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for Prototype-Based Fuzzy Classifiers
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Abstract—Evolving intelligent systems (EISs), particularly, the
zero-order ones have demonstrated strong performance on many
real-world problems concerning data stream classification, while
offering high model transparency and interpretability thanks to
their prototype-based nature. Zero-order EISs typically learn
prototypes by clustering streaming data online in a “one pass”
manner for greater computation efficiency. However, such iden-
tified prototypes often lack optimality, resulting in less precise
classification boundaries, thereby hindering the potential clas-
sification performance of the systems. To address this issue, a
commonly adopted strategy is to minimise the training error
of the models on historical training data or alternatively, to
iteratively minimise the intra-cluster variance of the clusters
obtained via online data partitioning. This recognises the fact
that the ultimate classification performance of zero-order EISs
is driven by the positions of prototypes in the data space. Yet,
simply minimising the training error may potentially lead to
overfitting, whilst minimising the intra-cluster variance does not
necessarily ensure the optimised prototype-based models to attain
improved classification outcomes. To achieve better classification
performance whilst avoiding overfitting for zero-order EISs, this
paper presents a novel multi-objective optimisation approach,
enabling EISs to obtain optimal prototypes via involving these
two disparate but complementary strategies simultaneously. Five
decision-making schemes are introduced for selecting a suitable
solution to deploy from the final non-dominated set of the
resulting optimised models. Systematic experimental studies are
carried out to demonstrate the effectiveness of the proposed op-
timisation approach in improving the classification performance
of zero-order EISs.

Index Terms—classification, evolving intelligent system, fuzzy
classifier, multi-objective optimisation, prototype.
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LASSIFICATION is a task aiming to categorise input

samples into different classes. As a practically important
topic, a wide variety of successful classification algorithms
have been developed for real-world applications, addressing
challenging problems [1]-[3].

Classification algorithms typically learn from labelled train-
ing data to derive a classification model for predicting the
class labels of unlabelled new observations. Mainstream clas-
sification approaches include, but are not limited to, deep
neural networks (DNNs, or artificial neural networks, ANNSs)
[1], support vector machines (SVMs) [4], k-nearest neighbour
(KNN) [5], decision trees (DTs) [6], random forests (RFs)
[7], learning vector quantization (LVQ) [8], and evolving
intelligent systems (EISs) [9]. Among these, DNNs are ar-
guably the most successful, thanks to the learning abilities
inherent in their multi-layered representation, especially for
the extensively reported eye-catching performances on visual
and speech information processing and recognition [10]. Nev-
ertheless, DNNs are often criticised as being “black box”
models, usually containing huge numbers (multi-million or
more) of hyper-parameters with no semantically meaningful
link to the underlying domain problems. This has greatly
restricted the applicability of DNNs for problems that require
the classification models to possess a clear transparency and
explainability on their reasoning, despite that significant efforts
have been made in an attempt to describe their decisions via
post-hoc methods [11].

Compared with DNNSs, prototype-based approaches, e.g.,
SVMs, KNN, LVQ and EISs, are preferred in applications
where the transparency and explainability of the classification
models are critical. They work based on the exploitation of
the concept of prototypes, which are representative samples
identified from training data [12]. Different prototype-based
approaches identify prototypes from data following differ-
ent algorithmic procedures, thereby resulting in differences
in classification performance and model interpretability. In
particular, because of the sophisticated, iterative system iden-
tification processes underpinning SVMs and LVQ, which are
hardly human-comprehensible, these two types of classifier are
still regarded as “black box” models. KNN treats all labelled
training samples as prototypes, and determines the class label
of an unlabelled sample by comparing it with a predefined
number of nearest neighbours in the data space. As such,
KNN requires no training practically, and its decision-making
scheme is simple and easy-to-understand, but the transparency
of its inference is limited, especially when the problem size
is large.

EISs form another group of prototype-based methods widely
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employed for regression and classification problems concern-
ing data streams [9], [13]-[15]. They are normally designed to
self-develop and self-evolve from data streams to dynamically
model nonstationary problems in real time. Owing to the
interpretability of the resultant models EISs have become
increasingly popular over the past two decades, with many suc-
cessful EISs introduced, including but not limited to: dynamic
evolving neural-fuzzy inference system [16], evolving Takagi-
Sugeno fuzzy model [17], evolving fuzzy rule-based classifier
[9], [18], flexible fuzzy inference system [9], [19], sequential
adaptive fuzzy inference system [13], parsimonious network
based on fuzzy inference system [20], evolving typicality
and eccentricity based data analytics classifier [21], evolving
possibilistic fuzzy model [22], self-organising fuzzy inference
system (SOFIS) [23], recursive maximum correntropy-based
evolving fuzzy system [24], and jointly evolving and com-
pressing fuzzy system [14]. To date, EISs have been suc-
cessfully applied to address various real-world problems, e.g.,
fault detection in industrial systems [25], online inspection of
microfluidic chips for DNA sequencing [26], real-time driver
modelling and manoeuvre recognition [27], etc. More details
about the latest progress of EISs and their applications can be
found in the recently published review papers [2], [3].

EISs, especially, those zero-order ones, identify prototypes
from streaming data samples through a non-iterative, “single-
pass” process based on their ensemble properties and mutual
distances. These prototypes capture and preserve the local data
structure and underlying patterns. They build the knowledge
bases of the resulting reasoning systems, determining the
classification performances of such systems. However, it is
often observed that prototypes learned by EISs lack optimality
[28], which may greatly reduce the performance of the learned
classifiers. The main reason for this is that EISs intend to avoid
iterative optimisation in an effort to gain greater computation
efficiency.

A commonly followed approach to improve the performance
of individual EISs is to construct ensemble fuzzy systems.
The concept of ensemble learning is to create a stronger
classifier by combining multiple weak classifiers. For instance,
an evolving ensemble fuzzy classifier, named parsimonious
ensemble (pENsemble), is proposed in [29]. It consists of
a dynamic ensemble structure where the base classifiers are
weighted according to their classification accuracy. An en-
semble pruning scheme is also introduced to pENsemble to
remove base classifiers of a lower accuracy. A fuzzily weighted
adaptive boosting scheme designed specifically for zero-order
EISs to construct stronger ensemble classifiers is introduced
in [30]. This novel boosting utilises the confidence scores
produced by EISs in both weight updating and ensemble
output generation to create more precise classification bound-
aries. In [31], an online variant of bagging is proposed for
constructing ensemble fuzzy classifiers with an autonomous
pruning strategy that discards base classifiers with higher
errors.

Considering that the prototypes learned by zero-order EISs
often lack optimality, an alternative approach to enhance the
classification performance of EISs is to employ evolutionary
algorithms (EAs) for prototype optimisation [32]. This is

similar to evolutionary fuzzy systems [33], which use EAs
in the fuzzy rule base design, but differs in the sense that
EAs are only involved for optimisation after the prototype
identification process is finished. Classification error is the
standard performance measure for classification algorithms;
a well-trained classification model is expected to predict the
class labels of training samples correctly. However, using
training error (i.e., classification error on training data) as the
sole objective for optimisation may be insufficient because it
can cause the classifier to be overfitted, resulting in poorer
performance on unseen data samples with unfamiliar patterns.

As EISs learn prototypes from data streams typically by
online clustering [2], the optimality of prototypes can be
viewed as the optimality of the clusters. Minimising the intra-
cluster variance of the clusters obtained during the online
learning, by modifying them with historical data, can help
zero-order EISs to achieve (locally) optimal partitioning of the
underlying data space and attain local optimality [28]. Also,
such optimised models are less likely to be overfitting be-
cause no label information is involved during the optimisation
process. However, the intra-cluster variance is an objective
measuring the clustering quality, the locally optimal prototypes
obtained by minimising this objective does not necessarily
improve the classification precision of the learned models
globally.

Based on the above observations, it would be interesting to
combine both measures (accuracy and intra-cluster variance)
in zero-order EISs, in order to maximise their strengths and
minimise their individual weaknesses. With this motivation,
this paper introduces a novel approach that exploits training
error and intra-cluster variance simultaneously to develop
zero-order EISs capable of attaining optimal prototypes with
strengthened classification performance. In so doing, the issue
of incomparability of solutions (or non-dominated solutions)
[34] in multi-objective optimisation may arise. To deal with
this problem, five decision-making schemes are considered to
determine a suitable solution.

Overall, major contributions of this paper are:

1) A theoretical analysis on the optimality of zero-order
EISs is conducted from both classification and data
partitioning perspectives to identify the weaknesses of
commonly adopted optimisation strategies for EISs;

2) A novel evolutionary optimisation approach considering
two disparate but complementary performance measures,
namely, training error and intra-variance is proposed to
help EISs attain optimality whilst avoiding overfitting,
supported with a computational complexity analysis;

3) Five multi-objective decision-making schemes are
adopted to identify a suitable solution from a nondomi-
nated set in relation to a prescribed application problem,
and a recommended scheme is given on the basis of
empirical observations from experimental studies.

The remainder of this paper is organised as follows. Section
II provides technical background. The proposed optimisation
approach is detailed in Section III. An analysis on the com-
putational complexity of the proposed approach is given in
Section IV. Experimental studies are presented and results are
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TABLE I
LIST OF KEY NOTATIONS AND DEFINITIONS

Decision-

I Data Processor 1 I Massively Parallel IF-THEN Rule 1 I
D 2 Massively Parallel IF-THEN Rule2

Notation Definition | Data |~
x Data sample
y Class label of =
g Predicted class label of @
M Dimensionality of x
C Number of classes
G Level of granularity
R The ct? IF-THEN fuzzy rule
P. Collection of prototypes associated with R,
P, Vectorised P,
De,i The 3" prototype of R,
C.; Cluster formed around p. ;
P, Cardinality of P,
X Dataset
K Cardinality of X
xy, The k*? sample of X
Yk Class label of @y
X Set of data samples of the ct” class
K. Cardinality of X,
Tk The k*" sample of X
U, Set of unique samples of the ¢t/ class
U, Cardinality of U,
Ue The k" sample of Ul
fek Occurrence frequency of w. i
Ye,G Threshold derived from X, at the G** granularity level
DMM ) Multimodal density
Ac(t) Score of confidence produced by R,
P Collection of prototypes
P Vectorised P
1) The ;" objective function
e The k" solution
Fy, The k" Pareto front

discussed in Section V. This paper is concluded by Section
VL

II. PRELIMINARIES

Before presenting the proposed approach, this section pro-
vides an overview of the directly relevant background material
for academic completeness, including an outline of SOFIS [23]
and a brief review of evolutionary multi-objective optimisa-
tion. Note that SOFIS is used as the underlying platform to
implement the proposed approach due to its popularity, but
other zero-order EFSs with a similar operating mechanisms
may be employed as an alternative if preferred. A list of the
key notations and definitions is summarised in Table I.

A. SOFIS

1) Architecture and Decision-Making Policy: SOFIS is a
zero-order prototype-based EIS for classification, with an
architecture as depicted in Fig. 1. It is composed of i) C
data processors (one processor per class); ii) a fuzzy rule base
consisting of C' massively parallel IF-THEN rules (one rule
per class), and iii) a decision-maker to determine the class
labels of testing data.

During the learning stage, each data processor identifies
prototypes from data samples of the corresponding class based
on their ensemble properties and mutual distances. These pro-
totypes are a selected group of highly representative samples,
representing the local patterns of data. They play a key role

Maker

I ata Processor I I
Massively Parallel IF-THEN Rule C

Data Processor C

Fig. 1: General architecture of SOFIS [23].

in the system by constructing the massively parallel IF-THEN
rules defined in the following form (¢ = 1,2,...,C) [23]:
R.: IF (x ~pc1) OR (x ~p.2) OR ... OR (x ~ p..p,)
THEN (y = ¢)

ey
.,xp]T. Since the prototypes are con-
nected by the logical “OR” connectives, R, can be viewed as
a parallel ensemble of simpler fuzzy rules sharing the same
consequent part as Eq. (2):

Re;: IF (x ~p.;) THEN (y =c) )

where © = [z1, 22, ..

During decision-making, given a particular data sample x,
the activation of R, (¢ = 1,2, ..., C) is produced on the basis
of the squared Euclidean distance between « and the nearest
prototype of the ¢! class [23], such that

Ae(@) = e le=pes s it = argmin (||@ — peal?) ()

i=1,2,..,P,
The class label of x is determined by the IF-THEN rule that
produces the highest activation:
g =c"; ¢ = argmin(\.(x)) 4)
i=1,2,..,C

The use of such a data-driven threshold guarantees that the
learning outcomes of SOFIS is always valid and meaningful.
The learning strategy followed by SOFIS is given below
(adapted from [23]). By default, the externally controlled level
of granularity is set as G, taking a value in terms of a positive

integer.

2) Learning Policy: Given a particular dataset,
X = {x1,x2,...,xx}, SOFIS splits it into
C  different non-overlapping subsets, denoted by
X: = {zc1,xe2, ..., e i e = 1,2,...,C) according

to the corresponding class labels, such that X, contains
only data samples of the c*" class. Then, the C subsets are
passed on to the corresponding data processors for prototype
identification and IF-THEN rule construction.

After the c¢'" data processor has received X. (¢ =
1,2,...,0), it firstly calculates the multimodal density value
at each unique data sample of the ¢ class, denoted as
U,k € Uc (Uc c Xc) uSing Eq (5) [50]

fc,k

_ 2
o e —pacl]
T X Tl

DMM (1) = (5)
where k = 1,2,...,Us; for > 15 pe = %Zfﬂ x.,; and

_ 1 K. 2
X = K. Zj:l [E2%7 ]
Next, the c'* data processor arranges the unique data
samples U, into a sorted set, denoted as R, =
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{rec1,7¢2,---,7cu,}, based on their multimodal density val-
ues and mutual distances using Eq. (6) (c=1,2,...,C) [23]:

arg max(DMM(u)), ji=1
ueU,

Tei =\ argmin (lu-re;al?), j>1 ©
ueU,.;

Data samples of the ¢! class with local maximum multi-
modal density values are identified as raw prototypes following
Condition 1 (j =1,2,...,Us;; c=1,2,...,C) [23]:

Cond.1: if (DMM(rw») > DMM(TCJH))
and (DMY (7 ;) > DMM(r. ;1)) (D)
then (R, < R, U{r.;})

where Ry, = {r},,r5,,...
maxima, with R} C R..
Micro-clusters are then formed around the identified local
maxima by attracting data samples of the same class within
its neighbourhood, resembling Voronoi tessellations as Eq. (8)
k=12,....K;;c=1,2,...,C) [35]

;T4 ) is the collection of local

(e —r2ill?) (®)

*
..... o

Ce; + C.; U{x.;}; j = argmin
1=1,2

where C.; is the micro-cluster formed around r;:j, with
the centre (arithmetic mean) of C.; denoted as 7 ;. The
collgciion of centres of the formed micro-clusters is denoted
by R.. The multimodal density at the micro-cluster centres
are calculated by Eq. (9):

, C..s
DMJV[(,,;* ) _ | A*CJ' - (9)
ed) = Tl
Xe—|lpcll?

From this, the data-driven distance threshold . ¢ is derived
using Eq. (10) based on the mutual distances between data
samples of the ¢! class, X. and the level of granularity
controlled by the user [23], such that

1 K.—1 K,
2
Yey = SR TEK. DD weigllei—ae,ll
i Zj:ci+1wg7i7j i=1 j=it+1

(10)
where ¢ = 1,2,...,G; ¢ = 1,2,...,C; wy,;; and 7. are
defined as follows:

1, if ‘|x<:i_m0j||2§70g—1
Wyi.i = ’ ’ ’ 11
9 {O, else 1D
1 K.—1 K.
Ye,0 = m Z Z |ei — wc,j||2 (12)
c\re i=1 j=i+1

Condition 2 is then used for identifying those more rep-
resentative micro-clusters that represent the local peaks of
multimodal distribution of data:

Cond.2: if (DMM(p:)) = max (DMM (7))
172 ;=711 <7e.c3
reR,

then (P; < PLU{7;;})
(13)

where j = 1,2,...,U% ¢ = 1,2,...,C; P, =
{P:1,P o, D} p.} is the collection of the centres of those
more representative micro-clusters and P, = P

Finally, P} is utilised to form Voronoi tessellations in the
data space via Eq. (14) (c=1,2,...,C):

Cey = Coy Ulmen J = argmin (e — pLalf?) (14)
where C ; is the shape-free cluster formed around py ;. The
arithmetic means of the formed clusters are subsequently ex-
tracted as the prototypes, denoted as P. (c =1,2,...,(), and
the system identification process is completed after building
the IF-THEN rules in the form of Eq. (1), using the resulting
identified prototypes.

The system identification process of SOFIS is summarised
in Algorithm 1, expressed in pseudo code. Note that the
learning policy presented in this section is for static data.
Interested reader is referred to [23] for more details about
the online learning policy of SOFIS.

Algorithm 1 Learning policy of SOFIS [23].
1: for c=1to C do

2:  obtain U, from X_;

3. calculate DMM at U, using (5);

4:  obtain R, by re-ordering U, using (6);

5. identify R}, from R, using Condition 1;

6: form Voronoi tessellations around R, using (8) and
obtain RC;

7. calculate DMM at R, using (9);

8:  derive 7. g from X, using (10);

9:  identify P} from R, using Condition 2;

10:  form clusters around P’ using (14) and obtain P;
11:  construct R, from P;

12: end for

B. Evolutionary Multi-objective Optimisation (EMO)

In multi-objective optimisation, there are more than one
objective that are required to be optimised. Without loss of
generality, it can be expressed as:

Hllnf(s) = (f1(8)7f2(8)7' e afm(s))

where m denotes the number of objectives, and s denotes a
solution in the search space S of possible solutions.

In multi-objective optimisation, a solution s; is said to
be better than s5, or commonly referred to as s; (Pareto)
dominates ss, if and only if s; is not worse than s on all the
objectives and better on at least one objective. A solution s is
called Pareto optimal if there is no solution in S that dominates
s. A prominent feature in multi-objective optimisation in
contrast to single-objective optimisation is that there is no
single optimal solution but rather a set of Pareto optimal
solutions (called the Pareto front in the objective space), whose
size can be prohibitively large or even infinite [37].

A straightforward way to tackle a multi-objective optimi-
sation problem is to convert it into a single-objective opti-
misation problem by a number of weights, and then solve

15)
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it by a global optimisation solver. However, the decision
maker (DM) may struggle to specify a number of weights
which can confidently reflect their preferences, particularly
when more than two objectives are involved. Very recently,
it has been reported that even if the DM can confidently
specify their weights, the multi-objective solver may find better
quality solutions since it can implicitly help the search jump
out of the local optima and is much less sensitive to the
incommensurability between objectives [38].

As such, a frequently-used approach for multi-objective op-
timisation is to search for a good approximation of the whole
Pareto front, from which the DM can choose their preferred
solution to deploy. In particular, evolutionary computation has
gained its popularity in solving multi-objective optimisation
problems [39], an approach collectively called evolutionary
multi-objective optimisation or EMO. This is because the
population-based nature of EMO can generate an approximate
set of the Pareto front within one execution, with each solution
representing a unique trade-off between different objectives.

EMO algorithms can be loosely categorised into three
classes on the basis of their fitness assignment objectives/rules,
namely: Pareto-based, indicator-based and decomposition-
based [39]. Pareto-based algorithms, exemplified by NSGA-
II [36] and SPEA2 [40], utilise the Pareto dominance relation
and a density estimator to distinguish between solutions.
Indicator-based algorithms, exemplified by IBEA [41] and
SMS-EMOA [42], use an indicator to measure the quality of
the entire search population. Decomposition-based algorithms,
exemplified by MOEA/D [43] and NSGA-III [44], decompose
a multi-objective problem into a number of scalar optimisation
problems, with each problem being optimised by a weight
vector.

These three classes of EMO algorithms have their own
advantages and disadvantages. Pareto-based algorithms work
well on problems with two or three objectives but typically fail
to scale up to high-dimensional problems [45], [46]. Indicator-
based algorithms perform well in terms of convergence, but
their performance is dependent on the indicator used and they
may struggle to maintain diversity in the potential solutions
on certain problems [47]. Decomposition-based algorithms can
archive an excellent balance between convergence and diver-
sity on problems with simplex-like Pareto front shapes but may
fail on problems with other shapes [43], [44]. Consequently,
there is a tendency to explicitly consider multiple objectives
in the area, for example using two populations/archives to
conduct co-evolution, each being associated with one specific
objective [48].

III. MULTI-OBJECTIVE OPTIMISATION AND DECISION
MAKING FOR PROTOTYPE-BASED CLASSIFIERS

As aforementioned, a feasible approach to help prototype-
based EISs to attain optimality whilst avoiding overfitting is
to jointly consider both the training error and the intra-cluster
variance in optimisation.

Figure 2 presents an illustrative example, where there exist
a number of data samples exclusively belonging to two classes
in the data space, respectively represented by dots of two

(b) Classification boundaries
constructed by Strategy 1

@ 0%
09 0®
@0 OO
1 O O O
OO
*7 @0
(d) Classification boundaries
constructed by Strategy 3

(a) Data samples
1

..EOOQ
0@ O®
@0 OO

‘OOO
000
©& 00

@ “'Q

(c) Classification boundaries
constructed by Strategy 2

Fig. 2: Illustrative example of classification boundaries
formed by prototypes selected with respect to different
objectives.

different colours: blue dots for samples of class 1 and yellow
for class 2. There is also a grey dot representing a data sample
of unknown class, but according to the distribution of coloured
samples it can be assumed that this unlabelled sample is very
likely belonging to class 2. To create a classification model
consisting of four prototypes (two per class; represented by
stars in the figure), there are three different strategies that can
be considered. Strategy 1 (Fig. 2b) is to address training errors
as the main criterion such that the classification boundaries
(black dash lines) built by the four prototypes can correctly
classify all the training samples. Strategy 2 (Fig. 2c) is to
handle intra-cluster variance as the main criterion, where the
data space is partitioned by clusters formed around these
prototypes in a (locally) optimal manner. Strategy 3 (Fig. 2d)
is to consider both criteria together in prototype selection,
owing to the recognition from examining Figs. 2b and 2c
that the first two strategies are not ideal. This is because
the classification boundaries built by Strategy 1 appear to
be altered by the “outlier” of class 1 and are less likely to
predict the class label of this unlabelled sample correctly, and
that the classification boundaries constructed by Strategy 2 are
more likely to produce the correct prediction on the unlabelled
sample, but would fail to classify the “outlier” to the correct
class. In contrast, by considering both objectives together,
the classification boundaries constructed by Strategy 3 are
able to achieve zero training error, providing more reasonable
prediction on the unlabelled sample.

Driven by the above observation, in this section, the two
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individual performance measures are utilised together to for-
mulate a bi-objective optimisation problem, for which an
effective method for seeking an optimal solution is developed.

A. Optimisation Problem

As shown by Fig. 1, the core of SOFIS is a set of massively
parallel IF-THEN rules induced from highly representative
prototypes. These prototypes are obtained by creating Voronoi
tessellations in the data space, and they play a key role in the
internal reasoning and decision-making of SOFIS. Thanks to
the nonparametric, prototype-based nature, the optimality of
SOFIS is solely dependent upon the positions of such proto-
types. Hence, the optimality problem of SOFIS is equivalent
to finding the optimal positions for the prototypes within the
data space [28].

From the classification perspective, the optimality of SOFIS
can be reached by minimising the following objective function

[49]:
Ziil H(Z)k
K

where f1(P) is an objective widely employed by evolutionary
fuzzy systems for optimisation [49]. It directly measures the
classification performance of the emerging learned model in
terms of how well it fits the training samples. By minimising
f1(P), a set of optimal prototypes that maximise the classifi-
cation accuracy of SOFIS can be obtained. Note that although
a strong classifier is expected to be able to correctly classify
all the trainings samples, an optimal solution of f;(P) may
lack the required generalisation ability and perform poorly on
unseen samples.

From the data partitioning perspective, however, the opti-
mality of SOFIS can be attained by minimising the following
objective function [28]:

=)

Obj. 1: fi(P)=1-— (16)

P

Obj. 2: fo(P) = Z

c=1j=1k=1

where P = {P,Ps,...,Pc} is the set of prototypes; and
there is (c=1,2,...,C):

K.
We j kl[Pej — Terl]?

)

a7)

L, if pe; = argmin(||p — wc,k||2)
w = peP.
0, else

(18)

with f2(P) measuring the intra-cluster variance in the results
of data partitioning. It indicates how well data samples of
similar characteristics have been grouped together while data
samples of different characteristics have been separated. Thus,
a set of optimal prototypes that provide the best depiction of
the underlying local patterns and multimodal structure of the
training data can be obtained via minimising fo(P). Never-
theless, f2(P) is not a direct indicator of the classification
performance of the learned model. In other words, achieving
an optimal solution of Obj. 2 does not necessarily mean that
the classifier will produce the most accurate classification
outcomes.

The problem is therefore, to develop an evolutionary optimi-
sation method that jointly maximise the accuracy and minimise

the intra-cluster variance of an emerging learned model. The
main reason for this study to only consider the optimality
of the premise parts (namely, prototypes) of the IF-THEN
rules is because the vast majority of zero-order EISs [9],
[23], [50] identify prototypes from data samples of different
classes separately to tackle the potential class overlap and class
imbalance. As a result, each prototype can only belong to one
particular class. During the optimisation process, the positions
of such prototypes in the data space are updated, leading to
the changes of classes they belong to potentially. Although the
consequent parts, namely, the class labels of these prototypes
are fixed during optimisation, EMO consistently evaluates the
impacts of such changes on the classification performance of
the system and only selects those solutions with a greater
fitness to generate the new population at each iteration, thereby
creating better solutions after iteration. Whilst it is possible to
optimise the consequent and premise parts of [F-THEN rules
together, the performance improvement would be trivial and
yet, the computational overheads will be greater. In addition,
without imposing any constraints in advance, EMO may also
change the class labels of the prototypes identified from minor
classes to the major class, bringing extra bias to the model.
Therefore, only the prototypes are optimised in this study.
However, for zero-order EISs whose prototypes can belong
to multiple classes at the same time (e.g., [51]), optimising
both the prototypes (premise parameters) and their class la-
bels (consequent parameters) together is needed in order to
maximise the performance improvement after optimisation.

B. Optimisation Method

In general, there are four components needed to consider
when applying an evolutionary multi-objective optimisation
(EMO) algorithm to an application problem: 1) problem
representation, i.e., how to represent the problem in a way
that the evolutionary algorithm can understand and operate on;
2) initialisation, i.e., how to generate the initial evolutionary
population; 3) solution generation, i.e., how to create new
solutions; and 4) population maintenance (aka. environmental
selection or archiving), i.e., how to select solutions to form
the next-generation population. Most EMO algorithms (includ-
ing those mentioned in Section II-B) are different only on
the fourth component [52]; the rest three are flexible from
modelling viewpoint, they are up to the user to devise or
choose from certain standard procedures. These components
are described below, by following the common practices in
EMO except for the initialisation where domain heuristic is
introduced to help accelerate the search.

1) Problem Representation: SOFIS identifies a set of pro-
totypes from training data during the learning process. A
complete set of prototypes represents a full solution to the
given classification problem albeit it may not be optimal. That
is, a solution consists of all prototypes being concatenated

together that jointly form an L x 1 dimensional vector:
P=[Pl, P, . P." (19)

where PI' = [p? |, pl,, ...pIp], c=1,2,..,C, and L =
C ? ’ 9 c
MY ., P.
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2) Initialisation: Usually in EMO, without any prior
knowledge of the problem domain, an initial population can
be generated randomly. However, any intermediate solution
learned by SOFIS can be used as a heuristic to form the initial
population. For convenience, the first learned solution is taken
as the first solution of the initial population, namely, s; + P.
Then, the remaining /N — 1 solutions are created from s; using
Eq. 20) (k=2,3,...,N):

Sy Pe
—_—— T
sp=P+e¢o0 {5T,5T,...,5T} (20)
where “o” denotes Hadamard product; § = [(21maz —
xl,min)v (xQ,maz - (EZ,min)a ) (xM,maa: - CEM,min)]T is an

M x 1 dimensional vector, defining a hypercube in the

problem space to confine the randomly generated prototypes;
_ (Tik); Thomin =  min  (x;); and €
1=1,2,....K i=1,2,...,

is an L x 1 dimensional vector whose elements follow the

uniform distribution with a value range of [—1,1].

3) Solution Generation: Considering general problems
cases where real-valued variables are involved, the following
two most widely used variation operators in EMO are herein
used to generate new solutions: simulated binary crossover
(SBX) and polynomial mutation (PM) [53]. SBX is a real-
parameter crossover operator which borrows the idea of the
single-point crossover in binary coding, utilising a distribution
index to control the spread of the offspring. As with SBX, PM
also uses a distribution index parameter to control the spread
of its offspring. Following the practice in the literature [36],
the two distribution indices are set to 20. Also following the
common practice, a crossover probability 1.0 and a mutation
probability 1/L (where L is the number of variables) are
presumed.

4) Population Maintenance: This is one of the most impor-
tant components in EMO and is essentially where most EMO
algorithms differ [52]. When new solutions are generated, it
compares them with the solutions in the old population and
decides on which solutions should be preserved in the new
population according to their fitness. In theory, any popula-
tion maintenance method may be employed. Here, the most
frequently used population maintenance mechanism NSGA-
II [36] is chosen to facilitate multi-objective optimisation. The
key rationale for the choice of this golden oldie (invented two
decades ago) is that if NSGA-II can help improve the clas-
sification performance, then it can be envisaged that modern
EMO algorithms would help even more.

NSGA-II is characterised by two operations, non-dominated
sorting and crowding distance [36]. Non-dominated sorting
divides candidate solutions (i.e., old population and newly-
generated solutions) into a number of layers according to their
Pareto dominance relation. Within each layer, all solutions are
non-dominated by each other. Then, NSGA-II places those
solutions in the superior layers into the new population and
identifies the so-called critical layer whose solutions are more
than the slots remaining in the new population. For solutions
contained within this critical layer, NSGA-II estimates their
density by crowding distance, i.e., the average distance of
a solution to its left and right neighbours regarding each

Tk,maxr —

objective. Finally, NSGA-II selects less crowded solutions in
the layer to fill the remaining slots in the new population.
Note that each new solution can be transformed back to a
set of prototypes for SOFIS to build its fuzzy rule base and
perform classification, through a simple reverse operation. The
algorithmic procedure of NSGA-II is summarised [36] and
given in the Supplementary Material.

It is worth noting that although the optimisation process
implemented by the proposed EMO approach has to be per-
formed offline with static historical data, it does not impair
the online learning capability of zero-order EISs. In fact, the
optimisation process can be triggered at any point of the
online learning process of an EIS. The optimised system by
EMO on historical training data can continue learning from
new observations in a “one pass” manner and self-improve
with newly acquired knowledge as normal. The system can
even be optimised for multiple times during its entire learning
process if sufficient computational resources are provided.
Nevertheless, without loss of generality, EMO is only executed
at the end of the learning process of SOFIS in this study.

C. Multi-Objective Decision Making

At the end of the optimisation process, EMO returns a set of
solutions that are typically non-dominated by each other. An
immediate question is therefore, which solution should be used
for classifying unseen data samples. Unfortunately, there is no
clear answer to this question since both objectives (Egs. (16)
and (17)) measure the fitness of the solutions based on the
training data under the assumption that the unseen testing data
are generated from the same distribution. Yet, this assumption
is not always true in practice, and there is no way to identify
the best solution in the absence of prior knowledge.

To address this problem, five decision-making schemes are
introduced below, each of which may be taken to choose the
solution from the set of solutions returned.

e Scheme 1 is to choose the non-dominated solution with
the lowest training error, namely, the best solution in
terms of Obj. 1.

e Scheme 2 is to choose the non-dominated solution with
the lowest intra-cluster variance, namely, the best solution
in terms of Obj. 2.

e Scheme 3 is to consider all the non-dominated solutions
obtained for joint decision-making. That is, the class label
of a testing sample, x is determined by Eq. (21):

yA _ c*; o — argmax( H )\P,C(CL'))
e=1,2,...C pcy,

2n

where Ap .(x) is the ¢t" score of confidence produced
by SOFIS with the solution P; F; denotes the first Pareto
front.

e Scheme 4 is to use the existing Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [54]
method, which is a well-known technique in multi-
objective decision making to choose the solution.

e Scheme 5 is to use another existing, well-known tech-
nique in multi-objective decision making, termed Analyt-
ical Hierarchy Process (AHP) [55] to choose the solution.
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Note that in multi-objective optimisation, certain decision
makers may prefer the adoption of extreme solutions (i.e.,
solutions with the best values on one specific objective) [56],
[57]. The first two schemes above can be viewed as such
an approach, choosing the best solution on each objective.
This is a commonly used strategy in the literature (e.g., [58],
[59]). Since the output of an EMO algorithm is a set of
non-dominated solutions, information contained within all of
such potential solutions can be exploited following the idea of
ensemble learning, which is what Scheme 3 does. TOPSIS and
AHP are widely used techniques in the field of multi-objective
decision-making. TOPSIS is based on the concept that the
chosen solution is expected to have the shortest geometric
distance from the underlying best solution and the longest
geometric distance from the worst solution [54]. AHP works
by ranking the solutions through pair-wise comparisons in
conjunction with a set of weights which represent the relative
importance of objectives [55]. In this study, both Obj. 1 and
Obj. 2 are equally weighted according to the common practice
under the circumstance where the relative importance of these
objectives cannot be quantified.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of SOFIS and EMO is anal-
ysed in this section.

For SOFIS, the complexity of calculating the multimodal
density values, DMM at the unique data samples of the c!”
class, U, by Eq. (5) is O(MU,), and that of converting
U, to the sorted set R, by Eq. (6) is O(W) The
computational complexity of identifying raw prototypes us-
ing Condition 1 is O(U.), and the complexity of forming
micro-clusters around these raw prototypes by Eq. (8) is
O(MU?K_.). The complexity of estimating the data-driven
threshold, 7., by Eq. (10) is O(M K?), and the complexity
for identifying these more representative micro-clusters by
Condition 2 is O(U}). Finally, the computational complex-
ity of forming Voronoi tessellation by Eq. (14), extracting
prototypes, P. and constructing the IF-THEN rule, R, is
O(MP.K.). Considering that the dataset is composed of data
samples of C different classes, the overall complexity of the
learning process of SOFIS is O(M Zle K?).

For EMO, the computational complexity of population
initialisation by Eq. (20) is O(MNL), where L = chzl P
N denotes the size of the population used in the EMO
algorithm. The complexity of generating new solutions via
SBX and PM at each optimisation iteration is O(MNL) as
well. Given a particular solution, the computational complexity
of measuring its fitness based on Obj. 1 is O(M K L) and that
for Obj. 2 is O(M 25:1 P.K.). The fitness assignment in
NSGA-II (i.e., nondominated sorting and the calculation of
crowding distance) requires O(mN?), where m denotes the
number of objectives and m = 2 in this study. Therefore,
the computational complexity of an iteration in the EMO
algorithm is O(N?) or O(MNKL), whichever is greater.
Therefore, the overall complexity of the optimisation process
implemented by EMO is O(MNKLI) if MKL > N, or
O(N?1I) otherwise, where I is the maximum iteration number.

V. EXPERIMENTAL INVESTIGATION

Systematic experimental studies based on widely used
benchmark datasets are presented in this section to demon-
strate the efficacy of the proposed optimisation approach, with
SOFIS serving as the implementation platform.

A. Configuration

1) Datasets used: In this work, a total of 20 popular nu-
merical datasets are employed for experimental investigation,
including: (/) abalone (AB); (2) cardiotocography (CA); (3)
epileptic seizure recognition (ES); (4) German credit (GC);
(5) gesture phase segmentation (GP); (6) image segmentation
(IS); (7) letter recognition (LR); (8) mammography (MA); (9)
multiple features (MF); (10) MAGIC gamma telescope (MG);
(11) occupancy detection (OD); (12) optical recognition of
handwritten digits (OR); (13) page-blocks (PB); (14) pen-
based recognition of handwritten digits (PR); (/5) phishing
websites (PW); (16) shill bidding (SB); (17) seismic (SE);
(18) semeion handwritten digit (SH); (19) texture (TE); and
(20) wilt (WI). Furthermore, four remote sensing image sets
for land-use classification are used to evaluate the proposed
optimisation approach on high-dimensional problems, namely,
(1) OPTIMAL-31 (OPT); (2) RSSCN7 (RSS); (3) UCMerced
(UCM) and (4) WHU-RS19 (WHU). Key information of these
two groups of datasets is summarised in Supplementary Tables
S1 and S2, respectively, with web links to these datasets given
in Supplementary Table S3.

2) Numerical classification problems: Regarding experi-
ments on numerical benchmark datasets, for the IS, OD, OR,
PR, and WI datasets, the original training-testing splits are
used. For the other 15 datasets, namely, AB, CA, ES, GC, GP,
LR, MA, MF, MG, PB, PW, SB, SE, SH and TE, 50% of the
data samples are randomly selected for building the training
sets and the rest for testing. The classification performance of
the proposed approach is evaluated on the 20 datasets in terms
of classification error (Er7), namely, Obj. 1. Considering
that some of the datasets are imbalanced, namely, classes
are not distributed equally, balanced classification accuracy
(Bac) is also employed as the performance measure for better
evaluation [60].

3) Remote sensing image classification problems: In the
experiments on the four image datasets, three mainstream
DCNNs (namely, ResNet50 [61], DenseNet121 [62] and In-
ceptionV3 [63]) are utilised for feature extraction after fine-
tuning on the NWPU45 dataset, following the same procedure
as described in [64]. Each fine-tuned DCNNs extracts 1024 x 1
dimensional high-level feature vectors per remote sensing
image, and the resulting feature vectors are combined together
into a more descriptive 1024 x 1 dimensional representation
by arithmetic mean (over the three sets of vectors). Following
the common practice in the literature, the training-testing split
ratio of OPT is set to 8 : 2; and for the RSS, UCM and WHU
datasets, two different split ratios are considered for each, i.e.,
2:8and5:5,5:5and 8:2,and 4 : 6 and 6 : 6, respectively.

4) State-of-the-art (SOTA) methods for comparison: In this
work, the following eight SOTA single-model classification al-
gorithms are taken for comparison: (/) Zero-order autonomous
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learning multi-model classifier (ALMMo0) [50]; (2) eClassO
classifier [9]; (3) Support vector machine (SVM) [4]; (4)
k-nearest neighbour (KNN) classifier [5]; (5) Decision tree
(DT) [6]; (6) Multilayer perceptron (MLP); (7) Sequence
classifier (SEQ) [65], and (8) Sequence-dictionary-based KNN
(SDKNN) classifier [65].

Furthermore, the following six ensemble models are also
used for performance comparison: (9) random forest (RF)
[7]; (10) fuzzily weighted AdaBoost-based SOFIS ensemble
(FWADBSOFIS) [30]; (11) AdaBoost.M2-based KNN ensem-
ble (ADBKNN) [66]; (12) SAMME-based KNN ensemble
(SAMKNN) [67]; (13) AdaBoost.M2-based SVM ensemble
(ADBSVM) [66], and; (/4) SAMME-based SVM ensemble
(SAMSVM) [67].

5) Parameter settings: In running the experiments,
ALMMOo0, eClass0, and SEQ classifiers use the recommended
parameter settings given in [9], [50], and [65], respectively.
SVM uses the linear kernel with the box constraint set to be
1. For KNN and SDKNN the parameter k is set to 10. The
maximum split of DT is set to be 50. MLP has three hidden
layers with 20 neurons per layer.

For the ensemble classifiers compared, the number of base
classifiers employed in each is set to 20 uniformly, to have
a fair comparison. FWADBSOFIS follows the exact same
parameter settings as [30]. The base classifiers (namely, DT,
KNN and SVM) of the other five ensemble models retains the
aforementioned experimental settings.

Regarding the multi-objective optimisation algorithm intro-
duced in this work, the population size is set to 100 and
the number of generations is set to 1000. The algorithm
is implemented on the MATLAB2020b platform, and the
performance evaluation is conducted on a desktop with dual
core i7 processor 2.60GHzx2 and 32.0GB. All numerical
results reported in this section are obtained after 25 Monte
Carlo simulations.

B. Results

To verify the effectiveness of the multi-objective optimisa-
tion approach the following 10 datasets are used: CA, IS, MF,
OD, OR, PB, PR, PW, SH and WI. The 10 datasets covers
classification problems of various characteristics, including
some challenging ones, such as large scale, class imbalance,
high dimensionality, non-linear separability, etc., and hence,
they are suitable for performance demonstration.

Firstly, SOFIS learns from the training set to extract a set
of prototypes. Then, the multi-objective optimisation algorithm
(as presented in Section III-B) is used to optimise the learned
prototypes, by minimising the two objectives (Obj. 1 and Ob;.
2) iteratively until the maximum iteration number is reached.
During the experiments, the level of granularity, G varies from
3 to 6.

The overall average Err rates on the testing samples over
the 10 datasets resulted from running the optimised SOFIS
in conjunction with each of the five different decision-making
schemes are reported in Table II, with the average Err rates
of running the original SOFIS itself also given as the baseline
for contrasting. For further verification, single-objective opti-
misation (SOO) is also run, following the same experimental

protocols to compare against the multi-objective optimisation
(MOO) approach. For fairness, an evolutionary algorithm is
used to implement SOO with the same specifications on
problem representation, initialisation and solution generation.
In other words, only the component population maintenance
procedure is different from the multi-objective optimisation
approach. SOO optimises the two objectives separately, and
the obtained best solutions are denoted by best Obj. 1 or
best Obj. 2 in Table II. For clarity, the average performance
improvements (in percentage) after optimisation using MOO
or SOO are compared with those achieved the baseline, as
shown in Table III.

Note that in Tables II and I, for MOO, Best Obj. 1
means the choice of the solution with the least Err. Best
Obj. 2 means that with the least intra-cluster variance, Joint
means that after considering the ensemble of all the solutions
obtained, and AHP and TOPSIS mean the choices made with
running the corresponding popular decision making methods.
For SOO, Best Obj. 1 means the best solution obtained when
only optimising the objective Err and Best Obj. 2 means the
best solutions obtained when only optimising the objective
intra-cluster variance.

The average training errors of SOFIS after optimisation
by MOO or SOO approaches are reported in Supplementary
Table S4, where the non-dominated solutions of best Obj. 1
and Obj. 2 obtained with MOO are considered. The average
performance improvements (in percentage) over the baseline
are given in the same table. Further detailed results obtained
are given by Supplementary Tables S5 and S6. The average
number of prototypes identified by SOFIS with different levels
of granularity on the 10 benchmark problems are depicted in
Fig. 3.
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Fig. 3: Average number of prototypes identified by SOFIS at
different levels of granularity.

It can be seen from Tables II and III that the MOO approach
greatly improves the performance of SOFIS over the 10 bench-
mark problems. Generally, the performance improvement is
greater when the knowledge base of SOFIS contains less
prototypes. For example, after being optimised by MOO, given
G = 3 the performance of SOFIS with the best non-dominated
solution of Obj. 1 is improved by 63.59% over the baseline,
whilst the performance is improved by 9.18% if G = 6. This
is because the data space can only be partitioned coarsely by a
smaller amount of prototypes, and optimising these prototypes
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TABLE II
PERFORMANCE COMPARISON BETWEEN MULTI-OBJECTIVE OPTIMISATION (MOQ) WITH DIFFERENT DIFFERENT
DECISION MAKING SCHEMES AND SINGLE-OBJECTIVE OPTIMISATION (SOO).

G MO0 SO0 Baseline
Best Obj. 1 ~ Best Obj. 2 Joint TOPSIS AHP Best Obj. I  Best Obj. 2 )
3 0.1123 0.1261 0.1179  0.1149  0.1184 0.1290 0.1421 0.1544
4 0.1009 0.1104 0.1052  0.1022  0.1051 0.1211 0.1227 0.1248
5 0.0960 0.1004 0.0975  0.0969  0.0981 0.1144 0.1084 0.1030
6 0.0932 0.0971 0.0947  0.0936  0.0947 0.0950 0.1059 0.0986
TABLE I

PERFORMANCE IMPROVEMENTS USING MULTI-OBJECTIVE OPTIMISATION (MOQ) WITH DIFFERENT DECISION MAKING
SCHEMES AGAINST USING SINGLE-OBJECTIVE OPTIMISATION (SOO).

G MOO SO0
Best Obj. 1  Best Ob;j. 2 Joint TOPSIS AHP Best Obj. 1  Best Obj. 2
3 +63.59% +32.06% +51.68%  +5891%  +52.57% +40.06% +9.06%
4 +37.67% +20.03%  +30.54%  +34.78%  +31.74% | +18.02% +2.84%
5 +17.59% +9.83% +14.95%  +15.67%  +14.74% +3.00% -2.29%
6 +9.18% +3.20% +6.84% +8.57% +7.19% +4.63% -5.95%
TABLE 1V Based on these observations, Scheme 1 is recommended for
PERFORMANCE COMPARISON AMONGST DIFFERENT decision-making as it offers the best classification performance
CLASSIFIERS overall.
= 5 Importantly, Tables II and III also demonstrate that the
. rr ac o
Algorithm Average Rank  Average  Rank SOFIS optimised by MMO (MOOSOFIS) outperforms the
MOOSOFIS 0.1240 2 0.8040 2 SOFIS optimised by SSO (SOOSOFIS) on benchmark prob-
SOFIS 0.1328 7 0.8028 3 lems with various experimental settings, thanks to the two
ALMMo0O 0.1531 10 0.7880 6 . .. .
ClassO 0.3295 16 06626 16 different but complementary objectives used for optimisa-
SVM 0.2155 15 0.7404 15 tion. Furthermore, SOOSOFIS performs better using Obj. 1
KNN 0.1260 4 0.7844 7 (namely, classification accuracy), which is in line with the
DT 0.1723 12 0.7680 11 .
MLP 0.1733 13 07434 14 observation that Scheme 1 generally offers better performance
SEQ 0.1483 8 0.7933 5 than Scheme 2. Therefore, it is experimentally confirmed that
SD}‘{(FI\IN 8'}222 ]34 ggggi 113 the MOO approach can effectively help prototype-based clas-
FWADBSOFIS  0.1209 1 0.8018 4 sifiers to achieve better performance, by minimising the two
ADBKNN 0.1316 6 0.7817 9 objectives simultaneously. This conclusion also coincides with
SAMKNN 0.1284 5 0.7840 8 the recent studies [38], [56], [57] that, even when there is only
ADBSVM 0.1535 11 0.7660 12 L L . o
SAMSVM 0.1496 9 0.7743 10 one objective of concern, considering a certain other objective

can cause greater changes on the classification boundaries,
resulting in greater performance improvement.

Comparing amongst the five decision-making schemes, it
is revealed that in general, Scheme 1 demonstrates the best
classification performance over the 10 benchmark problems,
whilst Scheme 2 performs the worst. The main reason for this
is that Obj. 2 measures the optimality of data partitioning, not
the classification performance. Hence, the best solution of Obj.
2 may not be the best option to be used for classifying testing
samples. However, this is not universal. As shown by other
results given in Supplementary Table S5, depending on the
nature of data, Scheme 2 can occasionally outperform Scheme
1 on some benchmark problems, e.g., regarding OR and PR.
In addition, Schemes 4 and 5 outperform Schemes 2 and 3,
ranking the second and third places amongst the five decision-
making schemes in terms of minimising classification errors.

in the evolutionary optimisation process (and hence, multi-
objectivisation) can help significantly improve the result. The
incomparability between solutions (i.e., Pareto non-dominated
to each other) in multi-objective optimisation can help the
search jump out of the local optima of the primary objective
(thus having a high chance to find the global optimum).

Another interesting observation made from Tables II, III
and Fig. 3 is that regardless of the schemes used for decision-
making, the Err rates of SOFIS, MOOSOFIS and SOOSOFIS
can be reduced by increasing the level of granularity, G. This
is because that with a higher level of granularity, SOFIS
is able to construct finer and more precise classification
boundaries by identifying more prototypes from data. After
the iterative optimisation process implemented by MOO or
SO0, the optimised SOFIS can achieve even greater classi-
fication performance. On the other hand, as aforementioned,
optimising a larger knowledge base (namely, a greater amount
of prototypes) is more computationally expensive and brings
smaller performance improvement. Thus, a trade-off between
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TABLE V
PERFORMANCE COMPARISON ON REMOTE SENSING LAND-USE PROBLEMS

Datacet OPT RSS TCM WHR
8:2 2:8 5:5 5:5 8:2 4:6 6:4

MOOSOMS 0001  0.1092 00843 00402 00307 00370 00251
0.0019)  (0.0065) (0.0068) (0.0050) (0.0076) (0.0080)  (0.0101)

CaffeNet [71] ) 0.1443 01174 00602  0.0498 00489  0.0376
0.0095)  (0.0062) (0.0067) (0.0081) (0.0120)  (0.0056)

0.1602 01282 00586  0.0479 00456  0.0395
VGG-VD-16 [71] - (0.0087)  (0.0094) (0.0069) (0.0120) (0.0060)  (0.0091)
GooaL.eNet [71] ) 01745  0.1416  0.0630  0.0569  0.0688  0.0529
g ©O0111)  (0.0092) (0.0060) (0.0089) (0.0082)  (0.0133)

00579  0.0425  0.0465  0.0362
SalM3LBP-CLM [72] - - - (0.0075)  (0.0080) (0.0076)  (0.0082)
0.0730 00319 00088 00250  0.0025
ARCNet-VGGI6 [73] (0.0035) - - 0.0014)  (0.0040) (0.0049)  (0.0025)
GBNet [69] 0.0672 ) ] 00268  0.0075 00295 00143
(0.0027) 0.0032)  (0.0050) (0.0019)  (0.0048)

. . 00524 00794 00561  0.0237 00127  0.0272  0.0232
EfficientNet-B3-Basic [701 ')056)  (0.0039)  (0.0010) (0.0006) (0.0020)  (0.0024)  (0.0010)
. 00414 00670 00383 00210 00079 00140  0.0132
EfficientNet-B3-Atn-2 [70] '6000y  (0.0019)  (0.0023)  (0.0036)  (0.0022)  (0.0040)  (0.0093)

the computational overheads of the optimisation process and
the classification performance of the optimised model has to
be made when setting the level of granularity. In this study, the
recommended value for the level of granularity is empirically
set to be G = 9. However, a globally optimal setting does
not exist theoretically whilst an empirically set parameter may
perform differently from problem to problem, depending on
the nature of data.

C. Further Performance Assessment

For better evaluation, the classification performance of
MOOSOFIS attained by the proposed approach is compared
with 14 aforementioned single-model and ensemble classifiers
on all 20 numerical benchmark problems listed in Section V.A.
The level of granularity for SOFIS is set to 9, following the
recommended setting. The average results over the 20 datasets,
in terms of Err and Bac, obtained by MOOSOFIS, SOFIS
and the 14 competitors are presented in Table IV, and the
ranks per measure are also given in the same table. More
detailed results can be found in Supplementary Table S7 and
S8. It can be seen that MOOSOFIS is ranked the second
amongst the 16 classifiers on both performance measures.
Such a performance surpasses all single-model classification
systems, outperforming all the ensemble classifiers on at least
one performance measure. This example demonstrates the
strong performance achieved by MOOSOFIS, reflecting the
efficacy of the proposed approach.

To reveal the statistical significance of the superior perfor-
mance achieved by MOOSOFIS, over the other 15 single-
model and ensemble classifiers, pairwise Wilcoxon rank tests
[68] are conducted. The outcomes of the pairwise tests in terms
of p-value are reported in Supplementary Table S9, where the
cascaded classification results by each classification approach
across the 25 Monte-Carlo experiments are used. It can be
observed that 88.67% of the p-values returned by the pairwise
Wilcoxon tests are below the level of significance specified by

a = 0.05. This suggests that the performance of MOOSOFIS
is significantly better than the others.

Finally, experiments on the four real-world remote sensing
image sets for land-use classification are conducted, in an
effort to evaluate the effectiveness of the proposed optimisation
approach on high-dimensional problems. The results (again, in
terms of Err) on these four problems are reported in Table V.
For comparison, the results obtained by the relevant SOTA
approaches in the literature are given in the same table. It can
be seen that MOOSOFIS is able to produce highly accurate
predictions on the land-use categories of testing images over
all four datasets. Although the employed feature descriptors
in the present experiments are not fine-tuned on any of these
datasets, the performance of MOOSOFIS is on par with that
attainable by the best performing DNN models, including GB-
Net [69], EfficientNet-B3-Basic [70], EfficientNet-B3-Basic
[70]. This, once again, demonstrates the strong performance
of MOOSOFIS.

VI. CONCLUSION AND FURTHER RESEARCH

This paper has presented a multi-objective optimisation
approach for optimising prototype-based fuzzy classification
systems. It significantly improves the performance of the
underlying prototype-based classifier, by iteratively minimis-
ing the two different but complementary objectives (namely,
accuracy and intra-cluster variance) simultaneously, especially
when the model size is compact. The systematic experimental
studies have shown that implemented with SOFIS as the
base classifier, the approach can outperform a wide range
of (14) single-model and ensemble competitors. Whilst the
present work is implemented with SOFIS as its basis, there
is no reason why other prototype-based classifiers cannot gain
similar benefits from the approach, given that SOFIS is simply
taken as an example owing to its relative popularity.

In spite of the success as evaluated by the experimental
investigations, some limitations remain with the proposed ap-
proach that can benefit from further improvement. Firstly, this
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study employs the Pareto-based EMO algorithm NSGA-II as
the backbone, but there exist other classes of EMO algorithms
that have been more recently developed, e.g., indicator-based
algorithm SMS-EMOA [42], decomposition-based algorithm
NSGA-III [44], and bi-criterion-based algorithm BCE [48].
Utilising a more advanced algorithm or designing a customised
method based on the problem’s characteristics can be expected
to further improve the performance.

Secondly, this study only considers two measures in the
optimisation process. One measures classification error on
the training samples and the other measures the intra-cluster
variance of the training data partitioning. It is clearly shown by
numerical results that minimising these objectives together can
improve the classification performance greatly. Nevertheless,
there are other measures such as the correntropy loss [74]
and F1 score [75]. Their employment either as an alternative
or as additional joint criterion may produce further improved
outcomes. In addition, objectives evaluating the interpretability
of the model can also be considered [33].

Lastly, another question not being addressed sufficiently by
the present work is how to select the best non-dominated solu-
tion for classification. it would be very useful to devise a novel
decision making method to choose a more suitable solution
to deploy. A possible way is to incorporate certain domain
knowledge (e.g., relative importance of different objectives)
of the problem in the decision making mechanism.
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