
Explainable-by-Design Deep
Learning

Eduardo Almeida Soares, BSc, MSc

School of Computing and Communications

Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

August, 2022

I dedicate this thesis to my beloved spouse Sarah Biaso, my precious daughter
Giovanna T. B. Soares, my uncle Anderson de Almeida (in memoriam), and my father
José Paulino Soares (in memoriam).

i

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university.
Eduardo Almeida Soares

ii

Explainable-by-Design Deep Learning
Eduardo Almeida Soares, BSc, MSc.

School of Computing and Communications, Lancaster University
A thesis submitted for the degree of Doctor of Philosophy. August, 2022

Abstract

Machine learning, and more specifically, deep learning, have attracted the attention of
media and the broader public in the last decade due to its potential to revolutionize
industries, public services, and society. Deep learning achieved or even surpassed
human experts’ performance in terms of accuracy for different challenging problems
such as image recognition, speech, and language translation. However, deep learning
models are often characterized as a “black box” as these models are composed of
many millions of parameters, which are extremely difficult to interpret by specialists.
Complex “black box” models can easily fool users unable to inspect the algorithm’s
decision, which can lead to dangerous or catastrophic events. Therefore, auditable
explainable AI approaches are crucial for developing safe systems, complying with
regulations, and accepting this new technology within society. This thesis tries to
answer the following research question: Is it possible to provide an approach that has
a performance compared to a Deep Learning and the same time has a transparent
structure (non-black box)? To this end, it introduces a novel framework of explainable-
by-design Deep Learning architectures that offers transparency and high accuracy,
helping humans understand why a particular machine decision has been reached and
whether or not it is trustworthy. Moreover, the proposed prototype-based framework
has a flexible structure that allows the unsupervised detection of new classes and
situations. The approaches proposed in thesis have been applied to multiple use cases,
including image classification, fairness, deep recursive learning interpretation, and
novelty detection.

iii

Acknowledgements

First and foremost I am extremely grateful to my supervisor, Professor Plamen Angelov,
for his invaluable advice, continuous support, and patience during my PhD study. His
experience and advises have encouraged me all the time in my academic research and
daily life.

I would like to acknowledge Ford Motor Co. for the sponsorship, in special, Dr.
Dimitar Filev, Dr. Marcos Gerardo, Dr. Subramanya Nageshrao, and Dr. Bruno
Costa for all the kind support and guidance during this project.

I would like to thank Dr. Hossein Rahmani and Dr. Antonios Gouglidis, for their
thoughts and contributions during the appraisal panels, and I would also like to thank
Lancaster University for all the support during these years.

In addition, I would like to thank my beloved spouse Sarah Biaso, my daughter
Giovanna T. B. Soares, and my family, Andrea de Almeida, Maria Aparecida da
Silva, Gustavo Soares, and José Maria Soares for their invaluable support during these
years.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 2
1.3 Methodology . 3
1.4 Research Contributions . 3
1.5 Thesis Outline . 4

2 Background and Related Work 6
2.1 Artificial Intelligence and Machine Learning 6
2.2 Machine Learning Methods for Classification 7

2.2.1 K-nearest neighbour (k-NN) 7
2.2.2 Support Vector Machine (SVM) 8

2.2.2.1 Hyperplane separation 8
2.2.2.2 Maximum-magin hyperplane 9
2.2.2.3 Soft-magin . 10
2.2.2.4 Kernel function . 10

2.2.3 Decision Tree . 11
2.2.4 Random Forest . 12

2.3 Fuzzy Sets and Rules . 13
2.3.1 Fuzzy Rules . 13

2.4 Artificial Neural Networks . 14
2.5 Neuro-fuzzy Systems . 15
2.6 Deep Learning . 16

2.6.1 Convolutional Neural Networks 17
2.6.2 Recurrent Neural Networks 19
2.6.3 Transformers . 21

2.7 From black-box to explainable approaches 22
2.8 Explainable AI . 23

2.8.1 XAI Classification . 25
2.8.2 State-of-the-art on XAI methods 27

v

2.8.2.1 Features-oriented methods 28
2.8.2.2 Global methods . 31
2.8.2.3 Surrogate models . 31
2.8.2.4 Local, pixel-based methods 32
2.8.2.5 Anthropomorphic machine learning 33
2.8.2.6 Discussion . 34

2.9 XAI applications . 34
2.9.1 Autonomous Vehicles . 35
2.9.2 Medicine . 35
2.9.3 Legal justice . 35
2.9.4 Defense . 36

2.10 Conclusion . 36

3 eXplainable-by-design Deep Learning 37
3.1 Brief Literature Review . 38
3.2 Explainable Deep Neural Network . 39

3.2.1 xDNN Training Architecture 39
3.2.1.1 Features layer . 40
3.2.1.2 Density layer . 41
3.2.1.3 Conditional probability layer 42
3.2.1.4 Prototypes layer . 42
3.2.1.5 Learning Procedure 44
3.2.1.6 MegaClouds layer . 45

3.2.2 xDNN Decision Structure . 46
3.2.2.1 Features layer . 46
3.2.2.2 Similarity layer . 47
3.2.2.3 Local decision making layer 47
3.2.2.4 Global decision making layer 47

3.3 Experimental Data . 47
3.3.1 Caltech-256 . 48
3.3.2 Caltech-101 . 48
3.3.3 iRoads dataset . 48
3.3.4 COVID CT-scan dataset . 49

3.3.4.1 Image acquisition parameters 51
3.3.5 COMPAS dataset for Fairness 52
3.3.6 Heart sound classification . 52

3.3.6.1 Pre-Processing of the heart sound dataset 52
3.4 Results and Analysis . 55

3.4.1 Performance Evaluation . 55
3.4.2 Caltech-256 and Caltech-101 Dataset 55

vi

3.4.3 iRoads Dataset . 57
3.4.4 COVID-19 identification . 59
3.4.5 Results for COMPAS dataset 62
3.4.6 Results for Heart sound classification 63

3.5 Conclusion . 68

4 Deep Machine Reasoning 69
4.1 DMR Architecture . 69

4.1.1 Input (features) layer . 71
4.1.2 Data density layer . 71
4.1.3 Conditional probability layer 71
4.1.4 Prototypes layer . 72
4.1.5 Synthetic data augmentation 72
4.1.6 MegaClouds layer . 72

4.2 Learning Procedure . 73
4.3 Multi-layer Decision Structure . 74

4.3.1 Input (features) layer . 74
4.3.2 Ranked prototypes layer . 74
4.3.3 Maximum similarity layer . 75
4.3.4 Pair-wise confidence checks layer 75
4.3.5 Pair-wise winners layer . 76

4.4 Numerical Experiments . 76
4.4.1 Faces-1999 . 76
4.4.2 Caltech-101 . 76
4.4.3 Caltech-256 . 77

4.5 Performance Evaluation . 77
4.6 Results and Analysis . 77

4.6.1 Faces Data set . 78
4.6.2 Caltech-101 Data set . 78
4.6.3 Caltech-256 Data set . 79

4.7 Conclusion . 80

5 Explaining Deep Learning Through Rules 81
5.1 General Architecture . 82

5.1.1 Learning rules from the data 83
5.1.1.1 Pre-processing . 84
5.1.1.2 Parameters definition 84
5.1.1.3 Data density calculation 85
5.1.1.4 Prototype update . 85
5.1.1.5 Rule update . 86

vii

5.1.2 Hierarchical organisation of the prototypes 86
5.1.3 Density-Based Input Selection 88

5.2 Ford Dataset . 88
5.3 Performance Evaluation . 90
5.4 Results and Analysis . 91
5.5 Conclusion . 101

6 Detecting and Learning from Unknown 102
6.1 Concept and Basic Algorithm . 103

6.1.1 Pre-processing . 103
6.1.2 Parameters initialization . 104
6.1.3 Density Estimation . 104
6.1.4 Parameters Update . 105

6.2 Detect and Learn from Unknown . 107
6.2.1 Drop of confidence (detect the novelty) 107

6.3 Results for Novelty Detection . 109
6.3.1 iRoads dataset . 110
6.3.2 Faces-1999 dataset . 112
6.3.3 Caltech-101 dataset . 115
6.3.4 Vehicles dataset . 117

6.4 Conclusion . 121

7 Conclusion and Future Work 122
7.1 Summary of Research and Finding 122
7.2 Limitations . 123
7.3 Contributions . 123
7.4 Future Work . 124

Appendix A List of Publications 126

References 129

viii

List of Figures

2.1 k-NN algorithm decision. 8
2.2 SVM maximum-margin illustration. 10
2.3 Decision tree structure. 11
2.4 Random forest generic structure. 12
2.5 Simple Perceptron architecture. 15
2.6 A generic architecture for Neuro-fuzzy. 16
2.7 Deep learning feature identification process. 17
2.8 CNN generic architecture. 18
2.9 RNN generic architecture. 19
2.10 LSTM generic architecture. 20
2.11 Transformers generic architecture (Vaswani et al., 2017). 21
2.12 Search interest over the time for the term “Deep Learning”. 23
2.13 Search interest over the time for the term “explainable AI”. 24
2.14 XAI’s future research. 25
2.15 The high-level XAI description structure. 27
2.16 Example of SHAP plot (Lundberg and Lee, 2017). 29
2.17 Example of Grad-CAM and Grad-CAM++ explanations (Chattopadhay

et al., 2018). 30
2.18 Saliency map for dog classification. 31
2.19 Lime and Grad-CAM explanations for labrador retriever. 32
2.20 LRP explanation process (Bach et al., 2015). 33

3.1 Using the transfer learning concept this architecture with the weights can
be used as feature extractor (the last fully connected layer is considered
as a feature vector). The quality of the features is extremely important
on the final result provided by xDNN. Adapted from (Simonyan and
Zisserman, 2014). 40

3.2 xDNN training architecture. The MegaClouds layer is an optional layer
used to reduce the dimensionality of the prototypes layer and is not
illustrated in this diagram. 40

ix

3.3 Local peaks as identified prototypes. 43
3.4 Identified prototypes – Voronoi Tesselation. 44
3.5 MegaClouds – Voronoi Tesselation. 45
3.6 Architecture for the validation process of the proposed xDNN. 46
3.7 Samples of the Caltech-256 (Griffin et al., 2007). 48
3.8 Samples of the Caltech-101 (Griffin et al., 2007). 49
3.9 Samples of the iRoads dataset (Rezaei and Terauchi, 2013). 50
3.10 The figure illustrates the example of CT-scans slices for different patients

infected and non-infected by SARS-CoV-2. The first two columns refers
to CT scans slices of patients infected by SARS-CoV-2, and the two
last columns refers to CT-scans slices of patients non-infected by this
virus. 51

3.11 Normal and abnormal heart sound over time. Where the blue line
represents the abnormal class, and the orange line refers to the normal
class. 53

3.12 Power spectrum over the normalized frequency 53
3.13 xDNN rule generated for the ‘Daylight scene’. 58
3.14 Final rule given by xDNN classifier for the COVID-19 identification.

Differently from typical deep neural networks, xDNN provides highly
interpretable rules which can be visualised and used by human experts
for the early evaluation of patients suspected of COVID-19 infection.
The classification is done based on the similarity of the unlabeled CT
scan slice to the identified prototypes. 61

3.15 Non-SARS-CoV-2 final rule given by the proposed eXplainable Deep
Learning classifier. 61

3.16 Overall accuracy performance of the best considered approaches . . . 66
3.17 ROC analysis for heart sound classification using xDNN 66

4.1 DMR Architecture during the training phase (STDAM stands for
Synthetic Training Data Augmentation Mechanism). 70

4.2 Multi-layer decision-making process of the DMR approach. 75
4.3 Samples of the Faces-1999 dataset (Weber and Weber, 1999). 77

5.1 Example of host (ego) and surrounding vehicles on a highway, where
the host vehicle is represented by the center vehicle (yellow car). The
forwards arrows indicate the possible directions which the ego vehicle
can move. The backwards arrow indicates the brake maneuver. . . . 82

5.2 General structure of the proposed approach. aDRL refers to the DRL
output. The comparison between a and aDLR is used to determine the
accuracy of the proposed method. 83

x

5.3 Hierarchical structure - MegaClouds, where mM is the mean of the M -th
MegaCloud associated with the lth action 86

5.4 MegaClouds visualization in terms of Voronoi Tesselation 87
5.5 Data Distribution in terms of different maneuvers/actions by the ego

vehicle, showing the clearly data imbalance nature of the the data set. 89
5.6 Accumulated density histogram, density bars above the dotted line

denote the top seven density inputs. 95
5.7 Confusion matrix for the best scenario (7 inputs) 95
5.8 Computational complexity vs Overall performance 96
5.9 Trapezoidal rule per feature for ‘Lane change left and also brake by

−2m/s2’ (Action 6) . 99
5.10 Visual interpretation of trapezoidal rule for ”Maintain” (Action 1),

where the watermarked cars represent the soft trapezoidal fuzzy
boundaries and the solid cars denotes the limits of the MegaClouds. Rv

denotes the relative velocity between EV and center vehicle, and V
denotes the velocities for the front left and front right vehicles, both Rv

and V are in m/s . 100
5.11 Action vs time. The red ellipsoid indicates the wrongly predicted action

given by the proposed approach . 101

6.1 Drop of confidence of the proposed method when a new a unseen class
arrives . 108

6.2 General structure of xClass – block diagram 109
6.3 Wrong classification given by VGG–16 for a new unknown class (Rainy

Day). 110
6.4 Sudden drop of confidence due the presentation of new unknown classes.111
6.5 A new rule is proactively created when a sudden fall in the confidence

is detected through the inequality (6.13). The proposed xClass classifier
is highly interpretable due to its rule-based nature. This advantage
favors human experts analysis as it provides a transparent structure,
differently from the ‘black box’ approaches such as deep neural networks. 112

6.6 Final rule given by the xClass classifer for the new detected class. Label
is attached during the validation phase. Differently from ‘black box’
approaches as deep neural networks, xClass provides highly interpretable
rules which can be used by human experts for different analysis as
necessary. 112

6.7 Sudden drop of confidence due the presentation of new unknown classes
for the Faces-1999 dataset. 113

xi

6.8 Accuracy for extremely weak supervision classification for the Faces-
1999 dataset. Red bars illustrate the results obtained by state-of-the-art
approaches when just one class is provided during the training phase.
The blue bars indicate the results when all the classes are provided. . 114

6.9 Classification curve for different number of training samples for the
Faces-1999 dataset. 115

6.10 Sudden drop when new unknown are classes are presented to the xClass
method – Caltech-101 dataset. 116

6.11 Accuracy for extremely weak supervision classification for the Caltech-
101 dataset. 117

6.12 Classification curve for different number of training samples for the
Caltech-101 dataset. 118

6.13 Sudden drop of confidence due the presentation of new unknown classes
– Cars dataset. 118

6.14 Classification curve for different number of training samples for the
Cars dataset. 119

6.15 Accuracy for extremely weak supervision classification for the Cars
dataset. 119

xii

List of Tables

2.1 Fuzzy rules differences . 14
2.2 XAI 4 principles summary. 28
2.3 Summary of main XAI techniques. 34

3.1 This table demonstrates the number of patients considered to compose
the dataset. In this case, it was considered data of 60 patients infected
by SARS-CoV-2, out of which 32 were male and 28 were female. It was
also considered data of 60 patients not infected by SARS-CoV-2, out of
which 30 were male and 30 were female. 50

3.2 Features Summary . 54
3.3 Performance Comparasion: Caltech-256 Dataset 56
3.4 Performance Comparison: Caltech-101 Data set 56
3.5 Performance Comparasion: iRoads Dataset 58
3.6 Results considering different methods for the COVID-19 identification 59
3.7 Tukey Test Results . 60
3.8 Experimental results . 62
3.9 Identified Prototypes for the ‘Two year recidivism for black people’ rule 63
3.10 Performance Comparasion: Heart sound classification 65
3.11 Identified Prototypes for the ‘Normal heart sound’ rule 67

4.1 Performance Comparison: Faces-1999 Data set 78
4.2 Performance Comparison: Caltech-101 Data set 79
4.3 Performance Comparison: Caltech-256 Data set 79

5.1 Description of the inputs . 90
5.2 Performance Comparison for different actions and number of inputs . 92
5.3 Performance comparison for different actions with 7 inputs with the

highest density . 93
5.4 Description of the 7 inputs with higher densities 94
5.5 Number of identified prototypes per Action for different hierarchical

layers . 97

xiii

Chapter 1

Introduction

This chapter outlines the research motivation and the summary of the research
contributions and methodology. This chapter is organised as follows. Section 1.1
presents the research motivation. The aims and objectives of thesis are given by
section 1.2. Methodology is given by section 1.3. The research contribution is
presented on section 1.4, and the chapter is finished by thesis outline (section 1.5).

1.1 Motivation

Machine learning, more specifically deep learning (LeCun et al., 2015), attracted the
attention of media and wider public (Sejnowski, 2018) in the last decade due their
potential to revolutionize industries (Dean et al., 2018), public services (Li et al.,
2018a), and society (Chen and Lin, 2014). Deep learning achieved or even surpassed
specialists performance in terms of accuracy for different challenging problems such as
lung cancer detection (Ardila et al., 2019) and voice recognition (Assael et al., 2016).

Deep learnings have also proven efficient in automating the pre-processing stage of
feature extraction (Dara and Tumma, 2018), which can be human laborious. Despite
the great success of deep learnings, the main criticisms towards them is related to their
‘black-box’ nature (Rudin, 2019) and requirements for huge amount of labeled data,
computational resources, and long times of training (Marcus, 2018). In fact, traditional
deep learning approaches can have millions of parameters that are extremely difficult
to interpret as they are abstract and detached from the physical nature of the problem
being modelled (Castelvecchi, 2016).

Interpretability and explainability are extremely important for high stake
applications, such as autonomous cars, medical or court decisions, etc (Doshi-Velez
and Kim, 2017). The absence of transparent and auditable models can produce
severe consequences; there have been cases of accidents involving autonomous vehicles
(Favarò et al., 2017), unfair decisions over specific groups on problems such as recidivism

1

Chapter 1. Introduction

prediction (Dressel and Farid, 2018), excluded individuals into credit markets (Johnson
et al., 2019), and bias in hiring processes (Raub, 2018).

Due the critical aspect of black-box models, the right of explanations is extremely
important for the acceptance of artificial intelligence within society, but also for
regulatory purposes. In 2019, the US Congress passed the Algorithmic Accountability
Act (MacCarthy, 2019) and the EU enshrined the right for an explanation to the
consumer (Goodman and Flaxman, 2017; Pedreschi et al., 2019).

Given the circumstances, there has been an exponential increase in interest towards
“Explainable AI”. However, the majority of the work in this field refers to post hoc
approaches, where a surrogate model is created to explain the black box model (Rudin
and Radin, 2019). However, this can be controversial because post hoc explanations
are often not reliable as different approaches can provide different explanations for the
same model (Angelov and Soares, 2020b; Rudin, 2019).

Therefore, explainable-by-nature algorithms are necessary to provide the desired
transparency and trustworthy to AI systems. The focus of this thesis is to provide a
novel set of explainable-by-design deep learning architectures that combines reasoning
and learning in a synergy. The new methods presented in this thesis offers:

• Prototype-based structures that favors explainable-by-design algorithms;

• Highly transparent and interpretable models derived from data;

• Ability to detect unseen/new data patterns autonomously and learn from them;

• No user- or problem- specific algorithmic parameter necessity.

The research work and methods presented in this thesis have been developed for
the project “Transparent Deep Learning Classifier of Driving Scenarios able to Identify
and Learn from Unseen Situations” funded by Ford Motor Co. (Palo Alto - USA). The
new approaches presented in this thesis are an attractive alternative for state-of-the-art
methods.

1.2 Aims and Objectives

This research thesis is focused on the proposal of new explainable machine learning
algorithms that allow users to inspect the algorithm’s decision through the provision
of different levels of explanations. The algorithms presented in this thesis are tested
on different benchmark and real applications, including real cases provided by Ford
Motor Co.. This thesis has as objectives to present:

1. Theoretical concepts that justify the explainable methods proposed in this
research;

2

Chapter 1. Introduction

2. Algorithms conception and implementation;

3. Testing of the proposed algorithms on different real and benchmark problems.

A theorical research is presented to demonstrate the mathematical and analytical
description of the proposed methodologies. Then, the algorithm implementation
demonstrates the practical feasibility of the theoretical concepts.

The last part, is constituted by the application and testing of the implemented
theoretical concepts on benchmark and real case problems in order to evaluate the
efficacy of the proposed approaches.

1.3 Methodology

In order to answer the following research question: “Is it possible to provide an
approach that has high performance compared to other machine learning algorithms
and the same time has a transparent structure?”, different explainable-by-design
algorithms are proposed and their potential effectiveness are tested on different real
and benchmark applications.

The base algorithm proposed in this thesis, explainable-by-design deep learning
(xDNN), is presented on Chapter 3. xDNN is a prototype-based algorithm that uses
the similarity concept in order to make its classifications. Therefore, it presents a
transparent flexible structure that can be very in interesting in many applications.
Experiments were designed to reveal interesting insights in terms of numerical results
and interpretability of the proposed method. Furthermore, as described in the research
contributions section, the base algorithm is extended to approach problems of different
natures.

Therefore, this research thesis adopts an experimental research methodology that
uses an iterative process to improve and refine the base algorithm for problems of
different natures, as the interpretation of deep neural networks and also novelty
detection. The research presented in this thesis is also quantitative as it considers
real-world and benchmark data to assess the efficiency of the proposed explainable
deep learning model and its variants. The quantitative analysis allows the proposed
approaches to be compared with techniques used in state-of-the art literature.

1.4 Research Contributions

This research work focuses on the proposal of novel explainable-by-design deep learning
systems. The following main contributions have been achieved during the research:

3

Chapter 1. Introduction

1. The base method proposed in this thesis is a prototype-based deep explainable
architecture, namely xDNN, that can outperform the existing methods and also
present a transparent decision structure. It requires very little computational
resources and short training times. The proposed method has been tested on
benchmarking and real datasets, including a proprietary COVID-19 CT-scans
dataset. Our contribution in this area has been published in (Angelov and Soares,
2020b), (Soares et al., 2020b), and (Soares et al., 2020a).

2. A novel prototype-based method and network architecture for deep learning
which extends the basic method with the proposal of a decision tree-based
inference and synthetic data to balance the classes. This approach have been
tested with various challenging benchmark datasets and have demonstrated high
results in terms of accuracy, even surpassing traditional deep learning approaches.
This contribution has been published in (Angelov and Soares, 2020a).

3. A novel model based on prototypes that maps the continuous multidimensional
state space characterizing vehicle positions and velocities to a discrete set of
actions in longitudinal and lateral direction. The model is obtained through the
approximation of a customized version of the Double Deep Q-Network (DDQN)
learning algorithm with a set of IF...THEN rules that provide an alternative
interpretability model, and is further enhanced by visualizing the rules. This
contribution has been published in (Soares et al., 2020c).

4. An extension of the base method that allows unsupervised detection of new classes,
and learning from few labeled data samples. The algorithm was tested on different
challenging problems, including real adversarial autonomous cars scenarios
classification. The method not only presented higher accuracy compared to state-
of-the-art algorithms, but, more significantly, the algorithm used information
of just a single class at the start of the learning process and few labeled data
samples (few-shot learning). Our contribution to this field has been published in
(Soares et al., 2019a) and (Angelov and Soares, 2021).

1.5 Thesis Outline

The remainder of the thesis is organised as follows.
Chapter 2 - Background and Related Work: contains the review of the state-

of-the-art works that provides the background and the theoretical part for the research
presented in the thesis. It includes review of the main approaches and applications in
the field of artificial intelligence and explainable AI.

4

Chapter 1. Introduction

Chapter 3 - eXplainable-by-design Deep Learning: it presents the main
concepts, mechanisms, and architecture of the proposed eXplainable-by-design Deep
Learning (xDNN) approach.

Chapter 4 - Deep Machine Reasoning: it presents a prototype-based
explainable deep learning with a decision tree inference and balanced amount of
prototypes per class. The method uses a decision tree to determine the winning class
label, and an internal mechanism to balance the classes by synthesising data around
the prototypes.

Chapter 5 - Explaining Deep Learning Through Rules: it presents an
explainable approach to redesign a Deep Reinforcement Learning (DRL) model into a
set of IF...THEN rules. The method is designed to provide an approximation (mimic)
of the DRL model with similar performance.

Chapter 6 - Detecting and Learning from Unknown: it presents an
extremely weakly supervised approach (xClass) which is able to learn new patterns
from the data using just a single class and using a very small set of labeled data
samples in its training phase.

Chapter 7 - Conclusion and Future Work: it presents a summary of the
thesis and provides directions for further work.

5

Chapter 2

Background and Related Work

In this chapter, a review of the main concepts discussed in this thesis is introduced.
The review includes the description of the most relevant work and applications of
such concepts. Moreover, this chapter is also dedicated to present the shortcomings of
current approaches contrasting with the concept of explainable AI.

2.1 Artificial Intelligence and Machine Learning

Artificial intelligence (AI) and Machine Learning (ML) are rapidly transforming every
aspect of society as they reshape industries, public services, and society. The recent
advances on AI, allowed such technique to achieve or even surpass human levels of
performance for a range of problems, from six-player poker (Blair and Saffidine, 2019)
to complex problems such as voice generation and recognition (Oord et al., 2016), and
radiology (Hosny et al., 2018).

These recent advances in AI and ML research are intimately linked with the
availability of massive amounts of data, and modern, powerful computational hardware
(Alpaydin, 2016).

However, traditional ML techniques are limited by their design to deal with natural
data in their raw form (Zhou et al., 2017). Therefore, a careful feature engineering
process and considerable domain expertise is considered to construct an efficient
machine learning system that could detect or classify patterns in the input (O’Mahony
et al., 2019).

A great challenge in many real-world machine learning applications is that many
elements can influence every single piece of data we are able to observe. As stated by
Goodfellow et al. (2016), individual pixels of the image of a red car can be very close
to black during the night. Moreover, the shape of the car also depends on the viewing
angle.

Many of these variation elements that can influence the data can be identified only

6

Chapter 2. Background and Related Work

by a complex understanding of the data itself. Deep learning solves this problem by
introducing representations that are expressed in terms of other, simpler representations.
In this sense, deep learning system can represent the concept of an image of a person
by combining simpler concepts, such as corners and contours, which are in turn defined
in terms of edges.

The next session presents the concepts, as well as, the main applications of the
main AI approaches.

2.2 Machine Learning Methods for Classification

In machine learning, classification is the task of categorising sets of data into different
classes (Mohri et al., 2018). Classification methods are generally based on the concepts
of supervised or semi-supervised. In this section, the main approaches used for the
classification task are reviewed. It includes the following methods:

• K-nearest neighbour (k-NN),

• Support Vector Machine (SVM),

• Decision Tree (DT),

• Random Forest (RF).

2.2.1 K-nearest neighbour (k-NN)

The K-nearest neighbour (k-NN) algorithm is a non-parametric methods that does
not make any prior assumptions about the dataset (Taunk et al., 2019). k-NN, is
known for its simplicity and effectiveness (Kramer, 2013). The k-NN algorithm makes
its classification decision of its k nearest neighbours based on the voting mechanism
as follows (Cover and Hart, 1967):

y(x0) = argmin
x∈{x}K

(d(x0, x)) (2.1)

where y is the predicted label of data sample x0, and x0 = min
x∈{x}K

(d(x0, x)), and d is a

distance metric. Fig. 2.1 illustrates the k-NN classification decision.
The k-NN classifier has demonstrated satisfactory results in different areas including

medical data classification (Xing and Bei, 2019), traffic incident detection (Xiao, 2019),
facial expression classification (Dino and Abdulrazzaq, 2019), etc.. However, the k-NN
algorithm is highly dependent on the best choice of k to obtain high performance.

7

Chapter 2. Background and Related Work

Figure 2.1: k-NN algorithm decision.

Moreover, the k-NN algorithm is also high sensitive to outliers, unbalanced datasets,
and other data problems that can direct impact the performance of the algorithm
(Prasatha et al., 2017).

2.2.2 Support Vector Machine (SVM)

Firstly introduced by Cortes and Vapnik (1995), the Support Vector Machine (SVM)
is a supervised algorithm that maximizes a mathematical function of a given dataset.
In this sense, the SVM algorithm selects from the training samples a set of features
that the classification is similar to the division of the entire collection of data (Noble,
2006). SVM has been successfully applied to wide range of problems as credit card
fraud identification (Bhattacharyya et al., 2011), human action recognition (Schuldt
et al., 2004), and sentiment classification (Moraes et al., 2013). The SVM method is
composed by four basic concepts: (i) hyperplane separation, (ii) maximum-margin
hyperplane, (iii) soft margin and (iv) the kernel function.

2.2.2.1 Hyperplane separation

If two classes are linearly separable, it is possible to obtain a straight line that separates
these two classes (Noble, 2006). This procedure can be mathematically extrapolated

8

Chapter 2. Background and Related Work

to higher dimensions. In a high-dimensional space is a straight line is a hyperplane.
These points are located on a hyperplane that satisfies the following conditions:

xTw + b = 0 (2.2)

where x is a data sample, e w is a vector that is perpendicular to the separating
hyperplane, and b denotes the bias value.

2.2.2.2 Maximum-magin hyperplane

The concept of hyperplanes to classify data samples in a high-dimensional space is not
unique to the SVM. However, the method used by SVM to define the hyperplane is
what differs this algorithm from others (Suthaharan, 2016). SVM uses the maximum-
margin hyperplane technique to select the hyperplane (Bhavsar and Panchal, 2012;
Noble, 2006). The maximum-margin hyperplane selects the hyperplane based on the
maximum distance between it and the nearest data point as follows Cortes and Vapnik
(1995):

xTw + b ≥ +1 if y1 = +1

xTw + b ≤ −1 if y1 = −1
(2.3)

where the maximum margin can be found by minimising the parameter ||w||. The
correct selection of the maximum-margin hyperplane determines the success of
performance of the SVM algorithm. The correct selection of it maximises the
algorithm’s ability of correctly classification of unseen data samples. Fig 2.2 illustrates
the maximum-margin generated by the SVM algorithm.

9

Chapter 2. Background and Related Work

Figure 2.2: SVM maximum-margin illustration.

2.2.2.3 Soft-magin

Real datasets not always are linearly separable; therefore, soft margins are introduces
a way to handle such cases (Noble, 2006). The SVM introduces a soft margin through
slack variables φi(i = 1, 2, ..., K) where:

xTi w + b ≥ 1− φi if y1 = 1

xTi w + b ≤ 1 + φi if y1 = −1
(2.4)

where φi ≥ 0 ∀i. This property allows SVM to deal with errors by allowing anomalies
to be on the wrong side of the separating hyperplane. In other words, the soft-magin
property allows some data points to push themselves through the separating hyperplane
margin without affecting the algorithm’s performance (Pradhan, 2012).

2.2.2.4 Kernel function

To find the maximum-margin separating hyperplane from nonlinear separable points
is not possible (Noble, 2006). Even if soft margin (ibid.) is considered, this problem
persists. Therefore, kernel functions can be applied as solution for this problem. Kernel
functions adds an extra dimension to th-data space projecting it to higher dimensional
space (Leslie et al., 2001). Kernel functions includes:

a)Polynomial:

K(xi, xj) = (xTi xj + 1)p (2.5)

10

Chapter 2. Background and Related Work

b) Hyperbolic tangent:

K(xi, xj) = tahn(kxTi xj − δ) (2.6)

and others as Radial basis function (RBF) (Tan et al., 2011), Typicality and Eccentricity
Data Analytics (TEDA) (Kangin and Angelov, 2015), Gaussian (Keerthi and Lin,
2003), etc..

Despite the great success of SVM on different applications, the SVM algorithms
still presenting some drawbacks i) the necessity of prior knowledge for choosing the
right kernel function (Jebara, 2004), ii) its performance may drop significantly on
big data problems (Demidova et al., 2016), iii) performance may suffer on multi-class
problems (Duan and Keerthi, 2005).

2.2.3 Decision Tree

Decision tree (DT) classifiers are supervised learning algorithms that maps input
vectors in the data space to the output labels through an organised tree structure
(Safavian and Landgrebe, 1991). The goal of the algorithm is the learning of simple
decision rules inferred from prior training data. Fig. 2.3 illustrates a decision tree
structure.

Figure 2.3: Decision tree structure.

11

Chapter 2. Background and Related Work

The decision tree is composed by a recursive partitioning mechanism that splits
the data into subsets until a decision criteria is reached (Swain and Hauska, 1977).
Although the simple structure of decision trees, they have demonstrated excellent
result on different problems as environmental applications (Lu and Ma, 2020), medical
applications (Yoo et al., 2020), and others (Song and Ying, 2015). Decision trees may
have performance problems when dealing with complex problems due their simple
structure (Bramer, 2007), moreover, these are high sensitive to changes on data, as a
simple change on the data can modify the whole structure of the tree (Lee and Siau,
2001).

2.2.4 Random Forest

Random forest (RF) is a supervised ensemble learning method for classification (Liaw,
Wiener, et al., 2002). It extends the concept of decision tree to a multiple instances of
decision trees (Oshiro et al., 2012). The random forest algorithm uses the bagging
and feature randomness mechanism to build each individual tree that will create an
uncorrelated forest of trees which is more accurate than one individual tree. Fig. 2.4
illustrates a generic random forest representation.

Figure 2.4: Random forest generic structure.

Random forest classifiers have been successfully applied to diverse problems as
remote sensing (Pal, 2005), biomedicine (Azar et al., 2014), security (Alam and Vuong,
2013), and others (Zakariah et al., 2014). Gradient boosting algorithms as Catboost

12

Chapter 2. Background and Related Work

(Dorogush et al., 2018), and XGBoost (Chen and Guestrin, 2016) also uses the concept
of ensemble of decision trees. Random forest classifiers cannot be effective for real time
problems due to its large number of trees that can make the model slow (Kulkarni
and Sinha, 2012).

2.3 Fuzzy Sets and Rules

Firstly introduced by (Zadeh, 1965), fuzzy sets extend the concept of sets by assigning
a value to each element of the reference set, which represents its degree of membership
in the fuzzy set. Membership values correspond to the degree of similarity of a given
element to an associated fuzzy set. The concept of fuzzy sets allows the management
of the uncertainty carried by elements (Zadeh, 1983). In this section, a brief definition
of the main fuzzy rules are provided, including: Zadeh-Mamdani type (Mamdani
and Assilian, 1975), Takagi-Sugeno type (Takagi and Sugeno, 1985) and AnYa type
(Angelov and Yager, 2011).

2.3.1 Fuzzy Rules

A Zadeh-Mamdani fuzzy rule type has the following format:

IF (x1 is A1) AND (x2 is A2) AND ... AND (xM is AM)

THEN y = L
(2.7)

where, x = [x1, x2, ..., xM]T , A is reference value for the i-th fuzzy set, y is the output
of the rule, and L a label. On the other hand, a Takagi-Sugeno fuzzy rule can be
expressed in the following way:

IF (x1 is A1) AND (x2 is A2) AND ... AND (xM is AM)

THEN y = a0 + a1 ∗ x1 + a2 ∗ x2 + ... + aM ∗ xM
(2.8)

where a is the (M + 1)× 1 dimensional parameterised vector of the i-th fuzzy rule for
linear regression.

The Zadeh-Mamdani fuzzy rules and Takagi-Sugeno type fuzzy rules have the same
antecedent part (IF). However, the consequent part (THEN) are different. While
Zadeh-Mamdani has its consequent part a label, the Takagi-Sugeno rule has a linear
regression.

Differently from the other two types (Zadeh-Mamdani and Takagi-Sugeno), the
AnYa fuzzy rule removes the need membership functions definition per variable(ibid.).
In addition, AnYa also eliminates the necessity for logical connectives such as AND/OR

13

Chapter 2. Background and Related Work

to aggregate the scalar variables. Furthermore, AnYa uses data density (a parameter-
free Cauchy type kernel) to derive the activation level of each rule. An AnYa fuzzy
rule can be expressed in the following way:

IF (x ∼ π) THEN y = L (2.9)

where ∼ denotes the similarity degree which can also be seen as a fuzzy degree of
membership (Angelov and Yager, 2011), π denotes a prototype for the i-th fuzzy rule.
Similarly to the Takagi-Sugeno rule, AnYa fuzzy rule can also assume a 1st type as
expressed by:

IF (x ∼ π) THEN y = a0 + a1 ∗ x1 + a2 ∗ x2 + ... + aM ∗ xM (2.10)

Table 2.1 compares the three different types of fuzzy rules presented in this section:

Table 2.1: Fuzzy rules differences

Type Antecedent(IF) Consequent (THEN) De-fuzzification

Zadeh-Mamdani
parameterised fuzzy

sets
parameterised fuzzy

sets
Central of gravity

Takagi-Sugeno
parameterised fuzzy

sets
Functional

Fuzzily weighted
sum

AnYa Prototypes
parameterised fuzzy sets

Functional
Winner-takes-all

Fuzzily weighted sum

2.4 Artificial Neural Networks

Firstly introduced by McCulloch and Pitts (1943), artificial neural networks (ANN)
have been conceived as generalizations of mathematical models of biological nervous
systems. After, (Rosenblatt, 1958) introduced the Perceptron algorithm that allowed
machines to perform simulated human behavior. The Perceptron architecture is
illustrated in Fig. 2.5.
where,

output = w1x1 + ...+ wmxm =
m∑
j=1

xjwj (2.11)

14

Chapter 2. Background and Related Work

Figure 2.5: Simple Perceptron architecture.

where x are the inputs of the network, w are weights, and y is the output of the
network. In this case the activation function f is given by:

f(y) =

{
1 if y ≥ 0
−1 otherwise

(2.12)

In the context of multilayer neural networks different activation functions, such as
ReLu, have been considered.

The basic processing element of a neural networks is named neuron. In this sense,
on a artificial neural network the effects of the synapses are represented by connection
weights (see Fig 2.5). The neuron impulse is computed as the weighted sum of the
input signals (eq. 2.11), and transformed by the activation function. The adjustment
of the weights influences the learning capability of the artificial neuron.

Different forms of ANNs architectures became widely popular including: i) Deep
Neural networks (LeCun et al., 2015); ii) Recurrent Neural networks (Lipton et al.,
2015); iii) Feedforward neural networks (Svozil et al., 1997); iv) Radial basis functions
networks (Orr et al., 1996), etc.

Despite the great success of neural networks on different applications, the main
criticisms towards them rely on the fact that they are “black-box”, given the fact that
it is extremely difficult to interpret their parameters and decisions.

2.5 Neuro-fuzzy Systems

Neuro-fuzzy systems uses the learning capability of neural networks to determine the
membership function and fuzzy rules of the fuzzy logic systems (Campos Souza, 2020).
Fig 2.6 illustrates a generic architecture for a neuro-fuzzy system.

Neural networks and fuzzy systems can work in synergy to join their advantages.
Neural networks has better learning characteristics and the fuzzy systems provides
interpretation to the “black-box” systems (Jang, 1993). Given these advantages,

15

Chapter 2. Background and Related Work

Figure 2.6: A generic architecture for Neuro-fuzzy.

different models have been designed proposed in this direction (Figueiredo and Gomide,
1999). Models have been proposed for different tasks such as control (Leite et al.,
2013), dynamic time series prediction (Angelov and Filev, 2004; Kasabov and Song,
2002), missing data (Garcia et al., 2019), hurricane track prediction (Soares et al.,
2018), and others.

2.6 Deep Learning

Deep learning is responsible for the major advances in the artificial intelligence
community in the recent years (Deng and Yu, 2014). The deep learning architecture
allows the discovering of complex structures in high-dimensional data (Nielsen, 2015).
Therefore, this method has become popular in many domains of science, business and
government (LeCun et al., 2015).

Deep learning has beaten human performance in image recognition (Pak and Kim,
2017) and speech recognition (Xiong et al., 2016). Moreover, it has proven to be
an excellent approach for complex tasks such as autonomous driving (Grigorescu
et al., 2020), drug discovery (Gawehn et al., 2016), and more recently on Covid-19
identification (Ting et al., 2020).

Deep learning approaches belong to the so-called group representation-learning, as
they are equipped with systems to automatically discover the representations needed
for feature detection (Bengio et al., 2013). Deep learnings are composed of multiple

16

Chapter 2. Background and Related Work

levels of representation, which are obtained by non-linear modules that transforms the
representation at one level into a representation at a higher abstract level. Therefore,
very complex functions can be learned with enough number of transformations (Zhong
et al., 2016).

For example, an image comes to the deep learning system in the form of pixel
values, and the learned features in the first layer of representation generally represents
the presence or absence of edges at particular orientations and locations in the image.
The second layer is responsible to detect patterns and specific disposition of edges.
The third layer, arranges the learned patterns into larger clusters that correspond
to parts of similiar objects. Fig. 2.7 illustrates the feature identification process
aforementioned.

Figure 2.7: Deep learning feature identification process.

The main difference from deep learning to traditional approaches is that the layers
of features that compose them are not designed by human experts. Instead, deep
learning is composed by a generic learning procedure that learns features from data
(data-oriented) (LeCun et al., 2015).

2.6.1 Convolutional Neural Networks

Convolutional neural networks (CNN), are a special case of deep learning designed
design specifically to deal with images (ibid.). This allows CNNs to encode encode
image-specific features into their architecture (O’Shea and Nash, 2015). CNNs were

17

Chapter 2. Background and Related Work

firstly introduced by Fukushima and Miyake (1982) in 80s, and significantly improved
during the 90s by LeCun et al. (1989).

The generic architecture of a CNN is illustrated by Fig. 2.8. According to LeCun
et al. (2015), there are four central ideas that CNNs take advantage: local connections,
shared weights, pooling and the use of many layers.

Figure 2.8: CNN generic architecture.

The first stages of a CNN are the convolutional layers and pooling layers.
Convolutional layers are structured in feature maps. Each unit of the convolutional

layer is connected to local patches in the feature maps of the previous layer through a
set of weights.

All units in a feature map share the same set of weights. Different feature maps
in a specific layer use different set of weights. The reason for this design, is that if
a pattern can appear in one part of the image, it could also appear in other part.
Therefore, this the reason of units at different locations sharing the same weights and
detecting the same pattern (Voulodimos et al., 2018).

The function of the pooling layer is to merge semantically similar features into one.
It computes the maximum of a local patch of units in one feature map or few feature
maps (Schmidhuber, 2015). The convolutional and pooling layers are inspired by the
notion of simple cells and complex cells in visual neuroscience (LeCun et al., 2015).

The extremely accurate results provided by CNNs have attracted investments of
the so called big-tech companies including Facebook, Microsoft, Google, and Apple.
The belief is that this technology will be the next game changer in the near future
(Zhang et al., 2020).

18

Chapter 2. Background and Related Work

2.6.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful dynamic systems that process an
input sequence at time (Schuster and Paliwal, 1997). It maintains in their hidden layers
a memory that contains historical information about the elements of the sequence
(Medsker and Jain, 2001). Then, the outputs of the hidden units are given for different
discrete time steps. Fig 2.9 illustrates the operation of a recurrent node unfolded along
the input sequence for three steps, where h is the hidden state, x is the input, y is the
output of the network, and w are the weights.

Figure 2.9: RNN generic architecture.

The algorithmic and hardware advances allowed RNNs to be widely used for
different tasks (Tarwani and Edem, 2017). RNNs have been proven to be very efficient
to deal with natural language processing (Yin et al., 2017), sentiment analysis (Tang
et al., 2015), image generation (Gregor et al., 2015), and speech recognition (Graves
et al., 2013).

Training RNNs has been proved to be problematic because weights update are
mainly based on gradient which can lead to either vanishing or exploding gradient
problems (Kanai et al., 2017). Therefore, to overcome this challenging task, Hochreiter
and Schmidhuber (1997) introduced the ‘Long short-term memory’ (LSTM) algorithm.
LSTM is a special case of RNN that has three gates: an input, a forget and an
output gate. The architecture of LSTM allows changes on a cell state vector that
is propagated iteratively to capture long-term dependencies (Smagulova and James,
2019) as illustrated by Fig 2.10.

The LSTM algorithm has a temporal memory mechanism that allows the switch
of gates to prevent the gradient vanishing/explosion. For the basic LSTM unit, its
external inputs are its previous cell state c(t−1), the previous hidden state h(t−1) and
the current input vector x(t). The gates of the LSTM algorithm are calculated as:

19

Chapter 2. Background and Related Work

Figure 2.10: LSTM generic architecture.

f(t) = σ(wfxx(t) + wfhh(t−1) + bf) (2.13)

i(t) = σ(wixx(t) + wihh(t−1) + bi) (2.14)

o(t) = σ(woxx(t) + wohh(t−1) + bi) (2.15)

where f is the forget gate, i is the input gate, o is the output gate, σ is the non-linear
activation function, and b is the bias. For LSTM, generally the sigmoid is used as
activation function. The intermediate state in the LSTM is given by:

c̃(t) = tanh(wcxx(t) + wchh(t−1) + ci) (2.16)

where tildec is the intermediate state, and tanh is the nonlinear tanh activation
function. The memory cell c, and the hidden state h are updated as follows:

gc(t) = f(t) � c(t) + i(t) � c(t) (2.17)

h(t) = o(t) � tanh(c(t)) (2.18)

� is used to represent the pointwise multiplication operation for two vectors.

20

Chapter 2. Background and Related Work

2.6.3 Transformers

Firstly introduced by Vaswani et al. (2017), Transformers are a form of multi-layered
deep learning stack that has self-attention mechanism as the principal characteristic.
The self-attention mechanism can be viewed as a graph-like inductive bias that connects
all tokens in a sequence with a relevance-based pooling operation (Tay et al., 2020).
Transformers could obtain high impact results in many fields such as natural language
processing (Devlin et al., 2018; Wang et al., 2019b) and image processing (Carion
et al., 2020), even surpassing traditional methods as convolutional neural networks and
RNNs. The generic architecture of a Transformer model is illustrated by Fig. 2.11.

Figure 2.11: Transformers generic architecture (Vaswani et al., 2017).

Transformer blocks are composed by a multi-head self-attention mechanism, a
position-wise feed-forward network, layer normalization and residual connectors for

21

Chapter 2. Background and Related Work

both the encoder and decoder (Vaswani et al., 2017) as shown in Fig. 2.11. The input
of Transformer model is generally a tensor of shape RB × RR, where B is the batch
size, and N the length of the sequence. The inputs are passed to a multi-headed
self-attention module.

The main idea of the self-attention mechanism is the alignment elements in a
sequence (Li et al., 2020). During the alignment the algorithm learns from other tokens
in the sequence. The attention is given by (Tay et al., 2020):

Ah = softmax(αQhK
T
h)Vh, (2.19)

where, Qh = wqx, Kh = wkx, and Vh = wvx are temporal linear transformations
applied on the input sequence; w are the weights parameters and x the input of

the query, α is a scaling factor that the default values generally is
√

1
d

where d is a

dimensional embedding.
It is important to highlight that there are differences in the usage mode of the

Transformers models. In this sense, Transformers can be used for mainly in three
ways: i) encoder-only (generally for classification tasks); ii) decoder-only (e.g., natural
language processing); and iii) encoder-decoder (e.g., object detection and machine
translation). Multiple multi-headed self-attention modules are used in the encoder-
decoder mode, as well as a cross-attention that allows the decoder to utilize information
from the encoder. In the encoder only mode, there is no restriction the self-attention
mechanism has to be causal. However, in the encoder-decoder mode, the encoder and
encoder-decoder cross attention can be non-causal but the decoder self-attention must
be causal (ibid.).

2.7 From black-box to explainable approaches

Despite the success of deep learning and their extraordinary performance in many
challenging tasks, the most criticism towards them is often characterized by their
”black box” nature (Rai, 2020). Indeed, deep learning models are composed by millions
or even a billion of weights/parameters learned from data during the training phase.
The link of these huge number of weights with the physicality of the problem also is
extremely difficult (Castelvecchi, 2016). Therefore, the explanation of the decisions
made by such methods are highly problematic (Rudin, 2019).

Model explanations are essential especially in highly sensitive areas such as
healthcare, autonomous driving, and other applications related to human life, rights,
finances, and privacy (ibid.). As such applications are becoming more and more usual,
the necessity for transparency and explainability is gaining more attention (Gunning,

22

Chapter 2. Background and Related Work

2017). A search in Google Trends 1 revealed that in the last decade publications using
the terms “Deep Learning” and “explainable AI” (XAI) grew significantly. However,
while the curve for the term “Deep Learning” is now under saturation, the curve
for the term “XAI” is growing exponentially. The rise on the search for the term
“explainable AI” starts precisely 3 years ago, which is the same date that the search for
the term “Deep Learning” started to saturate as illustrated by Fig 2.12 and 2.14. This
is not coincidental and demonstrates that the interest towards XAI is increasing as an
attempt to address open research questions (Arrieta et al., 2020) left by traditional
deep learning methods.

Figure 2.12: Search interest over the time for the term “Deep Learning”.

2.8 Explainable AI

An explainable AI (XAI) is an AI system that the actions and decisions can be easily
understood, analyzed, and interpreted by humans (Hagras, 2018). In the last years,
as AI human-centric applications have gained more attention, algorithmic decisions
become more consequential to individuals and society (Wang et al., 2019a). Therefore,

1https://trends.google.com/trends/

23

https://trends.google.com/trends/

Chapter 2. Background and Related Work

Figure 2.13: Search interest over the time for the term “explainable AI”.

explainability and interpretability of AI methods have become an important issue that
concerns not only for scientists, but also regulators, and politicians (Holzinger et al.,
2018).

Complex and “black box” (Pasquale, 2015; Rudin, 2019) models can easily fool
users which are unable to inspect the algorithms decision (Nguyen et al., 2015)
and, this can lead to dangerous or even fatal consequences (Stilgoe, 2020). Hence,
transparent and explainable AI approaches are critically important for acceptability
within society, but also for regulatory purposes (In 2019 the US Congress passed the
Algorithmic Accountability Act (MacCarthy, 2019) and the EU enshrined the right
for an explanation to the consumer (Goodman and Flaxman, 2017)).

Goodman and Flaxman (ibid.) states that algorithms must “provide appropriate
safeguards” including “the right to obtain human intervention to express his or her
point of view and to contest the decision.”. Therefore, it clearly says that algorithms
must provide transparent decision mechanisms that allow humans to investigate and
contest if necessary.

The lack of transparency and accountability of AI models already has severe
consequences (Rudin, 2019); e.g. people that have been incorrectly denied parole, poor
bail decisions leading to the release of dangerous criminals (Wexler, 2017), accidents

24

Chapter 2. Background and Related Work

involving autonomous cars (Gurney, 2013), and non-effective use of valuable resources
in criminal justice, medicine, and energy reliability (Rudin, 2019; Varshney and
Alemzadeh, 2017).

The actual data-rich environment and powerful hardware allowed solutions that
provides highly accurate results from a very large number of abstract, purely numerical
parameters (Angelov and Soares, 2020b; Rudin, 2019; Stock and Cisse, 2018), without
providing a deep insight into, and understanding of, the underlying dependencies,
causalities, and internal model structures.

AI explainability still an open research question in the machine learning field
(Bishop, 2006), as illustrated by Fig. 2.14.

Figure 2.14: XAI’s future research.

2.8.1 XAI Classification

There are notable differences among the concepts of interpretability and explainability,
however, the misuse of these terms are common in the literature (Arrieta et al., 2020).
While the term interpretability refers to a passive characteristic referring to the level
of understanding of model for a human expert, the term explainability makes reference
to an active characteristic of the model that has the intention of clarification of its
internal functions (Adadi and Berrada, 2018).

Here, the most used nomenclature used in XAI communities are summarized:

25

Chapter 2. Background and Related Work

• Transparency: is the opposite of “black-box” or opaque. The model is
considered transparent if it has the capability to be understandable by its
own (Adadi and Berrada, 2018).

• Interpretability: is defined as the ability of provide meaning interpretations
that are understandable to human experts (Gilpin et al., 2018).

• Explainability: It embraces AI systems that are both accurate and compre-
hensible to humans (ibid.). Explanation works as an interface between humans
and AI systems.

• Understandability is defined by the characteristic of a model to be comprehend
by human expert with the minimum effort to understand its internal structure
and processes (Arrieta et al., 2020).

Even though, these terms may sound semantically similar, they offer important
and different levels of AI explanations. Below, the taxonomy and ontology of XAI is
defined at a high level:

• Transparent Models: examples of typical transparent models (Adadi and
Berrada, 2018) include traditional methods as the k -Nearest Neighbours (kNN)
algorithm (Bishop, 2006), Decision Trees (Rokach and Maimon, 2005), Rule-
based Learning (Grosan and Abraham, 2011), Bayesian Network (Friedman
et al., 1997). The aforementioned algorithms are transparent by their nature,
however, it does not necessarily means that they are explainable by themselves.

• “Black-box” Models: Black box models are generally highly accurate, however,
they suffer from lack of transparency (Rudin, 2019). This category of models
includes Random Forest (Breiman, 2001), Neural Networks (Müller et al., 1995),
and Support Vector Machines (Hearst et al., 1998).

• Model Agnostic: this type of approach is designed to be flexible and generally
applicable (Dieber and Kirrane, 2020). Model agnostic approaches do not rely
on a intrinsic architecture, thus, they are based on the input data its outputs.

• Model Specific: it is defined by a particular type of approach that takes
advantage of model and aims to bring transparency and explanation to it (Langer
et al., 2021).

• Explanation by Simplification: denoted by surrogate models that are
simplification of complex ones in order to improve explainability (Soares et al.,
2020c).

26

Chapter 2. Background and Related Work

Figure 2.15: The high-level XAI description structure.

• Explanation by Feature Relevance: Similarly to simplification, the idea of
this approach is to evaluate and rank features that are most influential to the
model’s decision, for example the SHAP values (Lundberg and Lee, 2017).

• Visual Explanation: this type of approach considers data visualization as a
form to interpret the model’s decision. Generally, are applied to image-based
classifiers and detectors, Grad-cam is an example of visual explanation approaches
(Selvaraju et al., 2017).

• Local Explanation: this type of explanation is based on the matching of data
inputs that are similar to the one we are interested in explaining (Ghai et al.,
2020).

Fig. 2.15 illustrates the structure of the XAI taxonomy. Transparent models can
easily achieve explainabilty, while opaque models require post-hoc approaches to make
them explainable. The categories of post-hoc approaches are illustrated accordingly.

Phillips et al. (2020) list the 4 principles (Table 2.2) that defines an explainable AI
according to the NIST.

2.8.2 State-of-the-art on XAI methods

Different approaches for explainable AI methods includes: game-theoretic Shapley
additive explanations (SHAP) (Chen et al., 2019), local pseudo explanations (LIME)
(Dieber and Kirrane, 2020), GradCam (Selvaraju et al., 2017) and its variations, layer-
wise feature relevance propagation and attribution (Tritscher et al., 2020), sensitivity
analysis (Arrieta et al., 2020), and surrogate models.

27

Chapter 2. Background and Related Work

Table 2.2: XAI 4 principles summary.

Principle Definition

Explanation
AI system must supply evidence, support and reasoning for each

decision made by the system

Meaningful
Explanation provided by the AI system must be understandable

and meaningful to its users

Accuracy
Explanation provided by the AI system must reflect accurately the

system’s processes

Knowledge Limits
AI systems must identify cases that they were not designed for,

and their answers may not be reliable.

2.8.2.1 Features-oriented methods

Introduced by Lundberg and Lee (2017), the SHapely Additive exPlanation (SHAP)
values are an unified measure of feature importance for machine learning predictions.
The SHAP values provides unique additive feature importance measure that addresses
the following properties (Chen et al., 2019):

i) Local accuracy: it requires that the explanation model matches the output of
a function f for an input x.

ii) Missingness: the missingness principle requires that features that are missing
in the original input may not have impact to a model if the simplified inputs
represent feature presence.

iii) Consistency: this property states that if a model changes the features
attribution should not decrease.

The SHAP method calculates its Shapley values based on the coalitional game
theory (Lundberg and Lee, 2017). In this sense, each feature that composes the
dataset act as players in a coalition game. Therefore, the payoff of the game is an
additive measure of importance which represents the weighted average contribution of
a particular feature within every possible combination of features. A player can also
be a group of feature values. Different applications have demonstrated the efficacy if
SHAP in explaining model’s decision (Mokhtari et al., 2019; Padarian et al., 2020).
However, the SHAP values may not be completely transparent if the model is not
additive because such predictive models may have non independent pay-off splits. Fig
2.16 illustrates a SHAP plot for house price prediction.

28

Chapter 2. Background and Related Work

Figure 2.16: Example of SHAP plot (Lundberg and Lee, 2017).

The Fig 2.16 shows the distribution of the impact of each feature on the model’s
output. Features are ordered by the sum of SHAP value magnitudes over all samples,
where the color red represents a high impact, and the color blue denotes a negative
impact. In this case, the plot reveals that the feature “LSTAT” has the higher impact
in the model´s decision.

Class activation maps (CAMs) are specific to CNNs. CAMs represent the per-
class weighted linear sum of visual patterns present at various spatial locations in an
image (Zhou et al., 2016). More formally, global average pooling is applied to the
final convolutional feature map in a network, before the output layer. These pooled
feature maps are then used as the input features to a fully connected layer and output
through a loss function. By projecting the weights of the output back to the previous
convolutional layer, the areas in the input image with greater influence over the CNNs’
decision are highlighted per-class and visible through a heatmap representation. CAMs
cannot be applied to pre-trained networks and networks that do not adhere to the
specified fully convolutional network architecture. Additionally, spatial information can
be lost by the fully connected layer and map scaling. Two generalizations of the base
CAM model, Grad-CAM (Selvaraju et al., 2017) and Grad-CAM++ (Chattopadhay
et al., 2018), try to further increase the explainability of CNNs.

Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017)
generalizes CAM to any arbitrary CNN architecture and without retraining. The
gradients for any target class are fed into the final convolutional layer and an importance

29

Chapter 2. Background and Related Work

Figure 2.17: Example of Grad-CAM and Grad-CAM++ explanations (Chattopadhay
et al., 2018).

score computed in respect to the gradients. As with other methods, a heatmap
representation of the Grad-CAM indicates which regions of the input image were
most important in the CNN’s decisions. However, Grad-CAM produces only coarse-
grained visualizations and cannot explain multiple instances of the same object in
an image. Grad-Cam++ (Chattopadhay et al., 2018) considers the weighted average
of the gradients to overcome these drawbacks. Fig. 2.17 illustrates the difference of
explanations provided by Grad-CAM and Grad-CAM++ for a same image.

Fig 2.17 illustrates how post-hoc methods for explainability can provide different
explanations for a same model. Explainable-by-design approaches avoid this
incoherence by providing a unique interpretation of their decision. Therefore, they a
clearly audible for users.

Feature oriented methods provide insights into where a decision is taking place in
terms of the input, but fall short of a human level explanation of how and why the
model came to those decisions. Consequently, a human could not exactly reproduce
the explanations rendered by the model.

30

Chapter 2. Background and Related Work

Figure 2.18: Saliency map for dog classification.

2.8.2.2 Global methods

Global Attribution Mappings (GAMs) (Ibrahim et al., 2019) are used for features with
precise semantic definitions. In this sense, GAMs are able to explain a neural network’s
predictions on a global level through weighted conjoined rankings. The advantages of
this method is that different sub populations can be taking into consideration through
different tuneable granularity thresholds. K-medoids are used to cluster features with
similar importances, and each medoid summarizes a different pattern as a global
attribution. Therefore, GAMs are pertinent to feature exploration among different
sub-populations of samples.

Another well-known global method for explanations is the Gradient-based saliency
maps (Simonyan et al., 2013). This technique is responsible to render the absolute
value of the gradient of the majority predicted class as a normalized heatmap. The
Fig 2.18 illustrates how the saliency map is built for a dog classification. The heatmap
indicates the pixels with higher activation during the classification process are close to
the dog’s snout. Pixels with high activation are highlighted and correspond to areas
that are most influential. However, the absolute value means that gradients of neurons
with negative input are suppressed when propagating non-linear layers. Therefore,
this type of technique is not reliable and fails in passing the real message to users.

2.8.2.3 Surrogate models

Local Interpretable Model-Agnostic Explanations (LIME) (Dieber and Kirrane, 2020)
is a model-agnostic technique to create locally optimized explanations of machine

31

Chapter 2. Background and Related Work

Figure 2.19: Lime and Grad-CAM explanations for labrador retriever.

learning models. LIME trains an interpretable surrogate model to learn the local
behavior of a global “black box” model’s predictions. For image classification, an
input image is divided into patches of contiguous superpixels (i.e. an image object)
and a weighted local model is then trained on a new set of permuted instances of
the original image (i.e., some superpixels are turned to gray). The intuition is then
that by changing aspects of the input data that are human understandable (spatial
objects) and learning the differences between those perturbations and the original
observations, one can learn what about the input contributed to each class score.
However, these explanations are not always informative or reliable at a human level if
the parameters that control the perturbations are chosen based solely on heuristics.
Fig 2.19 illustrates the difference of explanations provided by LIME and Grad-CAM
for a labrador retriever. While LIME, produces its explanations based on local patches
or superpixels, GRAD-CAM is based on activations maps.

2.8.2.4 Local, pixel-based methods

The Layer-wise Relevance BackPropagation (LRP) (Bach et al., 2015) method renders
a heatmap to provide insights about pixels contributions during the model’s prediction.
The method is based on predefined propagation rules that provides explanations of
neural networks. This method is only valid if the network implements backpropogation.
Fig 2.20 illustrates the LRP explanation process using backpropagation where xi is
the image input, xf is the output function, Rf is the relevance function, and Ri is the

32

Chapter 2. Background and Related Work

Figure 2.20: LRP explanation process (Bach et al., 2015).

relevance heatmap. Similarly, to LRP, Hinton et al. (2006) introduced the Deep Belief
Network to improve the interpretability of traditional neural networks.

2.8.2.5 Anthropomorphic machine learning

Although, the aforementioned methods provide clear advantages in terms of
explanations in contrast to pure “black-box” decisions, they rely on post-hoc analysis
about the features, weights, and other aspects of the data.

This is completely different from the way people make decisions (Angelov and
Gu, 2018b). In fact, the aforementioned methods do not answer the fundamental
questions of model structure and parameters relating to the nature of the problem
and completely ignore reasoning process.

33

Chapter 2. Background and Related Work

In this thesis, a different approach to explainability is explored. The anthropomor-
phic approach explored in here investigates how people use similarity to associate new
data with previously learned and aggregated prototypes (Bien and Tibshirani, 2011;
Bishop, 2006). Indeed, humans compare items (e.g. images, songs, and movies) in
their entirety and not per feature or pixel.

2.8.2.6 Discussion

Table 2.3 summarizes some of the different approaches for explainability presented so
far. As aforementioned, although most of the model-specific approaches present high
level of explanability, they do not provide high accurate results. On the other hand,
post-hoc approaches try to explain highly accurate systems, however, the explanations
provided by these methods are not totally reliable. In this thesis, new approaches that
combine accuracy and explanability in synergy are explored in a way reduce the gap
for this research field.

Table 2.3: Summary of main XAI techniques.

Method Post-Hoc Global/Local Specific/Agnostic

Decision Trees No Global Specific
K -nn No Global/Local Specific

Rule-based models No Global/Local Specific
SHAP Yes Global Agnostic

Activation Maps Yes Global Agnostic
Surrogate Models Yes Global/Local Agnostic

LRP Yes Global Agnostic
Saliency maps Yes Global Agnostic

Prototype-based models No Global/Local Specific

2.9 XAI applications

The frequency and importance of algorithms in applications have led regulators and
official bodies to develop policies that provide clearer accountability for algorithmic
decision making. One such example is the European Union’s General Data Protection
Right, which some have interpreted as a “Right to Explanation” (Goodman and
Flaxman, 2017). Although the extent of this right is in dispute, the discourse around
such topics has reinforced that automated systems must avoid inequality and bias in
decisions. Furthermore, they must fulfill the requirements for safety and security in

34

Chapter 2. Background and Related Work

safety-critical tasks. Consequently, there has been a recent explosion of interest in
explainable AI models in different areas as depicted below.

2.9.1 Autonomous Vehicles

Autonomous vehicles have to make milliseconds decisions based on challenging drive
environments (Schwarting et al., 2018). If an autonomous car has some misclassification
problem and acts abnormally the consequences can be dangerous or even fatal. a
recent crash (on 18 March 2018) by an autonomous car owned by Uber led to the
operator being charged with negligent homicide two and a half years later (Stilgoe,
2020). This was the first known fatality involving a fully autonomous vehicle. Claims
are that the vehicle misclassified the person as a plastic bag or tumbleweed carried on
the wind (ibid.). An explainable system could clarify the circumstances that lead to
such missclassification and eventually prevent it from happening (Shen et al., 2020).

2.9.2 Medicine

In the medical domain there is a growing demand for AI approaches, most notably
during the COVID-19 pandemic. However, AI applications must not only perform
well in terms of classification metrics, but need also to be trustworthy, transparent,
interpretable and explainable, especially for clinical decision-making (Holzinger et al.,
2017).

Detection of a disease at its early phase is most of the time critical to the recovery
of patients or to prevent the disease from advancing to more severe stages (Tjoa and
Guan, 2020). However, explanations for machine decisions are needed to justify their
reliability. Therefore, clinicians and practitioners needs caution to use such methods
as they require great interpretability and explanability as it is necessary to understand
the mechanism underlying the algorithm’s decision (Holzinger et al., 2019).

2.9.3 Legal justice

Another example application of XAI is the criminal justice system. In some countries
such as the USA automated algorithms are being used to predict where crimes will
most likely occur, who is most likely to commit a violent crime, who is likely to fail to
appear at their court hearing, and who is likely to re-offend at some point in the future
(Dressel and Farid, 2018). One such widely-used criminal risk assessment tool is the
Correctional Offender Management Profiling for Alternative Sanctions (COMPAS).
Although the data used by COMPAS do not include an individual’s race, other aspects
of the data may be correlated to race that can lead to racial biases in the predictions.

35

Chapter 2. Background and Related Work

Therefore, explanations of such critical decisions are necessary to favor fairness and
reduce racism during the decisions (Dressel and Farid, 2018).

2.9.4 Defense

As in the medical field, the military applications generally involves human lives.
Therefore, explainability in AI decision’s is crucial as stated by DARPA (Gunning,
2017). Challenges on the military applications include reliability of autonomous systems
for military operations which often leads to ethical and legal dilemmas (Gunning and
Aha, 2019).

The efforts for XAI does not limit to the applications above cited. Indeed, it
includes applications in others key domains domains as cybersecurity, education,
environment, entertainment, and government. Therefore, this justifies the necessity
for XAI. Even though, this research line in its beginning and there is research gap to
be filled (Adadi and Berrada, 2018).

2.10 Conclusion

This chapter contains the surveys which covers the background that is necessary to
understand the scope of the research work presented in this thesis. Traditional machine
learning techniques suffer from various problems including: strong prior assumptions,
predefined user- and problem- specific parameters, and other ad-hoc decisions that
may be problematic in large-scale, complex real problems.

Deep learning are the state-of-the-art approaches in the fields of machine learning
and computer vision. However, their structures lack transparency as they have
million of parameters that are extremely difficult to interpret and relate it to the
physical world. Therefore, post-hoc methods are used to explain these “black-box”
deep learning approaches. However, different post-hoc explainable methods may offer
different explanations for the same model, which is controversial. Therefore, in the
next chapter a new explainable-by-design or anthropomorphic machine learning is
presented in order to overcome problems presented in this chapter.

36

Chapter 3

eXplainable-by-design Deep
Learning

In the last decade, deep learning has revolutionized the artificial intelligence research
field as it has been proved to be able to obtain highly accurate results in extremely
complex problems (Goodfellow et al., 2016; LeCun et al., 2015). It turns out to be very
valuable and efficient in the often laborious and sometimes controversial pre-processing
stage of automated feature extraction. The main criticisms of deep learning are usually
related to its “black box” nature and requirements for large amounts of labeled data,
computing resources, and long (hours, in some cases even days) training (Rudin, 2019).
In fact, deep learning algorithms involves millions of weights/parameters that are
abstract and detached from the physical nature of the modelled problem and very
difficult to interpret (Castelvecchi, 2016).

The pre-processing stage of feature extraction is an important task that defines
the data space and influences the performance of that a model provides. Therefore,
this is an important and useful property of deep learning that can be applied to other
machine learning methods. Another important characteristic of deep learning is the
possibility of use transfer learning to speed up the training process as illustrated in Fig.
(3.1). It possibilities that the knowledge acquired in the form of model architecture
for a specific context can be transferred an re-used on another different context (Hu
et al., 2015; Tan et al., 2018). The necessary time to train a deep neural network from
scratch is reduced considerably through the transfer learning process. Furthermore,
it is also beneficial to improve the classification performance of models (Shaha and
Pawar, 2018; Zhuang et al., 2015).

Explainable Deep Neural Network (xDNN) uses the two main achievements of deep
learning, higher accuracy combined with automatic methods to extract features for
complex problems (such as image classification), trying to solve the lack of explainability
and other defects, such as the required amount of computational resources, adaptive

37

Chapter 3. eXplainable-by-design Deep Learning

and self-evolving capabilities. Interpretability and explainability are of supreme
importance for high-risk applications, such as self-driving cars, medical treatment, or
court decisions(Rudin, 2019).

The xDNN method provides a new deep learning architecture that combines
inference and learning in synergy. It is a prototype-based approach which uses data
density in its core mechanism (Angelov and Gu, 2019). Besides, xDNN it is non-
iterative and non-parametric, improving its efficiency in terms of time and computing
resources. From the user’s point of view, the approach is clearly understandable to
human users.

The remainder of this chapter is organized as follows: The next section introduces a
brief literature review. The xDNN approach is presented in Section 3.2. The discussion
is presented in the last section of this chapter.

3.1 Brief Literature Review

Deep networks have been purely designed to provide the best results in terms of
classification accuracy. The decisions made by such networks are generally interpreted
by post hoc techniques (Li et al., 2018b) or not interpreted at all. In this sense, the first
task for post hoc interpretation is the selection of the network architecture and then
the attempt to interpret the resulting model through the learned high-level features.
Consequently, post hoc interpretability analysis requires a separate modeling effort
(Saralajew et al., 2018). Moreover, post hoc analysis works more as an approximation
system than an cause-effect explanation mechanism. Problems with post hoc analysis
includes non-consistency of explanations as different post hoc models can provide
different explanations for a same deep learning model. In other words, the creation of
multiple conflicting explanations it is facilitated by such methods.

The prototype-based classifier is a reasoning process that does not consider post hoc
analysis(Biehl et al., 2016).Generally, they are related with the proximity in feature
space of a data sample to a prototype (similarity) (Biehl et al., 2013, 2016). Each
prototype aims to capture the distribution of a set of data points based on the concept
of similarity to the prototype or proximity, which may be affected by (prototype-
specific) size and shape parameters (Perner, 2008). In this thesis, a prototype is
considered the data sample with higher densities (local density peaks) in the training
set (Angelov and Gu, 2019). In other cases, a prototype can be considered as a convex
combination of multiple observations, and it does not necessarily require any data
samples close to the training set to be even feasible (Liu et al., 2018; Oyedotun and
Khashman, 2017).

Classification through prototypes is a well-known form of case-based reasoning
(Li et al., 2018b). Li et al. (ibid.) uses neural networks as distance measure between
prototypes and data samples. Differently, (ibid.) uses an auto encoder process to

38

Chapter 3. eXplainable-by-design Deep Learning

establish a low-dimensional space, therefore, the distances to prototypes are computed
in the formed latent space. Euclidean distance is also used as it can be expressed
in terms of convolution operations in the neural network (Biehl et al., 2013; Nebel
et al., 2017). Euclidean distance is essential step towards an efficient architecture for
prototype-based neural network layers (Graf et al., 2009).

xDNN uses local densities and global multivariate generative distributions based on
an empirically derived form of the probability distribution function for prototype
identification (Angelov and Gu, 2019). Differently from other prototype-based
classifiers, xDNN is non-iterative and non-parametric as it is using recursive calculations
and no search procedures, therefore, it can learn continuously with no necessity for
re-training.

3.2 Explainable Deep Neural Network

3.2.1 xDNN Training Architecture

The explainable deep neural network (xDNN) classifier presented in this thesis is
composed by different layers with a very clear semantic and functional meaning.
xDNN also offers a very clear set of prototype-based IF...THEN rules which favors
interpretability. Prototypes are selected data samples that the users can easily view,
understand and analyze their similarity to other data samples. xDNN demonstrates
that learning and reasoning can work together in a synergy and produce very impressive
results.

xDNN can be described as a feedforward neural network. It has an incremental
learning algorithm that can develop and evolve its structure autonomously. If necessary,
add new prototypes to reflect possible changes (dynamic evolution) of data patterns.
As illustrated by Fig. 3.2, th following layers compose xDNN–

1. Features layer;

2. Density layer;

3. Conditional probability layer;

4. Prototype identification layer;

5. MegaClouds layer;

39

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.1: Using the transfer learning concept this architecture with the weights can
be used as feature extractor (the last fully connected layer is considered as a feature
vector). The quality of the features is extremely important on the final result provided
by xDNN. Adapted from (Simonyan and Zisserman, 2014).

Figure 3.2: xDNN training architecture. The MegaClouds layer is an optional layer
used to reduce the dimensionality of the prototypes layer and is not illustrated in this
diagram.

3.2.1.1 Features layer

The Feature Layer is in charge of extracting global features vector from images.
This layer be formed by the fully connected layer (FCL) of convolutional neural

40

Chapter 3. eXplainable-by-design Deep Learning

network approaches such as AlexNet (Krizhevsky et al., 2012), VGG–16 (Simonyan
and Zisserman, 2014) (see Fig. (3.1), Inception (Szegedy et al., 2015), residual neural
networks such as Resnet (He et al., 2016) or Inception-Resnet (Szegedy et al., 2017),
etc. Deep neural network approach allows automatic extraction of more abstract and
discriminative high-level features. The quality of the extracted features have direct
impact on the xDNN accuracy. Therefore, specific problems may require a dedicated
training for optimization of the features quality. More traditional ‘handcrafted’ methods
such as GIST (Solmaz et al., 2013) or HoG (Mizuno et al., 2012) can also form this
feature layer.

Let us denote the training data set of points by x = {x1, ..., xN} ∈ Rn with
corresponding class labels y1, ..., yC ∈ {1, ..., C}. Here, N is the number of training
data samples and n is their number of features (dimensionality); C is the number
of classes. xDNN starts by selecting a set of descriptive prototypes π ∈ P ⊂ X
for each class/per class, Mj is the total number of prototypes of class j; Mj = |Pj|;
M =

∑C
j=1Mj . Notice that Mj > 1 for ∀j, i.e. we usually consider more than a single

prototype per class.
Prototype-based approaches rely on the fact that they are explainable-by-design

(Wang et al., 2019a). Therefore, prototypes represent samples of the training data
which are easy for users to understand. So, any new data sample, x ∈ Rn can be
associated with the nearest prototype from the sets P1, P2, ..., PC ; P = P1∪P2∪ ...∪PC .

L(x) = argmin
x∈X

min
π∈P

d(x, π). (3.1)

3.2.1.2 Density layer

This layer is composed of neurons whose activation function represent the data density,
D, which defines the mutual proximity of the images in the data space defined by
the features from the previous layer, formed by a Cauchy function (Angelov and Gu,
2019):

D(x) =
1

1 + ||x−µ||2
||σ||2

, (3.2)

where D is the density, µ is the global mean, and σ is the variance.
In (ibid.) it was demonstrated theoretically that starting from the mutual proximity

of the data samples in the data space and using Euclidean (or Mahalanobis) type
distance D takes the form of a Cauchy function. Moreover, data density can be
updated recursively as detailed in (Angelov, 2012).

Density can also be updated online (ibid.):

41

Chapter 3. eXplainable-by-design Deep Learning

D(xi) =
1

1 + ||xi − µi||2 +
∑

i−||µi||2
. (3.3)

where i = 1, ..., N , µ and the scalar product,
∑

can be updated recursively as follows:

µi =
i− 1

i
µi−1 +

1

i
xi, (3.4)

∑
i

=
i− 1

i

∑
i−1

+
1

i
||xi||2

∑
1

= ||x1||2. (3.5)

The value of the data density, D represents the closeness to the mean and is in the
range 0 < D ≤ 1 for normalized values. It obtains its maximum (of 1) when x = µ. D
is indicative for the centrality of a data sample and its suitability to be a prototype
due to its proximity to other data samples.

Data samples (images) that are closer to the global mean have higher density
values. Therefore, the value of the data density indicates how strongly a particular
data sample is influenced by other data samples in the data space due to their mutual
proximity.

3.2.1.3 Conditional probability layer

The conditional probability can be estimated from the empirically observed data as
described in (Angelov and Gu, 2019). It is also called typicality τ . It is given by
eq. (3.6), where integral of

∫∞
−∞ p(C|x)dx = 1 is the same as the pdf (ibid.), but it is

multi-modal:

p(y|x) =

∑M
i=1NiD(x)∑M

i=1 Ni

∫∞
−∞D(x)dx

(3.6)

where Ni denotes the number of data samples associated with the i− th data cloud,∑C
i=1; Ni = N .
Notice that since p(C|x) is empirically derived (ibid.) it does not rely on any prior

assumption about the data distribution type or even about the random or deterministic
nature of the data.

3.2.1.4 Prototypes layer

The prototypes identification layer is the core of the proposed xDNN classifier.
Prototypes are independent from each other. Therefore, it is possible to change
the xDNN structure by adding or removing prototypes without influencing the other

42

Chapter 3. eXplainable-by-design Deep Learning

existing ones. In other words, the proposed xDNN is highly parallelizable and suitable
for self-evolving form of application where new prototypes may be added if required.

The proposed xDNN method is trained per class. So, it forms a set of prototypes
per class and all the calculations are done for each class separately. Prototypes are
the local peaks of the data density identified in the previous layer of the algorithm as
illustrated by Fig. (3.3).

Figure 3.3: Local peaks as identified prototypes.

The xDNN algorithm absorbs the new data samples by assigning them to the
nearest prototype:

j∗ = argmin
i=1,..,N ;j=1,..,M

||xi − πj||2 (3.7)

Fig. (3.4) illustrates the area of influence of the identified prototypes. These areas
around the identified prototypes are called data clouds (Angelov and Gu, 2019). Thus,
each prototype defines a data cloud.We call all data points associated with a prototype
data clouds, because their shape is not regular (e.g., hyper-spherical, hyper-ellipsoidal,
etc.) and the prototype is not necessarily the statistical and geometric mean , but
actual image (ibid.).

43

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.4: Identified prototypes – Voronoi Tesselation.

New prototypes are added to this layer when the following condition is met (Angelov
and Gu, 2019):

IF (D(x) ≥ max
j=1,..,M

D(πj))

OR (D(x) ≤ min
j=1,..,M

D(πj))

THEN (add a new data cloud (j ← j + 1))

(3.8)

3.2.1.5 Learning Procedure

xDNN learning mechanism is summarised below by the following pseudo-code. The
proposed method can work both, in a batch mode as well as on a per sample basis,
online.

xDNN: Learning Procedure

1: Read the first feature vector sample xi of class c;
2: Standardise and normalise the data as detailed in (Angelov and Soares, 2020b)
3: Set i← 1; j ← 1;π1 ← xi;µ← x1;N ← 1

44

Chapter 3. eXplainable-by-design Deep Learning

4: FOR i = 2, ...
5: Read xi;
6: Calculate D(xi) and D(πj) (j = 1, 2, ...,M) according to eq. (3.2);
7: IF eq. (3.8) holds
8: Create new prototype: j ← j + 1; πj ← xi;N ← N + 1
9: ELSE

10: Search for the nearest prototype according to eq. (3.7);
11: Update the nearest prototype as:

N ← N + 1;
πj ← Nj

Nj+1
πj +

Nj
Nj+1

xi;

12: END
13: END

3.2.1.6 MegaClouds layer

This is the final layer of the training architecture. Unlike the previous layers it is cross-
class. At this layer prototypes from all classes are put together and once this is done all
the adjacent data clouds that have the same class label are combined into mega-clouds,
see Fig. (3.5). Notice that the number of megaclouds, i = 1, 2, ...,MG is significantly
smaller than the number of prototypes, (MG << M) and the interpretability improves
significantly. Fig. (3.5) illustrates the formation of the MegaClouds.

Figure 3.5: MegaClouds – Voronoi Tesselation.

45

Chapter 3. eXplainable-by-design Deep Learning

3.2.2 xDNN Decision Structure

Architecture for the decision process of the proposed xDNN method is illustrated by
Fig. (3.6).

Figure 3.6: Architecture for the validation process of the proposed xDNN.

The validation process of xDNN is composed of the following layers:

1. Features layer;

2. Similarity layer (density);

3. Local decision-making.

4. Global decision-making.

Which is detailed described as following:

3.2.2.1 Features layer

Similarly to the features layer described in the training process.

46

Chapter 3. eXplainable-by-design Deep Learning

3.2.2.2 Similarity layer

This layer is responsible to calculate the similarly degree between the test sample and
the prototypes acquired during the training. Details of the similarity degree calculation
are given in the next sub-section.

3.2.2.3 Local decision making layer

The output of this layer is the degree of similarity, S between the unlabeled data
sample and the respective prototype. The decision making in xDNN can be represented
by a similar deep network architecture in which real images (prototypes) play a key
role and the similarity between any new data sample (image) of which the class is
to be determined and the prototypes with known class labels are being calculated
through a SoftMax-like eq. (3.9).

λ(Y = xi|πj) =
Sj∑M
j=1 Sj

, (3.9)

where,

Sj = S(xi, πj) =
1

1 +
||xi−πj ||2
||σj ||2

, (3.10)

where Y is the j − th test sample. S is the degree of similarity between the unlabeled
data sample and the respective prototype.

3.2.2.4 Global decision making layer

The global decision making is responsible to provide the label to the test sample which
is obtained by the following eq. (3.11):

label = argmax
c=1,2,...,C

(λ∗c), (3.11)

3.3 Experimental Data

The xDNN approach presented in this chapter is tested with different complex, and
well-known image classification benchmark datasets (Calltech-256, Calltech-101) as well
as with real-world challenging tasks as iRoads for driving scenario classification, and a
proprietary dataset of CT-scans for COVID-19 identification. Tabular datasets as the
COMPAS for recidivism risk prediction, and the Physionet heart sound classification
were also considered in the analysis.

47

Chapter 3. eXplainable-by-design Deep Learning

3.3.1 Caltech-256

Caletch-256 has 30,607 images divided into 257 object categories (one of which is
the background) (Griffin et al., 2007). Data was collected from Google Images and
manually screened. The minimum number of images per category is 80. Fig. (3.7)
illustrates the Caltech-256 dataset.

Figure 3.7: Samples of the Caltech-256 (Griffin et al., 2007).

3.3.2 Caltech-101

Caletch-101 is divided into 102 object categories (one of which is the background)
(Fei-Fei et al., 2004). For each object category, there are about 40 to 800 images,
while most classes have about 50 images. The resolution of the image is roughly about
300×200 pixels. The Caltech-101 dataset is highly unbalanced and is widely used as
benchmark data set. Fig (3.8) illustrates the Caltech-101 dataset.

3.3.3 iRoads dataset

The iROADS dataset (Rezaei and Terauchi, 2013) was considered in the analysis first.
The dataset contains 4,656 image frames recorded from moving vehicles on a diverse
set of road scenes as illustrated by Fig. (3.9), recorded in day, night, under various
weather and lighting conditions, as described below:

• Daylight - 903 images

• Night - 1050 images

48

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.8: Samples of the Caltech-101 (Griffin et al., 2007).

• Rainy day - 1049 images

• Rainy night - 431 images

• Snowy - 569 images

• Sun strokes - 307 images

• Tunnel - 347 images

The dataset is divided into 80% for training purposes and 20% for testing.

3.3.4 COVID CT-scan dataset

Recent findings have observed specific image patterns from computed tomography (CT)
for patients infected by SARS-CoV-2 which are distinct form other pulmonary disease.
For example, for patients diagnosed with COVID-19 the analysis revealed bilateral
lung opacities in 40 out of 41 (98%) chest CTs in infected patients in Wuhan and
described lobular and sub-segmental areas of consolidation as the most typical findings
(Ai et al., 2020). Other investigators found high rates of ground-glass opacities and
consolidation, sometimes with a rounded morphology and peripheral lung distribution
(Kong and Agarwal, 2020; Ng et al., 2020). Thoracic radiology evaluation is often
key to the evaluation of patients suspected of COVID-19 infection (Shi et al., 2020).
Prompt detection and diagnosis of the disease is invaluable in the efforts to ensure
timely treatment.

49

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.9: Samples of the iRoads dataset (Rezaei and Terauchi, 2013).

In this experiment we consider the COVID CT-scan dataset for Covid-19
identification. This dataset is composed of 2482 CT-scans slices, which is divided
between 1252 for patients infected by SARS-CoV-2, and 1230 CT-scans slices for
non-infected by SARS-CoV-2 patients, but who presented other pulmonary diseases
(Soares et al., 2021). Data was collected from March 15 to April 15 2020 in the
Public Hospital of the Government Employees of Sao Paulo - Brazil. The detailed
number of patients is illustrated by Table 3.1. Fig. (3.10) illustrates some examples of
CT-scans slices for patients infected and non-infected by SARS-CoV-2 that composes
the dataset.

Patients Infected non-Infected

Male 32 30
Female 28 30
Total 60 60

Table 3.1: This table demonstrates the number of patients considered to compose the
dataset. In this case, it was considered data of 60 patients infected by SARS-CoV-2,
out of which 32 were male and 28 were female. It was also considered data of 60
patients not infected by SARS-CoV-2, out of which 30 were male and 30 were female.

The inclusion criteria are listed as follows:

• Patients with a positive new coronavirus nucleic acid antibody and confirmed by
the RT-PCR test;

50

Chapter 3. eXplainable-by-design Deep Learning

• Patients who underwent thin-section CT;

• Age>= 18;

• Presence of lung infection in CT slices;

• Patients who were suspicious of having COVID-19, but tested negative for
SARS-CoV-2 nucleic acid antibody.

Figure 3.10: The figure illustrates the example of CT-scans slices for different patients
infected and non-infected by SARS-CoV-2. The first two columns refers to CT scans
slices of patients infected by SARS-CoV-2, and the two last columns refers to CT-scans
slices of patients non-infected by this virus.

It is important to highlight that chest CT should only be arranged for individuals
with certain clinical features in conjunction with RT-PCR tests.

3.3.4.1 Image acquisition parameters

The median duration from the onset of the illness to CT scan was 5 days, ranging
from 1 to 14 days. The CT protocol was as follows: 120 kV; automatic tube current

51

Chapter 3. eXplainable-by-design Deep Learning

(180 mA-400 mA); iterative reconstruction; 64 mm detector; rotation time, 0.35 sec;
slice thickness, 5 mm; collimation, 0.625 mm; pitch, 1.5; matrix, 512× 512; and breath
hold at full inspiration. The reconstruction kernel used is set as “lung smooth with
a thickness of 1 mm and an interval of 0.8 mm”. During reading, the lung window
(with window width 1200 HU and window level-600 HU) was used.

3.3.5 COMPAS dataset for Fairness

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
risk assessment tool, has been developed in 1998, and since then has been used to
assess more than 1 million offenders (Dressel and Farid, 2018).

In a study conducted by ProPublica (ibid.) that analyzed the efficacy of COMPAS
on more than 7000 individuals arrested in Broward County, Florida between 2013
and 2014 it was found that the likelihood of a non-recidivating black defendant being
assessed as high risk is nearly twice that of white defendants. African-american
defendants who did not recidivate were incorrectly predicted to reoffend at a rate of
44.9%. On the other hand, their white counterparts were incorrectly classified with
23.5%. Moreover, white defendants who recidivated were incorrectly predicted as not
high risk to reoffend with 47.7%, African-americans who recidivated were incorrectly
predicted as not high risk to reoffend with 28.0%. These findings indicate that the
COMPAS instrument has considerably higher false positive rates and lower false
negative rates for black defendants than for white defendants (ibid.).

3.3.6 Heart sound classification

The ‘PhysioNet’ dataset contains a total of 13015 samples of heart sound recordings,
lasting from 5 seconds to just over 120 seconds. Recordings were collected from
different locations on the body, including aortic area, pulmonic area, tricuspid area
and mitral area. The collected heart sound recordings were divided into two types:
normal and abnormal heart sound recordings. The normal recordings were from
healthy subjects and the abnormal ones were from patients with a confirmed cardiac
diagnosis. Fig. (3.11) illustrates the normal and abnormal heart sound over time,
while Fig. (3.12) shows the power spectrum over the normalized frequency for both
normal and abnormal heart sound conditions (Liu et al., 2016; PhysioToolkit, n.d.).
It is important to highlight that the ‘PhysioNet’ dataset is imbalanced as it contains
3158 samples of normal condition heart sounds and 9857 samples of abnormal sounds.

3.3.6.1 Pre-Processing of the heart sound dataset

The following types of features were extracted from the heart sound recordings:

52

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.11: Normal and abnormal heart sound over time. Where the blue line
represents the abnormal class, and the orange line refers to the normal class.

Figure 3.12: Power spectrum over the normalized frequency

• Statistical features: mean, median, and standard deviation.

• Signal processing features: dominant frequency, spectrum entropy, and Mel
Frequency Cepstral Coefficients (MFCC).

Dominant frequency refers to the most relevant frequency in the sound spectrum

53

Chapter 3. eXplainable-by-design Deep Learning

(Atienza et al., 2009). Spectrum entropy is defined as a measure of its spectral power
distribution, and it is based on the Shannon entropy (Sharma and Parey, 2016).
Spectrum entropy treats as a probability distribution the signal’s normalized power
distribution in the frequency domain. Then, it calculates the Shannon entropy of it,
see (Pan et al., 2009) for detailed proof for spectrum entropy.

Mel Frequency Cepstral Coefficients is a representation of the short-term power
spectrum of a sound, based on a linear cosine transform of a log power spectrum on a
nonlinear mel scale of frequency (Logan et al., 2000).

MFCCs are commonly derived as follows (ibid.):

• Divide the signals into frames

• Take the Fourier transform of each signal.

• Take the logs of the amplitude spectrum.

• Take the discrete cosine transform of the list of logs generated in the previous
step.

• The MFCCs feautres are the amplitudes of the resulting spectrum.

Therefore, 27 features extracted from the audio recordings signals are described in
Table 3.2.

Table 3.2: Features Summary

Features Quantity Type

Mean 1 Statistical
Median 1 Statistical

Standard Deviation 1 Statistical
Mean Absolute Deviation 1 Statistical

Quantile 25 1 Statistical
Quantile 75 1 Statistical
Signal IQR 1 Signal Processing

Sample Skewness 1 Statistical
Sample Kurtosis 1 Statistical
Signal Entropy 1 Signal Processing

Spectral Entropy 1 Signal Processing
Dominant Frequency Value 1 Signal Processing

Dominant Frequency Magnitude 1 Signal Processing
Dominant Frequency Ratio 1 Signal Processing

MFCC 13 Signal Processing

54

Chapter 3. eXplainable-by-design Deep Learning

3.4 Results and Analysis

Computational simulations were performed to assess the accuracy of the proposed
explainable deep learning method, xDNN against other state-of-the-art approaches.
All the experiments were conducted with Python 3.6 using a personal computer with
a 1.8 GHz Intel Core i5 processor, 8-GB RAM, and MacOS operating system. The
default parameters were used for the algorithms used in the comparisons.

3.4.1 Performance Evaluation

The following metrics were used to assess the algorithms used in the experiments
considered in this section:

Accuracy:

ACC(%) =
TP + TN

TP + FP + TN + FN
× 100, (3.12)

Precision:

Precision(%) =
TP

TP + FP
× 100, (3.13)

Recall:

Recall(%) =
TP

TP + FN
× 100, (3.14)

Specificity:

Specificity(%) =
TN

TN + FP
× 100, (3.15)

F1 Score:

F1 Score(%) = 2× Precision×Recall
Precision+Recall

× 100, (3.16)

where TP, FP, TN, FN denote true and false, negative and positive respectively.
The area under the curve, AUC, is defined through the TP rate and FN rate.

3.4.2 Caltech-256 and Caltech-101 Dataset

Results for Caltech-256 are presented in Table 3.3. Both Caltech-256 and Caltech-101
datasets were divided into 80% for training and 20% for testing of the algorithms. The
algorithms used for comparison are set to their default parameters.

55

Chapter 3. eXplainable-by-design Deep Learning

Table 3.3: Performance Comparasion: Caltech-256 Dataset

Method Accuracy Parameters

xDNN 75.41% 259
MSVM (Cao et al., 2019) 70.18% –
VGG–16 (He et al., 2016) 73.2% 138,000,000
VGG–19 (He et al., 2016) 70.62 % 138,000,000

ResNet–101 (Simonyan and Zisserman, 2014) 75.14 % 60,200,000
GoogleNet (Szegedy et al., 2015) 72.42 % 7,000,000

Softmax(7) (Zeiler and Fergus, 2014) 74.2% –

Results presented in Table 3.3 demonstrate that the xDNN approach can obtain
highly accurate results compared to state-of-the-art approaches for this complex
problem, it is important to highlight that we just compared the proposed approach
with DNNs that do not use any trick for image augmentation. The proposed approach
offers explainable models which can be visualized in terms of IF...THEN rules.
xDNN produced on average 3 MegaClouds per class (a total of 721) which are clearly
explainable. Rules have the following format:

IF (x ∼) OR (x ∼) OR (x ∼)
THEN ‘CD’

We also tested the proposed xDNN approach on the Caltech-101 dataset. Results
for the Caltech-101 dataset demonstrated on Table 3.4 showed that the proposed
approach could surpass other state-of-the-art approaches in terms of accuracy.

Table 3.4: Performance Comparison: Caltech-101 Data set

Method Accuracy Parameters

SPP-net (He et al., 2015) 91.44% 35,000,000
xDNN (Angelov and Soares, 2020b) 90.62% 259

VGG–VD–16 90.32% 138,000,000
KNN 85.65% 4572
DT 54.42% 102

56

Chapter 3. eXplainable-by-design Deep Learning

We compared the proposed xDNN approach with the best published single-label
classifiers methods and achieved better result. There are couple of alternative methods
that report higher results on Caltech problems, but they use additional information
such as the context (Leng et al., 2019) or multiple labels processes in order to enhance
the classification performance, include extra features (labels and descriptions) and this
makes the underlying problem different even if the name is still the same (Caltech-101
or Caltech-256). We believe that the comparison has to be in the same playing field
using the same amount of information and therefore, we do not report these methods.
Apart from them, to the best of our knowledge, there is no better result achieved on
Caltech data sets.

3.4.3 iRoads Dataset
The iRoads dataset was divided into 80% for training of the algorithms and 20% for
testing. Algorithms used for comparison use their default parameters and structure.
Table 3.5 shows that the xDNN method provides the best result in terms of classification
accuracy as well as time/complexity and simplicity of the model structure (number of
parameters/prototypes). The number of model parameters for xDNN (and DRB) is,
strictly speaking, zero, because the 2 parameters (mean, µ and standard deviation,
σ) per prototype (data cloud) are derived from the data and are not algorithmic
parameters or user-defined parameters. For kNN method one can argue that the
number of parameters is the number of data samples, N .

The explainable DNN surpasses in terms of accuracy the state-of-the-art VGG–16
algorithm which is a well-established convolutional deep neural network. Moreover,
the proposed xDNN has at its top layer a set of a very small number of MegaClouds
(27 or, on average, 4 MegaClouds per class) which makes it very easy to explain and
visualize. For comparison, our earlier version of deep rule-based models, called DRB
(Angelov and Gu, 2018a) also produced a high accuracy and was trained a bit faster,
but ended up with 521 prototypes (on average 75 prototypes per class) (Soares et al.,
2019a). With xDNN we do generate meaningful IF...THEN rules as well as generate
an analytical description of the typicality which is the empirically derived pdf in a
closed form which lends itself for further analysis and processing.

57

Chapter 3. eXplainable-by-design Deep Learning

Table 3.5: Performance Comparasion: iRoads Dataset

Method Accuracy Time(s) # Parameters

xDNN 99.59% 4.32 27
VGG–16 (He et al., 2016) 99.51 % 836.28 138,000,000

DRB (Angelov and Gu, 2019) 99.02% 2.95 521
SVM (Suykens et al., 1999) 94.17% 5.67 Not reported

KNN (Bishop, 2006) 93.49% 4.43 4656
Naive Bayes (Bishop, 2006) 88.35% 5.31 9313

MegaClouds generated by the proposed xDNN model can be visualized in terms of
rules as illustrated by the Fig. (3.13).

IF (I ∼) OR

(I ∼) OR

OR (I ∼)
THEN ‘Daylight scene’

Figure 3.13: xDNN rule generated for the ‘Daylight scene’.

58

Chapter 3. eXplainable-by-design Deep Learning

3.4.4 COVID-19 identification

This subsection illustrates the results obtained by the xDNN for COVID-19
classification via CT-scan. The dataset was divided into 80% for training and 20%
for testing purposes. The division has been made in terms of patients; therefore,
we separated data of 96 patients for training and data for 24 patients for testing.
Algorithms used in this comparison use their default parameters and structure. Results
presented in Table 3.6 compare the performance of the xDNN algorithm with other
state-of-the-art approaches, including traditional (black-box) deep neural network,
Decision Tree, and AdaBoost.

XXXXXXXXXXXXMethod
Metric

Accuracy Precision Recall Specificity F1 Score AUC

xDNN 97.38% 99.16% 95.53% 96.42% 97.31% 97.36%
ResNet 94.96% 93.00% 97.15% 94.36% 95.03% 94.98%

GoogleNet 91.73% 90.20% 93.50% 90.17% 91.82% 91.79%
VGG-16 94.96% 94.02% 95.43% 94.51% 94.97% 94.96%
AlexNet 93.75% 94.98% 92.28% 92.32% 93.61% 93.68%

Decision Tree 79.44% 76.81% 83.13% 77.16% 79.84% 79.51%
AdaBoost 95.16% 93.63% 96.71% 94.98% 95.14% 95.19%

Table 3.6: Results considering different methods for the COVID-19 identification

The xDNN classifier provided better results in terms of all metrics than the
other state-of-the-art approaches, including ResNet, GoogleNet, VGG-16, and Alexnet.
Moreover, it also provided highly interpretable results that may be helpful for specialists
(medical doctors).

Rules generated by the identified prototypes for COVID and Non-COVID patients
are illustrated by Figs. (3.14) and (3.15), respectively. xDNN identified data of 18
patients with COVID-19 as prototypes and data of 11 patients non-infected
as prototypes. The training time for the xDNN algorithm was only 11.82 seconds for
all images (an average of 5 milliseconds per image. On the other hand, the traditional
deep learning approach may take hours for the same task and usually requires hardware
accelerators such as GPUs and once trained is not flexible to new data. We have to
stress that xDNN does not require full re-training if new data is presented- it keeps all
prototypes identified so far and may add new if the data pattern requires that.

Balanced one-way ANalysis Of VAriance (ANOVA) (McHugh, 2011) was used to
compare the results in terms of accuracy provided by the classification methods. The
null hypothesis is that the accuracy results provided by the methods are the same. A
cutoff value p less than 0.05 suggests that the accuracy of at least one of the algorithms

59

Chapter 3. eXplainable-by-design Deep Learning

is significantly different from the others. A p = 4.38e− 22 was obtained and, therefore,
the mean accuracy of the algorithms are not all the same; the null hypothesis was
rejected.

The Tukey Honestly Significant Difference (HSD) test (McHugh, 2011) was
performed to compare pairs of classifiers. Table 3.7 shows the results of the Tuckey
HSD test for a 95% confidence interval for the true difference of the means.

Method 1 Method 2 meandiff p-adj lower upper Reject
xDNN Resnet -2.28 0.068 -4.6604 0.1004 False
xDNN GoogleNet -5.6583 0.001 -8.0387 -3.278 True
xDNN Vgg16 -2.385 0.0493 -4.7654 -0.0046 True
xDNN Alexnet -3.7567 0.001 -6.137 -1.3763 True
xDNN DT -17.8783 0.001 -20.2587 -15.498 True
xDNN Adaboost -2.0583 0.1272 -4.4387 0.322 False
Resnet GoogleNet -3.3783 0.0015 -5.7587 -0.998 True
Resnet Vgg16 -0.105 0.9 -2.4854 2.2754 False
Resnet Alexnet -1.4767 0.4709 -3.857 0.9037 False
Resnet DT -15.5983 0.001 -17.9787 -13.218 True
Resnet Adaboost 0.2217 0.9 -2.1587 2.602 False

GoogleNet Vgg16 3.2733 0.0023 0.893 5.6537 True
GoogleNet Alexnet 1.9017 0.1912 -0.4787 4.282 False
GoogleNet DT -12.22 0.001 -14.6004 -9.8396 True
GoogleNet Adaboost 3.6 0.001 1.2196 5.9804 True

Vgg16 Alexnet -1.3717 0.5491 -3.752 1.0087 False
Vgg16 DT -15.4933 0.001 -17.8737 -13.113 True
Vgg16 Adaboost 0.3267 0.9 -2.0537 2.707 False

Alexnet DT -14.1217 0.001 -16.502 -11.7413 True
Alexnet Adaboost 1.6983 0.3061 -0.682 4.0787 False

DT Adaboost 15.82 0.001 13.4396 18.2004 True

Table 3.7: Tukey Test Results

If the p−adj < 0.05 than the null hypothesis is rejected and the difference between
the methods are statistically significant. As shown in Table 3.7 the proposed xDNN
has results statistically different from 4 traditional approaches, including well known
deep learning approaches as GoogleNet, VGG-16, and AlexNet.

Through the xDNN method we generated (extracted form the data) linguistic
IF...THEN rules which involve actual images of both cases (COVID-19 and NO
COVID-19) as illustrated in Figs. (3.14) and (3.15). Such transparent rules can be
used in a clear decision-making process for early diagnostics for COVID-19 infection.

60

Chapter 3. eXplainable-by-design Deep Learning

Rapid detection with high sensitivity of viral infection may allow better control of the
viral spread. Early diagnosis of COVID-19 is crucial for the disease treatment and
control.

Figure 3.14: Final rule given by xDNN classifier for the COVID-19 identification.
Differently from typical deep neural networks, xDNN provides highly interpretable
rules which can be visualised and used by human experts for the early evaluation of
patients suspected of COVID-19 infection. The classification is done based on the
similarity of the unlabeled CT scan slice to the identified prototypes.

Figure 3.15: Non-SARS-CoV-2 final rule given by the proposed eXplainable Deep
Learning classifier.

The xDNN classifier demonstrated the best results in terms of performance than
other state-of-the-art approaches, presenting an F1 score of 97.31% for the best
case. Moreover, it also provides explanations in the form of IF...THEN rules using
actual images of CT-scans with and without COVID-19. This is of great importance
for medical specialists to understand and diagnose COVID-19 at early stages via

61

Chapter 3. eXplainable-by-design Deep Learning

computed tomography. In summary, the advantages of the proposed method include:
i)high precision as compared with the top state-of-the-art algorithms; ii) high level of
explainability (prototype-based, rule-based, visualisation using actual images); iii) no
user- or problem- specific algorithmic meta parameters required.

3.4.5 Results for COMPAS dataset

The dataset used in this analysis contains a COMPAS recidivism risk decile scores, 2-
year recidivism outcomes, and a number of demographic and crime-related variables on
individuals who were scored in 2013 and 2014. The results obtained in this experiment
are compared with the overall accuracy and groups accuracy with results provided by
(Dressel and Farid, 2018). We also compare results on false positives (a defendant is
predicted to recidivate but they do not) and false negatives (a defendant is predicted
to not recidivate but they do). In this case, 80% of dataset was used for training and
20 % for testing of the algorithm.

In Table 3.8, LR7 refers to logistic regression with 7 features, LR2 is the logistic
regression with 2 features, and NL-SVM refers to nonlinear SVM as defined by (ibid.).

As shown in Table 3.8, xDNN obtained a better performance in terms of overall
accuracy than its competitors. Moreover, it is important to highlight that xDNN
works per class, in parallel, therefore, it can obtain a more balanced result than other
state-of-the-art approaches. As shown in Table 3.8, xDNN reduced the false positive
rate for black people from 31.6% (best case with NL-SVM) to 30.2%, additionally, the
false negative rate, when a defendant is predicted to not recidivate but they do, for
white population has decreased from 46.1% in the best scenario with LR2 to 29.6%.

Table 3.8: Experimental results

Results LR7 LR2 NL-SVM COMPAS xDNN
Accuracy (overall) 66.6% 66.8% 65.2% 65.4% 67.7%
Accuracy (black) 66.7% 66.7% 64.3% 63.8% 67.90%
Accuracy (white) 66.0% 66.4% 65.3% 67.0% 68.5%

False positive (black) 42.9% 45.6% 31.6% 44.8% 30.2%
False positive (white) 25.3% 25.3% 20.5% 23.5% 36.8%
False negative (black) 24.2% 21.6% 39.6% 28.0% 34.1%
False negative (white) 47.3% 46.1% 56.6% 47.7% 29.6%

The proposed approach is prototype-based and it learns locally around the
prototypes extracting the empirical data distribution called typicality (Angelov and
Gu, 2019) as well as the data density.

62

Chapter 3. eXplainable-by-design Deep Learning

The rule-based characteristic of the proposed method allows interpretability and
explainability of the data. The prototypes identified for the ‘Two year recidivism for
black people’ rule are demonstrated on Table 3.9.

Table 3.9: Identified Prototypes for the ‘Two year recidivism for black people’ rule

Features π1 π2 π3 π4 π5 π6 π7 π8 π9

Number of Priors (NP) 14 13 8 8 10 7 2 0 21
Score Factor (SF) 1 1 0 1 0 1 0 0 1

Age above 45 (A45) 0 1 0 0 0 0 0 0 0
Age below 25 (A25) 0 0 0 0 0 0 0 1 0

African American (AA) 1 1 1 1 0 1 1 1 1
Female (F) 0 0 0 0 1 1 1 0 0

Misdemeanor (M) 0 0 0 1 0 0 1 1 0

Therefore, xDNN allows interpretability in terms of rule as follows:

R: IF (

NP
SF
A45
A25
AA
F
M

∼

14
1
0
0
1
0
0

) OR (

NP
SF
A45
A25
AA
F
M

∼

13
1
1
0
1
0
0

) OR...OR (

NP
SF
A45
A25
AA
F
M

∼

21
1
0
0
1
0
0

)

THEN ‘Two year recidivism’

The parallel training and prototype nature of the xDNN approach favours fairer
results than traditional approaches that use only an averaging of the history of the
data, and may ignore relevant information about individuals. In contrast, the proposed
approach works locally building multiple models that have higher chance to capture
more diverse data distribution.

3.4.6 Results for Heart sound classification

To evaluate the performance of the considered methods the following indexes are
considered: sensitivity (Se), specificity (Sp), and overall score (MAcc). These metrics
are the same considered in the Physionet competition in which this dataset was
obtained (Liu et al., 2016; PhysioToolkit, n.d.).

These indexes are calculated as:

63

Chapter 3. eXplainable-by-design Deep Learning

Se =
TP

TP + FN
, (3.17)

Sp =
TN

TN + FP
, (3.18)

MAcc =
Se+ Sp

2
. (3.19)

where TP, FP, TN, FN denote true and false, negative and positive respectively.
Sensitivity is considered as an indicator of the classifier’s ability to discover the

true class. Specificity is considered as a index of the classifier’s ability to define other
classes. The overall score (MAcc) is given by the mean of sensitivity and specificity
indexes.

The receiver operating characteristic (ROC) method is also considered in the
analysis. As the ROC method is insensitive to both changes in class distribution and
proportion of samples per class it provides a convenient way to evaluate the quality of
evolving classifiers in nonstationary environment (Fawcett, 2006).

The ‘PhisioNet’ dataset was divided into 70% for training and 30% for testing
purposes (as in the Physionet competition). Algorithms used during the experiments
are with their default parameters and structure.

Table 3.10 summarizes the results obtained by xDNN and its competitors
considering the ‘Classification of Normal/Abnormal Heart Sound Recordings’ dataset
provided by Phisionet. Were considered 27 features inputs in the data space in order
to determine if the patient heart sound is classified as normal or abnormal.

64

Chapter 3. eXplainable-by-design Deep Learning

Table 3.10: Performance Comparasion: Heart sound classification

Method Se Sp MAcc

xDNN 0.9082 0.9526 0.9304
ALMMo-0 (Soares et al., 2020b) 0.7930 0.9430 0.8680

AdaBoost & CNN (Potes et al., 2016) 0.9424 0.7781 0.8602
Ensemble of SVMs (Zabihi et al., 2016) 0.8691 0.8490 0.8590

Regularized Neural Network (Kay and Agarwal, 2016) 0.8743 0.8297 0.8520
MFCCs, Wavelets,

Tensors & KNN (Bobillo, 2016)
0.8639 0.8269 0.8454

Random Forest + LogitBoost (Homsi et al., 2016) 0.8848 0.8048 0.8448
Ensemble of neural networks (Zabihi et al., 2016) 0.8982 0.9253 0.9117

Deep Structured Features (Rubin et al., 2016) 0.8450 0.8690 0.8380
Matrix norm sparse coding +

20 time-domain features (Whitaker et al., 2017)
0.8867 0.8816 0.8841

Table 3.10 shows that xDNN could obtain better results in terms of Sp and MAcc
than its competitors, including ALMMo-0. The AdaBoost & CNN could obtain a
better performance in terms of sensitity, in other words, it had a better ability to
discover the true class. However, xDNN showed a better performance in terms of
specificity (classifier’s ability to define other classes), due to its prototype-based nature.
Moreover, it had the second best result in terms of sensitivity. Therefore, the proposed
approach could obtain the best result in terms of overall score (MAcc). Fig. (3.16)
illustrates the overall accuracy performance of the best considered approaches.

The area under the ROC curves confirms that xDNN is able to work efficiently
in this classification problem, no matter if the distribution is changed to any other
distribution or if the dataset is imbalanced. The area above the xDNN ROC curve
refers in part to 5.81% of classification error with different assigned labels.

Thanks to its prototype-based nature, medical doctors can easily identify abnormal
heart sounds by comparing a patient’s sample with the identified prototypes from
abnormal samples by xDNN.

Rules generated by the xDNN model provide a very intuitive representation for
specialists. Moreover, each of the AnYa type fuzzy rules can be interpreted as a
number of simpler fuzzy rules with single prototype connected by ‘OR’ operators. The
transparent process provided by the xDNN model supports understandability of the
system, differing from other machine learning approaches, which are called ‘black box’,
since they hide (due to its nature) from users all the insights used to generate the final
resulting structure.

Rule for the Normal class in xDNN top layer can be written as following:

65

Chapter 3. eXplainable-by-design Deep Learning

Figure 3.16: Overall accuracy performance of the best considered approaches

Figure 3.17: ROC analysis for heart sound classification using xDNN

The prototypes identified for the ‘Normal heart sound’ rule are demonstrated on
Table 3.11.

In short, experiments have shown that xDNN is an efficient framework for heart
sound classification tasks. Classification accuracies were higher than those produced by

66

Chapter 3. eXplainable-by-design Deep Learning

IF (x ∼ π1
1) OR (x∼ π2

1) OR (x∼ π3
1) OR ... OR (x∼ π20

1)
THEN ‘Normal heart sound’

Table 3.11: Identified Prototypes for the ‘Normal heart sound’ rule

Features π1
1 π2

1 π3
1 π20

1

f1 -2.7121e-05 1.5511e-04 -8.0804e-05 -5.4135e-05
f2 1.5259e-04 0.0013 0 -1.2207e-04
f3 0.0203 0.0795 0.0167 0.0096
f4 0.0123 0.0441 0.0099 0.0057
f5 -0.0084 -0.0220 -0.0067 -0.0034
f6 0.0082 0.0237 0.0063 0.0030
f7 0.0166 0.0457 0.0130 0.0064
f8 1.4484 -0.4713 0.0276 0.2136
f9 21.1471 15.7475 22.7916 15.4637
f10 -2.7659 -1.5085 -2.9793 -3.5261
f11 0.2868 0.3124 0.4749 0.3184
f12 17.0982 41.0357 35.6619 21.0064
f13 0.0669 0.0439 0.0278 0.0633
f14 0.2244 0.2951 0.1133 0.2680
f15 88.1961 100.0686 92.9163 87.5767
f16 7.3405 2.4487 4.5780 5.2651
f17 6.4674 7.0189 -2.6415 -4.2657
f18 -0.0512 1.3058 -1.1482 6.2212
f19 -2.5149 -2.9223 -3.8693 4.6041
f20 -3.1430 -2.3074 -6.2024 -4.0199
f21 -1.9638 0.8658 -6.2406 -7.7832
f22 -0.1132 -4.5618 -3.1221 -3.3297
f23 -0.2849 -5.7582 0.8459 -0.3391
f24 1.6218 0.9306 -0.6360 -0.1036
f25 -0.5334 -3.0779 -0.6840 -2.0954
f26 -1.6926 -2.3390 1.9931 -3.0208
f27 -2.0239 -0.8391 0.6190 -0.9700

state-of-the-art approaches considered for this problem not only identifying the major
class but also the minor class (which is more important in this case). Differently from
the state-of-the-art approaches which are ‘black box’, the proposed method produced
transparent linguistic fuzzy rules, which are human interpretable, and helpful for
specialists to make a full diagnosis about the patient situation.

67

Chapter 3. eXplainable-by-design Deep Learning

3.5 Conclusion

In this chapter a new explainable-by-design method is presented. The explainable
deep neural network (xDNN), directly addresses the bottlenecks of the traditional
deep learning approaches and offers an explainable internal architecture. The xDNN
approach requires very little computational resources (no need for GPUs) and short
training times. xDNN is prototype-based approach where prototypes are actual training
data samples (images), which have local peaks of the empirical data distribution called
typicality as well as of the data density. This generative model is identified in a closed
form and equates to the pdf but is derived automatically and entirely from the training
data with no user- or problem-specific thresholds, parameters or intervention. The
proposed xDNN offers a new deep learning architecture that combines reasoning and
learning in a synergy. Results have demonstrated that xDNN is able to produce great
result on different challenging tasks, even surpassing state-of-the-art competitors as
deep learning approaches, moreover, it also presents a transparent view of its decision
structure mechanism.

68

Chapter 4

Deep Machine Reasoning

Traditional DNNs have as decision mechanism a flat en bloc “winner takes all” function
which is also the last layer of the network. In xDNN, this popular decision concept is
also applied.

Differently from traditional decision mechanisms, in this chapter, the Deep Machine
reasoning (DMR) approach is introduced. DMR uses a multi-layer decision tree
mechanism formed by pairwise comparison of top two classes in terms of minimum
error in training. As consequence, the resulting Voronoi tessellation regions of the data
clouds that are formed around each prototype (local zones of influence) are significantly
different when binary decisions are made.

Furthermore, the DMR approach is also equipped with a mechanism for classes
balancing through synthetic data (Gu et al., 2020a).The DMR synthesises data around
prototypes which makes these synthetic data more likely to have the same class as the
prototype. It starts by identifying a population of pairwise neighbouring data samples
from minority classes around prototypes. Then, it imposes a Gaussian disturbance
on these data samples, and, finally, it generates synthetic samples by creating linear
interpolations between these extrapolations. The training dataset is then augmented
through this synthetically generated data.

4.1 DMR Architecture

The architecture of the DMR approach is represented by 2 different steps (training
and validation) as detailed in Figs. (4.1) and (4.2). The training phase is performed
per class (except the last layer) and includes the following layers:

69

Chapter 4. Deep Machine Reasoning

Figure 4.1: DMR Architecture during the training phase (STDAM stands for Synthetic
Training Data Augmentation Mechanism).

70

Chapter 4. Deep Machine Reasoning

4.1.1 Input (features) layer

This is the first layer which defines the data space. The number of inputs is determined
by the nature of the problem that the data describe. In many problems these are
clearly known physical or biomedical variables, e.g. velocities, pressure, temperature,
etc. In image processing problems traditionally size, shape of objects or HoG (Mizuno
et al., 2012) were used as well as more abstract methods like GIST (Solmaz et al.,
2013). More recently, convolutional neural networks (CNN) like AlexNet (Krizhevsky
et al., 2012), VGG–VD–16 (Simonyan and Zisserman, 2014), Inception (Szegedy et al.,
2015), ResNet (He et al., 2016), Inception–Resnet (Szegedy et al., 2017) have proven
to be very efficient to encode images and represent them as a highly abstract vector of
the outputs from the Fully Connected Layer (FCL). The proposed DMR architecture
is agnostic to the source of the features vector that the input layer represents. It can
be any of the above.

4.1.2 Data density layer

The density layer defines the mutual proximity of the images in the data space defined
by the features from the previous layer. The data density, if use Euclidean form of
distance, has a Cauchy form (Angelov and Gu, 2019) as shows the eq. 4.1:

D(x) =
1

1 + ||x−µ||2
||σ||2

, (4.1)

where D is the density, µ is the global mean, and σ is the variance.
Data density, D represents the proximity of a data sample to the mean. If the data

is normalized the range o the density will be in the range 0 < D ≤ 1 where D = 1
when x = µ.

4.1.3 Conditional probability layer

The conditional probability or typicality τ , is estimated from the empirically observed
data (eq.4.2) and its integral

∫∞
−∞ p(C|x)dx = 1 is likely a multi-modal form of pdf

(ibid.):

p(y|x) =

∑M
i=1NiD(x)∑M

i=1 Ni

∫∞
−∞D(x)dx

(4.2)

where Ni is the number of support of the i− th data cloud,
∑C

i=1; Ni = N .

71

Chapter 4. Deep Machine Reasoning

4.1.4 Prototypes layer

The prototypes layer is the core of the DMR approach as it provides clear explanations
models which can be represented in form of IF...THEN rules. Prototypes, π, are the
local peaks of the data density. The proposed DMR algorithm absorbs the new data
samples by assigning them to the nearest prototype:

j∗ = argmin
i=1,..,N ;j=1,..,M

|xi − πj| (4.3)

Therefore, each prototype is considered a cloud of data that it represents.
Prototypes are independent from each other. Therefore, the resulting model’s structure
is flexible and can be changed (add or remove prototypes) without influencing the
existing prototypes. As illustrated by Fig. (4.1), DMR network is trained per class,
resulting in a set of prototypes per class. New prototypes are added when the following
condition is satisfied (Angelov and Gu, 2019):

IF (D(x) ≥ max
j=1,..,M

D(πj))

OR (D(x) ≤ min
j=1,..,M

D(πj))

THEN (add a new data cloud (j ← j + 1))

(4.4)

If that is the case, then the vector of features of the current training data sample
becomes a new prototype, πj+1 forms a new data cloud (Angelov and Soares, 2020b).

4.1.5 Synthetic data augmentation

This mechanism is not a separate layer, but a feedback process that gets information
from the prototypes layer, augments the training data set (in the form of synthetically
added features vectors close to the existing prototypes) and expands the size of
the prototypes layer by balancing the amount of prototypes per class. This is an
augmentation of the amounts of training data (by augmenting N to N + ∆ made
by feeding back the information from the prototypes layer. As a result, the size of
the prototypes layer is expanded (by δ) so that the number of prototypes per class is
being balanced. This is visualised in Fig. (4.1) where the red solid rectangle includes
the black dotted one (original prototypes) but also adds prototypes which result from
adding synthetic training data.

4.1.6 MegaClouds layer

In the MegaCloudslayer the clouds (Voronoi tesselation regions) formed by the
prototypes in the previous layer are merged if the neighbouring prototypes have

72

Chapter 4. Deep Machine Reasoning

the same class label.

4.2 Learning Procedure

The learning of DMR is summarised below by the following pseudo-code. The proposed
architecture is feed-forward with the exception of the synthetic data augmentation
mechanism which feeds back form the prototype layer back to the input layer. The
proposed method can work both, in a batch mode as well as on a per sample basis,
online.

DMR: Learning Procedure

1: Read the first feature vector sample xi of class c;
2: Standardise and normalise the data as detailed in (Angelov and Gu, 2019)
3: Set i← 1; j ← 1;π1 ← xi;µ← x1;N ← 1
4: FOR i = 2, ...
5: Read xi;
6: Calculate D(xi) and D(πj) (j = 1, 2, ...,M) according to eq. (4.1);
7: IF eq. (4.4) holds
8: Create new prototype: j ← j + 1; πj ← xi;N ← N + 1
9: ELSE

10: Search for the nearest prototype according to eq. (4.3);
11: Update the nearest prototype as:

N ← N + 1;
πj ← Nj

Nj+1
πj +

Nj
Nj+1

xi;

12: Balance the number of prototypes through synthetic data augmentation
mechanism detailed below;

13: END
14: END

Synthetic Data Generation

1: FOR j = 1,2,...,C DO
2: Calculate the amount of synthetic data samples needed to balance the pair of

classes j and j + 1: δ = Mj −Mj+1.
3: UNTIL δ = 0 DO
4: k = 1
5: Randomly select a pair of neighbouring data samples (pk, qk)

∗ from the 0.3σ
zone around the prototype from the minority class;

6: Apply Gaussian disturbance to (pk, qk)
∗ by eq. (4.5) and obtain (p̂k, q̂k)

∗

73

Chapter 4. Deep Machine Reasoning

(Freudenberg et al., 2010);

(p̂k, q̂k)
∗ = (pk + gp, qk + gq)

∗
k (4.5)

where gp = [gp,1, gp,2, ..., gp,R]T and Gq = [gq,1, gq,2, ..., gq,R]T are two R dimensional
randomly generated vectors sampled from the Gaussian distributions, gp,l, gq,l ∼
N(0, σ)(l = 1, 2, ..., R) with σ being the standard deviation.

7: Create random interpolation ρk between (p̂k, q̂k)
∗ as follows (Gu et al., 2020a):

ρk = αTk p̂k + (1− αk)T q̂k (4.6)

where αk = [αk,1, αk,2, ..., αk,R]T is a R dimensional random vector, elements of
which follows the uniform distribution within the range [0,1].

8: k ← k + 1
9: END UNTIL

10: END FOR

4.3 Multi-layer Decision Structure

The multi-layer decision architecture of DMR (see Fig. (4.2)) is formed by the following
layers which are described in the next subsections.

4.3.1 Input (features) layer

The first layer is exact the same as in the training phase.

4.3.2 Ranked prototypes layer

In this layer, all the prototypes are rank ordered in terms of minimum error during
the training. Then, the base is organized in terms of overlapping pairs: DMR starts
with the top two prototypes (providing smaller error) and then the pair of the second
best and the third; further on, the pair of the third and the forth, etc. In this way, all
prototypes take part twice except the best one and the worst one, see Fig. (4.2). The
output of this layer is the degree of similarity, S between the unlabeled data sample
and the respective prototype. The activation functions of the neurons of this layer are
defined as follows:

Sj = S(xi, πj) =
1

1 +
||xi−πj ||2
||σj ||2

, (4.7)

74

Chapter 4. Deep Machine Reasoning

Figure 4.2: Multi-layer decision-making process of the DMR approach.

where j = 1, 2, ...,M ; i = 1, 2, ..., N . It is easy to see that for similarity we use the
same Cauchy function as the data density, eq. (4.1).

4.3.3 Maximum similarity layer

Each neuron of this layer is performing a simple max operation over the pair of
similarity values that are coming form the previous layer, namely:

S∗j,j−1 = max(Sj−1, Sj) (4.8)

The winner goes forward.

4.3.4 Pair-wise confidence checks layer

In this layer we check if the confidence in the best of the two potential outcomes is
high enough. In this research thesis a threshold, Thr=0.9, which means 90% similarity
of the new, unlabeled data sample to any prototype is used. The neurons of this layer

75

Chapter 4. Deep Machine Reasoning

are linked between each other forming a competitive layer. This link is activated if
the confidence check fails (see Fig. 4.2). The flow of the information to the next layer
is conditional on the outcome from the confidence check. First, the top two pairs of
prototypes are checked. If the winner surpasses Thr it is the winner. Otherwise, the
flow goes down to the next pair (in the same layer of the network, the key Fig. 4.2 is
closed) and so on.

IF (min(S∗j,j−1, S
∗
j−1,j−2) ≥ Thr) THEN (Pair − wise winners layer)

ELSE (Continue the tree)

4.3.5 Pair-wise winners layer

Pair-wise decisions are made to determine the winning prototype form the candidate
pair (S∗j−1, S

∗
j), which passed the confidence check in the proceeding layer.

Label = argmax(S∗j,j−1, S
∗
j−1,j−2) (4.9)

4.4 Numerical Experiments

The DMR approach is evaluated using several complex, well-known image classification
benchmark data sets (Faces-1999, Caltech-101, and Caltech-256). Description of the
datasets used for the experiments are given below:

4.4.1 Faces-1999

The Faces-1999 data set (Weber and Weber, 1999) contains 450 frontal real faces
images from 27 different people. This data set is highly unbalanced. The resolution of
the images are 896 x 592 pixels. Fig. (4.3) illustrates the Faces-1999 dataset.

4.4.2 Caltech-101

The Caltech-101 data set (Griffin et al., 2007) contains 9144 images in divided into
102 categories(one background). The Caltech-101 dataset is highly unbalanced and
is widely used as benchmark data set. The Caltech-101 dataset has about 40 to 800
images per category, where most classes have about 50 images. As described in the
Chapter 3 of this thesis.

76

Chapter 4. Deep Machine Reasoning

Figure 4.3: Samples of the Faces-1999 dataset (Weber and Weber, 1999).

4.4.3 Caltech-256

Caletch-256 has 30,607 images divided into 257 object categories (one of which is the
background) (Griffin et al., 2007). It extends the Caltech-101 dataset adding more
categories to it, which makes it more complex to classify. Similar to description for
the Caltech-256 datatset presented in the Chapter 3 of this thesis.

4.5 Performance Evaluation

The performance of the classification methods is usually evaluated based on their
accuracy metric which is defined as follows:

ACC(%) =
TP + TN

TP + FP + TN + FN
, (4.10)

where TP, FP, TN, FN denote true and false, negative and positive, respectively.
All the experiments were conducted with MATLAB 2018a using a personal computer

with a 1.8 GHz Intel Core i5 processor, 8-GB RAM, and MacOS operating system.
The classification experiments were executed using training/testing (80% to 20%)
sample sets. Default parameters were used for the competitors algorithms.

4.6 Results and Analysis

Computational simulations were performed to assess the accuracy of the proposed
explainable tree-based deep learning method (DMR), against other state-of-the-art
approaches.

77

Chapter 4. Deep Machine Reasoning

4.6.1 Faces Data set
Table 4.1 shows that the proposed DMR method provides the best result in terms of
classification accuracy than its state-of-the-art competitors. In this experiment, we
considered a VGG–VD–16 pre-trained on ImageNet; a SVM model with RBF kernel
and decision function of shape “one-vs-rest”; a KNN classifier with k = 5; and a
Decision Tree (DT) with Gini impurity to measure the quality of a split and “log loss”
and “entropy” both for the Shannon information gain, nodes are expanded until all
leaves are pure or until all leaves contain less than 2 samples.

The number of model parameters for DMR (and xDNN) is, strictly speaking,
zero, because the 2 parameters (mean, µ and standard deviation, σ) per prototype
(data cloud) are derived from the data and are not algorithmic parameters or user-
defined parameters. However, the tree-based structure of the proposed DMR and the
mechanism for balancing the classes allow the result to surpass all others. The propose
deep reasoning through a layered pair-wise DT is exploiting and benefiting from the
old principle of divide et impera.

Table 4.1: Performance Comparison: Faces-1999 Data set

Method Accuracy Parameters/Support

DMR 96.71 % 39
VGG–VD–16 96.32% 138,000,000

xDNN 96.15% 42
SVM 95.51% 281
KNN 88.54% 225
DT 61.53% 27

4.6.2 Caltech-101 Data set
Table 4.2 shows the results considering the challenging Caltech-101 data set. It is
possible to note through Table 4.2 that the proposed DMR method provides the
best result in terms of classification accuracy. The proposed Caltech-101 is hugely
unbalanced, and the inner data augmentation mechanism of the proposed DMR
method favour the balance of the data, consequently, it improves the final classification
result. Moreover, the intelligent tree-based structure of the proposed method allows
interpretability and also favours the improvement in the classification accuracy of the
given model.

The proposed explainable tree-based DNN surpasses in terms of accuracy the
state-of-the-art VGG–VD–16 algorithm which is a well-established convolutional deep
neural network. Moreover, it could also surpass other state-of-art approaches.

78

Chapter 4. Deep Machine Reasoning

Table 4.2: Performance Comparison: Caltech-101 Data set

Method Accuracy Parameters/Support

DMR 94.31% 241
SPP-net (He et al., 2015) 91.44% 35,000,000

xDNN (Angelov and Soares, 2020b) 90.62% 259
VGG–VD–16 90.32% 138,000,000

KNN 85.65% 4572
DT 54.42% 102

4.6.3 Caltech-256 Data set

Results for Caltech-256 are presented in Table 4.3. Linear SVM and Softmax are
trained on features from different layers (as indicated in brackets) from the convnet.
Higher layers generally produce more discriminative features, for more details see
(Zeiler and Fergus, 2014).

Table 4.3: Performance Comparison: Caltech-256 Data set

Method Accuracy Parameters

DMR 77.54% 562
xDNN (Angelov and Soares, 2020b) 75.41% 596
SVM(1) (Zeiler and Fergus, 2014) 24.6 % –
SVM(2) (Zeiler and Fergus, 2014) 39.6% –
SVM(3) (Zeiler and Fergus, 2014) 46.0% –
SVM(4) (Zeiler and Fergus, 2014) 51.3% –
SVM(5) (Zeiler and Fergus, 2014) 65.6% –
SVM(7) (Zeiler and Fergus, 2014) 71.7% –

Softmax(5)(Zeiler and Fergus, 2014) 65.7% –
Softmax(7) (Zeiler and Fergus, 2014) 74.2% –

These results demonstrate that the proposed DMR approach obtains the best
classification accuracy ever reported for this complex problem, namely, 77.54%. The
proposed approach not only surpasses all published competitors but also offers a clearly
explainable model.

79

Chapter 4. Deep Machine Reasoning

IF (Image ∼) OR (Image ∼)OR

... OR (Image ∼) THEN ”Mountain Bike”

DMR even surpasses the recently introduced by us xDNN approach (Angelov and
Soares, 2020b), which reported the world best result on 5 December 2019 for this
classification problem.

4.7 Conclusion

This chapter presents a prototype-based explainable DNN with DT inference and
balanced amount of prototypes per class regardless of the possible imbalances of the
training data. The proposed method offers two main novelties, namely: i) using a DT
to determine the winning class label, and ii) balancing the classes by synthesising data
around the prototypes determined from the available training data. It demonstrates
excellent performance surpassing three well known benchmark problems (Caltech-
101, Caltech-256 and Faces-1999). The proposed approach is explainable-by-design,
computationally efficient (no need for GPUs, high degree of parallelization possible,
no iterative search procedures and parameter optimisation). Furthermore, results
demonstrated that DMR approach could surpass xDNN on the different classification
tasks which demonstrates the efficiency of the novelties presented. It is a step
towards bringing closer machine learning and automated reasoning into what we
call deep machine reasoning aiming not only high levels of accuracy but also deeper
understanding and insight about the decision process of the machine learning algorithm.

80

Chapter 5

Explaining Deep Learning Through
Rules

This chapter introduces a new explainable approach to redesign a Deep Reinforcement
Learning (DRL) model into a set of IF...THEN rules. The DRL model provides the
path planning policy for highway self-driving (Nageshrao et al., 2019). The DRL model
maps the set of continuous state variables characterizing the position and velocities of
the ego vehicle (EV) and the surrounding vehicles on a divided highway into a set of
discrete actions in longitudinal and lateral direction.

State variables include meaningful affordance indicators of the road situation such
as the longitudinal and lateral position and velocity of the host vehicle and relative
longitudinal and lateral positions and velocities of the surrounding vehicles. The output
of the model is a set of eight possible decisions/actions in longitudinal (maintain,
accelerate, brake, and hard brake) and lateral (lane keep, change lane to right, and
change lane to left) directions - Fig. (5.1).

The main idea is to provide an approximation of the DRL model with an alternative
interpretable model with a similar performance. Therefore, the proposed approach is
based on the following premises: i) the universal approximation ability of the rule-based
models with fuzzy predicates; ii) the better interpretability of the prototype-based
fuzzy rules (including visualization).

A density-based method for selecting the most important inputs and a two-stage
hierarchical approach to group the adjacent prototypes in the data space is introduced.
These two novel techniques allow us to reduce the number of prototypes needed and
improve the explainability. This is achieved both linguistically as a set of hierarchical
IF...THEN rules and through visualisation.

81

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.1: Example of host (ego) and surrounding vehicles on a highway, where the
host vehicle is represented by the center vehicle (yellow car). The forwards arrows
indicate the possible directions which the ego vehicle can move. The backwards arrow
indicates the brake maneuver.

5.1 General Architecture

Let T = {(xk, ak)}Nk=1 be training data set with xk ∈ Rn denoting the state vector
and ak ∈ {1, ..., A} denoting the action vector for each k ∈ {1, ..., N}. The layered
architecture (Fig. (5.2)) can be seen as a mapping, f : Rn → RA; n is the number
of inputs; A is the number of actions; i is the specific data sample/point k; N is the
number of training data samples. Separate learning cycles are introduced for each
action. Therefore, the data set is split into A sub-sets.

The learning process starts with analyzing the mutual proximity of the data
(Angelov and Gu, 2019). As a result, a small number of prototypes are being selected
which are actual data samples that are most representative locally (local peaks of data
density). When prototypes are being formed only data samples that correspond to
the same action are being considered. When prototypes that correspond to different
actions are being put together in the data space a further level of analysis is being
made, namely merging adjacent (in the data space) prototypes that correspond to
the same action together forming so-called “MegaClouds”. The MegaClouds can be
visualized and also represented by IF...THEN rules. The general architecture of the
proposed approach is given in Fig. (5.2).

As a result, we compose A parallel IF...THEN rules, each of which corresponds to
one of the A actions and has the following form:

82

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.2: General structure of the proposed approach. aDRL refers to the DRL
output. The comparison between a and aDLR is used to determine the accuracy of the
proposed method.

Rl : IF (x ∼ π1
l) OR (x ∼ π2

l) OR ... OR (x ∼ πPll)

THEN (action l)
(5.1)

where πjl (j ∈ {1, ..., πl}) is the jth prototype of the lth action; Pl is the number of
identified prototypes that represent the lth action.

The identified prototypes are connected with logical “OR” (implemented as a
t−conorm). Each of the conditions within the IF...THEN rules are fuzzy rules on
their own but all of them have the same consequent pointing to the same action.

5.1.1 Learning rules from the data

The proposed method learns the prototypes associated with each action in separated
steps. Therefore, the dataset is split during the training into sub-sets.

As each IF...THEN rule is identified separately for each action, unless specifically
declared otherwise, all the mathematical notations in the algorithm consider the lth

action by default and the index l is omitted for clarity.

83

Chapter 5. Explaining Deep Learning Through Rules

5.1.1.1 Pre-processing

Standardize the newly observed data sample, x. Standardization is performed on a
per input basis:

x̄i =
xi − µ(xi)

σ(xi)
(5.2)

where x(i) denotes the standardized value of the i-th input of the data sample; µ(xi)
denotes the mean of the i-th input and σ(xi) denotes the standard deviation of the
i-th input; µ ∈ Rn denotes the vector of the mean values and σ ∈ Rn denotes the
vector of the standard deviations.

Following the standardization the data is being normalized converting it to the
range [0, 1]. Unity-based normalization of the i-th input is given by (Hastie et al.,
2009):

x̄i =
xi −min(xi)

max(xi)−min(xi)
(5.3)

where x̄i denotes the normalized values of the i-th input.

5.1.1.2 Parameters definition

The algorithm parameters are initialized as soon as the first data sample, x̄1, arrives
to the system:

µ1 ← x̄1; P ← 1; π1 ← x̄1

C1 ← {x̄1}; S1 ← 1;
(5.4)

Parameters include: i) mean, µ, initialized with the first normalized data point;
ii) the number of prototypes being set to 1; iii) the prototype, π initialized with the
first data sample; iv) initialize the first so-called data cloud, C1 as a set of data points
that are associated with the first prototype (Angelov, 2012). v) support, S, of the
data cloud defined as the number of data points associated with a certain data cloud
(Angelov and Gu, 2019).

Based on this initialization define the first IF...THEN rule for the given (l-th
action) as follows:

Rl : IF (x ∼ π1
l) THEN (action l) (5.5)

84

Chapter 5. Explaining Deep Learning Through Rules

5.1.1.3 Data density calculation

Calculate the data density at the current data point, x̄; as in Eq. (5.6).

D(x̄) =
1

1 + ||x̄−µ||2
||σ||2

; (5.6)

where D is the data density, and σN denotes the standard deviation. x = {x̄, ..., x̄N} ∈
Rn where N is the number of training data samples.

In this step we also identify the prototype πj
∗

that is nearest to x̄:

j∗ = argmin
j∈{1,...,P}

{||x̄− πj||2} (5.7)

Then, using the density and the distance to the nearest prototype, πj, we check
the following condition (Angelov and Gu, 2019) based on which we determine if the
current data point is going to be added to the set of prototypes or not.

IF (D(x̄) ≥ max
j∈{1,...,P}

(D(πj)))

OR (D(x̄k) ≤ min
j∈{1,...,P}

(D(πj)))

THEN (add a new data cloud)

(5.8)

where D(πj) is density of the nearest prototype, πj.

5.1.1.4 Prototype update

New data cloud is added if the condition 5.8 is met:

P ← P + 1; CP ← {x̄};
πP ← x̄; SP ← 1;

(5.9)

Otherwise, if the condition 5.8 is not satisfied, the nearest data cloud parameters
are updated as:

Cj∗ ← Cj∗ + {x̄};

πj
∗ ← Sj

∗

Sj∗ + 1
πj

∗
+

Sj
∗

Sj∗ + 1
x̄;

Sj
∗ ← Sj

∗
+ 1;

(5.10)

85

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.3: Hierarchical structure - MegaClouds, where mM is the mean of the M -th
MegaCloud associated with the lth action

5.1.1.5 Rule update

The IF...THEN rule, Rlis updated with the identified prototypes:

Rl : IF (x ∼ π1
l) OR (x ∼ π2

l) OR ...OR (x ∼ πPl)

THEN (action l)
(5.11)

5.1.2 Hierarchical organisation of the prototypes

Prototypes are organized in a hierarchical manner (Fig. (5.3)). At the bottom layer
of the hierarchical architecture is the raw data set. In the layer above it is the set of
prototypes (which are selected data points/samples). Each of the prototypes is a focal
point in the data space forming data clouds, see Fig. (5.4) shaping the so-called Voronoi
tessellation (Du et al., 1999). Since the prototypes are defined in isolation (per action)
once they are put together in the data space quite often data clouds that correspond to
the same action (describing IF...THEN rules with the same consequent) are adjacent.
This allows us to merge these data clouds and, respectively fuzzy IF...THEN rules
into so-called “MegaClouds” which have the same consequent (THEN part) and,
respectively correspond to the same action. In this way, we minimise the amount of
IF...THEN rules and improve the interpretablity of the model. We illustrate this in
Fig. (5.3).

The membership function (MF) to a MegaCloud is formed as a Minkowski type
kernel (Lee-Kwang et al., 1994). λ is the parameter of the kernel such that λ ∈
(−∞,∞). We found experimentally that order of λ=6 gives best results in terms
of accuracy. This can be explained with the fact that the higher the order of λ
the more narrow the local Cauchy-type function becomes and less its generalization.

86

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.4: MegaClouds visualization in terms of Voronoi Tesselation

However, the lower the order of λ is the less accurate it is as it starts to blur with the
neighbouring functions that are centred at other prototypes:

MF (x̄) =

 1

P

P∑
j=1

(
1

1 + ||x̄−πj ||2
||σ2||

)λ
 1

λ

(5.12)

where MF is the degree of membership of the data point, x̄ to the MegaCloud.
The membership function is multi-modal: each of its peaks is located at one of

the prototypes, defined by a Cauchy-type function as described in Eq. 5.6 One can
see that the prototypes, identified earlier, pi are the parameters of the MF. One can,
however, find new parameters of the MegaClouds - the most obvious choice is the mean
of each MegaCloud (since these Voronoi tessellation areas are adjacent by definition

they form a larger area, see Fig. (5.4)), where mM is the mean,
∑P

j=1
πj

P
, of the M -th

MegaCloud associated with the lth action; m ∈ Rn.
The IF...THEN rules over the MegaClouds have the same form, but the key

difference is that the number of conditions linked with T-conorm/disjunction (logical
OR) are much less. They have the following format:

Rl : IF (x ∼ m1
l) OR ...OR (x ∼ mM

l)

THEN (action l)
(5.13)

87

Chapter 5. Explaining Deep Learning Through Rules

where mM is the mean,
∑P

j=1
πj

P
, of the M -th MegaCloud associated with the lth action;

m ∈ Rn.

5.1.3 Density-Based Input Selection

Inputs ranking and selection is a technique to reduce the dimensionality of a problem.
A subset of relevant or more descriptive inputs facilitates model interpretation, and
can produce better results due to the elimination of inputs that may confound the
uncovering of patterns, trends, and relationships.

The contribution of each input using the density of data is estimated per input:

D(x̄i) =
1

1 + ||xi−µi||2
(σi)2

(5.14)

where D(x̄i) denotes the density for i-th input of x̄i; (i ∈ {1, ..., n}).
The cumulative effect across all data samples for each input can be obtained

according to the Eq. (5.15).

Λi = ΣN
j=1D(x̄i). (5.15)

The cumulative contribution for each input Λi can be ranked. The higher the value
of Λi is for a particular input, the more descriptive and important is the i-th input
(Soares et al., 2019b). The idea is that interesting inputs have higher density than
other inputs - meaning that it conveys unique, different clean information, and as
consequence it contributes more to the rule-based model result because the overlap
between data clouds of different actions is less pronounced in these inputs. Less
descriptive inputs are left one by one based on its Λi score until reduction in accuracy
performance is noted. This sensitivity selection is helpful to reduce computational
complexity which is an advantage especially in online implementation.

5.2 Ford Dataset

The dataset used for learning the rule-based approximation was generated by simulating
the DRL model described in (Nageshrao et al., 2019). It contains 256960 instances
described by 20 different inputs as described by Table 5.1. The data set is divided
into 8 different actions, each action represent a different state of the ego vehicle. The
description of the actions are given below:

• Action 1 (Maintain): 217494 samples

88

Chapter 5. Explaining Deep Learning Through Rules

• Action 2 (Accelerate by +2m/s2): 12706 samples

• Action 3 (Brake by −2m/s2): 6033 samples

• Action 4 (Hard brake by −4m/s2): 4530 samples

• Action 5 (Lane change to left): 8078 samples

• Action 6 (Lane change left and also brake by −2m/s2): 213 samples

• Action 7 (Lane change right): 7704 samples

• Action 8 (Lane change right and also brake by −2m/s2): 102 samples

Figure 5.5: Data Distribution in terms of different maneuvers/actions by the ego
vehicle, showing the clearly data imbalance nature of the the data set.

The dataset provided by Ford Motor Co. was obtained by a simulating DRL model
representing driving policy of a self-driving vehicle in diverse traffic conditions. More
details can be found in (Nageshrao et al., 2019).

The data set was divided into 80% for training and 20% for validation purposes as
usual for such tasks (Dobbin and Simon, 2011). It is important to highlight that the
analyzed dataset is imbalanced as illustrated in Fig. (5.5).

89

Chapter 5. Explaining Deep Learning Through Rules

Table 5.1: Description of the inputs

Inputs Description

1 Ego lateral position
2 Relative velocity between ego and center vehicles
3 Front left vehicle position longitudinal
4 Front left vehicle velocity
5 Front left vehicle lateral position
6 Front center vehicle position longitudinal
7 Front center vehicle velocity
8 Front center vehicle lateral position
9 Front right vehicle position longitudinal
10 Front right vehicle velocity
11 Front right vehicle lateral position
12 Rear left vehicle position longitudinal
13 Rear left vehicle velocity
14 Rear left vehicle lateral position
15 Rear center vehicle position longitudinal
16 Rear center vehicle velocity
17 Rear center vehicle lateral position
18 Rear right vehicle position longitudinal
19 Rear right vehicle velocity
20 Rear right vehicle lateral position

5.3 Performance Evaluation

In order to evaluate the performance of the proposed method the accuracy index is
considered. Accuracy is defined as follows:

ACC(%) =
TP + TN

TP + FP + TN + FN
, (5.16)

where TP, FP, TN, FN denote true and false, negative and positive respectively.
All the experiments were conducted with MATLAB 2018a using a personal computer

with a 1.8 GHz Intel Core i5 processor, 8-GB RAM, and MacOS operating system.
The experiments were executed using 80% of the data for training and 20% of the data
for testing. The following methods were used for comparison: K-nearest Neighbors
(KNN) (Cunningham and Delany, 2007), Naive Bayes (NB) (Rish et al., 2001), Support
Vector Machine (SVM) (Suykens et al., 1999), Decision Tree (Safavian and Landgrebe,
1991), Random Forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and
Catboost (Prokhorenkova et al., 2018). Parameters for XGBoost and CatBoost were

90

Chapter 5. Explaining Deep Learning Through Rules

optmized through Auto-sklearn hyper-parameter optimization (Feurer et al., 2015).
For the other state-of-the-art approaches we consider the default parameters according
to their references.

5.4 Results and Analysis

Computational simulations were performed to assess the accuracy of the explainable
rule-based approach combined with the sensitivity selection method. Table 5.2
summarizes the results obtained by the proposed method considering different number
of inputs.

91

Chapter 5. Explaining Deep Learning Through Rules

T
ab

le
5.

2:
P

er
fo

rm
an

ce
C

om
p
ar

is
on

fo
r

d
iff

er
en

t
ac

ti
on

s
an

d
n
u
m

b
er

of
in

p
u
ts

X
X
X

X
X

X
X
X

X
X
X

#
In

p
u

ts
1

A
cc

A
ct

io
n

1
A

ct
io

n
2

A
ct

io
n

3
A

ct
io

n
4

A
ct

io
n

5
A

ct
io

n
6

A
ct

io
n

7
A

ct
io

n
8

O
v
e
ra

ll

20
98

.4
6%

85
.0

3%
75

.5
2%

49
.4

6%
80

.1
6%

66
.6

6%
92

.9
6%

5
0
.0

%
9
4
.5

4
%

10
98

.7
5%

88
.0

2%
83

.0
6%

91
.3

4%
9
1
.7

2
%

72
.7

2%
96

.8
5%

3
8
.0

9
%

9
7
.4

1
%

7
9
9
.8

%
9
3
.3

%
9
8
.5

%
9
4
.3

%
90

.0
2%

9
2
.7

%
9
5
.4

%
6
6
.7

%
9
8
.9

4
%

5
98

.7
1%

83
.9

7%
81

.6
6%

78
.0

6%
87

.9
1%

80
.0

0%
95

.8
4%

7
6
.4

7
%

9
6
.7

5
%

3
98

.3
6%

84
.4

3%
77

.9
2%

39
.9

2%
78

.9
8%

81
.0

8%
93

.0
6%

6
6
.6

7
%

9
4
.8

9
%

92

Chapter 5. Explaining Deep Learning Through Rules

T
ab

le
5.

3:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

fo
r

d
iff

er
en

t
ac

ti
on

s
w

it
h

7
in

p
u
ts

w
it

h
th

e
h
ig

h
es

t
d
en

si
ty

X
X

X
X

X
X
X

X
X

X
X

M
et

h
o
d

A
cc
u
ra
cy

A
ct

io
n

1
A

ct
io

n
2

A
ct

io
n

3
A

ct
io

n
4

A
ct

io
n

5
A

ct
io

n
6

A
ct

io
n

7
A

ct
io

n
8

O
v
e
ra

ll

p
ro

p
os

ed
9
9
.8

%
9
3
.3

%
9
8
.5

%
94

.3
%

90
.0

2%
92

.7
%

95
.4

%
6
6
.7

%
9
8
.9

4
%

p
ro

p
os

ed
(M

eg
a
C
lo
u
d
s)

99
.3

4%
89

.8
2%

82
.9

%
81

.4
5%

92
.7

6%
72

.0
%

9
7
.3

1
%

7
2
.7

2
%

9
7
.8

8
%

S
V

M
88

.6
5%

53
.6

%
0%

0%
1
0
0
.0

%
1
0
0
.0

%
74

.7
%

0
%

8
7
.0

8
%

K
N

N
97

.3
4%

83
.1

%
85

.6
%

84
.7

%
72

.6
%

1
0
0
.0

%
90

.2
%

7
0
.0

0
%

9
5
.2

3
%

D
ec

is
io

n
T

re
e

98
.8

2%
88

.1
6%

83
.4

%
82

.2
6%

93
.3

6%
82

.9
2%

92
.4

5%
7
0
.0

0
%

9
7
.0

2
%

A
d

ab
o
os

t
94

.3
%

72
.9

%
88

.0
%

97
.9

%
87

.9
%

0%
86

.0
%

0
%

9
2
.9

5
%

D
is

cr
im

in
an

t
an

al
y
si

s
91

.0
%

42
.3

%
33

.9
%

0%
36

.6
%

32
.8

%
38

.6
%

1
0
.3

%
8
5
.4

3
%

R
an

d
om

F
or

es
t

99
.4

%
90

.2
%

88
.6

%
9
8
.1

%
94

.2
%

75
.2

%
86

.0
%

7
5
.4

%
9
8
.3

1
%

X
G

B
o
os

t
99

.2
%

84
.5

%
86

.9
%

87
.3

%
89

.9
%

32
.8

%
89

.4
%

0
%

9
7
.1

2
%

C
at

B
o
os

t
93

.2
%

78
.7

%
90

.1
%

92
.2

%
88

.2
%

52
.3

%
87

.1
%

0
%

9
1
.4

5
%

93

Chapter 5. Explaining Deep Learning Through Rules

Table 5.2 shows that, in general, the proposed autonomous method tends to be
more accurate when the data space is reduced as we remove inputs with the lowest
densities. Because of the parallel nature of the rule-based method, the sensitivity
selection is able to work per action. Therefore, the proposed density-based input
selection is able to create an individualized subset of inputs per action.

Table 5.4: Description of the 7 inputs with higher densities

Inputs Description

Rv Relative velocity between Ego and center vehicles
dFL Front left vehicle position longitudinal
V FL Front left vehicle velocity
dFC Front center vehicle position longitudinal
dFR Front right vehicle position longitudinal
V FR Front right vehicle velocity
dBC Rear center vehicle position longitudinal

Table 5.3, shows that, for the best scenario with 7 inputs (Table 5.4 and Fig. (5.6)
details the 7 inputs with higher densities for action 1, similar trend happened with
all the actions). The proposed autonomous method reached the best result in terms
of overall accuracy compared to the other state-of-the-art methods. The rule-based
method outperformed the other state-of-the-art approaches in terms of accuracy for 5
out of 8 actions. It is also possible to note through Table 5.3 that the SVM, Adaboost,
Discriminant analysis, XGBoost, and CatBoost were not able to detect some of the
actions, mainly actions 6 and 8 where the respective accuracy was 0%. Actions 6 and
8, refer to rare maneuvers during the driving simulation, are extremely difficult to
recognise due the highly imbalanced data set, as illustrated in Fig. (5.5).

When all available information is considered as model’s inputs it may cause
overfitting, and then be prejudicial to the model’s accuracy. Therefore, when the
proposed density-based input selection method creates individualized subset of the
most descriptive inputs per action it helps to overcome the dimensionality problem.
For example, the overall accuracy of the proposed recommendation system increases
from 94.54% to 98.94% using one third of the original dimensions of the input space,
moreover, accuracy per action is also improved. Therefore, one can note that when a
self-driving car needs to take an action such as “Lane change right and also brake by
−2m/s2” a different subset of inputs will have more impact than when a self-driving
car needs to “Lane change left and also brake by −2m/s2” as different maneuvers
require different set of actions by the driver/agent.

Fig. (5.7) illustrates the confusion matrix for the best scenario. It is notable
from the confusion matrix that even though the data set is imbalanced, the proposed

94

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.6: Accumulated density histogram, density bars above the dotted line denote
the top seven density inputs.

method is able to correctly identify uniformly all the actions.

Figure 5.7: Confusion matrix for the best scenario (7 inputs)

Fig. (5.8) illustrates how the performance is affected as the data space is reduced

95

Chapter 5. Explaining Deep Learning Through Rules

with the removal of inputs with the lowest densities. One can see from Fig. (5.8) that
the sensitivity selection helps to improve the computational complexity by reducing
the number of inputs (less calculations are required due to the O (log n) nature of the
proposed approach).

Figure 5.8: Computational complexity vs Overall performance

Besides the improvement in terms of accuracy, the hierarchical method contributed
to improving interpretability of the proposed approach. It allowed to infer a meaningful
approximation of the DRL model and enabled quick evaluation of its performance for
specific use cases. Table 5.5 details the number of prototypes produced by the proposed
recommendation system considering different layers and 7 inputs (best scenario).

96

Chapter 5. Explaining Deep Learning Through Rules

T
ab

le
5.

5:
N

u
m

b
er

of
id

en
ti

fi
ed

p
ro

to
ty

p
es

p
er

A
ct

io
n

fo
r

d
iff

er
en

t
h
ie

ra
rc

h
ic

al
la

ye
rs

`
`
`

`
`

`
`
`

`
`
`

`
`̀

L
ay

er
#

P
ro

to
ty

p
es

A
ct

io
n

1
A

ct
io

n
2

A
ct

io
n

3
A

ct
io

n
4

A
ct

io
n

5
A

ct
io

n
6

A
ct

io
n

7
A

ct
io

n
8

T
o
ta

l

B
ot

to
m

L
ay

er
13

15
10

09
48

2
36

0
64

9
17

60
7

4
4
4
4
3

M
eg
a
C
lo
u
d
s

13
14

8
10

15
6

11
4

8
1

97

Chapter 5. Explaining Deep Learning Through Rules

Generated trapezoidal fuzzy rules for the MegaClouds layer (highly abstract layer)
can be illustrated in terms of inputs as illustrated by Fig. (5.9). It also can be
visualized in terms of rules per prototype as given by Fig. (5.10).

1Inputs with the highest density

98

Chapter 5. Explaining Deep Learning Through Rules

IF (Rv ∼)

AND (dFL ∼)

AND (V FL ∼)

AND (dFC ∼)

AND (dFR ∼)

AND (V FR ∼)

AND (dBC ∼)
THEN ‘Lane change left and also brake by −2m/s2’

Figure 5.9: Trapezoidal rule per feature for ‘Lane change left and also brake by
−2m/s2’ (Action 6)

99

Chapter 5. Explaining Deep Learning Through Rules

IF (x ∼) OR

(x ∼) OR

(x ∼) OR ... OR

(x ∼)
THEN ”Maintain”

Figure 5.10: Visual interpretation of trapezoidal rule for ”Maintain” (Action 1), where
the watermarked cars represent the soft trapezoidal fuzzy boundaries and the solid
cars denotes the limits of the MegaClouds. Rv denotes the relative velocity between
EV and center vehicle, and V denotes the velocities for the front left and front right
vehicles, both Rv and V are in m/s

Fig. (5.11) illustrates the actions given by the proposed method along the time.
This is helpful to analyse the driving behavior and sequence of events by specialists.

100

Chapter 5. Explaining Deep Learning Through Rules

Figure 5.11: Action vs time. The red ellipsoid indicates the wrongly predicted action
given by the proposed approach

In general, experiments have shown that the proposed explainable method is an
efficient framework for this challenging task. Results showed advantages (98.94%)
compared to similar methods for addressing the approximation task. Moreover, the
proposed method in its top layer also produced transparent linguistic fuzzy rules,
which are human interpretable. In addition, the hierarchical architecture allows to
reduce the rule antecedents and to simplify the structure of the rule-based models.

5.5 Conclusion

In this chapter, a novel explainable rule-based machine learning model that can be
used to approximate the decisions policy of a DRL agent is presented. The model is
composed of a 0-order fuzzy rules. A new hierarchical mechanism to significantly reduce
the number of generated fuzzy rules is also presented. In this case, adjacent (in the
data space) prototypes which correspond to the same action are grouped and merged
into so-called ”MegaClouds”. The method helped to improve the interpretability of the
generated models. Moreover, it is also presented an input selection method based on
ranking the density per input dimension in the data space contributed to improve the
accuracy of the models as it creates individualized subsets of inputs per action, taking
advantage of the parallel characteristic of the explainable self-organizing method.

101

Chapter 6

Detecting and Learning from
Unknown

This chapter introduces a method and algorithm that departs from the traditional
approach and offers a paradigm shift bringing the machine learning, in general,
and pattern recognition and classification, in particular, extremely close to a fully
unsupervised form. In a nutshell, it offers a self-learning locally generative models that
work together and require extremely light supervision in the form of few data samples.
It is able to automatically detect the unknown and to learn from it. This is in sharp
contrast to the traditional approach where learning is, in essence, only an averaging of
the history. The current approaches struggle to detect changes, dynamical evolution
or appearance of new classes.

Methods like eClass (Angelov et al., 2008), FLEXFISClass (Lughofer, 2008) and
other similar ones are called “evolving” classifiers. They are designed to take into
account new coming data samples. However, when talking about new classes (rather
than just new data samples) class label is required which means, that these methods are
supervised learning methods. The proposed method is unsupervised in regards to the
new data that represent a new class. There are also unsupervised evolving algorithms
for clustering (Bezerra et al., 2016), but these methods do not deal with classification
as the method proposed here. Another type of methods that claim to approach similar
problems are the so-called zero-shot learning (ZSL) methods. They have an objective
to transfer a learnt model to unknown classes without the acquisition of new features.
However, the main problem with this type of technique is the dependence on additional
information to relate unknown classes to previously trained models. Not always such
information is available or possible to acquire (Lampert et al., 2009). In this respect,
the ZSL approach is not unsupervised in terms of the new class and not a direct
comparator.

The main challenges that the method, namely xClass, introduced in this chapter

102

Chapter 6. Detecting and Learning from Unknown

addresses are: i) to detect when a certain unlabeled (new) data sample is not from
a class that was used in training, i.e. to have class label “Unknown” or “New”; ii)
to learn from such new unlabeled data in an unsupervised manner. The proposed
approach to address the first issue is based on the drop of the density that represent
the confidence in a decision. The proposed approach to the second issue is by learning
from the data for which the class is “New”. The proposed approach further selects
prototypes out of the data samples of the “New” class according to their density in
the same way as for the other/known classes. Because, the learning in the proposed
approach is per class, all new data from a “New” class are analysed separately from
the data from the known classes.

6.1 Concept and Basic Algorithm

The xClass pipeline includes the following steps:
1)Pre-processing, which includes different substeps like normalization and

standardization, dealing with missing data, and feature selection (Kotsiantis et al.,
2006). Specifically for image processing there are often other stages, such as rotation,
augmentation, scaling, elastic deformation, etc (Ross, 2016). Even deep learning
methods which claims to avoid handcrafting apply some of the cited steps.

2)Learning phase, which can be offline, when the full dataset is available; or it can
be done online, when the data arrive in the form of a data stream (sample-by-sample).
Evolving learning, ability of the algorithms to adapt their parameters and structure
according to the non-stationary data streams, is a more sophisticated form of online
learning (Angelov et al., 2010; Škrjanc et al., 2019).

3)Generating outputs for new unseen data, which is the validation phase.
Different algorithms use different strategies in order to validate the model generated
in the learning phase.

6.1.1 Pre-processing

The proposed method also starts with a pre-processing step which involves mostly
the same steps depending on the specific problem. For example, for image processing
we may also apply scaling, augmentation, rotation, etc. Practically for all problems
normalization and standardization is required.

The proposed xClass method uses standardization and normalization as follows:
Firstly, it standardize the newly observed data sample, x.

x̂i =
xi − µ(x)i
σ(x)i

(6.1)

103

Chapter 6. Detecting and Learning from Unknown

where x̂ denotes the standardized data sample. Outliers (|x̂| ≥ 3) are ignored and not
used for training. After that, the data is rescaled within the range [0, 1] to consider
them in the same proportion. It is important to highlight that in the proposed
xClass method, the normalization is done upon the standardized data. Unity-based
normalization of the i-th element of the j-th sample is given by:

x̄i =
x̂i −min(x̂i)

max(x̂i)−min(x̂i)
(6.2)

where x̄ denotes the normalized data sample.

6.1.2 Parameters initialization

The prototype-based learning is the core of the proposed method which represents local
focal points (the prototypes are focal points of locally valid generative models described
by multimodal Cauchy distribution (Angelov and Gu, 2019)). The meta-parameters
are initialized with the first observed data sample. The proposed algorithm works per
class; therefore, all the calculations are done for each class separately.

P ← 1; µ← x̄i; (6.3)

where µ denotes the global mean of data samples of the given class. P is the number
of the identified prototypes in total from the observed data samples.

Each class C is initialized by the first data sample of that class:

C1 ← {x̄1}; π1 ← x̄1;

S1 ← 1;
(6.4)

where, π1 is the prototype of C1; S1 is the corresponding support (number of members).

6.1.3 Density Estimation

D(x̄i) =
1

1 +
||x̄−πj ||2
||σi||2

(6.5)

where πj (j = 1, 2, ..., P) is the set of prototypes, and σi is the standard deviation.
The data density also represents the degree of similarity between a given data sample,
xi and a prototype, πj. Further, it can also be considered to represent the degree of
confidence of associating a data sample, xi with the prototype πj (and labelling with
the same label).

104

Chapter 6. Detecting and Learning from Unknown

The reason it is Cauchy is not arbitrary (Angelov and Soares, 2020b). It can be
demonstrated theoretically that if Euclidean or Mahalanobis type of distances in the
feature space are considered, the data density reduces to Cauchy type as referred in
equation (6.5). It can also be demonstrated that the so called typicality, τ , which is
the weighted average of the data density, D, with weights representing the frequency
of occurrence of a data sample (Angelov and Gu, 2019). Furthermore, the typicality, τ
can be considered an empirically derived form of the pdf having the same properties,
notably, it integrates to 1 an infinite range.

Density per feature f is obtained according to the equation (6.5), where Df denotes
the density for f -th feature of the x̄ sample.

The cumulative effect across all data samples per feature can be obtained according
to the equation (6.6).

Λf
i =

ΣN
i=1D

f
i (x̄fi)

N
. (6.6)

The cumulative contribution for each feature Λf
i can be rank ordered, n represents

the number of samples. The higher, the value of Λf
i is for a particular feature, the

more important is the f -th feature. The rationale is that an interesting feature has
higher density than other features - meaning that it conveys unique, different clear
information, and, as a consequence, it contributes more to the classifier’s result because
the overlap between data of different classes is less pronounced for this feature.

Then the algorithm absorbs the new data samples one by one assigning them to
the nearest (in the feature space) prototype:

n∗ = argmin
j=1,2,...,P

(||x̄i − πj||2) (6.7)

Because of this form of assignment, the shape of the data partitioning is of the so-
called Voronoi tesselation type (Okabe et al., 2009). We call all data points associated
with a prototype data clouds, because their shape is not regular (e.g., hyper-spherical,
hyper-ellipsoidal, etc.) and the prototype is not necessarily the statistical and geometric
mean (Angelov and Gu, 2019).

6.1.4 Parameters Update

In case, the following condition (ibid.) is satisfied:

IF (Di(x̄i) ≥ max
j=1,2,...,P

Di(πj)) OR (Di(x̄i) ≤ min
j=1,2,...,P

Di(πj))

THEN (add a new data cloud)
(6.8)

105

Chapter 6. Detecting and Learning from Unknown

It means that x̄i is out of the influence area of πj. Therefore, x̄i becomes a new
prototype of a new data cloud with meta-parameters initialized by equation (6.9).

P ← P + 1; CP ← {x̄i}; πP ← x̄i; SP ← 1; (6.9)

Otherwise, data cloud parameters are updated by equation (6.10). It has to be
stressed that all calculations per data cloud are performed on the basis of data points
associated with a certain data cloud only (i. e. locally, not globally, on the basis of all
data points).

Cn∗ ← Cn∗ + {x̄i}; πn∗ ← Sn∗

Sn∗ + 1
πn∗ +

1

Sn∗ + 1
x̄i;

Sn∗ ← Sn∗ + 1;

(6.10)

One of the strongest aspects of the proposed approach is its high level of
interpretability which comes from its prototype-based, local generative models as
well as as its ability to be expressed as a set of linguistic IF...THEN fuzzy rules of
the following type:

R : IF (x ∼ π1) OR ... OR (x ∼ πP) THEN (Class c) (6.11)

The fuzziness represents the degree of association/similarity to the prototypes.
Indeed, the value of data density, D, can be interpreted as a membership function of
the fuzzy set (x ∼ π) (Angelov and Gu, 2019). With a maximum 1 when x = p. The
continuous typicality, τ given by the equation (6.12), is an empirically derived form of
probability distribution. The value of τ even at the point x = pi is much less than 1
the integral of

∫∞
−∞ τdx = 1.

τi(x) =
Di(x)∫

x
Di(x)dx

(6.12)

The typicality per class offers conditional probability that is the basis of a generative
model, but within both, xDNN and xClass from the classifier design point of view, we
are interested in the local peaks of the typicality which coincide with the peaks of the
data density. Indeed, it can be demonstrated that since the mathematical expression
of the typicality is a mixture of Cauchy expressions and of the data density is a Cauchy
expression, the peaks of τ and D are at the same value of x∗. Data density, D is much
easier to calculate and therefore, we use D rather than τ further.

106

Chapter 6. Detecting and Learning from Unknown

6.2 Detect and Learn from Unknown

This is the most innovative part of the proposed algorithm in addition to the feature
selection per class, which allows xClass to detect new data patterns autonomously and
learn from them.

6.2.1 Drop of confidence (detect the novelty)

Unlabeled data samples become available as soon as the training process with labeled
samples finishes. Then, the xClass classifier can continue to learn from these unknown
data samples. The unlabeled training samples are defined as the set {u}, and the
number of unlabeled samples is defined as U .

The first step in the weakly supervised learning process of xClass, is to extract the
vector of confidence/degrees of closeness to the nearest prototypes for each unlabeled
data sample defined as λ(ui), i = 1, 2, ..., U follows:

λ(ui) = max
j=1,2,...,P

S(xi, πj), (6.13)

where λ denotes the confidence degree.
The recursive mean µi of the λ for the labeled data samples is used to detect

sudden drop of the confidence generated by the xClass classifier when a new unknown
class arrives and can be calculated as follows (Angelov, 2012):

µi =
i− 1

i
µi−1 +

1

i
λi, µ1 = λ1. (6.14)

Then the m-σ rule is applied, for detailed explanation about the m-σ please refer to
(Costa et al., 2015). New classes are actively added by the proposed xClass classifier
when the inequality (6.15) is satisfied and rules are actively created. Otherwise,
if the inequality is not satisfied the newly arrival unlabeled data samples are used
for updating the structure and meta-parameters of the xClass classifier. Fig. (6.1)
illustrates the drop of confidence of the proposed method when a new a unseen class
arrives. The black line indicates the confidence of xClass. As the fall is detected, if
the inequality (6.15) is satisfied this indicates that the label of this data sample is not
any of the known to xClass labels. The options are that: a) This drop is a one off
due to outlier, noise, randomness, or b) a number of such data samples above a drop
of confidence is detected are close to each other in the data space (please note that
they may not necessarily arrive one after the other as in Fig. (6.1)). Otherwise, if the
condition given by the inequality (6.15) is not met the data sample is used to update
the meta-parameters of the proposed method.

107

Chapter 6. Detecting and Learning from Unknown

Figure 6.1: Drop of confidence of the proposed method when a new a unseen class
arrives

IF λ(ui) < (µ̄i −mσ) THEN (ui ∈ Possible new class detected)

ELSE (Update structure and meta− parameters)
(6.15)

When the inequality (6.15) is satisfied, the arrival data sample is denoted as a
potential outlier and temporally saved. When several of potential outliers are close to
each other in the data space, have similar densities, they are denoted as ‘new class 1’,
if more than one group is formed than new classes are formed as well and new labels
as ‘new class 2’ are generated.

One or few labels for new detected classes are provided. The validation process is
done through the ‘winners-take-all’ principle, which is given by,

Label = argmax(λ(ui+1)). (6.16)

The general structure of the proposed xClass approach is illustrated by the block
diagram presented in Fig. (6.2).

108

Chapter 6. Detecting and Learning from Unknown

Figure 6.2: General structure of xClass – block diagram

6.3 Results for Novelty Detection

In this section, the results obtained by xClass are demonstrated. Computational
simulations were performed to assess the accuracy of the classification methods
considering 4 different benchmark problems. All the experiments were conducted
with Python 3.6 using a personal computer with a 1.8 GHz Intel Core i5 processor,
8-GB RAM, and MacOS operating system. The default parameters were used for the
algorithms used in the comparisons. For this experiment, we considered a VGG–VD–16
pre-trained on ImageNet; a SVM model with RBF kernel and decision function of
shape “one-vs-rest”; a KNN classifier with k = 5; a Decision Tree (DT) with Gini
impurity to measure the quality of a split and “log loss” and “entropy” both for the
Shannon information gain; LSTM has 32 layers, and uses “tanh” function for activation
and “sigmoid” for recurrent activation. The results obtained during experimentation
demonstrates that xClass offers:

– high precision as compared with the top state-of-the-art algorithms.

– ability to detect unseen/new data patterns autonomously and learn from them.

– ability to learn with extremely low supervision (few) labeled data samples for
the newly detected classes.

– ability to autonomously select the most effective features per class.

– highly transparent interpretable model.

109

Chapter 6. Detecting and Learning from Unknown

Figure 6.3: Wrong classification given by VGG–16 for a new unknown class (Rainy
Day).

– no user- or problem- specific algorithmic parameter (except for feature selection
which can be done by ad hoc decision).

– non-iterative algorithm able to learn continuously.

6.3.1 iRoads dataset

In the first experiment the iRoads dataset (Rezaei and Terauchi, 2013) was considered.
The convolutional deep neural network VGG–16 was trained with 80% of the available
iRoads dataset; however, images for the ‘Rainy day’ scenario were omitted of the
training phase. After the training phase, ‘Rainy day’ trained images were presented
to the neural network. As the VGG–16 approach was not trained for the presented
situation, and it is not able to adapt its structure for the newly arrived class, it
misclassified the ‘Rainy Day’ scenario with almost 90% confidence as a ‘Night’ scenario
as illustrated by Fig. (6.3).

Therefore, the deep learning VGG–16 misclassifed with almost 90% of confidence
the “Rainy day” driving scenario as a “Night” scenario as illustrated by Fig. (6.3).
This is not surprising, because the VGG–16 (same as other mainstream deep neural
networks) can only recognise what it was trained for and is not equipped with an
exploratory mechanism to enable detection and learning from unknown data samples.

110

Chapter 6. Detecting and Learning from Unknown

Figure 6.4: Sudden drop of confidence due the presentation of new unknown classes.

In such new situations, mainstream deep networks require a full retraining in order to
correctly classify new classes. However,a full retraining of a deep neural network is
usually time consuming, computational expensive, costly, and involves the human for
labeling purposes.

The xClass exploratory mechanism is able to discover new classes as they arrive to
the system due to its mechanism based on the recursive density estimation (Angelov,
2012) and Chebyshev inequality approach (Costa et al., 2015) as given by Fig. (6.4).
The blue line indicates the confidence value (λ boundary) given by the xClass classifier,
the red line indicates the the recursive density estimation value, the green line is the
3-σ. The sudden fall of the blue line indicates the moment when the unlabeled set of
images belonging to an unknown class arrive to the system.

The proposed xClass classifier was trained with 80% of the available iRoads images
of all classes except the “Rainy day” class. Then, the new unlabeled class was present
to the proposed classifier, xClass was able to successfully detect the suddenly drastic
fall in the confidence (Fig. (6.4)) and proactively create a new class as illustrated by
Fig. (6.5). The prototype-based and non-iterative nature of the proposed method
allowed to detect the fall in the confidence (λ) in real time, and differently, from
traditional deep learning approaches, no retraining is required to learn the new class.

The proposed xClass classifier obtained 99.12% classification accuracy for unlabeled
images using the 3-σ approach. The semantically meaningful label ‘Rainy Day Scene’

111

Chapter 6. Detecting and Learning from Unknown

Rnew: IF (Image ∼) THEN ‘New class’

Figure 6.5: A new rule is proactively created when a sudden fall in the confidence
is detected through the inequality (6.13). The proposed xClass classifier is highly
interpretable due to its rule-based nature. This advantage favors human experts
analysis as it provides a transparent structure, differently from the ‘black box’
approaches such as deep neural networks.

R7: IF (Image ∼) OR (Image ∼) OR

... OR (Image ∼) THEN ‘Rainy day scene’

Figure 6.6: Final rule given by the xClass classifer for the new detected class. Label
is attached during the validation phase. Differently from ‘black box’ approaches as
deep neural networks, xClass provides highly interpretable rules which can be used by
human experts for different analysis as necessary.

is optional and requires only one-off involvement by the human (by default it will stay
as ‘new class 1’). The final rule generated for this new class detected by the proposed
xClass classifier is given by Fig. (6.6).

6.3.2 Faces-1999 dataset

As a second example, we consider the Faces-1999 dataset provided by Caltech (Faces,
1999). For the faces recognition problem, the xClass classifier is trained with just
one type of face, differently from traditional approaches which are primed with all
available classes (20 different types of faces). We used the final fully connected layer
of VGG–16 for features extraction. For each image it produces 4096 values that can
be considered as abstract features.

Traditional approaches are not equipped with exploratory mechanism, therefore,

112

Chapter 6. Detecting and Learning from Unknown

Figure 6.7: Sudden drop of confidence due the presentation of new unknown classes
for the Faces-1999 dataset.

they are not able to discover discover new data patterns and adjust its parameters to
correctly detect and classify the new arrival data. On the other hand, xClass was able
to detect these new types of faces through the drop of confidence as illustrated by Fig.
(6.7). So, as the new arriving data is not similar to any of the prototypes contained in
the prototypes base of xClass, the algorithm is able to detect that it belongs to a new
data distribution.

After the detection of these new classes, an extremely weak supervision (1% training
data labeled) and weak supervision (10% training data labeled) is provided in order
to label these newly arrived. After, the labeling phase, the classification task was
performed. As one can see from Fig. (6.8) and (6.9), the proposed xClass method can
surpass its state-of-the-art competitors as they require more labeled data to provide
good results. With just 1% of training data is clearly visible the advantage of xClass.
On real scenarios the labeling process is very time consuming and is not always possible.
The classification curve is given by Fig. (6.9).

Fig. (6.7) illustrates the sudden drop in the confidence when new unknown classes
are presented to xClass classifier; the xClass uses the drop of confidence based on the
density of the data to discover new classes. Traditional approaches are not equipped
with exploratory mechanisms as the proposed xClass method; therefore, they are
not able to detect new data patterns and adapt their structure to this situation. It

113

Chapter 6. Detecting and Learning from Unknown

Figure 6.8: Accuracy for extremely weak supervision classification for the Faces-1999
dataset. Red bars illustrate the results obtained by state-of-the-art approaches when
just one class is provided during the training phase. The blue bars indicate the results
when all the classes are provided.

114

Chapter 6. Detecting and Learning from Unknown

Figure 6.9: Classification curve for different number of training samples for the
Faces-1999 dataset.

is notable that the proposed xClass classifier can obtain better results without the
necessity for huge number of labeled data, differently from traditional approaches.
The performance curve is given in Fig. 6.9, as illustrated, with xClass still producing
better classification rates when more training data is provided.

6.3.3 Caltech-101 dataset

As a third case, we consider the Caltech-101 dataset (Fei-Fei et al., 2007). As in
the other experiments the proposed xClass classifier was primed with 80% of data
samples from the first class for training, and then, used its exploratory mechanism to
discover the other classes autonomously and learn from them based on the data density
according through the drop of confidence as detailed in Fig. (6.10); as illustrated in
Fig. (6.11), traditional approaches are not able to detect new data patterns after
the training phase (traditional approaches were trained with just 1 class), and then,
tend to produce results with low accuracy. Unlike supervised methods which are data
hungry, the proposed xClass approach could obtain high classification accuracy with
extremely weak supervision (Fig. (6.11)), in order word, with less training data as
possible. The acquisition of labeled data requires enormous human efforts and it is very
time consuming. Fig. (6.12) gives the evolution of the performance of the proposed
exploratory classifier as more training samples are provided. As it is illustrated by
Fig. (6.12), the xClass classifier is able to produce better results in terms of accuracy,

115

Chapter 6. Detecting and Learning from Unknown

Figure 6.10: Sudden drop when new unknown are classes are presented to the xClass
method – Caltech-101 dataset.

demonstrating its efficiency to detect and learn from unknown effectively.
The Caltech-101 dataset is constituted of 101 different classes. However, in the

experiment only 10 classes were used. Supervised methods such as Decision tree,
k-nearest neighbors (KNN), Adaboost, and SVM require information about all the
available classes beforehand, in order to produce better results (the red bars in Fig.
(6.11) illustrate the results obtained when just one class is used in the training phase).
In comparison, the proposed extremely weakly supervised approach requires just the
knowledge about one class beforehand as illustrated by Fig. (6.10) as the other classes
are discovered through its exploratory mechanism.

The blue bar in Fig. (6.11) illustrates the classification results when just 1%
of labeled training data is provided for all classes. The proposed exploratory
xClass classifier could obtain almost 90% of classification accuracy. State-of-the-
art approached have the necessity for labeled training data to produce acceptable
results as illustrated in Fig. (6.12). Even when more labeled training data is provided,
the proposed xClass classifier still produce better results in terms of accuracy than
its competitors. Furthermore, the Zero-Shot learning method proposed by (Long and
Shao, 2017) was reported to provide 57% accuracy for the same problem which is
significantly poorer result than the one obtained by the proposed xClass method. In
addition to the significantly higher accuracy than the Zero-Shot learning method, the

116

Chapter 6. Detecting and Learning from Unknown

Figure 6.11: Accuracy for extremely weak supervision classification for the Caltech-101
dataset.

proposed xClass method also has the advantage of allowing human inspection of the
decision-making process (this makes it explainable).

6.3.4 Vehicles dataset

In the fourth case, we consider the vehicles dataset (Soria et al., 2011), which is
a non-image based dataset. xClass is, firstly, trained with just one sample of the
first class, and then, it has to autonomously detect the other classes based on the
empirically observed data and the sudden drop of confidence (Fig. (6.13)).

The inner parallel feature selector of the proposed approach selected 7 out of the 18
original features differently for each class. This is helpful to improve the interpretability
of the proposed classifier. Results obtained by xClass and its competitors are given in
Fig. (6.14).

It is important to highlight that SVM, KNN, Decision Tree, Adaboost, Long
short-term memory (LSTM) are all supervised methods, and they were trained with
all available classes beforehand (red bars in Fig. (6.15) illustrate the results obtained
by the traditional supervised approaches if just one class is used in the training phase).
However, the proposed xClass approach could obtain better results in terms of accuracy
even though it uses an extremely weak supervision (Fig. (6.15)).

Fig. (6.13) illustrates the drop of confidence when new unseen classes are presented

117

Chapter 6. Detecting and Learning from Unknown

Figure 6.12: Classification curve for different number of training samples for the
Caltech-101 dataset.

Figure 6.13: Sudden drop of confidence due the presentation of new unknown classes –
Cars dataset.

118

Chapter 6. Detecting and Learning from Unknown

Figure 6.14: Classification curve for different number of training samples for the Cars
dataset.

Figure 6.15: Accuracy for extremely weak supervision classification for the Cars
dataset.

119

Chapter 6. Detecting and Learning from Unknown

to the proposed classifier. Differently from traditional approaches which require the
knowledge of all available classes beforehand, the proposed xClass uses its exploratory
mechanism to autonomously discover this new class with basis just on the empirical
data. Red bars on Fig. (6.15) shows the results obtained by state-of-the-art methods
if just one class is presented during the training phase, as they are not able to detect
new arrivals data patterns and adapt they structure to this scenario, they wrongly
classify the new arrived data samples as the known class. Different types of supervision
(extremely weak, weak, full) is provided during experiments, in all cases the proposed
method could provide better results in terms of classification performance than its
competitors as illustrated by Fig. (6.14). It is possible to note through Fig. (6.15) that
the results obtained for extremely weak supervision with xClass surpass its competitors
in more than 25% in terms of classification performance, which indicates the efficiency
of the proposed method.

As given by Fig. (6.14), xClass is able to improve its results if more training data
and all classes are provided. For validation purposes, 20% of the data samples were
used in all cases and labels for newly detected classes by xClass are attached during
this phase. The AnYa fuzzy rule (Angelov and Gu, 2019) for the newly identified class
Rnew can be written as follows:

Rnew : IF (x ∼

104
41
66
10
23
635
73

) THEN ‘NewClass1′

where x is the set of selected features given by the density-based feature selector. x
can be written as follows:

x =

COMPACTNESS
CIRCULARITY

PR. AXIS ASPECT RATIO
MAX. LENGTH ASPECT RATIO
PR. AXIS RECTANGULARITY
SCALED V ARIANCE MINOR
SKEWNESS ABOUT MAJOR

During the validation stage labels are attached to the newly identified rules. The

120

Chapter 6. Detecting and Learning from Unknown

final format for the first newly identified rule is given as follows:

R2 : IF (x ∼

104
41
66
10
23
635
73

) OR (x ∼

90
34
55
6
17
224
65

) OR...OR (x ∼

113
53
62
11
24
688
72

) THEN ‘SAAB′

6.4 Conclusion

The xClass approach could surpass its competitors in terms of accuracy for all
experiments using extremely weak supervision, as well as, full supervision. Moreover,
the proposed algorithm produced highly transparent interpretable results, which are
helpful for human experts analysis. No user- or problem- specific algorithmic parameter
(except for feature selection which can be done by ad hoc decision) are required which
is also an advantage provided by the proposed xClass classifier.

xClass have been tested on four challenging problems, including adversarial
autonomous cars scenarios classification, imbalanced faces detection, and objects
detection. Not only we achieved higher accuracy (in one of the problems outperforming
by 25% the other methods), but, more significantly, we only used the knowledge of
just a single class at the start of the process and extremely weakly labeled data and
we generated interpretable models with smaller number of features used. Furthermore,
the proposed xClass method demonstrated the ability to learn from unknown without
retraining, which is one of the biggest problems of deep learning based on neural
networks. As illustrated the convolutional deep learning misclassified an unknown
class with high confidence, on the other hand, the proposed approach was able to
detect a sudden drop in the confidence and learn from this unknown data, then it was
able to proactively create a new class for this new scenario.

121

Chapter 7

Conclusion and Future Work

7.1 Summary of Research and Finding

Deep learning has attracted attention due to its proven ability of obtain highly accurate
results in challenging problems (Goodfellow et al., 2016; LeCun et al., 2015). However,
the main criticisms over deep learning approaches are over the fact that they are “black-
box” approaches, because they usually have million of parameters that are extremely
difficult to interpret and relate to the physical nature of the problem. Moreover, they
also require large amounts of labeled data, computing resources, and long training in
order to obtain acceptable results (Rudin, 2019).

Therefore, in this research thesis new explainable-by-design deep learning
approaches are proposed as an alternative to traditional deep learning methods.
The methods proposed in this thesis offers two main achievements of deep learning,
higher accuracy on different extremely challenging problems, and also a transparent
decision structure that allow users to inspect and understand the decisions taken by
the algorithm. The characteristics of interpretability and explainability offered by the
algorithms proposed by this thesis are essentially important for high-risk applications,
such as self-driving cars, medical treatment, or court decisions(ibid.).

This new deep learning architecture and its variants combines inference and learning
in synergy. The prototype nature of these methods offers a feed-forward architecture
that it is non-iterative and non-parametric which favours the efficiency in terms of
time and computing resources. From the user’s point of view, the decisions taken by
the approach is clearly understandable to human users. The next section presents the
limitation of the work proposed in this thesis.

122

Chapter 7. Conclusion and Future Work

7.2 Limitations

In this section the limitations of the proposed approaches are highlighted.
1) Dependency on external features: although, the explainable deep learning

approach and its variants proposed in this research thesis produces high accuracy
results on different challenging problems, even surpassing traditional deep learning
approaches, they must rely on external features to produce these results. In other
words, the quality of the external features have high influence on the final results.

2) No optimization: the work presented on this thesis offers different explainable
feed-forward architectures that allows minimum computational resources when
compared to mainstream deep learning methods. However, parameters and
optimization can be introduced to improve the quality of the prototypes selected
during the training phase, and so, improve the results in terms classification metrics.

3) Prototypes base for large datasets: large datasets (millions of data points) may
produce large prototype bases that can negatively affect the interpretability of the
model. Therefore, strategies to reduce the prototype base may be necessary to favour
the interpretability.

4) Rules: rules illustrated in thesis were produced to be understandable by humans.
However, the methods proposed here compare the similarities between vectors of
numbers which can be harder to interpret by users.

The next section refers to the contributions proposed on this research thesis.

7.3 Contributions

The work described in this thesis offers explainable-by-design architectures for different
problems as an attempt to overcome the “black-box” nature of the traditional deep
learning:

1) A new prototype-based deep learning architecture that combines inference and
learning in synergy.The method uses data density as its core mechanism (Angelov
and Gu, 2019). Furthermore, xDNN it is non-iterative and non-parametric, and do
not requires extremely powerful hardware resources (GPUs) to obtain highly accurate
results. Also, the approach is clearly understandable to human users.

2) An extension of xDNN with a decision tree decision-making process and balanced
amount of prototypes per class. The method offers two main novelties: i) using a
decision tree to determine the winning class label, and ii) balancing the classes by
synthesising data around the prototypes determined from the available training data.

3) A new explainable approach to redesign a Deep Reinforcement Learning (DRL)
model into a set of IF...THEN rules. It provides an approximation of the DRL model
with an alternative interpretable model with a similar performance. The approach
relies on the following premises: i) the universal approximation ability of the rule-based

123

Chapter 7. Conclusion and Future Work

models with fuzzy predicates; ii) the better interpretability of the prototype-based
fuzzy rules (including visualization).

4) A fully autonomous extremely weakly supervised approach (xClass) which is
able to learn from just a single class and a small set of labeled data samples. Then,
as new classes, unknown to users, appears the proposed xClass method is able to
successfully discover this and learn from the data autonomously through a recursive
data density mechanism.

The proposed approaches demonstrated very high performance on the benchmarking
datasets and in real applications. Including, a own set of CT-scans for Covid-19
identification and a FORD dataset for affordance indicators prediction. Besisdes,
the very high performance the proposed approaches also present interpretability and
explainability of the generated models and their decisions as an alternative to the
traditional “black-box” approaches.

7.4 Future Work

The following directions are to be considered in the future for improvement of the
proposed systems:

1) Parameter/prototypes optimization needs to be investigated, in order to improve
the effectiveness of the learning algorithm. The main goal here is to find most optimum
and parsimonious set of prototypes that will produce the best results without affecting
interpretability. (Duan et al., 2021) offers an interesting approach that to modularize
deep learning via pairwise learning with kernels which can be useful for the prototype
algorithms presented in this work.

2) In order to improve the interpretability of the decisions taken by the proposed
networks attention mechanisms can be used as in (Kim et al., 2021). Attention
mechanisms offers a visual perspective of the decisions taken by the networks that
may produce insights that are more interesting than rules for real applications and
research purposes. In this sense, xDNN and its variants can offer more than possibility
of interpretation for the same problem.

3) Distance metrics/dissimilarity are the core of algorithms based on prototypes.
Therefore, the investigation of methods that are agnostic in terms of distance metrics
are of great interest as demonstrated by (Chen et al., 2015).

4) Another research perspective that is extremely important is the extension of
the algorithms for object detection problems. Object detection is an important and
extremely difficult class of problem that it is extremely important for different high
stake applications as autonomous vehicles. The work presented by (Du et al., 2022)
offers an interesting perspective in this direction as it presents an object detector
algorithm that can detect out-of-distribution (OOD) objects in different scenarios.

124

Chapter 7. Conclusion and Future Work

Therefore, this section presents new research perspectives that can be useful to
improve the work presented in this research thesis and also to bring a new path to
explainable-by-nature or anthropomorphic algorithms.

125

Appendix A

List of Publications

Publications

The following publications have been generated while developing this thesis, and to an
extent has guided the thesis into what it has become:

Journal publications

Plamen Angelov and Eduardo Soares (2021). “Detecting and learning from unknown
by extremely weak supervision: exploratory classifier (xClass)”. In: Neural Computing
and Applications, pp. 1–13

Plamen P. Angelov et al. (2021). “Explainable artificial intelligence: an analytical
review”. In: WIREs Data Mining and Knowledge Discovery, e1424. doi: https:

//doi.org/10.1002/widm.1424

Eduardo Almeida Soares et al. (2020c). “Explaining deep learning models through
rule-based approximation and visualization”. In: IEEE Transactions on Fuzzy Systems

Plamen Angelov and Eduardo Soares (2020b). “Towards explainable deep neural
networks (xDNN)”. in: Neural Networks 130, pp. 185–194

Eduardo Soares et al. (2020b). “Autonomous Learning Multiple-Model zero-order
classifier for heart sound classification”. In: Applied Soft Computing 94, p. 106449

Xiaowei Gu et al. (2020b). “A self-adaptive synthetic over-sampling technique for
imbalanced classification”. In: International Journal of Intelligent Systems 35.6,
pp. 923–943

126

https://doi.org/https://doi.org/10.1002/widm.1424
https://doi.org/https://doi.org/10.1002/widm.1424

Appendix A. List of Publications

Conference publications

Plamen Angelov and Eduardo Soares (2020a). “Towards Deep Machine Reasoning:
a Prototype-based Deep Neural Network with Decision Tree Inference”. In: 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
pp. 2092–2099

Eduardo Soares et al. (2019a). “Actively semi-supervised deep rule-based classifier
applied to adverse driving scenarios”. In: 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE, pp. 1–8

Eduardo Soares et al. (2019b). “Explainable density-based approach for self-driving
actions classification”. In: 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA). IEEE, pp. 469–474

Mona Alghamdi et al. (2019). “Self-organising and self-learning model for soybean
yield prediction”. In: 2019 Sixth International Conference on Social Networks Analysis,
Management and Security (SNAMS). IEEE, pp. 441–446

Dataset publications

Eduardo Soares and Plamen Angelov (2020). A large dataset of real patients CT scans
for COVID-19 identification. Version V1. Harvard. doi: 10.7910/DVN/SZDUQX. url:
https://doi.org/10.7910/DVN/SZDUQX

Other research publications

Eduardo Soares et al. (2021). “An Explainable approach to Deep Learning from
CT-scans for Covid Identification”. In: TechRxiv, pp. 1–8

Eduardo Soares and Plamen Angelov (2021). “RADNN: Robust to Imperceptible
Adversarial Attacks Deep Neural Network”. In: TechRxiv, pp. 1–8

Farshad Firouzi et al. (2021). “Harnessing the Power of Smart and Connected Health
to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World”. In:
IEEE Internet of Things Journal, pp. 1–1. doi: 10.1109/JIOT.2021.3073904

Eduardo Soares et al. (2020a). “SARS-CoV-2 CT-scan dataset: A large dataset of
real patients CT scans for SARS-CoV-2 identification”. In: medRxiv

127

https://doi.org/10.7910/DVN/SZDUQX
https://doi.org/10.7910/DVN/SZDUQX
https://doi.org/10.1109/JIOT.2021.3073904

Appendix A. List of Publications

Eduardo Soares and Plamen Angelov (2019). “Fair-by-design explainable models for
prediction of recidivism”. In: arXiv preprint arXiv:1910.02043

Paulo Vitor de Campos Souza et al. (2020). “Autonomous data density pruning fuzzy
neural network for optical interconnection network”. In: Evolving Systems

128

References

Adadi, Amina and Mohammed Berrada (2018). “Peeking inside the black-box: a survey
on explainable artificial intelligence (XAI)”. In: IEEE access 6, pp. 52138–52160.

Ai, Tao, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, Qian Tao,
Ziyong Sun, and Liming Xia (2020). “Correlation of chest CT and RT-PCR testing
in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases”. In:
Radiology, p. 200642.

Alam, Mohammed S and Son T Vuong (2013). “Random forest classification for
detecting android malware”. In: 2013 IEEE international conference on green
computing and communications and IEEE Internet of Things and IEEE cyber,
physical and social computing. IEEE, pp. 663–669.

Alghamdi, Mona, Plamen Angelov, Raul Gimenez, Mariana Rufino, and Eduardo Soares
(2019). “Self-organising and self-learning model for soybean yield prediction”. In:
2019 Sixth International Conference on Social Networks Analysis, Management
and Security (SNAMS). IEEE, pp. 441–446.

Alpaydin, Ethem (2016). Machine learning: the new AI. MIT press.
Angelov, Plamen (2012). Autonomous learning systems: from data streams to knowledge

in real-time. John Wiley & Sons.
Angelov, Plamen, Dimitar Filev, and Nik Kasabov (2010). Evolving intelligent systems:

methodology and applications. Vol. 12. John Wiley & Sons.
Angelov, Plamen and Xiaowei Gu (2018a). “Deep rule-based classifier with human-level

performance and characteristics”. In: Information Sciences 463, pp. 196–213.
— (2019). Empirical approach to machine learning. Springer.
Angelov, Plamen, Edwin Lughofer, and Xiaowei Zhou (2008). “Evolving fuzzy classifiers

using different model architectures”. In: Fuzzy sets and systems 159.23, pp. 3160–
3182.

Angelov, Plamen and Eduardo Soares (2020a). “Towards Deep Machine Reasoning:
a Prototype-based Deep Neural Network with Decision Tree Inference”. In: 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
pp. 2092–2099.

— (2020b). “Towards explainable deep neural networks (xDNN)”. In: Neural Networks
130, pp. 185–194.

129

References

Angelov, Plamen and Eduardo Soares (2021). “Detecting and learning from unknown by
extremely weak supervision: exploratory classifier (xClass)”. In: Neural Computing
and Applications, pp. 1–13.

Angelov, Plamen and Ronald Yager (2011). “Simplified fuzzy rule-based systems using
non-parametric antecedents and relative data density”. In: pp. 62–69.

Angelov, Plamen P and Dimitar P Filev (2004). “An approach to online identification
of Takagi-Sugeno fuzzy models”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 34.1, pp. 484–498.

Angelov, Plamen P and Xiaowei Gu (2018b). “Toward anthropomorphic machine
learning”. In: Computer 51.9, pp. 18–27.

Angelov, Plamen P., Eduardo A. Soares, Richard Jiang, Nicholas I. Arnold, and
Peter M. Atkinson (2021). “Explainable artificial intelligence: an analytical review”.
In: WIREs Data Mining and Knowledge Discovery, e1424. doi: https://doi.org/
10.1002/widm.1424.

Ardila, Diego et al. (2019). “End-to-end lung cancer screening with three-dimensional
deep learning on low-dose chest computed tomography”. In: Nature medicine 25.6,
pp. 954–961.

Arrieta, Alejandro Barredo et al. (2020). “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI”. In:
Information Fusion 58, pp. 82–115.

Assael, Yannis M, Brendan Shillingford, Shimon Whiteson, and Nando De Fre-
itas (2016). “Lipnet: End-to-end sentence-level lipreading”. In: arXiv preprint
arXiv:1611.01599.

Atienza, Felipe et al. (2009). “Real-time dominant frequency mapping and ablation of
dominant frequency sites in atrial fibrillation with left-to-right frequency gradients
predicts long-term maintenance of sinus rhythm”. In: Heart Rhythm 6.1, pp. 33–40.

Azar, Ahmad Taher, Hanaa Ismail Elshazly, Aboul Ella Hassanien, and Abeer Mohamed
Elkorany (2014). “A random forest classifier for lymph diseases”. In: Computer
methods and programs in biomedicine 113.2, pp. 465–473.

Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek (2015). “On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propagation”. In: PloS one 10.7,
e0130140.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). “Representation learning:
A review and new perspectives”. In: IEEE transactions on pattern analysis and
machine intelligence 35.8, pp. 1798–1828.

Bezerra, Clauber Gomes, Bruno Sielly Jales Costa, Luiz Affonso Guedes, and Plamen
Angelov (2016). “A new evolving clustering algorithm for online data streams”.
In: 2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS).
IEEE, pp. 162–168.

130

https://doi.org/https://doi.org/10.1002/widm.1424
https://doi.org/https://doi.org/10.1002/widm.1424

References

Bhattacharyya, Siddhartha, Sanjeev Jha, Kurian Tharakunnel, and J Christopher
Westland (2011). “Data mining for credit card fraud: A comparative study”. In:
Decision support systems 50.3, pp. 602–613.

Bhavsar, Himani and Mahesh H Panchal (2012). “A review on support vector machine
for data classification”. In: International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET) 1.10, pp. 185–189.

Biehl, Michael, Barbara Hammer, and Thomas Villmann (2013). “Distance measures
for prototype based classification”. In: International Workshop on Brain-Inspired
Computing. Springer, pp. 100–116.

— (2016). “Prototype-based models in machine learning”. In: Wiley Interdisciplinary
Reviews: Cognitive Science 7.2, pp. 92–111.

Bien, Jacob and Robert Tibshirani (2011). “Prototype selection for interpretable
classification”. In: The Annals of Applied Statistics, pp. 2403–2424.

Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Blair, Alan and Abdallah Saffidine (2019). “AI surpasses humans at six-player poker”.

In: Science 365.6456, pp. 864–865.
Bobillo, Ignacio J Diaz (2016). “A tensor approach to heart sound classification”. In:

2016 Computing in Cardiology Conference (CinC). IEEE, pp. 629–632.
Bramer, Max (2007). “Avoiding overfitting of decision trees”. In: Principles of data

mining, pp. 119–134.
Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Campos Souza, Paulo Vitor de (2020). “Fuzzy neural networks and neuro-fuzzy

networks: A review the main techniques and applications used in the literature”.
In: Applied soft computing 92, p. 106275.

Cao, Jianfang, Min Wang, Yanfei Li, and Qi Zhang (2019). “Improved support vector
machine classification algorithm based on adaptive feature weight updating in the
Hadoop cluster environment”. In: PloS one 14.4, e0215136.

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko (2020). “End-to-end object detection with
transformers”. In: European Conference on Computer Vision. Springer, pp. 213–229.

Castelvecchi, Davide (2016). “Can we open the black box of AI?” In: Nature News
538.7623, p. 20.

Chattopadhay, Aditya, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubra-
manian (2018). “Grad-cam++: Generalized gradient-based visual explanations for
deep convolutional networks”. In: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). IEEE, pp. 839–847.

Chen, Runjin, Hao Chen, Jie Ren, Ge Huang, and Quanshi Zhang (2019). “Explaining
neural networks semantically and quantitatively”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9187–9196.

131

References

Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pp. 785–794.

Chen, Xue-Wen and Xiaotong Lin (2014). “Big data deep learning: challenges and
perspectives”. In: IEEE access 2, pp. 514–525.

Chen, Zetao, Stephanie Lowry, Adam Jacobson, Zongyuan Ge, and Michael Milford
(2015). “Distance metric learning for feature-agnostic place recognition”. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, pp. 2556–2563.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In: Machine
learning 20.3, pp. 273–297.

Costa, Bruno Sielly Jales, Clauber Gomes Bezerra, Luiz Affonso Guedes, and
Plamen Parvanov Angelov (2015). “Online fault detection based on typicality
and eccentricity data analytics”. In: 2015 International Joint Conference on Neural
Networks (IJCNN). IEEE, pp. 1–6.

Cover, Thomas and Peter Hart (1967). “Nearest neighbor pattern classification”. In:
IEEE transactions on information theory 13.1, pp. 21–27.

Cunningham, Padraig and Sarah Jane Delany (2007). “k-Nearest neighbour classifiers”.
In: Multiple Classifier Systems 34.8, pp. 1–17.

Dara, Suresh and Priyanka Tumma (2018). “Feature extraction by using deep
learning: A survey”. In: 2018 Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA). IEEE, pp. 1795–1801.

Dean, Jeff, David Patterson, and Cliff Young (2018). “A new golden age in computer
architecture: Empowering the machine-learning revolution”. In: IEEE Micro 38.2,
pp. 21–29.

Demidova, Liliya, Evgeny Nikulchev, and Yulia Sokolova (2016). “Big data classification
using the SVM classifiers with the modified particle swarm optimization and the
SVM ensembles”. In: International Journal of Advanced Computer Science and
Applications 7.5, pp. 294–312.

Deng, Li and Dong Yu (2014). “Deep learning: methods and applications”. In:
Foundations and trends in signal processing 7.3–4, pp. 197–387.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “Bert:
Pre-training of deep bidirectional transformers for language understanding”. In:
arXiv preprint arXiv:1810.04805.

Dieber, Jürgen and Sabrina Kirrane (2020). “Why model why? Assessing the strengths
and limitations of LIME”. In: arXiv preprint arXiv:2012.00093.

Dino, Hivi Ismat and Maiwan Bahjat Abdulrazzaq (2019). “Facial expression
classification based on SVM, KNN and MLP classifiers”. In: 2019 International
Conference on Advanced Science and Engineering (ICOASE). IEEE, pp. 70–75.

132

References

Dobbin, Kevin K and Richard M Simon (2011). “Optimally splitting cases for training
and testing high dimensional classifiers”. In: BMC medical genomics 4.1, p. 31.

Dorogush, Anna Veronika, Vasily Ershov, and Andrey Gulin (2018). “CatBoost: gradi-
ent boosting with categorical features support”. In: arXiv preprint arXiv:1810.11363.

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable
machine learning”. In: arXiv preprint arXiv:1702.08608.

Dressel, Julia and Hany Farid (2018). “The accuracy, fairness, and limits of predicting
recidivism”. In: Science advances 4.1, eaao5580.

Du, Qiang, Vance Faber, and Max Gunzburger (1999). “Centroidal Voronoi tessellations:
Applications and algorithms”. In: SIAM review 41.4, pp. 637–676.

Du, Xuefeng, Xin Wang, Gabriel Gozum, and Yixuan Li (2022). “Unknown-Aware
Object Detection: Learning What You Don’t Know from Videos in the Wild”. In:
arXiv preprint arXiv:2203.03800.

Duan, Kai-Bo and S Sathiya Keerthi (2005). “Which is the best multiclass SVM
method? An empirical study”. In: International workshop on multiple classifier
systems. Springer, pp. 278–285.

Duan, Shiyu, Shujian Yu, and José C Prıncipe (2021). “Modularizing deep learning
via pairwise learning with kernels”. In: IEEE Transactions on Neural Networks
and Learning Systems.

Faces, Caltech (1999). Computational vision at caltech.
Favarò, Francesca M, Nazanin Nader, Sky O Eurich, Michelle Tripp, and Naresh

Varadaraju (2017). “Examining accident reports involving autonomous vehicles in
California”. In: PLoS one 12.9, e0184952.

Fawcett, Tom (2006). “An introduction to ROC analysis”. In: Pattern recognition
letters 27.8, pp. 861–874.

Fei-Fei, Li, Rob Fergus, and Pietro Perona (2004). “Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories”. In: 2004 conference on computer vision and pattern recognition
workshop. IEEE, pp. 178–178.

— (2007). “Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories”. In: Computer
vision and Image understanding 106.1, pp. 59–70.

Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter (2015). “Efficient and robust automated machine learning”.
In: Advances in neural information processing systems, pp. 2962–2970.

Figueiredo, Mauricio and Fernando Gomide (1999). “Design of fuzzy systems using
neurofuzzy networks”. In: IEEE transactions on Neural Networks 10.4, pp. 815–827.

Firouzi, Farshad et al. (2021). “Harnessing the Power of Smart and Connected Health
to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World”. In:
IEEE Internet of Things Journal, pp. 1–1. doi: 10.1109/JIOT.2021.3073904.

133

https://doi.org/10.1109/JIOT.2021.3073904

References

Freudenberg, James S, Richard H Middleton, and Victor Solo (2010). “Stabilization
and disturbance attenuation over a Gaussian communication channel”. In: IEEE
Transactions on Automatic Control 55.3, pp. 795–799.

Friedman, Nir, Dan Geiger, and Moises Goldszmidt (1997). “Bayesian network
classifiers”. In: Machine learning 29.2, pp. 131–163.

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition”. In: Competition
and cooperation in neural nets. Springer, pp. 267–285.

Garcia, Cristiano, Daniel Leite, and Igor Škrjanc (2019). “Incremental missing-data
imputation for evolving fuzzy granular prediction”. In: IEEE Transactions on Fuzzy
Systems 28.10, pp. 2348–2362.

Gawehn, Erik, Jan A Hiss, and Gisbert Schneider (2016). “Deep learning in drug
discovery”. In: Molecular informatics 35.1, pp. 3–14.

Ghai, Bhavya, Q Vera Liao, Yunfeng Zhang, Rachel Bellamy, and Klaus Mueller (2020).
“Explainable active learning (xal): An empirical study of how local explanations
impact annotator experience”. In: arXiv preprint arXiv:2001.09219.

Gilpin, Leilani H, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal (2018). “Explaining explanations: An overview of interpretability of
machine learning”. In: 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA). IEEE, pp. 80–89.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (2016). Deep
learning. Vol. 1. 2. MIT press Cambridge.

Goodman, Bryce and Seth Flaxman (2017). “European Union regulations on
algorithmic decision-making and a “right to explanation””. In: AI magazine 38.3,
pp. 50–57.

Graf, Arnulf BA, Olivier Bousquet, Gunnar Rätsch, and Bernhard Schölkopf (2009).
“Prototype classification: Insights from machine learning”. In: Neural computation
21.1, pp. 272–300.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech
recognition with deep recurrent neural networks”. In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, pp. 6645–6649.

Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra
(2015). “Draw: A recurrent neural network for image generation”. In: International
Conference on Machine Learning. PMLR, pp. 1462–1471.

Griffin, Gregory, Alex Holub, and Pietro Perona (2007). “Caltech-256 object category
dataset”. In:

Grigorescu, Sorin, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu (2020). “A
survey of deep learning techniques for autonomous driving”. In: Journal of Field
Robotics 37.3, pp. 362–386.

134

References

Grosan, Crina and Ajith Abraham (2011). “Rule-based expert systems”. In: Intelligent
systems. Springer, pp. 149–185.

Gu, Xiaowei, Plamen Angelov, and Eduardo A. Soares (2020a). “A self-adaptive
synthetic over-sampling technique for imbalanced classification”. In: International
Journal of Intelligent Systems 35.6, pp. 923–943.

Gu, Xiaowei, Plamen P Angelov, and Eduardo A Soares (2020b). “A self-adaptive
synthetic over-sampling technique for imbalanced classification”. In: International
Journal of Intelligent Systems 35.6, pp. 923–943.

Gunning, David (2017). “Explainable artificial intelligence (xai)”. In: Defense Advanced
Research Projects Agency (DARPA), nd Web 2.2.

Gunning, David and David Aha (2019). “DARPA’s explainable artificial intelligence
(XAI) program”. In: AI Magazine 40.2, pp. 44–58.

Gurney, Jeffrey K (2013). “Sue my car not me: Products liability and accidents
involving autonomous vehicles”. In: U. Ill. JL Tech. & Pol’y, p. 247.

Hagras, Hani (2018). “Toward Human-Understandable, Explainable AI”. In: Computer
51.9, pp. 28–36. doi: 10.1109/MC.2018.3620965.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). “The elements of
statistical learnin”. In: Cited on, p. 33.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Spatial
pyramid pooling in deep convolutional networks for visual recognition”. In: IEEE
transactions on pattern analysis and machine intelligence 37.9, pp. 1904–1916.

— (2016). “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770–778.

Hearst, Marti A., Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf
(1998). “Support vector machines”. In: IEEE Intelligent Systems and their
applications 13.4, pp. 18–28.

Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning
algorithm for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Holzinger, Andreas, Chris Biemann, Constantinos S Pattichis, and Douglas B Kell
(2017). “What do we need to build explainable AI systems for the medical domain?”
In: arXiv preprint arXiv:1712.09923.

Holzinger, Andreas, Peter Kieseberg, Edgar Weippl, and A Min Tjoa (2018). “Current
advances, trends and challenges of machine learning and knowledge extraction: from
machine learning to explainable AI”. In: International Cross-Domain Conference
for Machine Learning and Knowledge Extraction. Springer, pp. 1–8.

Holzinger, Andreas, Georg Langs, Helmut Denk, Kurt Zatloukal, and Heimo Müller
(2019). “Causability and explainability of artificial intelligence in medicine”. In:
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9.4, e1312.

135

https://doi.org/10.1109/MC.2018.3620965

References

Homsi, Masun Nabhan, Natasha Medina, Miguel Hernandez, Natacha Quintero,
Gilberto Perpiñan, Andrea Quintana, and Philip Warrick (2016). “Automatic
heart sound recording classification using a nested set of ensemble algorithms”. In:
2016 Computing in Cardiology Conference (CinC). IEEE, pp. 817–820.

Hosny, Ahmed, Chintan Parmar, John Quackenbush, Lawrence H Schwartz, and
Hugo JWL Aerts (2018). “Artificial intelligence in radiology”. In: Nature Reviews
Cancer 18.8, pp. 500–510.

Hu, Junlin, Jiwen Lu, and Yap-Peng Tan (2015). “Deep transfer metric learning”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 325–333.

Ibrahim, Mark, Melissa Louie, Ceena Modarres, and John Paisley (2019). “Global
explanations of neural networks: Mapping the landscape of predictions”. In:
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 279–287.

Jang, J-SR (1993). “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE
transactions on systems, man, and cybernetics 23.3, pp. 665–685.

Jebara, Tony (2004). “Multi-task feature and kernel selection for SVMs”. In: Proceedings
of the twenty-first international conference on Machine learning, p. 55.

Johnson, Kristin, Frank Pasquale, and Jennifer Chapman (2019). “Artificial intelligence,
machine learning, and bias in finance: toward responsible innovation”. In: Fordham
L. Rev. 88, p. 499.

Kanai, Sekitoshi, Yasuhiro Fujiwara, and Sotetsu Iwamura (2017). “Preventing gradient
explosions in gated recurrent units”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 435–444.

Kangin, Dmitry and Plamen Angelov (2015). “Recursive svm based on teda”. In:
International Symposium on Statistical Learning and Data Sciences. Springer,
pp. 156–168.

Kasabov, Nikola K and Qun Song (2002). “DENFIS: dynamic evolving neural-
fuzzy inference system and its application for time-series prediction”. In: IEEE
transactions on Fuzzy Systems 10.2, pp. 144–154.

Kay, Edmund and Anurag Agarwal (2016). “Dropconnected neural network trained
with diverse features for classifying heart sounds”. In: 2016 Computing in Cardiology
Conference (CinC). IEEE, pp. 617–620.

Keerthi, S Sathiya and Chih-Jen Lin (2003). “Asymptotic behaviors of support vector
machines with Gaussian kernel”. In: Neural computation 15.7, pp. 1667–1689.

Kim, Hanjae, Sunghun Joung, Ig-Jae Kim, and Kwanghoon Sohn (2021). “Prototype-
guided saliency feature learning for person search”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4865–
4874.

136

References

Kong, Weifang and Prachi P Agarwal (2020). “Chest imaging appearance of COVID-19
infection”. In: Radiology: Cardiothoracic Imaging 2.1, e200028.

Kotsiantis, Sotiris B, Dimitris Kanellopoulos, and Panagiotis E Pintelas (2006). “Data
preprocessing for supervised leaning”. In: International journal of computer science
1.2, pp. 111–117.

Kramer, Oliver (2013). “K-nearest neighbors”. In: Dimensionality reduction with
unsupervised nearest neighbors. Springer, pp. 13–23.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems 25, pp. 1097–1105.

Kulkarni, Vrushali Y and Pradeep K Sinha (2012). “Pruning of random forest classifiers:
A survey and future directions”. In: 2012 International Conference on Data Science
& Engineering (ICDSE). IEEE, pp. 64–68.

Lampert, Christoph H, Hannes Nickisch, and Stefan Harmeling (2009). “Learning to
detect unseen object classes by between-class attribute transfer”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, pp. 951–958.

Langer, Markus, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva
Schmidt, Andreas Sesing, and Kevin Baum (2021). “What do we want from
Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a
conceptual model guiding interdisciplinary XAI research”. In: Artificial Intelligence
296, p. 103473.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: nature
521.7553, pp. 436–444.

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel (1989). “Backpropagation applied to
handwritten zip code recognition”. In: Neural computation 1.4, pp. 541–551.

Lee, Sang Jun and Keng Siau (2001). “A review of data mining techniques”. In:
Industrial Management & Data Systems.

Lee-Kwang, Hyung, Yoon-Seon Song, and Keon-Myung Lee (1994). “Similarity measure
between fuzzy sets and between elements”. In: Fuzzy Sets and Systems 62.3,
pp. 291–293.

Leite, Daniel, Pyramo Costa, and Fernando Gomide (2013). “Evolving granular neural
networks from fuzzy data streams”. In: Neural Networks 38, pp. 1–16.

Leng, Jiaxu, Ying Liu, and Shang Chen (2019). “Context-aware attention network for
image recognition”. In: Neural Computing and Applications 31.12, pp. 9295–9305.

Leslie, Christina, Eleazar Eskin, and William Stafford Noble (2001). “The spectrum
kernel: A string kernel for SVM protein classification”. In: Biocomputing 2002.
World Scientific, pp. 564–575.

Li, He, Kaoru Ota, and Mianxiong Dong (2018a). “Learning IoT in edge: Deep learning
for the Internet of Things with edge computing”. In: IEEE network 32.1, pp. 96–101.

137

References

Li, Oscar, Hao Liu, Chaofan Chen, and Cynthia Rudin (2018b). “Deep learning
for case-based reasoning through prototypes: A neural network that explains its
predictions”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

Li, Zhuohan, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and
Joey Gonzalez (2020). “Train Big, Then Compress: Rethinking Model Size for
Efficient Training and Inference of Transformers”. In: International Conference on
Machine Learning. PMLR, pp. 5958–5968.

Liaw, Andy, Matthew Wiener, et al. (2002). “Classification and regression by
randomForest”. In: R news 2.3, pp. 18–22.

Lipton, Zachary C, John Berkowitz, and Charles Elkan (2015). “A critical review of re-
current neural networks for sequence learning”. In: arXiv preprint arXiv:1506.00019.

Liu, Chen et al. (2018). “Memory-efficient deep learning on a SpiNNaker 2 prototype”.
In: Frontiers in neuroscience 12, p. 840.

Liu, Chengyu et al. (2016). “An open access database for the evaluation of heart sound
algorithms”. In: Physiological Measurement 37.12, p. 2181.

Logan, Beth et al. (2000). “Mel Frequency Cepstral Coefficients for Music Modeling.” In:
International Society for Music Information Retrieval (ISMIR). Vol. 270, pp. 1–11.

Long, Yang and Ling Shao (2017). “Learning to recognise unseen classes by a few
similes”. In: Proceedings of the 25th ACM international conference on Multimedia,
pp. 636–644.

Lu, Hongfang and Xin Ma (2020). “Hybrid decision tree-based machine learning models
for short-term water quality prediction”. In: Chemosphere 249, p. 126169.

Lughofer, Edwin David (2008). “FLEXFIS: A robust incremental learning approach
for evolving Takagi–Sugeno fuzzy models”. In: IEEE Transactions on fuzzy systems
16.6, pp. 1393–1410.

Lundberg, Scott and Su-In Lee (2017). “A unified approach to interpreting model
predictions”. In: arXiv preprint arXiv:1705.07874.

MacCarthy, Mark (2019). “An Examination of the Algorithmic Accountability Act of
2019”. In: Available at SSRN 3615731.

Mamdani, Ebrahim H and Sedrak Assilian (1975). “An experiment in linguistic
synthesis with a fuzzy logic controller”. In: International journal of man-machine
studies 7.1, pp. 1–13.

Marcus, Gary (2018). “Deep learning: A critical appraisal”. In: arXiv preprint
arXiv:1801.00631.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–133.

McHugh, Mary L (2011). “Multiple comparison analysis testing in ANOVA”. In:
Biochemia medica 21.3, pp. 203–209.

Medsker, Larry R and LC Jain (2001). “Recurrent neural networks”. In: Design and
Applications 5.

138

References

Mizuno, Kosuke, Yosuke Terachi, Kenta Takagi, Shintaro Izumi, Hiroshi Kawaguchi,
and Masahiko Yoshimoto (2012). “Architectural study of HOG feature extraction
processor for real-time object detection”. In: 2012 IEEE Workshop on Signal
Processing Systems. IEEE, pp. 197–202.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of
machine learning. MIT press.

Mokhtari, Karim El, Ben Peachey Higdon, and Ayşe Başar (2019). “Interpreting finan-
cial time series with SHAP values”. In: Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering, pp. 166–172.

Moraes, Rodrigo, João Francisco Valiati, and Wilson P GaviãO Neto (2013).
“Document-level sentiment classification: An empirical comparison between SVM
and ANN”. In: Expert Systems with Applications 40.2, pp. 621–633.

Müller, Berndt, Joachim Reinhardt, and Michael T Strickland (1995). Neural networks:
an introduction. Springer Science & Business Media.

Nageshrao, Subramanya, H Eric Tseng, and Dimitar Filev (2019). “Autonomous
highway driving using deep reinforcement learning”. In: 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC). IEEE, pp. 2326–2331.

Nebel, David, Marika Kaden, Andrea Villmann, and Thomas Villmann (2017). “Types
of (dis-) similarities and adaptive mixtures thereof for improved classification
learning”. In: Neurocomputing 268, pp. 42–54.

Ng, Ming-Yen et al. (2020). “Imaging profile of the COVID-19 infection: radiologic
findings and literature review”. In: Radiology: Cardiothoracic Imaging 2.1, e200034.

Nguyen, Anh, Jason Yosinski, and Jeff Clune (2015). “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 427–436.

Nielsen, Michael A (2015). Neural networks and deep learning. Vol. 25. Determination
press San Francisco, CA.

Noble, William S (2006). “What is a support vector machine?” In: Nature biotechnology
24.12, pp. 1565–1567.

O’Shea, Keiron and Ryan Nash (2015). “An introduction to convolutional neural
networks”. In: arXiv preprint arXiv:1511.08458.

O’Mahony, Niall, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gus-
tavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh
(2019). “Deep learning vs. traditional computer vision”. In: Science and Information
Conference. Springer, pp. 128–144.

Okabe, Atsuyuki, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu (2009). Spatial
tessellations: concepts and applications of Voronoi diagrams. Vol. 501. John Wiley
& Sons.

139

References

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (2016).
“Wavenet: A generative model for raw audio”. In: arXiv preprint arXiv:1609.03499.

Orr, Mark JL et al. (1996). Introduction to radial basis function networks.
Oshiro, Thais Mayumi, Pedro Santoro Perez, and José Augusto Baranauskas (2012).

“How many trees in a random forest?” In: International workshop on machine
learning and data mining in pattern recognition. Springer, pp. 154–168.

Oyedotun, Oyebade K and Adnan Khashman (2017). “Prototype-incorporated
emotional neural network”. In: IEEE transactions on neural networks and learning
systems 29.8, pp. 3560–3572.

Padarian, José, Alex B McBratney, and Budiman Minasny (2020). “Game theory
interpretation of digital soil mapping convolutional neural networks”. In: Soil 6.2,
pp. 389–397.

Pak, Myeongsuk and Sanghoon Kim (2017). “A review of deep learning in image
recognition”. In: 2017 4th international conference on computer applications and
information processing technology (CAIPT). IEEE, pp. 1–3.

Pal, Mahesh (2005). “Random forest classifier for remote sensing classification”. In:
International journal of remote sensing 26.1, pp. 217–222.

Pan, YN, J Chen, and XL Li (2009). “Spectral entropy: a complementary index for
rolling element bearing performance degradation assessment”. In: Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science 223.5, pp. 1223–1231.

Pasquale, Frank (2015). The black box society. Harvard University Press.
Pedreschi, Dino, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Salvatore

Ruggieri, and Franco Turini (2019). “Meaningful explanations of Black Box AI
decision systems”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33, pp. 9780–9784.

Perner, Petra (2008). “Prototype-based classification”. In: Applied Intelligence 28.3,
pp. 238–246.

Phillips, PJ, CA Hahn, PC Fontana, DA Broniatowski, and MA Przybocki (2020).
Four Principles of Explainable Artificial Intelligence Online: http://dx. doi.
org/10.6028/NIST.

PhysioToolkit, PhysioBank (n.d.). “PhysioNet: components of a new research resource
for complex physiologic signals”. In: Circulation. v101 i23. e215-e220 ().

Potes, Cristhian, Saman Parvaneh, Asif Rahman, and Bryan Conroy (2016). “Ensemble
of feature-based and deep learning-based classifiers for detection of abnormal heart
sounds”. In: 2016 computing in cardiology conference (CinC). IEEE, pp. 621–624.

Pradhan, Ashis (2012). “Support vector machine-a survey”. In: International Journal
of Emerging Technology and Advanced Engineering 2.8, pp. 82–85.

140

References

Prasatha, VS, Haneen Arafat Abu Alfeilate, AB Hassanate, Omar Lasassmehe, Ahmad
S Tarawnehf, Mahmoud Bashir Alhasanatg, and Hamzeh S Eyal Salmane (2017).
“Effects of distance measure choice on knn classifier performance-a review”. In:
arXiv preprint arXiv:1708.04321, p. 56.

Prokhorenkova, L, G Gusev, A Vorobev, AV Dorogush, and A Gulin (2018). “CatBoost:
unbiased 467 boosting with categorical features”. In: Advances 468.

Rai, Arun (2020). “Explainable AI: From black box to glass box”. In: Journal of the
Academy of Marketing Science 48.1, pp. 137–141.

Raub, McKenzie (2018). “Bots, bias and big data: artificial intelligence, algorithmic
bias and disparate impact liability in hiring practices”. In: Ark. L. Rev. 71, p. 529.

Rezaei, Mahdi and Mutsuhiro Terauchi (2013). “Vehicle detection based on multi-
feature clues and Dempster-Shafer fusion theory”. In: Pacific-Rim Symposium on
Image and Video Technology. Springer, pp. 60–72.

Rish, Irina et al. (2001). “An empirical study of the naive Bayes classifier”. In: IJCAI
2001 workshop on empirical methods in artificial intelligence. Vol. 3. 22, pp. 41–46.

Rokach, Lior and Oded Maimon (2005). “Decision trees”. In: Data mining and
knowledge discovery handbook. Springer, pp. 165–192.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.

Ross, Lou (2016). “The Image Processing Handbook, John C. Russ and F. Brent
Neal. CRC Press, Boca Raton, FL, 2015, 1053 pp. ISBN: 978-1498740265.” In:
Microscopy and Microanalysis 22.3, pp. 733–733.

Rubin, Jonathan, Rui Abreu, Anurag Ganguli, Saigopal Nelaturi, Ion Matei, and Kumar
Sricharan (2016). “Classifying heart sound recordings using deep convolutional
neural networks and mel-frequency cepstral coefficients”. In: 2016 Computing in
cardiology conference (CinC). IEEE, pp. 813–816.

Rudin, Cynthia (2019). “Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead”. In: Nature Machine
Intelligence 1.5, pp. 206–215.

Rudin, Cynthia and Joanna Radin (2019). “Why are we using black box models in AI
when we don’t need to? A lesson from an explainable AI competition”. In: Harvard
Data Science Review 1.2.

Safavian, S Rasoul and David Landgrebe (1991). “A survey of decision tree classifier
methodology”. In: IEEE transactions on systems, man, and cybernetics 21.3,
pp. 660–674.

Saralajew, Sascha, Lars Holdijk, Maike Rees, and Thomas Villmann (2018). “Prototype-
based neural network layers: incorporating vector quantization”. In: arXiv preprint
arXiv:1812.01214.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In:
Neural networks 61, pp. 85–117.

141

References

Schuldt, Christian, Ivan Laptev, and Barbara Caputo (2004). “Recognizing human
actions: a local SVM approach”. In: Proceedings of the 17th International Conference
on Pattern Recognition, 2004. ICPR 2004. Vol. 3. IEEE, pp. 32–36.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural networks”.
In: IEEE transactions on Signal Processing 45.11, pp. 2673–2681.

Schwarting, Wilko, Javier Alonso-Mora, and Daniela Rus (2018). “Planning and
decision-making for autonomous vehicles”. In: Annual Review of Control, Robotics,
and Autonomous Systems.

Sejnowski, Terrence J (2018). The deep learning revolution. Mit Press.
Selvaraju, Ramprasaath R, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra (2017). “Grad-cam: Visual explanations from deep
networks via gradient-based localization”. In: Proceedings of the IEEE international
conference on computer vision, pp. 618–626.

Shaha, Manali and Meenakshi Pawar (2018). “Transfer learning for image classification”.
In: 2018 Second International Conference on Electronics, Communication and
Aerospace Technology (ICECA). IEEE, pp. 656–660.

Sharma, Vikas and Anand Parey (2016). “A review of gear fault diagnosis using various
condition indicators”. In: Procedia Engineering 144, pp. 253–263.

Shen, Yuan, Shanduojiao Jiang, Yanlin Chen, Eileen Yang, Xilun Jin, Yuliang Fan,
and Katie Driggs Campbell (2020). “To explain or not to explain: A study
on the necessity of explanations for autonomous vehicles”. In: arXiv preprint
arXiv:2006.11684.

Shi, Heshui, Xiaoyu Han, Nanchuan Jiang, Yukun Cao, Osamah Alwalid, Jin Gu,
Yanqing Fan, and Chuansheng Zheng (2020). “Radiological findings from 81 patients
with COVID-19 pneumonia in Wuhan, China: a descriptive study”. In: The Lancet
Infectious Diseases.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman (2013). “Deep inside
convolutional networks: Visualising image classification models and saliency maps”.
In: arXiv preprint arXiv:1312.6034.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Škrjanc, Igor, Jose Antonio Iglesias, Araceli Sanchis, Daniel Leite, Edwin Lughofer,
and Fernando Gomide (2019). “Evolving fuzzy and neuro-fuzzy approaches in
clustering, regression, identification, and classification: a survey”. In: Information
Sciences 490, pp. 344–368.

Smagulova, Kamilya and Alex Pappachen James (2019). “A survey on LSTM
memristive neural network architectures and applications”. In: The European
Physical Journal Special Topics 228.10, pp. 2313–2324.

Soares, Eduardo and Plamen Angelov (2019). “Fair-by-design explainable models for
prediction of recidivism”. In: arXiv preprint arXiv:1910.02043.

142

References

Soares, Eduardo and Plamen Angelov (2020). A large dataset of real patients CT scans
for COVID-19 identification. Version V1. Harvard. doi: 10.7910/DVN/SZDUQX.
url: https://doi.org/10.7910/DVN/SZDUQX.

— (2021). “RADNN: Robust to Imperceptible Adversarial Attacks Deep Neural
Network”. In: TechRxiv, pp. 1–8.

Soares, Eduardo, Plamen Angelov, Sarah Biaso, Michele Higa Froes, and Daniel Kanda
Abe (2020a). “SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT
scans for SARS-CoV-2 identification”. In: medRxiv.

Soares, Eduardo, Plamen Angelov, Bruno Costa, and Marcos Castro (2019a). “Actively
semi-supervised deep rule-based classifier applied to adverse driving scenarios”. In:
2019 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Soares, Eduardo, Plamen Angelov, Dimitar Filev, Bruno Costa, Marcos Castro, and
Subramanya Nageshrao (2019b). “Explainable density-based approach for self-
driving actions classification”. In: 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA). IEEE, pp. 469–474.

Soares, Eduardo, Plamen Angelov, and Xiaowei Gu (2020b). “Autonomous Learning
Multiple-Model zero-order classifier for heart sound classification”. In: Applied Soft
Computing 94, p. 106449.

Soares, Eduardo, Plamen Angelov, and Ziyang Zhang (2021). “An Explainable approach
to Deep Learning from CT-scans for Covid Identification”. In: TechRxiv, pp. 1–8.

Soares, Eduardo A, Heloisa A Camargo, Suzana J Camargo, and Daniel F Leite
(2018). “Incremental gaussian granular fuzzy modeling applied to hurricane track
forecasting”. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE, pp. 1–8.

Soares, Eduardo Almeida, Plamen P Angelov, Bruno Costa, Marcos Castro, Subra-
manya Nageshrao, and Dimitar Filev (2020c). “Explaining deep learning models
through rule-based approximation and visualization”. In: IEEE Transactions on
Fuzzy Systems.

Solmaz, Berkan, Shayan Modiri Assari, and Mubarak Shah (2013). “Classifying web
videos using a global video descriptor”. In: Machine vision and applications 24.7,
pp. 1473–1485.

Song, Yan-Yan and LU Ying (2015). “Decision tree methods: applications for
classification and prediction”. In: Shanghai archives of psychiatry 27.2, p. 130.

Soria, Daniele, Jonathan M Garibaldi, Federico Ambrogi, Elia M Biganzoli, and
Ian O Ellis (2011). “A ‘non-parametric’version of the naive Bayes classifier”. In:
Knowledge-Based Systems 24.6, pp. 775–784.

Souza, Paulo Vitor de Campos, Eduardo A Soares, Augusto Junio Guimarães, Vanessa
Souza Araujo, Vinicius Jonathan S Araujo, and Thiago Silva Rezende (2020).
“Autonomous data density pruning fuzzy neural network for optical interconnection
network”. In: Evolving Systems.

143

https://doi.org/10.7910/DVN/SZDUQX
https://doi.org/10.7910/DVN/SZDUQX

References

Stilgoe, Jack (2020). “Who Killed Elaine Herzberg?” In: Who’s Driving Innovation?
Springer, pp. 1–6.

Stock, Pierre and Moustapha Cisse (2018). “Convnets and imagenet beyond accuracy:
Understanding mistakes and uncovering biases”. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 498–512.

Suthaharan, Shan (2016). “Support vector machine”. In: Machine learning models and
algorithms for big data classification. Springer, pp. 207–235.

Suykens, JAK, Lukas Lukas, Paul Van Dooren, Bart De Moor, Joos Vandewalle, et al.
(1999). “Least squares support vector machine classifiers: a large scale algorithm”.
In: European Conference on Circuit Theory and Design, ECCTD. Vol. 99. Citeseer,
pp. 839–842.

Svozil, Daniel, Vladimir Kvasnicka, and Jiri Pospichal (1997). “Introduction to multi-
layer feed-forward neural networks”. In: Chemometrics and intelligent laboratory
systems 39.1, pp. 43–62.

Swain, Philip H and Hans Hauska (1977). “The decision tree classifier: Design and
potential”. In: IEEE Transactions on Geoscience Electronics 15.3, pp. 142–147.

Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi (2017).
“Inception-v4, inception-resnet and the impact of residual connections on learning”.
In: Thirty-first AAAI conference on artificial intelligence.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich (2015).
“Going deeper with convolutions”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1–9.

Takagi, Tomohiro and Michio Sugeno (1985). “Fuzzy identification of systems and its
applications to modeling and control”. In: IEEE transactions on systems, man,
and cybernetics 1, pp. 116–132.

Tan, Chuanqi, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu
(2018). “A survey on deep transfer learning”. In: International conference on
artificial neural networks. Springer, pp. 270–279.

Tan, Xiao-hui, Wei-hua Bi, Xiao-liang Hou, and Wei Wang (2011). “Reliability analysis
using radial basis function networks and support vector machines”. In: Computers
and Geotechnics 38.2, pp. 178–186.

Tang, Duyu, Bing Qin, and Ting Liu (2015). “Document modeling with gated recurrent
neural network for sentiment classification”. In: Proceedings of the 2015 conference
on empirical methods in natural language processing, pp. 1422–1432.

Tarwani, Kanchan M and Swathi Edem (2017). “Survey on recurrent neural network
in natural language processing”. In: Int. J. Eng. Trends Technol 48, pp. 301–304.

Taunk, Kashvi, Sanjukta De, Srishti Verma, and Aleena Swetapadma (2019). “A brief
review of nearest neighbor algorithm for learning and classification”. In: 2019

144

References

International Conference on Intelligent Computing and Control Systems (ICCS).
IEEE, pp. 1255–1260.

Tay, Yi, Mostafa Dehghani, Dara Bahri, and Donald Metzler (2020). “Efficient
transformers: A survey”. In: arXiv preprint arXiv:2009.06732.

Ting, Daniel Shu Wei, Lawrence Carin, Victor Dzau, and Tien Y Wong (2020). “Digital
technology and COVID-19”. In: Nature medicine 26.4, pp. 459–461.

Tjoa, Erico and Cuntai Guan (2020). “A survey on explainable artificial intelligence
(xai): Toward medical xai”. In: IEEE Transactions on Neural Networks and Learning
Systems.

Tritscher, Julian, Markus Ring, Daniel Schlr, Lena Hettinger, and Andreas Hotho
(2020). “Evaluation of Post-hoc XAI Approaches Through Synthetic Tabular Data”.
In: International Symposium on Methodologies for Intelligent Systems. Springer,
pp. 422–430.

Varshney, Kush R and Homa Alemzadeh (2017). “On the safety of machine learning:
Cyber-physical systems, decision sciences, and data products”. In: Big data 5.3,
pp. 246–255.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”. In:
arXiv preprint arXiv:1706.03762.

Voulodimos, Athanasios, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis (2018). “Deep learning for computer vision: A brief review”. In:
Computational intelligence and neuroscience 2018.

Wang, Danding, Qian Yang, Ashraf Abdul, and Brian Y Lim (2019a). “Designing
theory-driven user-centric explainable AI”. In: Proceedings of the 2019 CHI
conference on human factors in computing systems, pp. 1–15.

Wang, Qiang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao (2019b). “Learning deep transformer models for machine translation”.
In: arXiv preprint arXiv:1906.01787.

Weber, M and M Weber (1999). “Caltech frontal face database”. In: California Institute
of Technology.

Wexler, Rebecca (2017). “When a computer program keeps you in jail: How computers
are harming criminal justice”. In: New York Times 13.

Whitaker, Bradley M, Pradyumna B Suresha, Chengyu Liu, Gari D Clifford, and
David V Anderson (2017). “Combining sparse coding and time-domain features
for heart sound classification”. In: Physiological measurement 38.8, p. 1701.

Xiao, Jianli (2019). “SVM and KNN ensemble learning for traffic incident detection”.
In: Physica A: Statistical Mechanics and its Applications 517, pp. 29–35.

Xing, Wenchao and Yilin Bei (2019). “Medical health big data classification based on
KNN classification algorithm”. In: IEEE Access 8, pp. 28808–28819.

145

References

Xiong, Wayne, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig (2016). “Achieving human parity in
conversational speech recognition”. In: arXiv preprint arXiv:1610.05256.

Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schütze (2017). “Comparative
study of CNN and RNN for natural language processing”. In: arXiv preprint
arXiv:1702.01923.

Yoo, Seung Hoon et al. (2020). “Deep learning-based decision-tree classifier for COVID-
19 diagnosis from chest X-ray imaging”. In: Frontiers in medicine 7, p. 427.

Zabihi, Morteza, Ali Bahrami Rad, Serkan Kiranyaz, Moncef Gabbouj, and Aggelos K
Katsaggelos (2016). “Heart sound anomaly and quality detection using ensemble of
neural networks without segmentation”. In: 2016 computing in cardiology conference
(CinC). IEEE, pp. 613–616.

Zadeh, Lofti A. (1965). “Information and control”. In: Fuzzy sets 8.3, pp. 338–353.
— (1983). “The role of fuzzy logic in the management of uncertainty in expert systems”.

In: Fuzzy sets and systems 11.1-3, pp. 199–227.
Zakariah, Mohammed et al. (2014). “Classification of large datasets using Random

Forest Algorithm in various applications: Survey”. In: International Journal of
Engineering and Innovative Technology (IJJEIT) 4.3.

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and understanding con-
volutional networks”. In: European conference on computer vision. Springer,
pp. 818–833.

Zhang, Mi, Faen Zhang, Nicholas D Lane, Yuanchao Shu, Xiao Zeng, Biyi Fang,
Shen Yan, and Hui Xu (2020). “Deep Learning in the Era of Edge Computing:
Challenges and Opportunities”. In: Fog Computing: Theory and Practice, pp. 67–78.

Zhong, Guoqiang, Li-Na Wang, Xiao Ling, and Junyu Dong (2016). “An overview
on data representation learning: From traditional feature learning to recent deep
learning”. In: The Journal of Finance and Data Science 2.4, pp. 265–278.

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba
(2016). “Learning deep features for discriminative localization”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2921–2929.

Zhou, Lina, Shimei Pan, Jianwu Wang, and Athanasios V Vasilakos (2017). “Machine
learning on big data: Opportunities and challenges”. In: Neurocomputing 237,
pp. 350–361.

Zhuang, Fuzhen, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He (2015).
“Supervised representation learning: Transfer learning with deep autoencoders”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence.

146

	Introduction
	Motivation
	Aims and Objectives
	Methodology
	Research Contributions
	Thesis Outline

	Background and Related Work
	Artificial Intelligence and Machine Learning
	Machine Learning Methods for Classification
	K-nearest neighbour (k-NN)
	Support Vector Machine (SVM)
	Hyperplane separation
	Maximum-magin hyperplane
	Soft-magin
	Kernel function

	Decision Tree
	Random Forest

	Fuzzy Sets and Rules
	Fuzzy Rules

	Artificial Neural Networks
	Neuro-fuzzy Systems
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Transformers

	From black-box to explainable approaches
	Explainable AI
	XAI Classification
	State-of-the-art on XAI methods
	Features-oriented methods
	Global methods
	Surrogate models
	Local, pixel-based methods
	Anthropomorphic machine learning
	Discussion

	XAI applications
	Autonomous Vehicles
	Medicine
	Legal justice
	Defense

	Conclusion

	eXplainable-by-design Deep Learning
	Brief Literature Review
	Explainable Deep Neural Network
	xDNN Training Architecture
	Features layer
	Density layer
	Conditional probability layer
	Prototypes layer
	Learning Procedure
	MegaClouds layer

	xDNN Decision Structure
	Features layer
	Similarity layer
	Local decision making layer
	Global decision making layer

	Experimental Data
	Caltech-256
	Caltech-101
	iRoads dataset
	COVID CT-scan dataset
	Image acquisition parameters

	COMPAS dataset for Fairness
	Heart sound classification
	Pre-Processing of the heart sound dataset

	Results and Analysis
	Performance Evaluation
	Caltech-256 and Caltech-101 Dataset
	iRoads Dataset
	COVID-19 identification
	Results for COMPAS dataset
	Results for Heart sound classification

	Conclusion

	Deep Machine Reasoning
	DMR Architecture
	Input (features) layer
	Data density layer
	Conditional probability layer
	Prototypes layer
	Synthetic data augmentation
	MegaClouds layer

	Learning Procedure
	Multi-layer Decision Structure
	Input (features) layer
	Ranked prototypes layer
	Maximum similarity layer
	Pair-wise confidence checks layer
	Pair-wise winners layer

	Numerical Experiments
	Faces-1999
	Caltech-101
	Caltech-256

	Performance Evaluation
	Results and Analysis
	Faces Data set
	Caltech-101 Data set
	Caltech-256 Data set

	Conclusion

	Explaining Deep Learning Through Rules
	General Architecture
	Learning rules from the data
	Pre-processing
	Parameters definition
	Data density calculation
	Prototype update
	Rule update

	Hierarchical organisation of the prototypes
	Density-Based Input Selection

	Ford Dataset
	Performance Evaluation
	Results and Analysis
	Conclusion

	Detecting and Learning from Unknown
	Concept and Basic Algorithm
	Pre-processing
	Parameters initialization
	Density Estimation
	Parameters Update

	Detect and Learn from Unknown
	Drop of confidence (detect the novelty)

	Results for Novelty Detection
	iRoads dataset
	Faces-1999 dataset
	Caltech-101 dataset
	Vehicles dataset

	Conclusion

	Conclusion and Future Work
	Summary of Research and Finding
	Limitations
	Contributions
	Future Work

	Appendix List of Publications
	References

