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Abstract

When a large number of robots try to reach a common area, congestions happen, causing severe delays. To
minimise congestion in a robotic swarm system, traffic control algorithms must be employed in a decentralised
manner. Based on strategies aimed to maximise the throughput of the common target area, we developed
two novel algorithms for robots using artificial potential fields for obstacle avoidance and navigation. One
algorithm is inspired by creating a queue to get to the target area (Single Queue Former – SQF), while
the other makes the robots touch the boundary of the circular area by using vector fields (Touch and Run
Vector Fields – TRVF). We performed simulation experiments to show that the proposed algorithms are
bounded by the throughput of their inspired theoretical strategies and compare the two novel algorithms
with state-of-art algorithms for the same problem (PCC, EE and PCC-EE). The SQF algorithm significantly
outperforms all other algorithms for a large number of robots or when the circular target region radius is
small. TRVF, on the other hand, is better than SQF only for a limited number of robots and outperforms
only PCC for numerous robots. However, it allows us to analyse the potential impacts on the throughput
when transferring an idea from a theoretical strategy to a concrete algorithm that considers changing linear
speeds and distances between robots.

1 Introduction

To be more cost-effective, an increasing number of problems are tackled using many simple robots rather than a
few complex robots (Dudek et al., 1993). Systems formed by a large number of robots are called robotic swarms.
They are composed of robots that can only interact with direct neighbours and follow simple rules (Beni and
Wang, 1993). Counter-intuitively, some combinations of simple rules can create complex global behaviours
(Mataric, 1995; Panait, 2003). Hence, some of the robotic swarm research is based on the creation of complex
behaviours based on simple rules (Navarro and Mat́ıa, 2013; Garnier et al., 2007). Therefore, careful design
can enable swarms of simple robots to perform complex tasks with robustness instead of using complex and
expensive robots.

However, robotic swarms are often slowed down by conflicts created by the trajectories of the robots. For
example, traffic congestion appears when several robots try to reach the same area simultaneously (Treuille
et al., 2006; Graciano Santos and Chaimowicz, 2011; Yan et al., 2013; Grossman, 1988). Congestion happens
when several robots need to reach a common area, such as in waypoint navigation (Marcolino and Chaimowicz,
2008; Duarte et al., 2016) and in foraging (Ducatelle et al., 2011; Fujisawa et al., 2019). In the current state
of the art, congestion problems in robotic swarms are mainly solved by collision avoidance in a decentralised
manner because it enables better scalability of the algorithms Batra et al. (2022); Majcherczyk et al. (2018);
Borrmann et al. (2015). Despite that, just avoiding collisions does not necessarily lead to a good performance
in the common target problem. For example, Marcolino et al. (2017) showed that using only the decentralised
collision avoidance algorithm ORCA (Optimal Reciprocal Collision Avoidance) (van den Berg et al., 2011)
creates local minima around the common target region. They present experimental solutions for the congestion
problem that arises when the swarm shares the same goal, but we found that these algorithms may completely
fail in small target regions, with an area measuring less than five times the area of the robots. Moreover,
evolution-based algorithms may adapt to congestions after thousands of iterations Fujisawa et al. (2019), but
we focus on algorithms directly designed to handle congestion without requiring long iterations for training or
adaptation.

Additionally, as congestion in robotic swarms grows with the number of individuals, any analysis of the
efficiency of algorithms to reduce congestion needs to incorporate the increase in the number of robots. In
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this regard, we introduced in our concurrent work (Passos et al., 2022) a viable metric for analysing large-scale
swarm robotics systems: the throughput of the common target area. We defined it as the inverse of the average
time between arrivals at the target area. Furthermore, in that work, we have developed theoretical strategies to
maximise the throughput in scenarios where the robots have constant maximum linear speed and fixed minimum
distance between each other. Although these scenarios are useful for ease of mathematical analysis, they are not
practical in real applications as inter-robot distances and speeds vary, but the presented strategies help design
new algorithms.

Therefore, the main contribution of this paper is that, based on these theoretical strategies, we present two
novel algorithms for handling congestion in more realistic settings: Single Queue Former (SQF) and Touch and
Run Vector Fields (TRVF). We evaluate our algorithms by realistic Stage (Gerkey et al., 2003) simulations
with holonomic and non-holonomic robots. From these simulations, we conclude that SQF outperforms the
state-of-the-art and can handle a small target region. In that situation, previous approaches completely failed
in our simulations. Moreover, we learn that TRVF helps us to understand the potential impacts of the variation
in the linear speed and distance between the robots when translating an idea from theoretical strategies to
concrete algorithms.

This paper is organised as follows. In the next section, we discuss some related work. We describe the two
algorithms in Section 3. Section 4 presents the experiments and compares the two new algorithms with the
state-of-art ones. Finally, we summarise our results and make final remarks in Section 5.

2 Related Work

We found related work for traffic control for multiple robot systems, but they must follow lanes, predetermined
paths or leaders. Also, there are papers on multi-agent systems for autonomous cars, but with global planning,
without time analysis per number of robots or having spatial limitations. Until now, surveys in robotic swarms
do not treat our problem. In the literature on multiple robot systems, we could find that collision avoidance
is closely related to our problem, but works on this topic do not measure the efficiency concerning a common
target. Also, heed that collision avoidance alone is not enough to solve our problem. Finally, we treated this
problem mathematically in a previous work whose described strategies inspired the algorithms presented here.
These are discussed in detail as follows.

Traffic control for multiple robots systems Robotic traffic control has been studied for a long time
(Grossman, 1988; Kato et al., 1992; Caloud et al., 1990), but assuming robots navigating in delimited lanes and
coordination is necessary only at the intersections. Other more recent works still focus on alleviating congestions
in delimited lanes and circuits (Masud et al., 2020; Hoshino and Seki, 2013; Hoshino, 2011; Viswanath and
Madhava Krishna, 2009). For instance, an algorithm based on Petri nets has been introduced to avoid deadlocks
at intersections (Zhou et al., 2017), where each robot follows a pre-determined closed path, but it works only for
robots on lanes and does not show performance in terms of simulation time nor throughput. Saska et al. (2020)
developed a control algorithm for motion planning of formations for unmanned aerial vehicles in environments
with narrow passages. The robots in this system follow a leader and maintain proximity while avoiding obstacles
in a constrained space. Yoshimoto et al. (2018) describe a decentralised algorithm to maintain proximity between
robots. Although their work is designed for a robotic swarm, it is also leader-based.

Multi-agent systems for autonomous cars Similarly, there are many relevant works in the multi-agent
systems literature, but assuming autonomous cars that navigate following lanes or roads, and coordination is
needed at the junctions (Carlino et al., 2013; Sharon and Stone, 2017). Other lines of work try to optimise
trajectories across edges of complex traffic networks, for example, by global planning and using incentives or
tolls for self-interested agents (Sharon et al., 2017, 2018). Cenedese et al. (2016) use the Kuramoto model to
coordinate multiple vehicles towards a target while avoiding collisions and keeping them next to each other,
but they do not analyse the time to get to the target and exit from it as the number of vehicles grows. Ma
et al. (2020) describe a reinforcement learning algorithm for multi-agent planning for a swarm of vehicles to go
to objectives distributed over space, but it does not perform well when the targets cannot be well divided into
regions over the environment.

No similar study in robotic swarm survey The problem of alleviating congestion when a swarm of robots
has a common target has not yet been well studied. Thorough surveys about swarm robotics (Sahin, 2005; Sahin
et al., 2008; Barca and Sekercioglu, 2013; Brambilla et al., 2013; Bayındır, 2016; Chung et al., 2018) do not
discuss these situations. Additionally, a recent survey on collision avoidance (Hoy et al., 2015) provides insights
into multiple vehicle navigation, but they do not discuss this issue in multi-robot navigation.
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Works in collision avoidance Collision avoidance is also an important related topic of study in robotics. We
can find in the literature algorithms that let robots move efficiently in environments with a lot of obstacles, but
they do not measure the efficiency of the algorithm in the common target problem (Hewawasam et al., 2022).
As an example, Ferrera et al. (2017) have proposed a decentralised algorithm where a set of local reactive
rules are followed to avoid collisions. We also note that their work shows an extensive list of benchmarks and
metrics for robotics problems, but performance in common target situations is not included. Evolution-based
algorithms may learn traffic rules for collision avoidance after thousands of iterations Fujisawa et al. (2019), but
they were not yet explored for the common target problem. Additionally, in this paper, we focus on algorithms
directly designed to handle congestion based on our theoretical work Passos et al. (2022) without requiring long
iterations of training or optimisation.

Inadequacy of employing only collision avoidance However, only avoiding collisions does not necessarily
lead to a good performance in the common target problem. For instance, Marcolino et al. (2017) showed that
the ORCA algorithm (van den Berg et al., 2011) reaches an equilibrium where the robots cannot go to the
target. They proposed three algorithms using artificial potential fields and offered experimental solutions for
the target congestion problem. However, we found that their proposed algorithms face issues as the target area
gets smaller.

Insight from a theoretical work Inspired by theoretical developments in our concurrent work (Passos
et al., 2022), we propose new algorithms that outperform these previous approaches. That is, we proposed to
analyse the arrival rate in the target area as the time tends to infinity as an alternative approach to analysing
congestion in swarms with a common target area. This measure the advantages of being finite for any closed
target region of any shape as the number of robots grows, as opposed to the number of robots per time of arrival
at the target area. Assuming a circular target area and robots with constant maximum linear speed and fixed
minimum distance from each other, we developed theoretical strategies for entering that area and calculated their
theoretical throughput for a given time and their asymptotic throughput. The presented theoretical strategies
were based on forming a corridor towards the target area or making multiple curved trajectories towards the
boundary of the target area. However, they assumed constant speeds and fixed minimum distances between
robots, thus not yet directly applicable in practice. Hence, based on the corridor strategy, we propose here the
Single Queue Former algorithm, and, inspired by the multiple curved trajectories, we introduce the Touch and
Run Vector Fields algorithm.

3 Proposed algorithms

In this section, we consider the scenario where a large number of robots must reach a common target. After
reaching the target, each robot moves towards another destination which may or may not be common among
the robots. We assume the target is defined by a circular area of radius s. A robot reaches the target if its
centre of mass is at a distance below or equal to the radius s from the centre of the target. We assume that
there is no minimum amount of time to stay at the target.

We present two algorithms based on the results in (Passos et al., 2022). In it, the throughput of the target
area is used to measure performance, which is defined as the inverse of the average time between arrivals at the
target. Differently to that work, which intended to find the maximum throughput for the strategies by using
constant maximum linear speed and fixed minimum distance between the robots, in real applications, robots
move at variable speeds and do not always keep the same distance between others, although they may try to
maintain some distance to avoid bumping. In addition to that, the space around the target region is finite and
may have other obstacles.

Having this in mind, we devised two algorithms: the Single Queue Former and the Touch and Run Vector
Fields. These algorithms are only applied inside a circle of radius D > s around the target. Also, we assume
that if the robots have two or more targets, they are apart from each other at least 2D.

We hereafter use geometric notation as follows.
−−→
AB and AB represents a ray starting at A and passing

through B and a segment from A to B, respectively. |AB| is the size of AB. If a two-dimensional point
is represented by a vector P1, its x- and y-coordinates are denoted by P1,x and P1,y, respectively. △ABC

expresses the triangle formed by the points A, B and C. ’AOB means an angle with vertex O, one ray passing
through point A and another through B. All angles are measured in radians in this paper.

3.1 Single Queue Former

Based on the corridor strategy from (Passos et al., 2022), we propose an algorithm, named Single Queue Former
(SQF), to improve throughput in case of target congestion whose aim is to form a single queue that goes towards
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Figure 1: Rotational force field to reach the target with Single Queue Former algorithm.

the target. The queue is formed inside a rectangular corridor of width equal to the circular target diameter and
a given fixed length. The robots should only enter the target region by this queue.

Specifically, this algorithm is based on the compact lanes and hexagonal packing strategies findings from
(Passos et al., 2022). However, we do not enforce the hexagonal formation here to avoid robots losing time
forming it, although the hexagon packing is the configuration of the robots that maximises the throughput in
an ideal scenario where the robots maintain the same distance and keep constant linear speed (Passos et al.,
2022). As it will be shown in Section 4, the throughput for this algorithm is bounded by the hexagonal packing
throughput for the mean distance and mean linear speed achieved by the robots.

We use artificial potential fields (Siegwart and Nourbakhsh, 2004) to apply forces on the robots to form the
queue and exit the target area efficiently. Let s be the radius of the current target. The corridor queue has a
width 2s and starts from the current target centre, denoted by o. Let the length of the corridor be the same
value used for the radius of the circular working area of the algorithms around the target, denoted D. Without
any loss of generality, the corridor is located between the point (ox, oy) and the point t = (ox, oy +D). Robots
that are going to enter the target area are submitted to a rotational field whose centre is the position of the
target centre. When they reach the corridor, they are submitted to an attractive force towards the target. An
illustration is shown in Figure 1.

Therefore, robots outside the corridor are submitted to a force according to the following equations. For the
right-hand side of the circle, an anti-clockwise rotational field:

Fx = −KSQF
py − oy
∥p− o∥

, Fy = +KSQF
px − ox
∥p− o∥

. (1)

For the left-hand side of the circle, a clockwise rotational field:

Fx = +KSQF
py − oy
∥p− o∥

, Fy = −KSQF
px − ox
∥p− o∥

, (2)

where Fx and Fy are the two components of the force applied, p = (px, py) is the position of the robot,
o = (ox, oy) is the target centre, and KSQF is a constant for setting the force magnitude.

Additionally, we noticed in previous algorithms (Marcolino et al., 2017) that the robots reaching the target
tend to stop on the target and orient themselves towards their next goal. This increases the time during which
the target is occupied and thus decreases the throughput. To solve this problem, robots exiting nearby the
target are constrained by another rotational field. This field also is only applied inside a circle with radius D
around the target (Figure 2). The aim of this field is to be aligned with the corridor orientation at the target
and progressively allow robots to change directions. This field also depends on the new target position, not only
on the robot’s location, because if some robots reach the target area on a side but have to go to the opposite
side when they leave the circle, it will cause congestion next to the exit area. For a robot with a new target
located on the right-hand side of the previous target centre, we apply an anti-clockwise rotational field:

Fx = −KSQF
py −Qy

∥p−Q∥
, Fy = +KSQF

px −Qx

∥p−Q∥
. (3)
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Figure 2: Rotational force field to leave the target in the SQF algorithm, and the distance d′ from the central
line of the corridor to the robot for varying its influence radius.

For a robot with a new target located on the left-hand side of the previous target centre, a clockwise rotational
field is applied:

Fx = +KSQF
py − Py

∥p− P∥
, Fy = −KSQF

px − Px

∥p− P∥
, (4)

where Q = (Qx, Qy) = (ox +D, oy) is a point on the right of the target, and P = (Px, Py) = (ox −D, oy) is a
point on the left of the target.

This outgoing rotational field enables robots to stay on their course after they reach the target and gradually
rotate towards their next goal. The orientation of the field depends on the position of the robot relative to the
corridor. If the robot is on the left of the corridor, the robot follows the rotational field going to the left with
centre P . Otherwise, if it is on the right of the corridor, it follows the rotational field going to the right with
centre Q.

Finally, let the influence radius be the maximum distance a robot considers anything sensed as an obstacle
to avoid from its mass centre. To enable the robots to deal with small target sizes, we use two different constants
for the influence radius between the robots when calculating repulsive forces, Id and Imin, with Imin < Id: Id
is the default and maximum radius for influence, and Imin is the minimum allowed.

For robots inside the corridor or exiting the target region, the influence radius is set to Imin. Now, consider
a robot is outside the corridor, but above the PQ line in Figure 2. Let d′ be the distance between the robot
and the central line of the corridor (that is, from the position of the robot to the closest point in the vertical
axis of Figure 2, starting from the target centre). Its influence radius I varies in relation to d′ and is set to
I = Imin + d′ only for 0 ≤ d′ ≤ Id − Imin. This range for d′ guarantees that Imin ≤ I ≤ Id. For the rest of the
robots the influence radius is Id.

Algorithm 1 presents the SQF algorithm. Robots have the states going to target, leaving target and going-
to corridor, which respectively means the robot is going straightly to the target region, it is leaving it, and
it is going to the corridor. The robots begin at going to target state. Figure 3 shows the state machine and
its transitions, assuming that the robot may have two or more targets located at oj = (oj,x, oj,y), the circular
target region has radius sj , and j is its current target index. Note that this algorithm is only executed when
the robot is at a distance at most D from the target centre.

going_to_target leaving_targetgoing_to_corridorstart

Figure 3: State machine transitions for SQF algorithm.
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Input : KSQF : force magnitude;

D : the length of the corridor;

o1 = (o1,x, o1,y), . . . , on = (on,x, on,y) : a list of n ≥ 2 circular target region centres;

s1, . . . , sn a list of n circular target region radii;

j : the current target index;

Imin, Id : minimum and default influence radius of the robot.

Output: F = (Fx, Fy) : force vector;

I : influence of the robot for repulsive force calculation.

1 Get position of the robot p = (px, py), and let o = oj = (ox, oy) and s = sj ;

2 if ∥p− o∥ ≤ s then

3 state ← leaving target;

4 Increment j, then let o = oj = (ox, oy) and s = sj ;

5 if state ̸= leaving target then

6 if ∥p− o∥ ≤ D and (py < oy or |px − ox| > s) then

7 state ← going to corridor;

8 Set F according to (1) and (2);

9 else

10 state ← going to target;

11 F ← KSQF
o−p

∥o−p∥ ;

12 else

13 if ∥p− oj−1∥ ≤ D then

14 Set F according to (3) and (4);

15 else

16 state ← going to target;

17 F ← KSQF
o−p

∥o−p∥ ;

18 if state = going to target or state = leaving target then

19 I ← Imin;

20 else if state = going to corridor and py > oy and |px − ox| < Id − Imin then

21 I ← Imin + |px − ox|;
22 else

23 I ← Id;

24 return (F, I);

Algorithm 1: SQF algorithm, executed at every update in the position of the robot.
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Figure 4: Illustration of the touch and run strategy (from (Passos et al., 2022)). (a) Central angle region and its
exiting and entering rays, defined by the angle α. (b) The trajectory of a robot next to the target, in red. Here
we have the relationship between the target area radius (s), the minimum safety distance between the robots
(d), the turning radius (r), the central region angle (α) and the distance from the target centre for a robot to
begin turning (dr). The green dashed circle represents the whole turning circle.

3.2 Touch and Run Vector Fields

Since a robot should spend as little time as possible near the target, in (Passos et al., 2022), we imagined a
simple scenario where robots travel in predefined curved lanes and tangent to the target area, where they spend
minimum time on the target. To avoid collisions with other robots, the trajectory of a robot nearby the target
is circular, and the distance between each robot must be at least d at any part of the trajectory. Hence, no
lane crosses another, and each lane occupies a region defined by an angle in the target area – the central region
angle – that we denote by α, shown in Figure 4 (a). Figure 4 (b) shows the trajectory of a robot towards the
target region following that touch and run strategy. The robot first follows the boundary of the central angle
region – that is, the entering ray – at a distance of d/2. Then, it arrives at a distance of s of the target centre
using a circular trajectory with a turning radius r. As the trajectory is tangent to the target shape, it is close
enough to consider that the robot reached the target region. Finally, the robot leaves the target by following
the second boundary of the central angle region – that is, the exiting ray – at a distance of d/2.

Based on this strategy, we devise an algorithm to mimic the curved trajectories around the target region
using vector fields, named Touch and Run Vector Fields (TRVF). The vector fields are only used inside a circle
with radius D around the target centre and apply forces on the robot to make it follow a circular trajectory
similar to the one described in the touch and run strategy.

As a way to do that, we adapted and combined the vector fields proposed by Nelson et al. (2006) for straight
line and orbit following trajectories. We use their straight line following vector fields whenever the robot has to
follow a straight trajectory and an anti-clockwise orbit following vector field for curved trajectories. We will first
explain our modified functions for these trajectories, and afterwards, we will introduce the TRVF algorithm.

Our adaptation of their work concerns reducing the orbit following to a circular sector, instead of the full
circle, and adding an attractive force towards a fixed point when the robots are performing the orbit following
next to the target region. The reduction to a circular sector is due to the curved trajectory next to the target
having α < 2π. We add attractive forces towards a fixed point to the orbit following vector field intending to
avoid the repulsive forces caused by nearby robots to push a robot far away from that fixed point.

Figure 5 shows the straight line and orbit following vector fields proposed by Nelson et al. (2006). Algorithm
2 presents our adapted function that computes the straight line following vector field, its parameters and values
returned. It assumes a fixed segment to follow with initial and final waypoints wi and wf , respectively. Based
on the current position and orientation of the robot, p and ξ, respectively, a force vector with magnitude KTRV F

is computed. The orientation of the force vector changes gradually as the robot approaches the segment. These
changes are calculated using the maximum linear speed of the robot v, and its rate of change depends on the
constants ks and Kr.
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Figure 5: Straight line and orbit following vector fields (from (Nelson et al., 2006)).

1 Function straightPathFollowing (KTRV F , p, ξ, wi, wf , Id, ks,Kr, v)

Input : KTRV F : force magnitude;

p = (px, py), ξ : current position and orientation of the robot;

wi = (wi,x, wi,y), wf = (wf,x, wf,y) : initial and final waypoints for the segment to follow;

Id : influence radius of the robot;

ks > 1: constant for exponentiation in the vector field calculation;

Kr : constant for proportional angular speed controller;

v: maximum linear speed.

Output: F = (Fx, Fy) : force vector;

t : indicates the position along the path (0 when the position of the robot is on the line

perpendicular to wiwf on the initial waypoint and 1 when that happens for the final

waypoint).

2 wfi = wf − wi;

3 t← (p−wi)·wfi

∥wfi∥2 ;

4 if t ≥ 1 then return ((0, 0), t);

5 ξf ← atan2(wfi,y, wfi,x);

6 ϵ← ∥p− wi − twfi∥;
7 ρ← sign(wfi × (p− wi)) ;

8 τ ← Id/5;

9 ξe ← π/2;

10 if ϵ > τ then

11 ξc ← ξf − ρξe;

12 else

13 ϵ← ρϵ;

14 P1 ←
(
ϵ
τ

)ks ; if P1 is NaN then P1 ← 0;

15 P2 ← ϵks−1; if P2 is NaN then P2 ← 0;

16 ξc ← ξf − ξeP1 −
Ä

ksξev
Krτks

ä
P2 sin(ξ);

17 F ← KTRV F (cos(ξc), sin(ξc));

18 return (F, t);

Algorithm 2: Straight-line vector field algorithm adapted from Nelson et al. (2006).

In the original algorithm, ξe is the entry heading angle, and τ is the distance perpendicular to the line from
which the vector field makes the heading angle begin to change (in Figure 5 (a), it is the distance from the
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1 Function orbitPathFollowing (KTRV F , c, R, p, ξ, wf , ko,Kr, v)

Input : KTRV F : force magnitude;

c,R : centre and radius for orbit following;

p = (px, py), ξ : current position and orientation of the robot;

wf = (wf,x, wf,y) : final waypoint;

ko > 1: constant for exponentiation in the vector field calculation;

Kr : constant for proportional angular speed controller;

v: maximum linear speed.

Output: F = (Fx, Fy) : force vector;

t : indicates the position along the path (positive when the robot did not cross −−→cwf ).

2 q ← p− c;

3 t← q × (wf − c);

4 if t ≤ 0 then return ((0, 0), t);

5 γ ← atan2(qx, qy);

6 if ∥q∥ > 2R then

7 ξc ← γ − 5π
6 + v

∥q∥ sin(ξ − γ);

8 else

9 P1 ←
Ä
∥q∥−R

R

äko

; if P1 is NaN then P1 ← 0;

10 P2 ← (∥q∥ −R)ko−1; if P2 is NaN then P2 ← 0;

11 ξc ← γ − π
2 −

π
3P1 − v

Kr∥q∥ sin(ξ − γ)− kovπ
3RkoKr

P2 cos(ξ − γ);

12 F ← KTRV F (cos(π/2− ξc), sin(π/2− ξc));

13 return (F, t);

Algorithm 3: Anti-clockwise orbit following vector field algorithm adapted from Nelson et al. (2006).

dashed line to the solid line). In our adaptation, we set τ = Id/5 and ξe = π/2, for a given default influence
radius of the robot Id. Additionally, we only compute the force vector if the robot did not reach the point wf or
if the robot is in a position on the plane perpendicular to wiwf limited by its endpoints, otherwise, we return
force vector zero (line 4). At line 7, sign returns −1 for negative numbers and 1, otherwise. Here × stands for
the cross-product of two vectors. We also add a verification for not a number (NaN) in the exponentiations and
replace the result for zero as it is a common source of numerical errors (lines 14 and 15). We are assuming a
proportional angular speed controller such that if the robot has orientation ξ and needs to turn to orientation
given by ξc, then it uses angular speed Kr(ξc − ξ) for a chosen Kr > 0.

Algorithm 3 shows our modified function that computes the orbit following vector field, its parameters and
values returned. Let the orbit to follow be centred at a point c = (cx, cy) and have radius R. As in the straight
line following algorithm, given the current position and orientation of the robot, p and ξ, respectively, a force
vector with magnitude KTRV F is calculated. In this work, we intend to use the orbit following algorithm to
perform curves, so a waypoint wf must be given to indicate where the orbit following must stop. As in the
previous algorithm, the orientation of the force vector changes gradually as the robot approaches the orbit, and
these changes are computed using the maximum linear speed of the robot v, and its rate of change depends on
the constants ko and Kr.

This algorithm only generates a force vector different from zero if the robot did not cross −−→cwf for a given
waypoint wf . We verify if it crossed by the positive sign of the cross product between the vector q = p − c
(that is, the vector from the centre of the orbit to the position p of the robot) and the vector wf − c. As the
orbit is anti-clockwise, the orbit following vector field makes the cross product q× (wf − c) decrease with time,
being zero when q has the same orientation as wf − c and negative when the orientation of q is greater than
the orientation of wf − c. We return force vector zero when the robot is in a position beyond −−→cwf or intersects
this ray (line 4).

At line 5, γ is the heading from the centre of the orbit to the position of the robot. Nelson et al. (2006)
use clockwise orientation and they assume null orientation when the robot is at the y-axis, thus we are using
γ = atan2(qx, qy) instead of atan2(qy, qx) as in the original algorithm. Due to this, at line 12 we use π/2 − ξc
for computing the result using the usual orientation, that is, anti-clockwise with null orientation at the x-axis,
as justified by Figure 6.

As presented in the touch and run strategy of Passos et al. (2022), the TRVF algorithm uses K lanes. Each
robot calculates four waypoints to follow in the lane located on the right side of the robot, assuming it is facing
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Figure 6: If a line has angle γ with the
y-axis assuming clockwise orientation, then
this same line has angle π/2−γ with the x-
axis using anti-clockwise orientation, as the
y-axis makes an angle of π/2 with the x-
axis.

E1

E2

E3 E4

Figure 7: The robots follow the waypoints w1, w2, w3 and w4

depending on the sector where they are located. The centre c for
the curved trajectory between waypoints w2 and w3 is distant by
r+ s from the target centre o. In this example, we have K = 4 and
a robot at position p and at sector 1.

the target located at point o. Figure 7 shows these four waypoints, which are based on the position of the robot
p, and must be followed in order. The four waypoints are calculated depending on the sector where they are.
There are K sectors, one per lane, numbered from 1 to K. Let η be the angle of the vector p−o. Thus, a sector
i of a robot is calculated by i =

⌊
η
α

⌋
+ 1.

Let E1 be the point in the entering ray on the boundary of the circle centred at o with radius D, E2 be
the point in the entering ray perpendicular to the point where the robot starts to turn in the touch and run
strategy (as presented in Figure 4 (b)), E3 be the point in the exiting ray perpendicular to the point where the
robot ends the turn in the touch and run strategy, and E4 be the point in the exiting ray on the boundary of
the circle centred at o with radius D. In Figure 7, these points are exemplified for sector 1. For a given sector i,
the entering and exiting rays will have angle iα and (i− 1)α with the x-axis, respectively. The position vector
w1 is given by the sum of the vector o, the vector going from o to E1 and the vector of modulus Id/2 from E1

rotated π/2 anti-clockwise from the entering ray. Thus,

w1 = o+ (E1 − o) +
Id
2
(cos(iα− π/2), sin(iα− π/2))

= o+D(cos(iα), sin(iα)) +
Id
2
(sin(iα),− cos(iα)).

(5)

The vector w2 is given similarly to w1 but using E2. The distance from o to E2 is
√
(r + s)2 − (r + Id/2)2,

because this is the same as AC in the Figure 4 (b), but using d instead of Id. In other words, in this figure,
we have the distance dr from the target centre where the robots begin turning. By symmetry, this is the same
distance from the target centre where the robots stop turning. From the right triangle ABC on that figure, we
have |AC| =

√
(r + s)2 − (r + d/2)2.

The value of r can be calculated from Figure 4 (b) replacing d by Id as well. That is, we can see that the

right triangle ABE has angle ’EAB = α/2, hypotenuse r + s and cathetus r + d/2. Hence, it directly follows
that

sin(α/2) =
r + d/2

r + s
⇒ r =

s sin(α/2)− Id/2

1− sin(α/2)
, (6)

after reordering and replacing d by Id. Then,
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w2 = o+ (E2 − o) +
Id
2
(cos(iα− π/2), sin(iα− π/2))

= o+
»
(r + s)2 − (r + Id/2)2(cos(iα),

sin(iα)) +
Id
2
(sin(iα),− cos(iα)).

(7)

We use similar reasoning to calculate w3 and w4, however, for the exiting ray, we use the angle (i − 1)α
instead of iα. Thus,

w3 = o+ (E3 − o) +
Id
2
(cos((i− 1)α− π/2), sin((i− 1)α− π/2))

= o+
»
(r + s)2 − (r + Id/2)2(cos((i− 1)α), sin((i− 1)α))+

Id
2
(sin((i− 1)α),− cos((i− 1)α)),

(8)

and

w4 = o+ (E4 − o) +
Id
2
(cos((i− 1)α− π/2), sin((i− 1)α− π/2))

= o+D(cos((i− 1)α), sin((i− 1)α)) +
Id
2
(sin((i− 1)α),

− cos((i− 1)α)).

(9)

For the sector i, the curve with radius r has centre c, which is distant by r + s from the target centre. The
vector c− o has orientation iα− α

2 (Figure 7), so

c = o+ (r + s)

Å
cos

ÅÅ
i− 1

2

ã
α

ã
, sin

ÅÅ
i− 1

2

ã
α

ãã
. (10)

In order to keep track of the path following, we also use a state machine. Every robot has six states. The
initial state is going to target. The robot remains in this state until it reaches the distance D from the target,
then it changes to going to entrance straight path. In this state, the robot follows an orbit following vector
field centred at the target centre o and radius D using Algorithm 3 with the parameter wf = w1. The robot
changes to the state on entrance straight path when the Algorithm 3 outputs t ≤ 0. This state indicates that
the robot is following the straight-line vector field towards the target region until it reaches a position after the
line orthogonal to the following line at the waypoint w2. This happens when the variable t returned by the
Algorithm 2 is greater than or equal to 1.

When this occurs, the robot changes to on entrance curved path and is impelled by the sum of two forces: the
orbit following force for the curved trajectory with centre at c and radius r and an attraction force towards the
target centre o. The second force was added because, next to the target region, as the number of robots grows,
repulsive forces may push a robot on state on entrance curved path far from the target. The orbit following
force field by itself does not attract to the target region, so the other force is a counter-effect to this pushing.
However, the attractive force magnitude must be higher than the orbit following force magnitude to avoid their
vector sum being null. Consequently, we use fixed norm 1.5KTRV F for that attractive force, sum these two
vectors, then normalise the result to KTRV F . For the Algorithm 3 in this state we use wf = w3.

When the robot reaches the target region, it changes to on exit curved path. In this state, the robot continues
to follow the previous orbit following but we add an attractive force towards the waypoint w3 by a similar
normalised summation as described for the previous state. The transition to the next state, on exit straight -
path, is done when Algorithm 3 returns t ≤ 0. Then, the robot follows the straight line following force field until
it leaves the circle with radius D around the target centre, changing back to going to target and going to the
next target region. We also added a transition from the state on exit curved path to going to target because
D could be not much greater than s, so the robot could leave the circle with radius D due to repulsive forces
before making a transition to on exit straight path.

As the robot is attracted to the next target when it is on going to target, depending on its position, it could
be impelled to cross the previous target region again. Thus, we apply a repulsive force from the circle with
radius D and centre at the previous target centre as if it was a huge obstacle. This makes the robots avoid the
previous target region giving space to other robots entering or exiting. Figure 8 (a) summarises these transitions
and Figure 8 (b) shows the vector field and the expected state for a robot at the displayed positions assuming
no influence of the repulsive force of the other robots.

Finally, Algorithm 4 presents the TRVF algorithm. The condition at line 2 can be checked by a global
boolean variable initialised as false before the robot goes to the next target. Without this condition, the robots
would change lanes if they get pushed to another one, resulting in more congestions. At lines 9 and 32, we
assume any chosen repulsive force function.
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going_to_target

going_to_entrance_straight_path

on_entrance_straight_path

on_entrance_curved_path

on_exit_curved_path

on_exit_straight_path

start

(a) State machine (b) Vector field

Figure 8: Vector field and state machine for the TRVF algorithm. The colours in the vector field represent the
expected robot state at the shown vector positions. The black vector indicates the effect of the repulsive force
from the target region when the robot is more distant than D from the target already reached. The inner and
outer circles have a radius of s and D, respectively. Here, we are using K = 4.

4 Experiments and Results

To evaluate our approach, we executed several simulations using the Stage robot simulator (Gerkey et al.,
2003). We tested the algorithms for holonomic and non-holonomic robots in simulations. The robots measure
0.44 × 0.44 × 0.44 m3. When testing non-holonomic robots, we used the control equations given in Luca and
Oriolo (1994). Our implementation considered the following equation for the repulsive forces (Siegwart and
Nourbakhsh, 2004):

F =

 −KRep

Å
1

d
− 1

I

ã
q − p

d3
, if d < I,

0, otherwise,
(11)

where KRep > 0 is a constant, p the current position of the robot, q the position of the neighbour, d = ∥q − p∥
the Euclidean distance between q and p, and I the influence radius.

We ran scenarios where robots are initially in a random position with a distance between 13 and 21 m from
the target centre. After reaching the common target, robots will go towards the next one, which will be either
to the left or to the right of the common target. This is decided randomly, according to a uniform probability
(so roughly half of the robots would go to the left and half to the right). The new targets are aligned with the
common target but far away in the x-axis.

Two kinds of experiments were performed, one for testing the SQF and TRVF algorithms and another to
compare them with the state-of-the-art algorithms. Hyperlinks to the video of executions are available in the
captions of each corresponding figure. They are in real-time so that the reader can compare the time and
screenshots presented in the figures in this section with those in the supplied videos.1

4.1 Proposed algorithms

We compare here our algorithms with state-of-the-art algorithms for collision avoidance in the common target
problem (Marcolino et al., 2017): PCC, EE, and PCC-EE. The default parameters used for the algorithms
are shown in Table 1. For each experiment, we ran 40 executions, and we report in the graphs the average

1The source codes of each experimented algorithm are in https://github.com/yuri-tavares/

swarm-common-target-area-congestion.
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Input : KTRV F : force magnitude;

K: number of lanes;

D : the length of the corridor;

o1 = (o1,x, o1,y), . . . , on = (on,x, on,y) : a list of n ≥ 2 circular target region centres;

s1, . . . , sn a list of n circular target region radii;

j : the current target index;

Id : influence of the robot;

ks > 1, ko > 1: constant for exponentiation in the straight line following and orbit following

vector fields, respectively;

Kr : constant for proportional angular speed controller;

v: maximum linear speed.

Output: F = (Fx, Fy) : force vector;

1 Get position of the robot p = (px, py), its orientation ξ, and let o = oj = (ox, oy) and s = sj ;

2 if w1, . . . , w4, and c were not calculated for target index j then

3 i←
ö
atan2(py−oy,px−ox)

2π/K

ù
+ 1;

4 Use Eqs. 5-10 to calculate w1, . . . , w4, r and c;

5 if state = going to target then

6 if ∥p− o∥ ≤ D then state ← going to entrance straight path;

7 else

8 F ← KTRV F
o−p

∥o−p∥ ;

9 FR ← repulsiveForceFromTarget(oj−1, D);

10 return KTRV F
F+FR

∥F+FR∥ ;

11 if state = going to entrance straight path then

12 (F, t)← orbitPathFollowing(KTRV F , o,D, p, ξ, w1, ko,Kr, v);

13 if t ≤ 0 then state ← on entrance straight path;

14 else return F ;

Algorithm 4: TRVF algorithm (continues on Algorithm 5).

and the confidence interval such that ρ = 0.01. An appropriate statistical test with such ρ is performed each
time we mention statistical significance or say “significantly better”. Since robots may not reach the target in
some simulations, they were stopped after 60 minutes. This value was chosen because the total simulation time
obtained at the runs where all robots reached the target without deadlocks was less than 45 minutes.

The next sections present the experiments and results for SQF and TRVF algorithms varying certain pa-
rameters, then a comparison between all algorithms is presented.

4.1.1 SQF algorithm

Figure 9 shows an execution of the SQF algorithm, with 100 non-holonomic robots with default parameters.
Figure 9 (a) shows the initial positions of the robots around the target area (small circle in the centre). The
larger circle around the target shows the distance D where the rotational field will take place. Hence, robots
inside the larger circle perform a rotational movement towards the corridor and soon reach the state in Figure 9
(b), where the first robots reach the corridor. These robots will directly move towards the target area (Figure 9
(c)), and then leave the region following a different rotational field, in yellow in Figures 9 (d) and (e). Eventually,
all robots can reach the target. Robots in black are at a distance greater than D and are now going towards
their next target, randomly chosen between left and right sides.

We analyse the throughput for a growing number of robots, considering holonomic and non-holonomic robots.
Figure 11 displays the results for the experiments in comparison with the least bound of asymptotic throughput
(that is, the limit of the throughput when the number of robots tends to infinity) from the hexagonal packing
corridor strategy that inspired the SQF algorithm. This value was derived in our concurrent theoretical work
(Passos et al., 2022) and is given by

4vs√
3d2
− 2v cos(θ − π/6)√

3d
, (12)

for the linear speed v, the distance between each robot of d, an angle θ of the hexagonal packing arrangement
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16 if state = on entrance straight path then

17 (F, t)← straightPathFollowing(KTRV F , p, ξ, w1, w2, Id, ks,Kr, v);

18 if t ≥ 1 then state ← on entrance curved path;

19 else return F;

20 if state = on entrance curved path then

21 if ∥o− p∥ ≤ s then

22 Increment j, then let o = oj = (ox, oy) and s = sj ;

23 state ← on exit curved path;

24 else

25 (F1, t)← orbitPathFollowing(KTRV F , c, r, p, ξ, w3, ko,Kr, v);

26 F2 ← 1.5KTRV F
o−p

∥o−p∥ ;

27 return KTRV F
F1+F2

∥F1+F2∥ ;

28 if state = on exit curved path or state = on exit straight path then

29 if ∥p− oj−1∥ > D then

30 state ← going to target;

31 F ← KTRV F
o−p

∥o−p∥ ;

32 FR ← repulsiveForceFromTarget(oj−1, D);

33 return KTRV F
F+FR

∥F+FR∥ ;

34 else

35 if state = on exit curved path then

36 (F1, t)← orbitPathFollowing(KTRV F , c, r, p, ξ, w3, ko,Kr, v);

37 if t ≤ 0 then

38 F2 ← 1.5KTRV F
w3−p

∥w3−p∥ ;

39 return KTRV F
F1+F2

∥F1+F2∥ ;

40 else state ← on exit straight path;

41 if state = on exit straight path then

42 (F, t)← straightPathFollowing(KTRV F , p, ξ, w3, w4, Id, ks,Kr, v);

43 return F;

Algorithm 5: TRVF algorithm (continuation).

and target region radius of s. This value is minimised by θ = π/6.
In Figure 11, we are using it with the mean distance between each robot and its closest neighbour and mean

linear speed in all experiments for each number of robots. These values do not follow a normal distribution.
Thus, instead of plotting the confidence interval with ρ = 0.01, we used these means shifted to above and below
by one standard deviation to calculate the interval shown in Figure 11. Observe in this figure that the results
obtained from the experiments are still below the upper bound obtained by the mean values but inside the one
standard deviation interval. Although the high variation in the distance between the robots and linear speed
contributes to the difference, the SQF algorithm forms a corridor only in the upper part of the circle with a
radius of D around the target. Hence, the robots still need time to get to the corridor. Also, the positions of
the robots in the corridor are not too compacted.

4.1.2 TRVF algorithm

For the repulsive force away from the previous target region we used one similar to (11) but the distance is
considered from the robot position and the circle with radius D centred at the target position, and the influence
radius is D, that is,

F =

 −KRep

Å
1

d
− 1

D

ã
1

d2
o− p

∥o− p∥
, if d < D,

0, otherwise,
(13)

whereKRep > 0 is a constant, p the current position of the robot, o the target centre position, and d = ∥o−p∥−D
is the distance from the robot position to the circle.
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Parameter Notation Value
Used by algo-
rithm(s)

Circular target area radius s 3 m All
Working radius of the algorithm around the target D 13 m All
Coefficient for repulsive forces KRep 0.5 All
Default influence radius Id 3.0 m All
Minimum influence radius Imin 1.0 m SQF
SQF force magnitude KSQF 2.5 SQF
Constant for proportional angular speed controller Kr 3 TRVF
TRVF force magnitude KTRV F 2.5 TRVF
Maximum linear speed v 1 m/s TRVF
Constant for exponentiation in the straight line fol-
lowing

ks 1.1 TRVF

Constant for exponentiation in the orbit following
vector fields

ko 1.1 TRVF

Angle of entry region – 2π
3 EE, PCC-EE

Communication radius – 3 m PCC, PCC-EE
Radius of free region – 3.7 m PCC, PCC-EE
Angle of α-area for waiting robot – 23π

36 PCC, PCC-EE
Angle of α-area for locked robot – π

4 PCC, PCC-EE
Radius of α-area – 3 m PCC, PCC-EE
Number of cycles before sending a message – 25 PCC, PCC-EE
Number of cycles for testing if a waiting robot will
change state

– 40 PCC, PCC-EE

Radius of free region – 3.7 m PCC, PCC-EE
Radius of danger region – 5.2 m PCC, EE, PCC-EE

Table 1: Default values for simulation parameters with the notation used in this paper and algorithms that use
it.

Figure 12 displays an execution of the TRVF algorithm, with 100 non-holonomic robots and four lanes with
default parameters. Figure 12 (a) shows the initial positions of the robots around the target area (small circle
in the centre). The larger circle around the target shows the distance D, and the robots will avoid it when they
go to the next target using (13). Each robot goes to the entering lane next to its position and follows the force
field (Figure 12 (b)). The robots avoid crossing the target region and follow the border of the circle with radius
D when going to the next target in Figures 12 (c), (d) and its continuation on Figure 13 so that all robots can
reach the target. With this algorithm, the cluttering is distributed through the entrances and the target region
according to the number of lanes, while the leaving lanes become free. However, without the TRVF algorithm,
the clutter would concentrate only next to the target region.

We performed simulations to compare different K values for the defaults parameters for a number of robots
ranging from 20 to 300 with increments of 20 with the default values in Table 1. The results are in Figure 14.

Firstly, we compare with the results for the touch and run strategy by calculating the asymptotic throughput
for the allowed values of K – that is, K ∈ {3, . . . , 6} – following the bound found in(Passos et al., 2022)

Kv

max(d, d′)
for d′ =

®
r(π − α) + d−2r cos(α/2)

sin(α/2) , if 2r cos(α/2) < d,

2r arcsin
(

d
2r

)
, otherwise.

(14)

For K equals 3, 4, 5 and 6, the asymptotic throughput rounded to three decimal places are 0.994, 1.2, 1.099
and 1, respectively. Thus, K = 4 would be the best number of lanes for the touch and run strategy. However, as
in the TRVF experiments, the distances between robots and linear speeds change over time, and the movement
of the robots is influenced by the other robots in their neighbourhood. Therefore, the best K was 5 according
to the results in Figure 14.

Figure 15 shows a screenshot in the middle of the execution for the allowed K values and 100 holonomic
robots. Using K = 6, the default values s = 3 m and d = Id = 3 m in (6) gives r = 0, so the TRVF algorithm
will run but no curved trajectory is made. In this case, the entrance and exiting straight lanes lie exactly in
the target region. This could be a shorter trajectory, as the robots do not need to make the curved turn, but
congestions happen in the target region (Figure 15 (d)). In fact, for any K displayed in Figure 15, observe
that some robots are trapped inside the target area. They were pushed inside the area due to repulsive forces
from other robots, and they inflicted those forces on the robots getting near the target region from the curved
trajectory, consequently causing congestion as well. However, for the best K = 5, congestion is minimised.
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(a) 0s: Initial positions. (b) After 49.8 s.

(c) After 142.8 s. (d) After 214.3 s.

Figure 9: Screenshots of the SQF algorithm, with 100 non-holonomic robots with default parameters. The
red, green and yellow robots are in state going to target, going to corridor and leaving target, respectively.
Black robots are going to their next target. This continues in Figure 10. Available on https://youtu.be/

3-d7Y7eViW4.

As done for the SQF algorithm, we analyse the throughput for a growing number of robots, considering
holonomic and non-holonomic robots. Figure 16 displays the results for the experiments in comparison with
the theoretical maximum throughput value. The theoretical maximum throughput was obtained by (14) for
K = 5 with the mean distance between the robots and mean speed in all experiments for each number of
robots. As before, in order to plot the offset from the mean values, we used the standard deviation instead
of the confidence interval here because these values do not follow a normal distribution. From that figure, the
experimental throughput is still below the upper bound obtained by the mean values but inside the one standard
deviation interval. The difference between the experimental data and the theoretical value obtained from the
mean values occurs because, by using variable linear speed, the robots are not constantly paced towards the
target. Additionally, next to the curve, the robots deviate from the trajectory to avoid bumping into each other.

4.2 Comparison with state-of-art algorithms

In this section, we compared the algorithms regarding (i) the throughput, (ii) the time the swarm reaches the
target area, (iii) the time for leaving it averaged by the number of robots, and (iv) the total simulation time. We
only consider the runs that succeed in terminating within 60 minutes in Section 4.2.1 and 20 minutes in Section
4.2.2. This termination time is lower in the later section because we use 100 robots, while in the former, up to
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(e) After 285.7 s. (f) 357.2 s: ending of the simulation.

Figure 10: Continuation of Figure 9.

300. We observed that the robots running algorithms PCC, EE and PCC-EE for the experiments of Section
4.2.2 entered deadlock in executions longer than 20 minutes for 100 robots.

The total simulation time is obtained when the last robot in the experiment arrives at the outer circle with
a radius of D after everyone has reached the target area. The reaching time is measured from the last robot in
the swarm that gets to the target area. The leaving time is taken from the moment a robot reaches the target
area until it arrives at the outer circle. As done in Marcolino et al. (2017), to measure the effectiveness of the
algorithms on the crowd reduction for leaving the target area, we summed the leaving time of every robot and
divided it by the number of robots in the experiment.

Additionally, we performed tests with the target area with constant radius (as in Table 1) in Section 4.2.1
and varying small values in Section 4.2.2.

4.2.1 Comparison for constant target size

Comparison of the reaching time and throughput Figures 17 and 18 show the comparison for a varying
number of robots of the target area throughput and the reaching time, respectively. For both types of robots,
throughput and time increase with the number of robots. Additionally, observe in the comparisons that higher
throughput reflects a lower arrival time.

Moreover, we notice in the throughput graph that, for holonomic robots from 240 robots, the SQF algorithm
is significantly better than all other algorithms and, from 100 robots, for non-holonomic ones. In the reaching
time graph, this only occurs from 280 for holonomic and 120 for non-holonomic ones with statistical significance
by t-test. However, below these values, EE is still better by throughput. Excluding the EE algorithm, the
TRVF algorithm is better than all the remaining algorithms from 40 to 120 individuals for holonomic robots
but, for non-holonomic robots, it is only better than SQF and PCC algorithms just for 40 and 60 robots.

Furthermore, unpaired t-tests with ρ = 0.01 returned that the reaching time intervals of SQF and EE
algorithms for 240 and 260 holonomic robots – Figure 18 (a)) – have the same mean. These tests showed that
the reaching time intervals for 100 non-holonomic robots of SQF and EE algorithms – Figure 20 (b) – also have
the same mean.

Comparing only TRVF and SQF by the target reaching time, the former is better than the latter until
120 individuals for holonomic robots and up to 40 for the non-holonomic case with statistical significance.
Unpaired t-tests returned that SQF and TRVF reaching time mean intervals have different means except for
140 holonomic and 60 non-holonomic robots. As the SQF algorithm organises a queue above the target region,
the robots must initially follow the way until reaching that queue. After that, the robots flow through it. On
the other hand, in the TRVF, the robots go directly to the target region. However, as the number of robots
increases, more congestions happen near this region because of the repulsive forces caused by the robots doing
the curve.

Observe as well that, although SQF has higher throughput than TRVF from some number of robots, the
comparison of their corresponding inspiration strategies, hexagonal packing and touch and run, had a different
result with respect to the asymptotic throughput presented in (Passos et al., 2022). For calculating asymptotic
throughput, we considered constant the maximum linear speed and the minimum distance between robots.
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Figure 11: Throughput of SQF algorithm by the number of robots from 20 to 300 in steps of 20 for the
experiments and the least bound (12) with θ = π/6, using the mean distance between the robots and mean
linear speed from experiments – bars represent the shift of the means by one standard deviation to above and
below.

Using only asymptotic throughput, we can evaluate which one is the best strategy in a scenario with those
fixed quantities. For robots using artificial fields, getting an explicit asymptotic throughput equation is difficult
due to the changeability of the speed and the distance between the robots, but this does not prevent using
experimental throughput for comparisons. Accordingly, we notice that this changeability and the effect of the
other robots in the trajectory yield the SQF being better than TRVF, although the touch and run is better
than hexagonal packing. Even so, the analytically calculated throughputs are still upper bounds on the ones
obtained from simulations, as observed in Figures 11 and 16.

Comparison of the average leaving time Figure 19 displays the comparison for the number of robots
versus the average leaving time. In Figure 19 (a), the TRVF algorithm is significantly better than all the others
until 240 individuals for holonomic robots and 140 for non-holonomic ones. For holonomic robots, from 280
individuals, PCC-EE has less average leaving time than the other, while for non-holonomic robots, SQF is better
from 180 individuals with statistical significance.

As the number of robots increases, the TRVF algorithm has higher average leaving time because more
robots gather next to the target area, trying to go away. For non-holonomic robots, this number is lower as
they demand more time to avoid other robots when moving under non-holonomic constraints.

For holonomic robots, robots using the SQF algorithm take more time to leave the target due to the curved
path that they must follow caused by the rotational force field to leave the target area. By contrast, the robots
with PCC-EE follow almost a straight line from the target to leave that area, as it frees regions for leaving (as
seen in Figure 22 (b)). However, in the non-holonomic case, the robots need to make more turns or reduce
linear speed to avoid others next to the target until they reach one of those regions where they can move in
straight lines. With SQF, the rotational speed variation for leaving is low, and the robots can maintain linear
speed most of the time, as few robots are moving in the opposite direction.

Comparison of the total simulation time Figure 20 shows the comparison for the total simulation time.
Also, note that the average time to leave the target is less than the time to reach it – less than 15% – justifying
the low difference in the shape of the graphs for the total simulation time and the reaching time. Apart from
the shifting in the values on these graphs, SQF is better, regarding the simulation time, only starting from 280
holonomic robots (the same for the reaching time). Unpaired t-tests with ρ = 0.01 returned that the simulation
time intervals of SQF and EE algorithms for 240 and 260 holonomic robots – Figure 20 (a) – have the same
mean. For non-holonomic robots, the total time of SQF is less than the obtained from EE for 120 robots, as
occurred for the reaching time. Likewise, unpaired t-tests showed that the simulation time intervals for 100
non-holonomic robots of SQF and EE algorithms – Figure 20 (b) – have the same mean (as happened for
reaching time).
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(a) 0s: Initial positions. (b) After 89.5 s.

(c) After 179 s. (d) After 268.5 s.

Figure 12: Screenshots of the TRVF algorithm, for 100 non-holonomic robots, four lanes and default parameters.
The colour of the robots are the same for their states shown in Section 3, that is, red, light blue, blue, magenta,
yellow and orange for going to target, going to entrance straight path, on entrance straight path, on entrance -
curved path, on exit curved path and on exit straight path states, respectively. Black robots are going to their
next target. This continues in Figure 13. Available on https://youtu.be/MRzXS_9I2Ls.

4.2.2 Comparison for varying target sizes

We now analyse the throughput and total simulation time of a varying target size using 100 robots to show
that the SQF algorithm outperforms the other algorithms as the target size gets smaller. Only total simulation
time is shown here because the leaving time is small compared to the reaching time, as we showed before. In
this experiment, we did not use the TRVF algorithm because the restriction in the lower and upper values of
K (Passos et al., 2022) forbids the usage of the small values of target area radius for the influence radius used
here.

First, we show that current algorithms fail to complete executions for small target sizes. For a given target
area radius s, we respectively used s + 0.7 m and s + 2.2 m for the radius of free and danger regions to PCC,
EE and PCC-EE algorithms Marcolino et al. (2017). Figure 21 shows the percentage of failed simulations
for different target sizes. For experiments with non-holonomic robots, PCC fails for all target sizes. EE and
PCC-EE failed to terminate every run for a target size below 0.6 m, but the number of unfinished experiments
decreases until the radius is less than 0.9 m. The SQF can complete all executions for the displayed target
sizes. For the holonomic robots experiments, from s = 0.9 m all algorithms complete the execution within the
time limit and the decrease in the number of failed executions per radius size is greater than the non-holonomic
robots experiments.

When the radius of the target area is small, more robots tend to concentrate around it. The attractive force

19

https://youtu.be/MRzXS_9I2Ls


(e) After 358 s. (f) 447.5 s: ending of the simulation.

Figure 13: Continuation of Figure 12.
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Figure 14: Throughput of TRVF algorithm by the number of robots from 20 to 300 in steps of 20 for different
values of the number of lanes (K).

towards the target centre is not enough to counteract the repulsive forces from the nearby robots. This does
not create a zero force vector but reduces the attraction to the target centre notably, and the robots slowly and
erratically circle around the target. Figure 22 shows examples of this situation.

Figures 23 and 24 display the throughput and time to complete by the radius of the target area. The
missing points are caused by failed executions, as shown above. The confidence intervals are calculated taking
in account only the successful runs. As shown in Figure 21 (b), PCC failed for all radius values when we used
non-holonomic robots, so it is not presented in Figures 23 (b) and 24 (b). SQF significantly outperforms all
other algorithms for any target size in both non-holonomic and holonomic cases.

5 Conclusion

The throughput of the common target area is a measure of the effectiveness of algorithms to minimise congestion
in a swarm of robots trying to reach the same goal. In a concurrent work (Passos et al., 2022), we analysed two
strategies to maximise it in a common circular target region, assuming the robots running at constant maximum
linear speed and having a fixed minimum distance between each other. One strategy uses a corridor with robots
to enter that region. On the other, the robots follow curved trajectories to touch the region boundary. We used
those strategies as inspiration to propose two new algorithms for real-world scenarios: SQF and TRVF.

We demonstrated by simulations in the Stage platform that SQF outperforms TRVF and the state-of-art
algorithms PCC, PCC-EE and EE by time for reaching the target for a large number of robots, from 280 and
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(a) K = 3 and after 202.8 s. Available on https://youtu.be/

0U6ajiBtYw8.
(b) K = 4 and after 155.5 s. Available on https://youtu.be/

D-_2VK5JRYg.

(c) K = 5 and after 156.1 s. Available on https://youtu.be/

z92SNJ8ugHs.
(d) K = 6 and after 177.3 s. Available on https://youtu.be/

BYd8VncXnCQ.

Figure 15: Screenshots of the TRVF algorithm, for 100 holonomic robots, default parameters and different
numbers of lanes (K) at the middle of the execution.

120 individuals for holonomic and non-holonomic robots, respectively. From these same numbers of robots,
swarms running the SQF algorithm also use less time for total simulation time (i.e., reaching plus leaving the
target) than the other algorithms. SQF also outperforms these algorithms concerning the average target leaving
time from 180 non-holonomic robots. However, for holonomic robots, TRVF is better up to 240 individuals and
PCC-EE from 280 robots. Additionally, we showed that those others might completely fail for circular target
regions with an area fitting less than five times the area of a robot, and they are outperformed in throughput
by SQF when they succeed.

Even though SQF has more throughput than TRVF for a number of robots greater than 140 for holonomic
robots and 60 for non-holonomic ones, the comparison of their corresponding inspiration strategies (hexagonal
packing and touch and run, respectively) had reversed outcomes with respect to asymptotic throughput. When
we assumed constant maximum linear speed and fixed minimum distance between robots, we could provide
analytical calculations of the throughput for a given time and the asymptotic throughput for the different
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Figure 16: Throughput of TRVF algorithm by the number of robots from 20 to 300 in steps of 20 for the
experiments, and asymptotic throughput using K = 5, the mean distance between the robots and mean linear
speed from experiments – bars represent the shift of the means by one standard deviation to above and below.
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Figure 17: Throughput comparison of the algorithms for a number of robots from 20 to 300 in steps of 20.

theoretical strategies. Based solely on these calculations, we could compare which strategy is better. However,
for robots using artificial potential fields, it is not straightforward to get explicit throughput equations due to the
changeability of those quantities previously assumed constant. Then, in the lack of closed asymptotic equations,
we performed simulations to get experimental throughput and compare algorithms for varying linear speed and
inter-robot distance. As shown by the experimental data, their variation and the effect of the other robots in
the trajectory affect the throughput, but the analytically calculated throughputs are still upper bounds on the
ones obtained from simulation.
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Figure 24: Simulation time comparison of the algorithms for a varying circular target area radius.
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