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Abstract

Gender differences in decision making is a topic that has attracted much attention in

the literature and the debate seems to be inconclusive. A method that is often used in

the economics literature to account for gender effects is by estimating econometric struc-

tural models and testing the significance of the estimated parameters. In this paper we

focus on estimations of preference models and we show how omitting to account for be-

havioural heterogeneity can lead to failures in identifying potential differences. Using data

from risky choice experiments, we compare the traditional representative agent Maximum

Likelihood Estimation approach against two more flexible inference methods that allow

for heterogeneity at the individual level, the Maximum Simulated Likelihood Estimation,

and the Hierarchical Bayesian modelling. We show how ignoring heterogeneity may lead

to failures capturing gender differences and we suggest the use of Bayesian modelling to

effectively estimate the underlying parameters.
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1 Introduction

There is no doubt that risk preferences play a central role in every aspect of economic life.

Gender differences in risk preferences is a much debated topic and it has often been argued that

these differences might provide a possible explanation of the observed differences between the

two genders in various aspects of economic life such as financial decision making, hold of front

office roles, or entrepreneurship, to name but a few. Nevertheless, there is little agreement on

whether there is a universal pattern of differences between the two genders. Early surveys

from the economic literature (Eckel and Grossman, 2008; Croson and Gneezy, 2009) provide

mostly supporting evidence of women being less willing to accept risks. Recently, Filippin and

Crosetto (2016) conducted an extensive meta-analysis on gender differences and risk attitudes,

using data from 7000 subjects and 54 replication studies of the Holt and Laury (2002) risk

elicitation task. One of their main findings is that:

“[..] gender differences appear in less than 10% of the studies and are significant

but negligible in magnitude once all the data are pooled.”

and they conclude that:

“[..] the structural model seems to confirm that significant gender differences are

detected in the HL task when merging all the observations. The reason is to be

found in the sky-rocketing increase of the statistical power of the test, which drives

fairly close to zero the likelihood of observing a false negative when data are merged.”

The above statement indicates that in order to be in place to detect any potential gender ef-

fects, one needs to recruit an extremely large sample of subjects, for the standards of economic

experimentation, a task which seems prohibiting given all the time, financial and practical

constraints that a researcher may face. In this paper, motivated by the conclusions of Filippin

and Crosetto (2016), we investigate how one can increase the extracted information from small

sample datasets, and what are the implications of omitting to do so.
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One of the most common approaches to explore potential differences between genders is

to assume a particular preference functional, pool all the data together, and estimate a rep-

resentative agent model, using demographic dummy variables to control for heterogeneity

(see Harrison and Rutström, 2008, Xie et al. (2017), Vieider et al., 2015, Bouchouicha et al.,

2019). Parameters are then obtained by using either Maximum Likelihood Estimation tech-

niques (MLE) or Non-Linear Least Squares estimation methods, and the statistical significance

of the dummies defines the existence and the size of potential differences. While the repre-

sentative approach is attractive, due to its simplicity , it comes with a serious limitation. By

ignoring individual heterogeneity, the estimated preferences may not be representative for any

of the subjects. Consider an extreme scenario where out of 100 subjects, 50 are male and risk

neutral, 25 female and risk seeking with a risk coefficient of -0.50 (assuming a power utility

function as in Holt and Laury, 2002 and later in our analysis of the form x1−r/(1 − r)) and

the remaining 25 subjects are females and risk averse, with a coefficient of 0.50. Pooling all

the data together and fitting a representative agent model to this dataset, including a control

variable to capture potential gender differences, will return an estimated risk aversion very

close to zero, implying risk neutrality, and the coefficient of gender effects to be insignificant1.

The main conclusion that a researcher could draw from a similar analysis is that the observed

population has risk neutral preferences and there are no gender effects. Consider now a policy

maker who aims to identify the risk seeking women in a population. By conducting a sim-

ilar analysis, the policy maker will reach the conclusion that no risk seeking women exist in

this sample and no action needs to be taken. While this example is extreme and perhaps im-

probable, it is used to highlight the impact of ignoring potential behavioural heterogeneity in

identifying preferences and differences based on demographic criteria.

On the other end of the spectrum, one could estimate preference functionals at the indi-

vidual subject-level (see Hey and Orme, 1994, Stott, 2006). While this approach takes into

1We indeed executed a similar simulation exercise where this result was confirmed. Details are available on
request.
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consideration the individual characteristics of each subject, a large amount of data points is

required in order to obtain robust and reliable estimates. This comes at a high cost for the re-

searcher, as larger number of decision tasks would mean longer sessions that could potentially

lead to boredom and eventually to more noisy data.

In the present study we compare the representative agent modelling approach, to two

more flexible and informative methods of parameter estimation that allow one to simulta-

neously make inferences at both the individual subject and the experimental population level.

In particular, we compare the frequentist and the Bayesian methods, by analysing the data

using Maximum Simulated Likelihood Estimation techniques (MSLE), as well as Hierarchical

Bayesian (HB) econometric modelling. We use data from three prominent studies of decision

making under risk. First, we use the original data from the Holt and Laury (2002) experiment,

and assuming Expected Utility preferences, we first show how all three inference methods are

able to capture gender effects. Then, we extend our analysis to non-Expected Utility prefer-

ences, and particularly to Rank Dependent Utility, since our focus in on risky choice in the

gains domain. Using the dataset from Baillon et al. (2020), we show that taking into consid-

eration individual heterogeneity, improves the inference, while the MLE representative agent

model fails to identify the existence of gender differences. Finally, we focus on the domain

of losses, and adopting a Cumulative Prospect Theory framework, we explore the differences

between the two genders, across all the components of risk preferences, namely utility cur-

vature, probability weighting and loss aversion. We show how MLE fails to capture gender

differences and we also focus on the differences between the MSLE and the HB methods in

capturing these differences.

Our results can be summarised as follows. When there is a small number of parameters

to estimate, any of the inference methods will be able to detect the presence of gender differ-

ences in the key behavioural parameters. As the model complexity increases, and therefore

the number of parameters along with their collinearity, more flexible methods that take into
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consideration individual heterogeneity, provide more robust inference when the focus is on the

difference between two populations. We complement our study with an extensive Monte Carlo

simulation to compare the three inference methods, and we show that while all MLE, MSLE

and HB methods are able to successfully recover the mean values of the simulated parame-

ters, frequentist methods are more prone to ignore statistical significance due to overfitting,

compared to Bayesian methods.

The rest of the paper is organised as follows: section 2 briefly introduces the idea of Hi-

erarchical Bayesian modelling, section 3 focuses on the Holt and Laury (2002) risk elicitation

task and presents, along with the task and the data, the econometric specification for both

MLE and HB, assuming Expected Utility preferences (EU), section 4 relaxes the hypothesis of

EU and introduces Rank Dependent Utility preferences using data that allow the estimation

of such preferences, and finally, section 5 focuses on the domain of losses, introducing a Cu-

mulative Prospect Theory model and loss aversion. In section 6 we report the results of the

simulation. We then conclude.

2 Frequentist Vs Bayesian Parameter Estimation

The most common approach to estimate structural decision making models is by either pooling

all data together and fit a representative agent model, or by assuming complete independence

and fit subject-level models, using maximum likelihood estimation techniques (MLE). Fitting

a representative agent model ignores much of individual behavioural heterogeneity and gen-

erates estimates which potentially, are not representative of any individual subject in the sam-

ple. A simple way to introduce heterogeneity to the representative model is to condition the

parameters to a set of observable demographics and assume that subjects that belong to the

same demographic group share the same behavioural parameters (see for example Harrison

and Rutström, 2008, Bouchouicha et al., 2019). An alternative way to introduce heterogene-
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ity, within the frequentist framework, is to use a random-coefficients model, a popular method

to model unobserved heterogeneity, on top of the observed one (e.g. through demograph-

ics). In this kind of modelling, it is assumed that each behavioural parameter in the model is

characterised by an underlying distribution across the population. Using MLE techniques and

simulation, it is possible to combine estimates of the population distribution (mean and stan-

dard deviation) with individual choices, and make inferences at both the population and the

subject level (for applications see von Gaudecker et al., 2011; Conte et al., 2011; Moffatt, 2016).

Nevertheless, it is known that MLE is susceptible to overfitting and may generate noisy and

unreliable estimates when there is a lack of a large number of observations (see Bishop, 2006,

pp. 166, Nilsson et al., 2011). An alternative method to introduce heterogeneity and mitigate

these drawbacks is to adopt Hierarchical Bayesian estimation techniques (see Balcombe and

Fraser, 2015; Ferecatu and Önçüler, 2016 and Baillon et al., 2020 for some recent applications

of hierarchical models for choice models under risk and Stahl, 2014 for ambiguity models.).

The key aspect of hierarchical modelling is that even though it recognises individual varia-

tion, it also assumes that there is a distribution governing this variation (individual parameter

estimates originate from a group-level distribution). As Baillon et al. (2020) highlight, Hierar-

chical Bayesian modelling is a compromise between a representative agent and subject-level

type estimation. It estimates the model parameters for each subject separately, but it assumes

that subjects share similarities and draw their individual parameters from a common, popula-

tion level distribution. In that way, individual parameter estimates inform each other and lead

to a shrinkage towards the group mean that reduces biases in parameter estimates. The latter

leads to more efficient and reliable estimates compared to those estimated using frequentist

methods. One of the most crucial aspects of Bayesian inference, is the way uncertainty is in-

corporated in the econometric model in the form of probability distributions. A researcher can

use her subjective beliefs or objective knowledge and form a prior distribution which sum-

marises all the available knowledge regarding a particular parameter, before observing any
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data. In Bayesian inference, the estimation of a parameter of interest corresponds to the cal-

culation of the probability distribution over the parameter, given the observed data and the

prior beliefs. Another aspect of the Hierarchical model is that it is applied in an hierarchical

form providing both within decision unit analysis (subject level) and across unit analysis (pop-

ulation level). Both the way the Bayesian model incorporates uncertainty and its Hierarchical

structure, allows it generate precise estimation of preferences, even when the available data

are limited.

Jacquement and L’Haridon (2018, p. 247) provide a comparison between the frequentist

and Bayesian methods, highlighting the most important differences, namely the way each

method interprets each parameter, the nature of the point estimation, the way intervals for

statistical significance are estimated, and; the way hypothesis testing can be done. For the

frequentist method the parameter is an unknown constant while for the Bayesian a random

variable. Similarly, the point estimation will be the value of the estimator in the former, while

a posterior summary in the latter (e.g. the mode of the distribution). For statistical signifi-

cance, the frequentist method requires the estimation of confidence intervals, compared to the

credible intervals in the Bayesian inference. As Huber and Train (2001) point out, in the pres-

ence of small samples, the two procedures can provide numerically different results, due to

the different way of treating uncertainty in the parameters of the population distribution. In

what follows, we compare the three different inference methods (MLE, MSLE and HB) in their

capacity to detect gender differences, focusing on three representative examples of decision

making under risk.

3 Risk Preferences and Expected Utility

Gender differences in risky decision making has been the topic of numerous studies. Eckel and

Grossman (2008) and Croson and Gneezy (2009) summarise the literature, finding that female
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subjects tend to be more risk averse. Charness and Gneezy (2012) and Holt and Laury (2014)

discuss how the risk elicitation task affects the inference on differences, while Filippin and

Crosetto (2016) challenge the early evidence by finding that the observed effects are negligible

in magnitude. In this section we focus on one of perhaps the most common elicitation methods

that has been used in the literature, the Holt and Laury (2002) task.

3.1 Decision Task and Data

For the analysis, we use the data from the original Holt and Laury (2002) study. Each subject

is presented with the 10 choice tasks, as shown in Table 1. Each task consists of a choice

between two paired lotteries A and B. The payoffs for lottery A are fixed to $2.00 and $1.6,

while for lottery B, the payoffs are 3.85 and $0.10. Since lottery A is characterized by less

variable payoffs, one can label A as the safe option and B the risky one. In the first choice task,

the probability of getting the high payoff is equal to 10% for both lotteries, and it increases

as one moves down the table. At the first row, only the extremely risk seeking subjects are

expected to choose lottery B. A risk neutral person is expected to choose lottery A for the first

4 tasks (since the expected value of lottery A is greater) and then switches to lottery B for

the remaining tasks. Holt and Laury (2002), assuming a particular form of risky preferences,

provide a mapping between then number of safe choices and the value of risk coefficient of a

subject (the higher the degree of risk aversion, the higher the number of safe choices).

There are data from 212 subjects (95 females) from 4 treatments, an incentivised low-payoff

treatment (LOW1), with payoffs as those in Table 1, a hypothetical treatment (HYP), with the

payoffs scaled up by 20, 50 or 90, an incentivised high-payoff treatment (HIGH), with payoffs

scaled up by 20, and finally, a low-payoff treatment (LOW2), identical to the first one. For our

purposes, we use only the data from the low-payoff treatment (LOW1).
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Table 1: The 10 Lotteries from Holt and Laury (2002).

Option A Option B

Task pA1 xA1 pA2 xA2 pB1 xB1 pB2 xB2

1 0.1 2.00$ 0.9 1.60$ 0.1 3.85$ 0.9 0.10$

2 0.2 2.00$ 0.8 1.60$ 0.2 3.85$ 0.8 0.10$

3 0.3 2.00$ 0.7 1.60$ 0.3 3.85$ 0.7 0.10$

4 0.4 2.00$ 0.6 1.60$ 0.4 3.85$ 0.6 0.10$

5 0.5 2.00$ 0.5 1.60$ 0.5 3.85$ 0.5 0.10$

6 0.6 2.00$ 0.4 1.60$ 0.6 3.85$ 0.4 0.10$

7 0.7 2.00$ 0.3 1.60$ 0.7 3.85$ 0.3 0.10$

8 0.8 2.00$ 0.2 1.60$ 0.8 3.85$ 0.2 0.10$

9 0.9 2.00$ 0.1 1.60$ 0.9 3.85$ 0.1 0.10$

10 1.0 2.00$ 0 1.60$ 1.0 3.85$ 0 0.10$

3.2 Theoretical Framework and Econometric Specification

We assume that the agent holds Expected Utility preferences and receives utility from income

according to a Constant Relative Risk Aversion (CRRA) utility function of the form:

u(x) =
x1−r

1− r
(1)

where x is the monetary payoff, and r is the risk coefficient with r > 0 indicating a concave

utility for gains (risk aversion), r < 0 a convex utility (risk seeking) and r = 0 a linear utility

(risk neutrality). For r = 1 the function collapses to the logarithmic function. A lottery is

evaluated by the weighted sum of the utilities of the payoffs, therefore, the expected utility of
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lottery A, for a particular task, is given by

EUA = pA1
xA1

1−r

1− r
+ (1− pA1)

xA2
1−r

1− r
(2)

To account for the stochastic nature in choices, we assume a logit link function. Thus, the

probability of choosing lottery A is given by:

P(A) =
exp(1/ξEUA)

exp(1/ξEUA) + exp(1/ξEUB)
(3)

with ξ a precision parameter to be estimated. According to the above assumptions, the log-

likelihood function is given by:

LL(θ) =
N

∑
n=1

I

∑
i=1

yni ln(Pni(Ai)) + (1− yni) ln(1− Pni(Ai)) (4)

where N is the total number of subjects, I is the number of tasks, yni = 1(0) is an indicator

function denoting the choice of lottery A(B) for subject n in task i, and θ is the vector of be-

havioural parameters to be estimated. Therefore, there are 2 parameters to estimate, the risk

coefficient r and the precision parameter ξ. To introduce gender effects, we introduce a dummy

variable yFEMALE which takes the value 1 is the subject is female, otherwise it is equal to 0. For

each parameter θn in our model, with θn ∈ {r, ξ} we specify

θn = θ0 + θFEMALE × yFEMALE (5)

Since we consider a stochastic model which takes into consideration the errors of the deci-

sion maker, we include in the analysis the observations of all the subjects (rather than focusing

only on subjects without multiple switches). There are in total 4 parameters to estimate, the

risk coefficient, the precision parameter and the two parameters that capture gender effects. 2

2For the estimation we use a general nonlinear augmented Lagrange multiplier optimisation routine that allows

10



For the HB estimation, we follow Rouder and Lu (2005) and Nilsson et al. (2011) set-up.

Each subject n made a series of I binary choices in a given dataset and the observed choices

vector is denoted by Dn = (Dn1 · · ·DnI). Every subject is characterised by its own parameter

vector Θn = (rn, ξn), and we assume that both the utility curvature rn and the sensitivity

parameter ξn are normally distributed (θn ∼ N(µθ , σθ)), while for the hyper-parameters we

assume normal priors for the mean µθ and uninformative priors (uniform) for σθ . We also

follow the standard procedure and transform all the parameters to their exponential form to

ensure that they lie within the appropriate bounds (see Balcombe and Fraser, 2015). To capture

gender differences, we condition the mean of all parameters to a female covariate. For each

subject n, each parameter θn is assumed to be drawn from a normal distribution of the form:

θn ∼ N(θ + θFEMALE × yFEMALE, σ2
θ ), with yFEMALE a female dummy variable. That is, the

mean between the two groups differs by θFEMALE. In what follows, we use either a normal or

a log-normal distribution, depending on whether there are constraints for a parameter to be

strictly positive.

The likelihood of subject’s n choices is given by:

P(Dn|Θn) =
I

∏
i=1

P(Dn,i|Θn)

where P(Dn,i|Θn) is given by:

LL(θ) =
I

∑
i=1

yni ln(Pni(Ai)) + (1− yni) ln(1− Pni(Ai)) (6)

Combining the likelihood of the observed choices and the probability distribution of all the

for random initialisation of the starting parameters as well as multiple restarts of the solver, to avoid local max-
ima. The estimation was conducted using the R programming language for statistical computing (The R Manuals,
version 3.6.1. Available at: http://www.r-project.org/).
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behavioural parameters, the posterior distribution of the parameters is given by:

P(Θ|D) ∝ P(D|Θ)× P(Θ)

with P(D|Θ) being the likelihood of observed choices over all the subjects and P(Θ) the priors

for all parameters in the set Θ.

Monte Carlo Markov Chains (MCMC) were used to estimate all the specifications. The

estimation was implemented in JAGS (Plummer, 2017). The posterior distribution of the pa-

rameters is based on draws from two independent chains, with 50,000 MCMC draws each.

Due to the high level of non-linearity of the models, there was a burn-in period of 25,000

draws, while to reduce autocorrelation on the parameters, the samples were thinned by 10

(every tenth draw was recorded). Convergence of the chains was confirmed by computing the

R̂ statistic (Gelman and Rubin, 1992).

Finally, for the MSLE we follow Train (2009) and Moffatt (2016) and we estimate the mod-

els with the help of simulation. As mentioned before, in this random-coefficient model, the

behavioural parameters for a given subject are fixed and they vary across the experimental

population according to a distribution (usually assumed Normal). Assuming that a parame-

ter θ is drawn from a distribution with density g(θ), for a set of I choices, the likelihood of

subject’s n choices is given by:

LL(θ) =
∫ [ I

∏
i=1

Pni(Ai)
yni × (1− Pni(Ai)

1−yni)g(θ)

]
dθ (7)

and the total log-likelihood is given by the sum of the logarithm of (7) across all subjects. The

parameter θ is distributed over subjects according to the density function g(θ), and is known

as the subject-specific random effect. The variation in θ captures the between-subject hetero-

geneity. When there are more than one parameters θ, the distribution g(θ) is a multivariate

distribution and the integral is multidimensional. Therefore, the challenge for the estimation
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method is how to evaluate the integral in (7), since there is no analytical solution. In our analy-

sis, we resort to simulation to approximate the integral, using Maximum Simulated Likelihood

Estimation techniques. We use 100 Halton draws per subject. Following Conte et al. (2011), we

assume the stochastic parameter ξ to be constant. For the Expected Utility model we therefore

estimate 5 parameters, the mean and standard deviation of the risk coefficient r, the precision

parameter ξ and the gender effects for both parameters.

3.3 Results

Table 2 reports the estimates from the three inference methods. The first column reports the

results from the MLE, the middle from the MSLE and the last one from the HB model. For each

parameter θ, we report the point estimate for the MLE, the mean of the distribution µθ for the

MSLE, and the mode of the posterior distribution for the HB. The standard errors are reported

in the Table, with the exception of the HB model where the standard deviation of the posterior

distribution of each parameter is reported instead. The statistical significance is based on the

respective confidence intervals (credible intervals for the HB).
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Table 2: Estimates using the Holt and Laury (2002) data.

MLE MSLE HB

r 0.289∗∗∗ 0.265∗∗∗ 0.292∗∗∗

s.e. 0.022 0.021 0.033

rFEMALE 0.103∗∗∗ 0.103∗∗∗ 0.103∗∗

s.e. 0.034 0.021 0.050

σr - 0.192 -

s.e. - 0.000 -

ξ 0.253∗∗∗ 0.184∗∗∗ 0.086∗∗∗

s.e. 0.014 0.016 0.014

ξFEMALE 0.050∗∗ 0.136 0.041

s.e. 0.023 0.193 0.333

The Table reports estimates from all three inference methods: Maximum Likelihood Estima-
tion (MLE), Maximum Simulated Likelihood Estimation (MSLE) and Hierarchical Bayesian
(HB). For each parameter θ, the Table reports the point estimate for the MLE, the mean of the
distribution µθ for the MSLE, and the mode of the posterior distribution for the HB. Standard
errors are reported (standard deviation for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In all cases, the risk coefficient is positive and statistically significant, indicating risk averse

preferences for all subjects. The coefficient of risk aversion ranges between 0.265 and 0.292

between the three inference methods, what Holt and Laury (2002) characterise as “slightly risk

averse”. Focusing on the gender effects parameters, the coefficient is positive and statistically

significant in all three cases, and remarkably at the same magnitude of 0.103. Finally, focusing

on the precision parameter ξ, the effect of introducing more flexible inference methods to its

magnitude, is apparent. The estimate of ξ using MLE is equal to 0.253 which is quite large

compared to the other two methods. Since there is an inverse relationship between the size of

ξ and the estimated noise (the lower the ξ the higher the precision) a larger estimate of ξ indi-

cates issues with overfitting. As the inference methods become more flexible, the estimate of ξ

14



becomes smaller, indicating more precise and less noisy estimates. The main conclusion from

this analysis, is that by ignoring the between-subject heterogeneity, and estimating a model

assuming a basic level of heterogeneity, as in the case of the MLE estimation, it is possible to

detect the existence of gender differences, regardless of which estimation method is adopted.

In what follows, we explore whether this result can be generalised when the complexity of the

model increases. Filippin and Crosetto (2016) extend their analysis and investigate whether

relaxing the expected utility assumption, has an effect to the inferred gender differences. By

introducing a probability weighting function and non-expected utility preferences, they esti-

mate a structural specification, using MLE, and show that the gender differences in the risk

coefficient disappear, and they appear in the probability weighting parameter. As the original

Holt and Laury (2002) task was not developed with non-expected utility preferences in mind,

in the next section we repeat the same analysis as above, using data from an experiment which

was particularly developed to identify risk preferences, stemming from both the curvature of

the utility function and the shape of the probability weighting function.

4 Risk Preferences and Rank Dependent Utility

Motivated by the Allais paradox, a vast theoretical and experimental literature emerged, chal-

lenging the assumption of expected utility preferences (see Starmer, 2000 for a review of non-

EU theories; Camerer, 1995 for an early discussion of the experimental work; and Hey, 2014

for a more recent review). In this section, we focus on one of the most influential alterna-

tives to EU, the Quiggin (1982) Rank Dependent Utility model (RDU) which later led to the

modification of the Original Prospect Theory model and the development of the Tversky and

Kahneman (1992) Cumulative Prospect Theory model (which we explore in the next section).

In the RDU model, attitudes towards risk are characterised by both the curvature of the utility

function, and the shape of the probability weighting function, while there is evidence that the
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two components are not strongly correlated (Qui and Steiger 2011; Toubia et al. 2013). There-

fore, given the extensive empirical evidence of the existence of non-EU preferences, it is crucial

to take both components into consideration, when one investigates the existence of gender dif-

ferences in risk preferences. We do so by using the data from Baillon et al. (2020).

4.1 Decision Task and Data

Objective of this experiment was to identify the reference point that subjects are using when

they make choices under risk. Each experimental task involved a choice between two paired

lotteries again, A and B. An optimal design was employed to construct the questions of the

experiment in a way that they would satisfy the following 5 criteria: (1)the questions must

be diverse in terms of number of outcomes and magnitudes of probabilities involved, (2)the

questions within each choice must have nonmatching maximal or minimal outcomes, (3) the

questions must be diverse in terms of relative positioning in the outcome space, (4) they must

have similar expected value to avoid trivial or statistically noninformative choice situations,

and; (5) they must be “orthogonal” in some sense to maximise statistical efficiency. The number

of the outcomes within each lottery varied between tasks, from 2 to 4 outcomes, all in the gains

domain (strictly positive). An example of a task is provided below:

A =



135, with probability 0.55

290, with probability 0.35

329, with probability 0.10

B =



159, with probability 0.05

259, with probability 0.55

359, with probability 0.10

409, with probability 0.30

The order of the tasks was randomised, and there was a total of 70 tasks per subject, with vary-

ing payoff and probability levels, generating a rich dataset for structural estimations. There

are in total data from 139 subjects (49 females).3 The experimental population consisted of

3For our analysis we use the data from 136 subjects as there were missing data on the gender of 2 subjects, and
1 subject had missing data.
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students in Moldova, and the payoffs were expressed in the local currency. To incentivise the

experiment, each subject had a one-third chance to be selected among all the subjects, to play

out one of their choices for real. The experiment involved high stakes with payoffs up to a

week’s salary.

4.2 Theoretical Framework and Econometric Specification

As mentioned before, the RDU model consists of two components, the utility function and the

probability weighting function, which transform every objective probability p to the decision

weight w(p) in the interval [0, 1]. We again assume a CRRA utility function, while for the

probability weighting function, we assume the widely used Tversky and Kahneman (1992)

function of the form:

w(p) =
pγ

(pγ + (1− p)γ)1/γ
(8)

where γ is the probability weighting parameter. The form of the function is inverse-S shaped

for γ < 1, indicating overweighting of low probabilities and underweighting of moderate and

high probabilities. To evaluate the RDU of a lottery, we first need to rank the outcomes of the

lottery from the best to the worst, such that x1 ≥ x2, · · · ,≥ xn. The decision weight associated

with each outcome is given by:

π(x1) = w(p1)

π(x2) = w(p1 + p2)− w(p1)

· · ·

π(xn) = 1− w(p1 + p2 + · · ·+ pn)
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The RDU of lottery A is then given by

RDU(A) =
N

∑
n=1

π(xn)
xn

1−r

1− r
(9)

We assume the same stochastic function as in Equation 3, by replacing the expected utility

with the corresponding Rank Dependent Utility, and we form the log-likelihood function as

in Equation 4 for the MLE estimation. As there are no multiple treatments, we control only

for gender differences by introducing a gender dummy for all the parameters (r, γ, ξ, giving in

total 6 parameters to estimate).

For the HB model, on top of the specifications for r and ξ, which are exactly the same as

in the EU case, we need an additional specification for the γ parameter. This parameter must

be positive, with a lower bound equal to 0.279 to ensure the monotonicity of the function. For

the MSLE estimation, we need to estimate the parameters of the two distributions for r and γ,

namely the means µr and µγ and their standard deviations σµ and σγ
4.

4.3 Results

Table 3 reports the results from all the three inference methods. The results are quite similar

to what is usually observed in this literature. The estimated risk coefficient r is between 0.360

and 0.480, indicating moderate risk averse preferences, while the estimate for the probability

weighting function is equal to 0.586 and 0.621, indicating an inverse-S shape of the function.

While these results are quite uniform and the estimates look quite close in terms of magnitude

and statistical significance, there are contradictory results regarding the presence of gender

effects. Assuming heterogeneity only at the gender level (MLE) fails to capture any kind of

effects for any of the parameters, while a same pattern is observed when MSLE is used to

4In the framework of MSLE, the coefficient vector θ is assumed to be normally distributed, across the popula-
tion, with mean equal to a vector b and covariance matrix W. To maintain a manageable number of parameters,
we assume that the off-diagonal elements of W are equal to zero and estimate the variance of each distribution.
Allowing for correlation between the parameters led to worse performance of the model.
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estimate the model. Nevertheless, when HB is used, one can infer that there is a significant

difference between males and females in the way objective probabilities are transformed. With

an estimate of γ equal to 0.705 (compared to 0.621 for men), it seems that women tend to

exhibit lower probability distortion. Again, the effect of the different estimation methods on

the precision parameter ξ is similar as in the Expected Utility case (the noise in the estimates

decreases when more flexible inference methods are introduced).
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Table 3: Estimates using the Baillon et al. (2020) data.

MLE MSLE HB

r 0.479∗∗∗ 0.424∗∗∗ 0.360∗∗

s.e. 0.032 0.038 0.029

rFEMALE -0.025 -0.030 -0.054

s.e. 0.111 0.203 0.099

σr - 0.291∗∗ -

s.e. - 0.122 -

γ 0.598∗∗∗ 0.586∗∗ 0.621∗∗∗

s.e. 0.016 0.251 0.029

γFEMALE 0.050 −0.060 0.084∗

s.e. 0.032 0.244 0.049

σγ - 0.943 -

s.e. - 0.821 -

ξ 0.121∗∗∗ 0.076∗∗∗ 0.083∗∗∗

s.e. 0.001 0.007 0.010

ξFEMALE 0.041 -0.003 0.026∗∗∗

s.e. 0.044 0.013 0.005

The Table reports estimates from all three inference methods: Maximum Likelihood Estima-
tion (MLE), Maximum Simulated Likelihood Estimation (MSLE) and Hierarchical Bayesian
(HB). For each parameter θ, the Table reports the point estimate for the MLE, the mean of the
distribution µθ for the MSLE, and the mode of the posterior distribution for the HB. Standard
errors are reported (standard deviation for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The analysis above provides an example of the implications of ignoring heterogeneity be-

tween (as well as within) participants. While a basic MLE estimation provides no evidence of

any kind of gender differences, allowing for a more informative approach reveals the existence

of such differences. In the next section, we extend our analysis to one of the most important
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domains of decision theory under risk, that of loss aversion.

5 Risk Preferences and Loss Aversion

In this section we focus on the three components that characterise risk preferences in the losses

domain, as these are articulated in the Tversky and Kahneman (1992) Cumulative Prospect

Theory (CPT) model. The CPT model adopts a similar approach to the RDU model, on the

way it handles monetary payoffs and probabilities, with the additional feature of loss aversion,

the concept that “losses loom larger than gains”. The results from the literature are mixed.

Some studies find that women are more less loss averse (see Schmidt and Traub, 2002, Brooks

and Zank, 2005), others that males are more loss averse (Booij et al., 2009), others that there

is no difference (Harrison and Rutström, 2008), and others with a mixed result (Bouchouicha

et al., 2019). As Bouchouicha et al. (2019) argue, currently, there is no consensus of what is

the appropriate definition of loss aversion in the literature5. Nevertheless, for the sake of the

example, we will focus on the CPT definition of loss aversion, while our approach can be

extended to alternative definitions.

5.1 Decision Task and Data

To estimate a CPT specification when losses are present, we use the data from Bouchouicha

et al. (2019) which is a subset from the data used in Vieider et al. (2015). There are in total

observations of almost 3000 subjects, from 30 countries, on decision making under risk and

ambiguity, in both the gains and losses domain. As our focus is on small samples, we use only

the USA data. This set includes the choices of 95 subjects (47 females) in 12 choice tasks (6

in the gains domain, 5 in the losses domain, and 1 in the mixed domain to identify the loss

aversion parameter). While there are available data on a larger set of risky tasks (28 tasks), we

follow Bouchouicha et al. (2019) and use only the smaller subset for two reasons: (1) this set of

5See Schmidt and Zank (2005) for the various definitions of loss aversion.
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tasks includes only 50:50 gambles, which allows the estimation of a functional-free probability

weighting function, and; (2) estimating a structural model from a small set of observations per

participant is one of the strengths of the Hierarchical approach, and this dataset allows to test

the limits of this approach.

All tasks are in the form (x, y), representing the prospect of getting the monetary payoff x

with probability 50% or y with the residual probability, with x and y being positive, negative or

zero, depending on the task (Table 4 lists the 12 tasks). The subject had to express her certainty

equivalent for each of the tasks. For the mixed domain prospect, the amount l was elicited,

that would make the subject indifferent between a 50:50 gamble of (20,l) and the status quo of

zero. The experiment was incentivised and an endowment equal to the largest possible loss

was provides to the subject, to cover for potential losses.

Table 4: The tasks from Bouchouicha et al. (2019)

Gains Losses Mixed

(5,0) (-5,0) (20,-l)

(10,0) (-10,0)

(20,0) (-20,0)

(30,0) (-20,-5)

(30,10) (-20,-10)

(30,20)

5.2 Theoretical Framework and Econometric Specification

We model preferences assuming a CPT decision maker. We employ a power utility function as

before, of the form:
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u(x) =


x1−r

1−r , if x ≥ 0

−λ (−x)1−r

1−r , if x < 0

with r the risk coefficient, and λ the parameter of loss aversion. The status quo of zero is

assumed as a reference point. We assume a common parameter for r for gains and losses,

for two reasons: (1) there is extensive empirical evidence of no difference between the two

domains (see Fox and Poldrack 2009), and; (2) to avoid any potential identification issues of the

loss aversion parameter (see Wakker, 2010). As mentioned before, since only 50:50 gambles are

used in the analysis, there is no need to specify a functional form for the probability weighting

function. Therefore, we introduce two parameters to estimate, wg and wl , which represent the

probability weighting for gains and losses respectively. Summarising, a prospect L = (x, y)

can be evaluated as:

U(L) = wsu(x) + (1− ws)u(y)

with s ∈ {g, l}, while for the mixed prospect L = (x, l), the prospect is evaluated as:

U(L) = wgu(x) + wlu(l)

The certainty equivalent ĉe for a prospect L is then given by:

ĉe = u−1[wsu(x) + (1− ws)u(y)]

To form the likelihood function we need a different approach to the one used in the previous

sections. In particular we assume that a decision maker states her certainty equivalent with

some noise. The observed certainty equivalent of a subject in a task i is equal to cei = ĉe + ε i,

where ĉe is the theoretical optimal certainty equivalent, for a set of behavioural parameters,

and ε ∼ N (0, ξ2) with ξ being the standard deviation of the Fechner error (see Hey and Orme,
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1994). We assume that this error is domain-specific (for mixed gambles we use the error for

losses) and we also take into consideration a contextual error Wilcox 2011 by making the pa-

rameter ξ to be dependent on the difference between the best and the worst outcome of each

prospect. That is, ξi = ξ|xi − yi|. The loglikelihood function for N subjects and I tasks is then

given by:

LL(θ) =
N

∑
n=1

I

∑
i=1

ln[ψ(θn, Li)] (10)

with θ a vector of behavioural parameters to be estimated, Li a task i and ψ the contribution to

the likelihood function given by:

ψ(θn, Li) = φ

(
ĉeni − ceni

ξnis

)

where φ is the standard normal density function. For the MLE estimation, we follow Bou-

chouicha et al. (2019) and we assume heterogeneity of the parameters at the gender level, and

the domain level for the decision weights and the precision parameters. We need to estimate

12 parameters in total (r, λ, wg, wl , ξg, ξl along with the controls for gender).

For the HB model, the specification of the likelihood function remains the same as in the

MLE case. We specify distributions for the six parameters as above, with the decision weights

constrained to the interval [0, 1] and the loss aversion parameter to the interval [0, 10], while

for the MSLE, we estimate the parameters of the distributions for the risk attitude, the loss

aversion and the probability weighting for gains and losses.

5.3 Results

Table 5 reports the estimates from the three inference methods. Three points are worth to

mention: (1) there is significant loss aversion in this sample with a λ parameter statistically

significant ranging between 1.596 and 1.672, (2) the risk coefficient is not statistically different

than zero for the MLE and the HB cases, indicating a linear utility function, (3) the probabil-
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ities in the gains domain are distorted more that the probabilities in the losses domain (for

instance, the decision weight of 0.5 is estimated to be 0.426 for gains and 0.478 for losses in

the MLE case), and; (4) the control coefficient for gender differences is insignificant for all the

major parameters of interest, in the MLE case with the exception of the noise parameter. Once

again, using MLE techniques, one can conclude that there are no gender differences in the way

females and males perceive monetary outcomes, transform probabilities to decision weights

or perceive losses. Focusing on the more flexible methods of MSLE and HB, two points are

interesting. First, the estimates of the mean, for all the parameters, are remarkably close be-

tween the two methods reinforcing the result of Huber and Train (2001). Nevertheless, when

gender effects are considered, while both methods find differences in the loss aversion param-

eters between the two groups, the MSLE methods fails to detect any gender effects in the key

parameter or risk attitude. A potential explanation for this result could be the larger estimate

of the precision parameter (a lower value indicates more precise estimates).

In this additional example, we provide further evidence that as the model complexity in-

creases, by ignoring heterogeneity at the subject level, it may lead to incorrect inference re-

garding the difference between different demographic groups. Both methods that allow for

this kind of heterogeneity (MSLE and HB) managed to detect the existence of such effects.

Nevertheless, the results are not uniform. To identify which method is the most appropriate

to use, in the next section we report the results of an extensive simulation exercise were we

compare the performance of each of the methods.

6 Exploring the Advantages of HB Modelling

In the previous sections, we have shown that the identification on gender effects largely de-

pends on the adopted inference method. We have provided a rigorous comparison of the rep-

resentative agent model against two alternative methods that allow for extensive behavioural
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Table 5: Estimates using the Bouchouicha et al. (2019) data.

MLE MSLE HB

λ 1.596∗∗∗ 1.672∗∗∗ 1.615∗∗∗

s.e. 0.099 0.112 0.113
λFEMALE 0.321 0.430∗∗∗ 0.398∗∗∗

s.e. 0.211 0.141 0.136
σλ - 0.467∗∗∗ -
s.e. - 0.044 -
r -0.133 0.146∗∗ -0.026

s.e. 0.07 0.061 0.019
rFEMALE -0.011 -0.061 −0.082∗

s.e. 0.115 0.083 0.041
σr - 0.000 -

s.e. - 0.053 -
wg 0.426∗∗∗ 0.433∗∗∗ 0.444∗∗∗

s.e. 0.019 0.023 0.017
wgFEMALE -0.009 -0.032 -0.037

s.e. 0.031 0.031 0.056
σwg - 0.38∗∗∗ -
s.e. - 0.051 -
wl 0.478∗∗∗ 0.467∗∗∗ 0.501∗∗∗

s.e. 0.019 0.022 0.010
wl FEMALE 0.007 -0.010 -0.011

s.e. 0.031 0.031 0.037
σwl - 0.436∗∗∗ -
s.e. - 0.048 -
ξ 0.173∗∗∗ 0.178∗∗∗ 0.097∗∗∗

s.e. 0.007 0.012 0.012
ξFEMALE 0.028∗∗∗ 0.000 0.051

s.e. 0.012 0.000 0.261
ξl 0.150∗∗∗ 0.112 0.063∗∗∗

s.e. 0.006 0.008 0.007
ξl FEMALE 0.033∗∗∗ 0.000 0.055

s.e. 0.011 0.000 0.311

The Table reports estimates from all three inference methods: Maximum Likelihood Estima-
tion (MLE), Maximum Simulated Likelihood Estimation (MSLE) and Hierarchical Bayesian
(HB). For each parameter θ, the Table reports the point estimate for the MLE, the mean of the
distribution µθ for the MSLE, and the mode of the posterior distribution for the HB. Standard
errors are reported (standard deviation for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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heterogeneity, even when the available sample size is small. Given that all three methods result

is quantitatively different estimates, it raises the question of which method should one adopt.

In this section we aim to provide an answer to this question, by means of an extensive Monte

Carlo simulation exercise. Several studies have focused on the comparison between classical

and Bayesian estimates, providing support on the latter (see for example Nilsson et al., 2011

or Gao et al., 2020). Here we repeat a similar exercise, suitably adapted to our objective of

identifying gender differences in the elicited behaviour.

The main goal of this simulation study is two-fold. First, we want to confirm whether all

estimation procedures are able to accurately recover the true parameter values from simulated

data. Secondly, we test whether the inference methods under consideration, are equally ef-

ficient in detecting gender effects. To make the simulation as general as possible, we focus

on the Bouchouicha et al. (2019) design and the CPT model, which satisfies the conditions for

which researchers usually resort to pool their data (a relatively large number of parameters to

estimate using a relatively low number of data points per subject). For our exercise, we sim-

ulate data of 100 subjects which we then estimate using each of the three inference methods:

MLE, MSLE and HB.

We assume that gender differences exist only in two of the model’s parameters, the coef-

ficient of loss aversion and the risk coefficient6. The parameters used in the simulation, are

normally distributed across the experimental population with mean θn and standard devia-

tion σθ . In the simulation we set the gender difference in the risk coefficient to be small but

significant (mean of 0.500 for males and 0.600 for females) with a standard deviation equal to

0.057. The loss aversion is set to 1.648 for males and 2.013 for females8 with a standard devia-

tion of 0.100. The probability weighting coefficient for gains wg is set equal to 0.540 while the

6We make this assumption in order to keep the simulation as simple as possible. Of course this analysis can
be extended to any of the parameters of the model (i.e. probability weighting function, noise coefficient) since
empirically, gender effects are observed in all components of preferences.

7We confirmed that the statistical significance of the two distributions is indeed significant based on a two-sided
t-test (p<0.000).

8Since we transform the parameters to be drawn from a log-normal distribution, the values of loss aversion
correspond to exp(0.500) for men, and exp(0.700) for women.
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probability coefficient for losses wl is set equal to 0.510. We assume no heterogeneity by setting

the standard deviation equal to 0 for the weighting parameters and we also assume a common

Fechnerian error for gains and losses. We conducted the simulation for three different levels

of noise by setting the value of the error term equal to 0.130 (low noise), 0.150 (medium noise)

and 0.200 (high noise). We report the results of the medium noise specification as they are the

most representative9. For each simulation, we generate the data of the 100 artificial subjects by

drawing parameters from the relevant distributions that were described above. This dataset

was then estimated using each of the methods. Table 6 reports the results of 100 simulations.

In particular, we report the mean and the standard deviation of the point estimates, in the case

of MLE, the mean of the distribution means in the case of MSLE, and the mean of the posterior

means of the distributions in the case of HB.
9Bouchouicha et al., 2019 using this dataset, estimate the noise parameter to be equal to 0.170. For our sim-

ulations, we are using a noise parameter of 0.150, which is in the middle of the interval between the low noise
parameter (0.130) and the empirically observed parameter (0.170). We delegate the estimates from the low and
high noise simulations to the online Appendix (see Tables A1 and A2).
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Table 6: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.575 1.637 1.657

s.e. - 0.056 0.062 0.067

λFEMALE 0.365 0.698 0.374 0.389

s.e. - 0.132 0.118 0.129

σλ 0.100 - 0.081 -

s.e. - - 0.046 -

r 0.500 0.538 0.500 0.493

s.e. - 0.019 0.031 0.025

rFEMALE 0.100 0.064 0.105 0.108

s.e. - 0.034 0.031 0.032

σr 0.050 - 0.046 -

s.e. - - 0.014 -

wg 0.540 0.559 0.543 0.536

s.e. - 0.013 0.014 0.014

wl 0.510 0.528 0.510 0.510

s.e. - 0.014 0.013 0.014

ξ 0.150 0.153 0.150 0.148

s.e. 0.007 0.005 0.006

The Table reports estimates from the simulation exercise on the three inference methods : Max-
imum Likelihood Estimation (MLE), Maximum Simulated Likelihood Estimation (MSLE) and
Hierarchical Bayesian (HB), for the medium level of noise. For each parameter θ, the Table
reports the mean of the point estimates, in the case of MLE, the mean of the distributions in
the case of MSLE, and of the posterior mean of the distributions in the case of HB. Standard
deviations in parentheses.

We first focus on the parameter recovery performance of each of the methods. The first
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column of the Table reports the true values of the coefficients that were used in the simulation.

Compared to the true value, it is apparent that the MLE estimates have the worst performance

in terms of precision. First, most of the parameters deviate significantly from the true value,

compared to the other two methods. Then, in terms of gender effects, there is significant over-

estimation of the difference in loss aversion where the parameter is estimated to be almost

twice the true value (0.698 compared to the true value of 0.365) while there is underestimation

of the difference in the risk coefficient (0.064 compared to the true value of 0.100). As far as

the MLE and MSLE estimates are concerned, both are remarkably close to each other and both

have recovered the true parameters with quite high precision. The first conclusion from this

simulation exercise is that if one is interested in the mean values of the parameters of different

groups, then both MSLE and HB are equally good in recovering unbiased parameter values

compared to the MLE.

We now turn to the identification of gender effects. For each of the simulations, we gen-

erate the 95% confidence interval (credible interval in the case of HB) to test the statistical

significance of the estimate. When we focus on the gender effect for the risk coefficient, the

MLE estimate is statistically significant for 55% of the simulations, the MSLE for 66% while

the HB for 96%. Similarly, when we focus on the loss aversion parameter the MLE estimate

is statistically significant for 53% of the simulations, the MSLE for 67% while the HB for 89%.

Table 7reports the frequency with which statistically significant gender effects were detected,

for each of the three inference methods, and for each of the three levels of noise (low, medium

and high). The Table confirms the pattern that higher levels of noise lead to lower detection

levels of gender effects, with MLE having the worst performance, HB the best, and MSLE in

the between.
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Table 7: Identification of gender effects.

rFEMALE

ξ = 0.130 ξ = 0.150 ξ = 0.200

MLE 62% 55% 36%

MSLE 82% 66% 59%

HB 98% 96% 76%

λFEMALE

ξ = 0.130 ξ = 0.150 ξ = 0.200

MLE 63% 53% 37%

MSLE 81% 67% 50%

HB 97% 89% 66%

The Table reports the rate of success of each inference method to identify gender effects for
each of the three levels of noise, for the gender specific parameter for risk attitude (rFEMALE)
and loss aversion (λFEMALE) are statistically significant, at the 5% level.

Our results mirror the conclusions of Huber and Train (2001). In this study the authors

compare classical and Bayesian estimates by providing a comparison between MSLE and HB.

They show that both methods result in virtually equivalent conditional estimates of the pa-

rameters. Then, they provide a list of differences between the two methods including (1) the

difficulty of MSLE to locate the maximum of the likelihood function; (2) the computational

burden that the variance-covariance matrix poses to the estimation of the MSLE parameters,

and; (3) the identification issues that the classical approach faces compared to the Bayesian

estimation. Our simulation shows that when the identification of differences between differ-

ent populations is the objective, then HB is the clear winner as the most appropriate inference

method. This result can be attributed to the way each of the methods handles uncertainty

in the estimates and the fact that the estimate of the unobserved heterogeneity in the MSLE
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estimates is much noisier (larger standard errors) compared to the HB ones.

To investigate the role of the sample size in the detection of gender effects, we ran some

additional simulations for the MSLE methods, varying the sample size. Assuming a fixed level

of noise (ξ = 0.150), we repeated the simulation exercise for N = 200 and N = 500 and again

we report the rate of success to identify gender effects for the risk attitude (rFEMALE) and the

loss aversion (λFEMALE) gender specific parameters10. When the sample size is equal to 200,

the risk (loss aversion) coefficient is significant for 89% (90%) of the simulations, while when

the sample size increases to 500, the risk (loss aversion) coefficient is significant for 93% (94%)

of the simulations. This analysis further highlights the advantages of the HB modelling since

this inference method needs only half of the sample that MSLE needs in order to achieve the

same detection rate of success in the case of loss aversion, while it needs only one fifth of the

sample that MSLE needs, to reach the same success rate, in the case of the risk coefficient.

7 Concluding remarks

In this study, we focus on gender differences and compare the inference made by three econo-

metric methods, Maximum Likelihood Estimation, Maximum Simulated Likelihood Estima-

tion and Hierarchical Bayesian modelling, on three representative domains of risk preferences.

We show that when all the data are assumed to come from a representative agent, and as-

sume heterogeneity (gender differences or any other demographic differences) at a very basic

level (e.g. all black females have the same level of loss aversion), valuable information might

be ignored, and therefore, distorted conclusions may be drawn. Nevertheless, opting for a

more flexible approach, and taking into consideration both the individual variation and the

population-level characteristics, the inference about individual risk preferences is massively

improved, and significant differences are captured.

10The estimates are delegated to the online Appendix (see Table B1). There, it can be seen that as the sample size
increases, the standard errors decrease, which allows for better identification of the effects.
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In particular, we compare the representative agent modelling approach, to two more flexi-

ble and informative methods of parameter estimation that allow one to simultaneously make

inferences at both the individual subject and the experimental population level. We compare

the frequentist and the Bayesian methods, by analysing the data using Maximum Simulated

Likelihood Estimation techniques (MSLE), as well as Hierarchical Bayesian (HB) econometric

modelling. We use data from three representative studies on decision making under risk and

we study Expected Utility preferences, for a simple analysis of risk attitudes, Rank Dependent

Utility preferences, to incorporate probability weighting, and Cumulative Prospect Theory,

to investigate loss averse behaviour. We show that by ignoring heterogeneity at the subject

level, it may lead to incorrect inference regarding the difference between distinct demographic

groups.

Recent research on Hierarchical Bayesian modelling has shown that MLE estimates are

both susceptible to overfitting and dominated by outliers (Nilsson et al., 2011, Murphy and

ten Brincke, 2018), while Bayesian modelling improves the robustness of the estimation, by

shrinking the parameters towards the group’s mean. This method allows the robust estimation

of preferences, and it is particularly useful, especially when one has a limited number of data

points from each subject, as is often the case with field studies, or when additional tasks are

used, along with the main experimental design, to control for particular preferences. With the

aid of an extensive simulation exercise, we show that Bayesian methods are better placed to

capture differences between groups, and this result can be attributed to the way that each of

the methods handles uncertainty in the estimates.

In this study, we do not argue in favour of any particular preference functional or model,

nor we claim that there is a uniform pattern of gender differences. In our analysis, we opted

for the models and the preference functionals that are often assumed in this literature. These

models acted as “vehicles” to illustrate the machinery behind both estimation techniques, and

this approach could be extended to any alternative model. Our main objective is to warn
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researchers on the dangers of small sample datasets and ignoring heterogeneity of the subjects.

Of course this method could be extended to other important fields of decision making such as

ambiguity preferences, time preferences or social preferences. Even more, as Gao et al. (2020)

highlight, HB methods are particularly useful when one is interested in joint estimation of

perhaps non-correlated preferences (e.g. joint estimation of risk and time preferences) where

the need of robust estimates is important at the individual level.
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Appendix A Monte Carlo Simulation

This Appendix presents further results of the simulation in Section 6 when the noise is low

(ξ = 0.130) in Table A1, and when it is high (ξ = 0.200) in Table A2.

Table A1: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.576 1.640 1.648

s.e. - 0.050 0.035 0.035

λFEMALE 0.365 0.696 0.368 0.379

s.e. - 0.117 0.057 0.055

σλ 0.100 - 0.088 -

s.e. - - 0.036 -

r 0.500 0.537 0.500 0.497

s.e. - 0.017 0.023 0.021

rFEMALE 0.100 0.065 0.105 0.107

s.e. - 0.030 0.028 0.027

σr 0.050 - 0.047 -

s.e. - - 0.012 -

wg 0.540 0.559 0.540 0.536

s.e. - 0.012 0.050 0.022

wl 0.510 0.527 0.509 0.506

s.e. - 0.012 0.048 0.023

ξ 0.130 0.134 0.130 0.128

s.e. - 0.005 0.005 0.043

The Table reports estimates from the simulation exercise on the three inference methods : Max-
imum Likelihood Estimation (MLE), Maximum Simulated Likelihood Estimation (MSLE) and
Hierarchical Bayesian (HB), for the low level of noise (0.13). For each parameter θ, the Table
reports the mean of the point estimates, in the case of MLE, the mean of the distributions in
the case of MSLE, and of the posterior mean of the distributions in the case of HB. Standard
deviations in parentheses.
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Table A2: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.572 1.640 1.670

s.e. - 0.072 0.051 0.054

λFEMALE 0.365 0.705 0.371 0.398

s.e. - 0.173 0.081 0.089

σλ 0.100 - 0.072 -

s.e. - - 0.057 -

r 0.500 0.539 0.500 0.489

s.e. - 0.024 0.031 0.032

rFEMALE 0.100 0.062 0.106 0.111

s.e. - 0.045 0.040 0.041

σr 0.050 - 0.043 -

s.e. - - 0.022 -

wg 0.540 0.560 0.540 0.534

s.e. - 0.018 0.077 0.036

wl 0.510 0.528 0.509 0.502

s.e. - 0.018 0.075 0.038

ξ 0.200 0.202 0.199 0.198

s.e. 0.008 0.006 0.042

The Table reports estimates from the simulation exercise on the three inference methods : Max-
imum Likelihood Estimation (MLE), Maximum Simulated Likelihood Estimation (MSLE) and
Hierarchical Bayesian (HB), for the high level of noise (0.20). For each parameter θ, the Table
reports the mean of the point estimates, in the case of MLE, the mean of the distributions in
the case of MSLE, and of the posterior mean of the distributions in the case of HB. Standard
deviations in parentheses.
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Appendix B Sample size

Table B1 reports the results of the simulation exercise when the size sample of 100 increases by

a factor of 2 (N=200) and 5 (N=200). All the parameter values

Table B1: Mean and standard deviations of the parameters.

True value N=100 N=200 N=500

λ 1.648 1.637 1.640 1.648

s.e. - 0.062 0.029 0.021

λFEMALE 0.365 0.374 0.370 0.368

s.e. - 0.118 0.046 0.031

σλ 0.100 0.081 0.088 0.093

s.e. - 0.046 0.029 0.016

r 0.500 0.500 0.503 0.504

s.e. - 0.031 0.017 0.015

rFEMALE 0.100 0.105 0.099 0.096

s.e. - 0.031 0.022 0.017

σr 0.050 0.046 0.048 0.050

s.e. - 0.014 0.008 0.005

wg 0.540 0.543 0.542 0.542

s.e. - 0.014 0.041 0.029

wl 0.510 0.510 0.511 0.511

s.e. - 0.013 0.043 0.029

ξ 0.150 0.150 0.150 0.150

s.e. - 0.005 0.003 0.002

The Table reports estimates from the simulation exercise using Maximum Simulated Likeli-
hood Estimation (MSLE) for three levels of sample size (N) namely 100, 200 and 500. Standard
deviations in parentheses.
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