
This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies.

A machine learning approach using a handheld near-
infrared (NIR) device to predict the effect of storage 

conditions on tomato biomarkers

Journal: ACS Food Science & Technology

Manuscript ID Draft

Manuscript Type: Article

Date Submitted by the 
Author: n/a

Complete List of Authors: Emsley, Natalia; Lancaster Girls' Grammar School, Chemistry
Holden, Claire; Lancaster University Faculty of Science and Technology
Guo, Yi; Lancaster Girls' Grammar School, Chemistry
Bevan, Rhiann; Lancaster Girls' Grammar School, Chemistry
Rees, Chris; Lancaster Girls' Grammar School, Chemistry
McAinsh, Martin; Lancaster University, Centre for Biophotonics
Martin, Francis; Biocel Ltd, Biocel Analytics
Morais, Camilo; University of Central Lancashire, School of Pharmacy 
and Biomedical Sciences

 

ACS Paragon Plus Environment

ACS Food Science & Technology



1

1 A machine learning approach using a 
2 handheld near-infrared (NIR) device to 
3 predict the effect of storage conditions 
4 on tomato biomarkers
5

6 Natalia E M Emsley1,¶, Claire A. Holden2,¶, Sarah Guo1, Rhiann S Bevan1, Christopher Rees3, Martin R. 

7 McAinsh2, Francis L Martin4,*, Camilo L M Morais5,*

8   Sixth Form, Lancaster Girls’ Grammar School, Lancaster, Lancashire, UK

9 2 Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK

10 3 Chemistry Department, Lancaster Girls’ Grammar School, Lancaster, Lancashire, UK

11 4 Biocel Ltd, Hull HU10 7TS, UK

12 5 School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, 

13 UK

14

15

16 *Corresponding authors: Francis L Martin (flm13@biocel.uk); Camilo L M Morais 

17 (camilomorais1@gmail.com)

18

19 ¶, Joint first authors

20

Page 1 of 24

ACS Paragon Plus Environment

ACS Food Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:flm13@biocel.uk
mailto:camilomorais1@gmail.com


2

21 Abstract

22 Minimising food waste critical to future global food security. This study aimed to assess the potential 

23 of near-infrared (NIR) spectroscopy combined with machine learning to monitor the stability of 

24 tomato fruit during storage. Freshly harvested UK-grown tomatoes (n=135) were divided into five 

25 equally sized groups, each stored in different conditions. Absorbance spectra were obtained from 

26 both the tomato exocarp and locular gel using a portable NIR spectrometer, capable of connecting 

27 to a mobile phone, before subsequent chemometric analysis. Results show that support vector 

28 machines can predict the storage conditions and time-after-harvest of tomatoes. Molecular 

29 biomarkers highlighting key wavenumber and molecular changes due to time and storage conditions 

30 were also identified. This method shows potential for development of this approach for use in the 

31 field to help mitigate the environmental and economic impacts of food waste.

32 Keywords

33 Tomato, infrared spectroscopy, food security, machine learning, chemometrics, food storage

34
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3

37 Introduction

38 Sustainable food supply chains are required to provide adequate nutrition for the rising global 

39 population, which is projected to reach approximately 10 billion by 2050 1. Achieving food security 

40 and ending malnutrition are priorities in the United Nations sustainable development agenda for 

41 2030 2. To achieve these goals using the same amount of available land, it is important that to 

42 maximise the efficiency of current supply chains; this includes the reduction of food waste. In the 

43 UK, food waste within the home is largely avoidable with 2.9 million metric tons, equating to £6.3 

44 billion, of food spoiling before consumption 3. Tomatoes are a popular crop globally, representing a 

45 versatile and nutrient-dense superfood, offering an excellent source of lycopene and other 

46 antioxidant molecules which benefit human health 4. In 2017, 9.2 kg of fresh tomatoes and 33.2 kg 

47 of processed tomato products were consumed per capita in the United States of America 5. 

48 However, fresh ripe tomatoes are prone to a high rate of food waste, with a total loss of 53.8% 

49 collectively from production to consumption 6. This results from a 20% loss in agricultural 

50 production, 7% loss in processing and packaging, 10% distribution and retail loss and 31% loss by 

51 consumers 6. The importance of reducing this food waste is emphasised during the current climate 

52 crisis, particularly as the production of tomatoes comes with a high environmental impact. They 

53 have been recognized as one of the most carbon-intensive food products due to electricity and 

54 fertiliser usage 7, and greenhouse grown tomatoes are estimated to have a carbon footprint of up to 

55 10.1 kg CO2-eq/kg 8. Improving the efficiency of the supply chain for tomato, and agri-food in 

56 general, would reduce the economic and environmental impacts of food waste, and help us to meet 

57 the challenge of nourishing a growing population. Technical innovations to increase shelf-life have 

58 the potential to reduce the unnecessary disposal of home produce and hence reduce food waste 9. 

59 Factors that affect the marketability and shelf-life of fresh ripe tomatoes include the duration that 

60 the fruits are safe for consumption, but also aesthetic qualities such as colour and firmness. As a 

61 climacteric fruit, the quality of fresh tomatoes can be improved after harvest. The ripening process 

62 involves changes to cell wall composition and thickness 10, and the conversion of storage 
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4

63 carbohydrates into monosaccharides 11. These processes increase the softness and sweetness of the 

64 fruit, which in turn increases its appeal to consumers. However, if damaged or left to ripen for too 

65 long, tomatoes are prone to infections such as sour-rot 12. Early biomarker determination to rapidly 

66 predict fruit ripening, and hence its potential shelf-life before the fruit are no longer saleable, could 

67 help to achieve the optimum balance in post-harvest ripening under different climacteric conditions.

68 Near-infrared (NIR; wavelengths from 800 to 2,500 nm) spectroscopy has been used extensively in 

69 various recent studies to quantitatively determine fruit quality or maturity in tomatoes 12–18. The 

70 portability of new miniaturised spectrometers has opened up new applications for spectroscopic 

71 studies, such as agriculture, see 19–22. Near infrared spectroscopy uses changes in molecular 

72 vibrations upon absorption of infrared light to gain information about the chemical composition of a 

73 sample. Biological materials preferentially absorb light in the fingerprint region (1800-900 cm-1), 

74 which gives information about key biomolecules 23. These include: lipids (C=O symmetric stretching 

75 at ~1,750 cm–1 and CH2 bending at ~1,470 cm–1), proteins (amide I at ~1,650 cm–1, amide II at 

76 ~1,550 cm–1 and amide III at ~1,260 cm–1), carbohydrates (CO-O-C symmetric stretching at ~1,155 

77 cm–1), nucleic acid (asymmetric phosphate stretching at ~1,225 cm–1 and symmetric phosphate 

78 stretching at ~1,080 cm–1), glycogen (C-O stretching at ~1,030 cm–1) and protein phosphorylation 

79 (~970 cm–1) 23. The current study utilised a handheld NIR spectroscopy device to determine tomato 

80 maturity and explore the effects of five different storage conditions over twenty days, varying in 

81 temperature and packaging. Spectral measurements were taken from both the exocarp and the 

82 locular gel within, allowing comparison of results from destructive and conservative techniques. A 

83 novel approach combining NIR using a handheld spectrometer and machine learning was used for 

84 classification and identification of key biomarkers. Chemometric methods included principal 

85 component analysis (PCA), PCA coupled with linear discriminant analysis (PCA-LDA) and support 

86 vector machines (SVM). Our results highlight key wavenumber changes associated with ripening and 

87 the effects of post-harvest climatic conditions, raising opportunity of developing this combined 

88 method for use in the field.
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89 Materials and Methods

90 Samples and data acquisition

91 This study measured tomatoes over a period of twenty days under five different storage conditions 

92 (ambient packaged, ambient non-packaged, fridge packaged, fridge non-packaged, and incubated 

93 non-packaged). A total of 135 tomatoes were used in this study, twenty-seven per storage condition. 

94 All tomatoes were F1 hybrids, a first generation cross between two varieties, grafted onto a strong 

95 disease resistant rootstock and grown in Rockwool, UK (supplied by John Lane). They were harvested 

96 at ten weeks old on Friday 13th September 2019. The tomatoes used in this study were selected for 

97 uniformity. At the start of the study, they were all graded to be of similar size, colour, and ripeness, 

98 were undamaged, and had a consistent colour across the whole surface. They were then randomly 

99 sorted into treatment groups. Three tomatoes from each treatment condition were selected for 

100 exocarp sampling and labelled X, Y and Z. Each treatment group was stored in different conditions 

101 over the course of the experiment, including ambient packaged, ambient non-packaged, fridge 

102 packaged, fridge non-packaged and incubated non-packaged. The packaging used consisted of a 

103 sealed plastic freezer bag to simulate modified atmosphere packaging (MAP) although without the 

104 introduction of a protective gas mix into the bag. The ambient tomatoes were stored at room 

105 temperature (18°C), the fridge tomatoes at 3°C and the incubated tomatoes at 25°C.

106 Spectral absorbances were measured using a hand-held NIR spectrometer NIR-S-G1 (Allied Scientific 

107 Pro, Gatineau, Quebec, Canada) using ISC NIRScan software (raw spectra are shown in the 

108 Supporting Information, Figure S1). Spectra were measured from two types of sample; exocarp (the 

109 tomato surface), and locular gel (a gel that develops prior to ripening of the pericarp and exhibits a 

110 liquid-like consistency towards the terminal stage of ripening, see 24). The spectrometer crystal was 

111 cleaned between measurements using isopropyl alcohol wipes (Bruker Optics, Coventry, UK), and 

112 each time background spectra were taken to account for ambient atmospheric conditions.  For 

113 locular gel samples spectral acquisition took place on days 3, 5, 7, 10, 12, 14, 17, and 20. Each day 

114 three different tomatoes were destructively analysed to extract the locular gel, and two spectral 
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6

115 replicates per tomato were taken. This resulted in six locular gel spectra per day, forty-eight per 

116 treatment group, and 240 spectra in total. The locular gel was extracted by incision at two 

117 approximately equidistant locations around the equator. Fifty L of this gel was collected using a 

118 Gilson pipette and transferred onto glass slides covered in aluminium foil. Before spectral acquisition 

119 of samples an aluminium foil standard spectrum was measured. For the exocarp measurements, the 

120 same three tomatoes were analysed throughout the whole time-course and subsequently returned 

121 to their original storage conditions. For exocarp samples, measurements were taken on days 1, 3, 5, 

122 7, 10, 12, 14, 17, and 20. Ten spectral replicates of each tomato were taken, resulting 270 spectra 

123 per treatment group and 1350 spectra in total.

124 Data analysis and validation

125 The reflectance spectral data were imported and processed within MATLAB R2014b (MathWorks, 

126 Inc., Natick, MA, USA). Pre-processing and data analysis were performed using the PLS Toolbox 

127 version 7.9.3 (Eigenvector Research, Inc., Manson, WA, USA). The raw spectra were pre-processed 

128 by Savitzky-Golay smoothing (window of 7 points, 2nd order polynomial fitting) to improve the signal-

129 to-noise ratio and standard normal variate (SNV) to correct for light scattering. The pre-processed 

130 data were also mean-centred before multivariate analysis.

131 Principal component analysis (PCA) was applied to the pre-processed spectral data for exploratory 

132 analysis. PCA is an exploratory analysis technique that reduces the spectral dataset into a small 

133 number of principal components (PCs) responsible for the majority of the original data variance 25. 

134 Each PC is orthogonal to each other, and they are formed in a decreasing order of explained 

135 variance, so PC1 covers more variance than PC2, and so on. Each PC is composed of scores and 

136 loadings. The scores represent the variance on sample direction, thus being used to identify patterns 

137 of similarity between the samples, and the loadings represent the variance on wavelength direction, 

138 thus being used to identify possible spectral markers responsible for the scores pattern. Although 

139 being a robust exploratory analysis technique, PCA was not able to classify samples in an objective 

140 fashion, therefore, a supervised classifier was added and the samples were analysed by principal 
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7

141 component analysis with linear discriminant analysis 26. For more rigorous classification, support 

142 vector machines (SVM) algorithm was applied to estimate the tomatoes time-after-harvest. SVM is a 

143 linear classifier with a non-linear step called the kernel transformation 27. The kernel function 

144 transforms the data space to a feature space where samples can be better discriminated. Herein, the 

145 radial basis function (RBF) kernel was used and optimised via cross-validation. The pre-processed 

146 spectra were then randomly split into training (70%) and test (30%) sets, and a supervised 

147 classification model was constructed using support vector machines (SVM) to systemically predict 

148 the time-after-harvest regardless the storage condition. The training set was used to build the SVM 

149 training model, and the test set to evaluate its predictive ability. The SVM model was optimised by 

150 cross-validation venetian blinds with 10 data splits.

151 Metrics such as accuracy, sensitivity and specificity were calculated for the test set. For more than 

152 two-classes, these metrics are calculated individually per class; herein, the average for all classes is 

153 reported. The accuracy (AC) represents the total number of samples correctly classified considering 

154 true and false negatives; the sensitivity (SENS) represents the proportion of positives that are 

155 correctly classified; and the specificity (SPEC) represents the proportion of negatives that are 

156 correctly identified 28. These metrics are calculated as follow:

157   (1)AC(%) = ( TP + TN
TP + FP + TN + FN) × 100

158   (2)SENS(%) = ( TP
TP + FN) × 100

159  (3)SPEC(%) = ( TN
TN + FP) × 100

160 where TP stands for true positives, TN for true negatives, FP for false positives, and FN for false 

161 negatives.
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8

162 Results

163 Figure 1 shows the fingerprint spectra for a) exocarp and b) locular gel absorbances, and pre-

164 processed spectra for c) exocarp and d) locular gel. The pre-processed spectra for the exocarp 

165 measurements in Figure 1c contain bands around 1000 nm (C-H stretching 3rd overtone), 1200 nm 

166 (C-H stretching 2nd overtone in fibre parameters such as cellulose and lignin), 1360 nm (small arm, R-

167 O-H stretching 1st overtone in alcohol), 1450 nm (O-H stretching 1st overtone in water), and spectral 

168 differences at around 1700 nm (C-H stretching 1st overtone in glucose/lignin) 29,30. The locular gel 

169 fingerprint spectra, Figure 1d, have their bands compressed by the strong water peak at 1450 nm 23.

170

171 Figure 1: Fingerprint spectra for a) exocarp and b) locular gel absorbances, and pre-processed 

172 spectra for c) exocarp and d) locular gel absorbances. Each line is a class mean of spectra from a 

173 specific day and treatment condition. The colours represent the day the spectra were taken.

174 The pre-processed spectral data initially underwent unsupervised exploratory analysis by PCA, 

175 where overall segregation trends were observed in the data. Figure 2 shows PCA scatter plots for a) 
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9

176 exocarp and b) locular gel spectra. The colours represent the time in days and the marker shapes 

177 represent the treatment and numbers inside parenthesis represent the explained variance for each 

178 PC. PCA did not provide separation between the samples (Figures 2a and 2b). For PCA scores of each 

179 storage condition individually, see supporting information Figure S2 and S3, for exocarp and locular 

180 gel measurements respectively.

181 Following the initial PCA, a supervised method, linear discriminant analysis, was also applied. PCA-

182 LDA scatter plots are shown in Figure 2c) for exocarp and 2d) for locular gel spectra. Although there 

183 is some evidence of a time evolution trend for the exocarp measurements (see Figure 2c), the 

184 samples cannot be differentiated into clear clusters. Some clustering was however achieved for 

185 locular gel samples. Figure 2d shows that days 1, 10 and 20 are separated out best in the locular gel 

186 PCA-LDA scatter plot along the axes LD1 and LD2.

187

188 Figure 2: PCA scatter plots for a) exocarp and b) locular gel spectra. Numbers inside parenthesis 

189 represent the explained variance for each PC. PCA-LDA scatter plots for c) exocarp and d) locular gel 

190 spectra. The colours represent the time in days and the marker shapes represent the treatment.
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191 Figure 3 shows the SVM model prediction results for each time and treatment sample type grouped 

192 separately. Overall, exocarp achieved higher accuracy sensitivity and specificity than locular gel 

193 spectra. For all forty-five exocarp and forty-one local gel categories, the SVM model achieved poor 

194 results at 51% and 54% accuracy, respectively. The SVM model to predict the time-after-harvest 

195 regardless the storage condition for the exocarp spectra achieved 92% accuracy, 86% sensitivity and 

196 98% specificity in test sets. For locular gel spectra, the SVM model achieved 84% accuracy, 74% 

197 sensitivity and 95% specificity in test sets. Sensitivity of the exocarp spectra was - high, with many 

198 samples correctly classified. For locular gel samples, packaged fridge-stored samples at days 3 and 

199 20, and ambient stored non-packaged samples at day 3 achieved higher true positive rates than the 

200 other groups. To give an overall picture of the trend over time, despite treatment, spectra from 

201 different storage conditions were also grouped together. The SVM results for this grouping can be 

202 viewed in the supporting information: see Figure S4 for optimisation parameters, Table S1 for 

203 classification metrics, and Table S2 for test set confusion matrices.

204

205 Figure 3: SVM predicted results for the test set for a) exocarp and b) locular gel. For all forty-five 

206 exocarp categories, the SVM model achieved 92% accuracy, 86% sensitivity and 98% specificity in 

207 test sets. For all forty-one locular gel categories, the SVM model achieved 84% accuracy, 74% 

208 sensitivity and 95% specificity in test sets. Each predicted category is shown in a different colour.
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209 PCA loadings were used to determine the key wavenumbers associated with biochemical changes 

210 over time for each treatment, in both exocarp and locular gel spectra (see Tables 1 and 2, 

211 respectively). These spectral changes related to their biological origin by seeking molecular 

212 assignments from existing literature. Spectra from each treatment group were considered separately 

213 so that the changes highlighted in Tables 1 and 2 relate only to time.

214 Table 1: Loadings showing the key wavenumber changes for locular gel spectra associated with 

215 biochemical changes over time for each treatment

Sample 
Type

Treatment 
Type Loadings Assignment Reference

1636 CHO stretching of carbonyl group, typical saccharide 
absorption

30

1456 CH3 bending vibration (lipids and proteins) 30

1170 C-O bands from glycomaterials and proteins 30

1095 Stretching PO2 symmetric 30

981 Phosphodiester region 30

Locular Gel INP

918 Polysaccharides 31

1605 vas (COO-) (polysaccharides, pectin) 30

1571 C=N adenine 30

1381 Amide II 32

1075 Symmetric phosphate stretching modes or v( PO2
-) 

sym.
30

1012 Starch 32

Locular Gel FP

945 D-(-)-Arabinose 33

1636 C=O stretching of carbonyl group, typical saccharide 
absorption

30

1596 Methylated nucleotides 30

1443 (CH) (polysaccharides, pectin), (CH2), lipids, fatty 
acids

30

1170 C-O bands from glycomaterials and proteins 30

993 Arabinoxylans 34

Locular Gel ANP

930 Polysaccharides 31

1636 C=O stretching of carbonyl group, typical saccharide 
absorption

30

1493 Protein 35

1422 Protein and lipids 35

1124 Polysaccharides 36

977 C-O-C stretching at the β-(1 → 4)-glycosidic linkages 
of amorphous cellulose

37

Locular Gel AP

918 Polysaccharides 31
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1609 Adenine vibration in DNA 30

1574 C=N adenine 30

1500

In-plane CH bending vibration from the phenyl rings, 
or Amide II (an N-H bending vibration coupled to C-

N
stretching)

30

1236 Amide III and asymmetric phosphodiester stretching 
mode,  vas(PO2

-) mainly from the nucleic acids
30

993 Arabinoxylans 34

Locular Gel FNP

926 Polysaccharides 31

216

217
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218 Table 2: Loadings showing the key wavenumber changes for exocarp spectra associated with 

219 biochemical changes over time for each treatment

Sample 
Type

Treatment 
Type Loadings Assignment Reference

1636 C=O stretching of carbonyl group, typical saccharide 
absorption

30

1590 C=O stretching
of aliphatic and aromatic carbonyl groups

30

1542 Amide II 30

1483 Protein and lipids 35

962 Polysaccharides 31

Exocarp INP

918 Polysaccharides 31

1627 Phenolic compounds
38

1584 Amide II 30

1526 C=N guanine 30

1456 CH3 bending vibration (lipids and proteins) 30

981 Phosphodiester region 30

Exocarp FP

918 Polysaccharides 31

1636 C=O stretching of carbonyl group, typical saccharide 
absorption

30

1574 C=N adenine 30

1532 Stretching C=N, C=C 30

1479 Amino acid; v[COO-] 32

1381 Amide II 32

Exocarp ANP

918 Polysaccharides 31

1627 Phenolic compounds 38

1581 Ring C-C stretch of phenyl 30

1509 Hemicellulose, C-C and C=C 39

1473 Glycerolipids, wax hydrocarbons, δ(CH2) scissoring 14

1409 Succinic acid 40

Exocarp AP

933 Z type DNA 30

1630 Amide I 30

1593 Protein 36

1509 Hemicellulose, C-C and C=C 39

1436 Phenolic compounds 38

1385 Structural polysaccharides, cellulose, C-H bending 41

Exocarp FNP

926 Polysaccharides 31

220

221 To compare the effects of different storage treatments on spectral absorbances, data from the 

222 middle of the time course prior to any visible change in tomato quality were selected. Spectra from 
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223 day 10 were used to derive loadings showing which wavenumbers were associated with differing 

224 treatment conditions; these were subsequently connected with their corresponding biomarkers. To 

225 view loading graphs from which the information in Tables 1-3 were derived, see the supporting 

226 information Figure S5 for locular gel, Figure S6 for exocarp and Figure S7 for day ten.

227 Table 3: Loadings showing the key wavenumber differences between treatments at day 10 for 

228 locular gel and exocarp spectra

Sample 
Type Day Wavenumber Molecular Assignment Reference

1633 Cutan, carboxylate functional groups (νa(COO−) 38

1590 C=O stretching
of aliphatic and aromatic carbonyl groups

30

1526 C=N guanine 30

1479 Amino acid; v[COO-] 32

1436 Phenolic compounds 38

Exocarp Day 10

1385 Structural polysaccharides, cellulose, C-H 
bending

41

1602 Pectin, phenolic compounds; C-C aromatic 
stretching; C-O-O− asymmetric stretching

42

1486 Proteins 43

1440 Phenolic compounds; ν(C-C) aromatic 
(conjugated with C=C)

38

1064 C–O stretching, C–C stretching (mannose- 
containing hemicellulose)

33

993 Arabinoxylans 34

Locular 
Gel Day 10

933 Z type DNA 30

229

230 The different treatment conditions resulted in tomatoes of different qualities after 20 days (Figure 

231 4). Visually, fridge non-packaged and ambient packaged treatments best preserved the quality of the 

232 tomatoes, whereas tomatoes from the incubator non-packaged and ambient non-packaged 

233 treatments showed signs of infection, and fridge packaged tomatoes showed signs of a possible 

234 chilling stress.

235
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236

237 Figure 4: Images illustrating relative tomato quality between treatments on day 20
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238 Discussion

239 SVM achieved outstanding classification accuracy across exocarp (92%) and locular gel (84%) 

240 samples to estimate the time-after-harvest despite the storage condition. The accuracy to predict all 

241 forty-five and forty-one categories of samples (including differences between storage conditions) 

242 could be improved if the model was built to differentiate between fewer categories, or a larger 

243 dataset was used. When more than ten classes are involved in the classification model its 

244 performance tends to reduce substantially since the dataset size is relatively reduced by a fraction of 

245 the number of classes when building the classifier on a one-against-the-others categories basis [ref.] 

246 Therefore, a very large dataset would be required to perform this type of classification. The models 

247 were better at identifying where not to place a spectrum but often failed to find the correct category 

248 to sort it into, with high specificities (60% and 91%) but low sensitivities (3% and 20%). When spectra 

249 from all storage condition treatments were grouped together, classification by time achieved 

250 excellent results with SVM; 92% average accuracy, 86% average sensitivity, and 98% average 

251 specificity in the test set for exocarp measurements, and 84% average accuracy, 74% average 

252 sensitivity, and 95% average specificity for the test set of locular gel samples, see supporting 

253 information Table S2.

254 PCA loadings identified key wavenumbers which allow discrimination between spectral absorbances 

255 from tomatoes of different storage conditions and maturities, see Tables 1, 2 and 3. These were 

256 connected to biomarkers using existing literature databases, allowing insight into the biochemical 

257 changes taking place. Many of the identified changes related to the progression of starch 

258 degradation, where the starch stored during development and is converted to soluble sugars, a key 

259 process during post-harvest fruit ripening 11. Wavenumber 1012 cm-1 in locular gel fridge-stored 

260 spectra identified starch specifically as an important indicator of tomato age 32. All treatment 

261 conditions for both locular gel and exocarp spectra identified that peaks for polysaccharides 31 and/ 

262 or saccharides 30 were used for the differentiation between tomatoes of different ages. This 
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263 indicates that all fruits underwent some level of post-harvest ripening, irrespective of storage 

264 conditions.

265 Other key peaks identified across different conditions were those relating to the structural and 

266 compositional development of the cuticle and cell wall. Compositional changes in key compounds 

267 such as pectin, cellulose, and other polysaccharides, as well as changes in cell wall thickness, are part 

268 of the ripening process 10. Tomato maturity was indicated in the spectra of ambient packaged 

269 exocarp samples at peak 1473 cm-1, which relates to the δ(CH2) scissoring of cuticle glycerolipids and 

270 wax hydrocarbons 14. Pectin was identified as a measure of tomato maturity in ambient non-

271 packaged and fridge packaged samples from locular gel spectra 30, and also as a differentiator 

272 between storage conditions 42. Cellulose was an indicator of tomato maturity in the locular gel of 

273 ambient packaged fruit 37. However cellulose and hemicellulose was more commonly associated 

274 with exocarp spectra where these compounds differentiated between maturity in ambient packaged 

275 and fridge non-packaged samples 39. Cellulose was a key differentiator between treatment 

276 conditions in exocarp spectra 41.

277 Dissolution of the cell wall is key to another ripening process, softening. Arabinogalactan proteins, 

278 which act as a cross-linker for pectin and arabinoxylan, are thought to be important in the alteration 

279 of cell wall assembly 44. In this study, locular gel arabinoxylan levels were a key differentiator 

280 between treatment conditions and allowed maturity determination in fridge and ambient non-

281 packaged fruit 34. These results suggest that the packaging is altering the environment experienced 

282 by the tomatoes, and having an impact on arabinoxylan, and consequently fruit-softness. The 

283 texture changes can be seen in Figure 4, where the ambient non-packaged fruit appears softer than 

284 its packaged equivalent. Expression of arabinogalactan proteins in tomato fruit has also been linked 

285 to possible involvement in stress adaptations 44, which may be why the packaged tomatoes suffered 

286 from a chilling stress in the fridge whilst their unpacked equivalents appeared to be in better 

287 condition, see Figure 4. Fleshy fruit such as tomatoes are particularly vulnerable to chilling injury, is a 
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288 type of oxidative stress that occurs during storage below 10 °C 45. Despite this chilling, fridge non-

289 packaged tomatoes were amongst the best-preserved tomatoes alongside ambient packaged 

290 tomatoes, see Figure 4. The least well-preserved tomatoes were those not protected with packaging, 

291 stored under ambient room temperature or in the incubator, which showed signs of infection. The 

292 lack of packaging likely exposed the tomatoes to any pathogens present, and the high temperatures 

293 in the incubator conditions promoted growth. Bacteria and fungi grow best at temperatures 

294 between 25-30°C 46,47, and the incubated tomatoes were stored at 25°C.

295 This study has identified biomarkers, including those indicating tomato ripening, which are modified 

296 by storage and packaging conditions and that have the potential to be used to target reductions in 

297 the unnecessary disposal of tomatoes through spoilage in the supply chain. The rapid and non-

298 destructive nature of exocarp scanning and the portability of the spectrometer, capable of 

299 connection to a mobile phone, renders this method particularly suitable for use within the food 

300 industry. With further development, this user-friendly and non-destructive technology displays 

301 potential for a wider range of applications within and beyond the food industry. 
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