
Multi-Donor Neural Transfer Learning for Genetic
Programming

ALEXANDER WILD and BARRY PORTER, Lancaster University, UK

Genetic programming (GP), for the synthesis of brand new programs, continues to demonstrate increasingly
capable results towards increasingly complex problems. A key challenge in GP is how to learn from the
past, so that the successful synthesis of simple programs can feed in to more challenging unsolved problems.
Transfer Learning in the literature has yet to demonstrate an automated mechanism to identify existing donor
programs with high-utility genetic material for new problems, instead relying on human guidance. In this
paper we present a transfer learning mechanism for GP which fills this gap: we use a Turing-complete language
for synthesis, and demonstrate how a neural network (NN) can be used to guide automated code fragment
extraction from previously solved problems for injection into future problems. Using a framework which
synthesises code from just 10 input-output examples, we first study NN ability to recognise the presence of code
fragments in a larger program, then present an end-to-end system which takes only input-output examples
and generates code fragments as it solves easier problems, then deploys selected high-utility fragments to
solve harder ones. The use of NN-guided genetic material selection shows significant performance increases,
on average doubling the percentage of programs that can be successfully synthesised when tested on two
separate problem corpora, in comparison with a non-transfer-learning GP baseline.
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1 INTRODUCTION
The ability to synthesise source code from input-output examples, in which a source code imple-
mentation of a function is created based on one or more demonstrations of input-output mapping,
is a fundamental question in machine learning. We specifically study this question in the form of
scenarios where large corpora of existing code are not available (e.g., human-written programs
in open-source repositories). Providing this capability would allow non-programmers to generate
programs, or experts to abstract away trivial coding tasks. In addition, from a machine learning
perspective, it allows complex functions to be generated from training examples in a symbolic and
human-readable form, in contrast to the current trend of function-approximation training which
stores results opaquely in NNs. Having a symbolic, inspectable representation allows us to subject
generated functions to a wide range of static analysis tools to model generality or correctness.

To date, this challenge has been studied by researchers with approaches including NN-driven syn-
thesis, GP, and SMT solvers. At present, both neural-synthesis and SMT approaches are significantly
constrained in the complexity of the target language in which code is synthesised, particularly in
control-flow operators such as loops and branch statements, which limits the kinds of program that
can be generated [2, 32–34, 40]. GP, meanwhile, is limited by our ability to specify a fitness function
which can successfully navigate to a solution for a particular problem – in the high-dimensional,
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2 Alexander Wild and Barry Porter

highly irregular, and often neutral fitness landscape of program space [21, 30]. The use of transfer
learning (TL) in GP has shown initial success in highly specialised problems to help narrow the
search area, but to date has used significant human input in selecting which base material to
transfer [25, 28].

In this paper we examine fully automated transfer learning for GP, in which a NN is trained on
already-solved problems and determines which code fragments may be useful for new problems
based on inferred similarities between their input/output examples. This allows us to start from
simple problems which can be solved by a GP process alone (where no already-solved problems
are available), then use these solutions to facilitate the solving of more complex problems through
NN-suggested donor material. We examine the capabilities of this approach in a Turing-complete
programming language which can be cross-compiled into C/Java code and includes loop and branch
operators, demonstrating the performance of our approach in the very large search spaces that
such a language presents.
The key challenges in using a NN in this capacity are (i) finding an approach which avoids the

NN needing to model all of program space – which is intractably large – and (ii) finding a way to
estimate utility of genetic material from existing solutions for new problems. For the first challenge
we employ a solution in which the NN models highly abstracted features of program space, and
demonstrate that these abstract features are still sufficiently useful that they allow a GP process
to solve problems, with suggested donor genetics material, that it is otherwise unable to. For the
second challenge we use NN-inferred similarity of input/output example data between existing
problems and new unsolved ones; solved problems with a higher level of similarity to new problems,
in their input/output examples, are judged to have more useful donor code to those new problems.
Each time we solve an additional problem, the solution to that problem is used in a further round
of NN training to yield further predictions on potentially useful material for other problems.

We study our approach when applied to two different problem sets: a set of array-based problems
which are similar to those used in other code synthesis research, including sorting an array, where
a user provides example input/output such as an unsorted and sorted array (full description of
problems in Appendix B); and a set of canvas drawing problems in which we need to synthesise
the algorithm which draws a user-provided shape (which has also been used in synthesis research
elsewhere [32]). Our results demonstrate that our NN-based transfer learning approach significantly
enhances the performance of a baseline GP system, doubling the percentage of programs that can
be successfully synthesised.

2 RELATEDWORK
Code synthesis from input/output (IO) examples has been studied using three major approaches
to date: deductive solvers; neural networks (NNs) with search; and genetic programming (GP).
For code synthesis in a Turing-complete language, no deductive solvers have yet been shown to
operate well with loop-based flow control operators (although frameworks which manually define
any non-linear program flow can yield good performance [32]). Neural synthesis, by comparison, is
limited by how much of program space for a more general-purpose target language can be captured
in a NN model, while GP is limited by the difficulty of deriving a fitness function to navigate to a
solution [30]. In the remainder of this section we focus on NN and GP approaches in more detail.
We consider only works concerning programming by example, in which input/output examines
are used to specify the desired behaviour of a program; other code synthesis work (e.g. based on
natural language prompts [5]) is outside the scope of this research.

Neural synthesis. Neural synthesis works by training a NN on a sub-sample of the entirety of
program space for the target language (e.g., sampling at a uniform interval or at random). When
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presented with a new problem as an IO example, the NN will then be asked to predict which lines of
code (or particular operators) are likely to be present in the solution based on similar IO transforms
observed in the training set from the above sub-sample. The system will then perform an exhaustive
search of program space to fill in the remaining (non-predicted) features. Notable examples here
include DeepCoder and RobustFill, among others (e.g., [2, 7, 8, 31, 40])

The key limitation to this approach is that it must be able to train on a detailed enough sub-sample
of program space, and store this sample inside a NN, to make meaningful predictions on program
features for unseen problems. While this works for highly simplified languages (DeepCoder, for
example, has no loop operators [2]), the search space size of a Turing-complete language is astro-
nomical by comparison. If we consider that the capacity of a feed-forward ReLu NN to differentiate
between classes (in our case programs), termed its Vapnik–Chervonenkis (VC) dimension, at best
grows as a linear function of 𝑤 ∗ 𝐿 ∗ 𝑙𝑜𝑔(𝑤) where 𝑤 is the total number of weights and 𝐿 the
number of layers [3], it is unlikely that a NN on current hardware would be able to represent
a useful sub-sample of possible program permutations yielded by the search space of a more
general-purpose language.
NNs have also been deployed used as a way to directly navigate program space and synthesise

code. Bunel et al [4] examined training a NN with a set of samples of different programs against
how close the output of those programs was to the desired output of a target problem. They then
had the NN generate its best estimate of the program that perfectly matched the desired output; if
this program was not correct they it to re-train the NN again and repeat the process of estimation.
This approach depends on a NN being able to predict a program’s output without executing it, and
also requires that the NN can internally represent the majority of total program search space. While
this shows good results in some cases, the extent to which these two assumptions are generally
true is unclear.

Genetic programming. GP relies on iterative travel through program space from a starting point
to the solution, guided by a fitness function [35, 38]. The field has a long history [12] and shows
results [24] that are competitive with NN-synthesis [1], and an ability to tackle complex problems
mixing diverse datatypes [29].
Unlike neural synthesis, a GP approach does not need to encode the entirety of program space

in a model, and so can in theory work in a scalable fashion on high-dimensional search spaces as
long as a fitness function is provided which can guide the search incrementally towards a solution.
The key problem with GP for code synthesis is that large areas of program space are difficult to
navigate, exhibiting large plateaus of neutrality (no fitness change despite significant code change)
and highly irregular responses to code change (jagged fitness landscape) [21, 30]. A fitness function
may potentially also fail to capture higher level properties, for example “all outputs are even" or “all
values from the input are repeated in the output" if the designer does not consider these features,
which may otherwise be identified by a NN which is able to learn in an online fashion based on
problems encountered.
Despite these difficulties, the literature of GP has, to our knowledge, exceeded that of direct

neural code synthesis, with recent strong results [29] on complex multiple-data-type functions. As
such, we should seek to leverage the power of GP for search, while also employing the capability
of NNs to recommend high-utility genetic material from existing solutions to narrow the overall
search space.
Augmenting GP search with additional input has been explored by Hemberg et al [16], but

using domain-specific knowledge rather than NN-suggested genetic material. Hemberg’s work
analyses the program specification, which in this case is provided in terms of both the IO examples
and an accompanying natural language description, and specialises the GP process towards a
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particular problem – for example by augmenting the literals available or by biasing the mutations.
Our approach by comparison does not require natural language descriptions, and instead learns
which genetic material from solved problems is likely to be useful to inject into new problems.
Both approaches are potentially complementary, however, and could be used in combination.

In wider GP research, a General Program Synthesis Benchmark Suite [15] has been proposed as
a common point of evaluation, consisting of 29 different problems for which synthesise a solution
(and having been used in existing research, e.g. [10, 11]). While we considered the use of this
benchmark in our own work, we noted that the problems included are selected from a wide range
of different domains, in terms of input/output data types, and so present a relatively small set
of problems in each domain against which NN-guided transfer learning could be attempted. We
therefore use two different problem sets: one array-based set, in which an array of input integers
must be transformed in some way including sorting the array; and one canvas-drawing problem
set which has been used in existing research [32].

Existing work in transfer learning for GP. Finally, transfer learning (TL) has been studied to some
extent in the field of GP, in particular with a large body of work into the effects of transferring
sub-trees between symbolic regression problems and how to select trees for best results [6, 25, 28].
Our work differs from this in two major areas. The first is that we present a fully automated
approach to selecting which prior solved problem, and associated code fragments, to use as a basis
for new unsolved problems – rather than relying on human-aided selection. As such, we require
no designer knowledge of the problem space in selecting useful genetic material for transfer in to
new problems.

The second difference is the target environment. The main body of work in TL for GP focuses on
symbolic regression, with work on numeric regression and boolean tasks. While good performance
has been shown on this target domain, our work focuses on a Turing-complete programming
language with a broader set of problems – representing both a larger search space in the target
language, and more generalised problems.
Relating to more general programming, existing approaches to transfer learning in GP tend to

use existing solutions as callable functions for new solutions (e.g. [18–20]). This allows sub-tasks
to be learned first, then exploited to solve more complex tasks which involve those sub-tasks. This
differs significantly from our approach, in that we are able to extract selected code from solved
problems in order to narrow the search space for new problems, based on NN-guided inference on
similarity between each problem. This allows our approach to solve problems that don’t necessarily
re-use existing solutions in their entirety, but rather have some similar features. The ability to
re-use whole functions is entirely complementary to our work and could be used in combination.
Finally, a range of research has examined more granular transfer of learned features across

problems. Jaskowski et al [17] which employ GP to solve visual character recognition tasks, and
allow transferral of geometric splines to allow shared properties of the glyphs to be exploited for
faster learning; this shows compelling results, though is a relatively problem-specific approach
to knowledge transfer. Munoz et al [26] examine how donor-recipient pairings of programs may
benefit from TL across different problems, and studies the properties of these donations, while
Helmuth et al [14] conisder adjusting the mutations used in a GP process based on transfer learning,
among other sources of guidance. As far as we are aware, our research is the first to examine fully
automated recommendation of selected source code fragments from already-solved problems to
increase the probability of solving new problems.
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Fig. 1. Diagram of our end-to-end code synthesis system, combining GP with fragment extraction and
prediction.

3 METHODOLOGY
Given the limitations of both NNs and GP in themselves, we hypothesise that the combination of the
two techniques may provide the best features of both while mitigating their respective limitations
in the context of code synthesis in a Turing-complete language with a very large program search
space. While a NN cannot feasibly model all of program space, and so cannot be expected to predict
each line to be synthesised, it does have the potential to predict a small number of higher-level
features which only require a very limited internal model of program space. This can be combined
with a GP search process which fixes these lines in place to constrain the search area, and can use
this partially-constructed program in combination with one or more generic fitness functions to
guide the search to a successful result.
Our overall system is illustrated in Fig. 1. It takes up to ten input/output examples from a user,

then synthesises the source code of a function which correctly converts those inputs to their
corresponding outputs. Prior to any existing problem solutions being available, our system uses
only GP to locate a solution. Once at least one solution is available, our system selects one of more
source code fragments from those solutions. For each separate fragment identified, a NN is then
trained to recognise whether or not the solution to an I/O example is likely to involve that fragment.
We do this by synthesising 2,500 unique programs that do include the fragment, and 2,500 unique
programs that do not include that fragment, then synthesise random input arrays to feed in to those
programs and gain their corresponding outputs. Using these examples, our NN is then trained to
infer whether or not a given I/O pair does, or does not, involve a program containing the fragment
of interest. We train one NN in this way per fragment extracted; when a new problem is presented
as a set of I/O examples, we then query each trained NN with these I/O examples to determine
which fragments are most likely to appear in the solution. Each time another new solution is found
to a new problem, we again perform fragment extraction from that new solution and NN training
for each fragment.

In the remainder of this section we elaborate on each element of our system: the programming
target language and problem description format that we use for synthesis; the GP system; the NN
architecture; and our fragment extraction process.

3.1 Target language and problem description format
We use a Turing-complete language for synthesis (previously used by the authors of [39]), which
can be cross-compiled directly into C/Java/Python. Unusually, for general program synthesis, the
language features primitive loop operators, variable declarations, and conditional branch operators;
a full listing of its operators is given in Appendix A.
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Our system uses a human-configured fixed upper limits on program length, which we set to
30 lines of code for all elements of this study; this value was chosen based on human analysis of
how many lines would be needed to implement any problem in the two corpora used. We also
employ a fixed number of variables based on a similar analysis, allowing 12 integer variables, two
1-D array-of-integer variables and 1 2-D array representing a basic bitmap canvas. All variables
are automatically initialised to zero when the program is called, setting the integers to 0 and each
array to a newly-instantiated zero-length array.

We use two different problem sets which represent human-useful problems of the kind that may
be input into our system. Our first problem set is of 35 array-to-array problems such as extract
even numbers, append arrays, or sort. Our second problem set of 30 problems is provided with a
2D black-and-white image to draw on a canvas, encoded as a matrix of boolean values, and must
synthesise the program which draws that image; this problem set is taken from So and Oh [32].
For the array to array tasks, each problem represents a program which takes one 1D array of

integers and one integer variable. Not all problems employ the integer variable (such as the sort or
reverse functions), but the GP is not informed as to which are required to and which are not, and
must simply learn to discard the input integer variable as the problem corpus problems do.
For the second problem corpus, the programs are able to write to a 2D array by addressing

specific pixels, and must be able to output the image at different scales, depending on an input
integer variable which specifies both the height and width of the canvas. The images themselves
range from the simplistic ‘square’ which fills the canvas with black pixels, to requiring obtuse
triangles (which requires lines of pixels to be drawn on non-orthogonal or diagonal vectors).

Each problemwithin each problem set is presented to the system as a set of 10 I/O examples. Based
on a human-crafted example solution to each problem, we generate our I/O examples by randomly
sampling an array for input, feeding this input into our program, and gaining the corresponding
output. Using randomly-generated examples is designed to reduce internal variability between
tests, allowing more accurate evaluation of the changes made by alterations to parameters or by
guidance to the GP. This is designed to represent an unbiased input set. The inputs are consistent
across each run, to remove this particular random component when comparing baseline to TL
system.

3.2 Genetic Programming
We use a relatively standard GP process, aside from our fitness function. We use fixed-size popula-
tions of either 1,500 or 2,000 individuals (depending on the experiment setting), and a generation
limit of 3,000 after which the system reports a failure to synthesise its target program. Every new
GP run starts from a set of individuals which each represent the empty program, which we define as
a program of maximum length set to only NO-OPERATION on every line. For each new generation
during the GP search, parents are chosen using tournament selection with tournament size of
10 [23]. Crossover occurs by taking the first half of the first parent, and the second half of the
second parent, with both parents padded to the maximum program length by appending NO-OP
lines. This approach makes crossover simple and fast to compute, irrespective of the two programs
being considered, but means that in initial generations no crossover may occur in practice while
programs are relatively short. Following crossover, we apply a single mutation to a program with a
probability of 0.35. Following each mutation a random boolean value is selected, and if true another
mutation is applied, to a maximum of 8 mutations.

Each mutation takes one of the following forms, selected with equal probabilities for all choices
other than delete, which is weighted twice as highly as other mutations:

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: August 2022.



Multi-Donor Neural Transfer Learning for Genetic Programming 7

(1) Insert: inserts a random line from all possible lines available in the language, and deleting the
last line of program if it is already at maximum length. It automatically adds an ENDBLOCK
operator if a flow-control operator was inserted.

(2) Delete: sets a random line to NO-OP.
(3) Mutate: changes a random operator/parameter on a line, ensuring the line remains valid.
(4) Swap: exchanges position of any two lines of the program.
(5) Insert Fragment: This mutation is only available if a set has been provided. Selects a set of

lines from a previously generated program and inserts them into the candidate program’s
source code. See Experiment 3 for details on this mutation.

Each program in a population is ranked using a general-purpose fitness function which was
experimentally found to be good at locating programs from various search space starting points.
Our fitness function includes an implementation of niching [13] which operates across generations.
This was intended to act as a form of novelty search [9, 22] to avoid falling into the same local
minima repeatedly, which was found to further boost search success and was deployed in all of our
experiments. It is based on the Levenshtein distance [27] of the programs produced to the elites
gathered in precious generations.
Our fitness function, in detail, is formulated as 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑛𝑜𝑣𝑒𝑙𝑡𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦. The value for 𝑒𝑟𝑟𝑜𝑟 is

calculated as the number of elements in the output of a candidate function which do not match
those expected by the input/output pair for the corresponding input; this value is normalised into
the range [−1.0, 0.0] by dividing it by the corresponding error which would have been produced
by an empty output for that input. If the output arrays do not match in length, a penalty value
of −10, 000 is applied instead, as item-wise comparison becomes impossible. This means that if a
program outputs [1, 2, 4], when the desired output was [1, 2, 3] it will be considered to have an
error of 1, as will a program which outputs [1, 2, 256], as they both fail to match a single element’s
value. The actual magnitude of this difference is ignored; while directly using this magnitude as
part of fitness may be useful in some scenarios, it was not found to yield any improvements within
our testing.

To calculate the value for 𝑛𝑜𝑣𝑒𝑙𝑡𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦, we aim for an approach which is fast to calculate (as
we need to perform many novelty checks across thousands of individuals) while representing a
good approximation of novelty. To encode novelty we first extract the highest-fitness member of a
population and remove all lines of code which do not contribute to its behaviour. This program is
stored as a repulsor which indicates how well-explored a given region of program space is. This
is similar to the use of repulsors in [37], where they are also used to drive a search process away
from a part of the search space by keeping records of points and using them as a way to compute a
negative penalty.
A new repulsor is created and stored each GP generation. When calculating the fitness of any

new program, we compare that new program against every repuslor in turn to derive an overall
novelty value. For each comparison between a program A and a repulsor program B, our procedure
is as follows: we take the first line from A, then check every line from B to discover which line is
most similar. Two lines that are identical, and appear on the same line of the two programs, have a
similarity score of 0.0; a different operator adds 1.0 to the score; each parameter that is different
adds 0.2; and each line of code that we are away from the code line in program A adds 0.35. When
we have found the closest matching line in program B, we remove that line from program B, then
consider the second line in program A, and repeat the procedure. When we have a final similarity
score, having considered every line from program A against those in program B, this final score
𝐷 is added to 𝑛𝑜𝑣𝑒𝑙𝑡𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 using the equation𝑚𝑎𝑥 (0, 1 − 𝐷/15) to 𝑛𝑜𝑣𝑒𝑙𝑡𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦. We then
repeat this for every store repulsor program. This approach, along with the values for each tunable
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parameter, was found experimentally to provide a good balance between speed of computation and
accuracy in novelty estimation.

3.3 Neural network design
Initially, when no programs have been successfully synthesised by our system, we rely on GP alone
to locate programs. When at least one program has been correctly synthesised it is added to our set
of found programs 𝑆𝐹 . We then augment GP with a NN which esimtates one or more likely lines of
code for a given unsolved problem, corresponding to likely areas of program space in which the
GP will search (rather than the GP starting its search from an empty program).

Our overall process is to extract a set of code fragments from a successfully-found program, and
train a new NN for each code fragment. Each NN is trained to recognise whether or not a given
input/output example is likely to have a solution which involves that code fragment. We do this by
synthesising a set of programs which do contain the fragment of interest, and a set of programs
which do not. Each generated program in these sets is required to be distinct in its input/output
transformation. We then train the network to correctly predict which programs from these sets
do and do not contain the fragment of interest. When the NN is then presented with a novel I/O
example for an unsolved problem, we hypothesise that it will be able to predict whether or not the
solution involves the corresponding code fragment that the network was trained to recognise. We
train one separate NN for each code fragment, then check every trained network for its estimate of
code fragment presence for a new problem.

In detail, the input layer of a NN takes the data representing 10 input/output examples, with one
neuron per bit of this data where integers are represented as 10-bit signed values. The output layer
has a single neuron which yields a value between 0.0 and 1.0 representing the estimate of whether
or not this input/output example set includes the code fragment of interest. The NN never receives
any source code; rather it is trained to recognise whether or not an input/output set is likely to
have a code fragment of interest by using gradient descent to train the output neuron’s value for
each program in our training set, based on whether the input-output transform that each program
yields does or does not involve the code fragment of interest. In this sense our NNs do not need
to directly encode program space, but an abstracted correlation of input/output behaviour. The
only data they receive regarding the code itself is a single binary value, indicating whether the
program which generated the IO mapping contained the target fragment or not, and only receive
this during testing.
To train each NN we synthesise 5,000 programs in total: 2,500 that do have the fragment of

interest, and 2,500 that to not. From these programs, we use 4,000 for NN training and 1,000 for
testing. Each program in each set of 2,500 is assured to be distinct in functionality from every
other program in the set, tested on its behaviour with respect to a fixed 10 IO examples. Each new
program in a training set is generated by selecting uniformly at random two programs already
accepted, applying a crossover, then applying between 1 and 8 mutations (as described above in
the GP section) while assuring that the fragment of interest still exists or does not exist, according
to the sub-corpus requirement. This value of 2,500 was chosen as it was the lowest value which
appeared to not degrade performance of the NN, in preliminary testing. Lower values would reduce
accuracy, while higher values produced no noticeable improvements.

We use a Feed Forward Neural Network (FFNN) architecture for our array-to-array tasks, and a
Convolutional Neural Network (CNN) for our 2D canvas tasks. Our FFNN architecture takes the
form of 4 layers of 128 neurons, seLu activation, interspaced with dropout layers set to 0.75 keep
rate. Each layer was connected to all previous layers (dense block architecture). Our single output
node was a sigmoidal node (values constrained to between 0 and 1.0), representing the probability
of a given fragment being present in the program assumed to have implemented the presented IO
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example. Our CNN architecture was two sets of: one convolutional layer of stride 2, kernel width 3,
32 channels, reLu activation followed by one max-pooling layer with a pool width of 2.
The evaluation time for a single NN, to predict presence of a particular fragment in a new

problem, is on the order of 100ms, and the total cost of evaluating all NNs never reached 1% of the
total computational cost of our overall code synthesis system. This is due to the speed difference
between a NN evaluation and a GP run.

3.4 Fragment extraction and usage
Our automated fragment extraction works as follows. For every newly-solved problem, we extract
every ‘cleanly isolatable’ fragment up to 4 lines of code long, such that no variables used in the
fragment have an assignment before the code in that fragment (this condition applies transitively
to variables used by other variables, etc.). We then filter all fragments out from this set that we’ve
seen before from other solved problems, and for which we already have a corresponding trained
NN. From the remaining fragments we train a NN on each one, and test if that NN has a prediction
accuracy of greater than 50%. If it does, we keep that trained NN; if not, we discard it and try the
next fragment from our list. We continue this process until we have either found 4 trained NNs
with good prediction accuracy, or until we have made 8 attempts to train such NNs, whichever is
sooner. We limit the number of NNs that we train in this stage to reduce overall computation cost
as part of the synthesis framework.
When facing a new problem, specified by an I/O example set, we submit the I/O example to all

fragments’ NNs. Each of these NNs returns a probability estimate 𝑃 as to whether the code which
produced the I/O example contained their associated fragment.

For each fragment with predicted presence in the solution, a mutation weighting is then set, which
determines how frequently this particular GP run will select this fragment as a mutation whenever
an ‘insert’ mutation is chosen. We configure this weighting by using the NN-returned fragment
presence probability 𝑃 together with a rarity estimate 𝑅, where 𝑅 = 0.1 + 𝑁𝑝 𝑓 . The weighting for
the fragment is then defined as 𝑃/𝑅. The value 𝑁𝑝 𝑓 represents the number of problem solutions
that are expected to contain the fragment, and is simply the proportion of problems the GP has
been presented with which the NN for that fragment has returned a presence estimate > 0.5. A
very commonly occurring fragment (or one which the NN estimates to be commonly occurring)
will have a value near 1.0. The NN is assumed to have returned a 1.0 for the program for which the
fragment was extracted, so the expected number of problems with that fragment can never be 0.
This weighting equation process favours fragments which are (i) the novel elements of difficult
problems, thus useful learning targets; (ii) believed to be rarer, thus more specialised; and (iii) have
higher confidence of presence.

When the GP process selects mutations during the next run it has an 0.2 probability to select the
‘Insert Fragment’ mutation. If this is selected, it selects a fragment by roulette selection weighted
by the above-defined weighting.
Because this fragment originates from a solution to a different problem, it may to some extent

have elements of its source code which do not fit into a new piece of source code, in particular
with variables that have conflicting names. We therefore adjust a chosen fragment, at the point of
insertion, to fit into the new source code; for each variable we decide at random to either generate a
new variable name, or use an existing variable name of compatible type that is already declared in
the target source code. We also randomise the way in which a multi-line fragment is inserted; after
inserting the first line at a random position in the target source code, we then decide whether to
insert the next line immediately below it, or to ‘skip’ a line of the target source code and insert our
next fragment line of code after that skipped line. This provides a probability distribution between
inserting a fragment contiguously or interwoven with existing lines of code, and was found to be
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useful in covering a wider range of fragment merge permutations – such as the ability to insert
a double-loop fragment in such a way that some lines of existing code were executed before the
inner loop was reached.

If a program ever exceeds the maximum line length, the last line is repeatedly removed until the
program is returned to our configured maximum length of 30 lines.

4 EVALUATION
We evaluate our approach in three ways. We first study how the use of code fragment suggestion
alone, when code fragments are manually-chosen, affects the ability of GP to locate programs
from our two problem sets. This indicates the extent to which we might expect improvements in
our end-to-end system. We then study the extent to which our NNs are able to accurately predict
which code fragments should be suggested for each problem; this indicates the extent to which
automated prediction is possible. Finally, we study our end-to-end system, which automatically
identifies fragments to extract from successfully found programs, trains NNs for each fragment, and
uses those trained NNs to suggest code fragments for as-yet-unsolved problems. All stages of our
evaluation use the two problem sets introducted earlier: one integer array problem set, including
sorting, and one canvas-drawing set in which a program must be synthesised to draw the given
black-and-white image.

Throughout our evaluation we use Tensorflow 1.14 and Python 3.6.9 for our NN models, and Java
OpenJDK 11.0.6 for our GP system. Our source code is made available as an artifact accompanying
this paper submission.

4.1 Fragment Suggestion effects on GP
In our first experiment we examine the baseline performance of GP alone on our two problem sets,
and study the effect of each possible code fragment that can be provided as a starting point for
each problem (in terms of its effect on success rate).

We start with a ground truth implementation of every problem, which is a hand-crafted version
of a correct program. To generate this set the principle researcher wrote what they considered to be
the shortest possible implementation of each possible program, attempting to keep implementation
as common between all programs. Within these, we then examine every 1- or 2-line code fragment
that can be cleanly isolated from those programs, such that no variables used in the fragment have
an assignment before the code in that fragment; this condition applies transitively to variables used
by other variables.
We then run a GP process with each code fragment as a forced requirement, such that any

program produced by the GP which does not include them automatically receives a penalty fitness
of -10,000. Our first generation of individuals has the appropriate fragment inserted as its first lines
of code, with individuals of subsequent generations checked for the continued existence of this
fragment (anywhere in the program). Each experiment in this series is repeated 30 times.
These results show the extent to which a GP algorithm can have its probability of finding a

solution increased by constraining its sampled programs to contain certain lines of code. This
also serves as a guide and comparison point to the highest-utility hints that our fully automated
end-to-end system can seek to find.

Sample results are shown in Table 1, with the full set of results given in Appendix E. Each result
shows the ‘baseline’ pure GP success rate, without any suggested fragments of source code, and
the best effect of a GP process that was given a suggested starting fragment together with which
fragment(s) offered the best performance. Our sample results show 8 problems from our array-
to-array corpus and 6 problems from our canvas corpus. From the first corpus we select mostly
low-success-rate problems, to study which form of fragments would be useful to achieve success,
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Problem Baseline Maximum Best Operators

Append 0% 27% Var=Literal 1; Addition
Cumulative Abs Sum 0% 3% Loop; Read
Keep Evens 0% 7% Var=Literal 2; Make Array
Retain First Half 0% 13% Var=Literal 2; Divide
Reverse 58% 80% Var=Literal 1; Make Array
Shift Right 0% 13% Var=Literal 1; Loop
Shift Right Lossy 84% 80% Var=Literal 1
Sort (Bubblesort) 0% 0% (None)

Parallelogram 7% 30% Var=Literal 2; Divide
Mirrored Hollow Parallelogram 13% 60% Var=Literal 2; Divide
Hollow Right Triangle 87% 90% Var=Literal 1; Subtract
Hollow Mirrored Right Triangle 63% 93% Var=Literal 1; Subtract
Inverted Isosceles Triangle 46% 23% Var=Literal 2
Trapezoid 7% 10% Var=Literal 1

Table 1. Success rates for guided Genetic Programming Algorithm with forced inclusion of code fragments
from ground truth. Baseline is unguided GP. Maximum is single best performing fragments. Best operators
are those used in the highest-scoring fragment (first if tied) (n=30 per fragment, percentage success)

while in the second corpus we select a more representative sample, to study how constraint-forcing
behaves more generally.

Here we clearly see that forcing the inclusion of even simple code elements (such as an addition
operator) into the GP’s population allows the GP to find previously unsolvable problems. We can
also see that fragments containing arithmetic operators (especially literal assignment) appear to
have a stronger influence on success than other fragments taken from the same program. This may
possibly be because they are harder to find, as their effects are far more subtle and complex than,
say, presence of a loop operator. These should therefore be studied as high-utility candidates for
deployment into GP processes we wish to guide in the future.

We also note that some examples show a decrease in success rate (e.g. “Shift Right Lossy"). While
no fragment reduced success rates to zero, we speculate that in some cases the provision of a
fragment places the GP into an area of program space from which it is harder to reach the solution
using our general-purpose fitness function than it would be by starting from an empty program
with no lines of code (for example, meaning that this point in program space has larger regions of
neutral landscape around it which are harder to traverse over).
A full breakdown of all baseline GP success rates is presented in Appendix A, with fragments

and their successes presented in Appendix E.

4.2 Fragment Recognisability by Neural Networks
Having established that code fragments can be used to improve GP success rates (including from
zero to non-zero success rates), we now study the extent to which NNs can predict the existence of
those fragements in the source code solution for a given I/O problem.
For this experiment we need to assume that some programs have already been found by the

GP alone, and useful fragments identified, from which to automatically synthesise NN training
sets based around each fragment. To do so, human selection of fragments is employed, which
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is intended to test if a successful fragment extraction process could usefully feed into a neural
network-powered fragment deployment system. If the NN could not recognise the fragments, no
fragment extraction mechanism would allow the end-to-end system to succeed as intended.

Using the results of our GP-only runs from the study in the above subsection, we select the single
highest success-rate program using the GP alone for each ‘class’ of problem in each problem set.
Both corpora are divided into logical sets of problems (such as ‘triangles’ or ‘programs requiring use
of a conditional’). These programs represent those which are most likely to have been found first
without the aid of the NN. From within the source code of these GP-found programs we select a set
of individual fragments from which to generate our synthetic NN training data. These fragments
are chosen partly using high-utility fragments identified from our first study reported above, and
partly with further fragments of interest that were manually chosen to gain a wider coverage of
fragment predictability by a NN.
Having extracted these fragments and trained corresponding NNs, one per fragment, we then

test each NN’s ability to correctly predict its fragment’s existence in every other problem in the
corpus.
Altogether, these experiments indicate how well NNs can predict the presence of different

program features based on our synthetic training sets – a mechanism by which the solution to easy
(high-success-rate) problems can be used to find solutions to hard (low-success-rate) problems.

The results are shown in Table 2, demonstrating the percentage of true positives and true
negatives that the NNs for a set of example fragments achieved. The first row of the table, for
example, indicates that the NN trained on the fragement ‘declare nonstandard array’ accurately
predicted that this fragment either should, or should not, appear in 73% of the other problems.
For 27% if those other problems, the NN either provided a false positive or a false negative in its
prediction.

This data shows significant variance of prediction success (from 45% up to 85%) but overall shows
that our NNs do exhibit the ability to accurately predict that a particular source code fragment
will exist in the solution to a given I/O problem – even though these NNs are trained on entirely
synthetic data.
In practice we use these trained networks when determining which fragments to recommend

for inclusion in a GP search; we present this in the following section as part of our full end-to-end
system which uses any programs found so far as sources for new fragments, trains NNs to recognise
those fragments on I/O problems, and deploys those fragments for new problems.

4.3 End-to-End System
In this experiment we use fully automated fragment extraction, sourcing our fragments from solved
problems and redeploying those fragments to new problems based on NN guidance.
For both the array- and canvas-based corpora, we run through the entire problem set twice,

in the same order both times. This allows our system to successfully find any problems that are
possible in its first pass, then use extracted fragments on unsolved problems in a second pass. In
order to provide a fair comparison against a baseline GP-only system, we allow that baseline system
to also have two full attempts at both problem sets, yeilding a roughly equivalent number of total
GP generations available.
Our high-level results are shown in Table 3 against our GP-only baseline, measured in both

success rate and total problems solved. The problems solved column indicates, as a total across 30
repeated runs, how many of problems from each corpus were solved under each approach. The
success rate column is calculated by determining, for each problem individually, how many of the 30
repeated runs found a solution to that problem; we then average this percentage across all problems
in the corpus to determine the above average success rate.
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Fragment Accuracy

Nonstandard Array 73 %
Loop + Iterator Minus One N/A
Loop + Read 65 %
Literal 2 76 %
Read 67 %
Add 48 %
Loop 67 %
Loop + Iterator Plus One N/A
Conditional 63 %
Loop + Iterator Mod 2 73 %

Two Draw Operators 67 %
Add 77 %
Loop + Draw On Iterator X 62 %
Half 84 %
Half + Loop to Half 80 %
Half+Loop+Draw Depends on Iterator 85 %
Conditional 62 %
Loop + Conditional 59 %
Loop + Loop, Add Iterators 53 %
Loop + Loop, Subtract 45 %

Fragment FFNN
Table 2. Percentage accuracy on NN estimates of fragment presence in non-seed programs, after training on
synthetic datasets derived from seed programs (one corpus from seeds with fragment, one for those without).
Results are averages of networks which passed validation (> 0.5 accuracy on seed programs). N/A results are
those where non passed validation. Half here refers to the two line fragment "var = literal value 2; var2 =
input size (passed into function) / var". (n=20)

Corpus Success Rate (vs baseline) Problems Solved

1D Arrays 76% (37%) 33 (28)
2D Arrays 49% (37%) 29 (22)

Table 3. Success of the transfer learning system in a fully automated pass through both the 1st corpus (1D
array to array problems) and 2nd corpus (2D array/canvas pattern generation problems).

Our detailed per-problem results for our array-based corpus are shown in Table 4. Out of a total
of 30 experiment repeats, this table shows the number repeats for which the baseline (B’) succeeded
at each problem, and the number of repeats for which our synthesis framework succeeded. It also
shows the number of those successes which were found to generalise (g) to an additional 1,000
I/O examples beyond the 10 examples used to synthesis the code. Fisher’s Exact Test was used to
establish a statistical significance for each separate problem. In this paper, we consider a statistical
significance of 0.01 to be sufficient to report as a result. This lets us see which problems the TL
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Problem B’ Success (g) Success (g) Fisher Significance
Add 14 (7) 25 (17) 0.002
Append 0 (0) 28(15) 4.193 ∗ 10−15
CumulativeAbsoluteSum 2 (1) 12 (5) 0.002
CumulativeSum 5 (4) 21 (14) 2.917 ∗ 10−5
KeepEvenIndices 7 (2) 30 (23) 8.705 ∗ 10−11
ClipToMin 16 (2) 27 (17) 0.001
RetainSecondHalf 0 (0) 10 (3) 3.985 ∗ 10−4
Sort 0 (0) 0 (0) 1.0
Subtract 10 (5) 25 (23) 8.247 ∗ 10−5
Abs 11 (5) 22 (19) 0.003
GreaterThan 3 (2) 5 (5) 0.25
IndexParity 29 (22) 30 (29) 0.5
FirstElementOnly 10 (3) 30 (23) 7.167 ∗ 10−9
Identity 29 (25) 30 (30) 0.5
DivergentSequence 12 (0) 28 (19) 8.975 ∗ 10−6
Double 14 (4) 30 (28) 9.720 ∗ 10−7
ShiftRight 0 (0) 26 (16) 3.921 ∗ 10−13
ShiftRightLossy 18 (8) 30 (28) 6.181 ∗ 10−5
ShiftLeft 5 (2) 30 (24) 2.744 ∗ 10−12
ShiftLeftZeroPadded 20 (8) 28 (24) 0.009
RetainFirstHalf 0 (0) 17 (9) 3.092 ∗ 10−7
LessThan 4 (0) 9 (5) 0.076
Multiply 16 (8) 24 (22) 0.020
Negative 23 (15) 30 (27) 0.005
Pop 6 (1) 30 (26) 1.646 ∗ 10−11
KeepPositives 18 (3) 30 (27) 6.181 ∗ 10−5
KeepEvens 0 (0) 0 (0) 1.0
ArrayLength 29 (25) 30 (30) 0.5
ArrayToZero 29 (25) 30 (30) 0.5
KeepNegatives 18 (9) 29 (22) 5.022 ∗ 10−4
KeepOdds 0 (0) 1 (1) 0.5
Reverse 13 (8) 24 (21) 0.003
CatToSelf 3 (0) 21 (21) 1.611 ∗ 10−6
CatZerosToSelf 7 (2) 30 (24) 8.705 ∗ 10−11
ClipToMax 13 (10) 27 (18) 1.159 ∗ 10−4

Table 4. Full breakdown of all problems in the first corpus, 1D arrays, with success rates for 30 runs of both
baseline (GP without TL enabled) and our Transfer Learning system. Two attempts were permitted for both
approaches, and success counted if either attempt succeeded. Programs which were found to generalise to
1,000 additional random inputs are shown in brackets. Statistical significance established per problem by
Fisher’s Exact Test.

system can be considered to have near-certainly improved the performance, and which it showed
limited success on.

For the unsolved problems, such as ‘Sort’ and ‘Keep Evens’, our system clearly did not improve
upon the baseline at all, and the results were unchanged. Similarly for those which the baseline
GP process solved with near 100% accuracy, such as the Identity function, there is not sufficient
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data to indicate that our system had an influence, and that the results aren’t due to pure chance.
On many tasks the results are clear, however, that our approach has improved significantly on
the performance of the baseline. We see multiple tasks, such as ‘Shift Right’ and ‘Pop’ which have
probabilities of both results being drawn from the same distribution (that is to say the probability
that the null hypothesis is wrong) of far less than our chosen limit of 0.01.

One core set of problems on which our approach was more successful was those which required
the output array length to differ from that of the input array. Various problems of this class existed
in the corpus, specifically “append" and “pop", which changed the length by 1, “retain first half" and
“retain second half" which halve the length of the output array compared to the input’s length, and
“cat to self" and “cat zeros to self" which concatenate an array onto the end of the input array, and
“first element only" which requires an output array of length 1. This suggests particular success of
transferring useful material between problems which have similar traits.
In terms of generalisability of the synthesised code, we see similar increases in good solutions

using our approach across each problem compared to the baseline, though both the baseline and
our approach have fewer generalisable solutions than total solutions that work only on the given
10 I/O examples.

A similar detailed breakdown of problems from our canvas-based problem set is shown in
Table 5. These results again demonstrate that our approach generally performs better than the
baseline, indicating successful inference of which code fragments from solved problems are useful
in unsolved ones. The overall success rates are more similar here than our previous problem set
(i.e., across the total 30 runs, the number of programs found at least once by each approach), with
the more significant difference being the frequency with which our approach finds a solution to a
given problem. This suggests the most significant result on this corpus was in its ability to improve
the baseline GP on already-findable problems, rather than allowing new problems to be found.

Again, in these results, we see that a significant number of solutions generalise to 1,000 additional
input examples, and again this number of generalisable solutions is often significantly higher using
our approach. In both problem sets, in fact, both approaches appear to be roughly equivalent
in terms of their generalisability as a proportion of their solutions; the fact that our approach
generates more solutions overall thereby increases its proportion of solutions which generalise.
Fischer significance for these generalised results presented in Appendix D.

Computational Cost. Finally in this section we consider the overall computation cost of our
baseline and our transfer-learning-based approach; although both experiments had the same
number of primary GP generations available to solve each problem, our approach uses additional
steps such as NN training. Measured in compute time, the first problem corpus took 15 hours for
the baseline on our hardware, while the full transfer learning system took 24 hours. On the second
corpus, the baseline took on average approximately 49 hours, while the TL system took 80 hours.
The training time of the neural networks was not recorded specifically, but can be assumed to
represent a non-negligible proportion of this additional time, as approximately 350 networks were
trained each time, one per fragment. We also note that our hardware setup entailed NNs being
trained using CPU resources, rather than dedicated high-performance GPU hardware; using GPUs
for NN training may offer a significant time saving.

Summary. The results in this section clearly demonstrate the advantages of our transfer learning
approach in this context, and the success on two distinct program domains suggests the approach
has a degree of generality to it. We illustrate the kind of program generated by our system in
Algorithm 1, demonstrating a solution to the ‘abs’ problem converted to Java code; while some
of the program is certainly unusual, it does represent a generalised solution to the problem in
question.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: August 2022.



16 Alexander Wild and Barry Porter

Problem B’ Success (g) Success (g) Fisher Sig.
Square 30 (24) 30 (26) 1.0
HollowSquare 30 (21) 30 (25) 1.0
Parallelogram 0 (0) 2 (1) 0.25
HollowParallelogram 1 (0) 2 (1) 0.5
MirroredParallelogram 11 (2) 13 (7) 0.2
MirroredHollowParallelogram 9 (2) 6 (6) 0.166
RightTriangle 30 (23) 30 (25) 1.0
HollowRightTriangle 30 (15) 30 (25) 1.0
MirroredRightTriangle 15 (8) 30 (21) 2.916 ∗ 10−6
HollowMirroredRightTriangle 12 (4) 27 (19) 4.398 ∗ 10−5
InvertedRightTriangle 29 (18) 30 (23) 0.5
HollowInvertedRightTriangle 15 (3) 24 (16) 0.011
InvertedMirroredRightTriangle 30 (24) 30 (25) 1.0
Inv’HollowMirr’RightTriangle 30 (14) 30 (25) 1.0
IsoceleseTriangle 0 (0) 2 (1) 0.25
HollowIsoceleseTriangle 1 (0) 7 (4) 0.024
InvertedIsoceleseTriangle 15 (6) 24 (18) 0.011
HollowInv’IsoceleseTriangle 9 (1) 15 (12) 0.062
RectangleWithEmptyTrapezoid 2 (2) 2 (0) 0.5
Inv’dRect’WithEmptyTrapezoid 0 (0) 7 (2) 0.005
ObtuseTriangle 4 (0) 9 (5) 0.076
HollowObtuseTriangle 10 (2) 16 (11) 0.066
MirroredObtuseTriangle 0 (0) 0 (0) 1.0
MirroredHollowObtuseTriangle 2 (0) 2 (0) 0.5
InvertedObtuseTriangle 0 (0) 1 (0) 0.5
HollowInvertedObtuseTriangle 1 (0) 4 (2) 0.166
InvertedMir’ObtuseTriangle 0 (0) 3 (0) 0.125
HollowMir’Inv’ObtuseTriangle 0 (0) 2 (1) 0.25
VShape 18 (2) 27 (18) 0.006
Trapezoid 0 (0) 2 (1) 0.25

Table 5. Full breakdown of all problems in the second corpus, 2D arrays representing images, with success
rates for 30 runs of both baseline (GP without TL enabled) and transfer learning system. Two attempts were
permitted for both approaches, and success counted if either attempt succeeded. Statistical significance
established per problem by Fisher’s Exact Test. (n=30)

In the following two subsections we examine two specific elements of our approach in more
detail, to provide further context to our main results. We first examine how fitness curves over time
appear for both the baseline and our system, to help understand how transfer learning has affected
GP population fitness behaviour. We then examine the effect of injecting random large fragments
of code into a GP process, to confirm that NN-selected fragments are the source of improvements
seen in this section, rather than those improvements coming simply from the injection of larger
fragments of code in general.

4.4 Fitness curves
In this section we examine how fitness-over-time plays out in both our baseline and our transfer-
learning-based system, providing further insight into the particular affect of transferred material.
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Algorithm 1 A translated example of solution produced to the ‘abs’ problem, generated by the GP
process, a problem which gained a large performance increase by code fragment guidance (from
36% to 85%). (Translated from the internal language into Java) In this solution, the GP uses a loop
as a conditional (since a loop will only execute its instruction block if the bounding variable is
positive). It must iterate through each value, and write the negative of the value to the output array
if the input array’s value at that index is negative (thus rendering it positive). The GP accomplishes
this by generating a negative, writing it to the output, then erasing it if the value read in was
already positive, using a loop as a conditional. Inefficient but an effective solution to the problem
as presented to it.
static int nArrays = 2;
static int nVars = 12;
public static int[] generatedProgram(

int[] inputArray,int param){
int[][] arrays = new int[nArrays][];
arrays[0] = inputArray;
int[] variables = new int[nVars];
variables[0] = inputArray.length;
variables[1] = param;
arrays[1] = new int[variables[0]]
for (variables[2]=0;variables[2]<variables[0];
variables[2]++){

variables[3] = arrays[0][2]
variables[4] = arrays[0][2]
variables[5] = variables[6] - variables[3]
arrays[1][i] = variables[5]
for (variables[7]=0;variables[7]<variables[4];
variables[7]++){

arrays[1][i] = variables[4]
}

}
}

return arrays[1];

Figure 2 shows the average and median fitness for all problems over time for our array-based
problem set. Here we see a very similar overall shape between the two systems, but with notably
higher fitness throughout for our approach (particularly clear in the median).
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Fig. 2. Fitness curves for GP and TL systems on the first corpus, with mean on the left and median on the
right. TL system in blue (higher curve both times). Y is the fitness, which reaches 0 when the problem is
solved, and is normalised to a fitness of -1 if the sampled program is returning an all-zero array. Penalty value
of -10,000 changed to -1 to allow mean to be viewed usefully. X is generation count. (n=900)

Figure 3 shows fitness over time for a specific problem (‘Keep Positives’) in our array-based
problem set. In this particular one, our approach on the right shows interesting behaviour in the
median graph. Our approach had a success rate of 100% on this problem, and the median graph
shows a dramatic jump around generation 500. This implies that certain programmatic elements
were found which allowed fitness to be increased very rapidly. The baseline system, by comparison,
does not have this characteristic. Our system, working on this problem, also has a much stronger
early increase than the baseline GP alone, with a high slope from generation 0. This, too, is likely
due to genetic material being transferred from previous problems, such as read and writing to and
from the input and output arrays. Further work would need to be done to analyse exactly how code
changes over time, and fragment usage correlates and corresponds to these fitness changes, but
this data is a useful confirmation of the expected overall behaviour.

Fig. 3. Fitness curves on the 21st problem of the 1D Array corpus, ‘Keep Positives’. The left graph represents
the median and mean from non-TL GP runs, with the right from the TL runs (median in blue, ends lower on
the non-TL runs, higher on TL). Y is the fitness, which reaches 0 when the problem is solved, and is normalised
to a fitness of -1 if the sampled program is returning an all-zero array. Penalty value of -10,000 changed to -1
to allow mean to be viewed usefully. X is generation count. (n=30)

Figure 4 shows a problem from the second corpus, the 2D arrays/canvas set representing geo-
metric images. This one also shows a stronger early trend, especially on the median graph, where
the GP system spends time with fewer than 50% of the population elite individuals able to write
anything usefully to the output array (fitness is at -1, indicating it has not achieved anything better
than a program returning an all-zero 2D array would achieve). Our approach by comparison has
clearly provided the GP system with a good starting point. This problem is interesting, however, in
that it had lower overall performance with our approach than the baseline GP, and this appears
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to be visible in the graphs, with our approach achieving a lower fitness towards the end of the
run. It could be hypothesised that our approach transferred data which may initially have boosted
fitness, but lead to the GP process becoming trapped in a local minimum which did not lead to
useful progress towards a 0-fitness solution.

Fig. 4. Fitness curves on the 6th problem of the 2D Array corpus, ‘Mirrored Hollowed Parallelogram’. The
left graph represents the median and mean from non-TL GP runs, with the right from the TL runs (median
in blue, ends higher on the non-TL runs, TL median has more step-function-like jumps in the curve). Y is
the fitness, which reaches 0 when the problem is solved, and is normalised to a fitness of -1 if the sampled
program is returning an all-zero array. Penalty value of -10,000 changed to -1 to allow mean to be viewed
usefully. X is generation count. (n=30)

Problem Set Mean gens. to threshold (std. dev) Mean transfer Ratio (std. dev)
1D-array 1439.76 (848.74) 0.75 (0.25)
2D-array / canvas 1414.12 (878.64) 0.62 (0.31)

Table 6. Average transfer learning metrics of generations-to-threshold and transfer ratio, for each of our two
problem sets.

Beyond the evidence of learning enhancements shown by fitness curves, existing research
into transfer learning has also suggested a set of specific metrics to help understand the effects
of transferred information [36]. Considering the specific way in which transfer works in our
approach, the most suitable metric from this set is the ‘time the threshold’, which reports how
many generations it takes for the average fitness of the TL system to exceed the average fitness
the baseline reaches after the full 3000 generations. As part of this measure we also report the
‘transfer ratio’, which computes the average fitness of the TL system divided by the average fitness
of the baseline. We show the average values for this metrics across all problems in each problem
set in Tables 6 (with a full per-problem breakdown provided in Appendix C). On both measures
we see clear evidence of the benefits of transfer learning; our approach reaches the best fitness
of the baseline in less than half the number of generations on average, and shows a clear relative
improvement in fitness over the baseline.

4.5 Analysis of Large Mutations
Finally, we examine whether NN-suggested specific fragments are likely to be the real source of
improvements, or whether this may be simply a factor of inserting larger fragments of code (up to
4 lines at a time) in general. To do this, we ran a follow-up experiment which simulates random
large fragments of code being added as insert mutations. These fragments are not recommended by
an NN, but instead are generated at random each time the ‘fragment injection’ mutation is called.
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Problem Rand Success B’ Success Success Fisher Sig.
Add 46% 47% 83% 0.003
Append 33% 0% 93% 3.300 ∗ 10−6
CumulativeAbsoluteSum 0% 7% 40% 2.522 ∗ 10−4
CumulativeSum 8% 17% 70% 3.636 ∗ 10−6
KeepEvenIndices 8% 23% 100% 3.536 ∗ 10−13
ClipToMin 46% 53% 90% 4.805 ∗ 10−4
RetainSecondHalf 0% 80% 33% 0.001
Sort 0% 0% 0% 1.0
Subtract 71% 33% 83% 0.166
Abs 46% 37% 73% 0.028
GreaterThan 4% 10% 17% 0.142
IndexParity 100% 97% 100% 1.0
FirstElementOnly 100% 33% 100% 1.0
Identity 100% 97% 100% 1.0
DivergentSequence 4% 40% 93% 6.202 ∗ 10−12
Double 79% 47% 100% 0.013
ShiftRight 17% 0% 87% 2.076 ∗ 10−7
ShiftRightLossy 21% 60% 100% 2.314 ∗ 10−10
ShiftLeft 21% 17% 100% 2.314 ∗ 10−10
ShiftLeftZeroPadded 88% 67% 93% 0.333
RetainFirstHalf 13% 0% 57% 7.547 ∗ 10−4
LessThan 4% 13% 30% 0.014
Multiply 58% 53% 80% 0.055
Negative 75% 77% 100% 0.005
Pop 46% 20% 100% 2.252 ∗ 10−6
KeepPositives 38% 60% 100% 1.510 ∗ 10−7
KeepEvens 0% 0% 0% 1.0
ArrayLength 100% 97% 100% 1.0
ArrayToZero 100% 97% 100% 1.0
KeepNegatives 75% 60% 97% 0.023
KeepOdds 0% 0% 3% 1.0
Reverse 54% 43% 80% 0.032
CatToSelf 92% 10% 70% 0.041
CatZerosToSelf 100% 23% 100% 1.0
ClipToMax 42% 43% 90% 1.688 ∗ 10−4

Table 7. Comparison of random fragments (Rand) generated when the ‘inject fragment’ mutation is called
and with the full TL results, for the first corpus (1D arrays). As this is a secondary experiment, note the
random fragments only were run for 24 runs. Statistical significance established per problem by Fisher’s
Exact Test. (n=24, n=30)

They are all of maximum length (to avoid one-line fragments being generated which would be no
different than the pre-existing ‘inject’ mutation which injects as single line of code).
As can be seen in Table 7, there is a clear statistical difference between the use of randomly

generated fragments and deployment of fragments by the NN, which were sourced from previous
successes. The random-fragment approach used here achieved an average success rate of 46%,
compared to the TL system’s 76%; the use of random fragments is, however, slightly better than the
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performance of the baseline GP. Comparison to the baseline GP indicates that certain problems were
benefited by this new mutation strategy. Specifically, a number of those which required the array
length to be changed saw large improvements to their performance. This could be hypothesised to
be a result of the fitness function, which does not have a shaped landscape towards the correct
array length, but rather simply awards a penalty if the output array is of the wrong length. In this
case, the fitness function would be unable to guide navigation through problem space, and the
much larger jumps performed by this mutation operation appear to lead to success.
Statistical differences between the two were even larger in the second corpus, the 2D arrays

representing geometric images, with the new baseline achieving a success rate of 31%, which is
lower than those seen in the GP baseline, and far lower than those seen in the our approach. This
suggests that for this corpus the larger mutations were harmful, and that our approach strongly
benefited from more targetted fragments being injected. Full results are seen in Tables 8, with eight
problems demonstrating statistically significant improvements over this secondary baseline by the
TL system.

We can conclude from this that the larger mutations assisted on some problems (and harmed on
others), but were not solely contributory towards the success seen on the full end-to-end transfer
learning system.
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Problem Rand Success B’ Success Success Fisher Sig.
Square 100% 100% 100% 1.0
HollowSquare 100% 100% 100% 1.0
Parallelogram 4% 0% 7% 0.5
HollowParallelogram 0% 3% 7% 0.333
MirroredParallelogram 20% 37% 43% 0.045
MirroredHollowParallelogram 0% 30% 20% 0.020
RightTriangle 100% 100% 100% 1.0
HollowRightTriangle 96% 100% 100% 0.5
MirroredRightTriangle 48% 50% 100% 3.583 ∗ 10−6
HollowMirroredRightTriangle 28% 40% 90% 2.318 ∗ 10−6
InvertedRightTriangle 96% 97% 100% 0.5
HollowInvertedRightTriangle 28% 50% 80% 1.147 ∗ 10−4
InvertedMirroredRightTriangle 100% 100% 100% 1.0
Inv’HollowMirr’RightTriangle 100% 100% 100% 1.0
IsoceleseTriangle 0% 0% 7% 0.333
HollowIsoceleseTriangle 0% 3% 23% 0.010
InvertedIsoceleseTriangle 32% 50% 80% 3.441 ∗ 10−4
HollowInv’IsoceleseTriangle 24% 30% 50% 0.033
RectangleWithEmptyTrapezoid 0% 7% 7% 0.333
Inv’dRect’WithEmptyTrapezoid 0% 0% 23% 0.010
ObtuseTriangle 8% 13% 30% 0.037
HollowObtuseTriangle 8% 33% 53% 3.028 ∗ 10−4
MirroredObtuseTriangle 4% 0% 0% 0.5
MirroredHollowObtuseTriangle 0% 7% 7% 0.333
InvertedObtuseTriangle 0% 0% 3% 1.0
HollowInvertedObtuseTriangle 0% 3% 13% 0.083
InvertedMir’ObtuseTriangle 0% 0% 10% 0.166
HollowMir’Inv’ObtuseTriangle 0% 0% 7% 0.333
VShape 24% 60% 90% 5.527 ∗ 10−7
Trapezoid 0% 0% 7% 0.333

Table 8. Comparison of random fragments (Rand) generated when the ‘inject fragment’ mutation is called
and with the full TL results for the second corpus (2D arrays). As this is a secondary experiment, note the
random fragments only were run for 25 runs. Statistical significance established per problem by Fisher’s
Exact Test. (n=25, n=30)

5 CONCLUSION
In this paper we have presented a novel mechanism for performing transfer learning in GP. We
study its core components, then demonstrate an end-to-end system in operation.

Our framework demonstrates a way to create a system which searches for solutions to problems
within a corpus, finds a subset, extracts code fragments from the successes, then trains a NN to
recognise the presence of these fragments and determines which unsolved problems would benefit
from NN-guidance – thus boosting GP success rates on a subsequent pass. We demonstrate that
this process can render previously unfindable problems findable, and boost overall success rates to
a large degree.
One area which may well prove fruitful for further exploration is that of how fragments are

selected from the generated programs. While we select a number from each program, there are far
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more which are simply discarded. Our initial heuristic, to select only fragments which do not have
variables which depend on prior lines of code, was successful in cutting down the possible options,
but may well have discarded useful fragments. Testing alternative fragment extraction approaches
may lead to superior results.
We are confident that this solution is broadly applicable to the field of GP, and that this initial

architecture can be refined and expanded upon. We are hopeful that future work into fragment
selection and deployment can further boost performance, allowing reliable gains in any GP system
which will find itself faced with multiple problems.
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A LANGUAGE OPERATORS
Our target programming language uses the operators shown below, and can be automatically
translated to C/Java code (Java equivalents are shown for each operator).

Operator Java Equivalent

No op (no operation performed)
Assign Variable To Array array[PARAM_A] = $var
Assign Variable From Array $var = array[PARAM_A]
Make Array array = new int[$var]
Variable To Literal (values are one of -1,0,1,2) $var = LITERAL
Add $varC = $varA + $varB

(A,B,C may be identical
here and elsewhere)

Subtract $varC = $varA - $varB
Multiply $varC = $varA * $varB
Divide if (varB != 0) {

$varC = $varA / $varB}
Modulo if (varB != 0) {

$varC = $varA % $varB}
Assign Var from Var $varA = $varB
Loop for ($varA=0;$varA<$varB;$varA++){
Conditional (var > 0) if ($varA>0){
Conditional (var1 == var2) if ($varA==$varB){
Conditional (var1 > var2) if ($varA>$varB){
End Block }
Else }else{
Create 2D Array canvas = new int[$varA][$varA]
Get 2D Array Size $varA = canvas.length
Read from XY Point from 2D Array $varC = canvas[$varA][$varB]
Set 2D Array to 0 at XY Point canvas[$varA][$varB]=0
Set 2D Array to 1 at XY Point canvas[$varA][$varB]=1

Table 9. Operators employed in the language, all available for the GP to deploy, with the exception of 2D
array operations if the problem does not employ this data structure.
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B CORPUS 1 PROBLEMS

Problem Description
Add Adds the supplied integer to every value in the input array
Append Extends the array by adding the input integer to its end
CumulativeAbsoluteSum Creates a new array of equal length to the input array.

Iterates through the input array, summing the absoluate of each value
and writing the current sum into the new, output, array

CumulativeSum Creates a new array of equal length to the input array.
Iterates through the input array, summing all values and writing the
current sum into the new, output, array

KeepEvenIndices Returns the input array with all
odd-numbered indices set to zero

ClipToMin Returns the input array with all
values less than the input integer set to the input integer

RetainSecondHalf Returns an array of half the length of the input array,
which contains the second half of its values

Sort Returns the input array, but with all the values in numeric order
Subtract Subtracts the supplied integer from every value in the input array
Abs Returns the input array, but with every value set to its absolute
GreaterThan Returns an array of equal length to the input array,

with a value of 1 if the input array’s value is greater than the input
integer, 0 if it is not

IndexParity Returns an array of equal length to the input array,
filled with alternating 0s and 1s, starting with 0

FirstElementOnly Returns one-element array,
with its element set to the input integer

Identity Returns a copy of the input array
DivergentSequence Returns an array of equal length to the input array

with values following the sequence [1,-1,2,-2,3,-3...]
Double Returns an array with all its value equal to twice that

of the input array’s corresponding value
ShiftRight Returns a copy of the input array extended by one element,

with values transposed by one to the right, leaving a zero as
first value

ShiftRightLossy Returns a copy of the input array,
with values transposed by one to the right, losing the last value
and leaving a zero as first value

Table 10. Descriptions of all functions used in the first corpus. (Part 1)
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Problem Description
ShiftLeft Returns a copy of the input array reduced by one element,

with values transposed by one to the left, losing the first value
ShiftLeftZeroPadded Returns a copy of the input array,

with values transposed by one to the left, losing the first value
and leaving a zero as last value

RetainFirstHalf Returns an array of half the length of the input array,
which contains the first half of its values

LessThan Returns an array of equal length to the input array,
with a value of 1 if the input array’s value is less than the input
integer, 0 if it is not

Multiply Returns the input array with all its elements multiplied
by the input integer

Negative Returns the input array with the input integer
subtracted from all its values

Pop Returns the array without the first element (reduces length)
KeepPositives Returns the input array with all

negative values set to zero
KeepEvens Returns the input array with all

odd values set to zero
ArrayLength Returns an array of equal length to the input array

with all values zero, except the first which is equal to its length
ArrayToZero Returns an array of equal length to the input array

with all values zero
KeepNegatives Returns the input array with all

positive values set to zero
KeepOdds Returns the input array with all

even values set to zero
Reverse Returns the input array in reverse order
CatToSelf Returns an array consisting of two copies of the

input array concatenated to one another
CatZerosToSelf Returns a copy of the input array, concatenated

to an array of all zeros of equal length to its end
ClipToMin Returns the input array with all

values greater than the input integer set to the input integer
Table 11. Descriptions of all functions used in the first corpus. (Part 2)
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C TRANSFER LEARNING METRICS IN DETAIL
In Section 4.4 we reported averaged metrics for transfer learning; here we report the per-problem
metrics for time-to-threshold and transfer ratio, in Tables 12 and 13.

Problem Generations to threshold Transfer Ratio
Add 2388.8 0.89
Append 0.0 0.95
CumulativeAbsoluteSum 2346.4 1.00
CumulativeSum 2205.2 0.89
KeepEvenIndices 1888.8 0.66
ClipToMin 1932.4 0.70
RetainSecondHalf 0.0 0.93
Sort 2277.6 0.98
Subtract 1996.8 0.71
Abs 1855.2 0.76
GreaterThan 2362.4 1.39
IndexParity 774.8 0.46
FirstElementOnly 0.0 0.79
Identity 604.4 0.42
DivergentSequence 1846.8 0.72
Double 1322.8 0.55
ShiftRight 0.0 0.92
ShiftRightLossy 1404.0 0.55
ShiftLeft 948.8 0.52
ShiftLeftZeroPadded 1825.2 0.76
RetainFirstHalf 0.0 0.92
LessThan 2718.8 1.35
Multiply 1818.8 0.69
Negative 1386.8 0.49
Pop 1257.6 0.49
KeepPositives 1499.2 0.63
KeepEvens 2314.4 0.92
ArrayLength 0.0 0.24
ArrayToZero 0.0 0.22
KeepNegatives 1856.4 0.74
KeepOdds 1783.6 0.94
Reverse 1504.8 0.58
CatToSelf 2111.2 0.81
CatZerosToSelf 2242.4 0.80
ClipToMax 1917.2 0.86

Table 12. Transfer Learning metrics for 25 runs of the TL system compared to the baseline for the first corpus.
Generations to Threshold represents the average number of generations take for the TL system to outperform
the baseline’s asymptotic performance (TL will gain performance after this point). Transfer Ratio is the
average fitness of the TL system divided by the average fitness of the baseline (fitnesses less than -1 set to
-1).(n=25)
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Problem Generations to threshold Transfer Ratio
Square 211.0 0.12
HollowSquare 1060.9 0.27
Parallelogram 1158.3 0.57
HollowParallelogram 2129.4 0.87
MirroredParallelogram 1830.6 0.75
MirroredHollowParallelogram 1968.1 0.72
RightTriangle 152.0 0.07
HollowRightTriangle 1003.0 0.18
MirroredRightTriangle 787.5 0.40
HollowMirroredRightTriangle 1605.4 0.59
InvertedRightTriangle 271.0 0.14
HollowInvertedRightTriangle 2458.2 0.80
InvertedMirroredRightTriangle 149.0 0.06
Inv’HollowMirr’RightTriangle 792.7 0.24
IsoceleseTriangle 0.0 0.89
HollowIsoceleseTriangle 2662.2 0.91
InvertedIsoceleseTriangle 1338.5 0.52
HollowInv’IsoceleseTriangle 1851.3 0.64
RectangleWithEmptyTrapezoid 2693.9 1.20
Inv’dRect’WithEmptyTrapezoid 1952.4 0.95
ObtuseTriangle 1832.9 0.74
HollowObtuseTriangle 2556.0 0.96
MirroredObtuseTriangle 465.3 0.48
MirroredHollowObtuseTriangle 2140.6 0.78
InvertedObtuseTriangle 0.0 0.95
HollowInvertedObtuseTriangle 2513.9 0.93
InvertedMir’ObtuseTriangle 1981.7 0.95
HollowMir’Inv’ObtuseTriangle 2273.9 0.95
VShape 2022.1 0.63
Trapezoid 561.8 0.45

Table 13. Transfer Learning metrics for 25 runs of the TL system compared to the baseline for the second
corpus. Generations to Threshold represents the average number of generations take for the TL system to
outperform the baseline’s asymptotic performance (TL will gain performance after this point). Transfer Ratio
is the average fitness of the TL system divided by the average fitness of the baseline (fitnesses less than -1 set
to -1).(n=25)
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D FISHER SIGNIFICANCE FOR GENERALISED RESULTS

Problem B’ Success Success Fisher Significance
Add 7 17 0.006
Append 28 15 1.742 ∗ 10−4
CumulativeAbsoluteSum 1 5 0.090
CumulativeSum 4 14 0.004
KeepEvenIndices 2 23 1.705 ∗ 10−8
ClipToMin 2 17 2.547 ∗ 10−5
RetainSecondHalf 0 3 0.125
Sort 0 0 1.0
Subtract 5 23 2.797 ∗ 10−6
Abs 5 19 2.159 ∗ 10−4
GreaterThan 2 5 0.166
IndexParity 22 29 0.011
FirstElementOnly 3 23 1.182 ∗ 10−7
Identity 25 30 0.026
DivergentSequence 0 19 2.671 ∗ 10−8
Double 4 28 1.149 ∗ 10−10
ShiftRight 0 16 9.720 ∗ 10−7
ShiftRightLossy 8 28 7.062 ∗ 10−8
ShiftLeft 2 24 3.695 ∗ 10−9
ShiftLeftZeroPadded 8 24 3.350 ∗ 10−5
RetainFirstHalf 0 9 9.680 ∗ 10−4
LessThan 0 5 0.026
Multiply 8 22 2.896 ∗ 10−4
Negative 15 27 6.811 ∗ 10−4
Pop 1 26 9.342 ∗ 10−12
KeepPositives 3 27 1.393 ∗ 10−10
KeepEvens 0 0 1.0
ArrayLength 25 30 0.026
ArrayToZero 25 30 0.026
KeepNegatives 9 22 7.320 ∗ 10−4
KeepOdds 0 1 0.5
Reverse 8 21 7.320 ∗ 10−4
CatToSelf 0 21 1.791 ∗ 10−9
CatZerosToSelf 2 24 3.695 ∗ 10−9
ClipToMax 10 18 0.025

Table 14. Full breakdown of all problems in the first corpus, 1D arrays, with the values shown being those
cases which passed generalisation on 1000 examples. Fisher significance calculated for these two success
rates per problem.
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Problem B’ Success Success Fisher Significance
Square 24 30 0.011
HollowSquare 21 30 9.680 ∗ 10−4
Parallelogram 0 2 0.25
HollowParallelogram 0 2 0.25
MirroredParallelogram 2 13 9.794 ∗ 10−4
MirroredHollowParallelogram 2 6 0.111
RightTriangle 23 30 0.005
HollowRightTriangle 15 30 2.916 ∗ 10−6
MirroredRightTriangle 8 30 4.135 ∗ 10−10
HollowMirroredRightTriangle 4 27 9.721 ∗ 10−10
InvertedRightTriangle 18 30 6.181 ∗ 10−5
HollowInvertedRightTriangle 3 24 2.739 ∗ 10−8
InvertedMirroredRightTriangle 24 30 0.011
Inv’HollowMirr’RightTriangle 14 30 9.720 ∗ 10−7
IsoceleseTriangle 0 2 0.25
HollowIsoceleseTriangle 0 7 0.005
InvertedIsoceleseTriangle 6 24 2.981 ∗ 10−6
HollowInv’IsoceleseTriangle 1 15 3.110 ∗ 10−5
RectangleWithEmptyTrapezoid 2 2 0.5
Inv’dRect’WithEmptyTrapezoid 0 7 0.005
ObtuseTriangle 0 9 9.680 ∗ 10−4
HollowObtuseTriangle 2 16 6.839 ∗ 10−5
MirroredObtuseTriangle 0 0 1.0
MirroredHollowObtuseTriangle 0 2 0.25
InvertedObtuseTriangle 0 1 0.5
HollowInvertedObtuseTriangle 0 4 0.058
InvertedMir’ObtuseTriangle 0 3 0.125
HollowMir’Inv’ObtuseTriangle 0 2 0.25
VShape 2 27 1.543 ∗ 10−11
Trapezoid 0 2 0.25

Table 15. Full breakdown of all problems in the second corpus, 2D arrays, with the values shown being those
cases which passed generalisation on 1000 examples. Fisher significance calculated for these two success
rates per problem.
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E FULL BREAKDOWN OF FRAGMENTS EVALUATED IN BASELINE GP FRAGMENT
SUGGESTION EXPERIMENTS

The tables in this section show each fragment evaluated by the exhaustive fragment testing process.
Each fragment is at most two lines, and has no variables which depend on being set in lines
outside the fragment (therefore the fragment stands alone in terms of functionality). The source
code of the ground-truth implementation is given, firstly as simply the operator used on that line,
and secondly in a C-like fashion (excluding braces). This C-like fashion is a programmatically
generated translation of the source code of the custom language implementation, provided for ease
of readability (due to the difficult-to-parse structure of the custom language). We then refer to the
lines in this source code by line number. Fragments cannot contain end-of-block operators (used to
indicate the end point of blocks started by the flow-control operators loop and conditional), nor
can they contain the initial definition of the 2D canvas.

Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[7] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[7]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop
8 Write arrays[1][variables[2]] = variables[1];

Fragment Success Rate
1 3%
1, 2 27%
1, 4 10%
4 0%
4, 5 0%
4, 6 0%
4, 8 0%

Table 16. Fragments assessed from program “Append". Program’s code listed, in C-like format, with operators
listed ahead of each line for each of readability. Fragments then described, in reference to lines used followed
by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make Array arrays[1] = new int[vars[0]]
2 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
3 Literal variables[5] = -1;
4 Read variables[3] = arrays[0][variables[2]];
5 Condition if (variables[3]>0)
6 Else else
7 Multiply variables[3] = variables[3] * variables[5];
8 Endloop
9 Add variables[4] = variables[4] + variables[3];
10 Write arrays[1][variables[2]] = variables[4];
11 Endloop

Fragment Success Rate
1 0%
1, 2 0%
1, 3 0%
1, 5 0%
1, 6 0%
2 0%
2, 3 0%
2, 4 3%
2, 5 3%
2, 6 0%
3 0%
3, 5 0%
3, 6 0%
3, 7 0%
5 0%
5, 6 3%
6 0%

Table 17. Fragments assessed from program “Cumulative Absolute Sum". Program’s code listed, in C-like
format, with operators listed ahead of each line for each of readability. Fragments then described, in reference
to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[4] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Read variables[3] = arrays[0][variables[2]];
5 Modulo variables[5] = variables[3] % variables[4];
6 Condition if (variables[5]==variables[6])
7 Write arrays[1][variables[2]] = variables[3];
8 Endloop
9 Endloop

Fragment Success Rate
1 0%
1, 2 6%
1, 3 3%
1, 5 3%
2 3%
2, 3 0%
3 0%
3, 4 0%
3, 7 0%

Table 18. Fragments assessed from program “Keep Evens". Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to lines
used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Literal variables[6] = 2;
2 Divide variables[3] = variables[0] / variables[6];
3 Make Array arrays[1] = new int[vars[3]]
4 Loop for (variables[2]=0;variables[2]<variables[3];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop

Fragment Success Rate
1 0%
1, 2 13%

Table 19. Fragments assessed from program “Retain First Half". Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to lines
used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[7] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Subtract variables[6] = variables[0] - variables[2];
5 Subtract variables[6] = variables[6] - variables[7];
6 Read variables[5] = arrays[0][variables[6]];
7 Write arrays[1][variables[2]] = variables[5];
8 Endloop

Fragment Success Rate
1 63%
1, 2 80%
1, 3 77%
2 73%
2, 3 60%
3 63%
3, 4 80%
3, 7 77%

Table 20. Fragments assessed from program “Reverse". Program’s code listed, in C-like format, with operators
listed ahead of each line for each of readability. Fragments then described, in reference to lines used followed
by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[8]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Add variables[7] = variables[2] + variables[6];
6 Read variables[5] = arrays[0][variables[2]];
7 Write arrays[1][variables[7]] = variables[5];
8 Endloop

Fragment Success Rate
1 3%
1, 2 13%
1, 4 20%
4 0%
4, 6 0%

Table 21. Fragments assessed from program “Shift Right". Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to lines
used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Literal variables[6] = 2;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[0]]
4 Subtract variables[9] = variables[0] - variables[6];
5 Loop for (variables[2]=0;variables[2]<variables[9];variables[2]++)
6 Add variables[7] = variables[2] + variables[6];
7 Read variables[5] = arrays[0][variables[2]];
8 Write arrays[1][variables[7]] = variables[5];
9 Endloop

Fragment Success Rate
1 80%
1, 2 73%
1, 3 63%
1, 4 63%
3 67%

Table 22. Fragments assessed from program “Shift Right Lossy". Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to lines
used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[5] = 1;
2 Subtract variables[1] = variables[0] - variables[5];
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Loop for (variables[3]=0;variables[3]<variables[1];variables[3]++)
5 Add variables[6] = variables[3] + variables[5];
6 Read variables[4] = arrays[0][variables[3]];
7 Read variables[7] = arrays[0][variables[6]];
8 Subtract variables[8] = variables[4] - variables[7];
9 Condition if (variables[8]>0)
10 Write arrays[0][variables[6]] = variables[4];
11 Write arrays[0][variables[3]] = variables[7];
12 Endloop
13 Endloop
14 Endloop
15 Make Array arrays[1] = new int[vars[0]]
16 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
17 Read variables[5] = arrays[0][variables[2]];
18 Write arrays[1][variables[2]] = variables[5];
19 Endloop

Fragment Success Rate
1 0%
1, 2 0%
1, 3 0%
1, 8 0%
1, 15 0%
1, 16 0%
3 0%
3, 8 0%
3, 15 0%
3, 16 0%
3, 17 0%
4 0%
4, 6 0%
8 0%
8, 9 0%
8, 15 0%
8, 16 0%
15 0%
15, 16 0%
16 0%

Table 23. Fragments assessed from program “Sort". Program’s code listed, in C-like format, with operators
listed ahead of each line for each of readability. Fragments then described, in reference to lines used followed
by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Loop for (variables[3]=0;variables[3]<variables[4];variables[3]++)
6 Add variables[7] = variables[2] + variables[3];
7 Write to 2D array[variables[7][variables[3]]=1;
8 Endloop
9 Endloop

Fragment Success Rate
2 23%
2, 3 30%

Table 24. Fragments assessed from program “Mirrored Parallelogram". Program’s code listed, in C-like format,
with operators listed ahead of each line for each of readability. Fragments then described, in reference to
lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Add variables[5] = variables[2] + variables[4];
6 Write to 2D array[variables[5][variables[10]]=1;
7 Write to 2D array[variables[2][variables[4]]=1;
8 Subtract variables[6] = variables[4] - variables[2];
9 Write to 2D array[variables[2][variables[6]]=1;
10 Write to 2D array[variables[5][variables[6]]=1;
11 Endloop
12 Literal variables[8] = 1;
13 Subtract variables[7] = variables[0] - variables[8];
14 Write to 2D array[variables[7][variables[10]]=1;

Fragment Success Rate
2 13%
2, 3 60%
2, 12 10%
12 13%
12, 13 40%

Table 25. Fragments assessed from program “Mirrored Hollow Parallelogram". Program’s code listed, in
C-like format, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[1] = 1;
3 Subtract variables[4] = variables[0] - variables[1];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[5][variables[2]]=1;
7 Write to 2D array[variables[2][variables[2]]=1;
8 Endloop

Fragment Success Rate
2 80%
2, 3 90%
2, 4 80%
4 90%
4, 6 63%
4, 7 87%

Table 26. Fragments assessed from program “Hollow Right Triangle". Program’s code listed, in C-like format,
with operators listed ahead of each line for each of readability. Fragments then described, in reference to
lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[3] = 1;
3 Subtract variables[4] = variables[0] - variables[3];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[4][variables[2]]=1;
7 Subtract variables[5] = variables[0] - variables[2];
8 Subtract variables[5] = variables[5] - variables[3];
9 Write to 2D array[variables[2][variables[5]]=1;
10 Endloop

Fragment Success Rate
2 67%
2, 3 93%
2, 4 80%
4 67%
4, 7 80%

Table 27. Fragments assessed from program “Hollow Mirrored Right Triangle". Program’s code listed, in
C-like format, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[4] = 2;
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Multiply variables[6] = variables[2] * variables[4];
5 Subtract variables[5] = variables[0] - variables[6];
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Add variables[7] = variables[3] + variables[2];
8 Write to 2D array[variables[7][variables[2]]=1;
9 Endloop
10 Endloop

Fragment Success Rate
2 23%
2, 3 20%
3 20%

Table 28. Fragments assessed from program “Inverted Isoceles Triangle". Program’s code listed, in C-like
format, with operators listed ahead of each line for each of readability. Fragments then described, in reference
to lines used followed by success rate using fragment as GP guidance (n=30)

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: August 2022.



Multi-Donor Neural Transfer Learning for Genetic Programming 43

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[7] = 1;
3 Literal variables[4] = 2;
4 Divide variables[5] = variables[0] / variables[4];
5 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Subtract variables[8] = variables[0] - variables[5];
8 Divide variables[8] = variables[8] / variables[4];
9 Subtract variables[8] = variables[8] - variables[3];
10 Add variables[9] = variables[8] + variables[7];
11 Condition if (variables[9]>0)
12 Subtract variables[9] = variables[2] - variables[8];
13 Condition if (variables[9]>0)
14 Subtract variables[9] = variables[0] - variables[8];
15 Subtract variables[9] = variables[9] - variables[2];
16 Condition if (variables[9]>0)
17 Write to 2D array[variables[2][variables[3]]=1;
18 Endloop
19 Endloop
20 Endloop
21 Endloop
22 Endloop

Fragment Success Rate
2 10%
2, 3 10%
2, 5 10%
3 3%
3, 4 0%
3, 5 10%
5 3%

Table 29. Fragments assessed from program “Trapezoid". Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to lines
used followed by success rate using fragment as GP guidance (n=30)
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