q = 2kmod 2k+1

and so x
(6k+3)p+6k+2
0 x2

1 ∈ HH−4(k+1)p−4k−2 (with p even).

We also get corresponding B-type monomials by replacing xb00 with xb0+1
0 x∨0 .

{0}: Any type A contribution is xb00 x
∨
1 · · ·x∨4 . This transforms as

ξ
(
xb00 x

∨
1 · · · x∨4

)
(s, µ, τ) = (sµ−1τ−4(k+1))b0(µτ 4k+1)−1τ−3τ−(6k+3)s−1τ−(6k+3)

= sb0−1µ−b0−1τ−2(6k+3)−3−(4k+1)−4(k+1)b0 .

For this to coincide with τ (12k+6)u for all (s, µ, τ) ∈ µ2 × µ3 × µ12k+6 we need

b0 = 1 mod 2, b0 = −1 mod 3⇒ b0 = 5 mod 6

and −2(6k + 3) − 3 − (4k + 1) − 4(k + 1)b0 = (12k + 6)u for some u ∈ Z. Write b0 =
6β0 − 1. Then we get −4(k + 1)β0 = (2k + 1)(u + 1). Since gcd(4(k + 1), 2k + 1) = 1,
we deduce that β0 = (2k + 1)p and u + 1 = −4(k + 1)p for some p. In other words, we

get x
(12k+6)p−1
0 x∨1 · · ·x∨4 ∈ HH2−4(k+1)p (p ≥ 1). There is a corresponding B-type monomial

x
(12k+6)p
0 x∨0x

∨
1 · · ·x∨4 ∈ HH3−4(k+1)p (p ≥ 0).

{1, 2, 3}: The possible γ-monomials are of type C. They have the form x∨0x
b1
1 x

b2
2 x
∨
4 with

b1 = 0, 1, b2 = 0, 1, . . . , 4k + 1 or b1 = 2, b2 = 0. If this contributes then we have
b1 = b0 = −1 mod 3, which leaves the only possibility as x∨0x

2
1x
∨
4 . This transforms under

the action of T (1, 1, τ) as τ 6k+3, which is not an integer power of τ 12k+6, so this monomial
does not contribute.

{2, 3, 4}: The possible γ-monomials are x∨0x
∨
1x

b2
2 ∈ Cγ, which transform nontrivially under

the action of T (−1, 1, 1) and hence do not contribute to HH∗.

{2, 3}: There are two γ fixing precisely x2, x3. The only γ-monomials are x∨0x
∨
1x

b2
2 x
∨
4 with

b2 = 0, 1, . . . , 4k. These transform according to the character τ 3b2−6k, which is an integer
power of τ 12k+6 if and only if b2 = 2k. This yield two contributions (γ, x∨0x

∨
1x

2k
2 x
∨
4 ) ∈ HH3.

{3, 4}: The only γ-monomial is x∨0x
∨
1x
∨
2 ∈ Cγ, which transforms nontrivially under the

action of T (−1, 1, 1) and hence does not contribute to HH∗.

{3}: The only γ-monomial x∨0x
∨
1x
∨
2x
∨
4 ∈ Cγ which transforms as τ 6k+3 under the action of

T (1, 1, τ) and hence does not contribute to HH∗.

{4}: The only γ-monomial x∨0x
∨
1x
∨
2x
∨
3 ∈ Cγ which transforms as τ 6k+3 under the action of

T (1, 1, τ) and hence does not contribute to HH∗.

∅: The C-type monomial x∨0 · · ·x∨4 ∈ HH3 contributes whenever γ has no fixed variables;
there are precisely 6k + 2 such elements γ.
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3.3 More cA` examples

By [24, Theorem 1.1], any cA` singularity with a small resolution is given by an equation
x2

1 + x2
2 + f(x3, x4) = 0 where germ of the plane curve f = 0 at the origin has ` + 1

distinct smooth branches, and conversely, any such singularity admits a small resolution
(the converse was also proved in [15, p. 676]).

Let
w = w̌ = x2

1 + x2
2 + x3x4(x`−1

3 + x
k(`−1)
4 ).

The singularity w̌ = 0 is of type cA`: the x3 = x4 slice has an A` singularity at the origin.
The curve x3x4(x`−1

3 +x
k(`−1)
4 ) = 0 has multiplicity `+ 1 and `+ 1 distinct branches at the

origin:
x3 = 0, x4 = 0, and x3 + µxk4 = 0 for µ`−1 = −1.

Therefore, this singularity admits a small resolution.

Lemma 3.11. There exists a surjective 2-to-1 homomorphism T : µ2×µ2(`−1)×C× → Γw

which we will construct in the proof. The composition χ ◦ T is given by (±1, σ, τ) 7→
σ2τ 2k`+2.

Proof. The group Γw is defined by the equations

t0t1t2t3t4 = t21 = t22 = t`3t4 = t3t
k(`−1)+1
4 ,

which imply t`−1
3 = t

k(`−1)
4 , so t3 = ξtk4 for some ξ with ξ`−1 = 1. Substituting back, we get

t21 = t22 = ξtk`+1
4 .

Pick a square root σ for ξ and a square root τ for t4 such that t1 = στ k`+1; then t2 =
±στ k`+1, t3 = σ2τ 2k, t4 = τ 2, t0 = ±σ−2τ−2(k+1). This shows that the homomorphism

T (±1, σ, τ) = (±σ−2τ−2(k+1), στ k`+1,±στ k`+1, σ2τ 2k, τ 2)

is surjective. To see that it is 2-to-1, note that its kernel consists of triples (1, σ, τ) for
which τ 2 = 1 (so τ = ±1) and σ = τ−k`−1. This has size 2.

The kernel ker(χ ◦ T ) is the subgroup

{(±1, σ, τ) ∈ µ2 × µ2(`−1) × µ2(k`+1)(`−1) : τ 2(k`+1) = σ−2}.

The projection to τ ∈ µ2(k`+1)(`−1) is surjective and split by the map τ 7→ (1, τ−k`−1, τ); its
kernel consists of triples (±1,±1, 1), so there is an isomorphism

µ2 × µ2 × µ2(k`+1)(`−1) → ker(χ ◦ T )

(s1, s2, τ) 7→ (s1, s2τ
−(k`+1), τ).

We will work with elements of this group; since T is 2-to-1, this will mean that we overcount
contributions to HH∗ by a factor of 2. We now identify which combinations of fixed and
unfixed variables are possible for γ ∈ kerχ.
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Lemma 3.12. The possible combinations of fixed variables are given in the table below,
along with the number of elements γ ∈ kerχ which give rise to these fixed variables.

Fixed variables #γ

∅ k`(`− 1)
{0} `− 2
{0, 3, 4} 1
{0, 1, 2} `− 2
{0, 1, 2, 3, 4} 1

The following cases occur, but do not contribute to HH∗:
{1}, {2}, {1, 2}, {0, 1}, {0, 2}, {0, 1, 3, 4}, {0, 2, 3, 4}

Proof. Let γ = T (s1, s2τ
−(k`+1), τ) with s1, s2 ∈ {1,−1} and τ ∈ µ2(k`+1)(`−1).

If x0 is fixed then s1τ
2(k`+1)−2k−2 = 1, so τ 2(`−1)k = s1. Since τ 2(`−1)(k`+1) = 1 this implies

τ 2(`−1) = s`1, and therefore s
`(k`+1)
1 = 1. If s1 = 1 then this always holds. If s1 = −1 then

this holds if and only if `(k`+ 1) is even. Therefore the element which fix x0 are those of
the form T (1, s2τ

−(k`+1), τ) with τ 2(`−1) = 1 and (if `(k` + 1) is even) T (−1, s2τ
−(k`+1), τ)

with τ 2(`−1) = (−1)`.

x1 is fixed if and only if στ k`+1 = s2 = 1.

x2 is fixed if and only if s1στ
k`+1 = s1s2 = 1, that is s1 = s2.

x4 is fixed if and only if τ 2 = 1. That is τ = ±1.

x3 is fixed if and only if σ2τ 2k = τ−2k`−2+2k = τ−2(k(`−1)+1) = 1. Note that

gcd(k`+ 1, k(`− 1) + 1) = 1 and gcd(`− 1, k(`− 1) + 1) = 1,

so the only way we can simultaneously solve τ 2(k`+1)(`−1) = 1 and τ−2(k(`−1)+1) = 1 is if
τ 2 = 1. This means that x3 is fixed if and only if τ = ±1 (if and only if x4 is also fixed).

The following table enumerates the possibilities for combinations of fixed variables and
the counts6 of γ ∈ kerχ which fix this combination of variables (we omit the #γ data for
any combinations which turn out not to contribute to HH∗; in particular this allows us to
ignore the distinction between `(k`+ 1) even/odd).

6Recall that if we count elements of ker(χ ◦ T ) then we overcount by a factor of 2. We have removed
this factor of 2 in the table.
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s1 s2 τ 2 τ 2(`−1) fixed variables #γ

1 1 1 1 0 1 2 3 4 1
6= 1 1 0 1 2 `− 2

6= 1 1 2

1 −1 1 1 0 3 4 1
6= 1 1 0 `− 2

6= 1 k`(`− 1)

−1 1 1 1 0 1 3 4
6= 1 1 0 1

(−1)` 0 1
else 1

−1 −1 1 1 0 2 3 4
6= 1 1 0 2

(−1)` 0 2
else 2

We pick the monomial basis xa3x
b
4, 0 ≤ a ≤ ` − 1, 0 ≤ b ≤ k(` − 1) − 1 for the Jacobian

ring of w|xj1 = · · · = xj`−k = 0 when x3 and x4 are fixed and the monomial basis 1 when
they are not.

Theorem 3.13. If w = x2
1 + x2

2 + x3x4(x`−1
3 + x

k(`−1)
4 ) then HH∗(A5,Γw,w) satisfies

dim HH3 = (k`+ 1)(`− 1), dim HHd = ` for d ≤ 1

and dim HHd = 0 for d = 2 and d ≥ 4.

The HH∗ contributions for these singularities are given by the following table.

Monomial Type Degree in HH∗ Number of contributions

x∨0x
∨
1x
∨
2x
∨
3x
∨
4 C 3 k`(`− 1)

x∨0x
∨
1x
∨
2x
∨
3x
∨
4 B 3 `− 1

x
(k`+1)p+q`+r
0 vxr3x

q(`−1)+r
4 A −2(k + 1)p− 2q

{ 0 ≤ q ≤ k − 1
0 ≤ r ≤ `− 1
p ≥ 0

x
(k`+1)p+k`
0 vx`−1

3 A −2(k + 1)p− 2k p ≥ 0

x
(k`+1)p+k`
0 vx

k(`−1)
4 A −2(k + 1)p− 2k p ≥ 0

x
(k`+1)p+k`
0 vx∨3x

∨
4 A −2(k + 1)p− 2k `− 2, p ≥ 0

Type B contributions in HHd+1 for each type A monomial contributing to HHd
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In this table, we have written

v =

{
1 if b0 = 0 mod 2,

x∨1x
∨
2 if b0 = 1 mod 2.

Proof. For each γ-monomial m, let b0, . . . , b4 be the total exponents of x0, . . . , x4 in m.
This monomial transforms under T (s, σ, τ) as

sb0+b2σ−2b0+b1+b2+2b3τ−2b0(k+1)+(k`+1)(b1+b2)+2kb3+2b4 ,

which agrees with (χ ◦ T )⊗u(s, σ, τ) for all (s, σ, τ) if and only if

b0 = b2 mod 2, (3.1)

b1 + b2 + 2b3 = 2b0 + 2umod 2(`− 1), (3.2)

(k`+ 1)(b1 + b2) + 2kb3 + 2b4 = 2(k`+ 1)u+ 2b0(k + 1). (3.3)

Reducing Equation (3.2) modulo 2 tells us that b1 = b2 mod 2. For i = 1, 2, the only
possibilities for bi are 0 (if xi is fixed) or −1 (if xi is not fixed). Thus, if (γ,m) contributes
to HH∗ then either x1 and x2 are both fixed or neither is fixed. This immediately rules out
the contributions from γ with fixed variables {1}, {2}, {0, 1}, {0, 2} {0, 1, 3, 4}, {0, 2, 3, 4}.
Moreover, if x2 is fixed then b2 = 0 so b0 = 0 so x0 must also be fixed (or else we would
have b0 = −1). This rules out contributions with fixed variables {1, 2}.

We now dispose of the type C contributions. These come from (γ, x∨0x
∨
1x
∨
2x
∨
3x
∨
4 ) ∈ HH3

where γ fixes no variables; there are k`(`− 1) of these.

Since b1 = b2 mod 2 and b1, b2 ∈ {0,−1}, Equations (3.2) and (3.3) become

b3 = b0 + u− b1 mod `− 1 (3.4)

kb3 + b4 = k(`− 1)(u− b1) + (k + 1)(b0 + u− b1). (3.5)

Reducing (3.5) modulo `− 1 yields

b4 = u− b1 + b0 = b3 mod `− 1.

We distinguish the following cases:

1. b3 = r, b4 = q(`− 1) + r with q = 0, 1, . . . , k − 1 and r = 0, 1, . . . , `− 1.

2. b3 = `− 1, b4 = 0

3. b3 = 0, b4 = k(`− 1)

4. b3 = b4 = −1.

We illustrate Cases 1–3 in the diagram below for ` = 2, k = 3:
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0

...

`− 1

0 · · · `− 1 · · · 2(`− 1) · · · k(`− 1)

•r = 0

•

•

•

•r = `− 1

•

•

•

•

•

•

Case 2

Case 3

Case 1, q = 0 · · · Case 1, q = k − 1

In what follows, we let d = gcd(`− 1, k + 1) = gcd(k + 1, k`+ 1) = gcd(`− 1, k`+ 1) and
define x, y, z by

k + 1 = dx, k`+ 1 = dy, `− 1 = dz.

We will focus on type A contributions (there will be corresponding type B contributions
obtained by multiplying with x0x

∨
0 ).

In Case 1, Equation (3.5) becomes

(`− 1)q + (k + 1)r = k(`− 1)(u− b1) + (k + 1)(b0 + u− b1),

so k(u− b1) = q − sx, b0 + u− b1 = r + sz for some integer s. Equation (3.4) tells us that
r+ sz = rmod `− 1, so s = dP for some integer P . If we write P = kp+ q for some p, we
get

k(u− b1) = q − sx = q − dPx = q − dxkp− dxq = −k(q + (k + 1)p),

giving u− b1 = −(q + (k + 1)p), and

b0 = r + sz − (u− b1)

= r + dz(kp+ q) + q + (k + 1)p

= r + kp(`− 1) + q(`− 1) + q + (k + 1)p.

= q`+ r + (k`+ 1)p.

This yields a contribution of

x
(k`+1)p+q`+r
0 vxr3x

q(`−1)+r
4 ∈ HH−2((k+1)p+q) where v =

{
1 if b0 = 0 mod 2,

x∨1x
∨
2 if b0 = 1 mod 2.

In each case, there is precisely one γ contributing this monomial (according to whether the
fixed variables are {0, 1, 2, 3, 4} or {0, 3, 4}). There are ` contributions in each degree (as r
varies) and we get every degree congruent to −2qmod 2(k+ 1) for q = 0, 1, . . . , k− 1, that
is, HHd has rank ` for every even d 6= −2kmod 2(k+ 1), d ≤ 0. The corresponding type B
contributions give dim HHd = ` for every odd d 6= 1− 2kmod 2(k + 1), d ≤ 1.
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In Cases 2 and 3, kb3 + b4 = k(`− 1), so

k(`− 1) = k(`− 1)(u− b1) + (k + 1)(b0 + u− b1),

which implies
k(u− b1) = k − sx, b0 + u− b1 = sz

for some s. As before, Equation (3.4) implies s = dP , so k(u − b1) = k − P (k + 1). This
means P = kp for some p, so u − b1 = 1 − (k + 1)p and b0 = (k` + 1)p − 1. Thus we get
contributions

x
(k`+1)p−1
0 vw ∈ HH−2(k+1)p+2 where w ∈

{
x`−1

3 , x
k(`−1)
4

}
and v =

{
1 if b0 = 0 mod 2,

x∨1x
∨
2 if b0 = 1 mod 2.

In both cases there is precisely one γ contributing this monomial (according to whether
the fixed variables are {0, 1, 2, 3, 4} or {0, 3, 4}). This gives two contributions in every even
degree d = 2 mod 2(k + 1), d ≤ −2k.

Finally, in Case 4 we have kb3 + b4 = −(k + 1), which yields

u− b1 = −(k + 1)p, b0 = (k`+ 1)p− 1,

and we get a contribution

x
(k`+1)p−1
0 vx∨3x

∨
4 ∈ HH−2(k+1)p+2 where v =

{
1 if b0 = 0 mod 2,

x∨1x
∨
2 if b0 = 1 mod 2.

In both cases, there are `−2 elements γ contributing these monomials (according to whether
the fixed variables are {0, 1, 2} or {0}). Together with the contributions from Cases 2 and
3, this yields dim HHd = ` for every even d = 2 mod 2(k+ 1), d ≤ −2k. The corresponding
type B contributions give dim HHd = ` in every odd degree d = 3 mod 2(k + 1), d ≤ 3.

Altogether, we get dim HHd = ` if d ≤ 0 and dim HH3 = (k`+ 1)(`− 1).

4 Bigrading

4.1 Scale-equivalence of bigradings

In this section, we need to work over C (or at least an algebraically closed field of charac-
teristic zero).

Definition 4.1. A Z×C-grading on a vector space V (or bigrading for short) is a decom-
position

V =
⊕

(p,q)∈Z×C

V p,q.
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Two Z×C-graded vector spaces V =
⊕

V p,q and W =
⊕

W p,q are scale-equivalent if there
is a nonzero c ∈ C such that dim(V p,q) = dim(W p,cq) for all p, q.

Our contact invariant will be a scale-equivalence class of Z × C-graded vector spaces (in
fact, we will be able to find a representative which takes values in Z×Z). We now explain
how to construct a Z × C-graded vector spaces out of a certain class of Gerstenhaber
algebras.

4.2 Bigradings from Gerstenhaber algebras

Let g∗ be a Gerstenhaber algebra over C; in particular, there is a Gerstenhaber bracket
[·, ·] on g∗ satisfying:

[x, y] = (−1)|x||y|[y, x], (−1)|x||z|[[x, y], z] + (−1)|y||x|[[y, z], x] + (−1)|z||y|[[z, x], y] = 0

The subset g1 ⊂ g∗ is a complex Lie algebra and the bracket gives a representation ρd : g1 →
gl(gd) for each d. We will assume that each graded piece of g∗ is finite-dimensional.

Let h ⊂ g1 be a Cartan subalgebra, that is a nilpotent, self-normalising subalgebra. A
Cartan subalgebra exists and is unique up to automorphisms of g1; for example, you can
construct one by taking the generalised 0-eigenspace of a regular element (an element
ζ ∈ g1 is regular if the generalised 0-eigenspace of adζ has the least possible dimension). If
ρ : g1 → gl(V ) is a finite-dimensional complex representation then we get a weight-space
decomposition V =

⊕
α∈h∗ Vα where

V α :=
{
v ∈ V : (ρ(H)− α(H))Nv = 0 for some N

}
.

In other words, V α is a simultaneous generalised eigenspace for {ρ(H) : H ∈ h}, with
eigenvalues α(H). The weight-space decomposition g1 =

⊕
α g

1,α of the adjoint represen-
tation has h = g1,0.

If h has rank 1 then we have h∗ ∼= C. If we pick such an identification then the weight-
space decomposition gives us a Z×C-bigrading g∗ =

⊕
p,q g

p,q. Changing our identification
h∗ ∼= C yields a scale-equivalent Z× C-grading.

Example 4.2. Let A∗ be a Z-graded associative algebra and suppose that its Hochschild
cohomology HH∗(A,A) has finite dimension in each degree. The Hochschild cochains can be
given an additional Z-grading so that a graded multilinear map A⊗p → A[−q] contributes
to HHp,q(A,A) ⊂ HHp+q(A,A). This Z × Z-bigrading fits into our setting above. We
write HH∗(A,A) ∼=

⊕
p,q HHp,q(A,A). There is an element eu ∈ CC1,0(A,A) defined on the

graded piece Aq by eu(a) = qa. This is a Hochschild cocycle and defines a class (which
we also write as eu) in HH1,0(A,A). This satisfies [eu, c] = qc for c ∈ CC∗,q(A,A). In
particular, the generalised7 0-eigenspace of adeu is HH1,0(A,A). If eu is a regular element

7Since adeu is semisimple on the level of cochains, it remains semisimple in its action on cohomology,
so generalised eigenspaces are actual eigenspaces.
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of the Lie algebra HH1(A,A) then HH1,0(A,A) is a Cartan subalgebra. In particular, if
dim(HH1,0(A,A)) = 1 then eu is necessarily regular and we can take h = HH1,0(A,A). In
this case, if we identify h∗ with C by sending eu∗ to 1 then the weight decomposition gives
us the usual bigrading HH∗(A,A) ∼=

⊕
p,q HHp,q(A,A).

4.3 Bigradings on symplectic cohomology

If V is a Liouville domain with c1(V ) = 0, the symplectic cohomology SH∗(V ) is a Gersten-
haber algebra. We will sketch how the bracket is defined; for more detail, see [43, Section
4] or [1, Section 2.5.1]. The bracket [x, y] is defined by

[x, y] =
⊕
z

(]M(z;x, y,H, J)) z,

where M(z;x, y, J) is the moduli space of solutions u : Σ→ V̂ to Floer’s equation

(du+XH ⊗ β)0,1 = 0

where:

• V̂ is the symplectic completion of V ;

• Σ is a pair-of-pants CP1 \ {0, 1,∞}, where we consider 0, 1 to be positive punctures
and ∞ as a negative puncture;

• we equip Σ with a 1-parameter family of positive/negative cylindrical ends, specified
by asymptotic markers which rotate once for each puncture. As the parameter varies
from 0 to 2π, the markers at the positive punctures rotate once clockwise and the
marker at the negative puncture rotates once anticlockwise;

• β is a subclosed 1-form on Σ compatible with the cylindrical ends;

• u has asymptotes x, y, z respectively at the punctures 0, 1, ∞.

The bracket has degree −1, that is

|x|+ |y| = |z|+ 1,

where the degree is related to the Conley-Zehnder index by |x| = n−µCZ(x). Equivalently,

n = µCZ(x) + µCZ(y)− µCZ(z) + 1.

Lemma 4.3. Let V be a 2n-dimensional Liouville domain with simply-connected boundary
and suppose that there is a contact form on Y = ∂V such that every Reeb orbit γ on Y
satisfies the inequality

µCZ(γ) ≥ max(5− n, n− 1).

If x, y, z are Reeb orbits then there exists a J such that any u ∈M(z;x, y,H, J) avoids the
interior of V , that is, every u stays in the cylindrical end V̂ \ V .
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Proof. Suppose this is not true. Pick a neck-stretching sequence of almost complex struc-
tures Jk around Y and assume our Hamiltonian is constant on the neck as in [12, Figure 8]
so that our solutions to Floer’s equation are genuinely holomorphic in that region and the
standard SFT analysis of neck-stretching applies. Suppose we have a sequence of curves
uk ∈ M(z;x, y,H, Jk) which enter the interior of V . By the SFT compactness theorem,
we can find a convergent subsequence which breaks into levels. There are several cases we
need to consider.

Case 1: A break occurs along a separating curve parallel to z (and possibly other curves).

x y

possibly disconnected

z · · ·

C

Case 2: Not case 1, but a break occurs along separating curves parallel to x and to y.

z · · ·
C

x

· · ·

y

· · ·

Case 3x: Not cases 1–2, but a break occurs along a separating curve parallel to x (Case 3y
similar).

C1 C2

x

· · ·

y

δ0 z δ1 δm· · ·

Case 4: Not cases 1–3, but a break occurs along a contractible loop.
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x y

z δ1 δm· · ·

In Cases 1–2, we are left with a component C which violates the maximum principle
(see also the argument from Bourgeois-Oancea [7, Proof of Proposition 5, Step 1] or an
alternative argument based on action from Cieliebak-Oancea [12, Proof of Proposition
9.17]).

The argument for Case 3x is inspired by [12, Appendix A] and [46, Lemma 3.13]. In this
case, there are at least two components C1 and C2 in the SFT limit, where C1 has x as
a positive asymptote and C2 has y as a positive asymptote. The component C2 has a
negative asymptote at z, a negative asymptote δ0 which connects through lower levels to
the component C1, and possibly further negative asymptotes δ1, . . . , δm, which are capped
off by planes in other levels. The index of C2 is (we justify this in Remark 4.4 below):

µCZ(y)− µCZ(z) + 1−
m∑
i=0

(µCZ(δi) + n− 3). (4.1)

We have
µCZ(y)− µCZ(z) + 1 = n− µCZ(x) ≤ 1

because µCZ(x) ≥ n− 1 by assumption. Moreover µCZ(δi) + n− 3 ≥ 2 by assumption, so
µCZ(y)− µCZ(z) + 1−

∑m
i=0 µCZ(δi) ≤ 1− 2 = −1, which contradicts the regularity of C2.

The argument for Case 3y is the same as for Case 3x with the roles of x and y interchanged.

Case 4 yields a regular component C in the SFT limit which has punctures asymptotic to
x, y and z as well as further negative punctures with asymptotes δ1, . . . , δm. The index of
C is equal to the index of the original moduli space minus

∑m
i=1(µCZ(δi) + n− 3) ≥ 2, so

becomes negative. This is a contradiction.

Remark 4.4. We now explain the index formula (4.1) from the proof. If we fix the
positions of the punctures and all the asymptotic markers, the virtual dimension of this
moduli space is (see Schwarz’s thesis [40, Theorem 3.3.11]):

µCZ(y)− µCZ(z)−
m∑
i=0

µCZ(δi)− n(m+ 1)

since −m − 1 is the Euler characteristic of the domain. However, the bubbling/breaking
which gives rise to the punctures at δi can happen anywhere, with any asymptotic marker,
and the asymptotic markers on y and z can move in a 1-parameter family, so we get an
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additional 3(m+1)+1, which gives Equation (4.1). Note that this is intermediate between
the formula in Schwarz’s thesis and the formula [5, Corollary 5.4] from Bourgeois’s thesis,
where all punctures and markers are allowed to move.

Corollary 4.5. Suppose that (Y, ξ) is a (2n−1)-dimensional contact manifold which admits
a contact form α for which every closed Reeb orbit γ satisfies

µCZ(γ) ≥ max(5− n, n− 1).

Let V1, V2 be Liouville domains with c1(Vi) = 0 and ∂Vi = Y . Suppose that Vi admits a
Morse function with no critical points of index 1. Then (a) there is an isomorphism of
Lie algebras f 1 : SH1(V1) → SH1(V2), and (b) for each d < 0 there is an isomorphism
fd : SHd(V1)→ SHd(V2) which intertwines the representations

ad: SH1(Vi)→ gl(SHd(Vi)).

That is, for each d < 0, we have a commutative diagram:

SH1(V1)

SH1(V2)

gl(SHd(V1))

gl(SHd(V2))

ad

ad

f 1 fd

Proof. Under the assumptions of the corollary, every element of SH1(Vi) or of SHd(Vi) with
d < 0 can be represented using Reeb orbits for the contact form α (rather than critical
points of a Morse function on the filling). These Reeb orbits lie in the cylindrical end of the
symplectic completion V̂i (rather than in the filling), and these cylindrical ends are both
symplectomorphic to the half-symplectisation [0,∞) × Y , so in a suitable cochain model
of symplectic cohomology, we get identifications fd : SCd(V1) → SCd(V2) when d = 1 or
d < 0. Since the contact boundary is index-positive, we know that the differential on these
cochain groups is independent of the filling [12, Prop. 9.17], which tells us that f 1 and fd

induce isomorphisms on cohomology.

By Lemma 4.3, we know there exist almost complex structures for which the Gerstenhaber
bracket between these orbits does not involve any contributions from curves entering the
filling. This implies that f 1 is an isomorphism of Lie algebras and that fd intertwines the
adjoint action of SH1.

4.4 Bigrading on HH∗(mf)

In all our examples, we calculated HH∗(mf(An+1,Γw,w)) and saw that HH2 = 0. Moreover,
we saw in Lemma 2.8 that there is an intrinsically formal algebra B such that

HH∗(mf(An+1,Γw,w)) = HH∗(B).
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We now compute the usual algebra bigrading on HH∗(B) in terms of the γ-monomial
contributions from Theorem 2.14.

Lemma 4.6. A γ-monomial m contributing to HHd(B) contributes to the bigraded piece
HHd−nb0,nb0(B), where b0 is the total exponent of x0 in m.

Remark 4.7. Recall that HHd =
⊕

q HHd−q,q, so this is really just saying that the bigrad-
ing of m is nb0.

Proof. Consider the Gm-action t · (x0, . . . , xn+1) = (tx0, . . . , xn+1). Since this action leaves
w invariant, its weights give a second grading on HH∗(mf(An+2,Γw,w)). Theorem 2.14
comes from an isomorphism between HH∗(mf(An+2,Γw,w)) and a suitable twisted Koszul
cohomology group (whose generators are γ-monomials) [3]. This isomorphism respects
the Gm-action, hence this additional grading is given by the total exponent of x0 in the
γ-monomials contributing to HH.

As in Section 2.3, let S =
⊕

i Si be the generator of F(V ) given by a direct sum of vanishing
cycles. In [29, Theorem 4.2] it is shown that, we have a generator S of mf(An+2,Γww)
mirror to S, where S is the pushforward of a generator E of mf(An+1,Γw,w) under the
inclusion (x1, . . . , xn+1) 7→ (0, x1, . . . , xn+1). In particular, S is Gm-invariant. Using this,
[29, Theorem 4.2] shows that the endomorphism A∞-algebra B = end(S) is a formal algebra
and the grading on B = H(B) is n times the weight of the Gm-action. Therefore, the Gm-
weight on B can be understood in terms of the grading of the algebra B. Indeed, we see it
as the weight decomposition for adb associated to the derivation b = n · eu, where eu ∈ HH1

is the Euler derivation from Example 4.2.

In fact, in all of our examples we have dim HH1,0 = 1, which means, as in Example 4.2, that
the weight decomposition for the representation ad: HH1 →

⊕
d gl(HHd) gives a Z × C-

bigrading which is scale-equivalent to the algebra bigrading, and hence to the bigrading
by the total exponent of x0 by Lemma 4.6.

4.5 Proof of Theorem 1.13

Let X be a cDV singularity and let V be its Milnor fibre. Let µ be the Milnor number
of X. By [33, Theorem 6.6], the Milnor fibre admits a Morse function with precisely one
minimum and µ critical points of index 3; in particular, none of index 1. Since X is
terminal, McLean’s theorem [32, Theorem 1.1] tells us that there exists a contact form
for which every closed Reeb orbit γ satisfies µCZ(γ) ≥ 2 md(X) = 2, where md(X) is the
minimal discrepancy of X, which equals 1 by a theorem of Markushevich [31]. Since n = 3,
we have max(5− n, n− 1) = 2, so that all the assumptions of Corollary 4.5 are satisfied.

Consider the Lie algebra SH1(V ) and its representation
⊕

d<0 SHd(V ) (where SH1(V ) acts
by the Gerstenhaber bracket). By Corollary 4.5, this Lie algebra representation is a contact
invariant of the link of X.
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We know that Conjecture 2.2 holds for all our Brieskorn-Pham and cAn examples, and we
are going to assume that it holds for the Laufer examples too. By Theorem 2.6, this tells
us that, if V is the Milnor fibre of w̌, then

SH∗(V ) ∼= HH∗(mf(An+2,Γw,w))

as Gerstenhaber algebras. Therefore, the contact invariant Lie algebra representation is
equivalent to the representation ad: HH1(B) →

⊕
d<0 gl(HHd(B)) discussed in Section

4.4. In particular, this gives a Z × C-grading on
⊕

d<0 SHd(V ) which we can compute in
terms of the x0-powers of the contributing γ-monomials by Lemma 4.6.

We now show that, for all of our examples, these scale-equivalence classes of Z×C-gradings
distinguish the contact structures.

4.5.1 ` = 1

In this case we need to distinguish the contact structures {α1,k : k = 1, 2, 3, . . .} and
{λ1,k : k = 1, 2, 3, . . .} on S2 × S3.

The unique contribution to HH−2 is:{
x0x

∨
1x
∨
2x
∨
3x
∨
4 for α1,1,

x2
0x

2
4 for α1,k, (k ≥ 2),

x4
0x1x

3
2 for λ1,k.

To compare the Z × C-gradings, we rescale to ensure SH−2,4 6= 0 in all cases. The C-
bigrading of a monomial xb00 · · · xb44 ∈ HHd is therefore given by:{

4b0 for α1,1,

2b0 for α1,k, (k ≥ 2),
b0 for λ1,k.

The unique contribution to HH−4 is:
x4

0 ∈ SH−4,16 for α1,1,

x3
0x
∨
1x
∨
2x
∨
3x
∨
4 ∈ SH−4,6 for α1,2,

x4
0x

4
4 ∈ SH−4,8 for α1,k, (k ≥ 3),

x6
0x

4
2 ∈ SH−4,6 for λ1,k.

This already distinguishes α1,1 from everything, α1,2 from the other αs, and the λs from
the α1,k, k 6= 2.

To distinguish λ1,k from λ1,K with k < K, observe that the unique contribution to SH−4k−2

is x6k+2
0 x2

1 ∈ SH−4k−2,6k+2 respectively x6k+4
0 x1x

4k+3
2 ∈ SH−4k−2,6k+4.

To distinguish α1,k from α1,K with 2 ≤ k < K, observe that the unique contribution to
SH−2k is x2k−1

0 x∨1x
∨
2x
∨
3x
∨
4 ∈ SH−2k,4k−2 respectively x2k

0 x
2k
4 ∈ SH−2k,4k.
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To distinguish α1,2 from λ1,k, k ≥ 2, observe that the unique contribution to SH−6 is
x4

0 ∈ SH−6,8 respectively x10
0 x1x

2
2 ∈ SH−6,10.

To distinguish α1,2 from λ1,1, observe that the unique contribution to SH−8 is x6
0x

2
2 ∈ SH−8,12

respectively x10
0 ∈ SH−8,10.

4.6 ` ≥ 2

The contact structures ξ`,k in Theorem 1.13 live on the manifold ]`(S
2 × S3). We can see

from the tables in Theorems 3.7, 3.10 and 3.13 that for any of α`,k, β`,k, δ4,k, λ`,k, ε6,k, ε8,k,
the symplectic cohomology SHd, d < 0, is supported in a single C-bigrading if and only if
d = −2k or 1− 2kmod 2(k + 1). Therefore, the only possibility for two contact structures
ξ`,k, ` ≥ 2, to agree is for the indices ` and k to agree.

We also see that, if we bigrade by the total exponent of x0, SH1 is supported in bidegrees
0, 1, 2, . . . , ` − 1. This is enough to fix our Z × C-grading completely up to scale so that,
in all cases, the C-bigrading coincides with the total exponent of x0.

To distinguish α`,k from β`,k when k 6= 1 (the singularities are locally analytically equivalent
when ` = 1), observe that the contributions to SH−2k have total x0 exponent k` respectively
k(`+ 1)− 1. These are different if k 6= 1.

To distinguish α4,k and β4,k from δ4,k, note that the contributions to SH−2k have total x0

exponents respectively equal to 5k − 1, 4k and 6k − 1.

To distinguish α6,k and β6,k from ε6,k, note that the contributions to SH−2k have total x0

exponents respectively equal to 7k − 1, 6k and 12k − 1.

To distinguish α8,k and β8,k from ε8,k, note that the contributions to SH−2k have total x0

exponents respectively equal to 9k − 1, 8k and 30k − 1.

References

[1] M. Abouzaid. Symplectic cohomology and Viterbo’s theorem. In Free loop spaces in
geometry and topology, volume 24 of IRMA Lect. Math. Theor. Phys., pages 271–485.
Eur. Math. Soc., Zürich, 2015.
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