
Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. Water 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Water for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Accounting for Climate Change in Extreme Sea Level Estimation
Eleanor D’Arcy ∗,1 , Jonathan A. Tawn1 and Dafni E. Sifnioti2

1 STOR-i Centre for Doctoral Training, Department of Mathematics and Statistics, Lancaster University, LA1
4YR, UK;

2 EDF Energy R&D UK Centre, Croydon, CR0 2AJ, UK
* Correspondence: e.darcy@lancaster.ac.uk

Abstract: Extreme sea level estimates are fundamental for mitigating against coastal flooding as they 1

provide insight for defence engineering. As the global climate changes, rising sea levels combined 2

with increases in storm intensity and frequency pose an increasing risk to coastline communities. 3

We present a new method for estimating extreme sea levels that accounts for the effects of climate 4

change on extreme events that are not accounted for by mean sea level trends. We follow a joint 5

probabilities methodology, considering skew surge and peak tides as the only components of sea 6

levels. We model extreme skew surges using a non-stationary generalised Pareto distribution (GPD) 7

with covariates accounting for climate change, seasonality and skew surge-peak tide interaction. We 8

develop methods to efficiently test for extreme skew surge trends across different coastlines and 9

seasons. We illustrate our methods using data from four UK tide gauges and estimate sea level return 10

levels when accounting for these longer term trends. 11

Keywords: Climate change; Coastal flooding; Extreme sea levels; Generalised Pareto distribution; 12

Non-stationarity; Skew surge 13

1. Introduction 14

The UK coastline is one of the largest in Europe at approximately 8000km for mainland 15

Britain and is regularly subject to coastal flooding [1]. Coastal flooding is defined as a 16

natural phenomenon where coastal land is inundated by sea levels above the normal 17

tidal conditions. This has the potential to devastate coastal towns, damage infrastructure 18

and destroy habitats. In extreme cases, coastal flooding has led to the loss of human 19

life. The likelihood of coastal flooding is increasing with anthropogenic induced climate 20

change (see Figure 1 and [2,3]). Therefore it is increasingly important to protect coastline 21

communities, or at least have a well-founded scientific basis for the proposal for a managed 22

retreat. Coastal flood defences, such as a sea wall, protect against these consequences if 23

they are built to withstand the most extreme sea levels. However, resources are wasted in 24

building defences that are too conservative. Estimates of sea level return levels provide 25

crucial information for this design process; a return level is the value we expect the annual 26

maximum sea level to exceed with probability p, i.e., once every 1/p years, on average, 27

for a stationary series. We estimate these levels for p ∈ [10−4, 10−1] to cover a range of 28

industry interest, from agricultural preservation to nuclear power plant protection. 29

Coastal flooding is influenced by a combination of tide, surge and waves. We are 30

interested in the still water level, i.e., the sea level with waves filtered out, but for simplicity 31

we refer to this as sea level. Therefore, tide and surge are the only components of sea 32

levels that we consider. Tides are the regular and predictable changes in sea levels driven 33

astronomically; these changes are well understood and perfectly forecast [4]. High tides 34

generally occur once every 12 hours and 25 minutes, although variations are possible. We 35

refer to the maximum tide in this cycle as the peak tide. Surges are stochastic, transient 36

changes in sea levels often caused by strong winds and low atmospheric pressure due to a 37

storm, hence are often referred to as storm surges. Surges are sometimes called the non-tidal 38
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Figure 1. Global mean temperature anomalies from 1915 to 2020, relative to the period 1961-1990,
with associated uncertainties in red [14].

residual as they define any departure from the predicted tidal regime so can also include 39

gauge recording errors, tidal prediction errors and effects of the tide-surge interaction. 40

These are often available at hourly or 15 minute intervals on the UK National Tide Gauge 41

Network. We refer the reader to [5] for a complete overview of sea level processes. 42

An alternative decomposition of sea levels is to consider the maximum level in a 43

tidal cycle that can be written as the sum of skew surge and peak tide. Skew surge is 44

the difference between the maximum observed sea level and the peak tide in a tidal 45

cycle, regardless of their timing. In this case, we have less data since observations are 46

available once every tidal cycle. However, skew surge and peak tide exhibit a much weaker 47

dependence than surge and tide (which has a complex dependence structure), so they 48

are often preferred. [6] show that it is reasonable to assume skew surge and peak tide 49

are independent at most sites on the UK National Tide Gauge Network; though there is 50

physical evidence that this is not always true [7]. 51

Long term changes in mean sea level have been widely studied [8,9] via empirical 52

assessments and using hydrodynamic models linked to climate models. Typically linear 53

models are fit to estimate these trends. Similar statistical methods have been used for 54

extreme sea levels using regression of annual or monthly maximum data on either sea 55

levels or skew surges. Interestingly these methods find no significant evidence for the trend 56

in extreme sea levels to differ from that for mean sea levels [10–13]. Complications to these 57

methods are the large interannual variability, the presence of seasonality and the inefficient 58

usage of extreme event data (through the use of maxima rather than all large values). The 59

difference between extreme and mean sea level trends is likely to be of a smaller order 60

than for mean sea level trend, hence they are more difficult to estimate. Furthermore, only 61

trends in average extreme values are looked for, not changes in their variability over time. 62

As a consequence, inference for these properties at a single site is likely to be overloaded by 63

uncertainty, resulting in the hypothesis of identical trends in extreme and mean sea levels 64

not being rejected. 65

We propose a different approach which is integrated into the estimation of return 66

levels for extreme sea levels; this accounts for short term variations in skew surges such 67

as seasonality, uses all extreme skew surges above a high month specific quantile, allows 68

for the distribution of the extreme skew surges, and enables pooling of information about 69

the trend across sites. Critically, we separately assess changes in the rate of which extreme 70

skew surge events occur and changes in the distribution (e.g., the mean) of these extreme 71

events once they have occurred. 72

The earliest methods for estimation of sea level return levels modelled the sea level 73

data directly, whilst the next approaches used a joint probabilities method to consider surge 74

and tide components. More recent approaches use skew surge and peak tides. Section 2.3 75

gives an overview of the history of methodology developments. We extend the most recent 76

method, that of [15], to account for the effects of climate change on extreme sea level 77

estimation. They model skew surges and combine this with the known peak tide regime. 78
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They particularly focus on the tail of the skew surge distribution, using a generalised Pareto 79

distribution (GPD) to model exceedances of a high threshold [16]. Covariates are added to 80

this model representing day of the year and peak tide, to account for seasonality and skew 81

surge-peak tide dependence, as well as capturing the temporal dependence of extreme skew 82

surges. Their results demonstrate a considerable improvement on previous approaches 83

since the realism of the sea level processes is captured, and significant improvements 84

in goodness-of-fit are achieved. However, their model assumed that skew surges were 85

identically distributed across years, after a linear mean sea level trend was removed. If 86

climate change impacts the within year skew surge variance, or even its distribution in a 87

more subtle way than simply changing its mean value, then the extreme sea levels relative to 88

the mean sea level will also change. Therefore we need a methodology that can incorporate 89

such changes through to the return level estimation. Here we develop methods to account 90

for non-stationarity in this mean adjusted skew surge data to help quantify any remaining 91

non-stationarity in extreme skew surges. 92

In Sections 2.1 and 2.2 we introduce the data and relevant extreme value theory, respec- 93

tively. Section 2.3 reviews the existing methods used for extreme sea level estimation, with 94

a particular focus on that from [15]. In Section 2.4 we propose methods for investigating 95

longer-term trends in extreme skew surges, with respect to time and global mean tempera- 96

ture anomaly (GMT), at a single site. We consider pooling information about the trends in 97

extreme value model across sites in Section 2.5, and suggest methods for exploring pairwise 98

extremal dependence in skew surges across sites. We present the results for the single 99

site model in Section 3.2 and estimate sea level return levels from the favoured model in 100

Section 3.3. The results for the pooled method are given in Section 3.4. Section 4 concludes 101

this paper with a summary of our findings and suggestions for future work. 102

2. Materials and Methods 103

2.1. Data 104

Sea level observations are taken from the UK National Tide Gauge Network main- 105

tained by the Environment Agency. The data undergo rigorous quality control and can 106

be obtained from the British Oceanographic Data Centre (BODC). This network is part of 107

the National Tidal and Sea Level Facility where tidal elevations are recorded at 44 sites 108

along the UK coastline. We consider data from Heysham, Lowestoft, Newlyn and Sheer- 109

ness, located on the west, east, south and east (at the Thames Estuary) coast of England, 110

respectively. Table 1 summarises information about each site. Each site has missing data, 111

but the amount of complete data is sufficient given the model we introduce in Section 2.3 112

to account for smooth changes throughout the year. 113

We study these sites because they have different characteristics, are typically affected 114

by different storms and all have a long observational periods. Heysham has the second 115

largest tidal range on the network and is a tidally dominant site, whereas Lowestoft is 116

surge dominant. Sheerness is the only site we study where it is unreasonable to assume 117

skew surge and peak tide are independent [15]. A linear mean sea level trend was removed 118

from the data at each site therefore all of our results are presented relative to the mean sea 119

level in the year 2017. [17] details this preprocessing stage and we report the estimated 120

linear trend in Table 1 for each site. Of course, these trends incorporate land level changes 121

as well as climate caused sea level changes, and also are based on different time periods as 122

they correspond to the sample record at each site. 123

2.2. Extreme Value Inference 124

Within extreme value inference, it is natural to first consider modelling the maximum
of a sequence Mn = max{Z1, . . . , Zn}. We first assume this sequence is independent and
identically distributed (iid) with marginal distribution F and upper end point xF. If there
exists sequences of constants {an > 0} and {bn} so that the rescaled block maximum
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Table 1. Location (latitude and longitude), observation period, the percentage of missing data, HAT
in metres and the estimated mean sea level (MSL) trend in mm/yr for Heysham, Lowestoft, Newlyn
and Sheerness.

Location Observation period % missing HAT (m) MSL trend (mm/yr)
Heysham 54.03◦N, 2.92◦W 1964-2016 17 10.72 1.52
Lowestoft 2.47◦N, 1.75◦E 1964-2020 4 2.92 2.27
Newlyn 50.10◦N, 5.54◦W 1915-2016 17 6.10 1.73

Sheerness 51.45◦N, 0.74◦E 1980-2016 19 6.26 1.81

(Mn − bn)/an has a nondegenerate limiting distribution as n → ∞, then the distribution
function G of the maximum must be of the form

G(z) = exp
{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ

+

}
, (2.1)

where x+ = max{x, 0} whatever the distribution function F. This distributional model 125

G has three parameters µ ∈ R, σ ∈ R+ and ξ ∈ R representing the location, scale and 126

shape, respectively [16]. This is known as the generalised extreme value distribution (GEV). 127

For ξ > 0 this corresponds to the Fréchet distribution, ξ < 0 the Weibull and ξ = 0 the 128

Gumbel (although ξ = 0 should be interpreted as the limit as ξ → 0). This result, often 129

referred to as the extremal types theorem, gives an asymptotic justification to use the GEV as 130

a model for block maxima, often taken to be annual maxima in environmental applications. 131

However, in these settings, an iid assumption is usually unrealistic. A more commonly 132

accepted assumption is stationarity, where the series can exhibit mutual dependence, but 133

the statistical properties are homogeneous through time. If we now assume that Z1, . . . , Zn 134

are from a stationary series that satisfies a long-range dependence condition, so that events 135

far enough apart in time are near independent. Under these conditions this limiting 136

distribution must be of the form Gθ(z) with G(z) in expression (2.1) and θ ∈ (0, 1] the 137

extremal index [18]. 138

If a process exhibits dependence, values above a high threshold z form clusters, for
example during a storm that spans multiple days we might observe several extreme skew
surge values consecutively. We identify clusters as those separated by a run length r defined
as the number of consecutive observations below the high threshold z, i.e., non-extreme
values. Choosing this run length can be subjective, though [19] propose an automated
selection procedure based on the distribution of all times between consecutive exceedances
of z. We can reasonably assume that observations in different clusters are independent,
but this is not the case for observations in the same cluster. The extremal index θ provides
information about clusters because it can be empirically estimated (known as the runs
estimate) as the reciprocal of the mean cluster size [20]. These are both actually estimates of
the subasymptotic extremal index

θ(z, r) = P(max{Z2, . . . , Zr} < z|Z1 > z). (2.2)

Then the extremal index is defined as the limit of expression (2.2) as z → zF and r → ∞ in a 139

related fashion [21]. 140

An alternative, and more popular, approach to defining extreme values is as ex-
ceedances of a high threshold u. If the extremal types theorem holds, then for an arbitrary
term Z in the series Z1, . . . , Zn,

P(Z > bn + anz | Z > an + bnu) → Hu(z) where Hu(z) =
[

1+ ξ

(
z − u

σu

)]−1/ξ

+

(2.3)

for z > u as n → ∞, with {an > 0} and {bn} sequences of constants and Hu is non-
degenerate. This is known as the generalised Pareto distribution (GPD) and has two
parameters σu ∈ R+ and ξ ∈ R representing the scale and shape, respectively [16]. Notice
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the scale parameter is threshold dependent since σu = σ + ξ(u − µ) for µ and σ the GEV
parameters; the shape parameter is the same as that for the GEV. Assuming Z1, . . . , Zn are
iid, exceedances of a high threshold u are also iid and have limiting GPD tail model

P(Z > z) = λu

[
1 + ξ

(
z − u

σu

)]−1/ξ

+

(2.4)

for z > u where λu = P(Z > u). We can write the mean of excesses of the threshold u as

E(Z − u|Z > u) =
σu

1 − ξ
. (2.5)

However, if Z1, . . . , Zn are a dependent stationary series, a common approach is to identify 141

clusters and decluster them (e.g., by considering cluster maxima only) to yield an approxi- 142

mately independent sequence so that the asymptotic justification for the GPD remains valid 143

([22], [23]). We subsequently drop the u subscript on the scale σ and rate λ parameters. 144

2.3. Existing Methodology 145

The earliest methods directly modelled sea levels, but this ignores the known tidal 146

component [24–26]. [27] demonstrate that these approaches underestimate return levels. 147

[28] were the first to exploit the components of sea levels in their joint probabilities method 148

(JPM) using surge and tide. [29] presents the revised joint probabilities method (RJPM) to 149

address limitations associated with the JPM; mainly, they use an extreme value distribution 150

to model the upper tail of surges to allow extrapolation beyond the range of observed 151

values and, through a parametric model, attempt to account for tide-surge dependence. 152

The main pitfall with both of these approaches is that surge and tide have a complex 153

joint distribution which is difficult to model effectively. [30] proposed the skew surge 154

joint probabilities method (SSJPM) to avoid this complexity. This uses skew surge and 155

peak tide as two components of sea levels, since they have a much weaker dependence 156

and can be reasonably assumed to be independent at most sites on the UK National Tide 157

Gauge Network [6]. [31] build on this by accounting for interannual tidal variations and 158

considering separate distributions for summer and winter skew surges; this is the quasi 159

non-stationary skew surge joint probabilities method (qn-SSJPM). 160

We build on the sea level model presented by [15] that uses skew surge and peak tide 161

as two components of sea levels in a joint probabilities framework. This was first approach 162

to capture within year seasonality of each component and the dependence between them 163

by adding covariates to the model parameters. They also account for skew surge temporal 164

dependence which addresses previous issues of overestimation at short return periods. We 165

describe their model for the annual maxima sea level M. For a tidal cycle i, the peak sea 166

level Zi can be written as the sum of the deterministic peak tide Xi and stochastic skew 167

surge Yi. We first present their skew surge model, then describe how this is combined with 168

the known peak tides to derive a sea level distribution. Lastly, we detail their model for the 169

extremal index of skew surges used to derive the annual maxima distribution. 170

Since extreme sea levels can occur with various combinations of skew surge and
peak tide, it is important to have a model for the entire skew surges distribution. To split
the distribution into the body and tail, [15] use a monthly threshold uj for j = 1, . . . , 12
to account for seasonality, with uj being a quantile, for a fixed percentile, of month j’s
skew surge distribution. This choice ensures a similar number of exceedances for each
month. They use the 0.95 quantile, this is chosen based on monthly parameter stability
plots [16]. Skew surges below these thresholds are modelled using the monthly empirical
distribution F̃j,x to capture within year non-stationarity, that is also dependent on peak tide
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x to account for skew surge-peak tide dependence. This empirical distribution is split into
three associated peak tide bands:

F̃j,x(y) =



F̃(1)
j (y) if x ≤ x(j)

0.33

F̃(2)
j (y) if x(j)

0.33 < x ≤ x(j)
0.67

F̃(3)
j (y) if x > x(j)

0.67,

(2.6)

where x(j)
q denotes the q quantile of the peak tide distribution for month j and F̃(l)

j for
l = 1, 2, 3 is the empirical distribution of skew surges in month j which are associated with
the lowest (l = 1), medium (l = 2) and highest (l = 3) band of peak tides. Since tide gauges
on the UK National Tide Gauge Network usually have long observational periods, this can
reliably model the main body of the data. For exceedances of the monthly threshold uj,
they use a non-stationary GPD dependent on day in year d = 1, . . . , 365, month j and peak
tide x. Therefore, the full skew surge model is given by

F(d,j,x)
Y (y) =


F̃j,x(y) if y ≤ uj

1 − λd,x
[
1 + ξ

( y−uj
σd,x

)]−1/ξ

+
if y > uj,

(2.7)

where λd,x, σd,x and ξ are parametric functions to be estimated. Notice that the shape
parameter ξ does not vary with any covariate; this is kept fixed to avoid introducing
additional uncertainty associated with estimating this parameter. The rate and scale
parameters both depend on day and peak tide. They model the scale parameter using a
harmonic for seasonal variations and a linear trend in terms of tide,

σd,x = ασ + βσ sin
(

2π

f
(d − ϕσ)

)
+ γσx, (2.8)

for ασ > βσ > 0 , ϕσ ∈ [0, 365), γσ ∈ R parameters to be estimated and f = 365 the
periodicity. The rate parameter is modelled similarly, using a generalised linear model
with logit link function and a harmonic to capture seasonal variations. They also use
a harmonic to capture how skew surge-peak tide dependence changes with time; [15]
show that this relationship varies throughout the year at Sheerness, with the strongest
dependence occurring in May. This parameterisation is given by

g(λd,x) = g(λ) + (dj − d̄j)β
(d)
λ sin

(
2π

f
(d − ϕ

(d)
λ )

)
+

(
x − x̄

sx

)[
α
(x)
λ + β

(x)
λ sin

(
2π

f
(d − ϕ

(x)
λ )

)]
, (2.9)

for g(·) the logit link function (selected to help our modelling of probabilities with linear 171

models), λ the constant exceedance probability in a month, dj ∈ [1, 31] the day in month 172

(standardised by the monthly mean day d̄j), x̄ is the mean and sx the standard deviation of 173

peak tides, and α
(x)
λ ∈ R, β

(d)
λ , β

(x)
λ > 0, ϕ

(d)
λ , ϕ

(x)
λ ∈ [0, 365) are parameters to be estimated. 174

To derive a distribution for the sea levels, [15] use a joint probabilities method and the
fact that peak tides are deterministic. So that

P(Zi ≤ z) = P(Xi + Yi ≤ z) = P(Yi ≤ z − Xi) = FY(z − Xi), for − ∞ < z < ∞. (2.10)

Let T(k)
j denote the number of tidal cycles in month j and year k. They capture within

and across year peak tide non-stationarity by using sequential monthly and yearly peak
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tide samples X(k)
ji

, so that ji denotes the ith peak tide in month j, where i = 1, . . . , T(k)
j and

k = 1, . . . , K represents the year. Since peak tides are temporally dependent, the samples
{X(k)

ji
} are from contiguous peak tides. Then the distribution of the annual maxima sea

level M is

P(M ≤ z) =
1
K

K

∑
k=1

12

∏
j=1

T(k)
j

∏
i=1

F(d,j,x)
Y (z − X(k)

ji
)

θ(z−X(k)
ji

,r)
(2.11)

where F(d,j,x)
Y is the skew surge model (2.7) and θ(z − X(k)

ji
, r) is a model for the extremal

index, dependent on skew surge level y = z − X(k)
ji

and run length r, to capture temporal
dependence of skew surges. This model is given by

θ̂(y, r) =

{
θ̃(y, r) if y ≤ v
θ − [θ − θ̃(v, r)] exp

(
− y−v

ψ

)
if y > v,

(2.12)

where v is a high threshold (they take the 0.99 quantile), ψ > 0 and θ̃(v, r) ≤ θ ≤ 1 are 175

parameters to be estimated and θ̃(y, r) is the empirical runs estimate. The run length reflects 176

the approximate duration of a storm at each site, these were selected by estimating the run 177

length using the intervals estimator of [19] for each season, where we expect the stationary 178

assumption to be reasonably justified. 179

2.4. Incorporating Interannual Variations to Skew Surge Distribution 180

We provide a framework to explore longer-term trends in extreme skew surges that 181

may result from an increase in storm frequency and intensity. After removing the mean sea 182

level trend, we follow the approach of [32] by adding yearly and global mean temperature 183

anomaly (GMT) covariates into the scale and rate parameters to the GPD model for extreme 184

skew surges of [15]. We do not consider adding covariates to the shape parameter or the 185

empirical distribution used for non-extreme skew surges. Another option would be to add 186

covariates to the threshold choice, but it is difficult to account for uncertainty in threshold 187

selection in extreme value inference [33,34]. Since we are interested in temporal changes of 188

extreme events, it seems problematic to allow the threshold to also vary with time. 189

The model of [15] already accounts for short term variations in the threshold ex- 190

ceedance rate and the GPD scale parameter. So here we are focusing on the additional long 191

term changes in these two features, knowing that estimates of these are not contaminated 192

by short term features. Trends in the two features tell us about different aspects of the 193

occurrence of extreme skew surge events. An increase in the threshold exceedance rate 194

tells us simply that more extreme events are occurring over time or with GMT increases. In 195

contrast, increases in the scale parameter inform us that the nature of the extreme events 196

are changing, in that their average size is getting larger. So it is of interest to explore both 197

aspects. Our proposed models for both parameters build on those presented in [15] using 198

additional additive components in terms of year k and GMT anomaly in year k, denoted mk 199

and measured in ◦C. GMT is a potential causal covariate for climate change effects, whilst 200

year is a non-causal covariate but may capture long term changes over time. 201

First we consider a model for the threshold exceedance probability to understand
how the frequency of extreme skew surges is changing in response to climate change. We
refer to the model for λd,x introduced by [15] as R0, given by (2.9). We propose four model
extensions of R0 to account for how the threshold exceedance rate also changes with k
(Models R1 and R2) and with mk (Models R3 and R4); with the odd numbered models
having a single trend across the year and the even numbered models having a different
linear trend per season, with seasons {Ss, s = 1, 2, 3, 4} denoting winter (December,
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January, February), spring (March, April, May), summer (June, July, August) and autumn
(October, November December), respectively. These models are parametrised as follows,

Model R1: g(λd,x,k̃) = g(λd,x) + δ
(k̃)
λ k̃, (2.13)

Model R2: g(λd,x,k̃) = g(λd,x) +
4

∑
s=1

δ
(k̃)
λ,s k̃1{d∈Ss}, (2.14)

Model R3: g(λd,x,mk
) = g(λd,x) + δ

(m)
λ mk, (2.15)

Model R4: g(λd,x,mk
) = g(λd,x) +

4

∑
s=1

δ
(m)
λ,s mk1{d∈Ss}, (2.16)

where g(·) is the logit link function, δ
(k̃)
λ , δ

(k̃)
λ,s , δ

(m)
λ , δ

(m)
λ,s ∈ R are parameters to be estimated 202

and k̃ ∈ R denotes the standardised year, defined as k̃ = (k − 1968)/53 where k is the 203

year of observation. This standardisation uses information for Newlyn since it has the 204

longest observation period where 1968 is the midpoint and 53 is half of the range, but is 205

used across sites so that parameter estimates are easily comparable. For our study period, 206

the covariates take values k̃ ∈ [−1, 1] and mk ∈ (−0.56, 0.94). Recall GMT is an anomaly 207

centred at the temperature in the period 1961-1990, so it has been somewhat standardised. 208

We consider these four models to investigate whether time or GMT is the best linear 209

predictor of extreme skew surge non-stationarity over our observation period, and to 210

explore if the longer-term trends are non-stationary within a year, for example, if extreme 211

skew surges are becoming more frequent in the winter but less so in summer. For Model 212

R1, we are particularly interested in the change in threshold exceedance probability over 213

the period 1920-2020 (100 years), this is given by ∆(k̃)
λ = λd,x,b − λd,x,a, for a = −0.91 (1920) 214

and b = 1 (2020). Similarly for Model R3, we define the change in exceedance probability 215

with an increase in GMT of 1◦C as ∆(m)
λ = λd,x,1 − λd,x,0 = λd,x,1 − λd,x. 216

Next, we investigate how the GPD scale parameter changes with year and GMT to
understand if the magnitude of extreme events is changing due to climate change. We
extend the σd,x parameterisation (2.8) of [15] (call this Model S0) and consider four models
to capture changes with year, GMT and season as we did for the threshold exceedance rate,

Model S1: σd,x,k = σd,x + δ
(k̃)
σ k̃, (2.17)

Model S2: σd,x,k = σd,x +
4

∑
s=1

δ
(k̃)
σ,s k̃1{d∈Ss}, (2.18)

Model S3: σd,x,mk
= σd,x + δ

(m)
σ mk, (2.19)

Model S4: σd,x,mk
= σd,x +

4

∑
s=1

δ
(m)
σ,s mk1{d∈Ss}, (2.20)

with parameters δ
(k̃)
σ , δ

(k̃)
σ,s , δ

(m)
σ , δ

(m)
σ,s ∈ R to be estimated and k̃, mk, Ss as in (2.13)-(2.16). 217

2.5. Spatial Pooling 218

2.5.1. Improved Inference by Pooling 219

So far we have described the modelling of extreme skew surges at a single site. How- 220

ever, this approach can be very inefficient, particularly for sites with short records or where 221

the physical processes exhibit similarly over the sites, e.g., the same storm events effect all of 222

the different sites. In such cases, we anticipate certain parameters of the extreme surge skew 223

distribution to be similar, or even identical, in value across sites. By imposing this feature 224

into the inference and carrying out joint inferences across sites, known as pooling, this can 225

lead to large improvements in parameter estimation, by effectively sharing information 226
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about extreme events across sites, which in turn reduces estimation uncertainty resulting in 227

narrower confidence intervals. 228

In the model of [15] the benefits of pooling was illustrated for the shape parameter. 229

This parameter is known to be very difficult to estimate with much precision, with the 230

variability in its estimator being the primary source of uncertainty in return level estimation. 231

This parameter has been recognised across a wide spectrum of problems as being very 232

similar for a given process over large spatial regions, e.g., for rainfall [35], sea levels [36] 233

and air temperature [37] with different values for the shape parameter for plains and 234

mountains. [15] use information from [17] that the shape parameter estimates, estimated 235

separately from each site over the UK, followed a normal distribution with mean 0.012 and 236

variance 0.034. They account for this in the likelihood inference, using this distribution as a 237

prior penalty function. [15] obtained shape parameter estimates which were more similar 238

over sites with much reduced uncertainty, thus resulting in uncertainty reduction of high 239

return level estimates. For example, for the 10,000 year return level at Sheerness, the 95% 240

confidence interval was reduced by 2.5m, corresponding to a factor of 6. 241

In our context the difficult parameters to estimate are those of the longer-term trends 242

in expressions (2.13)-(2.16) for the threshold exceedance rate and (2.17)-(2.20) for the GPD 243

scale parameter. Here we also want to share spatial information through pooling. Given 244

that we do not know if these trend parameters are identical over sites, and we only are 245

illustrating the method at four sites, we undertake a formal likelihood testing method to 246

assess the evidence to see if we can treat these trend parameters as constant over sites, 247

without reducing the quality of the fit relative to the improved parsimony. 248

The pooled inference procedure involves a combined likelihood function L(θ) which
combines the likelihood functions Lℓ(θℓ) from each of the ℓ = 1, . . . , 4 sites through

L(θ) =
4

∏
ℓ=1

Lℓ(θℓ), (2.21)

where θℓ are the parameters for site ℓ and θ = (θ1, . . . , θ4). This likelihood enables 249

hypothesis testing to be carried out, to assess the evidence for whether certain parameters 250

are the same at all, or a subset of, the sites, i.e., is the time trend gradient parameter the 251

same at all sites. The joint likelihood function then enables the sharing of information 252

about this common parameter across sites whilst allowing the other parameters to vary 253

over sites. The choice of this joint likelihood function has potential restrictions; since it is a 254

product over sites, this implicitly implies that extreme skew surges are being assumed to 255

be independent across the sites. In cases where this assumption is unreasonable, the point 256

estimates of the parameters will still be good (asymptotically consistent) the variance of 257

the estimates and the confidence intervals for the parameters will be underestimated. The 258

degree of underestimation is dependent on the level of ignored true dependence between 259

skew surges at the different sites. Therefore before exploiting the pooling strategy it is 260

important to check that the independence assumption, for the extreme values of skew 261

surge, is a reasonable approximation. 262

2.5.2. Spatial Independence Diagnostics 263

We discuss how to check for pairwise dependence between skew surges at different 264

sites. Kendall’s τ correlation coefficient can be used to check for dependence skew surge 265

observations; this is a measure of rank correlation so is robust to outliers but it is a measure 266

across all values of the variables. However, since our interest lies with the dependence of the 267

extreme values, it is natural to also study the two main measures of extremal dependence χ 268

and χ̄ [25], as described next. 269

Let YA and YB denote skew surge random variables at two different sites A and B,
in the same tidal cycle with marginal distribution functions FA and FB respectively. The
simplest measure of dependence is to see how the joint probability of YA and YB both
being above their respective (1 − p)th marginal quantiles, compares to p (the value of this
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probability under perfect dependence of YA and YB) and relative to p2 (the value under
independence of YA and YB). Under positive dependence we would expect that

p2 < P{YA > F−1
A (1 − p), YB > F−1

B (1 − p)} < p. (2.22)

[25] formalise this intuition to define the measure of extremal dependence as p → 0, i.e., as
we look above increasing quantiles. Specifically they take

χ = lim
p→0

P{YB > F−1
B (1 − p) | YA > F−1

A (1 − p)} (2.23)

where χ ∈ [0, 1]. Increasing values of χ corresponding to stronger extremal dependence,
and χ = 1 corresponds to perfect dependence between YA and YB. Thus χ is the limiting
probability of one variable being extreme given that the other is equally extreme. If
χ ∈ (0, 1], we say YA and YB are asymptotically dependent, with there being a non-zero
probability of YB being large when YA is large at extreme levels. Though the class of
extremal dependence where χ > 0 is widely studied, this only corresponds to cases where
the joint probability in (2.22) is of O(p), i.e., decays as a multiple of p as p → 0. We find that
χ = 0 in all other dependence cases as well as when YA and YB are actually independent,
this class of variables is known as being asymptotically independent, and χ doesn’t give
us any information on the level of asymptotic independence. We need a more refined
measure of extremal dependence than χ to enable us to separate between when there is
some dependence of large values and independence of YA and YB. [25] also define

χ̄ = lim
p→0

2 logP{YA > F−1
A (1 − p)}

logP{YB > F−1
B (1 − p), YA > F−1

A (1 − p)}
− 1. (2.24)

where χ̄ ∈ (−1, 1]. Here χ̄ = 1 and −1 < χ̄ < 1 correspond to asymptotic dependence and 270

asymptotic independence, respectively. When χ̄ = 0 this shows there is no dependence 271

in the tails of (YA, YB) as it arises when YA and YB are independent, with 0 < χ̄ < 1 and 272

−1 < χ̄ < 0 indicating positive and negative dependence in the joint tails of YA and YB, 273

respectively. 274

To assess inter-site dependence in extreme skew surges we evaluate these dependence 275

measures using empirical estimates of the associated probabilities using the texmex R 276

package [38]. Specifically, we use skew surge daily maxima for each pairwise combination 277

of the four study sites, using data on the same day and with lags of ±1 day to account 278

for time lags between the peak of surge reaching each site, when events last multiple 279

days. Here we have lags t = 1 and t = −1 so that site A is one day ahead or behind site 280

B, respectively. Since the variables are not identically distributed, due to seasonality for 281

example, this can effect the evaluation of χ and χ̄. We address this potential concern by 282

also using the marginal distributional model of [15] F(d,j,k)
Y , given by expression (2.7), to 283

account for this through a transform the variables to identical uniform margins and then 284

re-evaluate these measures. These results are discussed in Section 3.4. 285

3. Results 286

3.1. Introduction 287

We now present the results from applying the extreme skew surge models discussed in 288

Sections 2.4 and 2.5, in Sections 3.2 and 3.4, respectively to data from our four study sites. In 289

Section 3.3, we estimate sea level return levels using the best fitting model from Section 2.4 290

under a single-site analysis using the annual maxima distribution in expression 2.11. Here 291

we define extreme skew surges as being exceedances of the monthly 0.95 quantile, as 292

in [15]. All models are fit in a likelihood framework, with 95% confidence intervals 293

provided for parameter estimates based on the hessian, i.e., using asymptotic normality 294

of maximum likelihood estimators. The likelihood is constructed under the assumption 295

that extreme skew surges are temporally independent for single site inference, but also 296



Version August 31, 2022 submitted to Water 11 of 18

that observations at different sites are independent for spatial pooling. These are not 297

unreasonable assumptions for model selection, the former being found as a reasonable 298

approximation in [15] as the extremal index is near one for large levels and the validity of 299

the latter being assessed before we apply any spatial pooling. We compare models using 300

AIC and BIC scores; these are commonly used measures of the quality of a statistical model 301

for a particular data set relative to the parsimony of the model. The chosen best fitting 302

model should minimise these scores. Recall that all estimates presented here are after the 303

mean sea level trends have been removed. An estimated change here means that the change 304

is additional to the mean sea level, so negative trend estimates correspond to the extreme 305

sea levels not rising as fast as the mean level at the site. 306

Table 2. Parameter estimates for the Models R1 − R4 with AIC and BIC scores for each model fit at
each site (including Model R0). The minimum AIC/BIC scores are highlighted in bold for each site.
The 95% confidence intervals are given in parentheses for parameter estimates.

Heysham Lowestoft Newlyn Sheerness
Model R0
AIC 12234.21 15312.08 24498.77 9286.58
BIC 12275.89 15354.88 24543.93 9326.94
Model R1

δ
(k̃)
λ 0.091 (-0.008, 0.191) -0.061 (-0.150, 0.028) 0.215 (0.154,0.276) -0.114 (-0.013, -0.010)

AIC 12232.89 15312.26 24453.12 9283.96
BIC 12282.91 15363.61 24507.31 9332.40
Model R2

δ
(k̃)
λ,1 0.161 (-0.033, 0.335) 0.063 (-0.106, 0.232) 0.114 (-0.011, 0.238) -0.032 (-0.228, 0.164)

δ
(k̃)
λ,2 0.034 (-0.161, 0.230) -0.141 (-0.322, 0.040) 0.197 (0.077, 0.316) -0.250 (-0.468, -0.032)

δ
(k̃)
λ,3 0.207 (0.013, 0.400) -0.094 (-0.266, 0.078) 0.209 (0.089, 0.328) -0.189 (-0.405, 0.026)

δ
(k̃)
λ,4 -0.047 (-0.261, 0.167) -0.081 (-0.264, 0.102) 0.338 (0.217, 0.460) -0.021 (-0.221, 0.178)

AIC 12235.30 15315.29 24452.52 9286.48
BIC 12310.32 15392.33 24533.80 9359.14
Model R3

δ
(m)
λ 0.204 (0.074, 0.334) -0.012 (-0.12, 0.427) 0.336 (0.245, 0.427) -0.164 (-0.304, -0.024)

AIC 12227.14 15314.04 24451.34 9283.20
BIC 12277.16 15365.39 24505.53 9331.64
Model R4

δ
(m)
λ,1 0.256 (-0.002, 0.514) 0.103 (-0.107, 0.312) 0.135 (-0.058, 0.329) -0.079 (-0.340, 0.181)

δ
(m)
λ,2 0.111 (-0.143, 0.365) -0.067 (-0.282, 0.149) 0.322 (0.144, 0.501) -0.374 (-0.672, -0.076)

δ
(m)
λ,3 0.416 (0.167, 0.665) -0.048 (-0.259, 0.163) 0.393 (0.212, 0.574) -0.273 (-0.568, 0.022)

δ
(m)
λ,4 0.010 (-0.274, 0.293) -0.040 (-0.262, 0.182) 0.478 (0.300, 0.655) 0.008 (-0.253, 0.269)

AIC 12227.92 15318.49 24450.27 9284.69
BIC 12302.94 15395.53 24531.56 9357.34

3.2. Single-site Analysis 307

We fit the models of Section 2.4 to the GPD rate and scale parameters for extreme 308

skew surges individually at each site. We start with the threshold exceedance probability 309

parameter, λ, fitting Models R0 − 4; AIC/BIC scores and estimates of δ
(k̃)
λ , δ

(k̃)
λ,s , δ

(m)
λ,s and 310

δ
(m)
λ are given in Table 2. Since the parameter estimates are not intuitive, we consider the 311

change in exceedance probability with the particular covariate of interest for the annual 312

trends in Models R1 and R3. 313

We find that Model R3 minimises AIC at Heysham, Lowestoft and Sheerness, whilst 314

at Newlyn Model R4 is preferable. The BIC is minimised by Model R3 at Newlyn, but 315

elsewhere Model R0 is favourable. This suggests that if any longer-term trends are included 316

in the model to capture changes in the rate of extreme events (relative to mean sea level), 317

GMT should be used as a covariate as opposed to the year. 318
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Figure 2. Histograms of (a) ∆(k̃)
λ over 100 years and (b) ∆(m)

λ with a 1◦C increase in GMT, as
percentages, for all day d and peak tide x combinations at each site.

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

δλ
(k
~)

S
ea

so
n

W
in

te
r

S
pr

in
g

S
um

m
er

A
ut

um
n

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

δλ
(m)

S
ea

so
n

W
in

te
r

S
pr

in
g

S
um

m
er

A
ut

um
n

Figure 3. Confidence intervals for parameter estimates (a) δ̂
(k̃)
λ,s and (b) δ̂

(m)
λ,s at Newlyn for s = 1, 2, 3, 4

denoting winter, spring, summer and autumn, respectively.

We look at Models R1 and R3 in more detail, these have a fixed trend parameter 319

within the year with respect to year and GMT, respectively. At Newlyn we find a significant 320

increasing trend for both models, since the confidence intervals do not contain zero. We also 321

find positive trends at Heysham, but only the GMT trend in Model R3 is significant. Neither 322

trends are significant at Lowestoft, but we find a significant decreasing trend for both 323

models at Sheerness. Figure 2 shows histograms of the estimates of ∆(k̃)
λ and ∆(m)

λ (defined 324

in Section 2.4), based on all combinations of day d and peak tide x, so these do not account 325

for uncertainty in δ
(k̃)
λ or δ

(m)
λ estimates but are simply a reflection that the rate of threshold 326

exceedance varies over the short term. For Model R1, we find an increase in λd,x,k̃ over 100 327

years at Newlyn, with max ∆(k̃)
λ = 3%, so that the exceedance probability almost doubles 328

from 3.5% to 6.5% in 1920-2020. However, we observe decreases in exceedance probability 329

at Sheerness. For Model R3, we also find an increase in exceedance probability with a 1◦C 330

increase in GMT at Newlyn, where max ∆(m)
λ = 3%, but a negative trend at Sheerness. If the 331

trends were statistically significant at Heysham and Lowestoft, the exceedance probability 332

would increase and decrease with both trend parameters, respectively. 333

Next we look at Models R2 and R4 with season-specific trend parameters for year 334

and GMT, respectively. The trends at Newlyn are significant in both models, except for 335

winter, whilst at Heysham only the increasing trends in summer are significant. None of 336

the seasonal trends are significant at Lowestoft but we find a significant decreasing trend 337

for spring in both models at Sheerness. As for Models R1 and R3, we obtain a variety of 338

results across sites; Newlyn has an increasing exceedance probability with year and GMT 339

in all seasons. However, for Lowestoft and Sheerness we obtain a mixture of positive and 340
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negative parameters throughout the year for both models. The confidence intervals for 341

the four parameter estimates in Models R2 and R4 at Heysham, Lowestoft and Sheerness 342

overlap, suggesting that there isn’t significant within-year variation of the longer-term 343

trend parameters so that the simpler Models R1 and R3 are sufficient. Whilst at Newlyn, 344

this overlap is small (see Figure 3). Here, we find the greatest trend in autumn, which is 345

not concerning for extreme sea level estimation since the most extreme sea levels occur 346

in winter [15], but using Models R1 and R3 with common trend parameters across the 347

year could in overestimate the trends in winter, hence influencing sea level return level 348

estimation. 349

Table 3. Parameter estimates for the Models S1 − 4 with AIC and BIC scores for each model fit at
each site (including Model S0). The minimum AIC/BIC scores are highlighted in bold for each site.
The 95% confidence intervals are given in parentheses for parameter estimates.

Heysham Lowestoft Newlyn Sheerness
Model S0
AIC -3091.53 -3672.07 -10152.63 -2974.317
BIC -3064.77 -3644.20 -10122.42 -2948.854
Model S1

δ
(k̃)
σ -0.009 (-0.032, 0.013) -0.006 (-0.024, 0.011) 0.001 (-0.003, 0.005) 0.016 (-0.013, 0.044)

AIC -3088.558 -3670.55 -10150.80 -2973.05
BIC -3056.448 -3637.11 -10114.54 -2942.50
Model S2

δ
(k̃)
1 0.022 (-0.034, 0.078) -0.041 (-0.090, 0.007) 0.004 (-0.009, 0.016) 0.023 (-0.032, 0.078)

δ
(k̃)
2 0.022 (-0.014, 0.059) -0.030 (-0.055, -0.006) 0.006 (-0.002, 0.014) -0.001 (-0.036, 0.035)

δ
(k̃)
3 -0.025 (-0.051, 0.001) 0.012 (-0.010, 0.034) -0.003 (-0.009, 0.003) 0.023 (-0.010, 0.055)

δ
(k̃)
4 -0.035 (-0.079, 0.008) -0.015 (-0.053, 0.023) 0.001 (-0.008, 0.011) 0.008 (-0.039, 0.054)

AIC -3095.28 -3674.12 -10146.27 -2971.19
BIC -3047.12 -3623.96 -10091.89 -2925.36
Model S3

δ
(m)
σ -0.011 (-0.033, 0.011) -0.008 (-0.026, 0.009) -0.001 (-0.008, 0.006) 0.006 (-0.020, 0.032)

AIC -3088.42 -3670.90 -10149.07 -2972.43
BIC -3056.32 -3637.46 -10112.82 -2941.87
Model S4

δ
(m)
1 0.036 (-0.027, 0.099) -0.050 (-0.105, 0.004) -0.0003 (-0.021, 0.020) 0.025 (-0.042, 0.091)

δ
(m)
2 0.029 (-0.012, 0.070) -0.037 (-0.061, -0.012) 0.005 (-0.008, 0.018) -0.015 (-0.054, 0.023)

δ
(m)
3 -0.027 (-0.054, -0.00009) 0.017 (-0.006, 0.039) -0.003 (-0.013, 0.006) 0.013 (-0.018, 0.045)

δ
(m)
4 -0.030 (-0.081, 0.021) -0.024 (-0.066, 0.017) -0.005 (-0.021, 0.010) -0.006 (-0.053, 0.040)

AIC -3093.73 -3677.95 -10145.39 -2970.79
BIC -3045.56 -3627.79 -10091.01 -2924.96

Next, we consider models for the scale parameter at each site individually (Mod- 350

els S0 − 4, introduced in Section 2.4). Table 3 shows the parameter estimates for each 351

model, along with AIC and BIC scores. Models S1 and S3 have a single parameter denoting 352

a common long-term trend across the year, but neither of these are an improvement on 353

Model S0 (without a long-term trend) at any site. All of the 95% confidence intervals 354

for δ
(k̃)
λ or δ

(m)
λ estimates contain zero, suggesting these trends are not significant. If we 355

ignore this uncertainty, the point estimates suggest small changes in the scale parameter. At 356

Heysham and Lowestoft our results show a decrease with both year and GMT, suggesting 357

that the magnitude of extreme skew surge events are getting smaller with anthropogenic 358

climate change effects. In the 100 year period 1920-2020 at Newlyn, the point estimate 359

δ
(k̃)
σ corresponds to an increase in mean excesses (see expression (2.5)) of 2mm (relative to 360

a mean of 94mm in 1920), whilst at Sheerness in the years of observation 1980-2016 this 361

corresponds to an increase of 10mm relative to a mean of 125mm in 1980. Notice there is 362

overlap in the parameter estimates for δ
(k̃)
σ and δ

(m)
σ across sites; in Section 3.4 we fit similar 363

model with these trend parameters common across sites (see Figure 4). 364
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Figure 4. Confidence intervals for parameter estimates δ̂
(k̃)
λ (a) and δ̂

(k̃)
σ (b) for all sites HEY, LOW,

NEW and SHE denoting Heysham, Lowestoft, Newlyn and Sheerness, respectively.

Models S2 and S4 have four additional parameters relative to Model S0, these denote 365

a separate trend for each season with respect to year and GMT. AIC and BIC are still 366

minimised by Model S0, except AIC scores for Heysham and Lowestoft, which favour 367

Models S2 and S4, respectively. However, the four confidence intervals overlap at each 368

site, suggesting a fixed trend within a year is sufficient. At Heysham, the overlap across all 369

seasons is small but there is considerable overlap between winter and spring, with positive 370

trend parameters, and likewise for summer and autumn with negative trend parameters 371

for both models. If these trends were statistically significant it would suggest that the 372

magnitude of extreme skew surges is increasing with increases in GMT in December-April, 373

but decreasing for the rest of the year. Given the timing of the most extreme events, this 374

could be important if statistically significant. 375

3.3. Return Level Estimation 376

Using Models S0 (2.8) and R4 (2.16) for the scale and rate parameter, respectively, we
estimate sea level return levels from the annual maxima distribution in expression (2.11).
Recall Model R4 for the GPD rate parameter has a linear seasonal trend with respect to
GMT in year k, denoted mk. Solving

P(M ≤ z|mk = m) = 1 − p (3.1)

for p ∈ [0, 1] gives us the level we expect the annual maxima M to exceed once every 1/p 377

years, on average, when the GMT covariate fixed at some value m. We estimate return 378

levels for temperatures in 1915, 2020 and for a year when the GMT anomaly value is 1◦C 379

high than that in 2020; these correspond to anomalies of -0.19, 0.92 and 1.92◦C, respectively. 380

Table 4 gives the sea level return level estimates for the 1, 100 and 10,000 year level at 381

each site. These are relative to the mean sea level in 2017 since the linear mean sea level trend 382

was removed when preprocessing the data, so these trends are in excess to those already 383

observed in the mean or will occur as GMT increases. Return level estimates increase with 384

temperature anomaly for all sites at all return periods. The 1 year level increases similarly 385

( 3-4cm) over the four sites, with the greatest difference of 10cm observed at Heysham 386

for the 10,000 year return level; this is a significant difference for coastal flood defence 387

design. Return levels will be underestimated if the longer-term trends in extreme skew 388

surge occurrence are not accounted for and instead only estimated changes in mean sea 389

level are used to update return level estimates. At Lowestoft, Newlyn and Sheerness, the 390

10,000 return level increases by 4, 3 and 2cm, respectively, when GMT increases from -0.19 391

to 1.92◦C. Therefore, even when some of the parameter estimates of Model R4 for the 392

seasonal GMT trend (δm
λ,s for s = 1, 2, 3, 4) were negative, the resulting return level estimates 393

still increase with GMT. This outcome depends on which seasons have which trends. For 394

annual maximum sea levels, it is only the winter and autumn trends that are influential. 395
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Table 4. Estimates of the 1, 100 and 10,000 year sea level return levels (in metres), relative to the mean
sea level in 2017, using Model R4 for the GPD rate parameter for skew surges with GMT as a fixed
covariate equal to anomalies of -0.19◦C (as in 1915), 0.92◦C (as in 2020) and 1.92◦C.

Heysham Lowestoft Newlyn Sheerness
1 100 10,000 1 100 10,000 1 100 10,000 1 100 10,000

−0.19◦C 10.61 11.52 12.45 3.47 4.60 5.81 6.07 6.55 6.94 6.41 7.17 7.98
0.92◦C 10.63 11.56 12.50 3.49 4.61 5.83 6.09 6.57 6.95 6.42 7.18 7.99
1.92◦C 10.65 11.60 12.55 3.50 4.63 5.85 6.11 6.60 6.97 6.44 7.19 8.00

Table 5. Kendall’s τ, χ and χ̄ measures of dependence for daily maximum skew surge observations
at pairs of sites. We show the dependence over lags -1 (LHS site is 1 day behind RHS), 0 and 1 (LHS
site is 1 day ahead of RHS); in bold we show the largest dependence over these lags. χ and χ̄ are
measures of extremal dependence for exceedances of the 0.95 quantile.

Heysham-Lowestoft Heysham-Newlyn Heysham-Sheerness Lowestoft-Newlyn Lowestoft-Sheerness Newlyn-Sheerness
lag -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Observations
τ 0.133 0.160 0.309 0.287 0.322 0.259 0.153 0.149 0.298 0.089 0.040 0.034 0.155 0.510 0.238 0.137 0.168 0.196
χ 0.095 0.129 0.270 0.127 0.145 0.076 0.092 0.111 0.259 0.017 0 0 0.145 0.509 0.200 0.054 0.077 0.121
χ̄ 0.200 0.251 0.424 0.249 0.276 0.160 0.195 0.224 0.412 0.040 -0.018 -0.055 0.274 0.645 0.344 0.120 0.158 0.237

Transform to Uniform(0,1)
τ 0.103 0.130 0.289 0.285 0.318 0.244 0.108 0.102 0.262 0.086 0.036 0.028 0.143 0.523 0.228 0.139 0.173 0.200
χ 0.026 0.040 0.180 0.103 0.122 0.053 0.056 0.036 0.173 0 0 0 0.095 0.494 0.174 0.003 0.016 0.050
χ̄ 0.069 0.100 0.321 0.215 0.236 0.114 0.123 0.084 0.313 -0.012 -0.107 -0.134 0.198 0.634 0.316 0.003 0.035 0.114

Although the seasonal changes seem non-homogeneous in the GPD model for extreme 396

skew surges, our results show that when combined with tidal information the sea level 397

return levels exhibit much more consistent behaviour with GMT changes across sites. 398

3.4. Spatial Pooling 399

We present the results from pooling information across sites, for the long-term trend 400

parameters, when refitting the models of Section 2.4. Before pooling information, we use the 401

dependence measures discussed in Section 2.5 to check if it is reasonable to assume each pair 402

of sites are independent in their extreme skew surge values. We estimate the dependence 403

measures for the observed skew surges and a standardised transformation of them to 404

remove sources of within-year non-stationarity via mapping to uniform margins through 405

the distribution function (2.7). The results are shown in Table 5. For most combinations 406

of sites at lags t = −1, 0, 1 the dependence is weak, with the maximum Kendall’s τ over 407

t = −1, 0, 1 of approximately 0.3 for most pairs, except for Newlyn with the each of 408

the east coast sites where Kendall’s τ is near 0, whilst for Lowestoft and Sheerness this 409

value is approximately 0.5. The effect of de-seasonalising the data (by transforming to 410

uniform margins) has typically decreased dependence. With the exception of Lowestoft 411

and Sheerness, it is not unreasonable to make an independence in extremes approximation 412

for the data. We find χ̄ < 1 for all pairs, giving evidence of asymptotic independence 413

with weak dependence in the observed tails of the variables. The strongest dependence is 414

found between Lowestoft and Sheerness at lag t = 0. This is not surprising since these sites 415

are close in proximity, with extreme skew surges progressing south down the east coast 416

through Lowestoft onto Sheerness. Therefore they are highly likely to be affected by the 417

same storms. Despite this pair of sites giving clear evidence of dependence, we continue 418

under the belief that it is reasonable to assume skew surge daily maxima at all pairs of sites 419

are sufficiently close to being independent for the purposes of spatial pooling. 420

Firstly, we focus on pooling information across sites regarding the long-term trend 421

parameters with respect to year k and GMT mk for the rate parameter. Figure 4 shows there 422

is considerable overlap in the confidence intervals for δ̂
(k̃)
λ at Lowestoft and Sheerness; simi- 423

larly there is some overlap for Heysham and Newlyn. Although pooling information across 424

randomly selected subsets of sites should be discouraged, here we note that the pairs of 425

sites with similarities are on different coastlines, so we explore pooling over sites on the east 426

coast (Lowestoft and Sheerness) and separately on the west coast (Heysham and Newlyn). 427
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Here, we consider refitting Models R1 and R3 (i.e., a fixed trend parameter within a year) 428

with common trend parameters δ
(k̃)
λ and δ

(m)
λ between the pairs of sites. We obtain negative 429

trends parameters δ̂
(k̃)
λ = −0.084 (−0.151,−0.016) and δ̂

(m)
λ = −0.070 (−0.156, 0.015) for 430

Sheerness and Lowestoft, whilst at Newlyn and Heysham we obtain statistically significant 431

positive trend parameters δ̂
(k̃)
λ = 0.180 (0.128, 0.231) and δ̂

(m)
λ = 0.285 (0.208, 0.359). Both 432

of these models are an improvement on the previous results, where a separate long-term 433

trend parameter is used for each site; the model with a yearly trend parameter reduces AIC 434

by 48 and the BIC by 0.5, whilst the model with a GMT parameter reduces AIC and BIC by 435

54 and 6, respectively. This highlights the importance of sharing information spatially. 436

There is also information to be gained from sharing spatial information about long- 437

term trends in the scale parameter since there is considerable overlap in the confidence 438

intervals for δ̂
(k̃)
σ (see Figure 4) and δ̂

(m)
σ (see Table 3). We refit the models of Section 2.4 for 439

the scale parameter with common longer-term trend parameters across sites, but neither 440

parameter estimates are significant. We find that δ̂
(k̃)
σ = 4.8 × 10−4, corresponding to an 441

increase in scale parameter of 0.48mm over 1915-2020. For GMT δ̂
(k̃)
σ = −0.0024, i.e., a 442

24mm decrease in scale parameter with a 1◦C increase in temperature. Neither of these 443

models improve the fit relative to having no long-term trends (in addition to those in the 444

mean sea level), although the AIC scores are close. We also fit a model similar to that of 445

Models S2 and S4 so there is a common seasonal trend across sites, with respect to year 446

and GMT but find that neither of these improve model fit. This agrees with our single-site 447

results of Section 3.2 where we found no evidence of changes in the magnitude of extreme 448

skew surge events with respect to year or GMT. 449

4. Discussion 450

We have presented a framework to investigate the effects of anthropogenic climate 451

change on extreme skew surges as any increases in the magnitude or frequency in these 452

events can have catastrophic consequences if not included in extreme sea level estimation 453

for coastal flood defence design. These trends can be different to those observed in the 454

main body of the data, such as mean sea level rise. We use year and GMT as covariates in 455

our statistical model for extreme event occurrence, building on a model developed by [15] 456

that accounts for seasonality and skew surge-peak tide dependence. Recall that our results 457

are relative to the mean sea level trend in 2017 so this would need to be added onto any sea 458

level return level estimates when used in practice. We show that there is evidence of an 459

increase in the probability of an extreme skew surge event with GMT increases at Heysham 460

and Newlyn, but evidence of both increases and decreases in the likelihood of these events 461

at Lowestoft and Sheerness across the year. We do not find any significant changes in the 462

magnitude of extreme skews surges, i.e., in the scale parameter, and hence in the mean of 463

the skew surge excesses of the threshold. Accounting for seasonal changes in extreme skew 464

surge occurrence with GMT in sea level return level estimation shows that return levels 465

increase with GMT. For a 2.1◦C increase in GMT, the 10,000 year return levels increased by 466

10, 4, 3 and 2cm at Heysham, Lowestoft, Newlyn and Sheerness, respectively. The ideas 467

presented in this paper could be applied to more locations, but also to other environmental 468

variables to investigate trends in extreme values. 469

We demonstrate the advantages of pooling information across sites, although this is 470

only primarily illustrative since we consider just four sites here. There are 44 sites on the 471

UK National Tide Gauge Network where this methodology could be extended. It would be 472

interesting to apply our methodology within a spatial framework, for example in regional 473

frequency analysis where sites in a homogeneous region not only have a common shape 474

parameter, but also common longer-term trends due to anthropogenic climate change. 475

Skew surges are also believed to change over decadal time scales with climate indices. 476

The North Atlantic Oscillation index (NAO) describes such time scale changes in regional 477

weather systems, so is believed to impact storm surges, and thus skew surge. [39] find a 478

negative correlation between storm surge and air pressure patterns, using NAO. It would 479
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be interesting to explore how adding an NAO covariate into the GPD for extreme skew 480

surges would change model fit. 481
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