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ABSTRACT
Modern in-memory databases are typically used for high-performance
workloads, therefore they have to be optimized for small memory
footprint and high query speed at the same time. Data compression
has the potential to reduce memory requirements but often reduces
query speed too. In this paper we propose a novel, adaptive compres-
sor that offers a new trade-off point of these dimensions, achieving
better compression than LZ4 while reaching query speeds close to
the fastest existing segment encoders. We evaluate our compressor
both with synthetic data in isolation and on the TPC-H and Join
Order Benchmarks, integrated into a modern relational column
store, Hyrise.

1 INTRODUCTION
Database systems employ a wide variety of compression schemes
to reduce memory footprint, increase effective storage capacity
and overcome bandwidth limitations of slow hard drives. With the
proliferation of in-memory databases, the role of data compression
has changed from a nice-to-have feature to an essential tool that is
required to store and analyze large datasets. Since the maximum
amount of memory is an order of magnitude smaller than hard drive
capacity in most desktop and server computers, simply adding more
memory cannot solve the problem anymore.

Additionally, more and more workloads move to the cloud where
pricing models are dictated by the cloud provider. Hardware re-
sources available for cloud-based virtual machines are typically
pre-configured sets, where the price is proportional to the amount
of memory and CPU included in each machine type. Therefore, ef-
ficient compression directly affects operational costs of in-memory
databases running in cloud environments.

Compression methods decrease data size by exploiting redun-
dancy present within the input data, therefore column-oriented
databases are more suitable to compression than traditional row
stores. This is because a list of values from the same column always
have the same data type and more likely to be compressible than
records with multiple fields of different types. Modern in-memory
column stores take this a step further and split each column to
segments, where each segment has its own encoding and managed
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separately from the others. This approach enables great perfor-
mance for both transactional and analytical workloads by using a
write-optimized encoding of the most recent segment (where new
data is added) and a read-optimized one for older segments.

A commonly used segment encoding strategy is assigning a
single encoder per data type (integer, string, etc.) and use it for
all segments in the database. While this decreases memory con-
sumption and in some cases speeds up queries, it does not take into
consideration the characteristics of the stored data. There is some re-
search discussing dynamic encoding selection. CodecDB [13] trains
a model that infers which compressor is most likely to achieve
the highest compression based on static metrics derived from the
target column, such as cardinality or domain. Cen et al. proposed
a system called Learned Encoding Advisor [5], which takes into
consideration the values (both statistics and a 1% extract), sample
queries and the underlying hardware as well, when selecting the
best encoder. It is evaluated with two high-level strategy options:
maximum compression and highest query performance. Boissier de-
signed an encoding selection module for Hyrise, which learns cost
models of encoders from the physical query cache, and provides
the best segment encoder for a given memory budget [4].

In this paper we introduce a novel segment encoder family for
integer columns which determines its own best parameters based
on the data to be encoded. We evaluate them against the most
commonly used segment compressors, both in isolation using syn-
thetic data, and in a fully featured relational column store on the
TPC-H [2] and Join Order Benchmarks [14], analyzing the effects
of different encoding parameters. Extending the idea of finding the
best parameter for a single encoder to the whole database, we pro-
pose a segment encoding scheme for autonomous databases where
the compressor selection is driven by query patterns to maximize
performance.

The paper is organized as follows. In section 2 we review the
current state of segment encoding in modern relational databases
and introduce the data compression technique that our encoders
are based on. Then, in section 3 we present the detailed design
of four segment variants using this compression algorithm. Our
proposal for an intelligent, adaptive segment encoding framework
for autonomous databases is presented in section 4. The results of
evaluating the new segment types against the commonly used ones,
both in isolation and with industry-standard analytical benchmarks
are shown in section 5. Finally, section 6 draws conclusions from
the results and proposes future work.



2 BACKGROUND
2.1 Segment Encoding in In-Memory Databases
As companies collect and analyze increasingly large data sets, the
performance of disk-based databases is not satisfactory anymore
for many of them. With the decreasing price and increasing size
and speed of main memory, in-memory databases have become vi-
able and affordable alternatives [7] of disk-based systems. They are
ideal for performance-critical workloads, which means processing
speed and memory footprint are the new important metrics [17].
Compression has the potential to markedly decrease the footprint,
especially in modern columnar databases like SAP HANA [8], Hy-
Per [10] or DuckDB [20], which horizontally partition data into
segments and the unit of encoding is a segment instead of the whole
column. Therefore, compressors enjoy two extra benefits in this
environment: they can work on an array of values of the same
type, and data distribution within a segment is more likely to be
self-similar than in the whole column. Both of these qualities work
in favor of data compressors. However, as decompression requires
extra processing, it typically comes at a cost of query performance.
Therefore, it is critical to select the most appropriate compressor for
columns that are heavily used in queries. Since query performance
in analytical workloads mostly depends on processing speed of
integer columns [12], we focus on lossless integer compression.

Note, that strings make up the majority of data in both real
world datasets and widely used OLAP benchmarks like TPC-H
and TPC-DS. In many cases people store numeric columns like
timestamps, booleans or floats as strings as well, and cast them in
the SQL query [22]. Therefore, integer compression usually has a
minor effect on the overall storage footprint. However, there are
several major use cases where numeric data is the dominant type,
for example IoT time series. Consequently, our goal is to reduce
data size and retain or increase speed of frequent operations on
integer columns at the same time.

We assess our proposed segment encoders against the most com-
monly used integer compression schemes in columnar databases.

• Dictionary Encoding [3] is a widely used data compression
technique where unique values are collected to a sorted
dictionary, and their occurrences in the input data vector are
represented by a list of dictionary offsets. It is the default
encoding scheme of several column stores.

• Frame-of-Reference (FoR) [11] encoding stores difference of
each value to the common minimum, as well as the mini-
mum itself. The delta values are bit packed to the smallest
possible width. For evaluations we used an improved version
is this technique, called Patched FoR (or PFoR). It splits the
input data to fixed size blocks and performs FoR on each one
separately, hoping to exploit local similarities present in the
(large) array.

• LZ4 [1] is a relatively heavy statistical compressor that offers
high degree of data size reduction for slower compression
and decompression than the other two lightweight methods.
This scheme is typically used to compress columns that never
or very rarely participate in query conditions.

To test our segment compressor in a real system,we useHyrise [6],
a modern relational in-memory column store. It is an open-source

research database with an extensible framework for segment en-
coders. All three encodings above are standard built-in options,
making it easy for a segment developer to run benchmarks against
them. Even though vectorized implementations of some of these al-
gorithms are available via libraries [23], we are using the non-SIMD
variants for our comparisons.

2.2 Generalized Deduplication
Dictionary encoding, paired with null suppression of the dictio-
nary, attribute vector or both, achieves high compression when the
cardinality of the input data is sufficiently low (e.g., there are few
unique values). However, when applied to datasets where all values
are different, like a primary key column in a relational database, it
inflates the data and slows down every operation. Several methods
have been developed for compressing high cardinality datasets,
each with their own expectations about the value distribution. For
example, FoR and PFoR encodings assume a narrow domain of
encoded values.

Figure 1: Dictionary Encoding and Generalized Deduplica-
tion of the same set of values. GD uses an arbitrary, user-
specified transformation function to convert input values to
bases and deviations.

A new technique, introduced by Vestergaard et al. [21] and re-
ferred to as Generalized Deduplication (GD) does not have any inher-
ent assumptions about the data distribution. It prodives a flexible
compression framework that can be tailored for the data at hand.
Compression with GD is a two-step process: first, every input value
is passed through a user-defined, arbitrary transformation function
that converts it to a pair of base and deviation, where similar inputs
should generate the same base with different deviations. The goal
of this function is to separate the identical and varying parts of
the input data chunks. Think of it as a booster step in dictionary
encoding, which aims to increase the deduplication rate. Secondly,
bases are deduplicated and the base index of each original value
is determined (see Figure 1). Decompression is a straightforward
process in the opposite direction: the base and deviation is looked
up and passed to the inverse transformation function, which re-
constructs the original value. Generalized Deduplication has the
following key properties:

• It can be either a lossless or a lossy compressor, depending
on whether the deviations are kept or discarded.

• Dictionary Encoding is a special case of GD, where the trans-
formation is the identity function.

• GD supports constant time random access, since reconstruct-
ing a single value given its index requires 3 lookups: the
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base index, the deviation and the base itself (using the base
index).

• Arbitrary assumptions about the input data characteristics
can be encoded as the transformation function.

• Null suppression (removing leading zeroes, see Figure 2) can
be applied to any combination of the bases, deviations and
base indexes.

• The customizability of GD makes it a good fit in a variety of
use cases, including file systems, cloud storage, time series or
relational databases. It is applicable in every scenario when
the similarity between input data chunks can be extracted
with a reversible transformation.

Figure 2: Decomposition of a 4-byte unsigned integer (87703)
to base (2740) and deviation (23) using the LastBit transfor-
mation with 5 bit deviations.

GD-based compressors have been proposed in the past for differ-
ent data and use cases (e.g., [9, 18]), but not as a segment encoder in
relational databases. For integer compression in this environment,
we chose a simple but powerful transformation function that con-
siders the n least significant bits of a data value as deviation, and
the previous bits as base (see Figure 2). When applied to a series of
values, this transformation assumes they are close to each other, e.g.
the bits with the highest variation across the whole segment are at
the end of the values. This transformation function, called LastBit,
partitions the range of integers to consecutive regions of size 2n ,
that is, [i2n ...(i + 1)2n − 1] for i = 0, 1, ..., where the base of every
value within region i is i2n (the smallest element of the region).
For example with 6 bit deviations each base covers 64 consecutive
values (see Figure 3). It has an additional advantage besides sim-
plicity (therefore, processing speed): it is order preserving for both
bases and deviations, e.g., if x > y then either Base(x) > Base(y)
or Base(x) = Base(y) and Deviation(x) > Deviation(y). This prop-
erty gives LastBit an advantage over other transformation functions
in relational databases, since it enables faster predicate evaluations
in certain cases.

Figure 3: Partitioning integers with LastBit transformation
using 6-bit deviations.

3 GD SEGMENTS
We propose four designs based on Generalized Deduplication with
the LastBit transformation function to store, and access and query
numeric segments in a column store (Figure 4). When a segment
is encoded, each value is split into a base and a deviation. The
deviation size is an input parameter of the segment constructor,
given in bits. All segment variants include the deduplicated and
sorted list of bases, but they store deviations and base indexes in
different ways. The segments are implemented in C++17, where
we used compact::vector1 for bit-packed lists and std::vector
for regular ones. Bases and deviations are bit-packed lists in all
four variants, using exactly [32-deviation size] bits per base and
[deviation size] bits per deviation.

GD Segment 1 has the simplest internal structure where each
deviation is stored separately. Both deviations and base indexes
contain one entry per segment value, in the same order as the
original data. For example, to reconstruct the first value of the
segment, we need to combine the base indicated by the first base
index with the first deviation. Base indexes is a bit-packed list just
like the bases and deviations, but its width is determined in run-time
to fit the largest index.

InGDSegment 2 the deviations are also deduplicated and stored
in a sorted list. Since we cannot find the deviation of value i at
deviations[i] any more, we must store the deviation index for each
value offset explicitly. To minimize the number of memory lookups
during a reconstruction, we store each base index - deviation index
pair in a single value, and construct a bit-packed list of them. The
width of both indexes (and therefore the width of the reconstruction
list) is calculated in run-time, based on the number of unique bases
and deviations present in the segment.

GD Segment 3 aims to reduce the number of bits needed to
address deviations. Since in GD Segment 2 we stored all deviations
in a single list, the deviation index in the reconstruction list must
be wide enough for the largest one. Instead of a single list with all
(unique) deviations, we can organize them for each base separately.
We simply scan all base-deviation pairs produced by the segment
values, and group the deviations by their bases. Finally, we remove
the duplicates and sort. The resulting 2-dimensional array consists
of the unique deviations for each base, which are shorter than the
single global list of deviations, requiring fewer bits to address. Given
that each base is associated with a local group of deviations, some
deviations are likely to be members of multiple local groups and be
stored multiple times.

GD Segment 4 has a drastically different structure that is geared
towards fast table scans but is no longer random accessible. Simi-
larly to GD Segment 3, deviations are collected per base and sorted,
but in this case not deduplicated. For each deviation we also store
the original value offset, referred to as chunk offset on Figure 4,
which is needed to produce the result for table scans.

The design choices of the GD Segment variants are motivated by
the characteristics of generalized deduplication, the LastBit trans-
formation and our goal to optimize for compression, random access
and table scan speed at the same time. The four presented designs
stand at different trade-off points between these dimensions.

1https://github.com/gmarcais/compact_vector

3

https://github.com/gmarcais/compact_vector


Figure 4: Proposed GD-based segment encoders.

3.1 Fast Table Scans
Query performance of a segment compressor primarily depends on
the speed of two operations: random access (reconstruct the original
value given its offset, also known as dereferencing) and table scan
(given a predicate and a query value, return the segment offsets that
satisfy the condition). In Table 1 we have provided the formulas
and number of memory lookups per random access, which directly
affects random access speeds. Scans can be performed without any
special support from the segment encoder, simply by iterating or
decompressing the whole segment first, and evaluating the predi-
cate on each value, one by one. While this yields correct results and
is a reasonable default behavior, it can be slower than exploiting
the internal structure of the encoded representation, if possible.
As we already hinted, all GD Segment versions offer custom table
scan implementations that do not require decompressing raw val-
ues for predicate evaluation. In fact, not a single value needs to be
reconstructed to serve scans with any predicate in either of the GD
Segment variants.

Figure 5: A sample segment with only 9 stored values and 4
bases

The key to evaluating predicates2 without decompressing a GD
Segment is the LastBit transformation function. Since it partitions
integers to disjunct regions, we can quickly determine which base
ranges may contain values that satisfy the current query. Figure 5
depicts a small segment containing only 9 values that map to 4
bases in total. When a table scan is performed, first the query
value is passed through the same GD transformation function as

2The following predicates are valid for integer columns: Equals, NotEquals, Greater,
GreaterEquals, Less, LessEquals

the segment values did earlier, determining the query base and
deviation. Next, searching for the query base in the bases list us-
ing std::lower_bound (or std::upper_bound depending on the
predicate) tells us whether it is present in the segment, its index if
present, or the index of the first larger base. Since the list of bases
is sorted, we gain all this valuable information for a cheap, O(loдn)
binary search. If the query base is present in the segment, this is
the only base range that requires further investigation to evaluate
the predicate. Values of all other base ranges are either completely
contained in the result set, or not at all. For example, if the query
predicate on Figure 5 is GreaterEquals, surely no value from base
ranges B0 and B1 is a match, but every value of B3 is. Whether a
non-query value base range is included or excluded from the result
set depends on the predicate. This zero-cost elimination can be done
with all predicates, as it is a consequence of the order preserving
nature of the LastBit transformation. If the query base is present
in the segment, it needs to be scanned to find the values satisfying
the predicate. Since deviations are also order preserving, there is
no need to reconstruct the values of the query base. Comparing
the stored deviations with the query deviation using the query
predicate yields the correct results for the table scan.

Determining which deviations belong to the query base and com-
paring them to the query deviation is where the four GD Segment
designs differ the most. GD Segment 1 is the slowest, since it does
not store the deviations per base, therefore the whole base indexes
list must be traversed to find the deviation indexes that map to the
query base. In GD Segment 2 the process is identical, but as only
unique deviations are stored, there is a minor performance gain
due to the better cache hit rate. GD Segment 3 is faster, because
stored deviations have been grouped by bases, therefore it does
not have to iterate through the whole reconstruction list when
scanning the deviations of the query base. Additionally, since local
unique deviations are sorted, finding which ones satisfy the query
condition requires a fast binary search. GD Segment 4 is able to
evaluate table scans with at most two binary searches due to its
data layout, granting it exceptional speed. Unfortunately, without a
reconstruction list, it also lost the ability of constant-time random

4



Segment Formula to reconstruct value at of offset i (the GD inverse transformation is denoted by
⊕

) Lookups
Uncompressed data[i] 1
Dictionary dictionary[attribute_vector[i]] 2

GD Segment 1 bases[base_indexes[i]]
⊕

deviations[i] 3
GD Segment 2 bases[base_indexes[i]]

⊕
unique_devs[deviation_indexes[i]] 3

GD Segment 3 bases[base_indexes[i]]
⊕

local_unique_devs[base_indexes[i]] [local_dev_indexes[i]] 4
GD Segment 4 not random accessible -

Table 1: Random access formula and number of memory accesses for different segment types.

access, since there is no way to look up the base and deviation
based on the value offset. Instead, it has to iterate over all offset
lists until the requested one is found.

4 ADAPTIVE SEGMENT ENCODING
Generalized deduplication is unique among the commonly used
encoding schemes in the sense that there is no widely applicable
default configuration that yields predictable performance indepen-
dent of the data. For GD Segments, the deviation size that results in
good compression and query performance heavily depends on the
data distribution. A database administrator could pick an arbitrary
size as a global default (e.g., 8-bit deviations), but it likely won’t
be the best setting across different columns, segments of the same
column, or even the same segment over its whole lifetime. Thus,
a fixed default almost certainly wastes memory and CPU cycles
eventually.

Instead of relying on an administrator to manually select the
deviation size (either globally, or per-segment), we propose an
iterative encoder for GD Segments. It automatically determines the
best deviation size by trying all values from 1 to 30 bits (assuming
32-bit integer data) and selects the best one for the segment. The
only problem is how to define the "best". It seems trivial to use the
deviation size that achieves the highest compression, however, the
best query performance is not necessarily at the same setting. This
is due the different internal structures and custom table scan logic
of GD Segment variants. The best option can only be determined
based on testing the performance of different deviation sizes and
knowing the relative importance of multiple factors: compression,
as well as the speed of random access, sequential access and table
scan. Even compression and decompression speeds are relevant in
databases where segment encoding (and re-encoding) is a blocking
operation.

Our iterative GD Segment encoder works by first encoding the
input datawith all 30 possible deviation sizes. It records the compres-
sion and runs a series of speed tests to determine the performance

Dev.Size Comp. Seq.Access Rand.Access TableScan
1 bit 2% 8 ns 17 ns 171 µs
2 bits 27% 8 ns 16 ns 160 µs
3 bits 39% 10 ns 121 ns 159 µs

...
30 bits 3% 9 ns 16 ns 259 µs

Table 2: Sample results of GD Segment 1 diagnostic tests on
a primary key segment

of each option. We measure sequential access (by dereferencing
all offsets), random access (by requesting a set of random offsets),
and table scans using the six integer predicates and random query
values. The result of diagnostic tests is a table similar to Table 2.

Based on these measurements, there are multiple ways to select
the best deviation size. If the relative importance of the dimensions
is available, we can consider them as weights and find the deviation
size that yields the best combination of compression and speeds.
Figure 6 shows a few examples of weight distributions. These can
be fixed based on the database architecture, or even better, inferred
from the workload experienced by the segment while it was unen-
coded.

Databases that use late materialization (like Hyrise) execute
queries in a way that lists of segment offsets are passed between
processing nodes (e.g., a table scan or a join) and actual values are
materialized as late as possible. As a result, random and sequential
access via iterator dereferencing are the dominant segment opera-
tions. An alternative execution strategy is to materialize values at
the very first operation (typically a table scan) and and pass them di-
rectly during evaluation. Therefore, early materialization databases
achieve better query performance if they select an encoding with
more weight on table scan speed and less on random access.

Relational databases have long been collecting statistics to guide
query planning. We propose extending this capability with high
granularity access and table scan statistics on a per-segment ba-
sis. Specifically, recording the number of sequential and random
accesses, as well as table scans with each predicate separately. If
this detailed query history is available, the system can use it in the
beginning of the segment encoding process to infer the relative
importance of performance metrics, which provides the weights
for selecting the most appropriate compressor configuration.

Moreover, performance-based encoding selection can be ex-
tended to all segment encoders and the complete lifetime of seg-
ments. A self-driving database [15, 16, 19] is a relatively new concept

Figure 6: Possible presets of relative importance between
compression and query performance, when selecting the
best segment encoder.
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Figure 7: Proposed adaptive segment encoding process for autonomous databases.

which describes a system that automates maintenance and opti-
mization tasks. If a database has up-to-date information about the
usage patterns of each segment, it can assess whether the current
encoding is still the best for the experienced workload. By run-
ning the performance measurements we proposed for finding the
best GD Segment configuration, the database could compare every
available encoder for every segment. In systems where compressed
segment contents are immutable, the performance metrics stay
valid throughout their whole lifetime. If usage patterns change over
time, for example when data loses relevance and regular table scans
are replaced by aggregate computations, the database can re-use the
stored performance measurements together with the latest usage
statistics in order to determine the best encoding going forward.
It can also estimate the gains the new best encoding would yield
over the current one, and decide whether it is worth re-encoding.
This iterative process is illustrated by Figure 7.

The evaluation of encoders can be performed at regular time in-
tervals, or triggered when a new segment of a column is completed.
When the system concludes that a segment is worth re-encoding, it
can proceed immediately or schedule the job for a later time when
the user-facing workload is expected to be low. Even though seg-
ment encoding is assumed to be a background operation, measuring
different configurations for GD Segment (and presumably other
encoders too) is computationally expensive and might indirectly
affect system performance. Therefore, this initial profiling could
also be deferred to a quiet period, if possible.

It is worth noting, that the best balance between compression
and access/scan speeds cannot be derived automatically from the
proposed performance metrics and usage statistics, but it is rather
an arbitrary choice. The database user, administrator or system
itself must decide how much speed they are willing to trade for a
smaller memory footprint and, hence, a lower cost. Sometimes the
same segment encoder configuration yields the best compression
and highest speed at the same time. In this case the decision is
trivial, but many times it is less so. For example, when a segment
is used extremely rarely, search and access performance is much
less important than size reduction, thus a heavy compressor like
LZ4 is a better option than dictionary encoding, even though it has
orders of magnitude worse operational scores. The same choice may
be present between different configurations of the same segment
encoder.

5 EVALUATIONS
We evaluated GD Segment against uncompressed, dictionary en-
coded, frame-of-reference encoded and LZ4 compressed segments
in two scenarios. First, we measured their compression and query
performance in isolation using synthetic datasets. Then we inte-
grated GD Segment 1 into Hyrise and measured the TPC-H and Join
Order Benchmarks. The purpose of these tests is twofold. First, to
see how GD Segment variants compare to commonly used segment
encoders on typical integer columns. We also wanted to see how
important it is to select the deviation size based on the data and
relative importance of different factors, e.g., what the performance
gain is when the deviation size is chosen based on measurements
versus constant 8 bits.

5.1 Standalone Evaluation
We have implemented dictionary, Frame-of-Reference and LZ43
segment encoders in C++17 for standalone testing. They are func-
tionally equivalent to their Hyrise counterparts: dictionary encoder
uses a byte-aligned attribute vector and the same custom table scan
logic, PFoR encodes the segment in blocks of 2048 values. The only
difference in our implementation is that LZ4 segment compresses
the whole segment as a single block (while in Hyrise it partitions
the data to 16kB blocks), therefore a full segment decompression
is required in the beginning of random access tests. Both LZ4 and
PFoR segments fully decompress the values during table scans. GD
Segment variants measure compression and query performance
with all deviation sizes between 1 and 30 bits. We used the default
segment size of Hyrise, which is 65535 elements. All standalone
measurements were performed on a single thread of a 2.6 GHz Intel
Core i7 CPU with 256 kB L2 and 12 MB L3 cache. The segments are
stored and profiled entirely in memory.

We used the same synthetic datasets as Heinzl et al. in [12] with
the addition of a primary key segment. The datasets are: (i) uni-
formly distributed random numbers between 0 and 232, (ii) sorted
equidistant numbers with the step of 5, (iii) years between 1900 and
2100, (iv) months between 1 and 12, (v) a time series (power con-
sumption readings of a household) starting at 106 and (vi) primary
key starting with 1.

Compression gain is reported as a percentage of decrease in size,
e.g., 0% indicates no compression and 50% means the compressed
3Using the ZLIB library, which is natively available in every operating system
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Figure 8: Compression gain (higher is better), access (dashed line: sequential, solid: random) and table scan times (lower is
better) of the time series segment encoded with every GD Segment variant at the whole range of deviation sizes, between 1-30
bits (x axis). The best deviation size of Maximum Compression (MC) and Late Materialization (LM) performance presets are
marked. Note, that the access time and compression scales are different for GD Segments 1-2 and 3-4.

segment is half the size of the original data vector. To measure
random access time, we dereferenced a uniform random set of 6553
offsets (10% of the segment size), and report the average time. For
sequential access, all offsets from 0 to 65535 are requested and the
average time is reported. Segments that do not support random
access (LZ4 and GD Segment 4) decompress the whole segment and
return elements of the reconstructed integer vector. Decompression
time is included in the reported times for these two segment types.
For table scans we generate a uniform random set of 655 query
values (1% of the segment size) in the range of the stored values
with an extension of ± 10% to simulate out-of-range scans. Then,
we perform a table scan with all six predicates for every query value
and report the average time of all 3930 scans.

Note, that it would be straightforward to differentiate table scan
times per predicate as separate performance metrics and allow the
database to assign different weights to each one when determining
the best encoding for a segment. We chose to aggregate all pred-
icates only to ease the visualization of our results by decreasing
the number of dimensions. We are also not reporting compression
and decompression times, because they are irrelevant in a data-
base where both initial encoding and re-encoding are non-blocking
background operations. Therefore, encoding speed does not directly
affect the user-perceived query performance. In use-cases where
segment encoding is done synchronously, these should be part of
the segment performance report as well.

Figure 8 illustrates how each metric changes when different devi-
ation sizes are used to encode the time series segment. As a general
trend it can be stated that when compression gain increases, both
access and table scan times decrease. However, the deviation size
that maximizes compression (marked MC) and expected perfor-
mance of late materialization databases (marked LM) are different
in every segment variant for this column. Therefore, we cannot

assume that maximum compression automatically results in the
best query performance.

It is also ill-advised to assign a static default deviation size to each
GD Segment variant, since their behavior changes significantly with
different data distributions. Figure 9 shows the measured metrics of
GD Segment 1 across all deviation sizes, encoding different columns.
Again, the configuration that yields the highest compression (MC)
is different than the best deviation size for late materialization.
Furthermore, we cannot predict which size is best for different
configuration of weights or how they compare to each other (e.g.,
the best deviation for maximum compression is often smaller than
the one for late materialization). For GD segments, the concrete data
determines performance factors, therefore running the diagnostics
cannot be skipped if we want to optimize for a certain goal.

Table 3 and Table 4 lists the complete result set of encoding the
six synthetic datasets with different segments. For GD Segments, we
report the best deviation size for each of four weight distributions
shown on Figure 6, including Early Materialization (EM) and Equal
weights (EQ) in addition to MC and LM. We make the following
observations.

Dictionary Encoding significantly inflates the data when all val-
ues are different, but it still achieves consistently low access speeds
due to the very few memory accesses and simple algorithm for
dereferencing an offset. It excels at datasets with low cardinal-
ity, achieving very high compression and speed at the same time.
Patched Frame-of-Reference is the fastest in data access in almost
every case, and its size reduction is also among the best for most
data distributions. An excellent choice as the default compressor
in column stores. The table scan performance of GD Segment 4
is the best across all encoders in nearly every segment, since it is
heavily optimized for this operation, at the expense of access speed
and compression. GD Segment 1 achieves the highest compression
(when optimized for this metric alone) in 3 out of 6 segments. Its
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Figure 9: Performance metrics of GD Segment 1 at different
deviation sizes (x axis) on all six synthetic datasets.

random and sequential access performance are the best among
different GD Segment variants, since it requires the fewest mem-
ory accesses during dereferencing. Its table scan performance is
very similar to Dictionary Encoding with almost all data distribu-
tions. LZ4 achieves very high compression levels (unless presented
with the notoriously uncompressible uniform random data), but it
lacks efficient random access and fast table scans. This method is a
reasonable default for segments that are very rarely accessed.

Note, that LZ4 and GD Segment 4 appear to have adequate se-
quential access speeds, but this is only a side-effect of our mea-
surement methodology. Since these segment types do not support
constant-time random or sequential access, a full decompression is
performed at the beginning of the access tests and measurements
read the decompressed regular vector. Therefore, the cost of the
expensive one-time decompression is amortized by the 65535 ex-
tremely fast direct memory accesses. As a result, the sequential
access column of GD Segment 4 and LZ4 practically only shows
their decompression speeds.

5.2 Benchmarks in Hyrise
To observe the real-world performance of GD Segments and see
the effects of different selection criteria for the best deviation size,
we implemented GD Segment 1 as a segment encoder in Hyrise,
and ran two industry-standard benchmarks: TPC-H and Join Order
Benchmark (JOB). We chose Hyrise for this evaluation because it
satisfies all our expectations about handling segments:

• Segments store values of a single type.
• Segment encoding is a non-blocking background operation.
• Encoded segments are immutable.
• New segment encoders can be added relatively easily via an
extensible framework.

Hyrise is a late materialization database where lists of segment
offsets are passed between query nodes, and iterators are used as
the interface between the query engine and segment encoders. As a
result, segment performance (e.g., query performance with a given
segment type) is mainly determined by the speed of iterator deref-
erencing. We decided to integrate GD Segment version 1, because
it has the best random and sequential access performance across
the four variants. When a GD segment is first encoded, we run all
performance measurements described earlier and store the results
in a local JSON file. Subsequent encodings of the same segment
(e.g., running TPC-H again) simply load the metrics from the disk
instead of having to run all tests again. The relative weights of
compression and speeds are also read from a local configuration file
and used by the encoder on the fly when selecting the deviation size
of the segment. We measure different weight distributions for GD
segments by changing the weights in the config file and re-running
the benchmark. The configurations tested in the benchmarks and
marked on the figures are the following: fixed 8-bit deviation size
(8B), Late Materialization (LM), Maximum Compression (MC) and
Equal Weights (EQ).

Note, that the built-in Frame-of-Reference encoder in Hyrise
actually implements the PFoR algorithm with a block size of 2048,
but it is called FoR encoder in the source code. Therefore, we will
also refer to it the same way in our evaluations. Columns that
cannot be encoded with the tested encoder (e.g., float and string
columns with FoR and GD) are left uncoded. We report the total
compressed size of integer columns and the sum of average query
execution times as the cumulative benchmark runtime. All of the
computation done for these benchmarks was performed on the
UCloud4 interactive HPC system, which is managed by the eScience
Center at the University of Southern Denmark. All measurements
were performed in single-threaded mode.

Figure 10 shows the achieved compression and runtime of TPC-
H at scale factor 5 and Join Order Benchmark. The two results show
similar patterns of encoder performance. Dictionary encoding is
the worst compressor in both benchmarks, achieving only 10%
reduction in TPC-H and 21% in JOB, but it is the fastest as well. Ac-
cording to our measurements, 2% faster than unencoded segments
in TPC-H and 56% faster in Join Order Benchmark. This makes Dic-
tionary Segment the only contender for Hyrise that simultaneously
decreases data size and makes queries faster.

4https://docs.cloud.sdu.dk
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Figure 10: Size of integer columns and total runtimes of analytical benchmarks in Hyrise, with different segment encodings.

However, if the query speed with unencoded segments is satisfac-
tory for a certain use-case and decreasing the memory footprint is
more important, the other three encoders offer better compression
with different levels of performance penalty. Frame-of-Reference
achieves 44% (TPC-H) and 40% (JOB) size reductions of integer
columns for only 1% and 7% higher query times. Traditionally the
only other option was to almost completely sacrifice query per-
formance for similar or slightly better compression, using LZ4. It
reduces the memory consumption by 39% (TPC-H) and 54% (JOB)
for a staggering 24x-33x decline in query speed. This performance
makes LZ4 a viable option only on rarely queried columns.

GD Segments provide a new trade-off between query perfor-
mance and compression, which is close to the speed of FoR with
better size reduction than LZ4. In TPC-H, GD segment variants
achieve compression between 51% and 58%, the highest among all
encoders and 5-6x better than Dictionary encoding. In terms of
query performance, GD is 20-23% worse than unencoded segments,
depending on the relative importance of metrics that guided the
deviation size selection. Results for GD are similar in the Join Or-
der Benchmark as well, with slightly higher compression (54-63%)
and lower performance (26-30%). The different weight configura-
tions used to determine the deviation size work as intended. The
Late Materialization setting yielded the fastest GD Segment in both
benchmarks, while Maximum Compression is indeed the one with

the lowest total memory consumption. As expected, the fixed 8-bit
deviation is worse than both of them.

6 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced a new column compression family
based on generalized deduplication for integer sequences, and four
practical designs for segment encoders in columnar databases. They
aim to optimize for both memory footprint reduction and efficient
query execution, without having to decompress the whole segment.
We have shown that the performance of the proposed segments
is comparable to current state-of-the-art encoders, offering a new
trade-off point between compression and query speed. Additionally,
we proposed an adaptive segment encoder selection scheme for
autonomous databases, based on the same diagnostic and evaluation
mechanism we use to automatically select the best configuration
for our segment.

Our future plans include enhancing the storage layer of Hyrise
with i) the ability to collect detailed, segment-level usage statistics,
including the frequency and predicate of table scans, ii) a stan-
dardized set of performance measurements to evaluate segment
encoders at their full parameter space, and iii) an encoding selec-
tion framework that combines the experienced usage patterns of
segments with the performance metrics of potential encoders to
find the best possible one, and re-evaluates this decision when the
usage patterns sufficiently change.
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Table 3: Detailed results of standalone evaluation of GD Segments. Values in bold indicate the best of the column. MC, EQ, LM
and EM in the Best Deviation Size (Best Dev.) column marks which segment encoding (and which deviation size in case of GD)
yields the best overall choice for the given optimization goal.

Uniform Random Sorted Equi-Distance
Version Best Dev. Comp. Rand. Acc Seq. Acc Scan Dev. Comp. Rand. Acc Seq. Acc Scan
MC 28 (MC) 3% 14 ns 10 ns 483 µs 17 41% 8 ns 7 ns 183 µs
EQ
LMGD S1

EM
24 3% 13 ns 11 ns 359 µs 16 41% 6 ns 6 ns 182 µs

GD S2

MC 13 -48% 31 ns 21 ns 353 µs 10 40% 19 ns 12 ns 228 µs
EQ

16 -50% 19 ns 11 ns 369 µs 8 39% 15 ns 10 ns 225 µsLM
EM 1 -50% 24 ns 9 ns 151 µs
MC 20 -20% 35 ns 23 ns 346 µs 7 20% 30 ns 14 ns 201 µs
EQ 23 -25% 31 ns 23 ns 311 µs
LM 24 -28% 29 ns 20 ns 352 µs 18 -13% 14 ns 10 ns 187 µsGD S3

EM 23 (EM) -25% 30 ns 23 ns 311 µs 13 6% 22 ns 11 ns 173 µs

GD S4

MC 21 -19% 50 ns 7 ns 89 µs 8 23% 34 ns 6 ns 71 µs
EQ 25 -28% 47 ns 6 ns 76 µs 26

(EM) -30% 33 ns 5 ns 68 µsLM
EM 26 -31% 47 ns 6 ns 75 µs

Dictionary -50% 8 ns 7 ns 421 µs -100% 8 ns 4 ns 189 µs
FoR 0% 7 ns 6 ns 476 µs EQ, LM 50% 4 ns 4 ns 301 µs
LZ4 EQ, LM 0% 10 ns 3 ns 262 µs MC 65% 112 ns 13 ns 779 µs

Years Months
Version Best Dev. Comp. Rand. Acc Seq. Acc Scan Dev. Comp. Rand. Acc Seq. Acc Scan
MC 6 (MC) 75% 26 ns 20 ns 408 µs 3 (MC) 87% 6 ns 6 ns 415 µs
EQ 4 84% 6 ns 6 ns 292 µs
LM 8 72% 5 ns 6 ns 297 µsGD S1

EM
16 47% 5 ns 6 ns 314 µs

4 84% 6 ns 6 ns 292 µs

GD S2

MC 5 75% 12 ns 13 ns 272 µs 3 87% 6 ns 6 ns 328 µs
EQ

16 75% 6 ns 6 ns 257 µs 4 87% 6 ns 6 ns 232 µsLM
EM
MC 4 75% 14 ns 14 ns 290 µs
EQ
LMGD S3

EM
16 75% 6 ns 6 ns 244 µs

4
(EQ, EM) 87% 5 ns 6 ns 231 µs

GD S4

MC 1 46% 32 ns 6 ns 185 µs 1 47% 39 ns 5 ns 295 µsEQ 2 44% 31 ns 5 ns 182 µs
LM 8 25% 29 ns 5 ns 319 µs 16 0% 29 ns 5 ns 343 µs
EM 2 44% 31 ns 5 ns 182 µs 1 47% 39 ns 5 ns 295 µs

Dictionary EQ, LM, EM 75% 4 ns 4 ns 319 µs LM 75% 4 ns 4 ns 345 µs
FoR 75% 4 ns 5 ns 354 µs 75% 10 ns 4 ns 368 µs
LZ4 65% 97 ns 12 ns 711 µs 84% 66 ns 8 ns 535 µs
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