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Abstract

We are investigating the free components of an electromagnetic current,
which we describe as a De Rham current over an arbitrary worldline on an
arbitrary spacetimeMST . These calculations are an extension of a previous
research done on dipoles and quadrupoles, in which they are described in
a metric-free manner. In this thesis, we consider an adapted coordinate
system to define the free components of an electromagnetic distribution
over an arbitrary worldline and extend the previous work done by going
up to the octupole order of the electromagnetic current expansion. Using
the symmetries of the components found in the calculations, we derive a
generalized expression for the number of free components of any 2k-tupole
current, which satisfies the equation which leads to conservation of charge,
dJ = 0.
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Notation

RIn(t) set of all increasing lists with repetitions
SIn(t) set of all strictly increasing lists
M,N differentiable manifolds
dim(M) dimension of M
dim(N ) dimension of N
τM topology of M
τN topology of N
(xn) = (x1, . . . , xn) lists of coordinates on Rn

TM tangent space of M
TN tangent space of N
ΓTM space of all tangent vectors on M
ΓT ∗M space of all covectors on M
ΓΛpM space of all p-forms on M
ΓΛpN space of all p-forms on N
Γ0ΛqM space of all test forms on M
Γ0ΛqN space of all test forms on N
Υk,p(f) set of all submanifold distributions on M
Ψ[φ] distribution acting on a test form
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Chapter 1

Introduction

Multipole expansions have been used extensively as a method to study the fields
of sources of gravitational and electromagnetic radiation [5][7][10][18][21]. Within
this method, the fields at a long distance from the source are represented by a point
charge, or a point mass, followed by higher order terms called moments. The zeroth-
term is called a monopole, the first-order term is called a dipole, the second-order
term, quadrupole, the third-order term octupole, and so on. In this thesis, we will
focus on multipole expansions of electromagnetic currents over a worldline. We are
considering the multipole expansion of a charged body of size much smaller than the
distance to an observer. We are relating the electromagnetic potential at a distant
field point to a series of multipole moments at the point of reference, or the origin. Our
aim is to generalize the expression of an electromagnetic current and also generalize
the notion of moments in the language of differential geometry.

An interesting application of the multipole expansions of the electromagnetic
potential is deriving the radiation fields that correspond to the source. For example,
the fields resulting from a moving dipole were first evaluated by Ellis using the
Liénard–Wiechert four-potential for moving point-charges [6]. Another method for
evaluating the fields of arbitrary moving dipoles was proposed later by Ward, who
considered a Hertzian six-vector potential and obtained the same results as Ellis
[8][21]. Ellis was also the first one to derive the fields by arbitrary moving quadrupoles
and multipoles with the use of invariant Green’s functions. His work on multipoles has
also recently been extended to an application in general relativity which introduces
the stress-energy quadrupole as a source of gravitational radiation [12]. The fields
that arise from a moving electric and magnetic dipole and an electric quadrupole
have also been obtained using the quantum approach in [15].

There are some properties of the electromagnetic field that can be described within
the dipole approximation. For example, in [14] molecular dipole moments are used
to define covariant polarization. However, examples of interesting insights have been
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Chapter 1. Introduction

obtained from investigating higher moments. These are related to optical activity,
described by electric quadrupoles and magnetic dipoles, and birefringence in certain
non-magnetic crystals which requires going up to the order of electric octopoles and
magnetic quadrupoles [10].

There are a number of peripheral conclusions which have stemmed from the
research surrounding multipole expansions of the electromagnetic potential. As it is an
ongoing topic of research, there are a number of discussions and results which concern
the physical validity of the expansion and the physical meaning of the multipole terms.
For example, in [10] Graham et al. claim that considering traceless multipole terms
of order higher than the quadrupole, which arise from the fields D and H, lead to
a form of Maxwell’s equations which is not translationally invariant. In the context
of their work, they call this translational invariance, origin dependence. The authors
consider the charge distributions as time-varying currents of volume v in a vacuum.

The origin O is understood by the authors to be a mathematical point anywhere
inside a charge distribution in a vacuum or, where bulk matter is being considered
inside a macroscopic volume element [10]. In this work the multipole expansion is
obtained by the authors by relating the given vector potential at a distant field point
R >> r to a series of multipole moments at the origin O. To remedy the origin
dependence of the multipole expansion, Graham et al. propose additional constitutive
relations to ensure translational invariance of the two Maxwell equations containing
D and H.

The theme of origin dependence of the multipole expansion was further investi-
gated by Raab and Lange in [13]. This piece of research proposes a multipole theory of
linear constitutive relations for the response fields D and H with a new transformation
which leaves the inhomogeneous Maxwell equations for the response fields unchanged.
However, these results have been debated as some authors say that the definition of
origin dependence is not satisfactory. Furthermore, in [20] it is shown that the “origin
dependence”, as defined above, is not unphysical as claimed, but only forms a part
of the effect of moving the point of reference. Moreover, the author shows that the
transformation proposed by Raab and Lange is unphysical as it does not leave the
boundary conditions for the fields invariant. The results in [20] show that both on the
macroscopic and microscopic levels the moments change with the reference point and
so does the position of these moments. If both effects are taken into account then the
resulting charge and current densities are independent of the reference point [20].

Previously, free components of an electromagnetic multipole expansion have been
discussed by Raab and Lange in [16], where the free components are listed up to the
electric octupole-magnetic quadrupole order. The calculations in [16] are obtained
using tensor algebra and assumptions which are different to those presented in this
thesis. The general formula for the free components of an electromagnetic 2k-tupole
obtained in this thesis is, as far as the author is concerned, novel and has not been
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Chapter 1. Introduction

Figure 1.1: Quadrupoles represented in an adapted coordinate system (left),
and quadrupoles in lab coordinates (right). The quadrupoles are represented
by ellipsoids, and dipoles by arrows. We can see that dipoles appear as arrows
in the lab coordinate system. It is clear that the adapted coordinate system
simplifies the calculations. It should be noted that the lab coordinates do require
a metric. (Figure adapted from [11]).

seen previously in the literature.
In this thesis, we will describe electromagnetic distributions as examples of De

Rham currents, which we will call submanifold distributions, over an arbitrary
worldline. De Rham currents are defined on a manifold in terms of the push-forward
of a regular distribution. This is known as the De Rham push-forward and it will
be a key technique in the calculations presented in this thesis. The De Rham push-
forward maps form fields on one manifold onto distributions on another manifold. We
will define a regular distribution in terms of its action on a test form of an arbitrary
degree. We will endow the space of the submanifold distributions which are De Rham
currents with the exterior derivative, the internal contraction and the Lie derivative
[2].

All De Rham currents, defined on a closed embedding, f : N →M, of degree p,
and order k, corresponding to the number of derivatives, will be known as Υk,p(f).
We will show that the electromagnetic distributions, the dipole, quadrupole, octupole
and 2k-tupole, belong to the space of Υk,p(f) of the same degree, but different order.
In order to find the number of degrees of freedom of the respective currents and
generalize this to an 2k-tupole, we will use a representation of the De Rham currents
in terms of an arbitrary number of Lie derivatives and internal contractions.

In order to calculate the degrees of freedom we will use an adapted coordinate
system which, in general, makes the calculations easier as the equations of motion are
adapted to the flow of the multipoles (See Fig. 1.1). Although this might be described
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Chapter 1. Introduction

as a disadvantage, since we are not considering a general coordinate system but a
particular coordinate system which is adapted, the result which we have obtained can
still be useful in continuing the discussion on searching for interesting properties of the
higher order moments of the multipole expansion. The components of electromagnetic
distributions as defined in this thesis are unique given they are defined on an adapted
coordinate system. This has been shown in [2]. In order to extend our analysis and
make conclusions on the coordinate dependence of the free components, we should
transform the components to the laboratory coordinates and thus determine the direct
coordinate dependence of the components.

The correct coordinate transformations for quadrupoles, for example, were first
calculated in [11]. The calculations presented in this thesis are closely related to the
work done by Gratus et al. in [11], where multipoles are presented in the language
of differential geometry up to the quadrupole order. We will extend this by going up
to the octupole order and use the mathematical tools derived in [2] in order to build
the basis of our calculations. However, in these calculations we are only considering
the adapted coordinate system and we are not making any conclusions about the
way that the components transform from one coordinate system to another. We will
extrapolate information from the octupole order and derive a general formula for the
degrees of freedom, which we will call free components, of any 2k-tupole expansion of
an electromagnetic current that is satisfying dJ = 0. In this thesis, we use the term
degrees of freedom and free components interchangeably to mean the freedom we have
in varying different components after imposing a constraint on the distributions or,
in other words, the free components are the components which are left undetermined
and are free to be varied after the imposed constraint.

We are interested in finding a general formula for the free components of any
electromagnetic 2k-tupole because it can provide us with insights about the source
of the electromagnetic field that we are interested in. If multipole expansions are
used to describe particles knowing the number of free components can give us further
information about particle interactions and their intrinsic properties. The number of
free components also gives us a hint on how much information is there to find out
about an electromagnetic field and its source, since the degrees of freedom show us
that imposing initial conditions is not enough to find everything about the system.
We would need to replace the free components with algebraic constructions and
constitutive relations in order to be able to know fully how the system will behave.
[12]

We will also present the calculations without a reference to a metric. This gives
the advantage that the definition of multipoles can be generalized even further to
higher dimensional spacetimes, and to manifolds such as phase space, or manifolds
with no preferred metric. For example, we can use multipole expansions in the study
of plasma and beams of particles, where moments of a probably distribution in phase
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Chapter 1. Introduction

space are calculated [11].
This thesis is constructed as follows:
In Chapter 2 we will introduce the theoretical basis for our calculations. We

will introduce a multi-index notation which will help us deal with the symmetries
of internal contraction and Lie derivatives that appear in our calculations. We will
also define an adapted coordinate system and the definition of a closed embedding
in order to build the space of submanifold distribution. We will endow the space of
submanifold distributions with structures such as the exterior derivative, the internal
contraction and the Lie derivative. We will then define De Rham currents in terms
of their actions on a test form and we will introduce their components which will be
the main focus of our calculations.

In Chapter 3 we will represent electromagnetic distributions as De Rham currents
over an arbitrary worldline, which satisfy the equation for conservation of charge,
dJ = 0. We will explore the independent components of the dipole, the quadrupole
and the octupole. We will obtain differential equations by imposing dJ = 0 as a
constraint and will make conclusion for the degrees of freedom for each of the currents.

In Chapter 4 We will use the obtained results in Chapter 3 to generalize the
expression for the independent components of any electromagnetic current, J , before
imposing the constraint dJ = 0. Finally, we will present a general formula for the
free components of any 2k-tupole satisfying the continuity equation.
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Chapter 2

Theoretical Background

In this chapter we will introduce the building blocks for our calculations,
starting with introducing our notation and building up the space of the submanifold
distributions which are De Rham currents.

2.1 Multi-Index Notation

2.1.1 Sets of Increasing Lists

We will be considering an arbitrary number of Lie derivatives and internal
contractions. For this reason, multi-index notation will be used for convenience.
Let the set of all increasing lists with repetitions of m elements be given by:

RIn(t) = {[I1, ..., Is] | s, I1, ..., Is ∈ Z, s ≥ 0, 1 ≤ I1 ≤ I2 ≤ · · · ≤ Is ≤ t}. (2.1)

Let the set of all strictly increasing lists of m elements be given by:

SIn(t) = {[J1, ..., Js] | s, J1, ..., Js ∈ Z, s ≥ 0, 1 < J1 < J2 < · · · < Js ≤ t}, (2.2)

where | [I1, ..., Is] |= s is the length of the list, and t = m, t = n, or t = r
corresponds to the range of coordinates. For antisymmetric objects, such as forms
and internal contractions we will use J,K ∈ SIn(m). For symmetric objects, such as
Lie derivatives, we will use I ∈ RIn(m). For abbreviation these will be written as
I ⇑t to mean I ∈ RIn(t), and J ↑t to mean J ∈ SIn(t). [2]

The naturally increasing lists which include all elements in a set will be given by:

m = [1, . . . ,m] ∈ SIn(m), n = [1, . . . , n] ∈ SIn(n), and r = [1, . . . , r] ∈ SIn(r).
(2.3)

For examples of unpacking the multi-index notation see Example 2 in Section A.1 of
the Appendix.
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Chapter 2. Theoretical Background 2.2. Submanifold Distributions

2.1.2 Lists of Lie Derivatives, Internal Contractions and
Exterior Derivatives

For the lists I ⇑t, J ↑t, and K ↑t we define the following notation for the Lie
derivative, internal contraction and exterior derivative:

L(x)
I = L(x)

I1
L(x)
I2
· · · L(x)

I|I|

i
(x)
J = i

(x)
J|J|
· · · i(x)

J2
i
(x)
J1

dxK = dxK1 ∧ dxK2 ∧ · · · ∧ dxK|K| ,

(2.4)

where the superscript (x) annotates the coordinate system, L(x)
a = L(x)

∂
∂x

and i
(x)
a = i

(x)
∂
∂x

and a = 1, ...,m, or a = 1, ..., n, or a = 1, ..., r.
When referring to lists of coordinates, we will write:

(xm) = (x1, . . . , xm), (zr) = (z1, . . . , zr), (0r) = (0, . . . , 0). (2.5)

Note that all the basic geometric operations used in the calculations in this thesis,
such as the interior product, the exterior derivative and the Lie derivative, are defined
in Section A.2 of the Appendix.

2.1.3 Summation of Increasing Lists

For compactness we will use the summation sign
∑

Rng(I,J,K). In the case where

r, p, k are prescribed, Rng(I, J,K) is defined as:

Rng(I, J,K) := {I ⇑r, K ↑r, K ↑r such that |K| − |J | = p− r, |I| ≤ k}. (2.6)

2.2 Submanifold Distributions

Let M(M, τM ,AM) and N (N, τN ,AN) be two differentiable manifolds with
dim(M) = m, and dim(N ) = n, where τM , τN are their respective topologies and
AM, AM their respective atlases.

We will first introduce a general definition of a regular, or embedded submanifold:

Definition 2.2.1. A subset S of the manifold M of dimension dim(M) = m is a
regular, or an embedded submanifold of dim(S) = s if:

∀ p ∈ S ∃ (U,ϕ) = (U, x1, ..., xs, xs+1, ..., xm), (2.7)
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Chapter 2. Theoretical Background 2.2. Submanifold Distributions

such that U ∩S is defined by the vanishing of m-s of the coordinate functions. Let the
vanishing coordinate functions be given by zi = xs+1, ..., xm = z1, ..., zr. The chart
(U,ϕ) will then be given by:

(U,ϕ) = (U, x1, ..., xs, z1, ..., zr). (2.8)

On U ∩ S, ϕ is defined as:

ϕ = (x1, ..., xs, 0, ..., 0). (2.9)

Such chart, (U,ϕ), is called an adapted chart, relative to S [19].

Definition 2.2.2. If S is a regular submanifold ofM and dim(S) = s, and dim(M) =
m, then r = m− s is called the co-dimension of S and M.

Embedded submanifolds are the most natural and common submanifolds. Every
embedded submanifold is also an immersed submanifold [19]. We are interested in
smooth embeddings which are injective immersions.

2.2.1 Injective Immersion

Definition 2.2.3. A map f : N →M is called an immersion if:

∀ p ∈ N ∃ dp ≡ f∗|(p) : TpN → Tf(p)M is injective, (2.10)

where dp is the differential of f at p and f∗|(p) is the push-forward of vectors from the
tangent space of N to the tangent space of M.

Remark. The rank of the map f is given by the rank of the linear map f∗|(p) : TpN →
Tf(p)M, so it is the rank of the matrix of partial derivatives of f in any coordinate
chart. Assuming that f∗ is injective at each point p ∈ N provides with the conclusion
that rank(f) = dim(N ) [19].

2.2.2 Closed Embedding

In more detail, if the manifold N is compact, we will have an injective immersion
which is also an embedding. However, if N is not compact, the injective immersion
is not necessarily an embedding [19]. We will look at wordlines which are examples
of closed embeddings. Hence, we have the following definition of a closed embedding:

Definition 2.2.4. A map f : N → M is proper if the preimage of every compact
set, S, in N is compact in M:

∀ compact S ∈ τM : f−1(S) is compact ∈ τN , with

f−1(S) : {n ∈ N | f(n) ∈ S}, where
(2.11)

9



Chapter 2. Theoretical Background 2.2. Submanifold Distributions

τN and τM are the topologies of the manifolds N ,M respectfully, and f−1 denotes
the preimage of f .

Definition 2.2.5. A map f : N →M is a smooth closed embedding if:
f : N →M is proper.

f : N →M is an immersion.

The image f(N) is homeomorphic to N under f.

(2.12)

N is called a smooth embedded submanifold of M. Since the map f : N → M is
an immersion it follows that dim(N ) ≤ dim(M). (Follows from the maximal rank
theorem) [19].

2.2.3 De Rham Currents

Let f : N →M be a smooth closed embedding, with codimension r = m− n.

Let the space of all test forms on M be given by:

Γ0ΛqM = {φ ∈ Γ0ΛqM|φ has compact support}. (2.13)

Definition 2.2.6. A regular distribution can be defined by its action on a test form
via:

αD[φ] =

∫
M
φ ∧ α, where (2.14)

α ∈ Γ0ΛpM is a smooth p-form.

Definition 2.2.7. Let p be the degree of αD, defined by:

αD[φ] = 0 for ∀ φ | deg(φ) + deg(αD) 6= m. (2.15)

Remark. To ensure that αD[φ] does not vanish, it is required that 0 ≤ p ≤ m. This
follows from 0 ≤ deg(φ) ≤ m and deg(φ) + deg(αD) = m [2].

Definition 2.2.8. The De Rham currents on manifolds can be defined in terms of a
push-forward of a regular distribution. [17] The De Rham push-forward, fςβ, can be
defined by its action on a test form φ, where β ∈ Γ0ΛpN by:

fςβ[φ] =

∫
N
f ∗φ ∧ β (2.16)

with the requirement that:∫
N
ω = 0, when deg(ω) 6= deg(N ) = n. (2.17)

10



Chapter 2. Theoretical Background 2.2. Submanifold Distributions

Remark. To ensure that the integral in Eq.2.16 does not vanish one requires that
deg(φ) = n− p so that :

deg(fςβ) = m− n+ deg(β) = r + deg(β). (2.18)

Remark. It is important to note that the De Rham push-forward maps fields of forms
on N into distributions on M [2].

2.2.4 The Space of All Submanifold Distributions Υk,p(f)

Definition 2.2.9. Let Υk,p(f) be the set of all submanifold distributions on M of
degree p, and order k. We say that fς(α) is of order 0, so that:

fς(α) ∈ Υ0,p(f) where p = r − deg(α) [2]. (2.19)

Definition 2.2.10. Let Φ, Ψ ∈ Υk,p(f). Let v be a field ∈ TM and φ ∈ Γ0ΛqM as
before. We can define the following operations on the submanifold distributions:

Φ + Ψ ∈ Υk,p(f) with (Ψ + Φ)[φ] = Ψ[φ] + Φ[φ] (2.20)

ivΨ ∈ Υk,p−1(f) with ivΨ[φ] = −(−1)deg(φ)Ψ[ivφ] (2.21)

dΨ ∈ Υk+1,p+1(f) with dΨ[φ] = −(−1)deg(φ)Ψ[dφ]. (2.22)

Using Cartan’s identity, Lv = div + ivd, we can define the Lie derivative on the
submanifold distributions as:

LvΨ ∈ Υk+1,p(f) with LvΨ[φ] = −Ψ[Lvφ]. (2.23)

Let β ∈ ΓΛqM. We can define the wedge product on the submanifold distributions
as:

β ∧Ψ ∈ Υk,p+q(f) with β ∧Ψ[φ] = Ψ[φ ∧ β] = (−1)(degϕ)(degβ)Ψ[β ∧ φ]. (2.24)

Definition 2.2.11. The order of Ψ ∈ Υk,p is given by k, where k is the maximum
number of derivatives of Ψ. Additionally the order of the submanifold distribution
can also be expressed via:

Ψ[λk+1φ] = 0, ∀ φ ∈ Γ0Λm−pM, and λ ∈ ΓΛ0M such that f ∗λ = 0. (2.25)
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Chapter 2. Theoretical Background 2.2. Submanifold Distributions

Remark. As stated, Ψ ∈ Υk,p has no more than k derivatives. We can add two
submanifold distributions of order k and obtain a submanifold distribution of lower
order. For example, given u, v ∈ ΓTM, and LuLvfς(1) ∈ Υ2,0,LvLufς(1) ∈ Υ2,0 we
have that:

LvLufς(1)− LuLvfς(1) = L[v,u]fς(1) ∈ Υ1,0. (2.26)

Therefore each Υk,p(f) is a subspace of the space of higher order submanifold
distributions:

Υk,p(f) ⊂ Υj,p for k ≤ j. (2.27)

Lemma 2.2.1. If the order of Ψ ∈ Υk,p(f) is defined by Eq.2.25, then the order of
fς(α) is zero as stated in Eq.2.19. Moreover, the addition, defined in 2.20, the internal
contraction, defined in 2.21, and the wedge, defined in 2.24 do not change the order of
the submanifold distribution. However, the external derivative, defined in 2.22, and
the Lie derivative, defined in 2.23 increase the order of the submanifold distribution
by one [2].

Definition 2.2.12. To define the support of Ψ one takes the complement of the
largest open set where Ψ vanishes for all test forms φ with compact support:

M\ U such that U ⊂M, and Ψ[φ] = 0, ∀ φ ∈ ΓoΛ
p−mM such that supp(φ) ⊂ U.

(2.28)

Remark. It is therefore implied that supp(Ψ) ⊂ f(N ) [2].

2.2.5 Adapted Coordinates and Components of Υk,p(f)

Let (U,ϕ) be an adapted chart on M such that:

ϕ(x1, ..., xn, z1, ..., zr) = (x1, ..., xn, 0, ..., 0), (2.29)

as defined in Eq.2.9.

Theorem 2.2.2. The elements of Ψ ∈ Υk,p(f) can be expressed locally in terms of
an adapted chart as:

Ψ[φ] =
∑

Rng(I,J,K)

∫
N

ΨI,J
K dxK ∧ f ∗(i(z)J L

(z)
I φ), [2] (2.30)

where
supp(φ) ∈ f(N ), and ΨI,J

K ∈ ΓΛ0N . (2.31)

12



Chapter 2. Theoretical Background 2.2. Submanifold Distributions

Lemma 2.2.3. The elements of Ψ ∈ Υk,p(f) can be also written without a reference
to a test form in terms of the action of the internal contraction and Lie derivatives
on the De Rham push-forward, fς(Ψ

I,J
K dxK):

Ψ =
∑

Rng(I,J,K)

(−1)|I|+(p−r)(m−p+|J |)i
(z)
J L

(z)
I fς(Ψ

I,J
K dxK). (2.32)

The latter definition is used in conducting the calculations in this work. For the
rest of this paper the following notation will be used for compactness:

∗ΨI,J
K = (−1)|I|+(p−r)(m−p+|J |)ΨI,J

K , (2.33)

so that Eq.2.32 now reads:

Ψ =
∑

Rng(I,J,K)

i
(z)
J L

(z)
I fς(

∗ΨI,J
K dxK). (2.34)

Expressing Ψ locally with the help of adapted coordinates guarantees that the
components ΨI,J

K are unique [2].

13



Chapter 3

Electromagnetic Distributions

We will consider electromagnetic 2k-tupoles as distributions over an arbitrary
moving worldline, C.

Definition 3.0.1. Let C : I →MST be a closed embedding onto a four-dimensional
differentiable manifold, MST , which will be referred to as spacetime, where I : {τ |
τmin < τ < τmax} ⊆ R is the domain of C. It is important to note that here there is
no prescribed metric to the manifoldMST , so the parameter τ will not be considered
as proper time.

Remark. Since C is a closed embedding, there exists an adapted chart (U,ϕ), such
that: 

φ : U → R4

τ : U → R
zµ : U → R
τ |C(τ ′) = τ ′

zµ|C(τ ′) = 0.

(3.1)

The worldline C will then be represented by the coordinate functions C0(τ) = τ , and
Cµ = 0 with µ = 1, 2, 3.

Definition 3.0.2. Let J ∈ Υk,3(C) be the current 3-form which is a source of
Maxwell’s equations given by:

dF = 0 (3.2)

dH = J , (3.3)

where F ∈ ΓΛ2MST embodies the electric field E and the magnetic flux density B,
and H ∈ ΓΛ2MST embodies the displacement field D and the magnetic field intensity

14



Chapter 3. Electromagnetic Distributions

H [2].
The fields F and H are related by constitutive relations given by:

H = ?F , (3.4)

where ? is the Hodge dual map defined in Section A.4 of the Appendix.

It should be noted here that the Hodge dual map requires further structures on
the manifold, namely an orientation and a metric to be defined. In this case, we are
not considering the further constraints which will be imposed from H = ?F and we
are restricting our analysis to the conservation of charge, given by dJ = 0.
Taking the exterior derivative of Eq.3.3 we have the following equation for the
conservation of charge:

dJ = 0. (3.5)

We also point out that any J satisfying Eq.3.5 is closed.

Remark. Alternatively, we can state that the closeness of J in Eq.3.5 is also
guaranteed by its exactness, as every exact form is by definition also closed. (See
Theorem A.2.4 in the Appendix).

3.0.1 General Current

Consider J ∈ Υk,3(C) such that dJ = 0 in an adapted coordinate system such as
the one above:

J =
∑

I⇑3,|I|≤k,J↑3,K↑1
(−1)(|I|+(p−3)(4−p)+|J |)i

(z)
J L

(z)
I Cς(J I,J

K dxK), (3.6)

with |J |+ |K| = 1.
It can be seen that this is equivalent to Eq. 2.32 but here we have specified that
r = 3,as the co-dimension of I and MST , and m = 4 as the dimension of MST .

Let (−1)(|I|+(p−3)(4−p)+|J |)J = Ĵ , then dJ = 0 gives:

dJ =
∑

I⇑3,|I|≤k

L(z)
I Cς(dĴ I,∅

∅ ) +
∑

I⇑3,J↑3,|I|≤k,|J |=1

i
(z)
J L

(z)
I Cς(Ĵ I,J

o dτ) (3.7)

The sum is split into two where K = [∅] and K = [0] with dx1 = dτ . The
general expression for dJ = 0 will help extract the free components for each of
the distributions.

After establishing the equation for the general electromagnetic current, we will
now give specific examples of currents of different orders, starting with the zeroth
order, which is the monopole current, and going up to the third order, which is the
octupole current.
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Chapter 3. Electromagnetic Distributions

3.0.2 Monopole Current

Lemma 3.0.1. Given JM ∈ Υ0,3(C) such that dJM = 0, we can define the elementary
charge as:

JM = qCς(1), where q = constant. (3.8)

Proof. Using Eq.3.6 the monopole current is given by:

J = Cς(Ĵ ∅,∅
∅ ) +

3∑
ν=1

i(z)ν Cς(Ĵ ∅,ν
0 dτ).

Setting dJ = 0, we obtain:

0 = dJ = Cς(d
ˆJ ∅,∅
∅ ) +

3∑
ν=1

d{i(z)ν Cς(Ĵ ∅,ν
0 dτ)}.

Applying Cartan’s identity to the second term gives:

0 = dJ = Cς(dĴ ∅,∅
∅ ) +

3∑
ν=1

(L(z)
ν (CςĴ ∅,ν

0 )− i(z)ν (CςdĴ ∅,ν
0 dτ)).

The last term vanishes so finally dJ = 0 leads to two expressions:

∂
(τ)
0 Ĵ

∅,∅
∅ = 0

Ĵ ∅,ν
0 = 0.

From the first equation it follows that Ĵ ∅,∅
∅ is a constant, or a conserved quantity.

One can set Ĵ ∅,∅
∅ = q. This represents the total monopole charge of the current

[2].

3.0.3 Dipole Current

Consider JD ∈ Υ1,3(C) such that dJD = 0. This is the dipole current given by:

JD = Cς(Ĵ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(Ĵ µ,∅

∅ ) +
3∑

ν=1

i(z)ν Cς(Ĵ ∅,ν
0 dτ) +

3∑
ν=1

3∑
µ=1

i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ).

(3.9)
Using the symmetries of the Lie derivatives and internal contractions, we can count
the independent components of the dipole current. These are presented in Table 3.1
below.
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Chapter 3. Electromagnetic Distributions

There are total of 16 independent components in the dipole distribution before
setting any constraints on JD. These are consistent with the number of independent
components in the dipole distribution previously calculated in [11]. To find the number
of constraints we will set dJD to zero:

0 = dJD = Cς(dĴ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(dĴ µ,∅

∅ ) +
3∑

ν=1

d{i(z)ν Cς(Ĵ ∅,ν
0 dτ)}+

+
3∑

ν=1

3∑
µ=1

d{i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ)}.
(3.10)

Using Cartan’s identity on the last two terms gives:

0 = dJD = Cς(dĴ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(dĴ µ,∅

∅ ) +
3∑

ν=1

(L(z)
ν Cς(Ĵ ∅,ν

0 dτ)−
3∑

ν=1

i(z)ν Cς(dĴ ∅,ν
0 ∧ dτ))

+
3∑

ν=1

3∑
µ=1

(L(z)
ν L(z)

µ Cς(Ĵ µ,ν
0 dτ)−

3∑
ν=1

3∑
µ=1

iνL(z)
µ Cς(dĴ µ,ν

0 ∧ dτ)),

(3.11)

with the terms
∑3

ν=1 i
(z)
ν Cς(dĴ ∅,ν

0 ∧dτ) and
∑3

ν=1

∑3
µ=1 iνL

(z)
µ Cς(dĴ µ,ν

0 ∧dτ) vanishing,
we obtain:

0 = dJD = Cς(dĴ ∅,∅
∅ )+

3∑
µ=1

L(z)
µ Cς(dĴ µ,∅

∅ )+
3∑

ν=1

L(z)
ν Cς(Ĵ ∅,ν

0 dτ)+
3∑

ν=1

3∑
µ=1

L(z)
ν L(z)

µ Cς(Ĵ µ,ν
0 dτ).

(3.12)
From that we can deduce the following equations for the components:

∂
(τ)
0 Ĵ

∅,∅
∅ = 0

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0

Ĵ µ,ν
0 + Ĵ ν,µ

0 = 0.

(3.13)

Here we are using the symmetries of the indices as above to deduce the number of
differential equations. The resulting numbers of constraints is given in Table 3.2.

There are 10 constraints that are imposed on the dipole current. This means that
we obtain 6 free components of the current after the imposed constraints.
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Chapter 3. Electromagnetic Distributions

Table 3.1: Number of Independent Components of the Dipole Distribution

Component Number of Configurations

Ĵ ∅,∅
∅ 1

Ĵ µ,∅
∅ 3

Ĵ ∅,ν
0 3

Ĵ µ,ν
0 9

Table 3.2: Number of Constraints for the Dipole Distribution

Constraints Number of Constraints

Ĵ ∅,∅
∅ = q 1

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0 3

Ĵ (µ,ν)
0 = 0 6

3.0.4 Quadrupole Current

Consider JQ ∈ Υ2,3(C) such that dJQ = 0. This is the quadrupole current given
by:

JQ = Cς(Ĵ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(Ĵ µ,∅

∅ ) +
3∑

ν=1

i(z)ν Cς(Ĵ ∅,ν
0 dτ) +

3∑
ν=1

3∑
µ=1

i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ)

+
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς(Ĵ µν,∅
∅ ) +

3∑
δ=1

3∑
µ=1

3∑
ν=1

i
(z)
δ L

(z)
µ L(z)

ν Cς(Ĵ µν,δ
0 dτ).

(3.14)
Using the same method as above, we find the independent components of the
quadrupole current, presented in Table 3.4 below.

To illustrate the independent components, we will use Ĵ µν,δ
0 as an example.

Without considering any symmetries we will naturally have 27 components coming
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Chapter 3. Electromagnetic Distributions

from Ĵ µν,δ
0 :

Ĵ 11,1
0 , Ĵ 12,1

0 , Ĵ 13,1
0 ,

Ĵ 21,1
0 , Ĵ 22,1

0 , Ĵ 23,1
0

Ĵ 31,1
0 , Ĵ 32,1

0 , Ĵ 33,1
0

Ĵ 11,2
0 , Ĵ 12,2

0 , Ĵ 13,2
0

Ĵ 21,2
0 , Ĵ 22,2

0 , Ĵ 23,2
0

Ĵ 31,2
0 , Ĵ 32,2

0 , Ĵ 33,2
0

Ĵ 11,3
0 , Ĵ 12,3

0 , Ĵ 13,3
0 ,

Ĵ 21,3
0 , Ĵ 22,3

0 , Ĵ 23,3
0

Ĵ 31,3
0 , Ĵ 32,3

0 , Ĵ 33,3
0 .

(3.15)

Considering the symmetries of the Lie derivatives, namely L(z)
µ L(z)

ν = L(z)
ν L(z)

µ , we
observe that:

Ĵ µν,ρ
0 = Ĵ (µν),ρ

0 , (3.16)

where

Ĵ (µν),ρ
0 =

1

2

(
Ĵ µν,ρ

0 + Ĵ νµ,ρ
0

)
. (3.17)

Or alternatively:
Ĵ [µν],ρ

0 = 0, (3.18)

where

Ĵ [µν],ρ
0 =

1

2

(
Ĵ µν,ρ

0 − Ĵ νµ,ρ
0

)
. (3.19)

Finally, we have 18 independent component coming from Ĵ µν,δ
0 , given by:

Ĵ 11,1
0 , Ĵ 12,1

0 , Ĵ 13,1
0

Ĵ 22,1
0 , Ĵ 23,1

0 , Ĵ 33,1
0

Ĵ 11,2
0 , Ĵ 12,2

0 , Ĵ 13,2
0

Ĵ 23,2
0 , Ĵ 22,2

0 , Ĵ 33,2
0

Ĵ 11,3
0 , Ĵ 12,3

0 , Ĵ 13,3
0

Ĵ 22,3
0 , Ĵ 23,3

0 , Ĵ 33,3
0 .

(3.20)
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To find the number of constraints we again set dJQ = 0 to obtain:

0 = dJQ = Cς(dĴ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(dĴ µ,∅

∅ ) +
3∑

ν=1

d{i(z)ν Cς(Ĵ ∅,ν
0 dτ)}

+
3∑

ν=1

3∑
µ=1

d{i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ)}+
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς(dĴ µν,∅
∅ )

+
3∑
δ=1

3∑
µ=1

3∑
ν=1

d{i(z)δ L
(z)
µ L(z)

ν Cς(Ĵ µν,δ
0 dτ)}.

(3.21)

Applying Cartan’s identity to a few terms we obtain the following relations:

3∑
ν=0

d{i(z)ν Cς(Ĵ ∅,ν
0 dτ)} =

3∑
ν=0

(L(z)
ν Cς(Ĵ ∅,ν

0 dτ)−
3∑

ν=0

i(z)ν Cς(dĴ ∅,ν
∅ ∧ dτ)),

3∑
ν=0

3∑
µ=0

d{i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ)} =
3∑

ν=0

3∑
µ=0

L(z)
ν L(z)

µ Cς(Ĵ ∅,ν
0 dτ)−

3∑
ν=0

i(z)ν Cς(dĴ ∅,ν
0 ∧ dτ) and

3∑
δ=0

3∑
µ=0

3∑
ν=0

d{i(z)δ L
(z)
µ L(z)

ν Cς(Ĵ µν,δ
0 dτ)} =

3∑
δ=0

3∑
µ=0

3∑
ν=0

L(z)
δ L

(z)
µ L(z)

ν Cς(Ĵ µν,δ
0 dτ)

−
3∑
δ=0

3∑
µ=0

3∑
ν=0

i
(z)
δ L

(z)
µ L(z)

ν Cς(dĴ µν,δ
0 ∧ dτ).

(3.22)
Simplifying using the expressions above, we obtain:

0 = dJQ = Cς(dĴ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(dĴ µ,∅

∅ ) +
3∑

ν=1

L(z)
ν Cς(Ĵ ∅,ν

0 dτ) +
3∑

ν=1

3∑
µ=1

L(z)
ν L(z)

µ Cς(Ĵ µ,ν
0 dτ)

+
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς(dĴ µν,∅
∅ ) +

3∑
δ=1

3∑
µ=1

3∑
ν=1

L(z)
δ L

(z)
µ L(z)

ν Cς(Ĵ µν,δ
0 dτ).

(3.23)
This gives rise to the following equations:

Ĵ ∅,∅
∅ = q

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0

∂
(τ)
0 Ĵ

µν,∅
∅ + Ĵ (µ,ν)

0 = 0

Ĵ (µν,ρ)
0 = 0.

(3.24)
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The number of all constraints on the quadrupole current is presented in Table 3.3
below:

We will explicitly show the equations given in Table 3.3 in order to illustrate how
we have applied the increasing lists:

• There are 3 equations coming from ∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0:

Ĵ ∅,1
0 = −∂(τ)

0 Ĵ
1,∅
∅

Ĵ ∅,2
0 = −∂(τ)

0 Ĵ
2,∅
∅

Ĵ ∅,3
0 = −∂(τ)

0 Ĵ
3,∅
∅ .

(3.25)

• There are 6 equations coming from ∂
(τ)
0 Ĵ

µν,∅
∅ + Ĵ (µ,ν)

0 = 0:

Ĵ (1,1)
0 + ∂

(τ)
0 Ĵ

11,∅
∅ = 0

Ĵ (2,2)
0 + ∂

(τ)
0 Ĵ

22,∅
∅ = 0

Ĵ (3,3)
0 + ∂

(τ)
0 Ĵ

33,∅
∅ = 0

Ĵ (1,2)
0 + 2∂

(τ)
0 Ĵ

12,∅
∅ = 0

Ĵ (1,3)
0 + 2∂

(τ)
0 Ĵ

13,∅
∅ = 0

Ĵ (3,2)
0 + 2∂

(τ)
0 Ĵ

32,∅
∅ = 0.

(3.26)

• Finally, there are 10 equations coming from: Ĵ (µν,ρ)
0 = 0:

Ĵ 11,1
0 = Ĵ 22,2

0 = Ĵ 33,3
0 = 0

Ĵ 12,3
0 + Ĵ 13,2

0 + Ĵ 23,1
0 = 0

Ĵ 11,2
0 + 2Ĵ 12,1

0 = 0

Ĵ 11,3
0 + 2Ĵ 13,1

0 = 0

Ĵ 22,1
0 + 2Ĵ 21,2

0 = 0

Ĵ 22,3
0 + 2Ĵ 23,2

0 = 0

Ĵ 33,1
0 + 2Ĵ 31,3

0 = 0

Ĵ 33,2
0 + 2Ĵ 32,3

0 = 0.

(3.27)

Remark. Here we can see the usefulness of considering increasing lists, as we have to
take the symmetries of the Lie derivatives into account. For example, Ĵ 12,2

0 = Ĵ 21,2
0 ,

and Ĵ 23,∅
∅ = Ĵ 32,∅

∅ , which follows directly from L(z)
1 L

(z)
2 = L(z)

2 L
(z)
1 , and L(z)

2 L
(z)
3 =

L(z)
3 L

(z)
2 .

The obtained number of independent components and constraints here are
consistent with the calculations made previously by Gratus et al. in [2] and [11].
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Table 3.3: Number of Constraints for the Quadrupole Distribution

Constraints Number of Constraints

Ĵ ∅,∅
∅ = q 1

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0 3

∂
(τ)
0 Ĵ

µν,∅
∅ + Ĵ (µ,ν)

0 = 0 6

Ĵ (µν,ρ)
0 =0 10

Table 3.4: Number of Independent Components of the Quadrupole Distribution

Component Number of Configurations

Ĵ ∅,∅
∅ 1

Ĵ µ,∅
∅ 3

Ĵ ∅,ν
0 3

Ĵ µ,ν
0 9

Ĵ µν,∅
∅ 6

Ĵ µν,δ
∅ 18

3.0.5 Octupole Current

Consider JO ∈ Υ3,3 such that dJO = 0. This is the octupole current given by:

JO =
∑

I⇑3,|I|≤3

L(z)
I Cς(Ĵ I,∅

∅ ) +
∑

I⇑3,J↑3,|I|≤3,|J |=1

i
(z)
J L

(z)
I Cς(Ĵ I,J

0 dτ). (3.28)

Writing the terms explicitly, we obtain:

JO = Cς(Ĵ ∅,∅
∅ ) +

3∑
µ=1

L(z)
µ Cς(Ĵ µ,∅

∅ ) +
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς(Ĵ µν,∅
∅ )

+
3∑

µ=1

3∑
ν=1

3∑
δ=1

L(z)
µ L(z)

ν L
(z)
δ Cς(Ĵ µνδ,∅

∅ ) +
3∑

ν=1

i(z)ν Cς(Ĵ ∅,ν
0 dτ) +

3∑
ν=1

3∑
µ=1

i(z)ν L(z)
µ Cς(Ĵ µ,ν

0 dτ)

+
3∑
ρ=1

3∑
µ=1

3∑
ν=1

i(z)ρ L(z)
µ L(z)

ν Cς(Ĵ µν,ρ
0 dτ) +

3∑
ρ=1

3∑
µ=1

3∑
ν=1

3∑
δ=1

i(z)ρ L(z)
µ L(z)

ν L
(z)
δ Cς(Ĵ µνδ,ρ

0 dτ).

(3.29)
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The independent components of the octupole current are give in Table 3.5 below.
Setting dJO = 0 to find the constraints gives:

0 = dJO = Cς((∂
(τ)
0 Ĵ

∅,∅
∅ )dτ) +

3∑
µ=1

L(z)
µ Cς((∂

(τ)
0 Ĵ

µ,∅
∅ )dτ)

+
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς((∂
(τ)
0 Ĵ

µν,∅
∅ )dτ) +

3∑
µ=1

3∑
ν=1

3∑
δ=1

L(z)
µ L(z)

ν L
(z)
δ Cς((∂

(τ)
0 Ĵ

µνδ,∅
∅ )dτ)

+
3∑

ν=1

L(z)
ν Cς(Ĵ ∅,ν

0 dτ) +
3∑

µ=1

3∑
ν=1

L(z)
µ L(z)

ν Cς(Ĵ µ,ν
0 dτ)

+
3∑
ρ=1

3∑
µ=1

3∑
ν=1

L(z)
ρ L(z)

µ L(z)
ν Cς(Ĵ µν,ρ

0 dτ) +
3∑
ρ=1

3∑
µ=1

3∑
ν=1

3∑
δ=1

L(z)
ρ L(z)

ρ L(z)
µ L(z)

ν L
(z)
δ Cς(Ĵ µνδ,ρ

0 dτ).

(3.30)
This leads to the following equations:

Ĵ ∅,∅
∅ = q

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0

∂
(τ)
0 Ĵ

µν,∅
∅ + Ĵ (µ,ν)

0 = 0

∂
(τ)
0 (Ĵ µνρ,∅

∅ ) + Ĵ (µν,ρ)
0 = 0

Ĵ µν,∅
0 = 0.

(3.31)

Now we have the following number of constraints on the octupole distribution,
presented in Table 3.6 below:

Table 3.5: Number of Constraints for the Octupole Distribution

Constraints Number of Constraints

Ĵ ∅,∅
∅ = q 1

∂
(τ)
0 Ĵ

µ,∅
∅ + Ĵ ∅,µ

0 = 0 3

∂
(τ)
0 Ĵ

µν,∅
∅ +

ˆ̂J (µ,ν)
0 = 0 6

∂
(τ)
0 Ĵ

µνρ,∅
∅ + Ĵ (µν,ρ)

0 = 0 10

Ĵ (µνδ,ρ)
0 = 0 15

For clarity and illustration of the increasing lists of indices, the 30 independent
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Chapter 3. Electromagnetic Distributions

Table 3.6: Number of Independent Components of the Octupole Distribution

Component Number of Configurations

Ĵ ∅,∅
∅ 1

Ĵ µ,∅
∅ 3

Ĵ ∅,ν
0 3

Ĵ µ,ν
0 9

Ĵ µν,∅
∅ 6

Ĵ µν,δ
∅ 18

Ĵ µνδ
∅ 10

Ĵ µνδ,ρ
0 30

components coming from Ĵ µνδ,ρ
0 are listed explicitly below:

Ĵ 111,1
0 , Ĵ 111,2

0 , Ĵ 111,3
0

Ĵ 112,1
0 , Ĵ 112,2

0 , Ĵ 112,3
0

Ĵ 113,1
0 , Ĵ 113,2

0 , Ĵ 113,3
0

Ĵ 122,1
0 , Ĵ 122,2

0 , Ĵ 122,3
0

Ĵ 123,1
0 , Ĵ 123,2

0 , Ĵ 123,3
0

Ĵ 133,1
0 , Ĵ 133,2

0 , Ĵ 133,3
0

Ĵ 222,1
0 , Ĵ 222,2

0 , Ĵ 222,3
0

Ĵ 223,1
0 , Ĵ 223,2

0 , Ĵ 223,3
0

Ĵ 233,1
0 , Ĵ 233,2

0 , Ĵ 233,3
0

Ĵ 333,1
0 , Ĵ 333,2

0 , Ĵ 333,3
0 .

(3.32)
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Chapter 4

Number of Free Components for J

We will obtain the free components of a general electromagnetic current, J , over
a worldline by subtracting the number of differential equations, which arise from the
condition dJ = 0 which we will call constraints, from the number of independent
components in the general expressions for the distributional current J .

Definition 4.0.1. Let Nin be the number of independent components of the
distribution J .

Remark. It is important to note that to obtain this number we are taking into
consideration only the symmetries of the Lie derivatives and internal contractions
before any further conditions are imposed.

Definition 4.0.2. Let Nfree be the number of free components of a distribution
J ∈ Υk,3(C) after the condition dJ = 0 is imposed.

Definition 4.0.3. Let Nc be the number of the resulting differential equations after
we have imposed dJ = 0.

Definition 4.0.4. The number of free components, Nfree, of the distribution J will
then be given by:

Nfree = Nin −Nc. (4.1)

4.1 Stars and Bars

To obtain the number of independent components in a general electromagnetic
distribution, J , we will use the counting method known as Stars and Bars.
This counting method will allow us to determine how many ways there are of allocating
s number of stars into s′ number of bins. The stars are indistinguishable but the bins
are not. We can distinguish the bins by how many stars are present in it. We only
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Chapter 4. Number of Free Components for J 4.1. Stars and Bars

need to know when we go from one bin to another. This is achieved by separating
each bin with s′ − 1 bars which tell us when we are moving to the next bin.
The number of ways to allocate s objects into s′ number of bins is given by the Stars
and Bars theorem and it is equal to:

N =

(
s+ s′ − 1

s′ − 1

)
. (4.2)

Example 1. Let us say that we would like to know in how many ways we could
distribute 5 identical objects between 3 people. Using the Stars and Bars counting
method, we will have s = 5 stars, allocated in 3 bins, separated by s′ − 1 = 2 bars.
The number of ways will then be:(

s+ s′ − 1

s′ − 1

)
=

(
5 + 2

2

)
=

(
7

2

)
= 21. (4.3)

To illustrate pictorially one way of distributing these objects between the 3 people
will be given by:

|FF|FFF. (4.4)

Here we have given 0 objects to the first person, 2 objects to the second one, and
three objects to the third one. It can be clearly seen that the bars help us know when
to stop giving objects to one person and move to the other.
Another option will be, for example:

F|FFF|F. (4.5)

Here we have given 1 object to the first person, 3 objects to the second one, and one
to the third person.

We can now introduce the core theorem of this thesis:

Theorem 4.1.1. For J ∈ Υk,3 such that dJ = 0 the number of free components,
Nfree, as defined in Def. 4.0.2, is given by:

Nfree =
k(k + 2)(k + 3)

2
. (4.6)

Before we prove Theorem 4.1.1 we will introduce a few definitions and lemmas.
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Chapter 4. Number of Free Components for J 4.2. Independent components of J

4.2 Independent components of J
To find the general expressions for both Ĵ I,∅

∅ , and Ĵ I,ν
0 , we will first consider a

general distribution Υk,3(C) over a worldline C as before. Let J ∈ Υk,3(C) represent
a 2k-tupole distribution of order k given by:

J =
∑

I⇑3,|I|≤k,J↑3,|J |=1,K↑1
(−1)(|I|+1)i

(z)
J L

(z)
I Cς(J I,J

K dxK), (4.7)

where |J |+ |K| = 1.
Let (−1)(|I|+1)J = Ĵ as before. Then the equation for J becomes:

J =
∑

I⇑3,|I|≤k,J↑3,|J |=1,K↑1
i
(z)
J L

(z)
I Cς(Ĵ I,J

K dxK). (4.8)

For more clarity we will now split the sum into two parts: one part where K = [∅],
and one where K = [0] with dx1 = dτ . Since we are working with three spatial
components we will have J = [ν1, ν2, ν3] with ν = 1, 2, 3:

J =
∑

I⇑3,|I|≤k

L(z)
I Cς(Ĵ I,∅

∅ ) +
3∑

ν=1

∑
I⇑3,|I|≤k,

i(z)ν L
(z)
I Cς(Ĵ I,ν

0 dτ). (4.9)

Since we are interested in the number of configurations, Nin, we want to include
independent components from both Ĵ I,∅

∅ , and Ĵ I,ν
0 .

Definition 4.2.1. Let the number of independent components of J be given by:

Nin = N1 +N2, (4.10)

where N1 will contain components from Ĵ I,∅
∅ , and N2 components from Ĵ I,ν

0

respectively.

Remark. Nin will represent only those components which are non-repeating and thus
we will have to exclude all repetitions due to symmetries.

4.3 Symmetry of Indices

To identify the number of independent components for both Ĵ I,∅
∅ , and Ĵ I,ν

0

considering the symmetry we will use the Stars and Bars counting method. In this
particular case, s represents the number of symmetric indices, and s′ represents the
number of values each index can take (e.g. µ = 1, 2, 3). Since each index can take
only three values s′ = 3 always.
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In order to take into account that we are only considering increasing lists, we will
have s number of symmetric indices (or stars) separated by s′−1 = 2 bars, where the
bars will represent going up by 1 integer with each bin.
Thus, in order to find the number of independent components where symmetries have
been considered, we will use the following binomial coefficient:(

s+ s′ − 1

s′ − 1

)
=

(
s+ 2

2

)
. (4.11)

To illustrate the application of the Stars and Bars counting method in calculating
the symmetric indices, we will look at Example 1 again but this time using the number
of the value each of the index can take. Thus, we will have:

[22333], (4.12)

representing Eq.4.4 where the 2 objects given to person number 2 are now representing
our dummy indices taking a value ‘2’, and 3 objects given to person 3 represent the
dummy indices taking a value ‘3’. And:

[12223], (4.13)

representing Eq.4.5 where the object given to person 1 now represents the dummy
index taking value ‘1’, 3 objects given to person 2 now represent dummy indices taking
value ‘2’, and 1 object, given to person 3 now represents 1 index taking the value ‘3’,
recalling that here the bars represent going up with one integer.

To showcase this with an example of components, Eq.4.12 will correspond to
Ĵ 22333,1 and Eq. 4.13 will correspond to Ĵ 12223,1 where we are paying attention to the
indices before the comma, as they are the ones with the corresponding symmetries.
(See the independent components of the octupole current, listed in Eq. 3.32, for
comparison).

Here it is useful to remind that, since we are working in an adapted chart, we have
the following symmetries of the Lie derivatives and internal contractions:

L(z)
I L

(z)
J = L(z)

J L
(z)
I

i
(z)
I L

(z)
J = L(z)

J i
(z)
I .

(4.14)

Lemma 4.3.1. The number of independent components obtained from Ĵ I,∅
∅ is given

by:

N1 =
k∑
s=0

(
s+ 2

2

)
. (4.15)
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Proof. Using the Stars and Bars counting method and the arguments above we know
that there are: (

s+ s′ − 1

s′ − 1

)
=

(
s+ 2

2

)
(4.16)

number of ways of allocating s symmetric indices into s′ = 3 number of slots, where
the slots represent the number of values each index can take as explained above.
Taking the symmetry of the Lie derivative and the fact that |I| ≤ k we find that to
find the total number of independent components coming from Ĵ I,∅

∅ we need to sum
Eq. 4.16 up to k to take into account all the lenght of the list I.

Lemma 4.3.2. The number of independent components obtained from Ĵ I,ν
0 is given

by

N2 =
3!

2

k∑
s=0

(
s+ 2

2

)
. (4.17)

Proof. Similar to 4.3.1 we find that when we take the symmetry of the Lie derivatives
into account we will have: (

s+ s′ − 1

s′ − 1

)
=

(
s+ 2

2

)
number of ways to allocate s symmetric indices into the three possible values. When
we take the length of the list I into account, we are again summing up to k, as |I| ≤ k.
However, in this case we also have to take into account the anti-symmetries of the
internal contractions. To achieve that, we have multiplied the sum by a factor of 3 to
take into account the number of possible permutations that arise from ν = 1, 2, 3 in
the expression:

∑3
ν=1

∑
I⇑3,|I|≤k, i

(z)
ν L(z)

I Cς(Ĵ I,ν
0 dτ).

Hence, for the total number of independent components of the distribution J , we
obtain:

Nin =
k∑
s=0

(
s+ 2

2

)
+ 3

k∑
s=0

(
s+ 2

2

)
. (4.18)

4.4 Number of Constraints Nc

Here we obtain a general expression for the differential equations arising from the
imposed condition: dJ = 0. Letting dJ = 0 gives:

dJ =
∑

I⇑3,|I|≤k

L(z)
I Cς(dĴ I,∅

∅ ) +
3∑

ν=1

∑
I⇑3,|I|≤k,

d(i(z)ν L
(z)
I Cς(Ĵ I,ν

0 dτ)) = 0. (4.19)

29



Chapter 4. Number of Free Components for J 4.4. Number of Constraints Nc

Using Cartan’s identity diXα = LXα− iXdα, the expression for dJ becomes:

dJ =
∑

I⇑3,|I|≤k

L(z)
I Cς(dĴ I,∅

∅ )+
3∑

ν=1

∑
I⇑3,|I|≤k,

(
L(z)
ν L

(z)
I Cς(Ĵ I,ν

0 dτ)−i(z)ν Cς(dĴ I,ν
0 ∧dτ)

)
= 0,

(4.20)

where the last terms: i
(z)
ν Cς(dĴ I,ν

0 ∧ dτ), vanish since dĴ I,ν
0 ∧ dτ = 0.

Finally we obtain:

dJ =
∑

I⇑3,|I|≤k

L(z)
I Cς(dĴ I,∅

∅ ) +
3∑

ν=1

∑
I⇑3,|I|≤k,

L(z)
ν L

(z)
I Cς(Ĵ I,ν

0 dτ) = 0. (4.21)

This gives rise to the following differential equations:

∂
(τ)
0 Ĵ

I,∅
∅ + Ĵ (I,ν)

0 = 0, (4.22)

which can be written as:
Ĵ (I,ν)

0 = −∂(τ)
0 Ĵ

I,∅
∅ , (4.23)

where Ĵ (I,ν)
0 is the totally symmetric part of Ĵ I,ν

0 .

Remark. Note that here we have (k + 2) number of ordinary differential equations,
including the first one which shows that Ψ∅,∅

∅ = constant, with k being the order
of the distribution. These correspond to k unknown functions. In order to discuss
the independence of the solutions of these equations, we require more information
about the functions on the left hand side. For example, no specific dependence
on the variable with respect to which we differentiate, τ , would make this system
autonomous. More analysis is required in order to get a clearer idea of the
independence of the solutions of these constraints. If we, however, assume that the
functions on the left hand side are smooth, then there should exist a unique solution
in some neighbourhood of the point which correspond to the initial conditions that
we may impose [9].

Lemma 4.4.1. The number of constraints is equal to the number of partial differential
equations given in Eq.4.22 and is given by:

Nc =
k+1∑
s=0

(
s+ 2

2

)
. (4.24)

Proof. To find the number of constraints we have utilized the Stars and Bars method
as above. Considering the constraints again:

Ĵ (I,ν)
0 = −∂(τ)

0 Ĵ
I,∅
∅ . (4.25)
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Since we are only considering the symmetric part of Ĵ I,ν
0 we will have s indices to

allocate to three values. As above, we are symmetrizing over all lengths |I| ≤ k + 1
and hence the sum goes up to k + 1. Furthermore:

Ĵ (I,ν)
0 =

{
0, when |I| = s

−∂(τ)
0 Ĵ

I,∅
∅ , otherwise,

where s is the maximal length of the list I.

Now given the definitions and lemmas above and their respective proofs, we can
prove Theorem 4.1.1 as follows:

Proof. The number of free components, Nfree, as defined in Def. 4.0.2, after the
imposed constraints on the distribution is given by:

Nfree = Nconfig −Nc =
k∑
s=0

(s+ 2)(s+ 1)

2
+ 3

k∑
s=0

(s+ 2)(s+ 1)

2
−

k+1∑
s=0

(s+ 2)(s+ 1)

2

=
4

6
(k + 1)(k + 2)(k + 3)− 1

6
(k + 2)(k + 3)(k + 4)

=
1

6
{(k + 2)(k + 3)

(
4(k + 1)− (k − 4)

)
}

=
1

6
(k + 2)(k + 3)3k

=
3k(k + 2)(k + 3)

6
,

which gives:

Nfree =
k(k + 2)(k + 3)

2
. (4.26)

Finally, the degrees of freedom of the different 2k-tupoles are given in Table 4.1.
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Table 4.1: Degrees of Freedom of a 2k-tupole

Charge Distribution Notation Order (k) Free Components (Nfree)

monopole JM ∈ Υ0,3 0 1
dipole JD ∈ Υ1,3 1 6
quadrupole JQ ∈ Υ2,3 2 20
octupole JO ∈ Υ3,3 3 45
...

...
...

...

2k-tupole Jk ∈ Υk,3 k
k(k + 2)(k + 3)

2
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Conclusion and Disscusion

In this thesis we have calculated the number free components for a 2k-pole
distribution satisfying the equation for conservation of charge, dJ = 0. We achieved
our results by considering a distribution on a worldline, defined on a arbitrary
spacetime without specifying a metric. Although we know that a metric, a connection
and an orientation are natural structures on spacetime, we are still interested in
knowing which objects can be described without a metric or a connection. There is
also an interest in finding how the metric and the connection of spacetime is affecting
objects such as the sources of electromagnetic fields or gravitational fields. This is why
it is very useful to define multipoles without a reference of a metric or a connection, but
only by referring to the following structures on a manifold, such as the Lie derivatives,
the interior product, the exterior derivative and the tangent and cotangent bundles.
[12]

The results we have obtained do not directly depend on the metric or a connection
of a manifold and this provides with the freedom of modeling multipoles on higher
dimensional manifolds such as phase space and to manifolds with no preferred metric
[12]. These calculations are also useful particularly in situations where we have to
vary a metric: it is useful to know how much the expansions depend on the metric
itself. Knowing the number of free components can be useful in providing insight
into different sources of electromagnetic fields. An interesting application of modeling
multipoles on higher dimensional manifolds is found in accelerator physics where
high energy electrons can be represented by a multipoe expansion in 7 dimensions
(phase space and time) [11]. The free components show us that the sources of
electromagnetic radiation depend not only on the initial conditions that we impose
but also on constitutive relations that should be established in order to understand
the system that we are investigating in detail.

In the future, research can be done on finding the appropriate constitutive relations
which will provide with further information about the sources of fields and also
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intrinsic properties of materials and particles which are also investigated with the help
of multipole expansions. Some work has already been done on the free components of
the quadrupole stress-energy source of gravity in [12]. There is now a wide interest in
exotic compact objects in Gravitational Wave Astronomy [1][3][4]. These objects are
alternative models of black holes characterized by Planckian corrections at the event
horizon. A lot of analysis is done on the ringdown signal of black hole and neutron
star mergers in order to find the footprint of such objects, if they are physical. A
calculation of the free components of a multipole expansion, similar to that presented
in this thesis, of the stress-energy distribution might give us an insight on the physical
properties of exotic compact objects and how we would be able to detect their footprint
in the gravitational wave data. In this way, in the future our analysis could be possibly
extended to gravity where we will be interested in looking at the number of free
components of a stress-energy distribution which is a source of a gravitational field.
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Appendix

A.1 Multi-Index Notation Examples

In our calculations we work with components of distributions, which are expressed
as ΨI,J

K (See Eq.2.34), where I will show the lists of indices that directly depend
on the symmetries endowed by the Lie derivatives, J will show the anti-symmetry
endowed by the internal contractions, and K is related to whether the components
are multiplied by the base dxK .
To help illustrate the unpacking of increasing and strictly increasing lists, let us
consider the following example:

Example 2. Let I = [µ0, µ1, µ2], with µ0 = ∅ so that I = [∅, µ1, µ2]. Let J = [∅, ν]
and K = [∅, 0].

First, let us consider the case where J = ∅ and K = ∅ and I ⇑3, |I| ≤ 2. We will
have the following list of components compactly written as:

ΨI,∅
∅ (A.1)

Here we specify that the values of the elements of I that are not ∅ take up values
µ = 1, 2, 3 so that I ⇑t means I ∈ RIn(t) with t = 3. We also specify for the length of
the list of I the following |I| ≤ 2. If we now unpack the components, we will have:

ΨI,∅
∅ → Ψ∅,∅

∅ ,Ψµ1,∅
∅ ,Ψµ1µ2,∅

∅ . (A.2)

Now taking into account that µ can take values µ = 1, 2, 3 we will have the following
components considering the increasing lists:

Ψ1,∅
∅ ,Ψ2,∅

∅ ,Ψ3,∅
∅ from Ψµ1,∅

∅

Ψ11,∅
∅ ,Ψ12,∅

∅ ,Ψ13,∅
∅ ,Ψ22,∅

∅ ,Ψ23,∅
∅ ,Ψ33,∅

∅ , from Ψµ1µ2,∅
∅ .

(A.3)
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Now, let us consider the case when K = 0 and I ⇑3, |I| ≤ 2, J ↑3, |J | = 1. This can
be compactly written as:

ΨI,J
0 (A.4)

Here we note that I ⇑t means I ∈ RIn(t) with t = 3 as above, and |J | = 1 shows us
that the list J contains one element, J = [ν]. Moreover, J ↑t means J ∈ SIn(t) with
t = 3 which gives us ν = 1, 2, 3. Unpacking the lists we obtain:

ΨI,J
0 → Ψ∅,ν

0 + Ψµ,ν
0 + Ψµ1µ2,ν

0 (A.5)

As above, taking into account that µ can take values µ = 1, 2, 3, and also ν = 1, 2, 3
we will have the following components considering the increasing lists:

Ψ∅,1
0 ,Ψ∅,2

0 ,Ψ∅,3
0 from Ψ∅,ν

0 (A.6)

Ψ1,1
0 ,Ψ2,1

0 ,Ψ3,1
0 ,Ψ1,2

0 ,Ψ2,2
0 ,Ψ3,2

0 ,Ψ1,3
0 ,Ψ2,3

0 ,Ψ3,3
0 from Ψµ,ν

0 (A.7)

and finally:

Ψ11,1,Ψ12,1,Ψ13,1,Ψ11,2,Ψ12,2,Ψ13,2,Ψ11,3,Ψ12,3,Ψ13,3,

Ψ22,1,Ψ2,2,Ψ22,3,Ψ23,1,Ψ23,2,Ψ23,3,Ψ33,1,Ψ33,2,Ψ33,3 (A.8)

all coming from Ψµ1µ2,ν
0 .

Note that here we have not considered any additional symmetries and also note that
the list of I is always strictly increasing and we do not have an order of indices such
as 32 or 21, for example.

A.2 Operations on forms

A.2.1 Interior product

We will consider two differentiable manifolds M(M, τM ,AM) and N (N, τN ,AN)
with dim(M) = m, and dim(N ) = n, as before.

Definition A.2.1. The interior product or internal contraction takes a vector field
V ∈ ΓTM and a p-form, α ∈ ΓΛpM resulting in a (p − 1) form field annotated as
iV α ∈ ΓΛp−1M:

i : ΓTM× ΓΛpM→ ΓΛp−1M. (A.9)

It satisfies the following properties:

i(U+V )α = iUα + iV α, for U, V ∈ ΓTM
i(fV )α = fiV α, for f ∈ ΓΛ0M
iV f = 0.

(A.10)
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A.2.2 Exterior Differential Operator

Definition A.2.2. The exterior differential operator is defined via the map:

d : ΓΛpM→ ΓΛp+1M. (A.11)

It satisfies the following properties:

d(f)V = V (f), for f ∈ ΓΛ0M, V ∈ ΓTM
d(α + β) = d(α) + d(β), for α, β ∈ ΓΛpM
d(α ∧ β) = d(α) ∧ β + (−1)p(α ∧ dβ), where α ∈ ΓΛpM, β ∈ ΓΛqM
d2 = 0 (see Theorem A.2.1).

(A.12)

A.2.2.1 Lie Derivatives

We can define the Lie derivative, L, as an operator on tensors and forms. We do
not need extra structure on the manifold in order to define the Lie derivative, as it is
already available for smooth manifolds such as M(M, τM ,AM).

Definition A.2.3. Let X ∈ ΓTM be a vector field. The Lie derivative, LX sends a
pair of vector field, X, and a (p, q)-tensor field T pq (M) to a (p, q)-tensor field:

LX : F(M)→ F(M) where F(M) is a scalar field on M
LX : ΓTM→ ΓTM
LX : ΓT ∗M→ ΓT ∗M
LX : ΓΛpM→ ΓΛpM.

(A.13)

It satisfies the following properties:

LXf = Xf, for f ∈ F(M) (A.14)

LX(Y ) = [X, Y ] for X, Y ∈ ΓTM (A.15)

(LXζ) · Y = LX(ζ · Y )− ζ · LX(Y ), for Y ∈ ΓTM, ζ ∈ ΓT ∗M (A.16)

L(α ∧ β) = LX(α) ∧ β + α ∧ LX(β). (A.17)

The Lie derivative of forms also satisfies Cartan’s magic formula:

LX(ζ) = iX(dζ) + d(iXζ), (A.18)

for X, ζ defined as above.
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Note that in the definition above:

• scalar fields are considered to be (0, 0) tensor fields, T 0
0 ,

• tangent vector fields belonging to ΓTM are regarded as (1, 0) tensor fields, T 1
0 ,

• linear form fields belonging to ΓT ∗M are regarded as (0, 1) tensor fields,T 0
1 ,

• and finally p-forms belonging to ΓΛpM are regarded as tensor fields which are
completely antisymmetric [9].

A.2.2.2 Examples of calculating Lie Derivatives

Let (U, φ) be a chart onM(M, τM ,AM) and X, Y ∈ ΓTM be vector fields onM
with the components of X, Y annotated by Y i, Xj. Let T 1

1 be a (1, 1) tensor field on
M with its components annotated by T ij .
The Lie derivative of Y with respect to the field X, LXY is then given by:

(LXY )i = X(Y i)− Y (X i)

=Xm ∂

∂xm
(Y i)− Y s ∂

∂xs
(X i)

=Xm ∂

∂xm
(Y i)− ∂

∂xs
(X i)Y s.

(A.19)

The Lie Derivative of T 1
1 with respect to the field X is given by:

(LXT )ij = Xm
∂T ij
∂xm

− ∂X i

∂xs
T sj +

∂Xs

∂xj
T ij . (A.20)

A.2.3 Exact Forms

We will now show that all exact forms are also closed.

Definition A.2.4. Let M be a smooth manifold and let α ∈ ΓΛpM.
We say that α is:{

closed if dα = 0

exact if ∃ β ∈ ΓΛn−1M such that α = dβ.
(A.21)

Theorem A.2.1. The operator

d2 ≡ d ◦ d : ΓΛpM→ ΓΛn+2M (A.22)

is identically zero, d2 = 0.

Following the statement of Theorem A.2.1 we take the exterior derivative of α to
obtain:

dα = d(dβ) = 0. (A.23)

Thus we can conclude that a form which is exact is also closed by definition [9].

38



Appendix A. Appendix A.3. Metric on a Manifold

A.3 Metric on a Manifold

Definition A.3.1. A metric, g, on a smooth manifold, M, is a(0, 2) tensor field
satisfying:

• Symmetry:

g(X, Y ) = g(Y,X), for X, Y ∈ ΓTM (A.24)

• Non-Degeneracy:

[ : ΓTM→ ΓT ∗M, with [(X) = g(X, ·). (A.25)

A.4 Hodge Dual Map

The Hodge dual map takes a p-form, α ∈ ΓΛpM, and gives a (m − p)-form,
?α ∈ ΓΛm−pM:

? : ΓΛpM→ ΓΛm−pM. (A.26)

It has the following properties:

• ‘f ’-linearity:

?(fα) = f ? α, for f ∈ F(M). (A.27)

• ‘+’-linearity:

?(α + β) = ?α + ?β for α, β ∈ ΓΛpM. (A.28)

Let Ṽ = g(V, ·), where g is the metric on M, and V ∈ ΓTM.
Let ?1 be the orientation on M, defined by:

?1 = e1 ∧ · · · ∧ en ∈ ΓΛnM. (A.29)

We can now define ?α via:
iV ? α = ?(α ∧ Ṽ ). (A.30)

A.5 Operations on Υk,p(f )

Let f : N →M be a closed embedding.
Let f∗ : TN → TM be the push-forward map of vector fields on the tangent bundle
of N , TN , onto the tangent bundle of M, TM.
Let V and W ∈ Γ(TM) be vector fields on M, with V = f∗(W )|p.
Let α ∈ ΓΛpM.
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Let Γ0ΛqM be the space of test forms on M, defined by:

Γ0ΛqM :=
{
φ ∈ ΓΛqM such that φ has compact support

}
, (A.31)

as before. We will show that:

ivα
D[φ] = −(−1)deg(φ)αD[ivφ] (A.32)

dαD[φ] = −(−1)deg(φ)αD[dφ]. (A.33)

Proof. By the definition of a regular distribution given in Eq.2.14, we have:∫
M

(ivφ) ∧ α =

∫
M
iv(φ ∧ α)− (−1)deg(φ)

∫
M
φ ∧ (ivα), (A.34)

with the first integral on the RHS vanishing as ϕ ∧ α = 0, we obtain:∫
M

(ivφ) ∧ α = −(−1)deg(φ)

∫
M
φ ∧ (ivα). (A.35)

Similarly, ∫
M

(dφ) ∧ α =

∫
M
d(φ ∧ α)− (−1)deg(φ)

∫
M
φ ∧ (dα), (A.36)

with
∫
M d(ϕ ∧ α) vanishing as well, we have:∫

M
(dφ) ∧ α = −(−1)deg(φ)

∫
M
φ ∧ (dα). (A.37)

A.6 Representing Ψ ∈ Υk,p(f ) locally

As Ψ is defined by its action on a test form, we will show that we can write it in
terms of the De Rham push-forward without a reference to a test form φ, as stated
in Lemma 2.2.3:

Ψ =
∑

Rng(I,J,K)

(−1)|I|+(p−r)(m−p+|J |)i
(z)
J L

(z)
I fς(Ψ

I,J
K dxK). (A.38)
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Proof.

Ψ[i
(z)
J φ] = Ψ[i

(z)
Js
· · · i(z)J1

] =

= (−1)m−p−si
(z)
Js

Ψ[i
(z)
Js−1
· · · iJ1φ] =

= (−1)2(m−p−s)i
(z)
Js
i
(z)
Js−1

Ψ[i
(z)
Js−2
· · · iJ1φ] =

= (−1)s(m−p)−s
2

i
(z)
Js
· · · iJ1Ψ[φ] =

= (−1)s(m−p)+si
(z)
J Ψ[φ],

(A.39)

with |J | = s.
Recalling the statement of Theorem 2.2.2:

Ψ[φ] =
∑

Rng(I,J,K)

∫
N

ΨI,J
K dxK ∧ f ∗(i(z)J L

(z)
I φ), (A.40)

we have:

Ψ[φ] =
∑

Rng(I,J,K)

(−1)|K|(m−p−|J |
∫
N
f ∗(i

(z)
J L

(z)
I φ) ∧ΨI,J

K dxK =

=
∑

Rng(I,J,K)

(−1)|K|(m−p−|J |fς(Ψ
I,J
K dxK)[i

(z)
J L

(z)
I φ] =

=
∑

Rng(I,J,K)

(−1)|K|(m−p−|J |+|J |(m−p+1)i
(z)
J fς(Ψ

I,J
K dxK [L(z)

I φ]

=
∑

Rng(I,J,K)

(−1)|K|(m−p−|J |+|J |(m−p+1)+|I|i
(z)
J L

(z)
I fς(Ψ

I,J
K dxK)[φ],

(A.41)

with

(−1)|K|(m−p−|J |)+|J |(m−p+1) = (−1)(n−m+p+|J |)(m−p−|J |)+|J |(m−p+|J |) =

= (−1)(p−r)(m−p+|J |).
(A.42)

Using the same notation as before for compactness:

∗ΨI,J
K = (−1)|I|+(p−r)(m−p+|J |)ΨI,J

K , (A.43)

so that locally we now have:

Ψ =
∑

Rng(I,J,K)

i
(z)
J L

(z)
I fς(

∗ΨI,J
K dxK). (A.44)
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