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1. Introduction

The response of nonlinear systems to various forms
of external driving force has been of interest in a
wide range of scientific investigations [1–8]. When
the external driving force is a combination of a weak
periodic signal and noise, the phenomenon of stochastic
resonance [1, 2] may arise. When the noise is replaced
by a high frequency field, one can realize vibrational
resonance and, in this case, one of the frequencies is
far higher than the other [3,4]. However, when the two
frequencies are both much less than 1 and the fast-slow
dynamical characteristics still remain in the system, a
phenomenon known as bursting may arise [5, 6]. This
phenomenon can occur in dynamical systems whose
variables evolve on two different time scales, and it has
potential applications in physics [9,10], mechanics [11],
biology [12, 13], chemistry [14, 15], neuroscience [5, 6],
information encoding and computation [16], and in
engineering systems [17, 18]. The potential use of
bursting in order to achieve extremely rapid actuators
was recently demonstrated [19] in electromechanical
systems .

A general mechanism underpinning the occurrence
of bursting oscillations was identified and described
in Ref. [20]. It is understood to arise when a dual-
frequency-driven dynamical system consists of two
coupled nonlinear oscillators of different frequency,
where the slower oscillator sequentially switches the
faster one on and off [20]. More recently, bursting
has also been linked to sharp bifurcation transitions in
dynamical systems [21] due to pulse-shaped explosions.
Bursting involves the complex and multiple-timescale
dynamics that has been receiving much attention in
a diversity of dynamical system such as neuronal
oscillators [5,22], delay systems [23], biological systems
with signal transduction [6, 24–26], and chemical
oscillators [27]. A sharp transition behaviour, referred
to as the speed escape of attractors was reported
recently [28]. This transition takes attractors to
infinity within a narrow interval of parameters near
the critical escape (CE) condition. The result
is bursting with sharp, pulse-shaped, quantitative
changes appearing at the equilibrium point and limit
cycle – a process referred to as a pulse-shaped explosion
(PSE) [21].

Such complex bursting patterns have been in-
vestigated and reported in several classical paradig-
matic oscillators including the Duffing oscillator [29],

Van der Pol oscillator [30], and Mathieu-van der Pol-
Duffing oscillator [31], when they are subjected to the
action of two different slowly-varying sinusoidal exci-
tations. It has also been shown that, when incom-
mensurate fractional-order singularly perturbed Van
der Pol oscillators are subjected to constant forcing,
they too exhibit bursting oscillations [32, 33]. Re-
cently, Han et al. [34] reported two novel bursting pat-
terns: turnover-of-pitchfork-hysteresis-induced burst-
ing and compound pitchfork-hysteresis in a Duffing
system with multiple excitations. The authors showed
that the hysteretic behaviour between the origin and
non-zero equilibria of the fast subsystem resulted from
a delayed pitchfork bifurcation. Also, in [21], a novel
route to bursting known as pulse-shaped explosion
(PSE) was found for a paradigmatic class of nonlin-
ear oscillators. It was shown that an equilibrium and a
limit cycle can display sharp, pulse-shaped, qualitative
changes as the system parameters are progressively ad-
justed. Very recently, Wei et al. [35] analysed the route
to bursting by bistable PSE in a Rayleigh oscillator
with multiple slow excitations and proved that the ini-
tial phase difference of the excitations plays a signifi-
cant role in transitions to different attractors and com-
plex bursting patterns. More recently, Ma et. al. [31],
reported the occurrence of four complicated compound
bursting patterns as well as one relaxation oscillation
in the Mathieu-van der Pol-Duffing.

In previous works, the focus was mostly on
familiar paradigmatic models, such as the van der
Pol or Duffing-like oscillators. However, there exist
a variety of dual-frequency-driven nonlinear systems
with broader real life, scientific and engineering
applications, such as the driven gyroscope that we
examine in this paper. Among its several important
applications, the gyroscope functions variously as a
gyrocompass, an attitude heading reference system,
and an inertial measurement unit. It is used in
inertial navigational aid systems. A recent review [36]
comprehensively outlined and classified a wide range
of commercial gyroscope applications. Supplementing
the extensive body of knowledge about bursting in
the literature cited above, and the references therein,
we report in this paper novel bursting patterns
that have not to our knowledge been described
previously in relation to the driven gyroscope. This
bursting is associated with the destruction of periodic
attractors due to the loss in asymptotic stability
of the equilibrium point separating the resting and
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Figure 1. (Colour online) Schematic diagram of the dual-
frequency-driven gyroscope.

active states, associated with the appearance of a
zero eigenvalue. The process gives birth to another
attractor of higher periodicity when the parametric
excitation is adjusted. We analyze this new PSE
bursting that occurs when a slowly-varying parametric
excitation and a low frequency periodic excitation are
applied to a gyroscope.

The rest of this paper is organized as follows:
in section 2, we present and describe the gyroscope
oscillator model to be considered together with its
stability analysis. Section 3 discusses the bursting
patterns. Section 4 applies the fast-slow analysis to
obtain equations for the fast and slow sub-systems
and describes the dynamical mechanisms underlying
the bursting oscillations. Section 5 summarises our
findings and conclusions.

2. Model Description

The system to be considered is a driven gyroscope
oscillator model [37] mounted on a vibrating base as
illustrated schematically in Figure 1. The equations
of motion for the system dynamics when driven by
either a single-frequency driving force [37], or a dual-
frequency driving force [38], have been formulated
using the Lagrangian approach associated with the
Eulerian angles, namely, with nutation (θ), precession
(φ) and spin (ψ). In general, the Lagrangian of the
model is written as:

L =
1

2
I1(θ

2 + φ̇2 sin2 θ) +
1

2
I3(φ̇ cos θ + ψ̇)2 (1)

−Mg(l+ l1 sin(ω1t)) cos θ −Mgl2 sin(ω2t)

where I1 and I3 denote the gyroscope’s polar and
equatorial moments of inertia, respectively. Mg is
the force due to gravity, l1 is the amplitude of the
external excitation, and ω1 is the frequency of the

external excitation. l2 is the amplitude of the additive
external forcing at frequency ω2. φ and ψ are
cyclic coordinates, since they do not contribute to
the Lagrangian function, which provides us with two
first integrals of the motion expressing the conjugate
momenta. The momentum integrals are:

Pφ =
∂L

∂φ
= I1φ̇ sin

2 θ + I3(φ̇ cos θ + ψ̇) cos θ = βφ,

Pψ =
∂L

∂ψ
= I3(φ̇ cos θ + ψ̇) = I3ωz = βψ, (2)

where ωz is the spin velocity of the gyroscope. Using
the Routh’s procedure and the definitions in Eq. (2),
the Routhian of the system becomes

R = L− βφφ̇− βψψ̇ =
1

2
I1θ̇

2 −A, (3)

where the quantity A depends on the angle θ as

A =
(βφ − βψ cos θ)2

2I1 sin
2 θ

+
β2
φ

2I3
(4)

+Mg(l+ l1 sin(ω1t)) cos θ +Mgl2 sin(ω2t).

The system is thus treated as a single-degree-of-
freedom oscillator so that its equation of motion can
readily be derived from the Euler-Lagrange equation

d

dt

(

∂R

∂θ̇

)

−
∂R

∂θ
= F. (5)

In equation (5) F arises from all the external
contributions, including the dissipative force Fd which
for this model is assumed to be in linear-plus-cubic
form for the model and is written as,

Fd = −D1θ̇ −D2θ̇
3, (6)

where D1 and D2 are positive constants. The other
components of F consist of the driving forces f1 sinω1t

and f2 sinω2t, as shown in Figure 1. Accordingly, it is
easy to show that the equation governing the gyroscope
motion is given by

θ̈ +
β2
φ

I21

(1− cos θ)2

sin3 θ
+
D1

I1
θ̇ +

D2

I1
θ̇3 −

Mgl

I1
sin θ (7)

=
Mgl1

I1
sin(ω1t) sin θ +

Mgl2

I1
sin(ω2t).

Redefining the variables and quantities as α =
βφ

I1
,

c1 = D1

I1
, c2 = D2

I1
, β = Mgl

I1
, f1 = Mgl1

I1
and f2 = Mgl2

I1
,

Eq. (7) can be rewritten in dimensionless differential
equation form as

θ̈ + α2

(

(1− cos θ)2

sin3 θ

)

−B sin θ

+ c1θ̇ + c2θ̇
3 = f sin(ω2t), (8)

where B = β + a sin(ω1t) is a parametric driving force
of amplitude a and frequency ω1. f sin(ω2t) is an
additive external periodic driving force of amplitude
f and frequency ω2. c1θ̇ and c2θ̇

3 are the linear
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Figure 2. (Colour online) The potential of system (8) against
θ when the parameters are fixed at α = 0.1, β = −1, a = 1,
c1 = 0.05, c2 = 0.5, t = 5, ω2 = 0.01, n = 2, ω1 = nω2.

and nonlinear cubic damping terms, respectively, with
coefficients c1 and c2. Thus, the dual-frequency-driven
gyroscope can be considered as a switched-system
of two coupled nonlinear oscillators with different
frequencies, in which the slower oscillator alternately
switches the faster one on and off [20]. The potential
of equation (8) in the absence of additive driving is
given by:

V (θ) =
α2

1 + cos θ
+B cos θ, (9)

where B = β + a sin(ω1t). Depending on the values of
the parameters α and β, V (θ) can admit two types of
potential shapes: single- and double-wells. With a = 1,
c1 = 0.5, c2 = 0.05, f1 = f = 0.05, ω1 = ω = 2 and
t = tn(n = 0, 1, 2, 3, . . .∞), V (θ) shown in Figure 2
is a single-well potential and the equilibrium point
of the unforced system (8) is located at the origin
(θ = 0; θ̇ = 0), around which oscillatory motion of
the periodically driven system (8) occurs along the
principal axis of the gyroscope, which coincides with
its vertical axis.

Equation (8) can be expressed as two coupled
autonomous differential equations, in the form

dθ1

dt
= θ2.

dθ2

dt
= − α2

(

(1 − cos θ1)
2

sin3 θ1

)

+B sin θ1 − c1θ2 − c2θ
3
2 + f sin(ω2t). (10)

The equilibrium points of the system (10) are found by
solving the system of equations:

θ2 = 0,

−α2

(

(1 − cos θ1)
2

sin3 θ1

)

+B sin θ1 − c1θ2 (11)

− c2θ
3
2 + f sin(ω2t) = 0.

We solve equation (11) with parameter values α = 0.1,
β = −1, a = 1, c2 = 0.5, f = 0.05, ω2 = 0.01,
c1 = 0.05, n = 2, and ω1 = nω2. We consider two
cases of equilibrium points: (a) when θ1 = 0, and;
(b) when θ1 has a very small value. The equilibrium
point Ea,b = (θ1, θ2) is calculated thus: when θ1 = 0,
it is obvious that the equilibrium point Ea = (0, 0)
and here the system (8) is independent of the external
forcing. When θ1 is very small (i.e. θ1 ≈ 0), then
sin θ1 ≈ θ1 and cos θ1 ≈ 1. The equilibrium point

therefore becomes Eb =
(

−f sinω2t
β+a sinω1t

, 0
)

. Here, the

system (8) is dependent on the external forcing. It is
noteworthy, then, that the equilibrium point of system
(8) is affected when the external forcing acts on it
(comparing Ea and Eb). The Jacobian matrix of the
system (11) at any θ ∈ R2 is given by

J(θ) =

∣

∣

∣

∣

0 1
α2K1 +B cos θ1 K2

∣

∣

∣

∣

; (12)

where K1 =
(

3 cos θ1[1−cos θ1]
2
−sin θ1[2 sin θ1−sin(2θ1)]
sin4 θ1

)

,

and K2 = −c1 − 3c2θ
2
2 ; and B = β + a sinω1t.

The stability of the equilibrium point can be
obtained from the characteristic equation

λ2–K2λ− α2K1 −B cos θ1 = 0. (13)

From Equation (13), one can deduce that, if K2 < 0
and α2K1 + B cos θ1 < 0, Ea,b is stable; and, if
K2 > 0, then Ea,b is unstable. This accounts for
the different patterns of bifurcation that emerge as
the control (i.e. the forcing amplitude a) is varied and
leads to loss of stability of the equilibrium points Ea,b.
If the constant term satisfies α2K1 + B cos θ1 = 0,
fold bifurcation can take place, and jumping may
occur between different equilibria. Numerically, the
eigenvalues of Ja = Ja(Ea) and Jb = Jb(Eb) at
1.0 × 104 ≤ 1 ≤ 1.15 × 104 were computed and we
found that they are complex conjugate eigenvalues
with negative real parts. Thus, Ea and Eb are stable
foci [39]. For example, for Ea at t = 10000, the
eigenvalues are: λ1,2 = −0.0250±1.3685i; at t = 11000,
the eigenvalues are: λ1,2 = −0.025±0.9545i ; at 11500,
the eigenvalues are: λ1,2 = −0.0250 ± 1.2710i. Also,
for Ea, at t = 10000, the eigenvalues are: λ1,2 =
−0.0250 ± 1.3684i; at t = 11000, the eigenvalues are:
λ1,2 = −0.0250± 0.9544i and finally at t = 11500, the
eigenvalues are: λ1,2 = −0.0250± 1.2710i.

Now, in the absence of the additive external
periodic forcing f sin(ω2t), the system (8), or its
equivalent autonomous version given by Equation (10),
exhibit some interesting dynamical features. Here,
we illustrate the basic dynamical properties using, for
instance, the one-parameter bifurcation diagrams and
the corresponding Lyapunov exponent (LE) spectrum
as functions of the amplitude a with the corresponding
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phase space structures and Poincaré section in selected
regimes as shown in Figure 3. The bifurcation
structure in Figure 3(a) was investigated earlier
by Chen [37]. The bifurcation diagram and the
corresponding Lyapunov exponent (LE) spectrum in
the regime of interest capture all the essential features
in Figure 3(a), setting α = 10, β = 1, c1 = 0.5,
c2 = 0.005, and Ω = 2. Note that in Ref. [37], the
upper wing bifurcation sequence shown in Figure 3
was reported. However, Dooren [40] conjectured that,
by starting with a different set of initial conditions,
a second bifurcation sequence, occurring in the lower
wing can be obtained. Thus, the upper and lower
wing bifurcation cascades when combined gives the
complete bifurcation structure of the system as a
function of the amplitude a – the lower sequence
coexisting with the upper one. The simulations in both
papers show the manifestation of extreme sensitivity

to initial conditions which is a hallmark of nonlinear
systems as well as indicating the existence of hidden
attractors. In Figure 3, we display the complete
bifurcation structure using forward and backward
propagations of the amplitude a without intentional
change in the variable’s initial conditions. In forward
propagation, the amplitude was increased such that
a = a + δa whereas in backward propagation, the
amplitude was decreased such that a = a − δa, where
δa is the increment or decrement in a. This approach
is effective in capturing the salient features and the
entire sequence of bifurcations, including all the hidden
attractors.

In addition, the images in Figure 3 have
certain features that are typical of damped-driven
systems such as the Duffing oscillator and pendulum
reported by Szemplińska-Stupnicka and Tyrkiel [41]
and Parlitz [42] and by many others. Specifically,
prior to the critical period-doubling bifurcation point
at a = acr, where acr ≈ 32.9, there are two coexisting
resonant periodic attractors within a broad range of
driving amplitudes a, located in the upper and lower
wings of the bifurcation curve [Figure 3(b)]. When
a ≥ ac the period-doubling cascade continues and
terminates in the stable chaotic domain occurring in
the neighbourhood of 34.7 < a < 36.2 [Figure 3(c)].

In the presence of the additive external periodic
driving force f sin(ω2t) the system (8) exhibited the
phenomenon of vibrational resonance, when one of
the frequencies is much larger than the other, i.e.
ω2 ≫ ω1 or ω1 ≫ ω2, as reported in our recent
paper [38]. Under these conditions, we showed that the
response of the driven gyroscope to the low frequency
force can be optimised by the presence and properties
of the high-frequency component. In the present paper,
we consider a different scenario where the frequencies
ω1 and ω2 are such that ω1 = nω2, i.e. commensurate
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Figure 3. (a) One-parameter bifurcation diagram computed
based on forward (blue colour) and backward (red colour) prop-
agations and the corresponding Lyapunov (λ) exponents spec-
trum (green colour) illustrating the period-doubling cascades to
chaos. Subplots (b) Periodic two attractor for a = 32.0 and (c)
Chaotic attractor for a = 35.5. In (b) the red and blue lines
represent the trajectories of the upper and lower wing attrac-
tors, with their corresponding Poincaré points shown as open
and closed black points. The other parameters are: α = 10,
β = 1.0, c1 = 0.5, c2 = 0.005, and ω1 = 2.0

frequencies – n being a positive integer [43]. In general,
ω1,2 ≪ 1 indicates the slowly-varying excitations which
are a requirement for the occurrence of bursting [29,
30]. Consequently, the system (parametric excitation)
changes n-times while the external inertia force



Bursting oscillations in nonlinear gyroscope oscillator 6

changes once per revolution. Parameter values in
this study are taken as α = 0.1;β = −1; a =
1; c2 = 0.5; f = 0.05;ω2 = 0.01 and c1 = 0.05.
Remarkably, the bursting phenomenon associated with
system (8) is different from the phenomenon of
parametric vibrational resonance exhibited by this
gyroscope model driven by dual frequency forces ω1

and ω2, such that ω1 ≫ ω2 or ω2 ≫ ω1.
The simulations are carried out with initial

conditions θ1(0) = 0.1, θ2(0) = 0.2 (the initial
condition is shown by the black circle in figures 4b,
5b, 6b and 8b).

3. Bursting Patterns

In order to provide a clear understanding of bursting
phenomenon, we discuss several cases of bursting for
different values of n. In general, bursting appears for
all integer values of n; however the bursting dynamics
for odd integer values is not distinct and bears no
relation to the system’s periodicity. Thus, we focus
mainly on the occurrence of bursting for even integer
values of n. We first discuss a case when n = 2.
Figure 4(a) shows a single peak pulse-shaped explosion
(PSE) when the other parameters are fixed as stated
earlier. It is called a single PSE because the peak
values of θ (up state and down state) have the same
magnitude. It is similar to periodic spiking in that
its response to perturbation produces a single spike
at a time [24]. The quiescent state is the rest state
in-between the spikes; however, it is characterized by a
periodic attractor of period one, as seen in Figure 4(b).

When the quiescent state is an equilibrium point
and the spiking state is a limit cycle, the bursting
type is called point-cycle bursting [24]; but if the
quiescent state is a small amplitude (sub-threshold)
oscillation, then it is called cycle-cycle bursting [24].
Due to the unstable quiescent state in cycle-cycle

bursting, the fast variable requires some time (i.e. slow
passage) to diverge from the equilibrium. The slow
passage can be shortened by noise or weak input from
other bursters, which provides a useful mechanism
for instantaneous synchronization of bursters whereby
small perturbations from the other burster can cause
an instant transition to the active state even when they
have essentially different interburst frequencies [24].

3.1. Bursting Oscillation Patterns with n > 2

We now consider higher values of n (i.e. n > 2).
Figures 5 to 8 show that, with n ≥ 4, a number of
bursting pattern containing multiple clusters can be
observed in each cycle of bursting. Figure 5(a) has a
few threshold oscillations of diminishing amplitude in
the quiescent state and, unlike Figure 4(a), the spike
has two peaks PSEs. This implies that the value of n

1 1.05 1.1 1.15 × 104
t

-2

0

2

θ

-3 -2 -1 0 1 2 3
θ

-0.2

-0.1

0

0.1

0.2

θ̇

Down State

Quiescent State

E

(a)

(b)

Up State

Figure 4. (Colour online) (a) Typical bursting pattern, and;
(b) plot of trajectories in the phase plane (θ, θ̇) of the system
(8) with n = 2. The other parameters fixed at α = 0.1, β = −1,
a = 1, c2 = 0.5, f = 0.05, ω2 = 0.01, c1 = 0.05.

impacts on the number of peak PSEs that can occur.
Notably, the bursting pattern observed for n = 4 is
a period two orbit bursting as indicated in the phase
trajectory shown in Figure 5(b). Thus, we point out
that the PSE bursting noticed here is associated with
period-doubling bifurcation sequences. For example,
the period one attractor observed in Figure 4 when n =
2 undergoes a period-doubling bifurcation and gives
birth to new attractor of period two. Furthermore, we
examined the bursting pattern when n = 8. The result
is shown in Figure 6(a). In this case, the bursting
pattern is characterised by more threshold oscillations
in the quiescent state than found Figure 5(a) as well as
more peak PSEs. In addition, we find the emergence
of a period three orbit in the phase space as shown
in Figure 6(b). Such a scenario is connected with
a crisis-like bifurcation in which an attractor collides
with its basin boundaries and loses stability during
the collision process – consequently, a new attractor
of different orbit is created. Indeed, as the value of
the integer n increases the bursting pattern becomes
more complex with increased periodicity. With n = 10,
as shown in Figure 7(a), the threshold oscillations in
the quiescent state is more pronounced than when
n = 8 and a period four bursting is depicted in
Figure 6(b). Hence, as the integer n increases, the
periodicity of the newly-created attractors increases.
We therefore conjecture that, as the integer n of
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excitation varies progressively, parametrically excited
systems subjected to two commensurate frequencies
transit from one periodic state to another. Figures
6(a) and 7(a) depict a total cycle-cycle bursting with
small amplitude oscillation.

1 1.05 1.1 1.15 × 104
t

-2

0

2

θ

-3 -2 -1 0 1 2 3
θ

-0.4

-0.2

0

0.2

0.4

θ̇

(b)

(a)

Figure 5. (Colour online) (a) Bursting pattern, and; (b) plot
of trajectories in the phase plane (θ, θ̇) of the system (8) with
n = 4. The other parameters fixed at α = 0.1, β = −1, a = 1,
c2 = 0.5, f = 0.05, ω2 = 0.01, c1 = 0.05.

3.2. Impact of Excitation Amplitude

We now focus on the effect of the excitation amplitude
on the bursting dynamics. First, we consider the
effect of the parametric excitation amplitude a on
the bursting pattern. It can be seen in Figure 8(a)
that, when a = 2 and the other parameters are taken
as in Figure 4, a new bursting oscillation pattern is
formed. It is a complex bursting pattern, similar to
that described in Ref. [43]. However, the bursting
observed in Ref. [43] was due to two incommensurate
excitation frequencies whereas, in the present paper,
the bursting patterns observed are associated with
commensurate frequencies. Comparing figures 4(a)
and 8(a), it can be seen that the spikes (up and down)
in figure 8(a) are characterized by rough edges, unlike
figure 4(a) in which spikes have sharp edges. It can
be concluded that the amplitude a of the parametric
excitation affects the reversal period (sharp / delayed)
of the spikes in the bursting pattern. The latter

1 1.05 1.1 1.15 × 104
t

-2

0

2

θ

-3 -2 -1 0 1 2 3
θ

-0.5

0

0.5

θ̇

(b)

(a)

Figure 6. (Colour online) (a) Bursting pattern, and; (b) plot
of trajectories in the phase plane (θ, θ̇) of system (8) with n = 8.
The other parameters fixed at α = 0.1; β = −1; a = 1; c2 = 0.5;
f = 0.05;ω2 = 0.01; c1 = 0.05.

persists for other values of a (i.e. for a ≥ 4). Figures
8(b-c) display complex bursting patterns showing a
decrease in the complexity of the threshold oscillations
as the value of a increases. Here, the complexity of
the oscillations in the up state, the down state and the
quiescent state decreases as the value of a increases.

Also, considering equation (9), it can be seen that
the potential of system (8) depends on the parametric
excitation amplitude, a. Figure 9 shows the impact
of variations in a on the system’s potential structure.
When a is taken as a = 1, 2, 4 or 8, it displays a single-
well potential with its local minimum at θ = 0; whereas
when a = 15, the potential is a double-well potential
with its local maximum at θ = 0 and two local minima
located at θ = ±2.6 around which oscillatory motion
takes place.

Next, considering the impact of the external
driving force amplitude f , Figure 10(a) shows the
bursting pattern formed when f is increased to 0.1
with the other parameters still fixed as in figure 4.
The diminishing amplitude threshold oscillation in the
quiescent state is similar to those shown in figure
4, while the spikes in the up state and down state
occur with rough edges. This implies that after the
perturbation, the reverse mode of the system will not
be as sharp as in figure 4 but will occur with some
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Figure 7. (Colour online) (a) Bursting pattern, and; (b) plot of
trajectories in the phase plane (θ, θ̇) of system (8) with n = 10.
The other parameters fixed at α = 0.1; β = −1; a = 1; c2 = 0.5;
f = 0.05;ω2 = 0.01; c1 = 0.05.
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Figure 8. (Colour online) Complex bursting pattern in system
(8) with the following parameters: (a) a = 2, (b) a = 4, (c) a = 8
and (d) a = 15. The other parameters fixed at α = 0.1, β = −1,
c2 = 0.5, f = 0.05, ω2 = 0.01, n = 2, c1 = 0.05.
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Figure 9. (Colour online) The potential of system (8)against θ

with different values of a. Other parameters are fixed as follows:
α = 0.1, β = −1, n = 2, c1 = 0.05, c2 = 0.5,t = 5, ω2 = 0.01,
ω1 = nω2.

intermittent delays. Figures 10(b-c) show that as the
value of f increases, the time taken for the up state
and the down state to reverse increases. In practice,
the appearance of either a sharp reverse mode or a
delayed reverse mode can be effected by adjusting the
value of f to yield the desired result.

4. Fast-Slow and Bifurcation Analysis

4.1. Fast–Slow Analysis

Equation (8) describes a fast–slow system with two
slow excitations (0 < ω1,2 ≪ 1). It is when
a system exhibits fast–slow dynamics that bursting
oscillations may occur. In system (8) the parametric
excitation provides the fast dynamics while the
external forcing is taken as the slow dynamics, with
the two commensurate frequencies ω1 and ω2 related
by ω1 = nω2. Therefore, we obtain the transformed
fast–slow system as

θ̈ + α2

(

(1− cos θ)2

sin3 θ

)

− [β + aP ∗

n(χ)] sin θ + c1θ̇ + c2θ̇
3 − fχ = 0, (14)

where

χ = sin(ω2t) (15)

is the only slow variable of the system. Based on
De Moivre’s theorem, the trigonometric polynomial
function, P ∗

n(χ), resulting from sin(nω2t) is
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Figure 10. (Colour online) Complex bursting pattern in system
(8) for different values of the amplitude f : (a) f = 0.1, (b)
f = 0.2, (c) f = 0.3, and (d) f = 0.4. The other parameters
were fixed as follows: α = 0.1, β = −1, n = 2, c2 = 0.5, a = 1,
ω2 = 0.01, c1 = 0.05.

P ∗

n(χ) = C1
nχ

n − C3
nχ

n−3(1− χ2) (16)

− C5
nχ

n−5(1− χ2)2 − . . .

+ imCmn χ
n−m(1− χ2)

m−1

2

where m(m ≤ n) is the maximum odd number not
larger than n and i is a complex number. Substituting
the slow variable ψ(t) in Eq. (14) leads to a fast
subsystem, given as

θ̈ + α2

(

(1− cos θ)2

sin3 θ

)

− [β + aP ∗

n(χ)] sin θ + c1θ̇ + c2θ̇
3 − fχ = 0 (17)

where χ = sinω2t is the control parameter.
In order to establish the transition condition, we

examine the behaviour of the fast subsystem. If
β+aP ∗

n(χ) 6= 0, the fast subsystem has two equilibrium
points, (θ1, θ2), where θi, (i = 1, 2) is determined from
the real roots of

α2

(

(1− cos θ)2

sin3 θ

)

− (β + aP ∗

n(χ)) sin θ − fχ = 0. (18)

For simplicity, we assume that θ is small and as a
and χ approach the critical escape (CE) condition
β + aP ∗

n(χ) = 0 i.e. ac = −β
P∗

n(χ) , the equilibrium

will tend to infinity. Hence, at the CE condition,
equilibrium does not exist. Noting that β = −1 in our
computations, the CE condition becomes ac = 1

P∗

n(χ) .
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Figure 11. (Colour online) One parameter bifurcation of the
variable θ as function of χ for system (8) with control parameter
χ for different values of n: (a) n = 2, (b) n = 4, (c) n = 8 and
(d) n = 10. The other parameters were fixed as follows: α = 0.1,
β = −1, a = 1, c2 = 0.5, f = 0.05, ω2 = 0.01, c1 = 0.05.

This condition shall be explored later while examining
the PSE associated with the equilibrium points.

4.2. Bifurcation Analysis

When a system’s trajectory transits between attrac-
tors, bursting can be created. Consequently, bursting
can be obtained in the system (8) when the trajectory
transits between the different attractors and the dy-
namical mechanism of bursting patterns shown in Fig-
ures 4 to 7 can then be analysed. Recall that bursting
is a complex oscillation, where the trajectory under-
goes transitions between an active state of rapid spike
oscillations and a state of quiescence; the dynamical
mechanism (bifurcation) underlying the process can be
explored.

Based on the transition condition obtained earlier,
we now examine the PSE associated with the
equilibrium points by analysing the bifurcation of
system 8 s a function of χ with different values of n
(say n = 2, 4, 8 and 10), exploring the PSE related to
equilibrium. We start with the bifurcation behaviour
when n = 2. Figure 11(a) shows the bifurcation
behaviour of the fast subsystem for n = 2 which
exhibits two critical escapes (CE) lines at CE1 =
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(−0.73, 0) and CE2 = (0.73, 0) where a fold bifurcation
related to CE transitions takes place. As the slow
variable, χ, increases from −1, the dynamics starts
with small oscillations at equilibrium and enters an
active regime between −0.9 ≤ χ ≤ −0.4 where a large-
amplitude oscillation takes place. It then switches to
a rest state between −0.4 ≤ χ ≤ 0.4, after which it
switches to an active regime between 0.4 ≤ χ ≤ 0.9,and
finally comes to a rest state between 0.9 ≤ χ ≤ 1
through small-amplitude oscillations.

For other values of n (i.e. n = 4, 8 and 10),
Figure 11(b-d) depicts the bifurcation behaviour of the
fast subsystem as a function of the control parameter,
χ. PSEs showing more than two peaks can be observed
in the fast subsystem with n ≥ 4. When n = 4 the
bifurcation behaviour of the fast subsystem exhibits
four CE lines at CE1 = (−0.9, 0), CE2 = (−0.45, 0),
CE3 = (0.45, 0) and CE4 = (0.9, 0) as shown in
figure 11(b), where a fold bifurcation related to CE
transitions takes place. Between −1 ≤ χ ≤ −0.85,
the dynamics is in an active regime with appreciably
high-amplitude oscillation. The rest state with small-
amplitude oscillations follows between −0.85 ≤ χ ≤

−0.55. It then switches to an active domain between
−0.55 ≤ χ ≤ −0.3 before entering a quieter rest
state between −0.3 ≤ χ ≤ 0.3. The active regime
between 0.3 ≤ χ ≤ 0.55 is followed by a small-
amplitude quiescent state between 0.55 ≤ χ ≤ 0.85
and finally switches to an active regime between
0.85 ≤ χ ≤ 1. Figure 11(c) displays six CE lines at
CE1 = (−0.95, 0), CE2 = (−0.85, 0), CE3 = (−0.5, 0),
CE4 = (0.5, 0), CE5 = (0.85, 0) and CE6 = (0.95, 0)
with n = 8. The rest states in-between the active
regimes exhibit small-amplitude oscillations. Figure
11(d) shows a fold bifurcation related to CE transitions
with n = 10 having eight CE lines at CE1 = (−1, 0),
CE2 = (−0.85, 0), CE3 = (−0.75, 0), CE4 = (−0.4, 0),
CE5 = (0.4, 0), CE6 = (0.75, 0), CE7 = (0.85, 0)
and CE8 = (1, 0) and every rest state exhibits small-
amplitude oscillations. Obviously, the system (8)
displays stability within −1 ≤ χ ≤ 1 which connotes a
stable PSE of the equilibrium attractor.

Finally, we examine the mechanism of bursting by
analyzing the stability of the fast subsystem given by
Eqn (17). The equilibrium point of the fast subsystem
can be written in the form (θ1, θ2), where θ2 = 0
and θ1 is determined by the real roots of Eqn. (18).
Linearization of the fast subsystem at the equilibrium
points (θ1, θ2) leads to the Jacobian matrix

J =

(

0 1
α2K1 +B cos θ1 K2

)

, (19)

where

K1 = 3(1− cos θ1)
2 cot θ1 csc

3 θ1 − 2(1− cos θ1) csc
2 θ1,

K2 = −c1 − 3c2θ
2
2 = −c1 and B = β + a sinω1t. From

Eqn. (19), we obtain the characteristic equation as

λ2 −K2λ− α2K1 −B cos θ1 = 0. (20)

The equilibrium point is stable if K2 < 0 and α2K1 +
B cos θ1 < 0, and unstable if K2 > 0. For the set of
parameters values used in the numerical simulations,
α2K1 + B cos θ1 ≤ 0 and K2 < 0. In addition, the

condition α2
(

(1−cos θ)2

sin3 θ

)

− (β + aP ∗

n(χ)) sin θ = 0 is

never satisfied. Hence, the equilibrium point is never
at infinity. We found that the transition between
the rest state and active state is associated with the
appearance of a zero eigenvalue of the characteristic
equation when α2K1 + B cos θ1 = 0. That is, the
asymptotic stability of the equilibrium point is lost
when a transition occurs between the rest and active
states. The active state exists between the critical
values of χ, where α2K1 +B cos θ1 = 0 and are shown
in the shaded regions of Figures 12(a) and 13(a).

We now discuss the transition mechanism for the
two cases as illustrated in Figures 12(a) and 13(a),
where we show the superposition of the bifurcation
diagram of the equilibrium point θ with respect to
the control parameter χ and the transformed phase
diagram in the (χ, θ) plane. First, let us consider
the Periodic-One bursting reported for n = 2 and
illustrated in Figure 4. Figure 12(a) shows that, as
χ changes from −1 to +1, a zero eigenvalue appears
for a broad range of χ values and a transition to
the active state takes place in the region spanning
0.63 ≤ χ ≤ 0.79 (denoted as Region 1). Figure 12(a)
shows that as θ starts from a near zero negative value,
it becomes positive as it crosses χ = 0 values. However,
as χ approaches Region 1 in the neighbourhood of
χ = 0.63, the equilibrium point increases sharply
with the appearance of an active state, reaching a
maximum at χ = 0.63. Evidently, there is a decrease
in the equilibrium point to a local minimum at χ =
0.71 and an increase to the maximum value as χ

approaches 0.79. Moreover, as χ leaves Region 1, there
is a sharp decrease in the equilibrium point as the
system undergoes a transition from the active state
to the rest state. From Figure 12(a), the transformed
phase diagram shows that the transition to the active
state from the rest state occurs within Region 1.
Note that, due to the trigonometric nature of the
control parameter, χ, for every region where there
is a transition between the rest and active states,
there is another transition region on the other side
of the χ = 0 line. That is, for a transition in
the Region 1 between 0.63 ≤ χ ≤ 0.79, there is a
corresponding transition due to Region 1 also between
−0.63 ≥ χ ≥ −0.79, herein denoted as Region 2 in
Figure 12(b). These observations from Figure 12(a) are
further corroborated in Figure 12(b). In Figure 12(b),
we display the time series θ(t), overlaid with the χ as
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Figure 12. Fast-slow analysis for the case n = 2. (a) Overlay of
the bifurcation diagram of the equilibrium point θ with respect to
the control parameter χ (thick blue curve) and the transformed
phase diagram in the plane (χ, θ) (dashed black curve). (b) Time
series of θ(t) (thick black curve) overlaid with χ as a function of
t (dashed red curve).

a function of t. The transition region with 0.63 ≤ χ ≤

0.79 (the up state) and −0.63 ≥ χ ≥ −0.79 (the down
state) as predicted from Figure 12(a) are indicated.
It can be seen that the transition to the active state
occurs when χ values coincide with the aforementioned
transition regions. The up state occur at χ values lying
between 0.63 ≤ χ ≤ 0.79 and the down state occurs at
χ values between −0.63 ≥ χ ≥ −0.79.

For n = 4 where Period-Two bursting was found
in Figure 5, Figure 13(a) shows that the transition
to the active state occurs within the regions labelled
Region 1 (−0.90 ≥ χ ≥ −0.95) and Region 2 (0.35 ≤

χ ≤ 0.42). In addition, there exist two transition
regions located within 0.90 ≤ χ ≤ 0.95 and −0.35 ≥

χ ≥ −0.42 - corresponding to Region 1 and Region
2, respectively. There are an additional two regimes
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Figure 13. Fast-slow analysis for the case n = 4. (a) Overlay of
the bifurcation diagram of the equilibrium point θ with respect to
the control parameter χ (thick blue curve) and the transformed
phase diagram in the plane (χ, θ) (dashed black curve). (b) Time
series of θ(t) (thick black curve) overlaid with χ as a function of
t (dashed red curve).

denoted as Regions 3 and Regions 4. Hence, as χ
increases from −1 to +1, there are four transition
regimes from rest state to active state. Figure 13(b)
shows the time series θ(t) overlaid with the χ as a
function of t for n = 4, in which the four transition
regions are clearly indicated. Again, the transition to
the active state occurs when χ values are chosen within
the transition regions. The up states occur in the
interval 0.35 ≤ χ ≤ 0.42 and 0.90 ≤ χ ≤ 0.95, while the
down states occur in the neighborhood of −0.35 ≥ χ ≥

−0.42 and −0.90 ≥ χ ≥ −0.95. In general, for any n =
2, 4, 6, . . ., there are 2n transition regions as χ switches
between its peak values from −1 to +1. Moreover,
the large amplitude oscillations created as the system
moves from the rest state to active states within the
transition regions are induced by the loss of asymptotic
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stability due to the appearance of a zero eigenvalue of
the equilibrium point when α2K1 +B cos θ1 = 0.

5. Summary and Concluding Remarks

We have examined the occurrence of bursting oscilla-
tions in a gyroscope oscillator subjected to a low fre-
quency external driving force and a low frequency para-
metric excitation force. The oscillation observed ex-
hibits a PSE pulse-shaped bursting pattern with chang-
ing bursting periods as the frequency of the paramet-
ric excitation is progressively varied. A change in the
amplitude of the parametric excitations, as well as a
change in the amplitude of the external forcing, af-
fects this bursting pattern. The bifurcation diagram
of the fast subsystem was found to exhibit different
numbers of CE lines where fold bifurcations related
to CE transitions take place. In general, the burst-
ing patterns found in this model arise from losses in
the asymptotic stability of equilibrium point between
the rest and active states associated with the appear-
ance of zero eigenvalue. Understanding the bursting
oscillations pattern in the gyroscope oscillator could be
useful in its application to micro-electromechanical sys-
tems (MEMS) gyroscopes with multiple driving forces
[44, 45] where the phenomenon can be employed to
achieve rapid movement and control [19]. These can
readily be explored in control systems and devices such
as: RF switches; a phase shifter for spacecraft commu-
nication; lab-on-a-chip microsensors for remote chem-
ical detection; compact thermal control systems for
pico- and nano-satellites and inertial sensors for space-
craft navigation, which are all products of MEMS tech-
nology [46].

Acknowledgements

We are grateful for support from the Engineering and
Physical Sciences Research Council (United Kingdom)
under research Grant No. EP/P022197/1.

Data Availability Statement

Data sharing is not applicable to this article as no new
data were created or analysed in this study.

References

[1] R Benzi, A Sutera, and A Vulpiani. The mechanism
of stochastic resonance. J. Phys. A: Math. Gen.,
14(11):L453–L457, nov 1981.

[2] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E.
McClintock, N. D. Stein, and N. G. Stocks. Stochastic
resonance in perspective. Nuovo Cimento D, 17(7):661–
683, Jul 1995.

[3] P. S. Landa and P. V. E. McClintock. Vibrational
resonance. J. Phys. A: Math. Gen., 33(45):L433, 2000.

[4] U. E. Vincent, T. O. Roy-Layinde, O. O. Popoola,
P. O. Adesina, and P. V. E. McClintock. Vibrational
resonance in an oscillator with an asymmetrical
deformable potential. Phys. Rev. E, 98:062203, Dec
2018.

[5] Paul Channell, Gennady Cymbalyuk, and Andrey
Shilnikov. Origin of bursting through homoclinic spike
adding in a neuron model. Phys. Rev. Lett., 98:134101,
03 2007.

[6] E. M. Izhikevich, N. S. Desai, E. C. Walcott, and
F. C. Hoppensteadt. Bursts as a unit of neural
information: selective communication via resonance.
Trends Neurosci., 26:161–167, 03 2003.

[7] O. I. Olusola, O. P. Shomotun, U. E. Vincent, and P. V. E.
McClintock. Quantum vibrational resonance in a dual-
frequency driven Tietz-Hua quantum well. Phys. Rev.

E, 101:052216, 2020.
[8] U. E. Vincent and O. Kolebaje. Introduction to the

dynamics of driven nonlinear systems. Contemp. Phys.,
61(3):169–192, 2020.

[9] Y. Yu, M. Zhao, and Z. Z. Zhang. Novel bursting patterns
in a van der Pol-Duffing oscillator with slow varying
external force. Mech. Syst. Signal Process., 93:164–174,
2017.

[10] S. T. Kingni, B. Nana, G. S. M. Ngueuteu, P. Woafo, and
J . Danckaert. Bursting oscillations in a 3D system
with asymmetrically distributed equilibria: mechanism,
electronic implementation and fractional derivation
effect. Chaos Soliton Fract., 71:29–40, 2015.

[11] H. Simo and P. Woafo. Bursting oscillations in electrome-
chanical systems. Mechanics Res. Comm., 38(8):537 –
541, 2011.

[12] Hu. Gu, Baobao Pan, Guanrong Chen, and Lixia Duan.
Biological experimental demonstration of bifurcations
from bursting to spiking predicted by theoretical models.
Nonlinear Dyn., 78:391–407, 10 2014.

[13] Stefan Schuster, Beate Knoke, and Marko Marhl. Differen-
tial regulation of proteins by bursting calcium oscillations
– a theoretical study. Biosystems, 81:49–63, 08 2005.

[14] Xiang-Hong Li and Qin-Sheng Bi. Single-hopf bursting in
periodic perturbed Belousov-Zhabotinsky reaction with
two time scales. Chin. Phys. Lett., 30(1):010503, 2013.

[15] A. Cadena, D. Barragan, and J. Agreda. Bursting in the
Belousov-Zhabotinsky reaction added with phenol in a
batch reactor. J. Braz. Chem. Soc., 24:2028–2032, 2013.

[16] A. Kepecs and J. Lisman. Information encoding and
computation with spikes and bursts. Network: Comput.

Neural Syst., 14:103–118, 2002.
[17] N. Cohen, I. Bucher, and M. Feldman. Slow-fast response

decomposition of a bi-stable energy harvester. Mech.

Syst. Signal Process., 31:29–39, 2012.
[18] Z. Rakaric and I. Kovacic. Mechanical manifestations of

bursting oscillations in slowly rotating systems. Mech.

Syst. Signal Process., pages 1–8, 2016.
[19] H. Simo, U. Simo Domguia, J. Kumar Dutt, and P. Woafo.

Analysis of vibration of pendulum arm under bursting
oscillation excitation. Pramana J. Phys, 92:3, 2019.

[20] J. Honerkamp, G. Mutschler, and R. Seitz. Coupling of a
slow and a fast oscillation can generate bursting. Bull.

Math. Biol., 47:1–21, 1985.
[21] Xiujing Han, Qinsheng Bi, and Jürgen Kurths. Route

to bursting via pulse-shaped explosion. Phys. Rev. E,
98:010201, 2018.

[22] T. S. Okubo, E. L. Mackevicius, H. L. Payne, G. F. Lynch,
and M. S. Fee. Growth and splitting of neural sequences
in songbird vocal development. Nature, 528:352–357,
2015.

[23] A. Destexhe and P. Gaspard. Bursting oscillations from a
homoclinic tangency in a time delay system. Phys. Lett.

A, 173:386–391, 1993.



Bursting oscillations in nonlinear gyroscope oscillator 13

[24] E. M. Izhikevich. Neural excitability, spiking and bursting.
Intern. J. Bifurc. Chaos, 10:1171–1266, 2000.

[25] M. Perc and M. Marhl. Different types of bursting calcium
oscillations in non-excitable cells. Chaos, Soliton Fract.,
18:759–773, 2003.

[26] R. Bertram, A. Sherman, and L. S. Satin. Electrical
bursting, calcium oscillations, and synchronization of
pancreatic islets. Adv. Exp. Med. Biol., 654:261–279,
2010.

[27] QS. Bi. The mechanism of bursting phenomena in
Belousov-Zhabotinsky (BZ) chemical reaction with
multiple time scales. Sci. China Tech. Sci., 53(3):748–
760, 2010.

[28] Xiujing Han, Fubing Xia, Chun Zhang, and Yue Yu.
Origin of mixed-mode oscillations through speed escape
of attractors in a Rayleigh equation with multiple-
frequency excitations. Nonlinear Dyn., 88:2693–2703,
2017.

[29] X. Han and Q. Bi. Bursting oscillations in Duffing’s equa-
tion with slowly changing external forcing. Commun.

Nonlin. Sci. Numer. Simulat., 16:4146–4152, 2011.
[30] Xiujing Han and QinSheng Bi. Complex bursting patterns

in Van der Pol system with two slowly changing external
forcings. Sci. China Tech. Sci., 55:702–708, 3 2012.

[31] Xindong Ma, Daixian Xia, Wenan Jiang, Mao Liu, and
Qinsheng Bi. Compound bursting behaviors in a forced
Mathieu-van der Pol-Duffing system. Chaos, Soliton

Fract., 147:110967, 2021.
[32] G.S. Ngueuteu, R. Yamapi, and Paul Woafo. Quasi-

static transient and mixed mode oscillations induced by
fractional derivatives effect on the slow flow near folded
singularity. Nonlinear Dyn., 78, 08 2014.

[33] L. Makouo and Paul Woafo. Experimental observation of
bursting patterns in Van der Pol oscillators. Chaos,

Soliton Fract., 94:95–101, 01 2017.
[34] Xiujing Han, Yi Zhang, Qinsheng Bi, and Júrgen Kurths.
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