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Abstract

As an essential prerequisite task in image-based plant phenotyping, leaf segmen-

tation has garnered increasing attention in recent years. While self-supervised

learning is emerging as an effective alternative to various computer vision tasks,

its adaptation for image-based plant phenotyping remains rather unexplored. In

this work, we present a self-supervised leaf segmentation framework consisting of

a self-supervised semantic segmentation model, a color-based leaf segmentation

algorithm, and a self-supervised color correction model. The self-supervised se-

mantic segmentation model groups the semantically similar pixels by iteratively

referring to the self-contained information, allowing the pixels of the same se-

mantic object to be jointly considered by the color-based leaf segmentation

algorithm for identifying the leaf regions. Additionally, we propose to use a

self-supervised color correction model for images taken under complex illumi-
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nation conditions. Experimental results on datasets of different plant species

demonstrate the potential of the proposed self-supervised framework in achiev-

ing effective and generalizable leaf segmentation1.

Keywords: Self-supervised learning, convolutional neural networks,

image-based plant phenotyping, leaf segmentation, color correction, cannabis.

1. Introduction

Plant phenotyping is the field of scientific inquiry concerned with the quanti-

tative measurement of observable plant traits [1–4] developed from the dynamic

interaction of the genotype with environmental conditions. It provides an im-

portant tool to understand the effects of environment on the cultivated plants,

and enables a wide range of applications in plant breeding [1], crop monitoring

[5, 6], disease prevention and control [7, 8], etc. While traditional plant phe-

notyping relies on labor-intensive and error-prone manual measurements, the

advances in digital imaging and computer vision techniques have allowed for

quantifying plant traits from images in a non-invasive and automatic manner.

In achieving the goal of image-based plant phenotyping, automated segmenta-

tion of plant leaves is the fundamental prerequisite for measuring more complex

phenotypic traits. It is often performed at two granular levels: category-level

and instance-level. The former is concerned with segmenting the pixels belong-

ing to the ‘leaf’ category from background, while the latter moves a step further

and separates individual leaves from each other. Instance-level leaf segmenta-

tion allows for fine-grained measurement of individual leaf area, leaf count and

leaf growth rate, which could be beneficial for responsive plant growth mon-

itoring and growth regulation [9]. However, the variability in leaf shape and

appearance, constant self-occlusion and varying imaging conditions often ren-

der instance-level leaf segmentation an extremely challenging problem even in

controlled environments. In comparison, category-level leaf segmentation is rel-

1The developed code and datasets will be made publicly available on
https://github.com/lxfhfut/Self-Supervised-Leaf-Segmentation
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atively easier and provides a good approximation of plant size, thus making it a

more feasible and practical means for many application scenarios, such as plant

growth monitoring [10] and yield prediction [11].

Facilitated by the Leaf Segmentation Challenge (LSC) of the Computer Vi-

sion Problems in Plant Phenotyping (CVPPP) workshop, significant advances

have been achieved for both category-level and instance-level leaf segmentation.

Focusing on rosette plants [12], the LSC challenge has been instrumental in

advancing the research in leaf segmentation and beyond within the application

domain of image-based plant phenotyping. While earlier works rely on hand-

crafted image features [13–15], state-of-the-art methods [16–18] are mainly based

on supervised training of deep convolutional neural networks (CNNs), particu-

larly U-net [19] and Mask-RCNN [20], which have demonstrated superior perfor-

mance in segmenting common objects, e.g., person and car. However, despite

the substantial progress made over the years, there are still many challenges

hindering the wide applicability of existing techniques in practical deployment:

• Firstly, the training of deep models requires a large amount of annotated data,

but obtaining pixel-wise annotation for segmentation could be a highly labor-

intensive, time-consuming and error-prone process. For the image-based plant

phenotyping problem at hand, annotated data must contain sufficient exam-

ples of different mutations, genotypes and environmental conditions covering

different growth stages, which makes the problem thornier than expected.

• Secondly, deep learning models trained on datasets of specific plant species

usually do not generalize well to other unseen species. This problem is partic-

ularly acute for plant leaf segmentation because different plant species vary

dramatically in leaf appearances [18, 21]. It is often required to re-train a

model from scratch or fine-tune a pre-trained model on annotated datasets of

unseen plant species to achieve satisfactory performance across plant species.

• Lastly, dramatic changes in the background and appearance of plant leaves

caused by varying lighting conditions adds another dimension to the chal-

lenges faced by image-based plant phenotyping. Along with other factors such
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as weather conditions or different times of the day, this will result in complex

lighting conditions for plant image acquisition, and pose a huge challenge for

leaf segmentation. Surprisingly, to the best of our knowledge, there has been

limited research on investigating the effectiveness of leaf segmentation under

different lighting conditions. Given that the use of artificial light has become

very common in greenhouse cultivation to supplement natural sunlight, this

is a significant omission as it precludes the use of many existing algorithms

on plants grown under artificial lighting conditions.

To mitigate the aforementioned problems, there have been many attempts

to generate new synthetic data samples by 3D plant modelling [22], Genera-

tive Adversary Networks (GANs) [23, 24], domain randomization [17, 18, 21],

etc. However, it is difficult and often impossible to accurately simulate different

plant characteristics, various environmental conditions, and complex interplay

between genetic and environmental factors, which inevitably creates a gap be-

tween the real and synthetic data. In this work, we propose to surmount the

above challenges by developing a self-supervised learning framework for leaf seg-

mentation under complex lighting conditions without using any annotated data.

Specifically, we make the following contributions:

1. We propose a novel self-supervised semantic segmentation model. It inte-

grates the feature extraction power of Convolutional Neural Networks (CNNs)

with the structured modeling capabilities of fully connected Conditional Ran-

dom Fields (CRFs). It allows the pixels of the same semantic object to be

jointly processed, thus significantly reducing the impact of complex back-

grounds and variations within the leaf and non-leaf regions.

2. We propose a color-based leaf segmentation algorithm. It models the “green-

ness” of semantic objects in an image with the multivariate normal distri-

bution in the HSV color space, and identifies the regions with admissible

absolute and relative greenness as leaf regions.

3. We propose a self-supervised color correction model to rectify the “distorted”
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color in an image caused by the use of artificial grow lights. In so doing, the

color-corrected images can be segmented in the same way as for the images

taken under “natural” daylight conditions.

4. We publish a dataset of top-view cannabis images captured in a greenhouse

equipped with grow lights to facilitate the research in the area of image-based

plant phenotyping.

The remainder of this manuscript is organized as follows. We first review

the literature relevant to the proposed method in Section 2. The details of the

proposed self-supervised leaf segmentation framework are presented in Section

3, followed by comprehensive experimental results in Section 4. The concluding

remarks along with a discussion of future works are given in Section 5.

2. Related Works

Unsupervised leaf segmentation. Unsupervised image segmentation aims

to partition an image into groups of perceptually or semantically similar pix-

els without resorting to the ground-truth annotations. In the specific case of

leaf segmentation, traditional unsupervised clustering algorithms, e.g., expecta-

tion maximization (EM) algorithm [25], K-means [26], and fuzzy clustering [27],

based on color [25, 26, 28], shape [28], texture [29] features have been widely

adopted to distinguish the “leaf” pixels from the background. These methods

are usually employed in conjunction with superpixel algorithms to enhance the

spatial consistency and boundary adherence of the segmentation result. As can

be expected, these methods inevitably inherit the shortcoming of being sensitive

to parameters and outliers from the adopted traditional clustering algorithms.

Consequently, tedious parameter tuning and ad-hoc post-processing are usu-

ally required to obtain satisfactory segmentation results on specific datasets.

Moreover, the image features, particularly the shape and texture features, that

these unsupervised leaf segmentation algorithms rely on are specially designed

for a specific plant species and do not generalize well across a variety of plant
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species. One may argue that the color feature is generalizable over different

plant species because the leaves of most plants are green due to the presence

of chlorophyll. Indeed, the color feature is arguably the most widely used fea-

ture in plant-related image analysis. However, the color-based leaf segmentation

can be significantly influenced by the lighting conditions and the green-looking

objects present in the background, e.g., mosses and weeds.

Supervised leaf segmentation. Supervised leaf segmentation aims to seg-

ment leaf pixels in an image with a model trained on annotated image datasets.

While some early works [13, 30] attempted to accomplish this task by learn-

ing the distributions of leaf and non-leaf pixels in the color space, the past

few years have seen intensive use of methods based on deep neural networks

in various computer vision tasks, with no exception for image-based plant phe-

notyping. Deep neural network architectures, such as U-Net [31] and Mask R-

CNN [20], have been successfully used for category-level [32–34] or instance-level

[17, 18, 21, 35] leaf segmentation. To harness the full potential of deep neural

networks, it is essential to train the networks on large-scale high-quality anno-

tated datasets. However, the expense of the specialized facilities and equipment

for growing and monitoring individual plants, have substantially hindered the

collection and annotation of large representative datasets required in training

deep learning models for image-based plant phenotyping. To mitigate the data

scarcity issue, Ward et al. [17, 18] employed domain randomization to generate

synthetic arabidopsis leaf images. With a pool of “inspiration” leaves with leaf

geometries, leaf textures, and backgrounds collected from existing annotated

leaf image datasets, a synthetic plant is generated by randomizing the back-

ground and various plant parameters, e.g., leaf shapes and textures, sampled

from the pool of inspiration leaves. A similar idea was proposed by Kuznichov

et al. [21], where a synthetic image is generated by applying geometric transfor-

mations with random parameters to individual leaves segmented from real leaf

images and pasting them in random (näıve collage) or logical and structured

(structured collage) locations over a background image randomly selected from

the CVPPP LSC dataset [12]. Some other works [23, 24, 36] resort to generative
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adversarial networks (GANs) [37] to generate synthetic plant images. While ef-

fective in generating realistic synthetic plant images, all the above-mentioned

methods are still highly reliant on large amounts of annotated images.

Self-supervised leaf segmentation. Self-supervised learning aims to auto-

matically generate some kind of supervisory signal, e.g., pseudo labels, from

unlabeled data to solve tasks that are typically targeted by supervised learning.

As the supervisory signal is automatically generated from the data itself or its

transformed versions, self-supervised learning does not rely on human labeled

data and thus can be considered as a subset of unsupervised learning. To dif-

ferentiate it from traditionally unsupervised learning (e.g., K-Means and fuzzy

clustering), in this work, we use the term “self-supervised learning” to refer to

the techniques that explicitly and automatically generate supervisory signals for

typical supervised learning tasks such as classification and regression. Through

solving pretext tasks [38, 39], self-supervised learning has been widely used to

pre-train deep neural networks for learning visual representations that can be

transferred to downstream tasks, e.g., image classification [40], object detection

[41], and semantic segmentation [40]. There has also been a recent emergence

of self-supervised methods that directly output class labels for image clustering

and semantic segmentation without the use of a pretext task. For instance, Ji

et al. [42] trained a deep neural network by maximizing the mutual information

between the network outputs of an image and its augmented versions to predict

the image-level and pixel-level semantic labels for image clustering and image

segmentation, respectively. In a similar vein, some works attempted to learn

pixel-level representations for semantic segmentation from different views [43]

or object mask proposals [44] of the input image. Another line of self-supervised

semantic segmentation [45, 46] constructs supervisory signal by grouping spa-

tially adjacent pixels with similar features and iteratively updating the network

parameters until semantic label assignment converges. However, despite the

growing popularity in machine learning community, self-supervised learning is

still fairly unexplored in image-based plant phenotyping and, more broadly,

in agricultural technology, with a few exceptions that leverage self-supervised
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Camera

Grow light

(a) Greenhouse setup (b) Camera (c) Sample top-view image

Figure 1: Image acquisition setup for our Cannabis dataset.

methods for pre-training agricultural image classification model, e.g., [47].

3. Methodology

We first describe the unique opportunity we had to design and deploy a

cannabis growth monitoring system in a real-world greenhouse environment.

As shown in Fig. 1, cameras are mounted directly above the pots to collect

top-view images at an hourly interval over the course of the whole growth cycle.

Depending on the growth stage of the cannabis, the growing environment can

be customized by controlling the temperature, humidity and lighting conditions

to optimize the cannabis yield. We would like to particularly stress that the

lighting schedule (i.e., exposure duration) and quality (i.e., light spectrum) can

directly impact the transition between growth stages and ultimately affect the

yield of the plant. Thus, a high-quality artificial lighting environment is critical

for the effective indoor cultivation of cannabis. In such a scenario, measuring

the leaf area index of plant canopy, which can be approached via category-

level leaf segmentation, is practically more feasible than counting the number of

leaves for growth monitoring due to the heavy leaf occlusions that often occur

at the later growth stages of the cannabis. The key challenges for leaf segmen-

tation in this typical scenario are twofold. First, while data can be collected

round the clock automatically, annotating the collected data for training leaf

segmentation algorithms is labor-intensive and error-prone. Second, the use of

artificial grow lights poses a great challenge for many segmentation algorithms

as it dramatically changes the appearance of the plant in the image. In this
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work, we propose a self-supervised leaf segmentation framework that provides

a promising way towards effective and generalizable leaf segmentation under

complex lighting conditions without the need for annotated data. Fig. 2 shows

the overview of our proposed framework, which mainly consists of three compo-

nents: self-supervised color correction, self-supervised semantic segmentation,

and color-based leaf segmentation. In what follows, we will delve into the details

of the self-supervised semantic segmentation and color-based leaf segmentation

for the images acquired under “natural” or “normal” lighting conditions. We

then introduce the self-supervised color correction model for correcting the color

of the images taken under “unnatural” artificial lights so that the color-corrected

images can be segmented in the same way as for “natural” images.

3.1. Pseudo Label Generation for Self-Supervised Semantic Segmentation

At the core of mainstream self-supervised semantic segmentation approaches

is the generation of supervisory signals, typically in the form of “pseudo labels”

for samples of the same or different classes, by leveraging human prior knowl-

edge lying in the data. Images and their augmentations are used for generating

positive samples of the same class, while all other images are considered as neg-

ative samples. With the positive and negative samples generated from a large

number of images, a convolutional neural network (CNN) can be trained to ex-

tract pixel-level embeddings or representations for predicting semantic labels.

Taking a detour from this prevalent practice, we approach the self-supervision

problem by letting the neural network itself determine whether two pixels (ac-

tually two local patches due to the spatial locality enforced by the convolutional

operation) of the same image belong to the same class or not. The underlying

assumption is that semantically similar pixels should be mapped by an appropri-

ately parameterized embedding learning network into representation embeddings

that are close to each other in the embedding space, and therefore are more likely

to be assigned with the same semantic label.

Concretely, for a pixel-level embedding learning function Φθ : X → Z param-

eterized by a neural network with weights θ, it is expected to map two similar
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4F
<latexit sha1_base64="NeDfPKfuKxgJZdV0bi2kP6wobmo=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokU9VgUxGMV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6qN72SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhlZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaZ5XvItK9b5arl3ncRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHxFWjRE=</latexit>

4F

<latexit sha1_base64="l+h1MGAWnyAsvOPXQg85h5Z1vnk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DgniMYh6QLGF2MpsMmZ1dZnqFEPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHiq3vWLJLbtzkFXiZaQEGeq94le3H7M04gqZpMZ0PDdBf0I1Cib5tNBNDU8oG9EB71iqaMSNP5lfOiVnVumTMNa2FJK5+ntiQiNjxlFgOyOKQ7PszcT/vE6K4ZU/ESpJkSu2WBSmkmBMZm+TvtCcoRxbQpkW9lbChlRThjacgg3BW355lTQrZe+iXL2vlmrXWRx5OIFTOAcPLqEGd1CHBjAI4Rle4c0ZOS/Ou/OxaM052cwx/IHz+QMOTI0P</latexit>

2F

<latexit sha1_base64="k0XGJLzv+mPOe57haPXWVW03smo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB6DgniMaB6QLGF20psMmZ1dZmaFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSg1e97RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXLVfuK6XadRZHHk7gFM7Bg0uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Ag+yNTg==</latexit>

16F

<latexit sha1_base64="UOUV/CpYy4PgVNs6bkvy1VPdoN4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3mW5Uq+UqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ1fjNM=</latexit>

F

<latexit sha1_base64="NeDfPKfuKxgJZdV0bi2kP6wobmo=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokU9VgUxGMV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6qN72SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhlZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaZ5XvItK9b5arl3ncRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHxFWjRE=</latexit>

4F

<latexit sha1_base64="f4dn+FX99kqbwVo9/KAs7V9+iAQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DgniMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHrzKba9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvq6XadRZHHk7gFM7Bg0uowR3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AfdiNSg==</latexit>

12F

<latexit sha1_base64="mzcn+t43ORJ1oTBwpFqaz3BAK8E=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY9ELx4xyCOBDZkdGpgwO7uZmTUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeTu7nffkKleSQfzTRGP6QjyYecUWOlhldt9Islt+wuQNaJl5ESZKj3i1+9QcSSEKVhgmrd9dzY+ClVhjOBs0Iv0RhTNqEj7FoqaYjaTxenzsiFVQZkGClb0pCF+nsipaHW0zCwnSE1Y73qzcX/vG5ihjd+ymWcGJRsuWiYCGIiMv+bDLhCZsTUEsoUt7cSNqaKMmPTKdgQvNWX10nrquxVy5WHSql2m8WRhzM4h0vw4BpqcA91aAKDETzDK7w5wnlx3p2PZWvOyWZO4Q+czx+XoI1b</latexit> 16
S

<latexit sha1_base64="UOUV/CpYy4PgVNs6bkvy1VPdoN4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3mW5Uq+UqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ1fjNM=</latexit>

F
<latexit sha1_base64="LI91UNm6ZhQU14bTWmjn72MZdN0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI9BQTxGMQ9IQpidzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqZ+84lrIyL1iOOYd0M6UCIQjKKVHs5ve8WSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrNInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwVU3FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTTOyt5FuXJfKVWvszjycATHcAoeXEIV7qAGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wcP0Y0Q</latexit>

3F

<latexit sha1_base64="NeDfPKfuKxgJZdV0bi2kP6wobmo=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokU9VgUxGMV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6qN72SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhlZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaZ5XvItK9b5arl3ncRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHxFWjRE=</latexit>

4F

<latexit sha1_base64="l+h1MGAWnyAsvOPXQg85h5Z1vnk=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DgniMYh6QLGF2MpsMmZ1dZnqFEPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHiq3vWLJLbtzkFXiZaQEGeq94le3H7M04gqZpMZ0PDdBf0I1Cib5tNBNDU8oG9EB71iqaMSNP5lfOiVnVumTMNa2FJK5+ntiQiNjxlFgOyOKQ7PszcT/vE6K4ZU/ESpJkSu2WBSmkmBMZm+TvtCcoRxbQpkW9lbChlRThjacgg3BW355lTQrZe+iXL2vlmrXWRx5OIFTOAcPLqEGd1CHBjAI4Rle4c0ZOS/Ou/OxaM052cwx/IHz+QMOTI0P</latexit>

2F
<latexit sha1_base64="QN8947OwUxzoFnEjfYlE+HFmqZA=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB6DgniMYh6QLGF2MpsMmZ1dZnqFEPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHqq3vWLJLbtzkFXiZaQEGeq94le3H7M04gqZpMZ0PDdBf0I1Cib5tNBNDU8oG9EB71iqaMSNP5lfOiVnVumTMNa2FJK5+ntiQiNjxlFgOyOKQ7PszcT/vE6K4ZU/ESpJkSu2WBSmkmBMZm+TvtCcoRxbQpkW9lbChlRThjacgg3BW355lTQvyl61XLmvlGrXWRx5OIFTOAcPLqEGd1CHBjAI4Rle4c0ZOS/Ou/OxaM052cwx/IHz+QMUYI0T</latexit>

6F

<latexit sha1_base64="/C+Th/7E62Jt+l6qVfd2zEUW2Ak=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgKiTia1kUxGUF+4A2lMl00g6dmYSZiVBCf8GNC0Xc+kPu/BsnbRbaeuDC4Zx7ufeeMOFMG8/7dkorq2vrG+XNytb2zu5edf+gpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vs399hNVmsXy0UwSGgg8lCxiBJtc8t2Lu3615rneDGiZ+AWpQYFGv/rVG8QkFVQawrHWXd9LTJBhZRjhdFrppZommIzxkHYtlVhQHWSzW6foxCoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpia6DjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Eh+IsvL5PWmetfuucP57X6TRFHGY7gGE7Bhyuowz00oAkERvAMr/DmCOfFeXc+5q0lp5g5hD9wPn8A7ZSNhQ==</latexit>

1.5F

<latexit sha1_base64="/LVoT8QteMCJBFk9wQvQx4heaB4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4rmlpoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBj+HoZuY/PqHSPJEPZpxiENOB5BFn1FjJ99xa/b5XrrhVdw6ySrycVCBHs1f+6vYTlsUoDRNU647npiaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NgpObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XyUx0FUy4TDODki0WRZkgJiGzz0mfK2RGjC2hTHF7K2FDqigzNp+SDcFbfnmVtGpV76Jav6tXGtd5HEU4gVM4Bw8uoQG30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/dFWNzw==</latexit> 10
24

S

Downsampling

Upsampling

Skip connections

4 Residual blocks

2 Residual blocks 
+ 3 Conv3x3

<latexit sha1_base64="BHhqaW9zhDnEungm+CrKS8WMG9Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ7xmkul+tuXV3DrJKvILUoECzX/3qDRKWxVwhk9SYruemGORUo2CSTyu9zPCUsjEd8q6lisbcBPn82Ck5s8qARIm2pZDM1d8TOY2NmcSh7YwpjsyyNxP/87oZRjdBLlSaIVdssSjKJMGEzD4nA6E5QzmxhDIt7K2EjaimDG0+FRuCt/zyKmld1L2r+uXDZa1xW8RRhhM4hXPw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaC05xcwx/IHz+QP0eo7L</latexit>?

<latexit sha1_base64="Ghns8X62kFuv3pLuDTBj2oH6m5k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnUpxYH1Zpbd+cgq8QrSA0KNAfVr/4wYoniGpmk1vY8N0Y/pQYFk3xW6SeWx5RN6Ij3Mqqp4tZP57fOyFmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+KnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPJQvCWX14l7Yu6d1W/fLisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c5L86787FoLTnFzDH8gfP5AyD/jk8=</latexit>⇤
3 Conv3x3

<latexit sha1_base64="BHhqaW9zhDnEungm+CrKS8WMG9Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ7xmkul+tuXV3DrJKvILUoECzX/3qDRKWxVwhk9SYruemGORUo2CSTyu9zPCUsjEd8q6lisbcBPn82Ck5s8qARIm2pZDM1d8TOY2NmcSh7YwpjsyyNxP/87oZRjdBLlSaIVdssSjKJMGEzD4nA6E5QzmxhDIt7K2EjaimDG0+FRuCt/zyKmld1L2r+uXDZa1xW8RRhhM4hXPw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaC05xcwx/IHz+QP0eo7L</latexit>?

<latexit sha1_base64="BHhqaW9zhDnEungm+CrKS8WMG9Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ7xmkul+tuXV3DrJKvILUoECzX/3qDRKWxVwhk9SYruemGORUo2CSTyu9zPCUsjEd8q6lisbcBPn82Ck5s8qARIm2pZDM1d8TOY2NmcSh7YwpjsyyNxP/87oZRjdBLlSaIVdssSjKJMGEzD4nA6E5QzmxhDIt7K2EjaimDG0+FRuCt/zyKmld1L2r+uXDZa1xW8RRhhM4hXPw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaC05xcwx/IHz+QP0eo7L</latexit>? : followed by ReLU

: followed by 
Batch Norm. + ReLU

<latexit sha1_base64="Ghns8X62kFuv3pLuDTBj2oH6m5k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnUpxYH1Zpbd+cgq8QrSA0KNAfVr/4wYoniGpmk1vY8N0Y/pQYFk3xW6SeWx5RN6Ij3Mqqp4tZP57fOyFmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+KnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPJQvCWX14l7Yu6d1W/fLisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c5L86787FoLTnFzDH8gfP5AyD/jk8=</latexit>⇤

Conv3x3
Batch Norm.

ReLU
Conv3x3

Batch Norm.

ReLU

Re
si

du
al

 b
lo

ck

Convert image to L*a*b* color space

L*
 c

ha
nn

el

a*
b*

 c
ha

nn
el

s

<latexit sha1_base64="wi+oUtjWrpgOzXleXJzTve+o+ag=">AAACAHicbZC7TsMwFIadcivlFmBgYLGokJiqpJTCWMHCWCR6kdqoclynteo4kX2CVEVdeBUWBhBi5THYeBvcNkNp+SVLn/5zjo7P78eCa3CcHyu3tr6xuZXfLuzs7u0f2IdHTR0lirIGjUSk2j7RTHDJGsBBsHasGAl9wVr+6G5abz0xpXkkH2EcMy8kA8kDTgkYq2eflK+qaRd4yPRkAS97dtEpOTPhVXAzKKJM9Z793e1HNAmZBCqI1h3XicFLiQJOBZsUuolmMaEjMmAdg5KYNV46O2CCz43Tx0GkzJOAZ+7iREpCrcehbzpDAkO9XJua/9U6CQQ3XsplnACTdL4oSASGCE/TwH2uGAUxNkCo4uavmA6JIhRMZgUTgrt88io0yyW3Wqo8VIq12yyOPDpFZ+gCuega1dA9qqMGomiCXtAbereerVfrw/qct+asbOYY/ZH19QvZCZXz</latexit> 25
6
⇥

25
6⇥

3

<latexit sha1_base64="D9vWd7tnGedigHXFwaXYrSZgYJI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mVUr0IRUE8VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK2jRBHaIhGPVDfAmnImacsww2k3VhSLgNNOMLnN/M4TVZpF8tFMY+oLPJIsZASbTLq7rtcG5YpbdedAq8TLSQVyNAflr/4wIomg0hCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nEgmo/nd86Q2dWGaIwUrakQXP190SKhdZTEdhOgc1YL3uZ+J/XS0x45adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVtC+qXr1ae6hVGjd5HEU4gVM4Bw8uoQH30IQWEBjDM7zCmyOcF+fd+Vi0Fpx85hj+wPn8AQrNjZg=</latexit>
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D

Figure 2: Overview of the proposed self-supervised leaf segmentation framework. It mainly

consists of three components: self-supervised color correction, self-supervised semantic seg-

mentation, and color-based leaf segmentation. The data flows during the training and testing

phases are shown with red dashed and red solid lines, respectively. An image input is first

passed through the trained color correction model to rectify the potential ‘unnatural’ color in

the image. The color-corrected image is then input to the self-supervised semantic segmenta-

tion model to group the pixels of semantically similar objects, which will be jointly considered

to identify the green leaf objects with our color-based leaf segmentation model.

image pixels x,x′ ∈ X to two similar representation embeddings z, z′ ∈ Z. A

shallow network with 2 or 3 convolutional layers is sufficient to extract discrim-

inative features for our task of leaf segmentation, as shown in Fig. 2. Following

[48], we replace the traditional 3×3 convolution with a 1×1 pointwise convolu-

tion and a 3×3 depthwise convolution, which reduces the number of parameters

of the network and speeds up the embedding learning process. Similar to [42], we

terminate the output of convolutional layers with a softmax layer, which allows

us to model the uncertainty of the label assignment at the pixel i with a dis-

crete probability distribution over K semantic labels, i.e., zi = Φθ(xi) ∈ [0, 1]K .
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As such, the supervisory signals can be generated by exploiting the information

readily available in the discrete probability distributions. A straightforward way

to obtain the “pseudo labels”, as proposed in [45, 46], is to perform the argmax

classification by assigning the index with the highest probability to each pixel,

i.e., li = {j?|zi,j?= maxj zi,j}, where li is the pseudo label for the pixel i and zi,j

is the jth element of zi. These pixel-level pseudo labels are, in turn, used in a

supervised fashion to update the network parameters via backpropagation. This

procedure is repeated iteratively until convergence or the maximum number of

iterations is reached.

3.2. Challenges of Pseudo Label Refinement

As in supervised learning, the quality of the pseudo labels also has a signif-

icant impact on the performance of self-supervised learning approaches. How-

ever, the aforementioned way of pseudo label generation, in its primitive form,

is prone to noisy labels possibly due to the intrinsic properties of convolutional

neural networks, e.g., the sensitivity to small perturbations in the image [49]

and the tendency to output blurry object boundaries [50]. Consequently, se-

mantically similar pixels may be assigned with different labels, while pixels of

different semantic objects are likely to be assigned with the same label. These

problems are more prominent in the earlier stage of the iterative procedure when

the network weights are primarily random values.

Two approaches have been pursued to impose additional constraints for the

refinement of pseudo label assignment. The first approach [45] is to apply super-

pixel segmentation (e.g., SLIC [51]) beforehand and force the pixels in the same

superpixel to have the same pseudo label. The second approach is to employ a

spatial continuity loss [46] to encourage consistent pseudo label assignment for

adjacent pixels. The drawback of the first approach is that superpixel segmen-

tation itself is an ill-posed problem and the errors in superpixel segmentation,

which often occur in object boundaries, may lead to inaccurate and mislead-

ing pseudo label assignment. Moreover, as the superpixel segmentation is only

performed once prior to the iterative update of the network parameters, it does
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not allow the local neighborhood information conveyed by superpixels to be up-

dated in a dynamic way. Inevitably, little useful information can be provided for

pseudo label refinement once the spatial consistency enforced by superpixels has

been fulfilled. For the second approach, the spatial continuity loss encourages

spatial consistency of label assignment by enforcing the extracted representation

embeddings of adjacent pixels to be close to each other. Not only does it neglect

the long-range dependencies between pixels, it also disregards the fact that adja-

cent pixels may belong to different semantic objects. Such a boundary-unaware

label propagation may provide conflicting information for label refinement and

often results in subtle segments within the same semantic object, which can be

clearly observed in the visualization results presented in [46].

3.3. Fully-Connected CRFs for Structured Pseudo Label Refinement

In response to the above-mentioned limitations, we propose to integrate the

fully connected conditional random field (CRF) [52] into the iterative label as-

signment procedure of our self-supervised semantic segmentation model. Given

an image X consisting of N pixels, we model its segmentation as a random field

defined over a set of variables L = {l1, l2, ..., lN}, where li represents the label

assigned to the pixel i and can take any value from a set of K semantic labels

L = {1, 2, ...,K}. A conditional random field (X,L) can be characterized by

a Gibbs distribution in the form of P (L=l|X) = 1
Z(X) exp(−E(l|X)), where

E(l|X) is the Gibbs energy of a labeling configuration l ∈ LN and Z(X) is the

partition function. For the fully connected CRF model in [52], the Gibbs energy

is given by

E(l|X) =
∑
i6N

ψu(li|X) + η
∑

i6=j6N

ψp(li, lj |X), (1)

where the unary potential ψu(li|X) measures the cost of assigning label li to

the pixel i and the pairwise potential ψp(li, lj |X) measures the cost of assigning

labels li, lj to pixels i, j simultaneously. η is a weighting factor adjusting the

relative importance of the unary and pairwise potentials.

For our pseudo label refinement, we set the unary potential as ψu(li|X)=−
log zi,li , where zi,li is the probability of assigning label li to pixel i as output by
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the softmax layer of the embedding learning network Φθ. While for the pairwise

potential ψp(li, lj |X), we adopt a Gaussian appearance kernel [52]:

ψp(li, lj |X) = µ(li, lj)k(fi, fj)

= µ(li, lj) exp

(
−‖pi − pj‖22

2σ2
α

− ‖xi − xj‖22
2σ2

β

)
︸ ︷︷ ︸

appearance kernel

. (2)

The label compatibility function µ(li, lj) imposes a penalty when different

labels li and lj are assigned to adjacent pixels. While it is possible to specify

different penalties for different pairs of labels or make µ(li, lj) as parameters

that can be learned from the data as in [52], it is unreasonable to do so in our

self-supervised setting as the labels are randomly assigned for different images

and there are no pre-determined semantic meanings for the labels. In other

words, the leaf pixels in two different images may be represented by different

labels. For this reason, we use the simple and most widely used Potts model

given by µ(li, lj) = Jli 6= ljK, where JK is the Iverson bracket.

The appearance kernel k(fi, fj) in Eq. (2) depends on both pixel locations

(pi,pj) and the corresponding color vectors (xi,xj) in the RGB color space.

Intuitively, it tends to assign the same label for adjacent pixels with similar

color, with the “scale” of spatial distance and color proximity controlled by the

parameters σα and σβ . As each pair of pixels i and j will contribute to the

pairwise potential, regardless of their distance from each other, the fully con-

nected CRF model allows to exploit long-range pixel dependencies for pseudo

label refinement. Note that in the original model in [52], there is a smooth-

ness kernel intended for removing small isolated regions. We discard it in our

method as it will give rise to the chance of merging small, even though visually

distinct, into the background, which could be detrimental for separating small

plant leaves (e.g., at the seeding stage) from the background. Under such for-

malization, our pseudo label refinement for a given image X can be achieved

by finding the most probable label assignment l? that gives the maximum a

posteriori (MAP) labeling of the random field, i.e., l? = arg maxl∈LN P (l|X), or

equivalently, the lowest Gibbs energy E(l?|X). However, CRFs are notoriously
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Algorithm 1 Self-Supervised Semantic Segmentation

1: for t = 1 to T do

2: {qi}Ni=1, {zi}Ni=1 ← {Φθ(xi)}Ni=1 . Pixel-level softmax output

3: repeat m=5 times

4: {q̃i,l}Ni=1 ← {η
∑
j 6=i k(fi, fj) qj,l}Ni=1 . Message passing

5: {q̂i,l}Ni=1 ← {
∑
l′∈L µ(l, l′) q̃i,l′}Ni=1 . Compatibility transform

6: {q̌i,l}Ni=1 ← {q̂i,l + log zi,l}Ni=1 . Adding unary potentials

7: {qi}Ni=1 ← {Softmax(q̌i)}Ni=1 . Softmax normalization

8: end

9: {li}Ni=1 ← {arg maxj qi,j}Ni=1 . Supervisory pseudo labels

10: L← CrossEntropyLoss({qi, li}Ni=1) . Cross-entropy loss

11: Φθ ← Update(L,Φθ) . Network parameters update

12: end for

13: return {li}Ni=1

hard to optimize [53, 54] and the exact maximization of P (l|X) is intractable

even for low-resolution images. To circumvent this issue, a mean-field algorithm

was proposed in [52] for approximate MAP marginal inference of P (l|X). The

basic idea is to approximate the distribution P (l|X) with a simpler distribu-

tion Q(l|X) that can be expressed as a product of independent marginals. The

details of the mean-field algorithm are summarized in Steps 2-8 of Algorithm

1, where the distribution Q(l|X) is initialized as the pixel-level softmax output

{qi}Ni=1 of the embedding learning network Φθ.

The efficient implementation of the mean-field algorithm is important for our

label refinement as it may be executed T (a few hundreds) times until the neu-

ral network Φθ has been trained to extract meaningful embeddings for semantic

segmentation. Fortunately, it was shown in [55] that all steps of the mean-filed

algorithm (i.e., the Steps 2-8 of Algorithm 1) can be efficiently implemented

on GPUs. Of particular note is the message passing (the Step 4 of Algorithm

1), which can be implemented as a Gaussian filter with the coefficients calcu-

lated using the Gaussian appearance kernel in Eq. (2). The fully connected
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CRF, in its original form, allows for modeling the dependency between any pair

of pixels in an image, resulting in a Gaussian filter that potentially spans the

whole image. As suggested in [56], this issue can be circumvented by assum-

ing that the label distributions of two pixels are conditionally independent if

their Manhattan distance is greater than k. Such a conditional independence

assumption allows to efficiently implement the message passing with a k × k
convolutional filter while still retaining the capability and flexibility of mod-

eling long-range pixel dependencies. As shown in Algorithm 1, the mean-filed

algorithm is repeated m = 5 times, as suggested in [19, 56], to obtain the refined

label assignment. Afterwards in the Steps 9-11 of Algorithm 1, the supervisory

pseudo labels, generated by applying argmax classification to the refined la-

bel assignment distribution of each pixel, are used to calculate the multi-class

cross-entropy loss for updating the embedding network with backpropagation.

The entire procedure is repeated T times until the network Φθ is capable of

extracting meaningful embeddings.

3.4. Color-Based Leaf Segmentation

Most existing semantic segmentation algorithms, including many self-supervised

methods, require large-scale image datasets for training the network to group

pixels into a pre-defined set of semantic classes. In contrast, our proposed self-

supervised semantic segmentation algorithm learns to assign the same label to

the semantically similar pixels with the self-contained information in a single

image. While this precludes the use of external data, the side effect is that ad-

ditional efforts are required to distinguish the leaves from other objects. Prior

works [13, 25] have shown the potential of color-based features for leaf segmen-

tation, albeit for images with homogeneous backgrounds or in the supervised

setting. With the results output by our self-supervised semantic segmentation

algorithm, we are allowed to jointly process similar pixels of the same semantic

label and extract more reliable color information that is less susceptible to the

cluttered backgrounds or the subtle changes in leaf pixels. Towards this end, we

propose a leaf segmentation algorithm based on the “greenness” of the pixels.
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Specifically, we first replace each pixel color xi with the mean color of the

pixels with the same label in its connected region, i.e., x̄i = 1
|Xli
|
∑
j∈Xli

xj ,

where Xli is the set of pixels with the label li in the connected region of pixel

i. The use of connected regions enforces the calculation of the mean color is

performed locally, preventing two remotely located objects in the image from

influencing each other. Next, we convert the image from RGB to the HSV color

space (i.e., vi = rgb2hsl(x̄i)) and measure the “greenness” of each pixel with

the following multivariate normal distribution in the HSV color space:

g(vi) =
1√

(2π)3 det(Σ)
exp
(
−1

2
(vi − µ)TΣ−1(vi − µ)

)
, (3)

where µ ∈ R3 and Σ are the user-specified mean color vector and diagonal

covariance matrix. Finally, a binary leaf segmentation mask is generated by

applying the following thresholding operation:

ûi =

1, g̃(vi) > γ1 AND ğ(vi) > γ2

0, otherwise,
(4)

where 
g̃(vi) =

g(vi)

g(µ)
∈ [0, 1]

ğ(vi) =
g(vi)−mini g(vi)

maxi g(vi)−mini g(vi)
∈ [0, 1]

(5)

g̃(vi) and ğ(vi) measure the absolute and the relative “greenness”, respectively.

Intuitively, the relative greenness measures the relative degree of greenness of

an object by comparing to the highest (maxi g(vi)) and the lowest absolute

greenness (mini g(vi)) in the same image. It allows us to select only the most

green objects in an image, which could be particularly useful for reducing false

positives when non-leaf but green-looking objects (e.g., mosses) appear in the

background.

3.5. Self-Supervised Color Correction

The last building block of our leaf segmentation framework is the self-

supervised color correction model. As shown in Fig. 2, our color correction
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model follows the GAN-based pixel2pixel image translation network architec-

ture [57], with a generator responsible for generating color-corrected images and

a discriminator responsible for discriminating “real” images taken under good

lighting conditions and “fake” images generated by the generator. The genera-

tor G, mainly consisting of a series of Convolution-BatchNorm-ReLU modules

and residual blocks, progressively downsamples the input image to obtain high-

level features and then gradually upsamples the features to generate the target

images. To compensate for the low-level information lost due to downsampling

operations, skip connections are used as “shortcuts” to allow for the direct

information flow between the downsampling and upsampling branches. The

discriminator D is a binary classifier and is constructed by simply stacking a

few blocks of Convolution-BatchNorm-ReLU.

The training of the color correction model only involves unlabeled natural

images captured under good lighting conditions. For each of n natural image

in the training set {Ii}ni=1, it is converted into the L∗a∗b∗ color space, with

the lightness/grayscale values stored in the L∗ channel {IL∗i }ni=1 and the color

values stored in the a∗b∗ channels {Ia∗b∗i }ni=1. By taking the L∗ channel as

input and the a∗b∗ channels as output, the generator is trained to recover the

color channels from the grayscale channel image. Once the training is done, the

generator is expected to take the L∗ channel of a “color-corrupted” image, e.g.,

taken under artificial lights or poor weather conditions, and produce a natural-

looking image as if it was taken under good lighting conditions to achieve the

purpose of color correction. The training data for the Discriminator D is the

“real” original images {Ii}ni=1 and the “fake” images formed by concatenating

the L∗ images and the corresponding a∗b∗ images generated by the generator,

i.e., {G(IL
∗

i ), IL
∗

i }ni=1. For the training loss L(G,D), we use the combination of
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Table 1: The details of our Cannabis (Cnbs) dataset and the CVPPP LSC dataset.

Dataset
Res.

(pixels)

#

training

images

# test

images

(Natural)

# test

images

(Yellow)

# test

images

(Purple)

Plant

species

Cnbs 768×768 300 40 40 40 Cannabis

A1 500×530 128 33 33 33 Arabidopsis

A2 530×565 31 9 9 9 Arabidopsis

A3 2448×2048 27 65 65 65 Tobacco

A4 441×441 624 168 168 168 Arabidopsis

GAN loss LGAN (G,D) and L1 loss LL1(G) balanced by a weighting factor λ:

L(G,D) = LGAN (G,D) + λLL1(G)

=

n∑
i=1

log(D(Ii)) + log(1−D({G(IL
∗

i ), IL
∗

i }))

+ λ

n∑
i=1

‖Ia∗b∗i −G(IL
∗

i )‖1 (6)

The generator G and discriminator D are trained alternatively in an adversarial

manner to obtain the final color correction model G?= arg minG maxD L(G,D).

4. Experiments

4.1. Datasets

We conduct the experiments on two datasets: our Cannabis dataset and the

Computer Vision Problem in Plant Phenotype (CVPPP) Leaf Segmentation

Challenge (LSC) dataset [12]. Table 1 summarizes the details of these two

datasets. With the image acquisition setup shown in Fig. 1, we collect our

Cannabis dataset at different growth stages of cannabis plants under “Natural”,

“Yellow”, and “Purple” lighting conditions, which are controlled by turning off

or tuning the grow lights to yellow or purple color. We collect 300 images under

the “Natural” lighting condition as the unlabeled training set for training our
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Figure 3: Examples of “Natural”, “Yellow” and “Purple” plant images in our Cannabis dataset

and the CVPPP LSC dataset.

color correction model. Besides, we also collect 40 images under each of the

three lighting conditions and manually annotate the leaf segmentation masks

for evaluating the leaf segmentation performance. The LSC dataset consists of

4 subsets: A1, A2, A3, and A4, with each subset containing the images of a

different plant species. We refer to the original LSC dataset that was acquired

under good lighting condition as “Natural”. To simulate the yellow and purple

lighting conditions for the LSC dataset, we generate two more versions, “Yellow”

and “Purple”, for each image by randomly adjusting the normalized hue value

of each pixel in the ranges of [0.13, 0.15] and [0.83, 0.86], respectively. For both

versions, we also randomly adjust the saturation and lightness values in the

ranges of [0.6, 1] and [0.75, 1], respectively, to introduce more diversity to the

generated images. Sample images under different lighting conditions in our

Cannabis dataset and the LSC dataset are shown in Fig. 3. Note that the

training images (without segmentation annotations) in both datasets are only

used for the self-supervised training of the color correction model.
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4.2. Training Setup

For our self-supervised semantic segmentation model, it does not require

any external training data and iteratively updates the segmentation result by

resorting to the self-contained information in the same image. For all the exper-

iments, we set the number of semantic labels K = 64, the maximum iteration

number T = 300 (Algorithm 1), and the weighting factor η = 10 for the pairwise

potential in Eq. (1). While for the color-based leaf segmentation described in

Section 3.4, we empirically set the mean vector µ = [0.3, 0.6, 0.8] and covariance

matrix Σ = diag ([0.1, 0.3, 0.5]) of the greenness measurement distribution in

Eq. (3). The thresholds for the absolute and relative greenness in Eq. (4) are

set to γ1 = 0.2 and γ2 = 0.5, respectively.

For the self-supervised color correction model, we train two models sepa-

rately on our Cannabis dataset and the LSC dataset. We divide each image

in the training set (without annotation) into blocks of 256×256 px with 50%

overlapping to alleviate the data scarcity issue. We set the weighting factor

λ = 100 in Eq. (6) and train the generator G and the discriminator D alterna-

tively for 50 epoches with batches of size 16. The model weights are updated

through Adam optimizer with a learning rate of 0.0002. Due to the large dis-

parity in model complexity between the generator G and the discriminator D

in Fig. 2, training them from the same starting point could easily lead to the

earlier convergence of the discriminator. To balance the learning speed of the

generator and the discriminator, we pre-train the generator with the L1 loss for

20 epoches before alternatively training the two networks.

4.3. Evaluation Metrics

We evaluate the leaf segmentation performance with the commonly used

metric of Foreground-Background Dice (FBD) coefficient, which is calculated

as FBD= 1
n

∑n
i=1

2TPi

2TPi+FPi+FNi
∈ [0, 1] where TPi, FPi, and FNi are, respec-

tively, the numbers of true positive, false positive, and false negative pixels of the

ith image. For the performance evaluation of color correction, we use the metrics

of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
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A higher PSNR/SSIM value indicates better color correction performance. We

tailor the calculation of these two metrics for our color correction task by con-

verting the images to the YUV color space and only measuring PSNR and SSIM

of the U and V color channels. Besides, we also employ the Learned Perceptual

Image Patch Similarity (LPIPS) metric [58] to measure the perceptual similar-

ity between the original and the color-corrected images. LPIPS between two

images is calculated as the distance between their deep embeddings obtained

from classic neural networks, e.g., VGG and AlexNet, trained on ImageNet [59].

4.4. Ablation Studies

In this subsection, we will examine the influence of different components of

our self-supervised leaf segmentation framework using the LSC dataset.

Leaf segmentation. We first investigate the effects of the smooth term of the

fully-connected CRF [52], the absolute greenness and the relative greenness on

the performance of leaf segmentation. The results on the “Natural” testing set

of the LSC dataset are shown in Table 2. The first observation is that including

the smooth term negatively contributes to the segmentation results as it gives

rise to the chance of removing small leaf regions. The second observation is that

using the relative greenness improves the segmentation result on images with

green background, e.g., 94.7% vs 90.4% on the subset ’A1’ where some images

contain green moss in the background. Note that because the relative greenness

is a “relative” measurement, the non-green regions in an image may have high

relative greenness if no green objects present in the image. For this reason,

we jointly use the absolute and the relative greenness to reduce false positives

caused by only using the relative greenness.

Color correction. For our color correction model, we investigate the effects

of three training strategies, including 1) Separated: training on 4 subsets

‘A1’, ‘A2’, ‘A3’, and ‘A4’, separately, 2) Combined: training on the combined

dataset of the 4 subsets, and 3) Augmented: training with data augmenta-

tions including random flipping, sharpness adjustment, Gaussian blurring, affine

transform, and color jittering, to enhance the size and quality of the dataset.
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Table 2: Analysis of the components of the proposed leaf segmentation algorithm. The highest

FBD coefficient is shown in bold. The values in parenthesis are obtained on the subset ’A1’.

Smoothness term Absolute greenness Relative greenness FBD(%)↑

4 4 4 94.2

7 7 4 94.6 (A1: 94.7)

7 4 7 95.1 (A1: 90.4)

7 4 4 95.6 (A1: 94.7)

Note that for the color jittering augmentation, the hue value of each image re-

mains unchanged to avoid unintended impacts on the color correction task. We

train the color correction model on the “Natural” (i.e., original) training set of

the LSC dataset with different training strategies and test the performance on

the “Yellow” and “Purple” testing sets of the LSC dataset. The metrics aver-

aged over 4 subsets (A1, A2, A3, and A4) on the ‘Yellow” and “Purple” testing

sets are reported in Table 3. We can see that data augmentations are effective

in boosting the color correction performance, while combining the images from

different subsets for training provides very limited benefit or may even worsen

the performance, e.g., in the case of no augmentations. The worse performance

on the combined dataset is probably due to the mutual interference between the

notably different image backgrounds and plant traits in different subsets.

4.5. Performance Analyses

We compare our proposed self-supervised leaf segmentation framework with

a wide range of methods covering the categories of unsupervised, supervised

and self-supervised methods. The segmentation results on the “Natural” testing

sets of the LSC dataset and our Cannabis dataset are shown in Table 4 and the

visualization results on some example leaf images are provided in Fig. 4.

For unsupervised leaf segmentation methods, EM [25] performs poorly on

both datasets as it assumes that the foreground and the background pixels can

be modeled with two well-separated Gaussian distributions in the HSV color

space, which does not hold for the images in the LSC dataset and our Cannabis

22



Table 3: Analysis of different training strategies for the color correction model. ‘↑’ and ‘↓’

respectively indicate that higher or lower values represent better performance. The best results

are highlighted with bold yellow (for the “Yellow” testing set) and bold purple (for the

“Purple” testing set) colors.

Separated Combined Augmented PSNR[dB]↑ SSIM↑ LPIPS↓

4 7 7
31.48(Y’)

33.43(P’)

0.841(Y’)

0.860(P’)

0.431(Y’)

0.244(P’)

4 7 4
31.33(Y’)

34.88(P’)

0.836(Y’)

0.872(P’)

0.426(Y’)

0.239(P’)

7 4 7
29.54(Y’)

32.46(P’)

0.831(Y’)

0.862(P’)

0.469(Y’)

0.263(P’)

7 4 4
32.22(Y’)

34.42(P’)

0.831(Y’)

0.860(P’)

0.427(Y’)

0.237(P’)

Table 4: Leaf segmentation results in terms of FBD(%) on the “Natural” testing sets of the

LSC dataset and our Cannabis dataset for unsupervised (EM [25], MCS [60], and Nottingham

[14]), supervised (DC [16], SYN [17], and UPG [18]), and self-supervised (SSSLIC [45], SSCL

[46], and our proposed SSCRF) methods. ‘?’ indicates that the pre-trained model is fine-tuned

on the training set of the LSC dataset. The highest FBD coefficient on each dataset/subset

is highlighted in bold.

Dataset
Unsupervised Supervised Self-supervised

EM MCS Nott. DC? SYN UPG UPG? SSSLIC SSCL SSCRF

Cnbs 16.1 70.6 90.1 – 62.2 23.0 – 80.7 87.8 94.8

A1 38.5 73.6 95.3 93.3 90.3 49.2 90.4 91.5 94.3 94.7

A2 65.6 80.4 93.0 80.3 79.3 30.8 91.0 55.8 82.4 92.0

A3 34.6 39.2 90.7 68.4 72.0 36.4 92.6 91.7 93.9 95.2

A4 50.2 79.2 90.2 74.7 76.8 26.4 93.2 76.2 84.7 96.1
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Table 5: Cross-dataset performance evaluation in terms of FBD(%) on the “Natural” set of

our Cannabis dataset for DC?[16] and UPG?[18].

Fine-tuning

dataset

DC?[16] UPG?[18]

A1 A2 A3 A4 A1 A2 A3 A4

FBD(%) 42.6 81.3 76.5 66.5 74.2 81.6 53.2 83.2

dataset. MCS [60] incorporates multiple cues, including color, texture, shape,

and structure (i.e., leaf vein) information, to facilitate the leaf segmentation in

complex backgrounds. However, it lacks the capability of discriminating the leaf

from the scattered moss regions and is sensitive to illumination changes, leading

to the poor segmentation performance on the subsets ‘A1’ and ‘A3’ of the LSC

dataset. Nottingham [14] first over-segments the image in the L∗a∗b∗ color

space using the SLIC [51] superpixel algorithm and extracts leaf regions with

a simple seeded region growing algorithm in the superpixel space. Despite its

great performance, we found that due to the pixel intensity variations among the

superpixels within the leaf regions, it is tricky to select an appropriate threshold

for separating the leaf regions from the background. Different from Nottingham

[14], our proposed method performs leaf segmentation at a higher granularity

level of semantic objects, thus reducing the intensity inhomogeneity within leaf

and non-leaf regions and providing greater flexibility in threshold selection.

We investigate several supervised leaf segmentation methods based on two

mainstream segmentation networks, U-Net [31] and Mask-RCNN [20]. By for-

mulating instance-level segmentation as a coloring problem with a fixed number

of colors, Deep Coloring (DC) [16] allows to train a semantic segmentation net-

work based on U-Net [31] for instance-level segmentation with standard semantic

segmentation objectives. With the pre-trained model provided by the authors

of [16], we fine-tune it on each subset of the training set of the LSC dataset

and test the fine-tuned model on the corresponding subset of the testing set of

the LSC dataset. As the first color is reserved to represent the background, we

conveniently extract the first network output channel as the leaf segmentation
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mask. From the visualization results in Fig. 3, we can see that DC [16] gives

reasonably good leaf segmentation performance, but it tends to mis-identify

salient non-leaf regions in the background as leaf regions. SYN [17] and UPG

[18] are methods based on Mask-RCNN [20] and make use of large-scale syn-

thetic training data to achieve state-of-the-art leaf segmentation performance.

For both methods, we use the union of the instance segmentation mask as the

final leaf segmentation result. For SYN [17], we only report the results obtained

with the pre-trained model as the implementation of model training has been

removed in the source code published by the authors. While for UPG [18], we

report the results obtained with the pre-trained model and the model fine-tuned

on each subset of the training set of the LSC dataset. We use ‘?’ to indicate

that a model has been fine-tuned on target datasets. Not surprisingly, UPG?

outperforms UPG and SYN by a wide margin, which implies that fine-tuning

the pre-trained model on annotated target datasets is critical for achieving the

best possible segmentation performance. The generalization gap of deep learn-

ing models across different datasets becomes more evident in Table 5, where the

highest FBD is only around 83% if the model fined-tuned on the LSC dataset is

tested on our Cannabis dataset. These results re-confirm the difficult of training

models that are generalizable across different plant species without fine-tuning

on target datasets, which highlights the necessity and importance of developing

self-supervised leaf segmentation methods.

As for the self-supervised segmentation methods, we evaluate three most re-

lated methods, SSSLIC [45] based on the SLIC [51] superpixel algorithm, SSCL

[46] based on the continuity loss, and our proposed self-supervised segmentation

method based on the fully-connected CRF model (SSCRF). We set the super-

pixel number to 10000 for SSSLIC and the weighting factor of the continuity

loss to 5 for SSCL in our experiments. With the semantic segmentation re-

sults output by these three methods, we apply the same color-based method to

obtain the final leaf segmentation results. We can see from Table 4 that our pro-

posed SSCRF not only consistently outperforms the other two self-supervised

methods but also achieves overall better performance than the state-of-the-art
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Table 6: Leaf segmentation results in terms of FBD(%) on the “Yellow” testing sets of the

LSC dataset and our Cannabis dataset. ‘?’ indicates that the pre-trained model is fine-tuned

on the training set of the LSC dataset.

Dataset
Unsupervised Supervised Self-supervised

EM MCS Nott. DC? SYN UPG UPG? SSSLIC SSCL SSCRF

Cnbs 13.8 81.6 86.8 – 62.3 28.2 – 76.3 82.1 87.1

A1 38.7 73.6 87.8 87.4 88.8 59.3 89.3 87.2 85.0 88.7

A2 56.3 79.1 88.2 77.2 87.0 12.5 90.7 56.7 77.0 92.5

A3 27.4 19.1 74.1 65.0 67.5 26.4 90.3 91.3 91.6 93.9

A4 51.8 80.0 89.1 63.0 77.3 35.4 91.9 77.6 83.8 92.3

unsupervised and supervised methods. Further investigation on the visualiza-

tion results in Fig. 3 shows that SSSLIC and SSCL tend to merge small leaves

into the background, thus leading to the significant performance decline on the

subsets ‘A2’ and ‘A4’ of the LSC dataset. The inferior performance of SSSLIC

and SSCL can be attributed to the fact that, they only assign the same label to

spatially adjacent pixels but lack an effective mechanism to prevent the occur-

rence of assigning the same label to distinctly different pixels/superpixels. While

in our proposed SSCRF, such mechanism is realized via dynamically modeling

the pairwise pixel affinities and penalizing inappropriate label assignments to

neighboring pixels with large color differences.

To evaluate the performance of the proposed color correction model, we

apply color correction to the images in the “Yellow” and “Purple” testing sets

of the LSC dataset and our Cannabis dataset with the color correction models

trained on the corresponding “Natural” training sets. We then repeat the above

leaf segmentation experiments for all compared methods on the color-corrected

images of the “Yellow” and “Purple” testing sets. The quantitative results are

reported in Table 6 and Table 7, while some qualitative results can be found

in Fig. 5, where we also show the color-corrected images in the second column
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Table 7: Leaf segmentation results in terms of FBD(%) on the “Purple” testing sets of the

LSC dataset and our Cannabis dataset. ‘?’ indicates that the pre-trained model is fine-tuned

on the training set of the LSC dataset.

Dataset
Unsupervised Supervised Self-supervised

EM MCS Nott. DC? SYN UPG UPG? SSSLIC SSCL SSCRF

Cnbs 28.2 82.2 84.8 – 51.3 32.4 – 75.7 80.7 83.9

A1 37.3 72.9 87.8 91.7 90.0 48.5 89.7 91.4 92.5 94.7

A2 61.3 77.4 88.2 80.7 77.2 24.9 88.7 63.2 69.6 92.6

A3 22.9 18.7 81.6 68.2 67.1 45.4 89.9 87.3 91.9 94.8

A4 56.3 74.4 82.6 75.5 77.4 28.7 88.4 71.3 74.8 83.8

to visualize the color correction performance. We exclude EM [25] and UPG

[18] in Fig. 5 because of their poor performance. We would like to make a few

remarks for these results: 1) While trained on the same “Natural” training sets,

the color correction model exhibits somewhat performance variations on images

taken under different lighting conditions. It is generally easier to correct color

for “Yellow” images than “Purple” images, probably because the yellow color is

statistically distributed closer to the green color in the L∗a∗b∗ color space. 2)

For the leaf segmentation task, it is important to include in the training set the

images collected at various growth stages covering the whole life cycle of plants.

In the training set of our Cannabis dataset, the majority of the images were

collected at early growth stages including 72 images that only contain empty

plant pots, which, to some extent, compromise the color correction performance

on our Cannabis dataset. 3) Our proposed self-supervised leaf segmentation

method still achieves overall better performance than other methods on the

color-corrected images across different datasets, which highlights the potential

of our method in achieving effective and generalizable leaf segmentation.
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Unsupervised Supervised Self-supervised︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Image EM MCS Nott. DC?

SYN UPG UPG? SSSLIC SSCL SSCRF

Figure 4: Example leaf segmentation results. For the results of DC?[16] and UPG?[18] on

the Cannabis dataset, we show the visualization results obtained with the models fine-tuned

on the subsets ‘A2’ and ‘A4’, respectively, which offer the highest achievable FBD(%) metrics

according to Table 5. Color coding: green: detected leaf regions (true positives); red : detected

non-leaf regions (false positives); blue: mis-detected leaf regions (false negatives).
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Unsupervised Supervised Self-supervised︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Image Corrected MCS Nott. DC?

SYN UPG? SSSLIC SSCL SSCRF

Figure 5: Example leaf segmentation results on “Yellow” and “Purple” images. Color coding:

green: detected leaf regions (true positives); red : detected non-leaf regions (false positives);

blue: mis-detected leaf regions (false negatives).
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5. Conclusion and Future Work

In this work, we presented a self-supervised leaf segmentation framework

that is capable of segmenting leaf regions from the background under complex

illumination conditions without annotated training data. Comprehensive ex-

periments on the CVPPP LSC dataset and our Cannabis dataset demonstrated

that the proposed method achieves state-of-the-art performance. Despite its

effectiveness in segmenting leaf regions under varying lighting conditions and

the generalizability across different plant species, there is still some room for

improvement. In the proposed self-supervised semantic segmentation model,

the pixel-wise label assignment is updated and refined in an iterative manner,

which may require hundreds of iterations to obtain sensible results. For an iter-

ation number of T=300, the segmentation takes 20-30 seconds for an image of

size 512×512 pixels on our desktop PC with a Nvidia GTX 2080Ti 11GB GPU.

While this meets the requirements of our plant growth monitoring project, we

will seek to improve the efficiency of our method by using heuristic early stop-

ping criteria and initializing the pixel-level embeddings learning network with

pre-trained weights. Given the promising results of our self-supervised semantic

segmentation, another interesting line of research for future work is to explore

the possibility of self-supervised instance-level leaf segmentation by bridging the

gap between semantic segmentation and instance segmentation.
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