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Abstract 

Experimental design and computational modelling across the cognitive sciences often rely on 

measures of semantic similarity between concepts. Traditional measures of semantic 

similarity are typically derived from distance in taxonomic databases (e.g. WordNet), 

databases of participant-produced semantic features, or corpus-derived linguistic 

distributional similarity (e.g. CBOW), all of which are theoretically problematic in their lack 

of grounding in sensorimotor experience. We present a new measure of sensorimotor 

distance between concepts, based on multidimensional comparisons of their experiential 

strength across 11 perceptual and action-effector dimensions in the Lancaster Sensorimotor 

Norms. We demonstrate that, in modelling human similarity judgements, sensorimotor 

distance has comparable explanatory power to other measures of semantic similarity, explains 

variance in human judgements which is missed by other measures, and does so with the 

advantages of remaining both grounded and computationally efficient. Moreover, 

sensorimotor distance is equally effective for both concrete and abstract concepts. We further 

introduce a web-based tool (https://lancaster.ac.uk/psychology/smdistance) for easily 

calculating and visualising sensorimotor distance between words, featuring coverage of 

nearly 800 million word-pairs. Supplementary materials are available at https://osf.io/d42q6/. 

 

Keywords: sensorimotor distance; semantic similarity; semantic distance; grounded 

cognition 

 

  



SENSORIMOTOR DISTANCE  3 

Sensorimotor distance: A grounded measure of semantic similarity for 800 million 

concept pairs 

 

Semantic similarity is at the heart of many fundamental processes in human cognition 

(see Goldstone & Son, 2012; Hahn, 2014), such as categorisation (e.g., Hampton, 1998; 

Nosofsky, 1986), memory recall and recognition (e.g., Baddeley, 1966; Montefinese et al., 

2015) and language processing (e.g., Raveh, 2002; Hutchison et al., 2008). As semantic 

similarity between concepts is known to have such wide-ranging effects, accurate and 

interpretable measures of similarity are crucial tools for predicting behaviour and mapping 

out how people conceptualize and process their world. Thus, such measures are of the utmost 

utility in research in the cognitive sciences, from designing and analysing experiments to 

building computational models. 

Study of semantic similarity is inseparable from theories of conceptual processing and 

representation in general. For theories that assume the conceptual system is organised in a 

taxonomic hierarchy (e.g. Collins & Quillian, 1969; Jolicoeur et al., 1984), natural candidates 

for measures of semantic similarity may be derived from measures of distance in hierarchical 

databases (e.g. WordNet, Princeton University, 2010). On the other hand, for family-

resemblance accounts in which conceptual relationships are founded on shared features 

(Rosch & Mervis, 1975; Wittgenstein, 1953; see also Cree & McRae, 2003), measures of 

semantic similarity can be produced by comparing lists of conceptual features produced in 

norming studies (e.g. Buchanan et al., 2019; McRae et al., 2005). Under the distributional 

hypothesis—that similarity of word meaning is given by similarity of word usage (Harris, 

1954; Firth, 1957)—linguistic distributional measures of semantic similarity may be derived 

by extracting relevant statistics from large corpora of natural language (e.g. latent semantic 

analysis, LSA: Landauer & Dumais, 1997; continuous bag of words, CBOW: Mikolov et al., 
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2013). Finally, within a grounded cognition framework, where concepts’ representations 

involve partial replay of perception and action experience (e.g. Barsalou, 1999; Connell & 

Lynott, 2014), one might surmise that similarity between concepts equates to similarity of 

their sensorimotor experience; however, no measure of semantic similarity based on 

sensorimotor experience has been made available to date. 

Our goal in the present paper is to address that gap by providing a database of 

semantic similarity measures based on the sensorimotor experience underlying each concept, 

which we term sensorimotor distance (available online at 

https://lancaster.ac.uk/psychology/smdistance). 

Measures of Semantic Similarity 

While different measures of semantic similarity have tended to emerge from different 

(and often conflicting) theoretical traditions, it does not mean they are mutually exclusive. 

Similarity is a multifaceted and complex construct. For instance, if two things are similar 

because they share properties in common, then similarity itself is meaningless because all 

objects share an infinite number of properties in common (e.g., a plum and a lawnmower both 

share the properties of weighing less than 100 kg, and less than 101 kg, and less than 102 kg, 

etc.: Goodman, 1972). Similarity is thus only meaningful when it is constrained to mean two 

things are similar in a certain respect, and it is possible that multiple measures of similarity, 

each applying different constraints, are required to fully capture the similarity between two 

given concepts.  

Similarity measures based on hierarchical structure can be taken from large machine-

searchable encyclopaedic databases (e.g., Strube & Ponzetto, 2006), or purpose-built 

semantic databases such as WordNet (Princeton University, 2010; Miller, 1995, 1998). 

WordNet is a large online lexical database of English, with words organised into a hierarchy 

of hypernymic (i.e., “is a type of”) relations. Under this framework, concepts are more 
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similar when there is a short path between their nodes in the hierarchical structure (Resnik, 

1995; Jiang & Conrath, 1997). For example, similarity measures based on WordNet distance 

are likely to score alligator and crocodile as highly similar because the path between them is 

very short (e.g., alligator → crocodilian reptile → crocodile), but will score alligator and 

monster as quite dissimilar because the path between them requires going via the root node of 

entity and is thus very long indeed1. Coverage of similarity comparisons using WordNet 

distance is very high in principle (i.e., over 117,000 synset classes potentially enables billions 

of pairwise comparisons), although it is limited to separate consideration of nouns and verbs 

because other parts of speech are not structured in hypernymic hierarchies; “off the shelf” 

coverage is far smaller in reality, such as Maki et al.’s (2004) compilation of WordNet 

distances for nearly 50,000 concept pairs. However, although the nature of hierarchical 

distance as a similarity measure means that while it excels at constraining similarity by 

hypernymic/categorical relations, the role of sensorimotor grounding is largely non-existent. 

While concepts very close together in hierarchical structure may share some sensorimotor 

experience (e.g. many types of foodstuff may be grounded in taste and smell), other forms of 

semantic similarity that are grounded in perceptual or action resemblances (e.g. alligator and 

monster; princess and bride; toddler and detonation) are not generally captured. 

Feature-based similarity measures, on the other hand, are typically computed from 

lists of features produced by participants per concept in norming studies. Under this 

framework, similarity between a pair of concepts is given by the degree of overlap of their 

respective lists of features. Feature lists are necessarily highly sparse (i.e., most concepts do 

not possess most features); overlap can therefore be determined by simple counting of 

common features (McRae et al., 2005), or incorporating feature-production frequencies (e.g., 

 
1 e.g., alligator → crocodilian reptile → diapsid reptile → reptile → vertebrate → chordate → animal → 
organism → living thing → whole → physical object → physical entity → entity → abstract entity → 
psychological feature → cognition → ability → creativity → imagination → imaginary being → monster. 
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by using the cosine of the angle between feature-frequency vectors: Devereux et al., 2014; 

Buchanan et al., 2019). For example, the concepts mountain and hill would be scored as 

similar because they have many shared features such as high, landscape, climb and steep, 

whereas mountain and pyramid would be far less similar because they share far fewer 

features (e.g., tall). By encompassing a wide range of features including taxonomic (e.g. 

landscape), encyclopaedic (e.g. found in ranges) and grounded (e.g. cold), feature-based 

measures can theoretically constrain similarity on a number of different dimensions. 

However, grounded features are not consistently present across concepts (e.g., toy has no 

perceptual or action features in McRae et al.’s norms; music has no action features in 

Buchanan et al.’s norms), and so a measure of semantic similarity based on concept-feature 

norms is, at best, inconsistently and partially grounded. In addition, the laborious nature of 

collecting and standardising feature lists produced by participants has meant that feature-

based similarity measures are quite restricted in their coverage. One of the largest concept-

feature norming studies is that of Buchanan et al. (2019), who compiled a database of 

features for almost 4,500 concepts that expanded on several previous databases (including 

Devereaux et al., 2014; McRae et al., 2005; Vinson & Vigliocco, 2008), and made available 

feature-based similarity measures for over 200,000 concept pairs. While useful, feature-based 

measures nonetheless cover only a small fraction of the approximately 40,000 concepts 

thought to make up the typical conceptual system of adult English speakers (Lynott et al., 

2020; see also Brysbaert et al., 2014) and a smaller fraction of the hundreds of millions of 

comparable concept pairs. Moreover, since many concept-feature norming studies focused 

exclusively on concrete noun concepts, particularly objects (e.g., Devereaux et al., 2014; 

McRae et al., 2005), and later studies expanded those item sets (Buchanan et al., 2019), 

abstract concepts and other parts of speech remain underrepresented in feature-based 

similarity measures.  
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Finally, linguistic distributional measures of semantic similarity are based on the 

statistical relationships between words and their usage contexts in natural language. Under 

this framework, similarity of concepts is determined by contextual similarity of their word 

labels, following the distributional hypothesis that words with similar meanings tend to occur 

in similar contexts (Harris, 1954). Linguistic distributional measures of semantic similarity 

are recently typified by Mikolov et al.’s (2013) continuous bag of words (CBOW), which 

represents words as vectors derived from a neural network model trained on word co-

occurrences in a corpus of text; similarity between two concepts is then compared as the 

cosine similarity between these vectors. For example, CBOW scores helicopter and airplane 

as highly similar because they appear in similar contexts (e.g., concerning pilot, flying, sky), 

but scores helicopter and bee as dissimilar because they tend to occur in quite different 

contexts. Other examples of linguistic distributional measures include latent semantic 

analysis (LSA: Landauer & Dumais, 1997, which continues to be used extensively in the 

cognitive sciences as a measure of semantic similarity), GloVE (Pennington et al., 2014), and 

skip-gram (Mikolov et al., 2013: CBOW’s sister model in the word2vec package). Linguistic 

distributional measures of semantic similarity have excellent coverage, with tens or hundreds 

of thousands of individual words available for comparison (depending on the corpus) that 

span all parts of speech. They also appear to constrain similarity on a number of different 

dimensions, such as synonymity, shared categories, taxonomic classes, and thematic 

connections (see Wingfield & Connell, 2022, for review). However, linguistic distributional 

measures can approximate sensorimotor grounding only insofar as this information is 

reflected in statistical patterns of word usage, which is limited. For example, Louwerse & 

Connell (2011) showed that language-use statistics were able to distinguish visuohaptic 

words from auditory words, but not visual words from haptic (see also Louwerse & Jeuniaux, 

2008; Riordan & Jones, 2011). In general, linguistic distributional measures do not capture 
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many forms of semantic similarity that are grounded in perceptual or action resemblances2 

(e.g. helicopter and bee, toddler and detonation). 

The Current Norms: Sensorimotor Distance 

We present here a novel, grounded measure of semantic similarity: sensorimotor 

distance. It is based on the Lancaster Sensorimotor Norms (Lynott et al., 2020), which 

contain sensorimotor strength ratings that reflect the extent to which a given referent concept 

can be perceived through auditory, gustatory, haptic, interoceptive, olfactory, and visual 

modalities; or can be experienced by performing an action with the hand/arm, head, foot/leg, 

mouth, or torso effectors. Each of these dimensions was carefully chosen to map to a specific, 

separable region of the cortex, meaning that a multidimensional profile of sensorimotor 

strength approximates the distributed neural representation of a concept across the sensory, 

insular, and motor cortices, and hence operationalises how the perception and action systems 

provide distributed grounding for words. Each concept is represented as a point (or vector) in 

an 11-dimensional space of distributed sensorimotor experience, and distance between 

concepts can therefore be calculated as the distance between the vectors. For example, 

alligator and monster are relatively close in sensorimotor terms (i.e., both are experienced 

primarily by sight, moderately by hearing and head action, weakly by touch and hand action; 

but are not generally smelled or involve action with the mouth, foot, or torso), whereas 

alligator and daydream are quite distant because they share little sensorimotor experience.  

Sensorimotor distance is therefore a grounded measure of semantic similarity that 

operationalises how the distributed neural representations of two concepts across perception 

 
2 Some recent distributional models incorporate co-occurrence of either visual or auditory information as well as 

linguistic (e.g. Bruni, Tran & Baroni, 2014; Lazaridou, Pham & Baroni, 2015; Lopopolo & van Miltenburg, 

2015; Günther et al., 2020), but these models fall outside the linguistic domain of the distributional hypothesis, 

and they are not currently widely used in cognitive psychology to approximate semantic similarity. 
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and action systems differ from one another3. Its coverage is excellent, as the nearly 40,000 

concepts in the Lancaster Sensorimotor Norms is large enough to approximate a full adult 

conceptual system, covering abstract as well as concrete concepts and all parts of speech, and 

yielding nearly 800 million comparable concept pairs.  

Sensorimotor distance constrains similarity by perception and action experience, and 

by its nature would also constrain by synonymity (i.e., synonyms like sofa and couch, or 

large and big, would be expected to have extremely similar profiles of sensorimotor 

experience). Recent work in our lab also suggests that sensorimotor distance appears to 

capture taxonomic/categorical constraints. For instance, sensorimotor distance between 

category name and member concept has been successfully used to predict responses in 

category production (e.g., list as many types of animal as you can: Banks et al., 2021) and 

category verification tasks (e.g., is the pictured dog a member of the category animal?: van 

Hoef et al., 2019). Participants were more likely to list a member concept as belonging to a 

category, and to verify its membership quickly and accurately, when it had short 

sensorimotor distance from the category concept (e.g., animal and dog) compared to longer 

sensorimotor distance (e.g., animal and snake). Nonetheless, sensorimotor distance would not 

generally capture all forms of semantic similarity, such as those based on thematic 

relationships between concepts (e.g., bee and honey; grape and vineyard). 

 
3 We note that sensorimotor grounding of word meaning can occur not only via direct, first-hand experience, but 

also indirectly via vicarious experience or inference from linguistic associations (Barsalou, 1999; Connell & 

Lynott, 2014; Harnad, 1990; Louwerse, 2011). Because each concept’s vector operationalises grounding in 

sensorimotor systems, regardless of how this grounding is acquired, it means that sensorimotor distance between 

concepts is also fully grounded in this way. Nonetheless, even though we use vector comparison as the basis for 

sensorimotor distance, we do not suggest that the mental processes underlying semantic similarity judgements 

actually resemble vector operations (Jones et al., 2015). 
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In the current paper, we present the details of the sensorimotor distance measure, and 

demonstrate that sensorimotor distance has comparable explanatory power to WordNet 

distance, feature overlap, and CBOW in modelling human similarity judgements while 

explaining variance in human judgements that is missed by other measures. Furthermore, it 

does so with the advantages of remaining both grounded and computationally efficient (i.e. 

easy to calculate via economical representations, once the relevant sensorimotor ratings have 

already been collected), and applies to both abstract and concrete concepts. All data, analysis 

code, and full results are available in supplemental materials at https://osf.io/d42q6/. We 

further introduce a web-based tool (available at 

https://lancaster.ac.uk/psychology/smdistance) for easily calculating and visualising 

sensorimotor distance between lists of concepts, featuring coverage of nearly 800 million 

concept pairs. 

Calculating Sensorimotor Distance 

Materials 

We took all 39,707 concepts from Lynott et al.’s (2020) Lancaster Sensorimotor 

Norms, which provide ratings along 11 dimensions of sensorimotor experience as well as a 

number of other related variables. Lynott et al. normed perceptual and action dimensions 

separately on a total of 3,500 native speakers of English. For the perceptual norming 

(N = 2635), participants were asked to rate on a scale from 0 (not at all) to 5 (greatly) to what 

extent they experienced a concept by seeing, hearing, feeling through touch, sensations inside 

the body, smelling, and tasting (six perceptual modalities, randomly ordered). For the action 

norming (N = 1933), participants were asked to rate on the same scale to what extent they 

experienced a concept by performing an action with the hand/arm, foot/leg, head excluding 

mouth, mouth/throat, and torso (5 action effectors, each accompanied by a body avatar image 

for clarity, randomly ordered). Participants could select a “don’t know” button instead of 



SENSORIMOTOR DISTANCE  11 

providing ratings when they were not familiar with the named concept. The final dataset 

comprised 12.3 million individual ratings and showed excellent inter-rater reliability for all 

dimensions (Cronbach’s alpha = .85–.96). We use here the main form of the norms at the 

item level, which comprise mean ratings per dimension for 39,707 concepts. 

Measures of Sensorimotor Distance 

To compute sensorimotor distance between a pair of concepts, we use the vectors of 

ratings in each of the 11 dimensions of sensorimotor experience. Many possible measures 

exist for calculating the distance between vectors; here we present cosine distance (i.e. 

1 minus the cosine of the angle between the vectors4), which we found to be the best for 

modelling human similarity judgements. We also tested four other examples: correlation, 

Euclidean, Minkowski-3, and Mahalonobis distances5, with details included in supplementary 

materials. Any pair of concepts in the Lancaster Sensorimotor Norms can be compared using 

cosine distance, yielding sensorimotor distance scores for over 788 million unique concept 

pairs. 

Sensorimotor Distance Characteristics 

Sensorimotor distance computations between concept pairs, and other associated 

functions such as finding nearest neighbours and plotting two-dimensional visualisations, can 

be performed using an online tool at https://lancaster.ac.uk/psychology/smdistance, detailed 

in Appendix A. 

 
4 We opted to use cosine distance rather than cosine similarity for consistency with other distance measures in 

the web tool and to avoid terminological confusion with semantic similarity. 

5 While Lynott et al. (2020) discussed some variables with similar names in the original Lancaster Sensorimotor 

Norms paper, they all compressed the multidimensional sensorimotor strength of a single concept by calculating 

the distance from a concept vector to the origin. By contrast, the measures we present here compare two 

separate concepts by calculating the distance between their individual vectors. 
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Distance distributions. Cosine distances between non-negative vectors range in 

theory from 0 to 1, and sensorimotor distance measures span almost the entire range of 

possible values: the minimum attained distance is .0002 (the closest pair is cyan–pixilation, 

with other very close pairs including hyphen–colorfast, distance 0.0020, and everything–

multisensory, distance 0.0038; excluding the distances of zero between each concept and 

itself) and the maximum is .950 (the furthest pair is shinbone–smelled, with other very distant 

pairs including flavorless–handgrip, distance 0.942, and adobe–digestion, distance 0.921). 

The full distribution of distances is shown in Figure 1. Mean sensorimotor distance was .195 

(SD = .123). 

 

 

Figure 1. Distributions of cosine distances between all (approximately 800 million) 

pairs of concepts in the Lancaster Sensorimotor Norms. 
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Visualizing distance between concepts. The relative distances between select 

concepts can be visualized using multidimensional scaling (MDS) techniques, which arrange 

points in two-dimensional space while minimizing the distortion of the pairwise distances. 

Figure 2 shows two examples of such MDS plots for a selection of category exemplars taken 

from the norms, demonstrating clustering between semantic categories of nouns and action 

categories of verbs (see also Connell et al., 2019).  

 

Figure 2. Visualizing sensorimotor distance between sample concepts. Cosine 

distances between each pair of concepts were transformed using nonmetric 

multidimensional scaling (Sammon, 1969). Left panel: select nouns for tools, 

emotions, fruit and celestial objects. Right panel: select verbs for leg, hand, mouth 

and cognitive actions. 
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Nearest neighbours. From a reference word, lists of nearest sensorimotor neighbours 

(i.e. the other concepts which have the smallest distance to the reference word) can be 

generated. Some examples of nearest neighbours are shown in Figure 3, suggesting that 

sensorimotor distance can encode detailed information about concepts (e.g. speed of 

movement). 
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Figure 3. Examples of top-5 nearest neighbors in sensorimotor distance. Each 

concept is accompanied by a polar plot, which shows the strength of rating in each 

dimension: (clockwise from the top) auditory, gustatory, haptic, interoceptive, 

olfactory, visual, foot/leg, hand/arm, head, mouth/throat, torso. 
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Validating Sensorimotor Distance 

For sensorimotor distance to be a useful research tool, it is important to show both 

how it compares to other measures of semantic similarity, and that it is a good predictor of 

human judgements of similarity which are missed by other measures. All materials, data and 

associated statistics are available in supplementary materials at https://osf.io/d42q6/. 

Analysis 1: Comparison to Other Measures of Semantic Similarity 

In this first analysis of convergent validity, we compare sensorimotor distance as a 

grounded measure of semantic similarity with alternative similarity measures that originate in 

different theoretical perspectives on the conceptual system: hierarchical structure (i.e., 

WordNet distance), feature-based representations (i.e., feature overlap), and linguistic 

distributional information (i.e., CBOW). Overall, sensorimotor distance correlates as well 

with alternative measures of semantic similarity as such measures do with each other. 

Method & Materials. We compiled 4,325 word pairs featured in existing datasets of 

human similarity ratings: WordSim (Finkelstein et al., 2002), Simlex (Hill et al., 2016) and 

MEN (Bruni et al., 2014). Coverage varied by measure, as outlined below. 

As well as our own sensorimotor distance measure, we selected three popular 

measures of semantic similarity which have been widely used across the cognitive sciences, 

each relating to one of the theoretical frameworks earlier discussed:          

Sensorimotor distance. A total of 3,730 word pairs were covered by our database, for 

which we calculated sensorimotor distance (cosine distance M = .126 SD = .104).                                                                                                                                                                                     

WordNet distance. Maki et al. (2004) compared several related measures based on 

distance in the WordNet taxonomy, from which the authors determined that Jiang–Conrath 

distance (Jiang & Conrath, 1997) to be the superior choice for modelling semantic similarity. 

Jiang–Conrath distance similarity is based on the information content of two concepts relative 

to that of their most specific mutual ancestor in the hierarchy (i.e. the “least common 
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subsumer”). Although Maki et al. make available a database of precomputed distances for 

around 50,000 word pairs, it covered only approximately 10–15% of most of the similarity 

datasets of we set out to model here. We therefore opted to recompute Jiang–Conrath 

distances on WordNet using the implementation in NLTK version 3.2 (Bird et al., 2009), 

which covered 3,776 word pairs (WordNet distance M = 11.39, SD = 6.06). 

Feature overlap. Buchanan et al. (2019) collected feature-production norms for a list 

of 4,436 concepts. Pairs of concepts can be compared via their respective lists of norms6. 

Instead of counting the number of norms in common between a concept pair, Buchanan et al. 

recommend computing the cosine of the angle between the sparse property-frequency vectors 

(yielding approximately 10 million comparable pairs). Buchanan et al. provide a database of 

precomputed cosine-overlap values for just over 208,000 pairs, which covered 2,414 pairs 

from our item set (Feature overlap M = .095, SD = .189). 

CBOW. The computation of CBOW scores involves training a neural network model 

on a huge corpus of text to predict a target word from its linguistic contexts (Mikolov et al., 

2013). We used the CBOW vectors from Mandera et al. (2017, provided by Mandera, 2016) 

to calculate cosine distances for our materials: 4,325 word pairs were covered (CBOW cosine 

distance M = .693, SD = .162). 

Analysis. We computed Bayesian correlations between all four semantic similarity 

measures using JASP (JASP Team, 2020) with a stretched prior beta width = 1 (i.e., uniform 

prior where all correlations values are equally likely). Because some similarity measures 

were distances (i.e., more similar = lower score) while others were similarity/overlap scores 

(i.e., more similar = higher score), the direction of the alternative hypothesis varied. Matching 

 
6 Buchanan et al. (2019) provide two measures of feature overlap using cosine distance: one using the original 

features provided by their participants ("raw" overlap), and another where features were combined using a root 

lemmatiser ("root" overlap). In what follows we use the "root" overlap measure. 
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constructs were expected to be positively correlated (i.e., between sensorimotor distance, 

WordNet and CBOW), whereas mismatching constructs (i.e., all other comparisons) were 

expected to be negatively correlated. Bayes Factors (BF) are reported as natural logarithms 

due to their magnitude. 

Results. Sensorimotor distance correlated at best moderately with other measures of 

semantic similarity (see Figure 4), with very strong evidence that the correlations ran in the 

expected direction: all log BFs > 80. Intercorrelations between WordNet distance, feature 

overlap, and CBOW scores were of similar magnitude, indicating that sensorimotor distance 

correlated with other measures of semantic similarity about as well as they correlate with 

each other. Full statistics for all comparisons can be found in supplementary materials.  

Sensorimotor distance therefore incorporates unique information that is not captured 

by other measures of semantic similarity, although it is not yet clear whether this unique 

information reflects semantic similarity itself as opposed to mere noise. We address this 

question in the following section by examining its external validity in predicting human 

similarity judgements. 
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Figure 4. Correlations between sensorimotor distance and three other measures of 

semantic similarity. The color scale indicates the absolute value of the correlation 

(i.e., stronger color = stronger relationship) while the correlation sign varies 

according to whether the variable is a measure of distance or similarity/overlap. The 

number of pairs per comparison is in parentheses (2,081 pairs were common to all 

measures).  

 

Analysis 2: Predicting Human Similarity Judgements  

In this section, we demonstrate external validity by examining how effectively 

sensorimotor distance can predict human judgements of semantic similarity and compare its 

performance to other measures. Using three different datasets of human similarity 

judgements, we demonstrate that sensorimotor distance can explain unique variance above 

and beyond each alternative measure of semantic similarity (i.e., WordNet, feature overlap, 

CBOW). In addition, given that each measure constrains semantic similarity in a different 

way that is potentially useful to modelling human data, we examine what combination of 
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semantic similarity measures best explains human similarity judgements. Across the three 

datasets of human similarity data, we find that sensorimotor distance is consistently included 

in the best-fitting model and demonstrates the most consistent level of performance. 

Method & Materials. To compare the relative explanatory power of each model of 

semantic similarity, we examined participant similarity judgements from three existing 

datasets: Simlex-999 (Hill, n.d.; Hill et al., 2016: 999 word pairs), WordSim-353 

(Gabrilovich, 2002; Finkelstein et al., 2002: 353 word pairs), and MEN (Bruni, 2012; Bruni 

et al., 2014: 3,000 word pairs). In the Simlex and WordSim datasets, participants directly 

rated the similarity of pairs of words and the dependent variable is the mean similarity rating 

per word pair. In the MEN dataset, however, participants selected the most closely related out 

of two possible word pairs in a forced-choice paradigm; these choices were then converted 

into a single similarity score for each pair. From each dataset, we selected only those items 

that were covered by all four of the semantic similarity measures, resulting in 669 word pairs 

from Simlex, 181 from WordSim, and 1,251 word pairs from MEN. 

Analysis. Each dataset was analysed separately but identically in three stages. We 

first computed zero-order correlations between the human similarity scores and each of the 

four semantic similarity measures (i.e. sensorimotor distance, WordNet distance, feature 

overlap, CBOW); Bayesian correlation were carried out in JASP as per previous section.  

Next, to examine the independent contribution of sensorimotor distance, we carried 

out hierarchical Bayesian linear regressions (JASP Team 2020: using JSZ default priors, r 

scale = .354, beta binomial distribution a = 1 and b = 1) on human similarity judgements. 

Step 1 entered one of the other semantic similarity measures (i.e., WordNet distance, feature 

overlap, or CBOW scores), and Step 2 entered sensorimotor distance. Model comparisons 

using Bayes Factors (BF) between steps therefore tested whether sensorimotor distance 

explained unique variance in human similarity judgement above and beyond other similarity 
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measures. In this analysis, log BF for Step 2 over Step 1 is equivalent to the inclusion Bayes 

Factor (BF-inclusion)   

Finally, to find the best possible model of human similarity judgements for each of 

the three datasets, we conducted Bayesian linear regressions (settings as above) by examining 

all possible combinations of all four semantic similarity measures as predictors, and selecting 

the model that offered the best fit to that dataset. We also report inclusion Bayes Factors (BF-

inclusion) for each predictor, which reflects the change from prior to posterior odds for all 

models including a particular predictor compared to models excluding it (Hinne et al., 2020), 

and allows us to compare the relative strength of evidence for each similarity measure in 

predicting each dataset of human similarity judgements.  
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Results. Figure 5 shows zero-order correlations between each semantic similarity 

measure and human similarity judgements from each dataset. Sensorimotor distance was 

moderately correlated with human similarity scores (i.e., shorter distance = more similar), 

with the magnitude of the correlations within the bounds achieved by alternative similarity 

measures. All correlations had very strong evidence in the expected direction (log BFs > 

13.4).  

 

Figure 5. Zero-order correlations between human similarity judgements and each 

measure of semantic similarity, calculated separately per dataset. The color scale 

indicates the absolute value of the correlation (i.e., stronger color = stronger 

relationship) while the correlation sign varies according to whether the variable is a 

measure of distance or similarity/overlap.  
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In the hierarchical regression analyses, there was strong evidence for the inclusion of 

sensorimotor distance at Step 2 in all models: see Figure 6 for change in R2 and Table 1 for 

coefficients. For all three datasets, sensorimotor distance explained variance in human 

similarity judgements above and beyond that explained by alternative measures of semantic 

similarity (i.e., WordNet distance, feature overlap, CBOW). In all analyses, variance inflation 

factors were approximately 1, indicating that multicollinearity was not an issue.  

Overall, these results indicate that the unique information captured by sensorimotor 

distance is not mere noise. Rather, they suggest that sensorimotor distance constrains 

similarity in a way that is not captured by other measures of semantic similarity that relate to 

hierarchical structure (i.e., WordNet distance), feature-based representations (i.e., feature 

overlap), or linguistic distributional information (i.e., CBOW).  
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Figure 6. Unique effects of sensorimotor distance (top of stacked bar; yellow) in 

explaining variance in human similarity judgements when added to a regression 

model already containing an alternative measure of semantic similarity (bottom of 

stacked bar; color varies). Regressions were performed separately for each dataset 

(WordSim, Simlex, MEN) and alternative measure of semantic similarity (WordNet 

distance, feature overlap, CBOW). Asterisks indicate evidence for including 

sensorimotor distance at Step 2 compared to alternative predictor at Step 1 (* log 

BF10> log 10; ** log BF10> log 100; *** log BF10 > log 1000).  
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Table 1. 

Regression coefficient statistics for Step-2 models of human similarity judgements 

across three datasets, showing coefficient estimates and their 95% credible 

intervals for sensorimotor distance and each alternative semantic similarity 

measure, as well as natural log of inclusion Bayes Factors for the sensorimotor 

distance predictor. 

Dataset Step-1 semantic 
predictor 

Step-2 sensorimotor 
distance coefficient 

95% CI Log BF-
inclusion 

Lower Upper 

WordSim WordNet -7.30 -10.60 -4.69 9.09 

 Feature overlap -6.90 -10.31 -4.21 7.45 

 CBOW -4.35 -7.19 -1.63 3.37 

Simlex WordNet -5.13 -6.96 -3.35 12.24 

 Feature overlap -6.84 -8.89 -4.84 18.64 

 CBOW -6.50 -8.61 -4.44 15.62 

MEN WordNet -39.39 -44.65 -34.23 96.72 

 Feature overlap -39.71 -44.97 -34.53 97.99 

 CBOW -21.59 -25.54 -17.59 49.49 

 

Finally, in the best-model regressions, the optimal predictors of human similarity 

judgement varied by dataset, as did the relative evidence for each predictor (see Figure 7 for 

summary and Table 2 for coefficient statistics). For WordSim, only CBOW and sensorimotor 

distance were included in the best model, which explained over half the variance with a very 

strong level of evidence (R2 = .527, log BF10 = 60.92; full statistics for all candidate models 

are available in supplemental materials). Inclusion Bayes Factors indicated that CBOW was 

the best predictor of human similarity judgements in WordSim, followed by sensorimotor 

distance. Notably, there was evidence against including feature overlap as a predictor of 
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human similarity judgements in WordSim (i.e.. a model including feature overlap was log 

BF10 = -2.14 times worse than the best model of just CBOW and sensorimotor distance), and 

no positive evidence for including WordNet distance (i.e., a model including WordNet 

distance was log BF10 = -0.76 times worse than the best model). For Simlex, the best model 

comprised (in rank order of BF-inclusion) Wordnet distance, sensorimotor distance, and 

feature overlap, which explained a third of the variance with a very strong level of evidence 

(R2 = .338, log BF10 = 128.12). In this case, there was evidence against including CBOW as a 

(i.e., a model containing all four measures was log BF10 = -2.383 times worse than the best 

model that excluded CBOW), despite it being the best predictor of WordSim similarity. For 

the MEN dataset, all measures of semantic similarity were included in the best model, which 

this time explained a very high 65% of variance with a very strong level of evidence (R2 = 

.651, log BF10 = 642.08). The best predictor by BF-inclusion was CBOW, followed by 

sensorimotor distance, then feature overlap, and lastly WordNet distance (i.e., the weakest 

predictor of MEN similarity despite being the best predictor of Simlex similarity). 

Overall, these best-model regressions showed that no single measure of semantic 

similarity was consistently preferred as the top predictor of human similarity judgements. 

Sensorimotor distance was present in every best model, and no other predictor was 

consistently ranked better across all datasets. On the other hand, sensorimotor distance was 

never the overall best predictor, and was only consistently preferred to feature overlap over 

all datasets. We note that the pattern of results changed little when we examined an 

alternative linguistic distributional model (LSA; see Appendix B), which suggests that our 

findings generalise beyond the particular implementation of CBOW (e.g., corpus size can 

affect performance: see Bullinaria & Levy, 2012; Wingfield & Connell, 2022). This pattern 

of results is consistent with the idea that different measures of semantic similarity constrain 
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similarity in different ways, all of which are relevant to what humans consider when judging 

the similarity of concepts.  

 

Table 2. 

Regression coefficient statistics for the most complex model of human similarity 

judgements across three datasets, showing coefficient estimates and with 95% 

credible intervals for sensorimotor distance and each alternative semantic similarity 

measure, as well as natural log of inclusion Bayes Factors for each predictor. 

Dataset Parameter Coefficient 95% Credible Interval Log BF-inclusion 

Lower Upper 

WordSim Intercept 5.88 5.64 6.07  

WordNet -0.04 -0.07 1.49E-4 -0.12 a 

Feature overlap 0.20 -0.43 1.41 -1.17 b 

CBOW -7.44 -9.35 -6.20 35.62 

Sensorimotor distance -4.00 -7.19 -1.36 3.24 

Simlex Intercept 4.34 4.18 4.49  

WordNet -0.22 -0.25 -0.19 80.19 

Feature overlap 1.47 0.69 2.19 5.54 

CBOW 0.07 -0.57 0.92 -1.00 c 

Sensorimotor distance -4.54 -6.39 -2.74 9.71 

MEN Intercept 25.45 25.04 25.85  

WordNet -0.14 -0.25 -0.05 3.45 

Feature overlap 9.46 6.88 12.00 23.43 

CBOW -45.93 -49.43 -43.40 341.18 

Sensorimotor distance -18.87 -22.83 -14.97 40.33 
a Indicates equivocal evidence against inclusion of WordNet scores in model of WordSim dataset. b Indicates 

evidence against inclusion of feature overlap scores in model of WordSim dataset. c Indicates equivocal 

evidence against inclusion of CBOW scores in model of Simlex dataset 
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Figure 7. Rank order from best to worst of each semantic similarity measure in 

predicting human similarity judgements across three datasets, based on inclusion 

Bayes Factors in best-model regressions. 

 

Sensorimotor Distance for Abstract and Concrete Concepts 

As a measure of semantic similarity that is based on perception and action experience, 

some might wonder whether sensorimotor distance could apply to abstract concepts, which in 

some accounts are defined by their lack of perceptual information (e.g., Paivio, 1986). 

Previous research has shown that virtually all concepts, regardless of their concreteness, are 

experienced to some extent through various sensorimotor dimensions. Connell & Lynott 

(2012) showed that many abstract concepts tend to be strongly perceptual (i.e., their 

experience involves perception, particularly vision), Connell et al. (2018) found that 

interoceptive strength (i.e., sensations inside the body) was more important to abstract 

concepts than to concrete, and Lynott et al.’s (2020) norms demonstrate multidimensional 

sensorimotor profiles for many abstract concepts such as justice and everything. In principle, 

therefore, sensorimotor distance should apply as a semantic similarity between abstract 

concepts as well as between concrete concepts (see also Figure 3). 

To examine this principle in action, we compared the ability of sensorimotor distance 

to predict human similarity judgements in three different categories of concept pairs: both 
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concepts abstract (e.g., inexpensive and cheap), mixed concrete–abstract (e.g., battle and 

conquest), and both concepts concrete (e.g., drizzle and rain). 

Method & Materials 

Of the three datasets of human similarity judgements examined in Validation Analysis 

2, only one contained sufficient numbers of abstract concepts to enable meaningful 

comparisons: Simlex-999 (Hill et al., 2016)7. Using Brysbaert et al.’s (2014) concreteness 

ratings, we categorised concepts as abstract if their rating was < 3 (i.e., the concreteness scale 

midpoint) and as concrete if their rating was ≥ 3. Sensorimotor distance was available for 993 

of 999 Simlex concept pairs, which we then split as follows: 264 abstract–abstract pairs, 172 

mixed pairs (i.e., one abstract, one concrete), and 557 concrete–concrete pairs. 

Analysis 

We computed Bayesian correlations between sensorimotor distance and Simlex 

similarity judgements (JASP Team, 2020) with a stretched prior beta width = 1 (i.e., uniform 

prior where all correlations values are equally likely), and the alternative hypothesis that the 

variables would be correlated negatively (i.e., more similar = shorter distance). Correlations 

were computed separately for each category of concept pair.  

Results 

Sensorimotor distance correlated with human similarity judgement comparably well 

for all categories of concept pair (see Figure 8). The highest correlation was actually for 

mixed word pairs, but – importantly – the correlations for abstract–abstract pairs and 

concrete–concrete pairs were close in magnitude, and comparable given their 95% credible 

intervals. These results suggest that sensorimotor distance is a useful measure of semantic 

similarity for all concept pairs; abstract and concrete alike. 

 
7 There were 264 abstract–abstract pairs for which sensorimotor information was available (26% of 

dataset) in Simlex-999, but only 41 in WordSim-353 (11% of dataset) and 17 in MEN (<1% of dataset). 
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Figure 8. Absolute value of correlations between sensorimotor distance and human 

similarity judgement for the Simlex dataset, for word pairs where both are concrete, 

both are abstract, and mixed pairs. Error bars show the 95% credible intervals for 

the correlation value.  

 

General Discussion 

We have presented sensorimotor distance, a novel grounded measure of semantic 

similarity for nearly 800 million concept pairs that is based on Lynott et al.'s (2020) 40,000-

concept sensorimotor strength norms. Unlike existing measures of semantic similarity 

(e.g. CBOW, WordNet, feature overlap), sensorimotor distance directly operationalises 

sensorimotor experience in multiple perceptual modalities and action effectors and is 

therefore grounded in how it constrains similarity. The semantic information represented by 

sensorimotor distance is transparent, relevant to all concepts/words regardless of their 

concreteness or grammatical class, and is available at a scale that covers a full-size adult 

conceptual system for a native speaker of English. 
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In validating sensorimotor distance, we demonstrated that it captures information 

about semantic similarity that is not captured by alternative measures, and that human 

judgements of similarity are best fit by combining multiple similarity measures in a single 

model. Indeed, the optimal combination of similarity measures varied markedly from one 

dataset to the next, which highlights the importance of validating semantic similarity 

measures against multiple human benchmarks, yet sensorimotor distance was the most 

consistent predictor across datasets. These findings support the idea that, when people judge 

if things are semantically similar, they employ multiple constraints on what similarity might 

mean. Multiple measures of similarity, each applying different constraints, are therefore 

required to fully capture the similarity between two given concepts (see Goodman, 1972).   

Like many semantic predictors used in cognitive psychology (including some other 

predictors used in this study: feature overlap and taxonomic distance), sensorimotor distance 

is ultimately derived from participant responses in a task which involves access to words’ 

semantic representations. Therefore, insofar as such a predictor is used to model cognitive 

processes or representations which themselves involve accessing word semantics—as is 

common in the cognitive sciences—it cannot account for the dereferencing of mental 

concepts from their labels per se (Westbury, 2016; Wittgenstein, 1958). In theory, one might 

hope to derive the multidimensional vector from direct recordings of activation in 

participants’ sensorimotor cortices (e.g. Hauk et al., 2004) while they experience (and recall, 

name, etc.) various concepts across various contexts, and to use these recordings to quantify 

the degree to which different perceptual modalities and action effectors were involved in 

direct experience of each particular concept. Such measurements – and any resulting distance 

calculations between concepts – would qualify as an out-of-domain explanation of (part of) 

word semantics that would satisfy Westbury’s (2016) concerns about dormitivity. Of course, 

in reality, it would be completely impractical to conduct this hypothetical norming study at 
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the scale of tens of thousands of concepts that comprise the human conceptual system (e.g. 

Hauk et al. required high-resolution functional and structural MRI scans to localise 14 

participants’ responses to 150 test words). Instead, the measures that underlie sensorimotor 

distance (i.e., the Lancaster Sensorimotor Norms), as explained by Lynott et al. (2020), aim 

to approximate it via introspective judgements of sensorimotor experience. We believe that 

by restricting the domain of judgement so tightly, the Lancaster Sensorimotor Norms provide 

a reasonable proxy for direct sensorimotor experience (see also Reilly et al., 2020) in a 

tractable way, as well as allowing the pool of items to easily extend to traditionally abstract 

and/or physically diffuse concepts (e.g. democracy, which is perhaps easier to characterise 

through introspection than to experience in a lab setting) that nonetheless appear to have a 

robust, situated, sensorimotor grounding. Sensorimotor distance, based on this reasonable 

proxy of sensorimotor experience, therefore provides a tractable operationalisation of how the 

distributed representations of two concepts across perception and action systems differ from 

one another. 

Of course, the particular 11 dimensions that we use here to calculate sensorimotor 

distance are not the only possible way to specify dimensions of perception and action 

experience. Although each dimension is well motivated (see Lynott et al., 2020, for details), 

they exhibit a complex intercorrelational structure that corresponds to how the human body’s 

senses and effectors interact with the external world. This structure reflects, for example, that 

things which can be touched can usually be seen, or that things which can be tasted can 

usually also be smelled but are not usually subject to action with the foot/leg. As a result, one 

might be concerned that some dimensions are redundant, and that cosine distance therefore 

produces a skewed picture of what sensorimotor distance should reflect. However, cosine 

distance (which is sensitive to this correlated structure) overall outperforms Mahalonobis 

distance (which removes this correlated structure: Mahalanobis, 1936; see supplementary 
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materials for full results), which suggests that the present 11-dimensional space is a 

reasonably accurate reflection of how sensorimotor information informs human judgements 

of semantic similarity. Nonetheless, Mahalonobis distance is available in the web tool for 

researchers who explicitly wish to use it8. Alternatively, one may wonder if more fine-

grained distinctions of sensorimotor experience would be useful, so long as they still meet the 

same criteria as the original dimensions (i.e., perception or action experience that is processed 

in a distinct cortical region). For example, visual perception could be subdivided into colour 

versus visuospatial movement, haptic perception could be subdivided into sensation on the 

hand versus elsewhere on the body, hand/arm action could be subdivided into action of the 

hand versus the arm/shoulder area, and so on. Whether such fine-grained distinctions would 

help or hinder the accuracy of sensorimotor distance in predicting semantic similarity remains 

an open question for future research. 

We hope that sensorimotor distance, available in an online application at 

https://lancaster.ac.uk/psychology/smdistance (see Appendix A), will provide a useful tool 

for researchers in cognitive psychology, psycholinguistics, cognitive neuroscience, or any 

field relevant to semantic similarity and the grounded nature of concepts in semantic 

memory. 

Conclusion 

We hope that sensorimotor distance, available in an online application at 

https://lancaster.ac.uk/psychology/smdistance (see Appendix A), will provide a useful tool 

for researchers in cognitive psychology, psycholinguistics, cognitive neuroscience, or any 

field relevant to semantic similarity and the grounded nature of concepts in semantic 

memory.   

 
8 We thank Fritz Günther for this suggestion 
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Appendix A: Web tool for sensorimotor distance calculation 

For convenience, sensorimotor distances and related operations can be computed 

using a web-based tool developed by the authors and available at 

https://www.lancaster.ac.uk/psychology/smdistance/. The available functions include 

calculating sensorimotor distance between concepts (pairwise, one-to-many, or many-to-

many matrix), producing a list of nearest neighbors in sensorimotor space for a given 

concept, and visualizing 2-dimensional representations of sensorimotor distance between 

concepts. Figure A1 illustrates some examples of the interface. 
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Figure A1. Four sample modes of the Sensorimotor Distance online interface, 

showing (clockwise from top left): computing distance between pairs of words; 

computing distance matrices between lists of words; visualizing sensorimotor 

distance between concepts in 2 dimensions; finding nearest neighbors.   
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Appendix B: A comparison with latent semantic analysis 

Latent semantic analysis (LSA: Landauer & Dumais, 1997) continues to have 

extremely widespread use in the cognitive sciences as a measure of semantic similarity (e.g. 

Dautriche et al., 2017; Gagné et al., 2020; Ren & Coutanche, 2021). We examined LSA as an 

alternative linguistic distributional model to CBOW. Overall, LSA was a somewhat worse 

predictor of human similarity judgements than CBOW, but it exhibited the same qualitative 

patterns. Critically, it exhibited a very similar pattern relative to the other predictors, and in 

particular relative to sensorimotor distance. We include the relevant figures of results below; 

full details are available in supplemental materials9 (https://osf.io/d42q6/). 

 

Figure B1. Correlations between sensorimotor distance and three other measures of 

semantic similarity. The color scale indicates the absolute value of the correlation 

(i.e., stronger color = stronger relationship) while the correlation sign varies 

according to whether the variable is a measure of distance or similarity/overlap. The 

 
9 In a separate analysis we found that both perceptual and action domains contribute to sensorimotor distance 
effects. Results of this analysis can also be found in the supplementary materials. We thank an anonymous 
reviewer for this suggestion.  
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number of pairs per comparison is in parentheses (2,081 pairs were common to all 

measures). (See Figure 4 for comparison with CBOW.) 

 

 

 

Figure B2. Zero-order correlations between human similarity judgements and each 

measure of semantic similarity, calculated separately per dataset. The color scale 

indicates the absolute value of the correlation (i.e., stronger color = stronger 

relationship) while the correlation sign varies according to whether the variable is a 

measure of distance or similarity/overlap. (See Figure 5 for a comparison with 

CBOW.) 
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Figure B3. Unique effects of sensorimotor distance (top of stacked bar; yellow) in 

explaining variance in human similarity judgements when added to a regression 

model already containing an alternative measure of semantic similarity (bottom of 

stacked bar; color varies). Regressions were performed separately for each dataset 

(WordSim, Simlex, MEN) and alternative measure of semantic similarity (WordNet 

distance, feature overlap, LSA). Asterisks indicate evidence for including 

sensorimotor distance at Step 2 compared to alternative predictor at Step 1 (*: log 

BF10> log 10, **: log BF10> log 100, ***: log BF10 > log 1000). (See Figure 6 for a 

comparison with CBOW.) 
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Figure B4. Rank order from best to worst of each semantic similarity measure in 

predicting human similarity judgements across three datasets, based on inclusion 

Bayes Factors in best-model regressions. (See Figure 7 for a comparison with 

CBOW.) 
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